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Abstract. The group isomorphism problem asks whether two given groups are isomor-
phic or not. Whereas the case where both groups are abelian is well understood and can
be solved efficiently, very little is known about the complexity of isomorphism testing for
nonabelian groups. In this paper we study this problem for a class of groups corresponding
to one of the simplest ways of constructing nonabelian groups from abelian groups: the
groups that are extensions of an abelian group A by a cyclic group Zm. We present an
efficient algorithm solving the group isomorphism problem for all the groups of this class
such that the order of A is coprime with m. More precisely, our algorithm runs in time
almost linear in the orders of the input groups and works in the general setting where the
groups are given as black-boxes.

1. Introduction

The group isomorphism problem is the problem of deciding, for two given groups G and
H, whether there exists an isomorphism between G and H, i.e. a one-one map preserving
the group operation. This is a fundamental problem in computational group theory but
little is known about its complexity. It is known that the group isomorphism problem (for
groups given by their multiplication tables) reduces to the graph isomorphism problem [12],
and thus the group isomorphism problem is in the complexity class NP ∩ coAM (since
the graph isomorphism problem is in this class [2]). Miller [14] has developed a general

technique to check group isomorphism in time O(nlog n+O(1)), where n denotes the size of
the input groups and Lipton, Snyder and Zalcstein [13] have given an algorithm working
in O(log2 n) space. However, no polynomial algorithm is known for the general case of this
problem.

Another line of research is the design of algorithms solving the group isomorphism
problem for particular classes of groups. For abelian groups polynomial time algorithms
follow directly from efficient algorithms for the computation of Smith normal form of integer
matrices [10, 6]. More efficient methods have been given by Vikas [22] and Kavitha [11]
for groups given by their multiplication tables. The current fastest algorithm solving the
abelian group isomorphism problem for groups given as black-boxes has been developed

1998 ACM Subject Classification: F.2.2 Nonnumerical Algorithms and Problems.
Key words and phrases: polynomial-time algorithms, group isomorphism, black-box groups.

c© F. Le Gall
CC© Creative Commons Attribution-NoDerivs License

STACS 2009 
Symposium on Theoretical Aspects of Computer Science 2009 (Freiburg), pp. 625-636 
http://drops.dagstuhl.de/opus/volltexte/2009/1830



626 F. LE GALL

by Buchmann and Schmidt [5] and works in time O(n1/2(log n)O(1)). However, as far as
nonabelian groups are concerned, very little is known. For solvable groups Arvind and
Torán [1] have shown that the group isomorphism problem is in NP ∩ coNP under certain
complexity assumptions but, to our knowledge, the only polynomial-time algorithm testing
isomorphism of a nontrivial class of nonabelian groups is a result by Garzon and Zalcstein
[7], and holds for a very restricted class.

In this work we focus on the worst-case complexity of the group isomorphism problem
over classes of nonabelian groups. Since for abelian groups the problem can be solved
efficiently, we study one of the most natural next targets: cyclic extensions of abelian
groups. Loosely speaking such extensions are constructed by taking an abelian group A
and adding one element y that, in general, does not commute with the elements in A. More
formally the class of groups we consider in this paper, denoted S , is the following.

Definition 1.1. Let G be a finite group. We say that G is in the class S if there exists a
normal abelian subgroup A in G and an element y ∈ G of order coprime with |A| such that
G = 〈A, y〉.
In technical words G is an extension of an abelian group A by a cyclic group Zm with
gcd(|A|,m) = 1. This class of groups includes all the abelian groups and many non-abelian
groups too. For example, for A = Z

4
3 and m = 4 there are exactly 9 isomorphism classes in

S .
A group can be represented on a computer in different ways. In this paper we use the

black-box setting introduced by Babai and Szemerédi [4], which is one of the most general
models for handling groups, and particularly convenient to discuss algorithms running in
sublinear time. In order to state precisely the running time of our algorithm, we introduce
the following definition. For any group G in the class S , let γ(G) be the smallest integer m
such that G is an extension of an abelian group A by the cyclic group Zm with gcd(|A|,m) =
1. The main result of this paper is the following theorem.

Theorem 1.2. There exists a deterministic algorithm checking whether two groups G and
H in the class S given as black-box groups are isomorphic and, if this is the case, computing
an isomorphism from G to H. Its running time has for upper bound (

√
n+ γ)1+o(1), where

n = min(|G|, |H|) and γ = min(γ(G), γ(H)).

Notice that, for any group G in the class S , the relation γ(G) ≤ |G| holds. Then the

complexity of our algorithm has for upper bound n1+o(1), and is almost linear in the size of
the groups. Another observation is that, if γ = O(n1/2), then the complexity of our algo-

rithm is n1/2+o(1) and is of the same order as the best known algorithm testing isomorphism
of abelian groups [5] in the black-box setting. This case γ = O(n1/2) corresponds to the
rather natural problem of testing isomorphism of extensions of a large abelian group by a
small cyclic group.

The outline of our algorithm is as follows. Since a group G in the class S may in
general be written as the extension of an abelian group A1 by a cyclic group Zm1 and as
the extension of an abelian group A2 by a cyclic group Zm2 with A1 6∼= A2 and m1 6= m2, we
introduce (in Section 3) the concept of a standard decomposition of G, which is an invariant
for the groups in the class S in the sense that two isomorphic groups have similar standard
decompositions (but the converse is false). We also show how to compute a standard
decomposition of G efficiently. This allows us to consider only the case where H and G
are two extensions of the same abelian group A by the same cyclic group Zm. One of the
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main technical contributions of this paper is an efficient algorithm that tests whether two
automorphisms of order m in the automorphism group of A are conjugate or not (Section
4). Finally, we present a time-efficient reduction from the problem of testing whether G
and H are isomorphic to an instance of the above conjugacy problem (Section 5).
Remark. Several algorithms for the group isomorphism problem performing relatively
well in practice are known and have been implemented in computational group theory
softwares (GAP, MAGMA,...). The main works in this area are the algorithms developed
by Smith for solvable groups [20] and by O’Brien [15] for p-groups. However these algorithms
involve computation in groups of size exponential in n, e.g. the automorphism groups or
the cohomology groups, and no rigorous analysis of their time complexity is available.

2. Preliminaries

We assume that the reader is familiar with the basic notions of group theory and state
without proofs basic definitions and properties of groups we will use in this paper.

Let G be a finite group (in this paper we will consider only finite groups). Given a set
S of elements of G, the subgroup generated by the elements of G is written 〈S〉. For any
two elements g, h ∈ G we denote [g, h] the commutator of g and h, i.e. [g, h] = ghg−1h−1.
The commutator subgroup of G is defined as G′ = 〈[g, h] |g, h ∈ G〉. The derived series of G

is defined recursively as G(0) = G and G(i+1) = (G(i))′. The group G is said to be solvable
if there exists some integer k such that G(k) = {e}.

Given a prime p, a p-group is a group of order pr for some integer r. It is well-known
that any p-group is solvable. If G is a group and |G| = pei

1 . . . p
er
r for distinct prime numbers

pi such that p1 < · · · < pr, then for each i ∈ {1, . . . , r} the group G has a subgroup of
order pei

i called a Sylow pi-subgroup of G. Moreover, if G is additionally abelian, then each
Sylow pi-group is unique and G is the direct product of its Sylow subgroups. Abelian p-
groups have remarkably simple structures: any abelian p-group P is isomorphic to a direct
product of cyclic p-groups Zpe1 × · · ·×Zpes for some positive integer s and positive integers
e1 ≤ . . . ≤ es, and this decomposition is unique. A total order � over the set of prime
powers can be defined as follows: for any two prime powers pα and qβ where α and β are
positive integers, we write pα � qβ if and only if (p < q) or (p = q and α ≤ β). We say that
a list (g1, . . . , gt) of t elements in G is a basis of an abelian group G if G = 〈g1〉× · · · × 〈gt〉,
the order of each gi is a prime power and |gi| � |gj | for any 1 ≤ i ≤ j ≤ n. It is easy to
show that any (finite) abelian group has a basis and that, if (g1, . . . , gt) and (g′1, . . . , g

′
t′) are

two bases of G, then t = t′ and |gi| = |g′i| for each i ∈ {1, . . . , t}. For example, (g1, . . . , gt)
is a basis of G ∼= Z2 × Z4 × Z

2
3 if and only if t = 4, |g1| = 2, |g2| = 4, |g3| = |g4| = 3 and

G = 〈g1〉 × 〈g2〉 × 〈g3〉 × 〈g4〉.
Let n be a positive integer. A Hall divisor of n is a positive integer m dividing n such

that m is coprime with n/m. A subgroup H of a finite group G is called a Hall subgroup of
G if |H| is a Hall divisor of |G|. We will use in this paper the following well-known theorem.

Theorem 2.1 (Hall’s theorem). Let G be a finite solvable group and r be a Hall divisor
of |G|. If H1 and H2 are two subgroups of G with |H1| = |H2| = r, then H1 and H2 are
conjugate.

We say that a finite group G is an extension of a group K by a group L if there exists a
normal abelian subgroup N ∼= K of G such that G/N ∼= L. We say that such an extension
splits if there exists some subgroup M of G such that G = NM and N ∩M = {e}. The
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Schur-Zassenhaus theorem states that any extension of K by L such that gcd(|K|, |L|) = 1
splits. Concretely, any such split extensions can be constructed as a semidirect product
K ⋊ L. Thus an equivalent definition of the class S is the following: a group G is in S if
and only if there exist an abelian group A and a cyclic group Zm with gcd(|A|,m) = 1 such
that G = A⋊ Zm.

In this paper we work in the black-box setting first introduced in [4]. A black-box group
is a representation of a group where elements are represented by strings (of the same length).
An oracle that performs the group product is available: given two strings representing two
elements g and g′, the oracle outputs the string representing g · g′. Another oracle that,
given a string representing an element g, computes a string representing the inverse g−1 is
available as well. In this paper we assume the usual unique encoding hypothesis, i.e. any
element of the group is encoded by a unique string. We say that a group G is input as a
black-box if a set of strings representing generators {g1, . . . , gs} of G with s = O(log |G|)
is given as input, and queries to the multiplication and inversion oracles can be done at
cost 1. The hypothesis on s is natural since every group G has a generating set of size
O(log |G|), and enables us to make the exposition of our results easier. Also notice that
a set of generators of any size can be converted efficiently into a set of generators of size
O(log |G|) if randomization is allowed [3].

3. Computing a Standard Decomposition

For a given group G in the class S in general many different decompositions as a
semidirect product of an abelian group by a cyclic group exist. For example, the abelian
group Z6 = 〈x1, x2 | x2

1 = x3
2 = [x1, x2] = e〉 can be written as 〈x1〉 × 〈x2〉, 〈x2〉 × 〈x1〉 or

〈x1, x2〉 × {e}. That is why we introduce the notion of a standard decomposition. Let us
first start with a simple definition.

Definition 3.1. Let G be a finite group. For any positive integer m denote by Dm
G the set

(possibly empty) of pairs (A,B) such that the following three conditions hold: (i) A is a
normal abelian subgroup of G of order coprime with m; and (ii) B is a cyclic subgroup of
G of order m; and (iii) G = AB.

Notice that if for some m the set Dm
G is not empty, then G is in the class S . Conversely,

if G is in S , then there exists at least one integer m such that Dm
G is not empty. Also notice

that γ(G) is the smallest positive integer such that D
γ(G)
G 6= ∅. We now define the concept

of a standard decomposition.

Definition 3.2. Let G be a group in the class S . A standard decomposition of G is an

element of D
γ(G)
G .

Before explaining how to compute a standard definition for a group in S , let us mention
that it is well known that the order of an element g of any finite group G can be computed
deterministically in time Õ(|G|1/2) using Shanks’ baby-step/giant-step method [18] or its
variants [19]. In the following proposition we show that the decomposition of an element in
an abelian group can be found efficiently by a very similar approach (we will need this in
Section 5).

Proposition 3.3. Let A be an abelian group and (g1, . . . , gs) be a basis of A. There exists

a deterministic algorithm with time complexity Õ(|A|1/2) that, given any element g ∈ A,
outputs integers a1, . . . , as such that g = ga1

1 · · · gas
s .
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Proof. Denote ri =
√

|gi| for each i ∈ {1, . . . , s} and, for simplicity, suppose that ri is an
integer. The case where ri is not an integer is similar. The algorithm first computes the set
S = {gc1

1 · · · gcs
s | ci ∈ {0, . . . , ri − 1}}. Then the algorithm tries all the elements (b1, . . . , bs)

with bi ∈ {0, . . . , ri−1} until finding an element (b̄1, . . . , b̄s) such that gg−b̄1r1
1 · · · g−b̄srs

s ∈ S.

Denote gg−b̄1r1
1 · · · g−b̄srs

s = gc1
1 · · · gcs

s , where each ci is an element of {1, . . . , ri − 1}. A
clever way for finding the ci’s is to use an appropriate data structure for storing S. Then
the algorithm outputs (r1b̄1 + c1, . . . , rsb̄s + cs). The correctness of this algorithm follows
immediately from the fact that, if g = ga1

1 · · · gas
s , then each ai can be written as ai = b̄iri+ci

for some b̄i and ci in {0, . . . , ri − 1}. Its complexity is Õ(|A|1/2).

We now show how to compute a standard decomposition of any group in the class S

in time polynomial in the order of the group. The key part of the algorithm is the following
procedure Find-Decomposition that, given a group G in S and an integer m, computes
an element of Dm

G if this set is not empty. The description is given in metacode, followed
by more details.

Procedure Find-Decomposition(G,m)

input: a set of generators {g1, . . . , gs} of a group G in S with s = O(log |G|)
a positive integer m dividing |G|

output: an error message or a pair (M,z) where z ∈ G and M is a subset of G
1 compute a set of generators {x1, . . . , xt} of G′ with t = O(log |G|);
2 factorize m and write m = pe1

1 · · · per
r ;

3 search indexes k1, . . . , kr ∈ {1, . . . , s} such that peℓ

ℓ divides |gkℓ
| for each 1 ≤ ℓ ≤ r;

4 if no such r-uple (k1, . . . , kr) exists
5 then return error;
6 else

7 g ← Πr
ℓ=1g

|gkℓ
|/p

eℓ
ℓ

kℓ
;

8 if m does not divide |g|
9 then return error;

10 else

11 z ← g|g|/m;
12 for j = 1 to s do hj ← gm

j ;

13 if 〈x1, . . . , xt, h1, . . . , hs〉 is abelian
and gcd(|xi|,m) = 1 for each i ∈ {1, . . . , t}
and gcd(|hℓ|,m) = 1 for each ℓ ∈ {1, . . . , s}

14 then return ({x1, . . . , xt, h1, . . . , hs}, z);
15 else return error;
16 endelse

17 endelse

At Step 1 a set of generators {z1, . . . , zt′} of G′ with t′ = O(s3) can be computed using
O(s3) group operations by noticing that G′ = 〈gk[gi, gj ]g

−1
k | i, j, k ∈ {1, . . . , s}〉 (we refer to

[9] for a proof of this simple fact). Since G′ is abelian for any group G in the class S , a

generating set {x1, . . . , xt} of G′ with t = O(log |G|) can then be obtained in time Õ(|G|1/2)
using the deterministic algorithm by Buchmann and Schmidt [5] that computes a basis of

any abelian group K in time Õ(|K|1/2). At Step 2 the naive technique for factoring m

(trying all the integers up to
√
m) is sufficient. This takes Õ(|G|1/2) time. At Steps 3, 7
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and 13 we use Shanks’ method [18] to compute orders of elements of G in time Õ(|G|1/2).
At step 13, commutativity is tested by checking that every two generators commute: this
can be done in O(s2 + t2) group operations. Proposition 3.6 below summarizes the time
complexity of the procedure and prove its correctness. We state first two simple lemmas.

Lemma 3.4. Let G be a group in S and m be any positive integer. If (A1, B1) and (A2, B2)
are two elements of Dm

G , then A1 = A2.

Proof. Let us write B1 = 〈y1〉. Any element g of A2 can be written as g = hyc
1 with h ∈ A1

and some integer c. If c 6≡ 0 mod m, then gcd(m, |g|) 6= 1, which is excluded since |A2| and
m are coprime. Then A2 ⊆ A1. By symmetry A1 ⊆ A2 and A1 = A2.

Lemma 3.5. Let G be a group in S and (A,B) be a standard decomposition of G. Denote
|B| = m. Let {g1, . . . , gs} be a set of generators of G. Then A = 〈G′, gm

1 , . . . , g
m
s 〉, where

G′ is the derived subgroup of G.

Proof. Let B = 〈y〉 and, for each i ∈ {1, . . . , s}, write gi as ziy
ki for some zi ∈ A and

ki ∈ {1, . . . ,m}. Then A = 〈G′, z1, . . . , zs〉. Notice that G′ has to be included since in
general A 6= 〈z1, . . . , zs〉, e.g. G = 〈x1, x2, y | x3

1 = x3
2 = y2 = e, yx1 = x2y, yx2 = x1y〉

with the generating set g1 = x1y and g2 = y. A simple computation shows that gm
i =

uiz
m
i y

mki = uiz
m
i for some element ui ∈ G′. Since m is coprime with the order of zi, we

conclude that A = 〈G′, gm
1 , . . . , g

m
s 〉.

Proposition 3.6. The time complexity of the procedure Find-Decomposition(G,m) is

Õ(|G|1/2). If Dm
G 6= ∅, then Find-Decomposition(G,m) outputs a pair (M,z) such that

(〈M〉, 〈z〉)) ∈ Dm
G . Conversely, if Find-Decomposition(G,m) does not output an error

message, then its output (M,z) is such that 〈M,z〉 ∈ S and (〈M〉, 〈z〉) ∈ Dm
〈M,z〉.

Proof. It is clear that the procedure always terminates since no loop is used. The time
complexity follows from the analysis of Steps 1, 2, 3, 7 and 13 already done, and from the
fact that s = O(log |G|).

Suppose that Dm
G 6= ∅ and take a decomposition (A, 〈y〉) ∈ Dm

G . Write m = pe1
1 · · · per

r

for primes p1 < · · · < pr and denote qℓ = peℓ

ℓ for each ℓ ∈ {1, . . . , r}. Notice that for any
generating set {g1, . . . , gs} of G, and for each ℓ ∈ {1, . . . , r}, there should be some index
kℓ for which gkℓ

is of the form uℓy
cℓ, where uℓ ∈ A and cℓ is such that qℓ divides the order

of ycℓ , i.e. qℓ divides m/gcd(m, cℓ). Also notice that in this case qℓ divides the order of gkℓ

as well. Then the element ḡkℓ
= g

|gkℓ
|/qℓ

kℓ
has order qℓ and, more precisely, is of the form

vℓy
dℓ for some vℓ ∈ A and some dℓ = γℓm/qℓ with γℓ coprime with m. Then the element

g = Πr
ℓ=1ḡkℓ

is of the form wyd where w ∈ A and d = d1 + · · · + dr is coprime with m.

Thus m divides |g| and z = g|g|/m is an element of order m of the form w′ye with e coprime
with m. From Lemma 3.5 we know that 〈x1, . . . , xt, h1, . . . , hs〉 = A and conclude that
(〈x1, . . . , xt, h1, . . . , hs〉, 〈z〉) ∈ Dm

G .
We now prove the last part of the proposition. Suppose that the algorithm does not

err and denote (M,z) its output. Then z has order m and 〈M〉 is an abelian subgroup of
G of order coprime with m, since the tests at steps 8 and 13 succeeded. Moreover 〈M〉 is
normal in G since G′ ≤ 〈M〉. We conclude that 〈M,z〉 ∈ S and (〈M〉, 〈z〉) ∈ Dm

〈M,z〉.

We now present an algorithm computing a standard decomposition of any group in S .

Theorem 3.7. There exists a deterministic algorithm that, on an input G in the class
S given as a black box, outputs an element z ∈ G and a set M of elements in G such
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that (〈M〉, 〈z〉) is a standard decomposition of G. The time complexity of this algorithm is
O(|G|1/2+o(1)).

Proof. The algorithm is as follows. Let G be a group in the class S , input as a black box
with generating set {g1, . . . , gs} where s = O(log |G|).

We first compute |gi| for each i ∈ {1, . . . , s} using Shanks’ algorithm. Let m̄ be the
least common multiple of the s integers |g1|, . . . , |gs|. We compute the set S of divisors of
m̄, and denote m1 < m2 < · · · < mr the elements of S in increasing order.

For i from 1 to r we run the procedure Find-Decomposition(G,mi) on the set
{g1, . . . , gs} and mi, and obtain an error message or an output (〈Mi〉, zi). Let n be the
maximum value of the quantity mi|〈Mi〉| over all the i’s such that the output is not an
error message (we will show that for at least one value of i the output is not an error mes-
sage so n is well defined). Notice that computing |Mi| can be done using the deterministic
algorithm by Buchmann and Schmidt [5] that computes the order of any abelian group K

in time Õ(|K|1/2). Finally the algorithm takes the smallest integer i0 ∈ {1, . . . , r} such that
mi0 |Mi0 | = n, and then outputs zi0 and Mi0 .

We now analyze this algorithm. First of all notice that for any m such that Dm
G is not

empty, this integer m is in S since m divides m̄. By Proposition 3.6, if D
mi

G is not empty
then the procedure Find-Decomposition(G,mi) outputs an element (〈Mi〉, 〈zi〉) ∈ D

mi

G
and then mi|〈Mi〉| = |G|. Conversely, and again by Proposition 3.6, if the procedure
Find-Decomposition(G,mi) outputs (Mi, zi), then mi|〈M〉| = |〈zi,Mi〉| ≤ |G|. Thus n is
well defined and is equal to the order of G. Finally, trying all the elements of S gives clearly
the minimal m such that Dm

G is not empty. Then (〈Mi0〉, zi0) is a standard decomposition

of G. The time complexity of the algorithm is shown to be |G|1/2+o(1) using Proposition

3.6 and the following two facts. First, computing the set S can be done in Õ(|G|1/2) time.
Second, the number of divisors of any integer k has for upper bound O(kε) for any positive

constant ε (see for example [8]). Since m̄ ≤ |G| we conclude that r = |G|o(1).

4. Testing Conjugacy

In this section we study the automorphism group of any abelian group and describe
how to decide whether two automorphisms are conjugate.

Let A be a finite abelian group. Then A is the direct product of all its Sylow subgroups.
Since Aut(A) is the direct product of the automorphism groups of the Sylow subgroups, we
can assume without loss of generality that A is an abelian p-group for some prime p. In this
section we suppose that A is isomorphic to the group Zpe1 × · · · × Zpes , for some positive
integers s and e1 ≤ e2 ≤ . . . ≤ es. Let (g1, . . . , gs) be a basis of A, i.e. s elements of A such
that the order of each gi is pei and such that A = 〈g1〉 × · · · × 〈gs〉.

4.1. Automorphisms of an abelian group

We first introduce a matricial characterization of the group Aut(A) and study its struc-
ture.

Let ψ be an endomorphism of A and, for each j ∈ {1, . . . , s}, denote ψ(gj) = g
u1j

1 . . . g
usj
s

where each uij is in the set {0, . . . , pei − 1}. The values uij , which can be seen as an integer
matrix (uij) of size s × s, fully define the endomorphism ψ. However the converse is not
true: an arbitrary integer matrix (uij) of size s×s with each value uij in {0, . . . , pei−1} does



632 F. LE GALL

not necessarily define an endomorphism of A, because ψ should be a homomorphism, and
not only a linear map. It is easy to give necessary and sufficient conditions for these values
uij to define an endomorphism of A: pei−emin(i,j) should divide uij for any i, j ∈ {1, . . . , s}.

More precisely, define M(A) as the following set of integer matrices.

M(A) =
{

(uij) ∈ Z
s×s | 0 ≤ uij < pei and pei−emin(i,j) divides uij for all i, j ∈ {1, . . . , s}

}

.

Given U and U ′ in M(A) we also define the multiplication ∗ as follows: U ∗U ′ is the integer
matrix W of size s× s such that wij = (

∑s
k=1 uiku

′
kj mod pei) for i, j ∈ {1, . . . , s}, i.e. after

computing the usual matrix multiplication UU ′, each entry is reduced modulo pei , where i is
the row of the entry. Let R(A) be the set R(A) = {U ∈M(A) | det(U) 6≡ 0 mod p} . Ranum
has shown [17] that the set R(A) with the product operation ∗ is a group isomorphic to
the group of automorphisms of A. Notice that a canonical isomorphism between R(A) and
Aut(A) follows from the choice of a basis for A. An important example is the case A = Z

s
p

for some integer s, for which M(A) is the set of matrices of size s × s over the finite field
Zp and R(A) is the general linear group GLs(p) of invertible matrices of size s× s over Zp.

Let us write A ∼= H1 × · · · ×Ht with Hi = Z
ki

pfi
where f1 < f2 < · · · < ft are positive

strictly increasing integers and k1, . . . , kt are positive integers. Any matrix M ∈ R(A) has
t diagonal blocks D1, . . . ,Dt with Di ∈ GLki

(p) for i ∈ {1, . . . , t}. Let Ψ be the map from
R(A) to GLs(p) such that any matrix M ∈ R(A) is mapped as follows: the entries in the
diagonal blocks are reduced modulo p; the other entries are set to zero. It is easy to show
that Ψ is a group homomorphism from Aut(A) to GLs(r). Let N(A) denote its kernel and
V (A) denote its image. It is easy to see that N(A) is a subgroup of R(A) of order pr for
some positive integer r, and that V (A) is the subgroup of GLs(p) consisting of all the block
diagonal matrices of the form diag(D1, . . . ,Dt) with Di ∈ GLki

(p) for i ∈ {1, . . . , t}. We
refer to [17] and to the full version of our paper for further details.

4.2. Testing conjugacy in R(A)

In this subsection we consider the following computational problem and present an
efficient algorithm solving it.

Conjugacy

input: an abelian p-group A and two matrices U1 and U2 in R(A) such that

the orders of U1 and U2 are coprime with p (4.1)

output: an element U ∈ R(A) such that U ∗ U1 = U2 ∗ U if such an element exists

Trying all the possibilities for U requires |R(A)| trials. Since for example in the case

A = Z
s
pk with p and k constant the bound |R(A)| = Θ(|A|log |A|) holds, such a naive

approach is not efficient. However, notice that in the case A = Z
s
p the group A has more

than the structure of an abelian group: A is a vector space over the field Zp and then
R(A) = GLs(p) as explained above. A mathematical criterion for the conjugacy of matrices
in GLs(p) (even without the condition (4.1) on their orders) is known: two matrices are
conjugate if and only if their canonical rational forms are equal. Since the canonical rational
form of a matrix can be computed efficiently [21], this gives an algorithm solving the problem
Conjugacy in time polynomial in log |A|. However, when A has no vector space structure,
there is no known simple mathematical criterion for the conjugacy of matrices and, to our
knowledge, no algorithm faster than the above naive approach is known, even for the case
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where A = Z
s
p2. We now show that with the additional condition (4.1) on the order of U1

and U2 there exists an algorithm solving the problem Conjugacy in time polynomial in
log |A| for any abelian p-group A.

Our algorithm is based on the following proposition, which is a generalization of an
argument by Pomfret [16].

Proposition 4.1. Let A be an abelian p-group and U1, U2 be two matrices in R(A) of
order coprime with p. Then U1 and U2 are conjugate in R(A) if and only if Ψ(U1) and
Ψ(U2) are conjugate in V (A). Moreover if U1 and U2 are conjugate in R(A) then for any
X ∈ R(A) such that Ψ(U1) = Ψ(X)−1Ψ(U2)Ψ(X) there exists a matrix Y ∈ N(A) such
that X ∗ Y ∗ U1 = U2 ∗X ∗ Y .

Proof. For brevity we omit the symbol ∗ when denoting multiplications in R(A). Since
Ψ is an homomorphism, if U1 and U2 are conjugate in R(A) then Ψ(U1) and Ψ(U2) are
conjugate in V (A). Now suppose that Ψ(U1) and Ψ(U2) are conjugate in V (A). Since the
image of Ψ is V (A), there exists some X ∈ R(A) such that Ψ(U1) = Ψ(X)−1Ψ(U2)Ψ(X)
and thus U1 = X−1U2XM for some M ∈ N(A). Then 〈U1〉N(A) = 〈X−1U2X〉N(A) (since
N(A) is a normal subgroup of R(A)) and the two subgroups 〈U1〉 and 〈X−1U2X〉 are Hall
subgroups of the group 〈U1〉N(A). Moreover since 〈U1〉N(A) is a cyclic extension of the
p-group N(A), this is a solvable group. Then, from Theorem 2.1, this implies that the two
subgroups 〈U1〉 and 〈X−1U2X〉 are conjugate in 〈U1〉N(A) and thus there exists an element
Y ∈ 〈U1〉N(A) and some r > 0 such that Y −1X−1U2XY = U r

1 . Without loss of generality
Y can be taken in N(A). Thus Ψ(U1) = Ψ(X)−1Ψ(U2)Ψ(X) = Ψ(U1)

r. Since the order of
the kernel of Ψ is coprime with the order of U1, the matrices U1 and Ψ(U1) have the same
order, and thus U1 = U r

1 . We conclude that Y −1X−1U2XY = U1. The matrices U1 and U2

are thus conjugate in R(A). The second part of the theorem follows from the observation
that X can be chosen in an arbitrary way.

We now present our algorithm.

Theorem 4.2. There exists a deterministic algorithm that solves the problem Conjugacy

in time polynomial in log |A|.
Proof. The algorithm is as follows.

Given U1 and U2 in R(A) satisfying Condition (4.1), we first compute the two matrices
V1 = Ψ(U1) and V2 = Ψ(U2) in V (A). Then we check the conjugacy of V1 and V2 in
V (A) using the following approach. Let Di(V1) (resp. Di(V2)) be the i-th diagonal block
of V1 (resp. V2) for i ∈ {1, . . . , t}, i.e. a matrix in GLki

(p). The matrices V1 and V2 are
conjugate in V (A) if and only if the blocks Di(V1) and Di(V2) are conjugate in GLki

(p)
for each i ∈ {1, . . . , t}, that is, if Di(V1) and Di(V2) have the same rational normal form.
The rational normal form of matrices of size n× n (and transformation matrices) over any
finite field can be computed using O(n4) field operations (see for example [21]). Thus we
can decide in time polynomial in log |A| whether Di(V1) and Di(V2) are conjugate for all
i ∈ {1, . . . , t}. If this is not the case then we conclude that U1 and U2 are not conjugate in
R(A) from Proposition 4.1. Otherwise U1 and U2 are conjugate in R(A) and the remaining
of the proof shows how to compute a matrix U ∈ R(A) such that U ∗ U1 = U2 ∗ U .

We compute transformation matrices Ti ∈ GLki
(p), for i ∈ {1, . . . , t}, such that

TiDi(V1) = Di(V2)Ti using, for example, again the algorithm [21]. Then we take any matrix
X in R(A) such that Ψ(X) = diag(T1, . . . , Tt), e.g. the matrix X in R(A) with diagonal
blocks equal to T1, . . . , Tt and zero everywhere else. We finally determine a solution Y in
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N(A) of the matrix equation X∗Y ∗U1 = U2∗X∗Y . Such solution exists by Proposition 4.1.
To do this, we write the general form of an element Y of N(A) using s2 variables yij: the
entry corresponding to the i-th row and the j-th column of Y , for i, j ∈ {1, . . . , s}, is of the
form (1 + pyij) if i = j and is of the form pdijyij for some appropriate nonnegative integer
dij otherwise. Then the equation X ∗Y ∗U1 = U2 ∗X ∗ Y can be rewritten as the following

system of s2 linear modular equations of s2 variables yij:
∑s

i,j=1 α
(k,ℓ)
ij yij ≡ β(k,ℓ) mod pek

for 1 ≤ k, ℓ ≤ s, where α
(k,ℓ)
ij and β(k,ℓ) are known. Now we add on each modular equation

a new variable zkℓ with coefficient pek . This transforms the above system into the following

system of s2 linear Diophantine solutions of 2s2 variables:
∑s

i,j=1 α
(k,ℓ)
ij yij + pekzkℓ = β(k,ℓ)

for 1 ≤ k, ℓ ≤ s. It is known that any system of linear Diophantine equations with n1 equa-
tions and n2 variables can be solved in time polynomial in n1, n2 and logN , where N is the
largest coefficient appearing in the system [6]. Then a solution Y ∈ N(A) of the equation
X ∗ Y ∗U1 = U2 ∗X ∗ Y can be computed in time polynomial in log |A|. The output of the
algorithm is the matrix X ∗ Y .

5. Our Algorithm

In this section we give a proof of Theorem 1.2. We first present the following rather
simple result that shows necessary and sufficient conditions for the isomorphism of two
groups in S .

Proposition 5.1. Let G and H be two groups in S . Let (A1, 〈y1〉) and (A2, 〈y2〉) be
standard decompositions of G and H respectively and let ϕ1 (resp. ϕ2) be the action by
conjugation of y1 on A1 (resp. of y2 on A2). The groups G and H are isomorphic if and
only if the following three conditions hold: (i) A1

∼= A2; and (ii) |y1| = |y2|; and (iii) there
exists an integer k ∈ {1, . . . , |y1|} coprime with |y1| and an isomorphism ψ : A1 → A2 such
that ϕ1 = ψ−1ϕk

2ψ.

Proof. First notice that for a group G in S , the integer γ(G) is a group invariant. Now
suppose that G and H are two isomorphic groups in S with standard decomposition re-
spectively (A1, 〈y1〉) and (A2, 〈y2〉). Then |y1| = |y2| = γ(G) = γ(H). Denote by ψ an

isomorphism from G to H and notice that (ψ(A1), ψ(y1)) ∈ D
γ(H)
H . From Lemma 3.4 this

implies that ψ(A1) = A2 and, in particular, A1
∼= A2. The element ψ(y1) can be written as

zyk
2 for some z ∈ A2 and some integer k ∈ {1, . . . , γ(H)} coprime with γ(H). By definition

of ϕ1, for any x ∈ A1 the relation y1x = (y1xy
−1
1 )y1 = ϕ1(x)y1 holds. Applying ψ to each

term gives zyk
2ψ(x) = ψ(ϕ1(x))zy

k
2 and then ϕk

2(ψ(x))zyk
2 = ψ(ϕ1(x))zy

k
2 for any x ∈ A1.

Thus ϕk
2 = ψϕ1ψ

−1.
Now consider two groups G and H in S satisfying the conditions (i), (ii) and (iii) of the

statement of the theorem. Denote m = |y1| = |y2|. Let µ be the map from G to H such that

µ(xyj
1) = ψ(x1)y

kj
2 for any x in A1 and any j ∈ {0, . . . ,m−1}. The map µ is clearly a bijec-

tion fromG toH. We now show that µ is a homomorphism, and thus an isomorphism fromG
toH. Let x and x′ be two elements of A1 and let j and j′ be two elements of ∈ {0, . . . ,m−1}.
Then µ(xyj

1x
′yj′

1 ) = µ(xϕj
1(x

′)yj+j′

1 ) = ψ(xϕj
1(x

′))y
k(j+j′)
2 = ψ(x)ψ(ϕj

1(x
′))y

k(j+j′)
2 . Now

the relation µ(xyj
1)µ(x′yj′

1 ) = ψ(x)ykj
2 ψ(x′)ykj′

2 = ψ(x)ϕkj
2 (ψ(x′))y

k(j+j′)
2 holds. Condi-

tion (iii) of the statement of the theorem implies that ψ(ϕj
1(x

′)) = ϕkj
2 (ψ(x′)) and thus

µ(xyj
1x

′yj′

1 ) = µ(xyj
1)µ(x′yj′

1 ).



EFFICIENT ISOMORPHISM TESTING FOR A CLASS OF GROUP EXTENSIONS 635

We now present our proof of Theorem 1.2.

Proof of Theorem 1.2. Suppose that G and H are two groups in the class S . Denote
n = min(|G|, |H|) and γ = min(γ(G), γ(H)). Without loss of generality let us suppose
that |G| = |H|. In order to test whether these two groups are isomorphic, we first run the
algorithm of Theorem 3.7 on the inputs G and H and obtain outputs (S1, y1) and (S2, y2)
such that (〈S1〉, 〈y1〉) and (〈S2〉, 〈y2〉) are standard decompositions of G and H respectively.

The running time of this algorithm is O(n1/2+o(1)) by Theorem 3.7. Denote A1 = 〈S1〉 and
A2 = 〈S2〉.

We then check whether |y1| = |y2|. If |y1| 6= |y2| we conclude that G and H are not
isomorphic by Proposition 5.1. Otherwise notice that |y1| = |y2| = γ. Then we compute
a basis (g1, . . . , gs) of A1 and a basis (h1, . . . , ht) of A2 using the algorithm by Buchmann

and Schmidt [5]. The running time of this step is Õ(n1/2). Given these bases it is easy to
check the isomorphism of A1 and A2: the groups A1 and A2 are isomorphic if and only if
s = t and |gi| = |hi| for each i ∈ {1, . . . , s}. If A1 6∼= A2 we conclude that G and H are not
isomorphic by Proposition 5.1.

Now suppose that A1
∼= A2 (and then s = t) and denote R = R(A1) = R(A2). We want

to decide whether the action by conjugation ϕ1 of y1 on A1 and the action by conjugation
ϕ2 of y2 on A2 satisfy Condition (iii) in Proposition 5.1. Let pd1

1 · · · pdr
r be the prime power

decomposition of |A1| = |A2|, with p1 < · · · < pd and denote Pi the Sylow pi-subgroup
of A1 for each i ∈ {1, . . . , r}. We compute the matrix M1 in R corresponding to the
automorphism ϕ1 of A1 with respect to the basis (g1, . . . , gs). More precisely let us denote
ϕ1(gi) = y1giy

−1
1 = gui1

1 · · · guis

j for each i ∈ {1, . . . , s}. The values uij for each i can be

found by using the algorithm of Proposition 3.3 on the input y1giy
−1
1 . Then the matrix

M1 = (uij) can be computed in time Õ(n1/2). Similarly we compute the matrix M2 ∈ R
corresponding to the automorphism ϕ2 of A2 with respect to the basis (h1, . . . , hs). A key
observation is that M1 and M2 are block diagonal, consisting in r blocks. More precisely
the i-th block is a matrix in R(Pi).

Finally for each integer k ∈ {1, . . . , γ} coprime with γ, we test whether M1 and Mk
2

are conjugate in R. This is done by using the algorithm of Theorem 4.2 to check whether,
for each i ∈ {1, . . . , r}, the i-th block of M1 is conjugate to the i-th block of M2 in R(Pi).
If there is no k such that M1 and Mk

2 are conjugate in R we conclude that G and H are
not isomorphic. Otherwise we take one value k such that M1 and Mk

2 are conjugate and
compute an explicit block diagonal matrix X in R such that M1 = X−1Mk

2X. This can
be done in time polynomial in log n by Theorem 4.2. The matrix X is naturally associated
to an isomorphism ψ from A1 to A2 through the bases (g1, . . . , gs) and (h1, . . . , hs). The

map µ : G → H defined as µ(xyj
1) = ψ(x)ykj

2 for any x ∈ A1 and any j ∈ {0, . . . , γ − 1} is
then an isomorphism from G to H (see the proof of Proposition 5.1 for details). The total
complexity of this final step is O(γ logc n) for some constant c.

The time complexity of this algorithm is O(γ logc n) +O(n1/2+o(1)) ≤ (
√
n+ γ)1+o(1).
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