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ABSTRACT. The homomorphism problem for relational structures is an abstract way of formulating
constraint satisfaction problems (CSP) and various problems in database theory. The decision version
of the homomorphism problem received a lot of attention in literature; in particular, the way the
graph-theoretical structure of the variables and constraints influences the complexity of the problem
is intensively studied. Here we study the problem of enumerating all the solutions with polynomial
delay from a similar point of view. It turns out that the enumeration problem behaves very differently
from the decision version. We give evidence that it is unlikely that a characterization result similar to
the decision version can be obtained. Nevertheless, we show nontrivial cases where enumeration can
be done with polynomial delay.

1. Introduction

Constraint satisfaction problems (CSP) form a rich class of algorithmic problems with applica-
tions in many areas of computer science. We only mention database systems, where CSPs appear
in the guise of the conjunctive query containment problem and the closely related problem of eval-
uating conjunctive queries. It has been observed by Feder and Vardi [14] that as abstract problems,
CSPs are homomorphism problems for relational structures. Algorithms for and the complexity
of constraint satisfaction problems have been intensely studied (e.g. [20, 10, 4, 5]), not only for
the standard decision problems but also optimization versions (e.g. [3, 22, 23, 24]) and counting
versions (e.g. [6, 7, 8, 13]) of CSPs.

In this paper we study th@SP enumeration problerthat is, problem of computing all solutions
for a given CSP instance. More specifically, we are interested in the question which structural
restrictions on CSP instances guarantee tractable enumeration problems. “Structural restrictions”
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are restrictions on the structure induced by the constraints on the variables. Example of structural
restrictions is “every variable occurs in at most 5 constraints” or “the constraints form an acyclic
hypergraph” This can most easily be made precise if we view CSPs as homomorphism problems:
Given two relational structures, B, decide if there is a homomorphism frofnto B. Here the
elements of the structurk correspond to the variables of the CSP and the elements of the structure
B correspond to the possible values. Structural restrictions are restrictions on the sthudtureis

a class of structures, th&l5P(.A, —) denotes the restriction of the general CSP (or homomorphism
problem) where the “left hand side” input structukeis taken from the classl. ECSP(A, —)
denotes the corresponding enumeration problem: Given two relational strudturesA andB,
compute the set of all homomorphisms frainto B. The enumeration problem is of particular
interest in the database context, where we are usually not only interested in the question of whether
the answer to a query is nonempty, but want to compute all tuples in the answer. We will also briefly
discuss the correspondirsgarchproblem: Find a solution if one exists, denot&dSP (A, —).

It has been shown in [2] th&CSP (.4, —) can be solved in polynomial time if and only if the
number of solutions (that is, homomorphisms) for all instances is polynomially bounded in terms
of the input size and that this is the case if and only if the structures in the dl&asse bounded
fractional edge cover number. However, usually we cannot expect the number of solutions to be
polynomial. In this case, we may ask which conditions.4muarantee thaECSP(.A, —) has a
polynomial delay algorithm. Avolynomial delay algorithnfior an enumeration problem is required
to produce the first solution in polynomial time and then iteratively compute all solutions (each
solution only once), leaving only polynomial time between two successive solutions. In particular,
this guarantees that the algorithms computes all solutiop®lynomial total timethat is, in time
polynomial in the input size plus output size.

It is easy to see th&CSP(.A, —) has a polynomial delay algorithm if the cladshas bounded
tree width. It is also easy to see that there are clas$ed unbounded tree width such that
ECSP(A, —) has a polynomial delay algorithm. It follows from our results that examples of such
classes are the class of all grids or the class of all complete graphs with a loop on every vertex. It
is known that the decision proble@SP(.A, —) is in polynomial time if and only if the cores of the
structures ind have bounded tree width [17] (provided the arity of the constraints is bounded, and
under some reasonable complexity theoretic assumptiongoréof a relational structured is a
minimal substructured’ C A such that there is a homomorphism frofrto .A’; minimality is with
respect to inclusion. It is easy to see that all cores of a structure are isomorphic. Hence we usually
speak of “the” core of a structure. Note that the core of a grid (and of any other bipartite graph with
at least one edge) is a single edge, and the core of a complete graph with all loops present (and of
any other graph with a loop) is a single vertex with a loop on it. The core of a complete graph with
no loops is the graph itself. As a polynomial delay algorithm for an enumeration algorithms yields
a polynomial time algorithm for the corresponding decision problem, it followsHGEP (A, —)
can only have a polynomial delay algorithm if the cores of the structure$ ave bounded tree
width. Unfortunately, there are examples of clasgethat have cores of bounded tree width, but
for which ECSP (A, —) has no polynomial delay algorithm unless=PNP (see Example 3.2).

Our main algorithmic results show thBICSP (A, —) has a polynomial delay algorithm if the
cores of the structures id have bounded tree width and if, in addition, they can be reached in a
sequence of “small steps.” Aendomorphisnof a structure is a homomorphism of a structure to
itself. A retractionis an endomorphism that is the identity mapping on its image. Every structure

The other type of restrictions studied in the literature on CSP are “constraint language restrictions”, that is, restrictions
on the structure imposed by the constraint relations on the values. An example of a constraint language restriction is “all
clauses of a SAT instance, viewed as a Boolean CSP, are Horn clauses”.
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has a retraction to its core. However, in general, the only way to map a structure to its core may
be by collapsing the whole structure at once. As an example, consider a path with a loop on both
endpoints. The core consists of a single vertex with a loop. (More precisely, the two cores are the
two endpoints with their loops.) The only endomorphism of this structure to a proper substructure
maps the whole structure to its core. Compare this with a path that only has a loop on one endpoint.
Again, the core is a single vertex with a loop, but now we can reach the core by a sequence of
retractions, mapping a path of lengtho a subpath of length — 1 and then to a subpath of length
n — 2 et cetera. We prove that il is a class of structures whose cores have bounded tree width
and can be reached by a sequence of retractions each of which only moves a bounded number of
vertices, thefECSP (A, —) has a polynomial delay algorithm.

We also consider more general sequences of retractions or endomorphism from a structure to
its core. We say that a sequence of endomorphisms from a struggucea substructuréd; C A,
from A, to a substructurd.,, ..., to a structurd\,, hasbounded widthf A,, and, for each < n, the
“difference betweer\; andA;_;” has bounded tree width. We prove that if we are given a sequence
of endomorphisms of bounded width together with the input strudiiien we can compute all
solutions by a polynomial delay algorithm. Unfortunately, in general we cannot compute such a
sequence of endomorphisms efficiently. We prove that even for widtis NP-complete to decide
whether such a sequence exists.

Finally, we remark that our results are far from giving a complete classification of the cldsses
for which ECSP(.A, —) has a polynomial delay algorithm and those classes for which it does not.
Indeed, we show that it will be difficult to obtain such a classification, because such a classification
would imply a solution to the notoriously op&SP dichotomy conjectuie Feder and Vardi [14]
(see Section 3 for details).

Due to space restrictions several proofs are omitted.

2. Preliminaries

Relational structures. A vocabularyr is a finite set ofrelation symbolsof specified arities. A
relational structureA overr consists of a finite sed called theuniverseof A and for each relation
symbol R € 7, say, of arityr, anr-ary relationR* C A". Note that we require vocabularies and
structures to be finite. A structut is asubstructureof a structureB if A C B andR* C RE for

all R € 7. We write A C B to denote thaf is a substructure dB andA C B to denote thah is

a proper substructure oB, that is,A C B andA # B. A substructureA C B is inducedif for all

R € 7, say, of arityr, we haveR* = R® N A". For a subsetl C B, we write B[A] to denote the
induced substructure @ with universeA.

Homomor phisms. We often abbreviate tupl€s, ..., a;) by a. If f is a mapping whose domain
containsay, ...,a; we write f(a) to abbreviate(f(a1),..., f(ax)). A homomorphisnfrom a
relational structuré\ to a relational structur® is a mappingp : A — B such that for allR € 7
and all tuplesa € R" we havep(a) € R®. A partial homomorphisnon C C Ato B is a
homomorphism of\[C] to B. It is sometimes useful when designing examples to exclude certain
homomorphisms or endomorphisms. The simplest way to do that is to use unary relations. For
example, ifR is a unary relation anéz) € R* we say that has colorR. Now if b € B does not
have colorR then no homomorphism from to B mapsa to b.

Two structuresA andB arehomomorphically equivalent there is a homomorphism from
to B and also a homomorphism froBto A. Note that if structureg. andA’ are homomorphically
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equivalent, then for every structuféthere is a homomorphism froe to B if and only if there is a
homomorphism fromf\’ to B; in other words: the instancéd., B) and(A’, B) of the decision CSP

are equivalent. However, the two instances may have vastly different sizes, and the complexity of
solving the search and enumeration problems for them can also be quite different. Homomorphic
equivalence is closely related to the concept of the core of a structure: A strécisiseoreif there

is no homomorphism from to a proper substructure @f. A core of a structuré\ is a substructure

A’ C A such that there is a homomorphism fraito A’ and A’ is a core. Obviously, every core

of a structure is homomorphically equivalent to the structure. We observe another basic fact about
cores:

Observation 2.1. Let A andB be homomorphically equivalent structures, andideandB’ be cores
of A andB, respectively. Thed’ andB’ are isomorphic. In particular, all cores of a structdrare
isomorphic. Therefore, we often speaktbé core ofA.

Observation 2.2. Itis easy to see that it is NP-hard to decide, given structirésB, whetherA is
isomorphic to the core dB. (For an arbitrary grapliz, let A be a triangle and the disjoint union
of G with A. ThenA is a core ofB8 if and only if G is 3-colorable.) Hell and NeSetfil [19] proved
that it is co-NP-complete to decide whether a graph is a core.

Tree decompositions. A tree decompositionf a graphG is a pair(T, B), whereT is a tree and3
is a mapping that associates with every nede V(7T') a setB; C V(G) such that (1) for every
v € V(G) the set{t € V(T)|v € B} is connected irf", and (2) for everye € E(G) there is a
t € V(T) such thake C B;. The setsB,, fort € V(T'), are called thdagsof the decomposition. It
is sometimes convenient to have the tfe@ a tree decomposition rooted; we always assume it is.
Thewidth of a tree decompositiofil’, B) is max{|B;| | t € V(T')} — 1. Thetree widthof a graph
G, denoted by tWG), is the minimum of the widths of all tree decompositiongof

We need to transfer some of the notions of graph theory to arbitrary relational structures. The
Gaifman graph(also known agprimal graph of a relational structuré\ with vocabularyr is the
graphG(A) with vertex setA and an edge betweenandb if a # b and there is a relation symbol
R € 1, say, of arityr, and a tupl€a, . ..,a,) € R® such thata,b € {ai,...,a,}. We can now
transfer graph-theoretic notions to relational structures. In particular, a sBbSe#l is connected
in a structureA if it is connected inG(A). A tree decompositionf a structureA can simply be
defined to be a tree-decomposition(éfA ). Equivalently, a tree decomposition &fcan be defined
directly by replacing the second condition in the definition of tree decompositions of graphs by (2’)
foreveryR € 7 and(ay, ... ,a,) € R* thereis & € V(T) such that{ay, ...,a,} C B;. AclassC
of structures habounded tree widtif there is aw € N such that tWA) < w for all A € C. Aclass
C of structures habounded tree width modulo homomorphic equivalehtieere is aw € N such
that everyA € C is homomorphically equivalent to a structure of tree width at most w.

Observation 2.3. A structureA is homomorphically equivalent to a structure of tree width at most
w if and only if the core ofA has tree width at most.

The Constraint Satisfaction Problem. For two classesAd and B of structures, th€onstraint Sat-
isfaction ProblemCSP (A, B), is the following problem:

CSP(A, B)
Instance: A € A,B € B
Problem: Decide if there is a homomorphism frofnto B.
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The CSP is a decision problem. The variation of it we study in this paper is the following
enumeration problem:

ECSP(A, B)
Instance: A € A,B € B
Problem: Output all the homomorphisms frof to B.

We shall also refer to the search proble&$iSP (A, BB), in which the goal is to find one solution
to a CSP-instance or output ‘no’ if a solution does not exists.

If one of the classesl, B is the class of all finite structures, then we denote the correspond-
ing CSPs byCSP(A, —), CSP(—, B) (respectively, ECSP(A, —), ECSP(—, B), SCSP(A, —),
SCSP(—, B)).

The decision CSP has been intensely studied. If a aass structures has bounded arity
then CSP(C, —) is solvable in polynomial time if and only i has bounded tree width modulo
homomorphic equivalence [17]. If the arity 6fis not bounded, several quite general conditions on
a class of structures have been identified that guarantee polynomial time solvabiliPof, —),
see, e.0.[16, 12, 18]. Problems of the foifiP(—,C) have been studied mostly in the case when
C is 1-element. Problems of this type are sometimes referred no@siniform It is conjectured
that every non-uniform problem is either solvable in polynomial time or NP-complete (the so-called
Dichotomy Conjectue[14]. Although this conjecture is proved in several particular cases [20, 9,
10, 4], in its general form it is believed to be very difficult.

A search CSP is clearly no easier than the corresponding decision problem. While any non-
uniform search problerRCSP(—, C) is polynomial time reducible to its decision versioSP(—,C)

[11], nothing is known about the complexity of search probl&4@SP(C, —) except the result we
state in Section 3. Paper [25] provides some initial results on the complexity of non-uniform enu-
merating problems.

3. Tractable structures for enumer ation

Since even an easy CSP may have exponentially many solutions, the model of choice for ‘easy’
enumeration problems is algorithms with polynomial delay [21]. An algorithm Alg is said to solve
a CSPwith polynomial delayWPD for short) if there is a polynomiab(n) such that, for every
instance of size:, Alg outputs ‘no’ in a time bounded by(n) if there is no solution, otherwise it
generates all solutions to the instance such that no solution is output twice, the first solution is output
after at mosi(n) steps after the computation starts, and time between outputting two consequent
solutions does not exceedn ).

If a class of relational structureéshas bounded arity, the aforementioned result of Grohe [17]
imposes strong restrictions on enumeration problems solvable WPD.

Observation 3.1. If a class of relational structuréswith bounded arity does not have bounded tree
width modulo homomorphic equivalence, the@'SP(C, —) is not WPD, unless PNP.

Unlike for the decision version, the converse is not true: bounded tree width modulo homomor-
phic equivalence does not imply enumerability WPD.

Example 3.2. Let A; be the disjoint union of &-clique and a loop and letl = {A; | & >
1}. Clearly, the core of each graph i has bounded tree width (in fact, it is a single element),
henceCSP(A, —) is polynomial-time solvable. For an arbitrary grafhwithout loops, letB’
be the disjoint union of8 and a loop. It is clear that there is always a trivial homomorphism
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from A, (for any & > 1) to B’ that maps everything into the loop. There exist homomorphisms
different from the trivial one if and only i contains ak-clique. Thus if we are able to check
in polynomial time whether there is a second homomorphism, then we are able toRdsasfa
k-clique. Therefore, althougblSP(.A, —) andSCSP (A, —) are polynomial-time solvable, a WPD
enumeration algorithm faE CSP(.A, —) would imply P= NP.

It is not difficult to show thattCSP(C, —) is enumerable WPD i€ has bounded tree width.

For space restrictions we do not include a direct proof and instead we derive it from a more general
result in Section 4. Thus enumerability WPD has a different tractability criterion than the decision
version, and this criterion lies somewhere between bounded tree width and bounded tree width
modulo homomorphic equivalence. Thus in order to ensure that the solutions can be enumerated
WPD, we have to make further restrictions on the way the structure can be mapped to its bounded
tree width core. The main new definition of the paper requires that the core is reached by “small
steps”.

Let A be arelational structure with univerge We say that\ has a sequence of endomorphisms
of width k if there are subsetd = Ay D A; D ... D A, # (0 and homomorphisms, ..., v,
such that

(1) ; is a homomorphism from\[A4;_;] to A[A4;],

(2) SOi(Ai—l) =A;forl <i<n;

(3) if G is the primal graph of\, then the tree width of7[A; \ A4;,1] is at mostk for every

0<s<n

(4) the structure induced hyt,, has tree width at most.

In Section 4, we show that enumeration {ér, B) can be done WPD if a sequence of bounded
width endomorphisms fak is given in the input. Unfortunately, we cannot claim tR&tSP (A, —)
can be done WPD if every structure . has such a sequence, since we do not know how to find
such sequences efficiently. In fact, as we show in Section 5, it is hard to check if a width-1 sequence
exists for a given structure. Furthermore, we show a classhere every structure has a width-2
sequence, blECSP (A, —) cannot be done WPD, unlessPNP. This means that it is not possible
to get around the problem of not being able to find the sequences (for example, by finding sequences
with somewhat larger width or by constructing the sequence during the enumeration).

Thus having a bounded width sequence of endomorphisms is not the right tractability crite-
rion. We then investigate a more restrictive notion, where the bound is not on the tree width of the
difference of the layers but on the number of elements in the differences. However, in the rest of
the section, we give evidence that enumeration problems solvable WPD cannot be characterized in
simple terms relying on tree width. For instance, a description of search problems solvable in poly-
nomial time would imply a description of non-uniform decision problems solvable in polynomial
time. This is shown via an analogous result for the search version of the problem, which might be
of independent interest. B{t & B we denote the disjoint union of relational structuteandB.

Lemma 3.3. LetB be a relational structure, which is a core, and (etbe{A ®B | A — B}. Then
CSP(—,B) is solvable in polynomial time if and only if so is the probl8@SP (Cg, —).

Proof. If the decision problen®SP(—, B) is solvable in polynomial time we can construct an algo-
rithm that given an instandg\, C) of CSP(Cp, —) computes a solution in polynomial time. Indeed,
asCSP(—, B) is solvable in polynomial time by the aforementioned result of [11] it is also polyno-
mial time to find a homomorphism from a given structur@tprovided one exists. I € Cp such a
homomorphismp exists by the definition afg. So our algorithms, first, finds some homomorphism
. Then it decides by brute force whether or not there exists a homomorphisom B to C (note
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that this can be done in polynomial time for every fix@d If such a homomorphism does not exist
then we can certainly guarantee that there is no homomorphisméArenC. Otherwise we obtain
a required homomorphismt as follows: Lety(a) = ¢'(a) for a € B, andy(a) = ¢’ o ¢(a) for
a € A.

Conversely, assume that we have an algorithm Alg that finds a solution of any instance of
CSP(Cg, —) in polynomial time, sayp(n). We construct from it an algorithm that solveéSP(—, B).
Given an instanceA, B) of CSP(—, B) we call algorithm Alg with inputA &B andB. Additionally
we count the number of steps performed by Alg in such a way that we stop if Alg has not finished
in p(n) steps. If Alg produces a correct answer then we have to be able to obtain from it a homo-
morphism fromA to B. If Alg’s answer is not correct or the clock reachgs:) steps we know that
Alg failed. The only possible reason for that is tat> B does not belong t6g, which implies that
A is not homomorphic t@. [

In what follows we transfer this result to enumeration praide Let.A be a class of relational
structures. The clasd’ consists of all structures built as follows: Takeec .4 and add to i A|
independent vertices.

Lemma3.4. Let.A be a class of relational structures. Th8Q'SP (A, —) is solvable in polynomial
time if and only ifECSP(A’, —) is solvable WPD.

Proof. If ECSP(A, —) is enumerable WPD, then for any structdrec A’ it takes time polynomial
in |A’| to find the first solution. SincA’ is only twice of the size of the corresponding structdre
it takes only polynomial time to solVeCSP (A, —).

Conversely, given a structuee’ = A U T € A’, whereA € A and[ is the set of independent
elements, and any structufe The first homomorphism fromA’ to B can be found in polynomial
time, sinceSCSP (A, —) is polynomial time solvable and the independent vertices can be mapped
arbitrarily. Let the restriction of this homomorphism ontobe . Then while enumerating all
possible|B|4! extensions of» we buy enough time to enumerate all homomorphisms fhoto B
using brute force. n

4. Sequence of bounded width endomor phisms

In this section we show that for every fixéd all the homomorphisms from to B can be
enumerated with polynomial delay if a sequence of wiktendomorphisms of\ is given in the
input. Given a sequencéy, ..., A, andyy, ..., ¢, as in the definition of a sequence of width
endomorphisms, we denafg 4;] by A,.

We will enumerate the homomorphisms frafrto B by first enumerating the homomorphisms
from A, A,,_1, ... to B and then transforming them to homomorphisms fréno B using the
homomorphismsp;. We obtain the homomorphisms frof, by extending the homomorphism
from A;;, to the setAd; \ A;;1; Lemma 4.1 below will be useful for this purpose. In order to
avoid producing a homomorphism multiple times, we need a delicate classification (see definitions
of elementary homomorphisms and of the index of a homomorphism).

Lemma4.l. LetA, B be relational structures and’; C X, C A subsets, and lefy be a homomor-
phism fromA [X;] to B. For every fixed, there is a polynomial-time algorithtHOMOMORPHISM
ExT(A,B, X1, Xs, go) that decides whethey, can be extended to a homomorphism fibfiX | to
B, if the tree width of induced subgragh X, \ X;] of the Gaifman graph of is at mostk.
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The index of a homomorphismp from A to B is the largest such thatp can be written as
p = Yoy o...o0p for some homomorphisnp from A; to B. In particular, ifo cannot be
written asp = 1 o 1, then the index ofp is 0. Observe that if the index af is at leastt, then
there is a unique such thatp = ¢ o ¢; o ... o 1: This follows from the fact thap; o ... o 1
is a surjective mapping from to A;, thus if¢’ and«” differ on A;, theny’ o ¢y o ... 0 1 and
" o ppo... 0 differ on A. A homomorphismy from A; to B is elementary if it cannot be
written asy) = ¢’ o ;1. A homomorphism iseducibleif it is not elementary.

Lemma 4.2. If a homomorphism) from A, to B is elementary, thep = ) o ¢, 0 ... 0 1 has
index exactlyt. Conversely, if homomorphism from A to B has indext and can be written as
@ =1 oy o...0p1,then the homomorphisg from A, to B is elementary.

Lemma 4.2 suggests a way of enumerating all the homomorphisms AramB: for ¢t =
0,...,n, we enumerate all the elementary homomorphisms ffgrto B, and for each such homo-
morphismy, we computer = o 0...0p1. To this end, we need the following characterization
of elementary homomorphisms:

Lemma4.3. A homomorphisny from A; to B is reducible if and only if
(1) ¥(z) = ¥(y) for everyz,y € Ay with o 11(x) = pry1(y), i.€., foreveryz € Ayyq, ¥()
has the same value for everyz with ;1 (z) = z, and
(2) the mapping defined by (z) := b, is a homomorphism from,; to B.

Lemma 4.3 gives a way of testing in polynomial time whether a given homomorphign
elementary: we have to test whether one of the two conditions are violated. We state this in a more
general form: we can test in polynomial time whether a partial mapginan be extended to an
elementary homomorphism, if the structure induced by the elements wheyeés not defined has
bounded tree width. We fix values every possible way in which the conditions of Lemma 4.3 can
be violated and use ®MoOMORPHISM-EXT to check whether there is an extension compatible with
this choice. In order to efficiently enumerate all the possible violations of the second condition, the
following definition is needed:

Given a relationR® of arity r, abad prefixis a tuple(by, ..., bs) € B* with s < r such that

(1) there is no tupléby, ..., bs, bsy1,...,b,.) € R® foranyb,,1,...,b. € B, and

(2) thereis atupléby,. .., bs_1,cs,Csq1,-..,c.) € RE for somecy, ..., c, € B.

If (by,...,b,) ¢ R®, then there is a uniqué < s < r such that the tupléb,, ..., b,) is a
bad prefix: there has to be ansuch that(by, ..., bs) cannot be extended to a tuple AF, but
(b1,...,bs—1) can.

Lemma 4.4. The relationR® has at mostR®| - (|B| — 1) - r bad prefixes, where is the arity of
the relation.

Lemma 4.5. Let X be a subset ofi; and letgy be a mapping fromX to B. For every fixedk,
there is a polynomial-time algorithLEMENTARY-EXT (¢, X, go ) that decides whethej, can be
extended to an elementary homomorphism ffono B, if the tree width of the structure induced
by A; — X is at mostk.

We enumerate the elementary homomorphisms in a specific order defined by the following
precedence relation. Letbe an elementary homomorphism fratpto B and lety be an elemen-
tary homomorphism fromd ; to B for some; > i. Homomorphismy is the parentof ¢ (¢ is a
child of v) if ¢ restricted to4;; can be written ag o p; o ... o ;2. Ancestoranddescendant
relations are defined as the reflexive transitive closure of the parent and child relations, respectively.
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Note that an elementary homomorphism frémto B has exactly one parent for< n and a
homomorphism fromd,, to B has no parent. Fix an arbitrary ordering of the elements .ofor
0<i<nand0 < j < |A;\ A, let A4; ; be the union ofd;;; and the firstj elements of
A; \Ai—i-l- Note thatALo = Ai+1 andAi7|Ai\Ai+1| = A,

Lemma 4.6. Letvy be a mapping from¥; ; to B that can be extended to an elementary homomor-
phism fromA; to B. Assume that a sequence of widtkendomorphisms is given fér. For every
fixedk, there is a polynomial-delay, polynomial-space algoritBhEMENTARY-ENUM (4, 7, ¢) that
enumerates all the elementary homomorphisnis; dhat extendg and all the descendants of these
homomorphisms.

By calling ELEMENTARY-ENUM(n, 0, go ) (Wheregy is a trivial mapping fronf) to B), we can
enumerate all the elementary homomorphisms. By the observation in Lemma 4.2, this means that
we can enumerate all the homomorphisms frérto B.

Theorem 4.7. For every fixedk, there is a polynomial-delay, polynomial-space algorithm that,
given structuresd, B, and a sequence of widthendomorphisms of, enumerates all the homo-
morphisms fromh to B.

Theorem 4.7 does not provide a complete description of classes of structures solvable WPD.

Corollary 4.8. There is a classA of relational structures such that not all structures frodrhave
a sequence of width endomorphisms andBCSP(.A, —) is solvable WPD.

Proof. Let A be the class of structures that are the disjoint union of a loop and a core. Obviously,
SCSP(A, —) is polynomial time solvable. Therefore, by Lemma &SP (A, —) is solvable with
polynomial delay. However, it is not hard to see tHadoes not have a sequence of endomorphisms
of bounded tree width. [

Furthermore, as we will see in the next section it is hard, inega, to find a sequence of
bounded width endomorphims. Still, we can find a sequence of endomorphisms for a sthuitture
we impose two more restrictions on such a sequence.

A retractionp of a structureA is called ak-retraction if at mostk nodes change their value
according top. A structure is &-coreif the only k-retraction is the identity. A-core of a structure
is anyk-core obtained by a sequencefefetractions.

Lemma 4.9. All k-cores of a structuré\ are isomorphic.

Lemma 4.9 amounts to say that when searching for a sequericestfactions converging to
a k-core we can use the greedy approach and include, as the next member of such a sequence, any
k-retraction with required properties. With this in hands we now can apply Theorem 4.7.

Theorem 4.10. Letk > 0 be a positive integer and I€t be a class of structures such that the
core of every structure i@ has tree width at most. Then, the enumeration probleBCSP(C, —)
is solvable WPD.

Corallary 4.11. If C is a class of structures of bounded tree width tB&nSP(C, —) is solvable
WPD.
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5. Hardnessresults

The first result of this section shows that finding a sequence of endomorphisms of bounded
width can be difficult even in simplest cases.

Theorem 5.1. It is NP-complete to decide if a structure has a sequence of 1-width retractions to
the core.

The second result shows tHACSP(.A, —) can be hard even if every structurehhas a se-
guence of width-2 endomorphisms. Note that this result is incomparable with Theorem 5.1, since
an enumeration algorithm (in theory) does not necessarily have to compute an sequence of endo-
morphisms. We need the following lemma:

Lemmab5.2. If G is a planar graph, then it is possible to find a partitiob, V2) of its vertices in
polynomial time such tha®[V;] and G[V>] have tree width at most

Proposition 5.3. There is a class4 of relational structures such that every structure frofrhas
a sequence of width 2 endomorphisms to the core, and such that the pibIsR(.4, —) is not
solvable WPD, unlesB = N P.

Proof. Let A be a class of graphs built in the following way. Take a 3-colorable planar graph
and its partition(V1, V5) according to Lemma 5.2. Using colorings we can ensure(hiata core.
Then we take a disjoint union of this graph with a trian@léaving all the colors and a cogy; of
G[V1]. Let A denote the resulting structure.

CLAIM 1. A has a sequence of width-2 endomorphisms.

Let ¢ be a 3-coloring ofG that is a homomorphism into the triangle, anithe bijective
mapping fromG; to G[V1]. Theny; is defined to act ag on G, asy’ on G and identically on
T. Endomorphismps is just the 3-coloring oty U G; induced by. The images ofp; andp, are
T U G[V1] andT, respectively, so all the conditions on a sequence of width-2 homomorphisms are
easily checkable.

CLAIM 2. The RANAR GRAPH 3-COLORING PROBLEMis Turing reducible ta&ECSP (A, —).

Given a planar grapli we find its partition(V;, V) and create a structur&, as described
above. Then we apply an algorithm that enumerates solutioB§€'#P(.A, —) We may assume that
such an algorithm stops with some time bound regardless whéth&i3-colorable or not. If the
algorithm succeeds we can now produce a 3-coloring.of [

6. Conjunctive queries

When making a query to a database one usually needs to obtain values of only those variables
(attributes) (s)he is interested in. In terms of homomorphisms this can be translated as follows: For
relational structured\, B, and a subset” C A, we aim to list those mappings froin to B which
can be extended to a full homomorphism frénto B. In other words, we would like to enumerate
all the mappings front” to B that arise as the restriction of some homomorphism fedrto B.

Clearly, this problem significantly differs from the regular enumeration problem. A mapping from

Y to B can be extendible to a homomorphism in many ways, possibly superpolynomially many,
and an enumeration algorithm would list all of them. In the worst case scenario it would list them
before turning to the next partial mapping. If this happens it may destroy polynomiality of the delay
between outputting consecutive solutions.

In this section we treat the@NJUNCTIVE QUERY EVALUATION PROBLEM as follows.
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CQE(A, B)

Instance:A e A, BeB, Y CA

Problem: Output all partial mappings fromy” to B ex-
tendible to a homomorphism fror to B.

We present two results, first one of them shows that the prokl&® (A, —) is WPD whenA
is a class of structures of bounded tree width, the second one claims that, modulo some complexity
assumptions, in contrast to enumeration problems this cannot be generalized to structuktes with
cores of bounded tree width fér> 2.

Theorem 6.1. If A is a class of structures of bounded width tHeQE(.A, —) is solvable WPD.

Proof. We use Lemma 4.1 to show that algorithm CQBBVDED-WIDTH of Figure 1 does the
job. Indeed, this algorithms backtracks only if outputs a solution. n

Theorem 6.1 does not generalize to classes of structuresevkhoes have bounded width.

Example 6.2. Recall that the MLTICOLORED CLIQUE problem (cf. [15]) is formulated as fol-
lows: Given a humbek and a vertex;-colored graph, decide if the graph containg-alique all
vertices of which are colored different colors. This probleniii$l]-complete, i.e., has no time
f(k)n¢ algorithm for any functionf and constant, unless FP¥ W1]. We reduce this problem to
CQE(A, —) whereA is the class of structures whose 2-cores are 2-element described below.

Let us consider relational structures with two binary and two unary relations. This structure
can be thought of as a graph whose vertices and edges have one of the two colors, say, red and
blue, accordingly to which of the two binary/unary relations they belong toAl.dte the relational
structure with universéas, ..., ax, y1,. .., yx}, Whereay, ..., a; are red whileyy, . . ., y are blue.
Then{as,...,as} induces a red clique, that is evety, a; (i, j are not necessarily different) are
connected with a red edge, and eggls connected ta; with a blue edge. It is not hard to see that
every pair of a red and blue vertices induces a 2-core of this structurel SefA, | k € N}.

The reduction of the MLTICOLORED CLIQUE problem toCQE(.A, —) goes as follows. Given
a k-colored graphG = (V, E') whose coloring induces a partition df into classesB;, ..., B.

Then we define structures, B and a se” C A. We setA = A, Y = {y1,...,yx}. Then let
B =V U{by,...,b}, the elements of are colored red and the induced substrucibf&] is the

Figure 1: Algorithm CQE-BUNDED-WIDTH
Input: Relational structured, B, andY = {Y7,...,Y;,} C A
Output: A list of mappingsy: Y — B extendible to a homomorphism frofato B
Stepl setm=0,p=0,5; =B, i< [m], complete=false
Step 2 whilenot completedo
Step2.1 if m < ¢thendo
Step2.1.1 search 5,41 untilab € 5,41 is found such that there exists a homomorphism extending
© U{ym+1 — b} andremove all members of5,,,; preceding inclusive

Step 2.1.2 if such & existsthen set p := p U {y;nr1 — b}, m:=m+1
Step2.1.3 e€se
Step2.1.3.1 ifm#Othenset o = @1y, .. y.13 ANASy 11 := B,m:=m —1
Step 2.1.3.2 €elseset complete:true
Step 2.2 esethendo
Step 2.2.1 output ¢
Step2.2.2  set ¢ =y, ym_}pmi=L—1

endwhile
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graphG (without coloring) whose edges are colored also red. Fingjly,. ., b, are made blue and
eachb; is connected with a blue edge with every vertex frén

It is not hard to see that any homomorphism méps, ..., ax} to V andY to {b1,...,bs},
and that the number of homomorphisms that do not agre¥ does not exceed”. Moreover,G
contains a&-colored clique if and only if there is a homomorphism frdto B that mapsy” onto
{b1,...,bx}. If there existed an algorithm solvifgQE(.A, —) WPD, say, time needed to compute
the first and every consequent solution is bounded by a polyngifaigJ then time needed to list all
solutions is at most*p(n). This means that MLTICOLORED CLIQUE is FPT, a contradiction.
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