Symposium on Theoretical Aspects of Computer Science 2009 (Freiburg), pp. 613—-624
www.stacs-conf.org

LOCAL MULTICOLORING ALGORITHMS:
COMPUTING A NEARLY-OPTIMAL TDMA SCHEDULE IN CONSTANT TIME

FABIAN KUHN !

1 MIT, Computer Science and Atrtificial Intelligence Lab
32 Vassar St, Cambridge, MA 02139, USA
E-mail addressf kuhn@sail . mt. edu

ABSTRACT. We are given a sét’ of autonomous agents (e.g. the computers of a distributed system)
that are connected to each other by a gréaph (V, E) (e.g. by a communication network connecting
the agents). Assume that all agents have a unique ID betiveed N for a parametetN > |V|

and that each agent knows its ID as well as the IDs of its neighbofs. ilBBased on this limited
information, every agent must autonomously compute a set of colStsC C such that the color
setsS,, andS, of adjacent agents andv are disjoint. We prove that there is a deterministic algorithm
that uses a total diC| = O(A?log(N)/e?) colors such that for every nodeof G (i.e., for every
agent), we havgS, | > |C|-(1—¢)/(d,+1), whered, is the degree of and whereA is the maximum
degree ofG. For N = Q(A%log A), Q(A? +1oglog N) colors are necessary even to assign at least
one color to every node (i.e., to compute a standard vertex coloring). Using randomization, it is
possible to assign afl — €)/(é + 1)-fraction of all colors to every node of degréeusing only
O(Alog |V|/€?) colors w.h.p. We show that this is asymptotically aimost optimal. For graphs with
maximum degreé\ = Q(log |V]), Q(Alog |V]/loglog |V|) colors are needed in expectation, even
to compute a valid coloring.

The described multicoloring problem has direct applications in the context of wireless ad hoc and
sensor networks. In order to coordinate the access to the shared wireless medium, the nodes of such
a network need to employ some medium access control (MAC) protocol. Typical MAC protocols
control the access to the shared channel by time (TDMA), frequency (FDMA), or code division
multiple access (CDMA) schemes. Many channel access schemes assign a fixed set of time slots,
frequencies, or (orthogonal) codes to the nodes of a network such that nodes that interfere with each
other receive disjoint sets of time slots, frequencies, or code sets. Finding a valid assignment of time
slots, frequencies, or codes hence directly corresponds to computing a multicoloring of aGgraph
The scarcity of bandwidth, energy, and computing resources in ad hoc and sensor networks, as well
as the often highly dynamic nature of these networks require that the multicoloring can be computed
based on as little and as local information as possible.

1. Introduction

In this paper, we look at a variant of the standard vertex coloring problem that we name graph
multicoloring Given ann-node graptG = (V, E), the goal is to assign a séf, of colors to each
nodewv € V such that the color sets, andS,, of two adjacent nodes € V andv € V' are disjoint
while at the same time, the fraction of colors assigned to each node is as large as possible and the

Key words and phraseddistributed algorithms, graph coloring, local algorithms, medium access control, multicolor-
ing, TDMA, wireless networks.

For space reasons, most proofs are omitted from this extended abstract. A full version can be received from the
author's web site att t p: / / peopl e. csai |l . mi t. edu/ f kuhn/ publ i cations/ nul ti col ori ng. pdf.

AV SR e
E S ! Sl e T © F Kuhn
) © Creative Commons Attribution-NoDerivs License

STACS 2009
Symposium on Theoretical Aspects of Computer Science 2009 (Freiburg), pp. 613-624
http://drops.dagstuhl .de/opus/vol ltexte/2009/1852

614 F. KUHN

total number of colors used is as small as possible. In particular, we look at the folldistriguted
variant of this multicoloring problem. Each node has a unique identifier (ID) betwesa NV for

an integer paramete¥ > n. The nodes arautonomous agentsnd we assume that every agent
has only very limitedJocal information aboutz. Specifically, we assume that every nade V
merely knows its own ID as well as the IDs of all its neighbors. Based on this local information,
every nodev needs to compute a color s& such that the color sets computed by adjacent nodes
are disjoint. Since our locality condition implies that every node is allowed to communicate with
each neighbor only once, we call such a a distributed algoritlomeashot algorithm

We prove nearly tight upper and lower bounds for deterministic and randomized algorithms
solving the above distributed multicoloring problem. ebe the largest degree 6f. We show that
for everye € (0,1), there is a deterministic multicoloring algorithm that ug2@\? log(N)/<?)
colors and assigns @ — ¢)/(d + 1)-fraction of all colors to each node of degrée Note that
because a nodeof degreej does not know anything about the topologydtexcept that itself has
 neighbors), no one-shot multicoloring algorithm can assign more thd(vat+ 1)-fraction of the
colors to all nodes of degrée(the nodes could be in a clique of size- 1). The upper bound proof
is based on the probabilistic method and thus only establishes the existence of an algorithm. We
describe an algebraic construction yielding an explicit algorithm that achieves the same bounds up
to polylogarithmic factors. Usin@(A?log? N) colors, for a value: > 0, the algorithm assigns a
£/O(5'+¢ log N)-fraction of all colors to nodes of degrée At the cost of using?(A%¢™ N log N)
colors, it is even possible to improve the fraction of colors assigned to each node by a factor of
log N. The deterministic upper bound results are complemented by a lower bound showing that
if N = Q(A%logA), even for the standard vertex coloring problem, every deterministic one-shot
algorithm needs to use at ledtA? + log log N) colors.

If we allow the nodes to use randomization (and only require that the claimed bounds are
obtained with high probability), we can do significantly better. In a randomized one-shot algorithm,
we assume that every node can compute a sequence of random bits at the beginning of an algorithm
and that nodes also know their own random bits as well as the random bits of the neighbors when
computing the color set. We show that foe (0, 1), with high probability,O(A log(n)/s?) colors
suffice to assign &1 — €)/(d + 1)-fraction of all colors to every node of degrée If logn <
A < n'~—¢ for a constant > 0, we show that every randomized one-shot algorithm needs at
leastQ(Alogn/loglogn) colors. Again, the lower bound even holds for standard vertex coloring
algorithms where every node only needs to choose a single color.

Synchronizing the access to a common resource is a typical application of coloring in networks.
If we have ac-coloring of the network graph, we can partition the resource (and/or time} rdds
and assign a part to each noddepending on’s color. In such a setting, it seems natural to use a
multicoloring instead of a standard vertex coloring and assign more than one part of the resource to
every node. This allows to use the resource more often and thus more efficiently.

The most prominent specific example of this basic approach occurs in the context of media
access control (MAC) protocols for wireless ad hoc and sensor networks. These networks consist
of autonomous wireless devices that communicate with each other by the use of radio signals. If
two or more close-by nodes transmit radio signals at the same time, a receiving node only hears
the superposition of all transmitted signals. Hence, simultaneous transmissions of close-by nodes
interfere with each other and we thus have to control the access to the wireless channel. A stan-
dard way to avoid interference between close-by transmissions is to use a time (TDMA), frequency
(FDMA), or code division multiple access (CDMA) scheme to divide the channel among the nodes.
A TDMA protocol divides the time into time slots and assigns different time slots to conflicting
nodes. When using FDMA, nodes that can interfere with each other are assigned different frequen-
cies, whereas a CDMA scheme uses different (orthogonal) codes for interfering nodes. Classically,

LOCAL MULTICOLORING ALGORITHMS 615

TDMA, FDMA, and CDMA protocols are implemented by a standard vertex coloring of the graph
induced by the interference relations. In all three cases, it would be natural to use the more general
multicoloring problem in order to achieve a more effective use of the wireless medium. Efficient
TDMA schedules, FDMA frequency assignments, or CDMA code assignments are all directly ob-
tained from a multicoloring of the interference graph where the fraction of colors assigned to each
nodes is as large as possible. Itis also natural to require that the total number of colors is small. This
keeps the length of a TDMA schedule or the total number of frequencies or codes small and thus
helps to improve the efficiency and reduce unnecessary overhead of the resulting MAC protocols.

In contrast to many wired networks, wireless ad hoc and sensor networks typically consist of
small devices that have limited computing and storage capabilities. Because these devices operate
on batteries, wireless nodes also have to keep the amount of computation and especially commu-
nication to a minimum in order to save energy and thus increase their lifetime. As the nodes of
an ad hoc or sensor network need to operate without central control, everything that is computed,
has to be computed by a distributed algorithm by the nodes themselves. Coordination between the
nodes is achieved by exchanging messages. Because of the resource constraints, these distributed
algorithms need to be as simple and efficient as possible. The messages transmitted and received
by each node should be as few and as short as possible. Note that because of interference, the
bandwidth of each local region is extremely limited. Typically, for a ned¢he time needed to
even receive a single message from all neighbors is proportional to the degréseefe.g. [19]).

As long as the information provided to each node is symmetric, it is clear that every node needs to
know the IDs of all adjacent nodes @nin order to compute a reasonably good multicoloring-of
Hence, the one-shot multicoloring algorithms considered in this paper base their computations on
the minimum information needed to compute a non-trivial solution to the problem. Based on the
above observations, even learning the IDs of all neighbors requires quite a bit of time and resources.
Hence, acquiring significantly more information might already render an algorithm inapplicable in
practice!

As a result of the scarcity of resources, the size and simplicity of the wireless devices used in
sensor networks, and the dependency of the characteristic of radio transmissions on environmental
conditions, ad hoc and sensor networks are much less stable than usual wired networks. As a con-
sequence, the topology of these networks (and of their interference graph) can be highly dynamic.
This is especially true for ad hoc networks, where it is often even assumed that the nodes are mobile
and thus can move in space. In order to adapt to such dynamic conditions, a multicoloring needs
to be recomputed periodically. This makes the resource and time efficiency of the used algorithms
even more important. This is particularly true for the locality of the algorithms. If the computation
of every node only depends on the topology of a close-by neighborhood, dynamic changes also only
affect near-by nodes.

The remainder of the paper is organized as follows. In Section 2, we discuss related work.
The problem is formally defined in Section 3. We present the deterministic and randomized upper
bounds in Section 4 and the lower bounds in Section 5.

2. Related Work

There is a rich literature on distributed algorithms to compute classical vertex colorings (see
e.g. [1, 4, 11, 15, 16, 21]). The paper most related to the present one is [15]. In [15], deterministic
algorithms for the standard coloring problem in the same distributed setting are studied (i.e., every

1it seems that in order to achieve a significant improvement on the multicolorings computed by the algorithms pre-
sented in this paper, every node would need much more information. Even if every node knows its cOrtipietk)-
neighborhood, the best deterministic coloring algorithm that we are aware of @edy colors.

616 F. KUHN

node has to compute its color based on its ID and the IDs of its neighbors). The main result is a
Q(A?/log? A) lower bound on the number of colors. The first paper to study distributed coloring

is a seminal paper by Linial [16]. The main result of [16] is @flog™ n)-time lower bound for
coloring a ring with a constant number of colors. As a corollary of this lower bound, one obtains an
Q(log log N) lower bound on the number of colors for deterministic one-shot coloring algorithms as
studied in this paper. Linial also looks at distributed coloring algorithms for general graph and shows
that one can compute a&M(A?)-coloring in timeO(log* n). In order to color a general graph with

less colors, the best known distributed algorithms are significantly sfowsing randomization,
anO(A)-coloring can be obtained in tin@(/log n) [14]. Further, the fastest algorithm to obtain a

(A + 1)-coloring is based on an algorithm to compute a maximal independent set by Luby [17] and
on a reduction described in [16] and has time comple&fyog n). The best known deterministic
algorithms to compute &\ + 1)-coloring have time complexitie8®(VIs™) and O(Alog A +

log® n) and are described in [21] and [15], respectively. For special graph classes, there are more
efficient deterministic algorithms. It has long been known that in rings [4] and bounded degree
graphs [11, 16], A + 1)-coloring can be computed in tim@(log* n). Very recently, it has

been shown that this also holds for the much larger class of graphs with bounded local independent
sets [26]. In particular, this graph class contains all graph classes that are typically used to model
wireless ad hoc and sensor networks. Another recent result shows that graphs of bounded arboricity
can be colored with a constant number of colors in tithgog n) [3].

Closely related to vertex coloring algorithms are distributed algorithms to compute edge col-
orings [5, 12, 22]. In a seminal paper, Naor and Stockmeyer were the first to look at distributed
algorithms where all nodes have to base their decisions on constant neighborhoods [20]. Itis shown
that a weak coloring withf (A) colors (every node needs to have a neighbor with a different color)
can be computed in timif every vertex has an odd degree. Another interesting approach is taken
in [9] where the complexity of distributed coloring is studied in case there is an oracle that gives
some nodes a few bits of extra information.

There are many papers that propose to use some graph coloring variant in order to compute
TDMA schedules and FDMA frequency or CDMA code assignments (see e.g. [2, 10, 13, 18, 24,
25, 27]). Many of these papers compute a vertex coloring of the network graph such that nodes
at distance at most have different colors. This guarantees that no two neighbors of a node use
the same time slot, frequency, or code. Some of the papers also propose to construct a TDMA
schedule by computing an edge coloring and using different time slots for different edges. Clearly,
it is straight-forward to use our algorithms for edge colorings, i.e., to compute a multicoloring of
the line graph. With the exception of [13] all these papers compute a coloring and assign only one
time slot, frequency, or code to every node or edge. In [13], first, a standard coloring is computed.
Based on this coloring, an improved slot assignment is constructed such that in the end, the number
of slots assigned to a node is inversely proportional to the number of colors in its neighborhood.

3. Formal Problem Description
3.1. Mathematical Preliminaries

Throughout the paper, we useg(-) to denote logarithms to bageandIn(-) to denote nat-
ural logarithms, respectively. Blg® z and byln® z, we denote the-fold applications of the
logarithm functionslog and1n to z, respectively. The log star function is defined asg* n :=

2In [6], it is claimed that ar¥(A) coloring can be computed in tin@(log* (n/A)). However, the argumentation in
[6] has a fundamental flaw that cannot be fixed [23].

SWe havelog® z = n©@ 2 = z, logl*V 2 = log(log®), andIn(*Y z = In(In® z). Note that we also use
log’z = (logz)® andln’ z = (Inz)*

LOCAL MULTICOLORING ALGORITHMS 617

min,; {log®” n < 1}. We also use the following standard notations. For an integer 1, [n] =
{1,...,n}. For afinite sef and an integek € {0,...,]Q[}, () = {S € 2% : |S| = k}. The
term with high probability (w.h.p.) means with probability at least 1/n° for a constant > 1.

3.2. Multicoloring
The multicoloring problem that was introduced in Section 1 can be formally defined as follows.

Definition 3.1 (Multicoloring). An (p(¢), k)-multicoloring v of a graphG = (V, E) is a mapping
v : V — 2l that assigns a set(v) C [k] of colors to each node of G such that/{u,v} € E :
v(u) N~(v) = @ and such that for every nodec V' of degree’, |y(v)|/k > p(8)/(d + 1).

We call p(§) the approximation ratioof a (p(0), k)-multicoloring. Because in a one-shot al-
gorithm (cf. the next section for a formal definition), a node of degreannot distinguisitz from
Ks.1, the approximation ratio of every one-shot algorithm needs to be atimost

The multicoloring problem is related to the fractional coloring problem in the following way.
Assume that every node is assigned the same nuatifezolors and that the total number of colors
is k. Taking every color with fractiori /c then leads to a fractiondk/c)-coloring of G. Hence, in
this casek/c is lower bounded by the fractional chromatic numkefG) of G.

3.3. One-Shot Algorithms

As outlined in the introduction, we are interested in local algorithms to compute multicolorings
of ann-node graplG = (V, E). For a parameteN > n, we assume that every nodéias a unique
ID z,, € [N]. In deterministic algorithms, every node has to compute a color set based on its own
ID as well as the IDs of its neighbors. For randomized algorithms, we assume that nodes also know
the random bits of their neighbors. Formally, a one-shot algorithm can be defined as follows.

Definition 3.2 (One-Shot Algorithm) We call a distributed algorithm a one-shot algorithm if every
nodev performs (a subset of) the following three steps:

1. Generate sequenég, of random bits (deterministic algorithm®, =)

2. Sendr,,, R, to all neighbors

3. Compute solution based an, R, and the received information

Assume that7 is a network graph such that two nodeandv can directly communicate with
each other iff they are connected by an edgé-inin the standardynchronous message passing
model, time is divided into rounds and in every round, every nod& o&n send a message to each
of its neighbors. One-shot algorithms then exactly correspond to computations that can be carried
out in a single communication round.

For deterministic one-shot algorithms, the output of every nodea function ofv’s ID z,, and
the IDs ofv’s neighbors. We call this information on whiehbases its decisions, ttome-hop view
of v.

Definition 3.3 (One-Hop View) Consider a node with ID z,, and letl", be the set of IDs of the
neighbors ofv. We call the pairz,,I',) the one-hop view of.

Let (x,,I',) and(z,,I,) be the one-hop views of two adjacent nodes. Becauaedv are
neighbors, we have, € T', and thatz,, € T',. Itis also not hard to see that

Vi, 2, € [N] andVl,, T, € 2N such thatr,, # 2,2, € Ty \ Ty, @y € Ty \ T, (3.1)

there is a labeled graph that has two adjacent nedasd v with one-hop views(z,,T",) and
(xy,T), respectively. Assume that we are given a graph with maximum defyréee., for all

618 F. KUHN

one-hop viewsz,,I',), we have|Tl',|] < A). A one-shot vertex coloring algorithm maps every
possible one-hop view to a color. A correct coloring algorithm must assign different colors to two
one-hop viewgz,,,I',) and (z,,I',) iff they satisfy Condition (3.1). This leads to the definition

of the neighborhood graphV;(V, A) [15] (the general notion of neighborhood graphs has been
introduced in [16]). The nodes d¥;(V, A) are all one-hop viewsz,,, I',,) with |T',| < A. There

is an edge betweefx,,,I',) and(x,,I',) iff the one-hop views satisfy Condition (3.1). Hence, a
one-shot coloring algorithm must assign different colors to two one-hop views iff they are neighbors
in N1 (N, A). The number of colors that are needed to properly color graphs with maximum degree
A by a one-shot algorithm therefore exactly equals the chromatic numpet(V, A)) of the
neighborhood graph (see [15, 16] for more details). Similarly, a one{gli6}, k£)-multicoloring
algorithm corresponds to(@(9), k)-multicoloring of the neighborhood graph.

4. Upper Bounds

In this section, we prove all the upper bounds claimed in Section 1. We first prove that an
efficient deterministic one-shot multicoloring algorithm exists in Section 4.1. Based on similar
ideas, we derive an almost optimal randomized algorithm in Section 4.2. Finally, in Section 4.3, we
introduce constructive methods to obtain one-shot multicoloring algorithms. For all algorithms, we
assume that the nodes know the size of the ID spaes well asA, an upper bound on the largest
degree in the network. It certainly makes sense that nodes are aware of the used ID space. Note that
it is straight-forward to see that there cannot be a non-trivial solution to the one-shot multicoloring
problem if the nodes do not have an upper bound on the maximum degree in the network.

4.1. Existence of an Efficient Deterministic Algorithm

The existence of an efficient, deterministic one-shot multicoloring algorithm is established by
the following theorem.

Theorem 4.1. Assume that we are given a graph with maximum degreend node IDs inN].
Then, forall0 < ¢ < 1, there is a deterministic, one-sh@t — e, O(A? log(NN) /e?))-multicoloring
algorithm.

Proof. We use permutations to construct colors as described in [15]7 Eon, ... k, let <; be
a global order on the ID sgfV]. A nodewv with 1-hop view(z,,I',) includes colori in its color
setiffvy € T, : =, <; y. Itis clear that with this approach the color sets of adjacent nodes
are disjoint. In order to show that nodes of degfesbtain ap/(é + 1)-fraction of all colors, we

need to show that for all € [A], all z € [N], and alll’ € (V") forally e T, z <; y for
at leastkp/(0 + 1) global orders<;. We use the probabilistic method to show that a set of size
k = 2(A +1)%In(N)/e? of global orders<; exists such that every node of degree [A] gets at
least an(1 — ¢)/(6 + 1)-fraction of thek colors. Such a set implies that there exists an algorithm
that satisfies the claimed bounds for all graphs with maximum defyraed IDs in[V].

Let <y,..., <y bek global orders chosen independently and uniformly at random. The prob-
ability that a nodev with degreej and 1-hop view (z,,I',) gets colori is 1/(§ + 1) (note that
IT'y| = 9). Let X, be the number of colors thatgets. We hav&[X,| = k/(0 + 1) > k/(A +1).
Using a Chernoff bound, we then obtain

—P[X, < (1—) E[X,]] < <562 < 1

IP>X@<(1—€)-m = NA+T”

(4.1)

LOCAL MULTICOLORING ALGORITHMS 619

Algorithm 1 Explicit Deterministic Multicoloring Algorithm: Basic Construction

Input: one-hop view(z, I"), parameterf > 0
Output: setS of colors, initially S = ()
1: forall (ap,a1,...,ap) € Fgy x Fg, x -+ x Fy, do

2. Bog = pox(ao); Yy €T : Boy = @oy(ao)

3: fori:=1tofdo

4 /82,$ = ()07;7/87;71,1' (al); vy E F : /87'7y = SDLﬁi*l,y (al)
5: if Vyel: ﬁgw 75 ﬁ&y then

6: SZZSU(O[Q,OQ,...,O([,ﬂg@)

The total number of different possible one-hop views can bented asA;(N,A)] = N -

Se ("51) < NA*L. By a union bound argument, we therefore get that with positive probability,
for all § € [A], all possible one-hop views:,,I',,) with |T',| = § get at leastl —¢) - k/(0 + 1)
colors. Hence, there exists a setkoglobal orders on the ID sgfV] such that all one-hop views
obtain at least the required number of colors. [

Remark: Note that if we increase the number of permutations (i.e., the number of colors) by a
constant factor, all possible one-hop vie(wsI') with |T'| = 6 geta(l — ¢) /(0 + 1)-fraction of all
colors w.h.p.

4.2. Randomized Algorithms

We will now show that with the use of randomization, the upper bound of Section 4.1 can be
significantly improved if the algorithm only needs to be correct w.h.p. We will again use random
permutations. The problem of the deterministic algorithm is that the algorithm needs to assign a
large set of colors to all roughliv2 possible one-hop views. With the use of randomization, we
essentially only have to assign colorsrt@andomly chosen one-hop views.

For simplicity, we assume that every node knows the number of nodksowing an upper
bound onn is sufficient). For an integer parameter> 0, everyv € V choosest independent
random numbers:, 1,...,z,x € [kn*] and sends these random numbers to all neighbors. We
use these random numbers to indéceandom permutations on the nodes. L[¢v) be the set of
neighbors of a node. A nodev selects all colors for which z,, ; < ,,; for all v € I'(v).

Theorem 4.2. Choosingk = 6(A + 1)In(n)/<? leads to a randomized one-shot algorithm that
computes &1 — ¢, k)-multicoloring w.h.p.

Remark: In the above algorithm, every node has to gene€@té log?(n) /%) random bits and
send these bits to the neighbors. Using a (non-trivial) probabilistic argument, it is possible to show
that the same result can be achieved using 6Hlg) random bits per node.

4.3. Explicit Algorithms

We have shown in Section 4.1 that there is a deterministic one-shot algorithm that almost
matches the lower bound (cf. Theorem 5.2). Unfortunately, the techniques of Section 4.1 do not
yield an explicit algorithm. In this section, we will present constructive methods to obtain a one-
shot multicoloring algorithm.

We develop the algorithm in two steps. First, we construct a multicoloring where in the worst
case, every node obtains the same fraction of colors independent’sfdegree. We then show
how to increase the fraction of colors assigned to low-degree nodes. For an integer pafameter

620 F. KUHN

let qo, ..., q, be prime powers and lely, ..., d, be positive integers such thqgoJrl > N and

qfi“ > q;—1 for ¢ > 1. For a prime power; and a positive integet, let P(q, d) be the set of all

¢?** polynomials of degree at mogtin FF,[z], whereF, is the finite field of ordeg. We assume

that that we are given an injectiony from the ID set[N] to the polynomials irP(qo, dy) and
injectionsy; fromF,, | to P(q¢;, d;) fori > 1. For a valuer in the respective domain, let; , be

the polynomial assigned to by injectiony;. The first part of the algorithm is an adaptation of a
technique used in a coloring algorithm described in [16] that is based on an algebraic construction
of [7]. There, a node with one-hop view(z, T') selects a colofa, g, (c)), Wherea € Fy, is a

value for whichyg () # ¢o(a) forall y € T' (we have to seiy andd, such that this is always
possible). We make two modifications to this basic algorithm. Instead of only selecting one value
a € Fy, such thatvy € T : g (o) # o,y (), we select all valuea for which this is true. We

then use these values recursively (agiif,(c;) was the ID ofv) ¢ times to reduce the dependence

of the approximation ratio of the coloring aN. The details of the first step of the algorithm are
given by Algorithm 1.

Lemma 4.3. Assume that fod < ¢ < ¢, ¢; > f;Ad; wheref; > 1. Then, Algorithm 1 constructs
a multicoloring withgy - Hf:o q; colors where every node at least receivea /g,-fraction of all
colors where\ = [T5_,(1 — 1/f;).

Proof. All colors that are added to the color setin line 6 are flBg x Fy, x --- x Fy, x Fy,. Itis

therefore clear that the number of different colorg s Hf:o ¢; as claimed. From the condition in
line 5, it also follows that the color sets of adjacent nodes are disjoint.

To determine the approximation ratio, we count the number of colors, amnadi one-hop
view (z,I") gets. First note that the condition in line 5 of the algorithm implies that (and is therefore
equivalent to demand that) , # (;, forall y € T" and for alli € {0, ...,¢} becaused; , = G,
implies 3;, = B;, forall j > i. We therefore need to count the number(af, ..., o) €
Fgo % -+ x Fy, for which g; , # 3;, foralli € {0,...,¢} and ally € T'. We prove by induction
oni that fori < ¢, there are atleadt[;_, ¢; - (1 — 1/f;) tuples(ao, ..., a;) € Fgy x --- Ty, with
Bj.« # Bjy forall j <. Let us first prove the statement for= 0. Because the IDs of adjacent
nodes are different, we know that ., # ¢o, for all y € I'. Two different degreel, polynomials
can be equal at at mog values. Hence, for every € I, g (o) = o () for at mostd, values
a. Thus, sincel’| < A, there are at leagt — Ady > qo- (1 —1/ fo) valuesa for which g , # oy
for all y € T'. This establishes the statement foe 0. Fori > 0, the argument is analogous. Let
(g, ... ,0-1) € Fgy x --- x Fy, | be such thap; , # j3;, forally € I" and allj < i. Because
Bi—1,z # Bi—1,4, We havep; , # ¢; . Thus, with the same argument as fot 0, there are at least
¢i - (1 — 1/ f;) valuesq; such thats; , # f; , for all y € I'. Therefore, the number of colors in the
color set of every node is at Ieaié[tfzo gi-(1=1/f;) =X Hf:o q;- Thisis a(\/q,)-fraction of all
colors. [

The next lemma specifies how the valueg;fd;, and f; can be chosen to obtain an efficient
algorithm.

Lemma 4.4. Let ¢ be such thatn® N > max{e, A}. For 0 < i < ¢, we can then choosg,
d;, and f; such that Algorithm 1 computes a multicoloring With{¢A)¢*2 . log s N - log In¥) N
colors and such that every node gets at leasf fle”* A log, In®) N'])-fraction of all colors.

The number of colors that Algorithm 1 assigns to nodes with degree alfnadstclose to
optimal even for small values d@f If we choose/ = ©(log* N — log™ A), nodes of degre®(A)
even receive at least @/A)-fraction of all colors for some constadt Because the number of
colors assigned to a noaes independent of’'s degree, however, the coloring of Algorithm 1 is far

LOCAL MULTICOLORING ALGORITHMS 621

Algorithm 2 Explicit Deterministic Multicoloring Algorithm: Small Number of Colors

Input: one-hop view(,T'), instancesA,; y fori € [[log A7] of Algorithm 1, parameter € [0, 1]
Output: setS of colors, initially S =)
1: forall i € [[log Al] do

2 wpi= {(A/Ql_l)6 : ‘CQ[logA'\7N‘/|C2i7N”
3: forall i € {[log|T'[],...,[log A]} do

4: forall c € Cyi y[z,I']do

5: forall j € w;]do S :=SU(c,i,7)

from optimal for low-degree nodes. In the following, we shaswtto improve the algorithm in this
respect.

Let Ax v be an instance of Algorithm 1 for nodes with degree at ndosind letCa n be the
color set ofAx n. Further, for a one-hop view, I'), letCa [z, T'] be the colors assigned (o, I')
by Algorithm A n. We run instancesl,: y for all i € [[log A7]. A nodev with degrees chooses
the colors of all instances for whicti > §. In order to achieve the desired trade-offs, we introduce
an integer weight for each color, i.e., instead of adding colet we add colorg1, ¢),. .., (w,c).
The details are given by Algorithm 2. The properties of Algorithm 2 are summarized by the next
theorem. The straight-forward proof is omitted.

Theorem 4.5. Assume that in the instances of Algorithm 1, the param&i®chosen such that for
all A, Ax, v assigns at least g(/N)/A-fraction of the colors to every node. Then, for a parameter
e € [0, 1], Algorithm 2 computes &2(f(N)e/5%), O(|Can,n| - A®/2))-multicoloring.

Corollary 4.6. Lete € [0,1] and¢ > 0 be a fixed constant in all used instances of Algorithm
1. Then, Algorithm 2 computes ga/O(5°log In) N), O(A*+2 . logp N - loga In®) N))-
multicoloring. In particular, choosing = 0 leads to an(e/O(5° logy N), O(A%logi N))-
multicoloring. Taking the maximum possible value fan all used instances of Algorithm 1 yields
an (e/O(6%), AOUoe” N=log™ 8) . 16g . N')-multicoloring.

5. Lower Bounds

In this section, we give lower bounds on the number of colors required for one-shot multicol-
oring algorithms. In fact, we even derive the lower bounds for algorithms that need to assign only
one color to every node, i.e., the results even hold for standard coloring algorithms.

It has been shown in [15] that every deterministic one-shobloring algorithm A can be
interpreted as a set efantisymmetric relations on the ID sg¥]. Assume thatd assigns a color
from a setC with |C| = ¢ to every one-hop viewz, I"). For every color € C, there is a relation
o suchthatforalke,y € [N] z 4 yVy 4o x. Algorithm A can assign colar € C to a one-hop
view (z,I) iff Vy e I' : z < y.

Fora € C, letBad,(z) := {y € [N] : = 4, y} be the set of IDs that must not be adjacent to
ana-colored node with IDx. To show that there is no deterministic, one-skabloring algorithm,
we need to show that for everyantisymmetric relationsd,,, . . ., <o, On [N], there is a one-hop
view (z,T") such thatvi € [¢] : T' N Bad,, (z) # 0. The following lemma is a generalization of
Lemma 4.5 in [15] and key for the deterministic and the randomized lower bounds. As the proof is
along the same lines as the proof of Lemma 4.5 in [15], it is omitted here.

622 F. KUHN

Lemmab5.1. Let X C [N]beasetofIDsandlet,...,t, andky, ...,k be positive integers such
that

ti - (M| X| = o)ti — ¢) > 2¢(k; — 1) for1 <4 < ¢and aparametei € [0, 1].
Then there exists an ID s&f’ C X with | X'| > (1 —¢- \) - (]X| — ¢) such that for alli € [¢],

ti

Vz e X' \Vaq,...,aq, € C: Z ‘Badaj(a:) ﬂX‘ > ki, Vo e X' VaeC:Bady(z)NX #0.
j=1

Based on several applications of Lemma 5.1 (and based &(lag log V) lower bound in

[16]), it is possible to derive an almost tight lower bound for deterministic one-shot coloring algo-
rithms. Due to lack of space, we only state the result here.

Theorem 5.2.If N = Q(A?log A), every deterministic one-shot coloring algorithm needs at least
Q(A? + loglog N) colors.

5.1. Randomized Lower Bound

To obtain a lower bound for randomized multicoloring algorithms, we can again use the tools
derived for the deterministic lower bound by applying Yao’s principle. On a worst-case input, the
best randomized algorithm cannot perform better than the best deterministic algorithm for a given
random input distribution. Choosing the node labeling at random allows to again only consider
deterministic algorithms.

We assume that the nodes are assigned a random permutation of the labels,n (i.e.,
every label occurs exactly once). Note that because we want to prove a lower bound, assuming the
most restricted possible ID space makes the bound stronger. Forarel:], we sort all colors
a € C by increasing values dBad, ()| and leta,; be thei™ color in this sorted order. Further,
for z € [n], we defineb, ; := |Bad,, ,(z)|. In the following, we assume that

Allnn|
[Inlnn] + 2

for a constand < x < 1 that will be determined later. By applying Lemma 5.1 in different ways,
the next lemma gives lower bounds on the valuek,gffor n/2 IDs z € [n].

c=K and n>12 and n>A-lnn (5.1)

Lemma 5.3. Assume that and n are as given by Equatio(b.1) and let0 < p < 1/3 be a
positive constant. Further, lét= [plnn/Inlnn| andt; = 2771 - [Inn) for 1 < i < ¢ where
¢ = [Inlnn]| + 2. Then, for at least/2 of all IDs x € [n], we have

Inlnn n p n 1 1 n 1

b:c,lZm‘Z—) b:cfz— 5 bw,ti22i_1'< ___> for 1<i</

48 A 2’ 8 A 2

In order to prove the lower bound, we want to show that for a randomly chosen one-hop view
(z,T) with [T'| = A, the probability that there is a coler € C for whichT' N Bad,(z) = 0 is
sufficiently small. Instead of directly looking at random one-hop vigwd") with [T'| = A, we
first look at one-hop views witl'| ~ A /e that are constructed as follows. L&t C [n] be the set
of IDs z of size| X | > n/2 for which the bounds of Lemma 5.3 hold. We choasg uniformly
at random fromX. The remaining: — 1 IDs are independently added to a et with probability
p = 2. Foracolora € C, let&, be the event thaf r N Bad, () # 0, i.e., &, is the event that
color o cannot be assigend to the randomly chosen one-hop (vigwl').

LOCAL MULTICOLORING ALGORITHMS 623

Lemma 5.4. The probability that the randomly chosen one-hop view cannot be assigned one of the
c colors inC' is bounded by

acC acC acC i=1

Proof. Note first that forae € C, we have
]p[g_a] — P[FRﬂBada(ajR) — @] = (1 _p)lBada(IR)\ < e PIBada(zr)l — e‘ﬁ“Bada(xR)“

It therefore remains to prove that the probability that all evépteccur can be lower bounded by
the probability that would result for independent events. Let us denote the co@tsyin, .. . , a..

We then have
c 1—1 c
P [ﬂ sa] = TIP || () Ear | = [IPEa]- (5.2)
acC i=1 j=1 i=1
The inequality holds because the evefiisare positively correlated. Knowing that an element from
a setBad, (zg) is in I'g cannot decrease the probability that an element from 8sé} (zr) is
in I'r. Note that this is only true because the IDs are independently addégl. tMore formally,
Inequality (5.2) can also directly be followed from the FKG inequality [8]. [

For space reasons, the following two lemmas are given withmgf.

Lemma 5.5. Assume that andn are given as in5.1) where the constant is chosen sufficiently
small and letp > 0 be a constant as in Lemma 5.3. There is a constgnt 0 such that fom > ny,

P[maEC Sa] > Qn%'

Lemma5.6.Let(x,I") be a one-hop view chosen uniformly at random from all one-hop views with
IT'| = A. If A > e(lnn + 2) andn, ¢, and p are as before, the probability that none of theolors
can be assigned tor, T') is at leastl /(8n37).

In the following, we call a node together withA neighborsvy, ..., va, a A-star.

Theorem 5.7. Let G be a graph withn nodes an®n® disjoint A-stars for a constant > 0. On
G, every randomized one-shot coloring algorithm needs at 1842t log n/ loglogn) colors in
expectation and with high probability.

Proof. W.l.0.g., we can certainly assume that> n for a sufficiently large constamiy. We choose

p < e/4 and considen® of the 2n® disjoint A-stars. Let us call these® A-starsSy, ..., Sye.
Assume that the ID assignment of thenodes ofG is chosen uniformly at random from all ID
assignments with ID3,... n. The IDs of the stalS; are perfectly random. We can therefore
directly apply Lemma 5.6 and obtain that the probability that the center node géts no color
is at leastl /(8n/). Consider staS,. The IDs of the nodes of, are chosen at random among
then — A — 1 IDs that are not assigned to the nodesSef Applying Lemma 5.6 we get that the
probability thatS, does not get a color is at least(8(n — A — 1)3) > 1/(8n37) independently
of whetherS; does get a color. The probability that the steff{s. . . , .S,,c all get a color therefore
is at most

nf—1 1 1 ne e
1-— <[|1—— < —% < —np/8'
g(8<n—z’<A+1)>3p> —< 8n3p> e
Hence, there is a constant> 0 such that)A Inn/Inlnn colors do not suffice with probability at
leastl — e~""/8 for a positive constant. The lemma thus follows. "

624 F. KUHN

References

[1] B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Plotkin. Network decomposition and locality in distributed
computation. IrProc. of 30th Symposium on Foundations of Computer Science (F@&gs 364—369, 1989.
[2] B. Balasundaram and S. Butenko. Graph domination, coloring and cliques in telecommunications. In M. Resende
and P. Pardalos, editoidandbook of Optimization in Telecommunicatiopages 865-890. Springer, 2006.
[3] L. Barenboim and M. Elkin. Sublogarithmic distributed mis algorithm for sparse graphs using nash-williams de-
composition. InProc. of 27th ACM Symposium on Principles of Distributed Computing (PQRED8.
[4] R. Cole and U. Vishkin. Deterministic coin tossing with applications to optimal parallel list rankifgrmation
and Contro] 70(1):32-53, 1986.
[5] A. Czygrinow, M. Hahtkowiak, and M. Karohski. Distribut&dl(d log n)-edge-coloring algorithm. IfProc. of 9th
Annual European Symposium on Algorithms (ES8lume 2161 of. NCS pages 345-355, 2001.
[6] G.De Marco and A. Pelc. Fast distributed graph coloring WitiA) colors. InProc. of 12th ACM-SIAM Symposium
on Discrete Algorithms (SODApages 630—-635, 2001.
[7] P. Erdés, P. Frankl, and Z. Firedi. Families of finite sets in which no set is covered by the uriothefs.Israel
Journal of Mathematics1:79-89, 1985.
[8] C. Fortuin, J. Ginibre, and P. Kasteleyn. Correlation inequalities on some partially ordere@@ets.. in Mathe-
matical Physics22:89-103, 1971.
[9] P. Fraigniaud, C. Gavaoille, D. licinkas, and A. Pelc. Distributed computing with advice: Information sensitivity of
graph coloring. IrProc. of 34th Int. Coll. on Automata, Languages and Programp20@7.
[10] S. Gandham, M. Dawande, and R. Prakash. Link scheduling in sensor networks: Distributed edge coloring revisited.
In Proc. of 24th IEEE Conference on Computer Communications (INFOC@ades 2492—-2501, 2005.
[11] A. Goldberg, S. Plotkin, and G. Shannon. Parallel symmetry-breaking in sparse gdéfihsJournal on Discrete
Mathematics1(4):434-446, 1988.
[12] D. A. Grable and A. Panconesi. Nearly optimal distributed edge colorififiog log n) rounds.Random Structures
and Algorithms10(3):385-405, 1997.
[13] T. Herman and S. Tixeuil. A distributed TDMA slot assignment algorithm for wireless sensor netwoR®dof
1st Int. Workshop on Algorithmic Aspects of Wireless Sensor Netwaages 45-58, 2004.
[14] K. Kothapalli, M. Onus, C. Scheideler, and C. Schindelhauer. Distributed coloriia ifflog) bit rounds. In
Proc. of 20th IEEE Int. Parallel and Distributed Processing Symposium (IPPEB.
[15] F. Kuhn and R. Wattenhofer. On the complexity of distributed graph coloringrdn. of 25th ACM Symposium on
Principles of Distributed Computing (PODages 7-15, 2006.
[16] N. Linial. Locality in distributed graph algorithm&IAM Journal on Computin@1(1):193-201, 1992.
[17] M. Luby. A simple parallel algorithm for the maximal independent set probl®AM Journal on Computing
15:1036-1053, 1986.
[18] S. Mecke. MAC layer and coloring. In D. Wagner and R. Wattenhofer, edifdgarithms for Sensor and Ad Hoc
Networks pages 63—-80, 2007.
[19] T. Moscibroda and R. Wattenhofer. Coloring unstructured radio networkBrdo. of 17th ACM Symposium on
Parallelism in Algorithms and Architectures (SPARages 3948, 2005.
[20] M. Naor and L. Stockmeyer. What can be computed locally?Pdoc. of 25th ACM Symposium on Theory of
Computing (STOC)pages 184-193, 1993.
[21] A. Panconesi and A. Srinivasan. On the complexity of distributed network decomposibiarmal of Algorithms
20(2):581-592, 1995.
[22] A. Panconesi and A. Srinivasan. Randomized distributed edge coloring via an extension of the chernoff-hoeffding
bounds.SIAM Journal on Computing@6(2):350-368, 1997.
[23] A. Pelc. Personal communication.
[24] S. Ramanathan. A unified framework and algorithm for channel assignment in wireless netWivetsss Net-
works 5:81-94, 1999.
[25] I. Rhee, A. Warrier, J. Min, and L. Xu. DRAND: Distributed randomized TDMA scheduling for wireless ad-hoc
networks. In7th ACM Symp. on Mobile Ad Hoc Networking and Computing (MOBIH@&ges 190-201, 2006.
[26] J. Schneider and R. Wattenhofer. A log-star distributed maximal independent set algorithm for growth-bounded
graphs. InProc. of 27th ACM Symposium on Principles of Distributed Computing (PQBGDS.
[27] X. Zhang, J. Hong, L. Zhang, X. Shan, and V. Li. CP-TDMA: Coloring- and probability-based TDMA scheduling
for wireless ad hoc networktEICE Transactions on Communicatiof91-B(1):322—-326, 2008.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit ht t p: / / cr eat i vecommons. or g/ | i censes/ by- nd/ 3.0/ .

