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ABSTRACT. We introduce a new technique for bounding the cover time of random walks
by relating it to the runtime of randomized broadcast. In particular, we strongly confirm
for dense graphs the intuition of Chandra et al. |§] that “the cover time of the graph
is an appropriate metric for the performance of certain kinds of randomized broadcast
algorithms”. In more detail, our results are as follows:

e For any graph G = (V, E) of size n and minimum degree §, we have R(G) = O(‘f}f‘ .
logn), where R(G) denotes the quotient of the cover time and broadcast time. This
bound is tight for binary trees and tight up to logarithmic factors for many graphs
including hypercubes, expanders and lollipop graphs.

e For any d-regular (or almost d-regular) graph G it holds that R(G) = Q(% . lo;n).
Together with our upper bound on R(G), this lower bound strongly confirms the
intuition of Chandra et al. for graphs with minimum degree ©(n), since then the
cover time equals the broadcast time multiplied by n (neglecting logarithmic factors).

e Conversely, for any 6 we construct almost d-regular graphs that satisfy R(G) =
O(max{\/n,d} - log®n). Since any regular expander satisfies R(G) = O(n), the
strong relationship given above does not hold if ¢ is polynomially smaller than n.

Our bounds also demonstrate that the relationship between cover time and broadcast

time is much stronger than the known relationships between any of them and the mixing
time (or the closely related spectral gap).

1. Introduction

Motivation. A random walk on a graph is the following process. Starting from a
specified vertex, the walk proceeds at each step from its current position to an adjacent
vertex chosen uniformly at random. The study of random walks has numerous applications
in the design and analysis of algorithms (cf. [24] for a survey). Two of the most important
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parameters of random walks are its mixing time which is the time until the walk becomes
close to the stationary distribution, and its cover time which is the expected time required
for the random walk to visit all vertices.

Famous combinatorial problems solved by rapidly mixing random walks are, e.g., ap-
proximating the permanent and approximating the volume of convex bodies (cf. [24] for
more details). The cover time comes naturally into play when the task is to explore a net-
work, or to estimate the stationary distribution of a graph [31]. Moreover, the cover time
is intimately related to combinatorial and algebraic properties such as the conductance and
the spectral gap of the underlying graph [6] and thus, bounding the cover time may also
lead to interesting combinatorial results.

In this paper, we are particularly interested in the relationship between the cover time
of random walks and the runtime of randomized broadcast [16]. Broadcasting in large
networks has various fields of application in distributed computing such as the maintenance
of replicated databases or the spreading of information in networks [I6, 21]. Furthermore it
is closely related to certain mathematical models of epidemic diseases where infections are
spread to some neighbours chosen uniformly at random with some probability. However, in
most papers, spreaders are only active in a given time frame, and the question of interest
is, whether on certain networks an epidemic outbreak occurs [22, 27]. Several threshold
theorems involving the basic reproduction number, contact number, and the replacement
number have been stated (see [I9] for a collection of results).

Here, we consider the so-called randomized broadcast algorithm [16] (also known as push
algorithm): at the beginning, a vertex s in a graph G knows of some rumor which has to
be disseminated to all other vertices. Then, at each time-step every vertex that knows of
the rumor chooses one of its neighbors uniformly at random and informs it of the rumor.
The advantage of randomized broadcast is in its inherent robustness against several kinds
of failures (e.g., [16]) and dynamical changes compared to deterministic schemes that either
need substantially more time or can tolerate only a relatively small number of faults [21].

Related Work. There is a vast body of literature devoted to the cover time of random
walks and we can only point to some results directly related to this paper. Aleliunas et
al. [3] initiated the study of the cover time. Amongst other results, they proved that the
cover time of any graph G = (V, E) with n vertices is at most O(n - |E|). To obtain this
result they proved that the cover time is bounded by the weight of a spanning tree whose
edges are weighted according to the commute times between the corresponding vertices.
This approach was later refined by Feige [T5] to obtain an upper bound of less than 2n?
for regular graphs. While the spanning tree technique is particularly useful for graphs that
have a high cover time [I5], it vastly overestimates the cover time of e.g., complete graphs.

The seminal work of Chandra et al. [§] established a close connection between the elec-
trical resistance of a graph and its cover time. This correspondence allows the application
of elegant methods from electrical network theory, e.g., the use of short-cut-principles or
certain flow-based arguments. Nevertheless, for the computation of the resistance of a given
graph other graph-theoretical parameters are often required, e.g., vertex-expansion, number
of vertex-disjoint paths or the number of vertices within a certain distance [§].

A wide range of techniques to upper bound the cover time is based on the mixing time of
a random walk or the closely related spectral gap. The technique of reducing the cover time
to the coupon collector’s problem on graphs with low mixing time traces back to Aldous [I]
who derived tight bounds on the cover time of certain Cayley graphs. Later, Cooper and
Frieze extended this technique to bound the cover time of several classes of random graphs,
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e.g., [I0]. The basic idea of this method is that after each mixing time steps, the random
walk visits an (almost) randomly chosen vertex. The crux is to deal with the dependencies
among the intermediate vertices. Hence, in addition to an upper bound on the mixing time
of logarithmic [T0] or at least sub-polynomial order [I], one has to bound the number of
returns to the starting vertex within mixing time steps.

A related result was derived by Broder and Karlin [6] who bounded the cover time in
terms of the spectral gap 1 — A9, where \g is the second largest eigenvalue of the transition
matrix of the random walk.

Winkler and Zuckerman [31] introduced an interesting parameter called blanket time
which is closely related to the cover time. Here, one asks for the first time-step at which
the observed distribution of the visited vertices approximates the stationary distribution
up to a constant factor. Winkler and Zuckerman conjectured that the blanket time is
asymptotically the same as the cover time. In [20] Kahn et al. showed that the blanket time
is upper bounded by the cover time multiplied by O((Inlnn)?) for any graph.

Most papers dealing with randomized broadcast analyze the runtime on different graph
classes. Pittel [28] proved that the runtime on complete graphs is logy n+1Inn+O(1). Feige
et al. [I6] derived several upper bounds, in particular a bound of O(logn) for hypercubes
and random graphs. We extended the bound of O(logn) to a certain class of Cayley graphs
n [I2]. Additionally, we proved that the broadcast time is upper bounded by the sum of
the mixing time and an additional logarithmic factor [29] (a similar result for a related
broadcast algorithm was derived by Boyd et al. [5]). However, the mixing time cannot be
used for an appropriate lower bound on the broadcast time, as it may overestimate the
broadcast time up to a factor of n on certain graphs (cf. Section B2).

Our Results. We present the first formal £6)
results relating the cover time to the broadcast maxceg; R(G)
time. In most of them, we will assume that the

broadcast and the random walk both start from !

its respective worst-case initial vertex. Note that  s/s_|]

at a first look these processes seem not to be too

closely related, since randomized broadcast is a  ,,,_|

parallel process where propagation occurs at ev- "

ery informed vertex simultaneously, while a ran- | P

dom walk moves ”only” from one vertex to an- " | mingeg; R(G)
other [16]. Nevertheless, Chandra et al. [§] men-

tioned that “The cover time of the graph is an o) nll/4 nll/2 n31/4 7II ?

appropriate metric for the performance of cer-
tain kinds of randomized broadcast algorithms”.
As a consequence of our main results, we obtain
a fairly tight characterization of graph classes for
which the cover time and broadcast time cap- class of graphs with A =
ture each other. On the positive side, for ev- O(9). Th? blue and  red
ery graph with minimum degree ©(n), the cover polygons indicate the gap be-
time equals the broadcast time multiplied by n, tween our lower and upper
up to logarithmic factors (this kind of tightness bgunds on maxgeg; R(G) and
(up to logarithmic factors) has been frequently mingeg, R(G), resp.

considered in the study of random walks, e.g., when studying rapidly mixing Markov
chains [30], or when bounding the cover time [§],[24] Theorem 2.7].). On the negative

Figure 1: All bounds on R(G) at a
glance. Gs denotes the
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side, this strong correspondence does not hold on almost regular graphs, when the degree
is substantially smaller than n.

In more detail, our results illustrated in Figure [l are as follows. First, we prove that
the cover time of any graph with minimum degree § is at most 0(@ log n) multiplied by
the (expected) broadcast time, that is, the quotient R(G) of the cover time and broadcast

time is 0(@ logn). This bound is tight up to a constant factor for binary trees and tight
up to a logarithmic factor for various graphs including, e.g., expanders, hypercubes and
lollipop-graphs. As an application, we use this result to upper bound the cover time of
generalized random graphs that are used as a model for real world networks [9].
Conversely, we consider the question of lower bounding R(G). By showing that the
commute time between two vertices u,v is at least 2 - dist(u,v)?, we obtain that R(G) =

Q(ivnfg") for any graph with maximum degree A. For constant A, this bound is tight
for the two-dimensional \/n x y/n-torus up to logarithmic factors. We move on to improve

this bound for denser graphs with A = O(6) to R(G) = Q( v/ ). More importantly, for

Vélogn
any graph with A = O(J) we establish that R(G) = Q(‘sn—2 . loén). Together with our upper

bound on R(G), this implies that on any graph with § = ©(n), cover time and broadcast
time (multiplied by n) capture each other up to logarithmic factors.

We complement these positive results by the construction of (almost) d-regular graphs
for which R(G) = O(max{\/n,d} - logn). Since for any d-regular expander (graphs for
which the spectral gap satisfies (1 — X2)™! = O(1)), R(G) = O(n), the cover time does not
always capture the performance of randomized broadcast for the class of almost d-regular
graphs when d is polynomially smaller than n.

All of our lower and upper bounds reveal a surprisingly close relationship between the
cover time and broadcast time. In particular, upper bounding the cover time in terms of the
broadcast time turns out to be as good as (and in some cases much better than) bounding
it in terms of the spectral-gap (cf. Section B2). From another perspective, we derive a
lower bound on the broadcast time in terms of the cover time that nicely complements the
existing upper bounds on the broadcast time based on the mixing time [12, 29]. A further
novel feature of this work is the use of techniques from electrical network theory to bound
the broadcast time. We should note that certain difficulties in applying such methods for
the study of randomized broadcast have been mentioned by Feige et al. [16].

2. Notations, Definitions and Preliminaries

Throughout this paper, let G = (V, E') be an undirected, simple and connected graph of
size n = |[V]. By § and A we denote the minimum and maximum degree of G, respectively.
For some set X C V, N(X) denotes the set of all neighbors of x € X, and degy(u) is the
number of edges between u and the vertices of X.

Random Walk. A random walk [24] on a graph G starts at a specified vertex s € V
and moves in each step to a neighboring vertex chosen uniformly at random. This can be
described by a transition matric P, where p;; = 1/deg(i) if {i,j} € E(G), and p;; = 0
otherwise. Then, the random walk is an infinite sequence of vertices Xg, X1,..., where
Xy := s is the starting point of this random walk, and X; denotes the vertex visited by
the random walk at step ¢t. Note that X; is a random variable with a distribution pg(t)
on V(G). Denoting by ps(0) the unit-vector (regarded as column vector) with 1 at the
component corresponding to s and 0 otherwise, we obtain the iteration ps(t+1) = ps(t) - P
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for every step t € N. It is well-known that on non-bipartite graphs, ps(t) converges for
t — oo towards the stationary distribution vector m given by 7w(v) = deg(v)/(2|E]|). For
simplicity, we confine ourselves to non-bipartite graphs in the following. This causes no loss
of generality as for general graphs (including bipartite ones) convergence can be ensured
easily by using the transition matrix %I + %P (with I being the identity matrix) instead of
P. This change of the transition matrix slows down the mixing time (and the cover time)
only by some constant factor [24, 30].

Mixing Time and Spectral Gap. The mizing time of a random walk on G is MIX.(G) :=
maxsey min{t € N : |[|ps(t) — 7|1 < ¢,Xo = s}. Since G is connected and non-bipartite,
the eigenvalues of P satisfy Ay =1 > Ay > --- > A, > —1. The following result by Sinclair
shows that the spectral gap 1 — Ao captures the mixing time up to logarithmic factors.

Theorem 2.1 ([30]). For any graph G = (V,E) and € > 0,

) <1 iiz -log(é)> = MIX:(G) =0 <1 _1& : (logn—l—log(é))) :

Commute Time, Resistance and Cover Time. For two vertices u,v € V(G), the
hitting time from u to v is defined as H(u,v) := E [min{t € N\{0} : X; = v, Xo = u}], i.e.,
the expected number of steps to reach v from u. The commute time C(u,v) is defined as
the expected number of steps to reach v when starting from u and then returning back
to u, so, C(u,v) := H(u,v) + H(v,u). Consider now the graph G as an electrical network
where each edge represents a unit resistance. Let u and v be two vertices. Assume that one
ampere were injected into vertex u and removed from vertex v. Then R(u,v) is the voltage
difference between u and v (for more details on electrical networks we refer the reader to
[8, 24]), and is related to C(u,v) as follows.

Theorem 2.2 (R]). For any pair of vertices u,v € V, C(u,v) = 2|E| - R(u, v).

We will mainly be concerned with the cover time, which is the expected number of
steps a random walk takes to visit all vertices of G. Denote by COV(s) this time for a
random walk which starts from s, and let COV(G) := maxsey COV(s). The cover time
is related to the maximum commute time by means of % - maxy ey C(u,v) < COV(G) <
e3 - max, ey C(u,v)Inn + n [§]. We restate the following bounds by Feige.

Theorem 2.3 ([T3, [14]). For any graph, (1 —o(1)) -nlnn < COV(G) < (5 +o(1)) - n.
A corresponding result to Theorem 1] for COV(G) was given by Broder and Karlin.

Theorem 2.4 ([6]). For any regular graph G = (V, E), COV(G) = O(ﬁ -nlogn).

Randomized Broadcast. We will consider the relationship between the cover time of
random walks and the following randomized broadcast algorithm RBA (also known as push
algorithm). Assume that at time ¢t = 0 a vertex s knows of a rumor which has to be spread
to all other vertices. Then, at each time-step t = 1,2,... every vertex that knows of the
rumor chooses a neighbor uniformly at random and informs it of the rumor. Let I; be
the set of informed vertices at time ¢, so Iy = {s}. The runtime of RBA is denoted by
RBA,(G) := maxsey min{t e N: Pr[[; =V | Iy = {s}]| > 1 — p} for some given 0 < p < 1.
The expected runtime is E[RBA(G)] := maxsey{E[min{t e N: I, =V, Iy = {s}}]|}. By
standard arguments, we have E[RBA(G)] = O(RBA,,-1(G)) = O(E[RBA(G)] - logn). We
remark that RBA(G) is at least max{log, n,diam(G)} on any graph G, and RBA,,-1(G) may
range from ©(logn) (which is the case for many "nice” graphs) to ©(nlogn) (which is the
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case for the star) [I6]. Sometimes we also use RBA(s,v) := min{t € N: v € I(t) | I(0) =
{s}} and RBA,(s,v) := min{t € N: Pr[v e I(t) | Ipo = {s}] > 1 — p} for some specified
0 < p < 1. We will frequently make use of following upper bound of Feige et al. [I6].
Theorem 2.5 ([16]). For any graph G = (V, E), RBA,-1(G) = O(A - (log n + diam(G)).

To compare the cover time with the broadcast time, we define R(G) := %.

3. Upper Bound on R(G) and Applications

3.1. Upper Bound on R(G)

To prove an upper bound on R(G), we first prove a general inequality between first-
passage-percolation times and broadcast times and apply then a result of Lyons et al. [25]
relating first-passage-percolation to the cover time.

Definition 3.1 ([I7, 25]). The undirected first-passage-percolation UFPP is defined as fol-
lows. All (undirected) edges e € E(G) are assigned weights w(e) that are independent
exponential random variable with parameter 1. Specify a vertex s. Then the first-passage-
percolation time from s to v is defined by UFPP(s,v) := infp_(, ) > .cp w(e), where the
inf is over all possible paths from s to v in G. Note that UFPP(s, s) = 0.

Theorem 3.2. For any graph G = (V,E) and s,v € V, E[UFPP(s,v)] < 2-E[RBA(s,v)].
Proof. In the proof we derive several (in-)equalities between different percolation and broad-
cast models. First we introduce a directed version of UFPP, denoted by DFPP. In this model
each undirected edge {u,u'} € E(G) is replaced by two directed edges (u,u’) and (v, u), and
all directed edges e are assigned weights w(e) that are independent exponential random vari-

able with parameter 1. Denote by DFPP(s,v) the corresponding first-passage-percolation
time of this directed version.

Lemma 3.3. For any graph G = (V,E) and s,v € V, E[UFPP(s,v)] < 2-E[DFPP(s,v)].
Next consider another broadcast model denoted by SEQ. At the beginning, a vertex
s knows of a rumor which has to be spread to all other vertices. Once a vertex u receives

the rumor at time ¢ € R, it sends the rumor at each time ¢ + X1 ,, t + X1, + X2 4, ... to a
randomly chosen neighbor, where the X; , with ¢ € N are independent exponential variables

with parameter deg(u). Let SEQ(s,u) be the first time when u is informed.

Lemma 3.4. For any s,v € V, SEQ(s,v) and DFPP(s,v) have the same distribution.
Finally, our aim is to relate SEQ and RBA.

Observation 3.5. In any execution of RBA, there is for each v € V at least one minimal

Dy
path Ppin(s,v) = (s = v Dy 1 Dy | 3t vy = v), such that for each i, v; sends the rumor

vi+1 at time RBA(s,v;) + Dj11, and at this time v;11 becomes informed for the first time.
Using this observation and a coupling argument, we can prove the following lemma.
Lemma 3.6. For any pair of vertices s,v € V. we have [SEQ(S,v)] < w.

We are now ready to finish the proof of Theorem For every pair of vertices s,v € V,

E[UFPP(s,v)] < 2- E[DFPP(s,v)] = 2- E [SEQ(s,v)] < %-E[RBA(S,U)]-
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Theorem 3.7 ([20]). Let s,v € V(G) with s # v. Then, R(s,v) < E[UFPP(s,v)].
Combining the two theorems above we arrive at the main result of this section.

Theorem 3.8. For any graph G = (V, E) we have for every pair of vertices s # v,
E
C(s,v) <4- % -E[RBA(s,v)],

and hence COV(G) = O (@ -logn - E[RBA(G) ]) or equivalently, R(G) = O (@ -log n) .

3.2. Applications

We start by giving examples for which the first inequality of Theorem is asymp-
totically tight. For paths and cycles with n vertices, it is well-known that max,, C(s,v) =
O(n?) (e.g., [24]) and Theorem EZH gives max; , E[RBA(s,v)] < E[RBA(G)] = O(n). Sim-
ilarly, for lollipop graphs (a complete graph with 2n/3 vertices attached by a path of length
n/3), maxs, C(s,v) = O(n?) (e.g., [24]) and E[RBA(G)] = O(n), and therefore the first
inequality of Theorem is also asymptotically tight for this highly non-regular graph.

The following overview in Figure is based on [2, Chapter 5, p. 11], where we have
added the corresponding broadcast times. It can be seen in Figure that the second
inequality of Theorem is matched by complete k-ary trees with k = O(1). For complete
graphs, expanders and hypercubes, the second inequality is tight up to a factor of O(logn).

Graph COV(G) E [RBA(G)] (1—X) 1t
path/cycle n? [24] n (Thm. ZH) n? 2, Ch. 5, p. 11]
complete O(1)-ary tree | nlog®n [B2, Cor. 9] |logn (Thm.EH) | n [2, Ch. 5, p. 11]
complete graph nlogn [24] logn [28] 1

expander nlogn [6] logn [29] 1

hypercube nlogn [I] logn [16] logn [24]

v/ X y/n-torus nlog?n [32, Thm. 4] | /n (Thm. ZH) | n [24)

Ky o x Ko nlogn logn [29] n

lollipop n? [24] n n? 2, Ch. 5, p. 22]

Figure 2: Comparison of the asymptotic order of the cover time, broadcast time and spectral
gap of various graph classes. Recall that by Theorem EZTl (1 — o) ! captures the
mixing time up to logarithmic factors.

Let us consider the graph K, /5 x K3. One can easily verify that COV(G) = O(nlogn),
E[RBA(G)] = O(logn), but (1 — X2)~! = Q(n) (and consequently MIX,1(G) = Q(n)).
Comparing these values with the ones of the complete graph, we see that there are graphs
with an optimal cover time and optimal broadcast time, but (1 — A2)~! may vary between
©(1) and Q(n). Hence the upper bound on the cover time based on the broadcast time
can be a polynomial factor smaller than the corresponding bound (Theorem 4] based on
the spectral gap 1 — A2. On the other hand, the following remark shows that by using the
broadcast time instead of the spectral gap, we never lose more than a log? n factor:
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Remark 3.9. For any regular graph G, the second bound of Theorem implies

. 'nlog3n> .
In addition, Theorem implies directly the following well-known bounds.
(1) Since E[RBA(G)] = O(n) for regular graphs [12, Prop. 1], we obtain max, , C(u,v) =
O(n?) for regular graphs [2, Ch. 6, Cor. 9].
(2) For bounded degree graphs, E[RBA(G)] = O(diam(G)) (by Theorem EZHl) implies
max, , C(u,v) = O(ndiam(G)) [2, Ch. 6, Cor. 8].
(3) Since max, , E[RBA(u,v)] = O(n) [16], we obtain max, , C(u,v) = O(n®) [2, Ch. 6,
Thm. 1].
Finally, we give an application of Theorem to certain power law random graphs
(such networks are used to model real world networks [9]).

COV(G) =0 (

Definition 3.10. Given an n-dimensional vector d = (dy,ds,...,d,), the generalized ran-

dom graph G(d) is constructed as follows. Each edge {i,j},1 < i,7 < n exists with

prob. chdj a0 independently of all other edges.
=1

Theorem 3.11 ([I1]). Let d be a vector such that for all i, d; > log®n, where ¢ > 2 is some
constant, and the number of vertices with expected degree d is proportional to (d —log®n)~!.
Then, G(d) satisfies RBA,,-1(G(d)) = O(logn) with probability 1 — o(1).

Since the number of edges satisfies |E(G(d))| = O(nlog®n) with probability 1—o(1) [9],
we obtain by combining the theorem above with Theorem

Corollary 3.12. For G(d) as in Theorem [ZI1l we have COV(G(d)) = O(nlog?n) with
probability 1 — o(1).

4. Lower Bounds on R(G)

4.1. Sparse Graphs

Definition 4.1. Given a graph G = (V, E), a set Il C E(G) is called a cutset separating
u €V from v €V if every path from u to v includes an edge of II.

Proposition 4.2 (23, p. 59],[26]). For {IL;}¥_,,k € N, being disjoint cutsets separating u
from v, R(u,v) > Zle 1|~

Zuckerman [32] proved that for any two vertices u,v on a tree, H(u,v) > dist(u,v)?.

Using Proposition L2, we obtain the following generalization (a similar, but less tight bound
follows from a result of [1]).

Corollary 4.3. For any u,v € V of any graph G, C(u,v) > 2 - dist(u,v)2. On the other
hand, there are graphs G and u,v € V such that H(u,v) = O(dist(u,v)) = o(dist(u, v)?).

We remark that Corollary is exact for paths (cf. [24]). Combining Corollary
with the known bounds from Theorem and Theorem yields:

Proposition 4.4. For any graph G with mazimum degree §, R(G) = Q(% -y/logn).
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As demonstrated by the y/n x y/n-torus where RBA,,-1(G) = O(y/n) (by Theorem ZH)
and COV(G) = O(nlog?n) [32], this bound is tight up to a factor of log*?n for bounded
degree graphs. The next result improves over Proposition B4 for dense graphs.

Theorem 4.5. For any graph G with A = O(6), R(G) = Q(% . loén)’

4.2. Dense Graphs

In this section we present results that are tailored for dense graphs, e.g., graphs with
minimum degree ©(n). Consider a random walk Xy = s, X3,... on G starting from s.
Denote the number of visits to w until time ¢ as Wi(s,u) := [{0 <t/ <t: Xy = u}|.

Definition 4.6 ([20, B1]). Consider a graph G = (V, E) and a random walk starting from
se V. Let
1
BLA(s) := E [min{t eEN| YueV: 3 ctm(u) < We(s,u) < 2- tw(u)}] .

Then, the blanket time of G is defined as BLA(G) := maxgcy BLA(S).
Theorem 4.7 (E0]). For any graph G = (V, E), BLA(G) = O(COV(G) - (loglogn)?).
We also require the following simple graph-theoretical lemma.

Lemma 4.8. For every graph G, there is a 2-cover X of G with |X| < [%], i.e., there is
a set X CV such that for allv € V there is an x € X with dist(x,v) < 2.

Interestingly, it is known that there are graphs with minimum degree 5 for which every
1-cover (i.e., dominating set) is of size ©(logn) [, while the lemma above shows that every
such graph has a 2-cover of constant size. We now prove the main result of Section Hl

Theorem 4.9. For any graph with A = O(5), E[RBA(G)] = O(5 - BLA(G) + 2—22 -log®n).
The following corollary follows immediately from Theorem and Theorem EET1
Corollary 4.10. For any graph G = (V, E) with A = O(d) we have R(G) = Q(ﬁ Ly,

n logn

Combining Corollary with Theorem B§ for graphs with minimum degree ©(n), we
see that the cover time equals the broadcast time multiplied by n up to logarithmic factors.
It is worth mentioning that for graphs with § > |5 |, Chandra et al. [8, Theorem 3.3] proved
that COV(G) = O(nlogn). As pointed out by the same authors, COV(G) may be between
nlogn and ©(n?) if 6 < [%]. Now, Corollary EI0 provides a parameter (the broadcast
time) that captures the cover time not only for § > | 5], but also for § = Q(n).

Proof of Theorem[{.9 Let us briefly describe the main idea of the proof. We first show
that for every vertex u there is a fixed (independent of a concrete execution of RBA) set
of vertices Y (u) C V of size at least /12 such that u informs each vertex in Y (u) within
O((n/d)-log? n) steps with high probability. We then establish that if a vertex u informs v in
O((n/6) -log? n) steps with high probability, then also v informs u in O((n/é) -log?n) steps
with high probability. Using this fact and Lemma L8 we find that there is a partitioning of
V into a constant number of partitions with the following property: once a vertex in such a
partition becomes informed, the whole partition becomes informed within O((n/8) - log? n)
steps. Finally, we use a coupling between the random walk and the broadcast algorithm to
show that if the random walk covers the whole graph quickly, then the rumor will also be
quickly propagated from one partition to the other partitions. The formal proof follows.
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Lemma 4.11. For each uw € V there is a set Y (u) C
RBA) of size at least /12 such that for every v € Y
where C1 > 0 is some constant.

V' (independent of the execution of
(u), RBA,-4(u,v) < 1601%10g2 n,

Lemma 4.12. For any two vertices u,v in a graph G with A = O(6), RBA,,-1(v,u) <
Cy - (RBA,—1(u,v) +logn), where Cy > 0 is some constant.

Consider the undirected auxiliary graph G = (V,E) defined as follows: V := V and
{u,v} € E iff

max{RBA,, -1(u,v),RBA, —4(v,u)} < Cs - (16(]1% log? n + log n) .

~

By the two lemmas above, §(G) > 6/12. Hence Lemma implies the existence of a 2-
cover {uy,ug,...,ur}, k < [n/d], of G. Therefore, the sets U; := {v € V' | distz(v,u;) <
2},1 < i < k form a (possibly non-disjoint) partitioning of V. Take a disjoint partitioning
V1, Vo,..., Vi such that for every 1 < i < k, V; C U;. Consider now the directed graph
G = (V',E') with V' := {Vq,Va,..., Vi } and

deg(u)

2|E|

where N;,, € N(u) is the vertex to which the random walk moves after the t-th visit of w.

Claim 4.13. Let s € V;. With prob. 1/2, there is a path from V; to every V; in G'.

E’;:{(V‘Z.,V})|3ue%,1<t<4 -BLA(G) : Nt,uevj},

Reconsider now the partitioning Vi, Va, ..., Vi, k < [n/d], of V=V. Let part(u) be
the function which assigns a vertex u the index of its partition. Let B be the event that
Vu € Vi Viarew) C IRBA(S,UHO(%lng n) holds, i.e., for all w € V it holds that once u is
informed, the partition Vj,¢(,) becomes completely informed within further O (% log? n)
steps. Fix some arbitrary vertex u € V and consider another vertex w € Viagn). By
definition of G and Lemma ET2 there is path of length at most 4 from u to w in G. Hence
once v is informed, w becomes informed within the next O(% log? n) steps with probability

1—4n~*. Applying the union bound over v € V and w € Voart(u), We get Pr [B]>1 —4n2,

Claim 4.14. Conditioned on the events A and B, all vertices of G become informed after
O (% -BLA(G) + 2—22 -log? n) steps.

To finish the proof of the Theorem, we apply the union bound to get Pr[AAB] >
1 - % — 4n~2. So, with probability larger than 1/3, all vertices of G become informed

after at most O(3 - BLA(G) + 2’—22 -log?n) steps. Thus for every k € N, we succeed after
O(k - (3 - BLA(G) + g—j -log®n)) steps with probability 1 — (2/3)¥ and hence the expected
broadcast time is O(3 - BLA(G) + 2—22 -log?n). ]

4.3. Discussion

We first complement the lower bounds on R(G) by some concrete graphs. By a con-
struction based on Harary graphs [I8] and the two-dim. torus we obtain the following.
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Theorem 4.15. For any v/n < d < n — 1, there is a d-regular graph G with R(G) =
O(d -logn). Moreover, for any 1 < d < +/n there is a graph with minimum degree d and
mazimum degree d + 1 such that R(G) = O(v/n -log?n).

<
d

While for certain degrees, a small polynomial gap remains between the examples of
Theorem and the bounds of Theorem and Theorem (cf. Figure [Ml), the quotient
between cover time and diameter is minimized up to logarithmic factors by these examples.

Proposition 4.16. For any graph G with A = O(6), 5121\1/1((%)) = Q(max{y/n,0} - vlogn).

So far, in all considered graphs with a (nearly) optimal cover times and high broadcast
time, the latter was caused by a large diameter. Therefore, one could try to throw in the
lower bounds on diam(G) and ask the following question: Does COV(G) = O(polylog(n) -
max{nlogn,diam(G)?}) < E[RBA(G)] = O(polylog(n) - max{diam(G),log n}) hold? The
answer is that both directions can be refuted by counter-examples, even for graphs where
minimum and maximum degree coincide (up to constant factors).

5. Conclusion

Inspired by the intuition of Chandra et al. [8] about the relationship between cover
time of random walks and the runtime of randomized broadcast, we devised the first formal
results relating both times. As our main result in Section Bl we proved that the cover time
of any graph G is upper bounded by O(% logn) times the broadcast time. This result is
tight for many graphs (at least up to a factor of logn) and gives an upper bound on the
cover time that is at least as good (and in certain cases much tighter than) the previous
bound based on the spectral gap [6]. Moreover, this result implies several classic bounds
on the cover time and an almost optimal upper bound on the cover time of certain random
graphs that are used to model real world networks. In Section Bl we derived lower bounds
on the ratio between the cover time and broadcast time. Together with our upper bound of
Section Bl, we established a surprisingly strong correspondence between the cover time and
broadcast time on dense graphs. This positive result was complemented by the construc-
tion of certain graphs to demonstrate that this strong correspondence cannot be extended
to sparser graphs. Nevertheless, our lower and upper bounds show that the relationship
between cover time and broadcast time is substantially stronger than the relationship be-
tween any of these parameters and the mixing time (or the closely related spectral gap). In
particular, our findings provide evidence for the following hierarchy for regular graphs:

low mixing time = low broadcast time = low cover time,

which extends the following known relations: low mixing time = low cover time ([I |6, 10])
and low mixing time = low broadcast time ([5} T2, 29]).
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