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RANDOM FRUITS ON THE ZIELONKA TREEFLORIAN HORN 1

1 CWI, Amsterdam, The NetherlandsE-mail address: f.horn�wi.nlAbstrat. Stohasti games are a natural model for the synthesis of ontrollers on-fronted to adversarial and/or random ations. In partiular, ω-regular games of in�nitelength an represent reative systems whih are not expeted to reah a orret state, butrather to handle a ontinuous stream of events. One ritial resoure in suh appliationsis the memory used by the ontroller. In this paper, we study the amount of memory thatan be saved through the use of randomisation in strategies, and present mathing upperand lower bounds for stohasti Muller games.1. IntrodutionA stohasti game arena is a direted graph with three kinds of states: Eve's, Adam'sand random states. A token irulates on this arena: when it is in one of Eve's states,she hooses its next loation among the suessors of the urrent state; when it is in oneof Adam's states, he hooses its next loation; and when it is in a random state, the nextloation is hosen aording to a �xed probability distribution. The result of playing thegame for ω moves is an in�nite path of the graph. A play is winning either for Eve orfor Adam, and the �winner problem� onsists in determining whether one of the playershas a winning strategy, from a given initial state. Closely related problems onern theomputation of winning strategies, as well as determining the nature of these strategies: pureor randomised, with �nite or in�nite memory. There has been a long history of using arenaswithout random states (2-player arenas) for modelling and synthesising reative proesses[BL69, PR89℄: Eve represents the ontroller, and Adam the environment. Stohasti (21
2 -player) arenas [deA97℄, with the addition of random states, an also model unontrollableations that happen aording to a random law, rather than by hoie of an atively hostileenvironment. The desired behaviour of the system is traditionally represented as an ω-regular winning ondition, whih naturally expresses the temporal spei�ations and fairnessassumptions of transition systems [MP92℄. From this point of view, the omplexity of thewinning strategies is a entral question, sine they represent possible implementations of theontrollers in the synthesis problem. In this paper, we fous on an important normal formof ω-regular onditions, namely Muller winning onditions (see [Tho95℄ for a survey).1998 ACM Subjet Classi�ation: D.2.4. Model Cheking (Theory).Key words and phrases: model heking, ontroller synthesis, stohasti games, randomisation.This work was arried out during the tenure of an ERCIM "Alain Bensoussan" Fellowship Programme.
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542 FLORIAN HORNIn the ase of 2-player Muller games, a fundamental determinay result of Bühi andLandweber states that, from any initial state, one of the players has a winning strategy[BL69℄. Gurevih and Harrington used the latest appearane reord (LAR) struture of M-Naughton to extend this result to strategies with memory fatorial in the size of the game[GH82℄. Zielonka re�nes the LAR onstrution into a tree, and derives from it an elegantalgorithm to ompute the winning regions [Zie98℄. An insightful analysis of the Zielonka treeby Dziembowski, Jurdzinski, and Walukiewiz leads to optimal (and asymmetrial) mem-ory bounds for pure (non-randomised) winning strategies [DJW97℄. Chatterjee extendedthese bounds to the ase of pure strategies over 21
2 -player arenas [Cha07b℄. However, thelower bound on memory does not hold for randomised strategies, even in non-stohasti are-nas: Chatterjee, de Alfaro, and Henzinger show that memoryless randomised strategies areenough for to deal with upward-losed winning onditions [CdAH04℄. Chatterjee extendsthis result in [Cha07a℄, showing that onditions with non-trivial upward-losed subsets admitrandomised strategies with less memory than pure ones.Our ontributions. The memory bounds of [Cha07a℄ are not tight in general, even for2-player arenas. We give here mathing upper and lower bounds for any Muller ondition

F , in the form of a number rF omputed from the Zielonka tree of F :
• if Eve has a winning strategy in a 21

2 -player game (A,F), she has a randomisedwinning strategy with memory rF (Theorem 4.2);
• there is a 2-player game (AF ,F) where any randomised winning strategy for Evehas at least rF memory states (Theorem 5.2).Furthermore, the witness arenas we build in the proof of Theorem 5.2 are signi�antlysmaller than in [DJW97℄, even though the problem of polynomial arenas remains open.Outline of the paper. Setion 2 realls the lassial notions in the area, while Setion 3presents former results on memory bounds and randomised strategies. The next two setionspresent our main results. In Setion 4, we introdue the number rF and show that it is anupper bound on the memory needed to win in any 21

2 -game (A,F). In Setion 5, we showthat this bound is tight. Finally, in Setion 6, we haraterise the lass of Muller onditionsthat admit memoryless randomised strategies, and show that for eah Muller ondition, atleast one of the players annot improve its memory through randomisation.2. De�nitionsWe onsider turn-based stohasti two-player Muller games. We reall here severallassial notions in the �eld, and refer the reader to [Tho95, deA97℄ for more details.Probability Distribution. A probability distribution γ over a set X is a funtion from Xto [0, 1] suh that ∑

x∈X γ(x) = 1. The set of probability distributions over X is denotedby D(X).Arenas. A 21
2 -player arena A over a set of olours C onsists of a direted �nite graph

(S,T ), a partition (SE ,SA,SR) of S, a probabilisti transition funtion δ : SR → D(S) suhthat δ(s)(t) > 0 ⇔ (s, t) ∈ T , and a partial olouring funtion χ : S ⇀ C. The states in SE(resp. SA, SR) are Eve's states (resp. Adam's states, random states), and are graphiallyrepresented as #'s (resp. 2, △). A 2-player arena is an arena where SR = ∅.A set U ⊆ S of states is δ-losed if for every random state u ∈ U∩SR, (u, t) ∈ T → t ∈ U .It is live if for every non-random state u ∈ U ∩ (SE ∪ SA), there is a state t ∈ U suh that
(u, t) ∈ T . A live and δ-losed subset U indues a subarena of A, denoted by A ↾ U .



RANDOM FRUITS ON THE ZIELONKA TREE 543Plays and Strategies. An in�nite path, or play, over the arena A is an in�nite sequene
ρ = ρ0ρ1 . . . of states suh that (ρi, ρi+1) ∈ T for all i ∈ N. The set of states ourringin�nitely often in a play ρ is denoted by Inf(ρ) = {s | ∃∞i ∈ N, ρi = s}. We write Ω for theset of all plays, and Ωs for the set of plays that start from the state s.A strategy with memory M for Eve on the arena A is a (possibly in�nite) transduer
σ = (M,σn, σu), where σn is the �next-move� funtion from (SE × M) to D(S) and σu isthe �memory-update� funtion, from (S × M) to D(M). Notie that both the move andthe update are randomised: strategies whose memory is deterministi are a di�erent, lessompat, model. The strategies for Adam are de�ned likewise. A strategy σ is pure if itdoes not use randomisation. It is �nite-memory if M is a �nite set, and memoryless if Mis a singleton. Notie that strategies de�ned in the usual way as funtions from S∗ to San be de�ned as strategies with in�nite memory: the set of memory states is S∗ and thememory update is σu(s,w) 7→ ws.One a starting state s ∈ S and strategies σ ∈ Σ for both players are �xed, the outomeof the game is a random walk ρσ,τ

s for whih the probabilities of events are uniquely �xed(an event is a measurable set of paths). For an event P ∈ Ω, we denote by Pσ,τ
s (P ) theprobability that a play belongs to P if it starts from s and Eve and Adam follow the strategies

σ and τ .A play is onsistent with σ if for eah position i suh that wi ∈ SE, Pσ,τ
w0

(ρi+1 = wi+1 |
ρ0 = w0 . . . ρi = wi) > 0. The set of plays onsistent with σ is denoted by Ωσ. Similarnotions an be de�ned for Adam's strategies.Traps and Attrators. The attrator of Eve to the set U , denoted AttrE(U), is the set ofstates where Eve an guarantee that the token reahes the set U with a positive probability.It is de�ned indutively by:

Attr0
E(U) = U

Attri+1
E (U) = Attri

E(U) ∪{s ∈ SE ∪ SR,∃t ∈ Attri
E(U) | (s, t) ∈ T }

∪{s ∈ SA | ∀t, (s, t) ∈ E ⇒ t ∈ Attri
E(U)}

AttrE(U) =
⋃

i>0 Attri
E(U)The orresponding attrator strategy to U for Eve is a pure and memoryless strategy

aU suh that for any state s ∈ SE ∩ (AttrE(U) \ U), s ∈ Attri+1
E (U) ⇒ aU (s) ∈ Attri

E(U).The dual notion of trap for Eve denotes a set from where Eve annot esape, unlessAdam allows her to do so: a set U is a trap for Eve if and only if ∀s ∈ U ∩ (SE ∪SR), (s, t) ∈
T ⇒ t ∈ U and ∀s ∈ U ∩ SA,∃t ∈ U, (s, t) ∈ T . Notie that a trap is a �strong� notion�the token an never leave it if Adam does not allow it to do so� while an attrator is a�weak� one �the token an avoid the target even if Eve uses the attrator strategy. Notiealso that a trap (for either player) is always a subarena.Winning Conditions. A winning ondition is a subset Φ of Ω. A play ρ is winning forEve if ρ ∈ Φ, and winning for Adam otherwise. We onsider ω-regular winning onditionsformalised as Muller onditions. A Muller ondition is determined by a subset F of thepower set P(C) of olours, and Eve wins a play if and only if the set of olours visitedin�nitely often belongs to F : ΦF = {ρ ∈ Ω|χ(Inf(ρ)) ∈ F}. An example of Muller game isgiven in Figure 1(a). We use it throughout the paper to desribe various notions and results.Winning Strategies. A strategy σ for Eve is surely winning (or sure) from a state s for thewinning ondition Φ if any play onsistent with σ belongs to Φ, and almost-surely winning(or almost-sure) if for any strategy τ for Adam, Pσ,τ

s (Φ) = 1. The sure and almost-sureregions are the sets of states from whih she has a sure (resp. almost-sure) strategy.
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a b(b) Zielonka Tree of FFigure 1: Reurring Example3. Former results in memory bounds and randomisation3.1. Pure strategiesThere has been intense researh sine the sixties on the non-stohasti setting, i.e. purestrategies and 2-player arenas. Bühi and Landweber showed the determinay of Mullergames in [BL69℄. Gurevih and Harrington used the LAR (Latest Appearane Reord) ofMNaughton to prove their Forgetful Determinay theorem [GH82℄, whih shows that amemory of size |C|! is su�ient for any game that uses only olours from C, even when thearena is in�nite. This result was later re�ned by Zielonka in [Zie98℄, using a representationof the Muller onditions as trees:De�nition 3.1 (Zielonka Tree of a Muller ondition). The Zielonka Tree ZF ,C of a winningondition F ⊆ P(C) is de�ned indutively as follows:(1) If C /∈ F , then ZF ,C = ZF ,C, where F = P(C) \ F .(2) If C ∈ F , then the root of ZF ,C is labelled with C. Let C1, C2, . . . , Ck be all themaximal sets in {U /∈ F | U ⊆ C}. Then we attah to the root, as its subtrees, theZielonka trees of F ↾ Ci, i.e. the ZF↾Ci,Ci
, for i = 1 . . . k.Hene, the Zielonka tree is a tree with nodes labelled by sets of olours. A node of ZF ,C isan Eve node if it is labelled with a set from F , otherwise it is an Adam node.A later analysis of this onstrution by Dziembowski, Jurdzinski and Walukiewiz in[DJW97℄ led to an optimal and asymmetrial bound on the memory needed by the playersto de�ne sure strategies:De�nition 3.2 (Number mF of a Muller ondition). Let F ⊆ P(C) be a Muller ondition,and ZF1,C1

,ZF2,C2
, . . . ,ZFk ,Ck

be the subtrees attahed to the root of the tree ZF ,C . Wede�ne the number mF indutively as follows:
mF =



















1 if ZF ,C does not have any subtrees,
max{mF1

,mF2
, . . . ,mFk

} if C /∈ F (Adam node),
k

∑

i=1

mFi
if C ∈ F (Eve node).Theorem 3.3 ([DJW97℄). If Eve has a sure strategy in a 2-player Muller game with thewinning ondition F , she has a pure sure strategy with at most mF memory states. Further-more, there is a 2-player arena AF suh that Eve has a sure strategy, but none of her surestrategies have less than mF memory states.



RANDOM FRUITS ON THE ZIELONKA TREE 545Theorem 3.4 ([Cha07b℄). If Eve has an almost-sure strategy in a 21
2 -player Muller gamewith the winning ondition F , she has a pure almost-sure with at most mF memory states.3.2. Memory redution through randomisationRandomised strategies are more general than pure strategies, and in some ases, they arealso more ompat. In [CdAH04℄, a �rst result showed that upward-losed onditions admitmemoryless randomised strategies, while they don't admit memoryless pure strategies:Theorem 3.5 ([CdAH04℄). If Eve has an almost-sure strategy in a 21
2 -player Muller gamewith an upward-losed winning ondition, she has a randomised almost-sure strategy.This result was later extended in [Cha07a℄, by removing the leaves attahed to a nodeof the Zielonka Tree representing an upward-losed subondition:De�nition 3.6 ([Cha07a℄). Let F ⊆ P(C) be a Muller ondition, and ZF1,C1

,ZF2,C2
, . . . ,

ZFk,Ck
be the subtrees attahed to the root of the tree ZF ,C . We de�ne the number mU

Findutively as follows:
mU

F =



























1 if ZF ,C does not have any subtrees,
1 if F is upward-losed,
max{mU

F1
,mU

F2
, . . . ,mU

Fk
} if C /∈ F (Adam node),

k
∑

i=1

mU
Fi

if C ∈ F (Eve node).Theorem 3.7 ([Cha07a℄). If Eve has an almost-sure strategy in a 21
2 -player Muller gamewith the winning ondition F , she has a randomised almost-sure strategy with at most mU

Fmemory states.4. Randomised Upper BoundThe upper bound of Theorem 3.7 is not tight for all onditions. For example, the number
mUF of the ondition F in Figure 1(b) is three, while there is always an almost-sure strategywith two memory states. We present here yet another number for any Muller ondition F ,denoted rF , that we ompute from the Zielonka Tree:De�nition 4.1 (Number rF of a Muller ondition). Let F ⊆ P(C) be a Muller ondition,where the root has k + l hildren, l of them being leaves. We denote by ZF1,C1

,ZF2,C2
, . . . ,

ZFk,Ck
the non-leaves subtrees attahed to the root of ZF ,C . We de�ne rF indutively asfollows:

rF =







































1 if ZF ,C does not have any subtrees,
max{1, rF1

, rF2
, . . . , rFk

} if C /∈ F (Adam node),
k

∑

i=1

rFi
if C ∈ F (Eve node) and l = 0,

k
∑

i=1

rFi
+ 1 if C ∈ F (Eve node) and l > 0.



546 FLORIAN HORNThe �rst remark is that if ∅ ∈ F , rF is equal to mF : as the leaves belong to Eve, thefourth ase annot our. In the other ase, the intuition is that we merge leaves if they aresiblings. For example, the number rF for our reurring example is two: one for the leaveslabelled bcd and acd, and one for the leaves labelled a and b. The number mF is four (onefor eah leaf), and mUF is three (one for the leaves labelled a and b, and one for eah otherleaf). This setion will be devoted to the proof of Theorem 4.2:Theorem 4.2 (Randomised upper bound). If Eve has an almost-sure strategy in a 2-1
2player Muller game with the winning ondition F), she has an almost-sure strategy withmemory rF .Let G = (F ,A) be a game de�ned on the set of olours C suh that Eve wins from anyinitial node. We desribe in the next three subsetions a reursive proedure to ompute analmost-sure strategy for Eve with rF memory states in eah non-trivial ase in the de�nitionof rF . We use two lemmas � Lemmas 4.3 and 4.5 � that derive diretly from similar resultsin [DJW97℄ and [Cha07b℄. The appliation of these priniples to the game G in Figure 1builds a randomised strategy with two memory states left and right. In left, Eve sends thetoken to (տ or ւ) and in right, to (ր or ց). The memory swithes from right to left withprobability one when the token visits a c, and from left to right with probability 1

2 at eahstep.4.1. C is winning for AdamIn the ase where Adam wins the set C, the onstrution of σ relies on Lemma 4.3:Lemma 4.3. Let F ⊆ P(C) be a Muller winning ondition suh that C /∈ F , and A be a21
2 -player arena suh that Eve wins everywhere. There are subarenas A1 . . .An suh that:

• i 6= j ⇒ Ai ∩ Aj = ∅;
• ∀i,Ai is a trap for Adam in the subarena A \ AttrE

(

∪i−1
j=1Aj

);
• ∀i, χ(Ai) is inluded in the label Ei of a hild of the root of ZF ,C, and Eve winseverywhere in (Ai,F ↾ Ei);
• A = AttrE(∪n

j=1Aj).Let the subarenas Ai be the ones whose existene is proved in this lemma. We denoteby σi the almost-sure strategy for Eve in Ai, and by ai the attrator strategy for Eve to Aiin the arena A \Attr(∪i−1
j=1Aj). We identify the memory states of the σi, so their union hasthe same ardinal as the largest of them. For a state s, if i = min{j | s ∈ Attr

E
(∪j

k=1Ak)},we de�ne σ(s,m) by:
• if s ∈ Ai� σu(s,m) = σu

i (s,m)� σn(s,m) = σn

i (s,m)
• if s ∈ AttrE(∪i

k=1Ak) \ Ai� σu(s,m) = m� σn(s,m) = ai(s)By indution hypothesis over the number of olours, we an assume that the strategies
σi have rFi

memory states. The strategy σ uses max{rFi
} memory states.Proposition 4.4. Pσ,τ

s0
(∃i, Inf(ρ) ⊆ Ai) = 1.



RANDOM FRUITS ON THE ZIELONKA TREE 547Proof. The subarenas Ai are embedded traps, de�ned in suh a way that the token anesape an Ai only by going to the attrator of a smaller one. Eve has thus a positiveprobability of reahing an Aj with j < i. Thus, if the token esapes one of the Ai in�nitelyoften, the token has probability one to go to an Aj with j < i. By argument of minimality,after a �nite pre�x, the token will stay in one of the traps forever.The strategy σi is almost-sure from any state in Ai. As Muller onditions are pre�x-independent, it follows from Proposition 4.4 that σ is also almost-sure from any state in
A.4.2. C is winning for Eve, and the root of ZF ,C has no leaves among its hildren.In this ase, the onstrution relies on the following lemma:Lemma 4.5. Let F ⊆ P(C) be a Muller winning ondition suh that C ∈ F , A a 21

2 -playerarena oloured by C suh that Eve wins everywhere, and Ai the label of a hild of the root in
ZF ,C. Then, Eve wins everywhere on the subarena A\AttrE(χ−1(C \Ai)) with the ondition
F ↾ Ai.Eve has a strategy σi that is almost-sure from eah state in A \ AttrE(χ−1(C \ Ai)).In this ase, the set of memory states of σ is M = ∪k

i=1(i × M i). The �next-move� and�memory-update� funtions σn and σu for a memory state m = (i,mi) are de�ned below:
• if s ∈ χ−1(C \ Ai)� σu(s, (i,mi)) = (i + 1,mi+1) where mi+1 is any state in M i+1� if s ∈ SE, σn(s, (i,mi)) is any suessor of s in A
• if s ∈ AttrE(χ−1(C \ Ai))� σu(s, (i,mi)) = (i,mi)� σn(s, (i,mi)) = ai(s)
• if s ∈ A \ AttrE(χ−1(C \ Ai))� σu(s, (i,mi)) = (i, σu

i (s,mi))� σn(s, (i,mi)) = σn

i (s,m
i)One again, we an assume that the memory Mi of the strategy σi is of size rF↾Ai

. Here,however, the memory set of σ is the disjoint union of the Mi', so σ's needs the sum of the
{rF↾Ai

}'s.Proposition 4.6. Let uc be the event �the top-level memory of σ is ultimately onstant�.Then, Pσ,τ
s0

(ρ ∈ ΦF | uc) = 1.Proof. We all i the value of the top-level memory at the limit. After a �nite pre�x, the tokenstops visiting χ−1(C \Ai). Thus, with probability one, it also stops visiting AttrE(χ−1(C \
Ai)). From this point on, the token stays in the arena Ai, where Eve plays with the almost-sure strategy σi. Thus, Pσ,τ (ρ ∈ ΦF↾Ai

| uc) = 1, and, as ΦF↾Ai
⊆ ΦF , Proposition 4.6follows.Proposition 4.7. If the top-level memory takes eah value in 1 . . . k in�nitely often, thensurely, ∀i ∈ 1 . . . k, χ(Inf(ρ)) * Ai.Proof. The update on the top-level memory follows a yle on 1 . . . k, leaving i only whenthe token visits χ−1(C \Ai). Thus, in order for the top-level memory to hange ontinuously,the token has to visit eah of the χ−1(C \ Ai) in�nitely often. Proposition 4.7 follows.



548 FLORIAN HORN4.3. C is winning for Eve, and the root of ZF ,C has at least one leaf in its hildren.As in the previous setion, the onstrution relies on Lemma 4.5. In fat, the on-strution for hildren whih are not leaves, labelled A1, . . . , Ak, is exatly the same. Thedi�erene is that we add here a single memory state �0� that represents all the leaves (la-belled A−1, . . . , A−l). The memory states are thus updated modulo k+1, and not modulo k.The �next-move� funtion of σ when the top-level memory is 0 is an even distribution overall the suessors in A of the urrent state. The �memory-update� funtion has probability
1
2 to stay into 0, and 1

2 to go to (1,m1), for some memory state m1 ∈ M1. Thus, σ usesmemory ∑k
i=1 rFi

+ 1. We prove now that σ is almost-sure. The struture of the proof isthe same as in the former setion, with some extra onsiderations for the memory state 0.Proposition 4.8. Let uc be the event �the top-level memory of σ is ultimately onstant anddi�erent from 0�. Then, Pσ,τ
s (ρ ∈ ΦF | uc) = 1.Proof. The proof is exatly the same as the one of Proposition 4.6.Proposition 4.9. The event �the top-level memory is ultimately onstant and equal to 0�has probability 0.Proof. When the top-level memory is 0, the memory-update funtion has probability 1

2 ateah step to swith to 1. Proposition 4.9 follows.Proposition 4.10 onsiders the ase where the top-level memory evolves ontinuously.By de�nition of the memory update, this an happen only if all the memory states arevisited in�nitely often.Proposition 4.10. Let ec be the event �the top-level memory takes eah value in 0 . . . kin�nitely often�. Then, ∀i ∈ −l . . . k, Pσ,τ
s (χ(Inf(ρ)) ⊆ Ci | ec) = 0.Proof. As in the proof of Proposition 4.7, from the fat that the memory is equal to eah ofthe i ∈ 1 . . . k in�nitely often, we an dedue that the token surely visits eah of the C \ Aiin�nitely often. We only need to show that, with probability one and for any j ∈ 1 . . . l,the set of limit states is not inluded in A−j . The Zielonka Trees of the onditions F ↾ A−jare leaves. This means that they are trivial onditions, where all the plays are winning forAdam. Consequently, in this ase, Lemma 4.5 guarantees that AttrE(χ−1(C \ A−j)) is thewhole arena. The de�nition of σ in the memory state (0) is to play legal moves at random.There is thus a positive probability that Eve will play aording to the attrator strategy ajlong enough to guarantee a positive probability that the token visits χ−1(C \ A−j). To bepreise, for any s ∈ S, this probability is greater than (2 · |S|)−|S|. Thus, with probabilityone, the token visits eah χ−1(C \ A−j) in�nitely often. Proposition 4.10 follows.The initial ase, where the Zielonka tree is redued to a leaf, is trivial: the winner doesnot depend on the play. Thus, Theorem 4.2 follows from Setions 4.1, 4.2, and 4.3.5. Lower BoundIn this setion, we onsider lower bounds on memory, i.e. if we �x a Muller ondition Fon a set of olours C, the minimal size of the memory set that is enough to de�ne randomisedalmost-sure strategies for Eve on any arena oloured by the set C. In his thesis, Majumdarshowed the following theorem:



RANDOM FRUITS ON THE ZIELONKA TREE 549Theorem 5.1 ([Maj03℄). For any set of olours C, there is a 2-player Muller game GC =
(AC ,FC) suh that Eve has an almost sure, but none of her almost-sure strategies have lessthan |C|

2 ! memory states.However, this is a general lower bound on all Muller onditions, while we aim to �ndspei� lower bounds for eah ondition. We prove here that there is a lower bound for eahMuller ondition that mathes the upper bound of Theorem 4.2:Theorem 5.2. Let F be a Muller ondition on C. There is a 2-player arena AF over Csuh that Eve has a sure strategy, but none of her almost-sure strategies have less than rFmemory states.As the onstrution of the upper bound was based on the Zielonka tree, the lower boundis based on the Zielonka DAG :De�nition 5.3. The Zielonka DAG DF ,C of a winning ondition F ⊆ P(C) is derived from
ZF ,C by merging the nodes whih share the same label.5.1. Cropped DAGsThe relation between rF and the shape of DF ,C is asymmetrial: it depends diretly onthe number of hildren of Eve's nodes, and not at all on the number of hildren of Adam'snodes. The notion of ropped DAG is the next logial step: a sub-DAG where Eve's nodeskeep all their hildren, while eah node of Adam keeps only one hild:De�nition 5.4. A DAG E is a ropped DAG of a Zielonka DAG DF ,C if and only if

• The nodes of E are nodes of DF ,C , with the same owner and label.
• There is only one node without predeessor in E , whih we all the root of E . It isthe root of DF ,C , if it belongs to Eve; otherwise, it is one of its hildren.
• The hildren of a node of Eve in E are exatly its hildren in DF ,C .
• A node of Adam has exatly one hild in E , hosen among his hildren in DF ,C ,provided there is one. If it has no hildren in DF ,C , it has no hildren in E .Cropped DAG resemble Zielonka DAGs: the nodes belong to either Eve or Adam, andthey are labelled by sets of states. We an thus ompute the number rE of a ropped DAG

E in a natural way. In fat, this number has a more intuitive meaning in the ase of roppedDAGs: if the leaves belong to Eve, it is the number of branhes; if Adam owns the leaves, itis the number of branhes with the leaf removed. Furthermore, there is a diret link betweenthe ropped DAGs of a Zielonka DAG DF ,C and the number rF :Proposition 5.5. Let F be a Muller ondition on C, and DF ,C be its Zielonka DAG. Thenthere is a ropped DAG E∗ suh that rE∗ = rF .5.2. From ropped DAGs to arenasFrom any ropped DAG E of DF ,C , we de�ne an arena AE whih follows roughly thestruture of E : the token starts from the root, goes towards the leaves, and then restartsfrom the root. In her nodes, Eve an hoose to whih hild she wants to go. Adam's hoies,on the other hand, onsists in either stopping the urrent traversal or allowing it to proeed.We �rst present two �maros�, depending on a subset of C:
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• in Pick∗(C), Adam an visit any subset of olours in C;
• in Pick(D), he must visit exatly one olour in D.Both are represented in Figure 2, and they are the only oasions where olours are visitedin AE : all the other states are olourless.

c1 ci ck
· · · · · ·

C = {c1 . . . ck}(a) Pick∗(C)

d1 di dk· · · · · ·

D = {d1 . . . dk}(b) Pick(D)Figure 2: Pick∗(C) and Pick(D)Eve's states in the arena AE are in bijetion with her nodes in E . Adam's nodes, on theother hand, are in bijetion with the pairs parent-hild of E , where the parent belongs toEve and the hild to Adam.In the state orresponding to the node n, Eve an send the token to any state of theform n − c. In states orresponding to leaves, Eve has no deision to take, and Adam anvisit any olours in the label of the leaf (Pick∗ proedure). The token is then sent bak tothe root.Adam's moves do not involve the hoie of a hild: by De�nition 5.4, Adam's nodes in
E have but one hild. Instead, he an either stop the urrent traversal, or, if the urrentnode is not a leaf, allow it to proeed to its only hild. If he hooses to stop, Adam has tovisit some oloured states before the token is sent bak to the root. The available hoiesdepend on the labels of both the urrent and the former nodes � whih is why there areas many opies of Adam's nodes in AE as they have parents in E . If the parent is labelledby E, and the urrent node by A, the token goes through Pick∗(E) and Pick(E \A). Adaman thus hoose any number of olours in E, as long as he hooses at least one outside of A.

E

A

E′

E

E − A

E′

Pick∗(E)

Pick(E \ A)root(a) Edge �E� - �A� when �A� is a node E

A

Pick∗(E)

Pick(E \ A)root(b) Edge �E� - �A� when �A� is a leafFigure 3: Adam's states in AE .5.3. Winning strategy and branh strategiesWe �rst desribe a sure strategy ς for Eve in the game (AE ,F). Its memory states arethe branhes of E , and do not hange during a traversal. If the urrent memory state is
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b = E1A1 . . . Eℓ(Aℓ), Eve's moves follow the branh b: in Ei, she goes to Ei − Ai. WhenAdam stops the traversal at the ith step, Eve updates her memory as follows:

• If Ei has zero or one hild in E , the memory is unhanged;
• otherwise, the new memory branh has E1A1 . . . EiA as a pre�x, where A is the nexthild of Ei, or the �rst one if Ai was the last.Proposition 5.6. The strategy ς is surely winning for Eve in the game (AE ,F).Proof. Let ρ be a play onsistent with ς. We denote by i the smallest integer suh thattraversals stops in�nitely often at the ith step. After a �nite pre�x, the �rst 2i− 1 nodes inthe memory branh are onstant, and we denote them by E1A1E2 . . . Ei. From this pointon, the olours visited belong to Ei. Furthermore, eah time a traversal stops at step i, astate is visited outside of the urrent Ai, whih hanges afterwards to the next, in a irularway. It follows that Inf(ρ) ⊆ Ei, and, for any hild A of Ei in E , Inf(ρ) * A. Thus ρ iswinning for Eve. Proposition 5.6 follows.Obviously, Adam has no winning strategy in AE . However, we desribe the lass ofbranh strategies, whose point is to punish any attempt of Eve to win with less than rFmemory states. There is one suh strategy τb for eah branh b in E (whene the name),and the priniple is that τb stops the traversal as soon as Eve deviates from b:De�nition 5.7. The branh strategy τb for Adam in AE , orresponding to the branh

b = E1A1E2 . . . Eℓ(Aℓ) in E , is a positional strategy whose moves are desribed below.
• In a state E − A suh that ∃i, E = Ei ∧ A 6= Ai: stop the traversal and visit Ai;
• in a state E − A suh that ∃i, E = Ei ∧ A = Ai: send the token to Ei+1;
• in the state Eℓ − Aℓ, or the leaf Eℓ: visit the olours of Eℓ.No move is given for a state E−A suh that ∀i, E 6= Ei, as these states are not reahablefrom the root when Adam plays τb. Notie also that when Adam hooses to stop a traversalin a state Ei − A, he an visit exatly the olours of Ai: as A and Ai are maximal subsetsof Ei, there is at least one state in Ai \ A that he an pik in the Pick(Ei \ A) area.5.4. Winning against branh strategiesThe key idea of the proof of Theorem 5.2 is that if two branhes b and b′ of E are toodi�erent, Eve needs di�erent memory states to win against τb and τb′ .Proposition 5.8. Let σ = (M,σn, σu) be an almost-sure strategy for Eve in (AE ,F). Then

σ has memory at least rE .Proof. Let b = E1A1 . . . Eℓ(Aℓ) be a branh of E and τb be the orresponding branh strategyfor Adam. By de�nition of τb, the set of olours visited in a traversal onsistent with τb isone of the Ai's, or Eℓ if and only if Eve plays along b. As σ is almost-sure, there must be amemory state m suh that Eve has a positive probability to play along b. It is also neessaryto ensure that none of the Ai's is visited in�nitely often, with the possible exeption of Aℓ.So, if Eve has a positive to play along a branh b′ when she is in the memory state m,
E1A1 . . . Eℓ must be a pre�x of b′. It follows that a single memory state an be suitableagainst two strategies τb and τb′ with b = E1A1 . . . Eℓ(Aℓ) and b′ = E′

1A
′
1 . . . E′

ℓ′(A
′
ℓ′) onlyif ℓ = ℓ′ and ∀i ≤ ℓ,Ei = E′

i. By De�nition 4.1, the underlying equivalene relation has rEequivalene lasses. Proposition 5.8 follows.



552 FLORIAN HORNBy Proposition 5.5, there is a ropped DAG E of DF ,C suh that rE = rF . So, ingeneral, Eve needs randomised strategies with memory rF in order to win games whosewinning ondition is F . This ompletes the proof of Theorem 5.2.6. ConlusionWe have provided better and tight bounds for the memory needed to de�ne almost surewinning randomised strategies. This allows us to haraterise the lass of Muller onditionswhih admit randomised memoryless strategies:Corollary 6.1. Eve admits randomised memoryless almost-sure strategies for a Muller on-dition F if and only if all her nodes in ZF ,C have either one hild, or only leave hildren.This yields a NP algorithm for the winner problem of suh games, as solving 11
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