
Symposium on Theoretical Aspects of Computer Science 2009 (Freiburg), pp. 661–672
www.stacs-conf.org

BÜCHI COMPLEMENTATION MADE TIGHT

SVEN SCHEWE

University of Liverpool
E-mail address: Sven.Schewe@liverpool.ac.uk
URL: http://www.csc.liv.ac.uk/research/logics/

Abstract. The precise complexity of complementing Büchi automata is an intriguing and
long standing problem. While optimal complementation techniques for finite automata are
simple – it suffices to determinize them using a simple subset construction and to dualize
the acceptance condition of the resulting automaton – Büchi complementation is more
involved. Indeed, the construction of an EXPTIME complementation procedure took a
quarter of a century from the introduction of Büchi automata in the early 60s, and stepwise
narrowing the gap between the upper and lower bound to a simple exponent (of (6e)n for
Büchi automata with n states) took four decades. While the distance between the known
upper (O

`

(0.96 n)n
´

) and lower (Ω
`

(0.76 n)n
´

) bound on the required number of states
has meanwhile been significantly reduced, an exponential factor remains between them.
Also, the upper bound on the size of the complement automaton is not linear in the bound
of its state space. These gaps are unsatisfactory from a theoretical point of view, but also
because Büchi complementation is a useful tool in formal verification, in particular for the
language containment problem. This paper proposes a Büchi complementation algorithm
whose complexity meets, modulo a quadratic (O(n2)) factor, the known lower bound for
Büchi complementation. It thus improves over previous constructions by an exponential
factor and concludes the quest for optimal Büchi complementation algorithms.

1. Introduction

The precise complexity of Büchi complementation is an intriguing problem for two rea-
sons: First, the quest for optimal algorithms is a much researched problem (c.f., [Büc62,
SS78, Péc86, SVW87, Saf88, Mic88, Tho99, Löd99, KV01, GKSV03, FKV06, Pit07, Var07,
Yan08]) that has defied numerous approaches to solving it. And second, Büchi complemen-
tation is a valuable tool in formal verification (c.f., [Kur94]), in particular when studying
language inclusion problems of ω-regular languages. In addition to this, complementation is
useful to check the correctness of other translation techniques [Var07, TCT+08]. The GOAL
tool [TCT+08], for example, provides such a test suite and incorporates four of the more
recent algorithms [Saf88, Tho99, KV01, Pit07] for Büchi complementation.

1998 ACM Subject Classification: F.4 Mathematical Logic and Formal Languages.
Key words and phrases: Automata and Formal Languages, Büchi Complementation, Automata Theory,

Nondeterministic Büchi Automata.
This work was partly supported by the EPSRC through the grand EP/F033567/1 Verifying Interoper-

ability Requirements in Pervasive Systems.

c© Sven Schewe
CC© Creative Commons Attribution-NoDerivs License

STACS 2009
Symposium on Theoretical Aspects of Computer Science 2009 (Freiburg), pp. 661-672
http://drops.dagstuhl.de/opus/volltexte/2009/1854

662 SVEN SCHEWE

While devising optimal complementation algorithms for nondeterministic finite au-
tomata is simple—nondeterministic finite automata can be determinized using a simple
subset construction, and deterministic finite automata can be complemented by comple-
menting the set of final states [RS59, SS78]—devising optimal complementation algorithms
for nondeterministic Büchi automata is hard, because simple subset constructions are not
sufficient to determinize or complement them [Mic88, Löd99].

Given the hardness and importance of the problem, Büchi complementation enjoyed
much attention [Büc62, Péc86, SVW87, Mic88, Saf88, Löd99, Tho99, KV01, GKSV03,
FKV06, Var07, TCT+08, Yan08], resulting in a continuous improvement of the upper and
lower bounds.

The first complementation algorithm dates back to the introduction of Büchi automata
in 1962. In his seminal paper “On a decision method in restricted second order arithmetic”
[Büc62], Büchi develops a complementation procedure that comprises a doubly exponen-
tial blow-up. While Büchi’s result shows that nondeterministic Büchi automata (and thus
ω-regular expressions) are closed under complementation, complementing an automaton
with n states may, when using Büchi’s complementation procedure, result in an automaton

with 22O(n)
states, while an Ω(2n) lower bound [SS78] is inherited from finite automata.

In the late 80s, these bounds have been improved in a first sequence of results, starting
with establishing an EXPTIME upper bound [Péc86, SVW87], which matches the EXP-
TIME lower bound [SS78] inherited from finite automata. However, the early EXPTIME

complementation techniques produce automata with up to 2O(n2) states [Péc86, SVW87];
hence, these upper bounds are still exponential in the lower bounds.

This situation changed in 1988, when Safra introduced his famous determinization
procedure for nondeterministic Büchi automata [Saf88], resulting in an nO(n) bound for
Büchi complementation, while Michel [Mic88] established a seemingly matching Ω(n!) lower
bound in the same year. Together, these results imply that Büchi complementation is in
nθ(n), leaving again the impression of a tight bound.

As pointed our by Vardi [Var07], this impression is misleading, because the O() notation

hides an nθ(n) gap between both bounds. This gap has been narrowed down in 2001 to
2θ(n) by the introduction of an alternative complementation technique that builds on level
rankings and a cut-point construction [KV01]. (Level rankings are functions from the states
Q of a nondeterministc Büchi automaton to {0, 1, . . . , 2|Q|+1}.) The complexity of the plain
method is approximately (6n)n [KV01], leaving a (6e)n gap to Michel’s lower bound [Mic88].

Recently, tight level rankings [FKV06, Yan08]—a special class of level rankings that is
onto a predefined subset—have been exploited by Friedgut, Kupferman, and Vardi [FKV06]
to improved the upper complexity bound to O

(

(0.96n)n
)

, and by Yan [Yan08] to improve

the lower complexity bound to Ω
(

(0.76n)n
)

.
In the remainder of this paper, we first recapitulate the basic complementation tech-

nique of Kupferman and Vardi [KV01], and discuss the core ideas of the improved complexity
analysis of Friedgut, Kupferman, and Vardi [FKV06] and Yan [Yan08]. We then show how
to improve the complementation technique of Friedgut, Kupferman, and Vardi [FKV06]
such that the resulting complementation algorithm meets the known lower bound [Yan08]
modulo a small polynomial factor (quadratic in the size of the automaton that is to be
complemented), and show that, different to older constructions [KV01, GKSV03], we can
achieve an equivalent bound on the number of edges.

BÜCHI COMPLEMENTATION MADE TIGHT 663

2. Preliminaries

2.1. Büchi Automata

Nondeterministic Büchi automata [Büc62] are used to represent ω-regular languages
L ⊆ Σω = ω → Σ over a finite alphabet Σ. A nondeterministic Büchi automaton A =
(Σ, Q, I, δ, F) is a five tuple, consisting of a finite alphabet Σ, a finite set Q of states with
a non-empty subset I ⊆ Q of initial states, a transition function δ : Q×Σ → 2Q that maps
states and input letters to sets of successor states, and a set F ⊆ Q of final states.

Nondeterministic Büchi automata are interpreted over infinite sequences α : ω → Σ
of input letters. An infinite sequence ρ : ω → Q of states of A is called a run of A on
an input word α if the first letter ρ(0) ∈ I of ρ is an initial state, and if, for all i ∈ ω,
ρ(i + 1) ∈ δ

(

ρ(i), α(i)
)

is a successor state of ρ(i) for the input letter α(i).
A run ρ : ω → Q is called accepting if some finite state appears infinitely often in ρ

(inf (ρ) ∩ F 6= ∅ for inf (ρ) = {q ∈ Q | ∀i ∈ ω ∃j > i such that ρ(j) = q}). A word
α : ω → Σ is accepted by A if A has an accepting run on α, and the set L(A) = {α ∈ Σω |
α is accepted by A} of words accepted by A is called its language.

For technical convenience we also allow for finite runs q0q1q2 . . . qn with δ
(

qn, α(n)
)

= ∅.
Naturally, no finite run satisfies the Büchi condition; all finite runs are therefore rejecting,
and have no influence on the language of an automaton.

The two natural complexity measures for a Büchi automaton are the size |Q| of its state
space, and its size

∑

q∈Q, σ∈Σ
1 + |δ(q, σ)|, measured in the size of its transition function.

2.2. Run DAG and Acceptance

In [KV01], Kupferman and Vardi introduce a Büchi complementation algorithm that
uses level rankings as witnesses for the absence of an accepting run.

The set of all runs of a nondeterministic Büchi automaton A = (Σ, Q, I, δ, F) on a word
α : ω → Σ can be represented by a directed acyclic graph (DAG) Gα = (V,E) with

• vertices V ⊆ Q × ω such that (q, p) ∈ V is in the set V of vertices if and only if
there is a run ρ of A on α with ρ(p) = q, and

• edges E ⊆ (Q× ω)× (Q× ω) such that
(

(q, p), (q′, p′)
)

∈ E if and only if p′ = p + 1

and q′ ∈ δ
(

q, α(p)
)

is a successor of q for the input letter α(p).

We call Gα = (V,E) the run DAG of A for α, and the vertices V ∩ (Q × {i}) of
Gα = (V,E) that refer to the ith position of runs the ith level of Gα = (V,E).

The run DAG Gα is called rejecting if no path in Gα satisfies the Büchi condition.
That is, Gα is rejecting if and only if A rejects α. A can therefore be complemented to a
nondeterministc Büchi automaton B that checks if Gα is rejecting.

The property that Gα is rejecting can be expressed in terms of ranks. We call a vertex
(q, p) ∈ V of a DAG G = (V,E) finite, if the set of vertices reachable from (q, p) in G is
finite, and endangered, if no vertex reachable from (q, p) is accepting (that is, in F × ω).

Based on these definitions, ranks can be assigned to the vertices of a rejecting run DAG.
We set Gα

0 = Gα, and repeat the following procedure until a fixed point is reached, starting
with i = 0:

• Assign all finite vertices of Gα
i the rank i, and set Gα

i+1 to Gα
i minus the states

with rank i (that is, minus the states finite in Gα
i).

664 SVEN SCHEWE

• Assign all endangered vertices of Gα
i+1 the rank i+1, and set Gα

i+2 to Gα
i+1 minus

the states with rank i + 1 (that is, minus the states endangered in Gα
i+1).

• Increase i by 2.

A fixed point is reached in n + 1 steps, and the ranks can be used to characterize the
complement language of a nondeterministic Büchi automaton:

Proposition 2.1. [KV01] A nondeterministic Büchi automaton A with n states rejects a
word α : ω → Σ if and only if Gα

2n+1 is empty.

To see that a fixed point is reached after n + 1 iterations, note that deleting all finite
or endangered vertices leaves a DAG without finite or endangered vertices, respectively.
Hence a fixed point is reached as soon as we do not assign a rank i to any vertex. By
construction, no DAG Gα

2i+1 contains finite vertices. If it contains an endangered vertex v,
then all vertices reachable from v are endangered, too. This implies that some vertex of
almost all levels is assigned the rank 2i+ 1. Hence, if no fixed point is reached earlier, some
rank is assigned to all vertices of almost all levels after n iterations (there cannot be more
than n vertices in a level), and all vertices in Gα

2n must be finite.
If the reached fixed point Gα

∞ is non-empty, then it contains only infinite and non-
endangered vertices, and constructing an accepting run from Gα

∞ is simple. Vice versa, an
accepting run ρ on an ω-word α can be viewed as an infinite sub-graph of Gα that does
not contain finite or endangered nodes. By a simple inductive argument, the sub-graph
identified by ρ is therefore a sub-graph of Gα

i for all i ∈ ω, and hence of Gα
∞.

2.3. Büchi Complementation

The connection between Büchi complementation, run DAGs and ranks leads to an
elegant complementation technique. We call the maximal rank of a vertex in a level the
rank of this level, the rank of almost all vertices (ρ(i), i), i ∈ ω of a run ρ (or: path in G)
the rank of ρ, and the rank of almost all levels of a DAG G the rank of G. (Note that level
ranks can only go down, and that vertex ranks can only go down along a path.)

For a given nondeterministic Büchi automaton A = (Σ, Q, I, δ, F) with n states, we
call a function f : Q → {0, 1, . . . , 2n} that maps all accepting states to odd numbers
(f(F) ∩ 2ω = ∅) a level ranking.

Proposition 2.2. [KV01] For a given nondeterministic Büchi automaton A =
(Σ, Q, I, δ, F), the nondeterministic Büchi automaton B = (Σ, Q′, I ′, δ′, F ′) with

• Q′ = 2Q × 2Q ×R,
• I ′ = {I} × {∅} ×R,
• δ′

(

(S,O, f), σ) =
{(

δ(S, σ), δ(O,σ) r odd(f ′), f ′
)

| f ′ ≤S
σ f, O 6= ∅

}

∪
{(

δ(S, σ), δ(S, σ) r odd(f ′), f ′
)

| f ′ ≤S
σ f, O = ∅

}

, and

• F ′ = 2Q × {∅} ×R,

where

• R is the set of all level rankings of A,
• odd(f) = {q ∈ Q | f(q) is odd}, and
• f ′ ≤S

σ f :⇔ ∀q ∈ S, q′ ∈ δ(q, σ). f ′(q′) ≤ f(q),

accepts the complement L(B) = L(A) = Σω r L(A) of the language of A.

BÜCHI COMPLEMENTATION MADE TIGHT 665

The first element S of a triple (S,O, f) ∈ Q′ reflects the set of states of A reachable
upon the input seen so far (the states in the respective level of the run DAG), and the third
element f is a mapping that intuitively maps reachable states to their rank.

The condition f ′ ≤S
σ f ensures that the rank of the vertices (or rather: the value

assigned to them) is decreasing along every path of the run DAG. The second element is
used for a standard cut-point construction, comparable to the cut-point constructions in
the determinization of Co-Büchi automata or the nondeterminization of alternating Büchi
automata. It contains the positions whose rank (or rather: the value assigned to them) has
been even ever since the last cut-point (O = ∅) was reached; it intuitively ensures that the
respective vertices are finite.

2.4. Tight Level Rankings

Friedgut, Kupferman, and Vardi [FKV06] improved this complementation technique by
exploiting the observation that the true ranks of the run DAG Gα of a rejected ω-word α are
eventually always tight. A level ranking f : Q → ω is called tight, if it has an odd rank r,
and is onto the odd numbers {1, 3, . . . , r} up to its rank r, and S-tight, if its restriction to
S is tight and if it maps all states not in S to 1 (f(q) = 1 ∀q ∈ Q r S).

Proposition 2.3. [FKV06] For every run DAG Gα with finite rank r, it holds that

• r is odd, and
• there is a level l ≥ 0 such that, for all levels l′ ≥ l and all odd ranks o ≤ r, there is

a node (q, l′) ∈ Gα with rank o in Gα.

This immediately follows from what was said in Subsection 2.2 on reaching a fixed point
after n+1 iterations: If the rank Gα is r then, for every odd number o ≤ r, almost all levels
contain a vertex with rank o, and assuming that r is even implies that all vertices of Gα

r

are finite, which in turn implies that only finitely many levels contain a vertex with rank r
and hence leads to a contradiction.

Using this observation, the construction from Proposition 2.2 can be improved by es-
sentially replacing R by the set T = {f ∈ R | f is tight} of tight level rankings. While the
size |R| = (2n + 1)n of R is in θ

(

(2n)n
)

, the size of T ,

tight(n) = |T |,

is much smaller. Building on an approximation of Stirling numbers of the second kind by
Temme [Tem93], Yan and Friedgut, Kupferman, and Vardi [FKV06, Yan08] showed that
tight(n) can be approximated by (κn)n for a constant κ ≈ 0.76, that is, they showed

κ = lim
n→∞

n
√

tight(n)

n
≈ 0.76.

Friedgut, Kupferman, and Vardi [FKV06] use this observation—together with other
improvements—for an improved complementation algorithm that produces a complement
automaton with approximately (0.96n)n states [FKV06].

Yan [Yan08] showed for full automata—a family of automata that has exactly one
accepting state, and an alphabet that encodes the possible transitions between the states of
the automaton—that every nondeterministic Büchi automaton that accepts the complement
language of a full automaton with n + 1 states must have Ω

(

tight(n)
)

states.

Proposition 2.4. [Yan08] A nondeterministic Büchi automaton that accepts the comple-
ment language of a full Büchi automaton with n states has Ω

(

tight(n − 1)
)

states.

666 SVEN SCHEWE

3. Efficient Büchi Complementation

To optimize the construction from Proposition 2.2, we turn not only to tight functions
(c.f. [FKV06]), but also refine the cut-point construction. While the cut-point construction
of Proposition 2.2 tests concurrently for all even ranks if a path has finite even rank, we
argue that it is much cheaper to test this property turn wise for all even ranks individually.
As a result, the overall construction becomes more efficient and meets, modulo a small
polynomial factor in O(n2), the lower bound recently established by Yan [Yan08].

3.1. Construction

The obtained state space reduction of the proposed construction compared to [FKV06]
is due to an efficient cut-point construction in combination with the restriction to tight
rankings. The improved cut-point construction is inspired by the efficient translation from
generalized to ordinary Büchi automata. Indeed, the acceptance condition that no trace has
an arbitrary even rank, which is reflected by the straight-forward acceptance condition of
previous algorithms [KV01, FKV06], can be replaced by an acceptance condition, which only
rules out that some trace has a particular even rank, but does so for all potential even ranks.

Checking the condition for a particular even rank allows for focusing on exactly this
rank in the cut-point construction, which led to a significant cut in the size of the resulting
state space. While this approach cannot be taken if we literally use a generalized Büchi
condition, the idea of cyclically considering the relevant even ranks proves to be feasible.
Construction: For a given nondeterministic Büchi automaton A = (Σ, Q, I, δ, F) with
n = |Q| states, let C = (Σ, Q′, I ′, δ′, F ′) denote the nondeterministic Büchi automaton with

• Q′ = Q1 ∪ Q2 with
– Q1 = 2Q and
– Q2 = {(S,O, f, i) ∈ 2Q × 2Q × T × {0, 2, . . . , 2n − 2} |

f is S-tight, O ⊆ S and ∃i ∈ ω. O ⊆ f−1(2i)},
• I ′ = {I},
• δ′ = δ1 ∪ δ2 ∪ δ3 for

– δ1 : Q1 × Σ → 2Q1 with δ1(S, σ) = {δ(S, σ)},
– δ2 : Q1 × Σ → 2Q2 with (S′, O, f, i) ∈ δ2(S, σ) ⇔ S′=δ(S, σ), O=∅, and i=0,
– δ3 : Q2 × Σ → 2Q2 with (S′, O′, f ′, i′) ∈ δ3

(

(S,O, f, i), σ
)

⇔ S′ = δ(S, σ), f ′ ≤S
σ f , rank(f) = rank (f ′), and

∗ i′ = (i + 2) mod (rank (f ′) + 1) and O′ = f ′−1(i′) if O = ∅ or

∗ i′ = i and O′ = δ(O,σ) ∩ f ′−1(i) if O 6= ∅, respectively, and
• F ′ = {∅} ∪ (2Q × {∅} × T × ω) ∩ Q2.

The complement automaton C operates in two phases. In a first phase it only traces the
states reachable in A upon a finite input sequence. In this phase, only the states in Q1 and
the transition function δ1 are used. In the special case that A rejects an ω-word α because
A has no run on α, C accepts by staying forever in phase one, because {∅} is final.

C intuitively uses its nondeterministic power to guess a point in time where all successive
levels are tight and have the same rank. At such a point, C traverses from Q1 to Q2, using
a transition from δ2. Staying henceforth in Q2 (using the transitions from δ3), C intuitively
verifies turn wise for all potential even ranks e that no path has this particular even rank e.
For a particular rank e, it suffices to trace the positions on traces with unchanged rank e
(hence O ⊆ f−1(e)), and to cyclically update the designated even rank after every cut-point.

BÜCHI COMPLEMENTATION MADE TIGHT 667

3.2. Correctness

To show that the automaton C from the construction introduced in the previous subsec-
tion recognises the complement language of A, we first show that the complement language
of C contains the language of A (L(A) ⊆ L(C)), and then that the complement language of

A is contained in the language of C (L(A) ⊆ L(C)).

Lemma 3.1. If a given nondeterministic Büchi automaton A = (Σ, Q, I, δ, F) accepts an

ω-word α : ω → Σ, then α is rejected by the automaton C = (Σ, Q′, I ′, δ′, F ′). (L(A) ⊆ L(C))

Proof. Let ρ : ω → Q be an accepting run of A on α. First, ρ′ = S0, S1, S2 . . . with S0 = I
and Si+1 = δ

(

Si, α(i)
)

for all i ∈ ω is no accepting run of C, because ρ(i) ∈ Si and hence
no state of ρ′ is accepting (∅ 6= Si /∈ F ′ for all i ∈ ω). Let now

ρ′ = S0, S1, S2, . . . , Sp, (Sp+1, Op+1, fp+1, ip+1), (Sp+2, Op+2, fp+2, ip+2), . . .

be a run of C on α. Again, we have that ρ(j) ∈ Sj for all j ∈ ω. Furthermore, the construction

guarantees that fj+1 ≤S
α(j) fj holds for all j > p. The sequence

fp+1(ρ(p + 1)
)

≥ fp+2(ρ(p + 2)
)

≥ fp+3(ρ(p + 3)
)

≥ . . .

is therefore decreasing, and stabilizes eventually. That is, there is a k > p and a v ≤ 2n such
that fl

(

ρ(l)
)

= v for all l ≥ k. Since ρ is accepting, there is a position l ≥ k with ρ(l) ∈ F .

Taking into account that fl is a level ranking, this implies that fl

(

ρ(l)
)

—and hence v—is
even. Assuming that ρ′ is accepting, we can infer that, for some position l > k which follows
one of the first n accepting states of ρ′ after position k, il = v and Ol = f−1

l (v) ∋ ρ(l). It

is now easy to show by induction that, for all m ≥ l, im = v and (using fm

(

ρ(m)
)

= v))
ρ(m) ∈ Om 6= ∅ hold true, which contradicts the assumption that ρ′ is accepting.

To proof the second lemma, L(A) ⊆ L(C), we use Propositions 2.1 and 2.3 to infer that
the run DAG Gα of an ω-word rejected by A is either finite or has odd bounded rank and
only finitely many non-tight level rankings. We use this to build an accepting run of C on α.

Lemma 3.2. For a nondeterministic Büchi automaton A = (Σ, Q, I, δ, F), the automaton

C = (Σ, Q′, I ′, δ′, F ′) accepts an ω-word α : ω → Σ if α is rejected by A. (L(A) ⊆ L(C))

Proof. If α : ω → Σ is rejected by A, then the run DAG Gα has bounded rank by Propo-
sition 2.1, and by Proposition 2.3 almost all levels of Gα have tight level rankings with the
same rank r. For the special case that the rank of all vertices of Gα is 0, that is, if all vertices
of Gα are finite, ρ′ = S0, S1, S2 . . . with S0 = I and Si+1 = δ

(

Si, α(i)
)

for all i ∈ ω is an
accepting run of C on α.

If Gα contains an infinite vertex, then we fix a position p ∈ ω such that the rank of all
levels p′ ≥ p of Gα is r and tight for some (odd) r ≥ 1. We now consider a run

ρ′ = S0, S1, S2, . . . , Sp, (Sp+1, Op+1, fp+1, ip+1), (Sp+2, Op+2, fp+2, ip+2), . . . of C on α with

• S0 = I, Op+1 = ∅, and ip+1 = 0,
• Sj+1 = δ

(

Sj, α(j)
)

for all j ∈ ω, and

• Oj+1 = f−1
j+1(ij+1) if Oj = ∅ or

Oj+1 = δ
(

Oj, α(j)
)

∩ f−1
j+1(ij+1) if Oj 6= ∅, respectively, for all j > p,

• fj is the Sj-tight level ranking that maps each state q∈Sj to the rank of (q, j) ∀j>p,
• ij+1 = ij if Oj 6= ∅ or

ij+1 = (ij + 2) mod (rank (f) + 1) if Oj = ∅, respectively, for all j > p.

668 SVEN SCHEWE

ρ′ is obviously a run of C on α. To show that ρ′ is accepting, we have to show that
Oj is empty infinitely many times. Let us assume that this is not the case; that is, let us
assume that there is a last element ρ′(j) with Oj = ∅ and Ok 6= ∅ for all k > j. (Note that
Op+1 = ∅ is empty.) Then we have that ik = ij+1 for all k > j, and it is easy to show by

induction for all k > j that Ok ×{k} is the set of states reachable in Gα
ij+1 from some state

in Oj+1 ×{j + 1}. But since the rank of all states in Oj+1 ×{j + 1} is ij+1 (and thus even),

all of these states are finite in Gα
ij+1 , which implies that there are only finitely many states

reachable in Gα
ij+1 from Oj+1 × {j + 1}, and thus contradicts the assumption that Ok 6= ∅

is non-empty for all k > j.

The two lemmata of this subsection immediately imply the claimed language comple-
mentation:

Corollary 3.3. For a given nondeterministic Büchi automaton A = (Σ, Q, I, δ, F), the
automaton C resulting from the construction introduced in Subsection 3.1 recognises the
complement language of A. (L(C) = L(A))

3.3. Complexity

The costly part in previous approaches [KV01, FKV06] that the proposed method
avoids (de facto, although not technically), is a subset construction in addition to the level
rankings. Avoiding the subset construction results in a state space reduction by a factor
exponential in the size of the automaton A, and even to upper bounds comparable to the
established lower bounds [Yan08].

The subset construction is de facto avoided, because it can be encoded into the ranking
function once we allow for a slightly enlarged set of output values. For example, we could
map all states not in S to −1, and all states in O to −2. Following this convention, the first
two elements of every tuple in Q2 could be pruned. (They remain explicit in the construction
because this representation is more comprehensible, and outlines the connection to the older
constructions of Friedgut, Kupferman, and Vardi [KV01, FKV06].

Theorem 3.4. For a given nondeterministic Büchi automaton A with n states, the au-
tomaton C has O

(

tight(n + 1)
)

states.

Proof. Q1 is obtained by a simple subset construction, and hence Q1 ∈ O(2n), which is a
small subset of O

(

tight(n+1)
)

. For a fixed i, a state (S,O, f, i) with an S-tight level ranking
f of rank r can be represented by a function g : Q → {−2,−1, . . . , r} that maps every state
q ∈ O to g(q) = −1, every state q ∈ Q r S not in S to g(q) = −2, and every other state
q ∈ S r O to g(q) = f(q). Every such function g either has a domain g(Q) ⊆ {0, 1, . . . , r}
and is onto {1, 3, . . . , r}, or is a function to {−2,−1, . . . , r} and onto {−1}∪{1, 3, . . . , r} or
{−2} ∪ {1, 3, . . . , r}. The size of all three groups of functions is hence in O

(

tight(n)
)

(for a

fixed i), which results in an overall size in O
(

tight(n + 1)
)

= O
(

n · tight(n)
)

.

Together with Proposition 2.4, this establishes tight bounds for Büchi complementation:

Corollary 3.5. The minimal size of the state space of a nondeterministic Büchi automaton
that accept the complement language of a nondeterministic Büchi automaton with n states
is in Ω

(

tight(n − 1)
)

and O
(

tight(n + 1)
)

.

BÜCHI COMPLEMENTATION MADE TIGHT 669

4. Reduced Average Outdegree

A flaw in the construction presented in Section 3 is that it is optimal only with respect
to the state space of the automata. In [KV01], Kupferman and Vardi discuss how to reduce
the number of edges such that the bound on the number of edges becomes trilinear in the
alphabet size, the bound on the number of states, and the rank of the resulting automaton
(see also [GKSV03]). In this section we improve the construction from the previous section
such that the bound on the number of edges is merely bilinear in the bound on the number
of states and the size of the input alphabet. The technique can be adapted to generally
restrict the outdegree to |δ(q, σ)| ≤ 2 when level rankings are not required to be tight.

4.1. Construction

The automaton C obtained from the construction described in Section 3 operates in
two phases. In a first phase, it stays in Q1 and only tracks the reachable states of the Büchi
automata A it complements. It then guesses a point p ∈ ω such that all levels j > p of Gα

have a tight level ranking to transfer to Q2.
We improve over the construction of Section 3 by restricting the number of entry points

to Q2 from O
(

tight(n)
)

to O(n!), and by restricting the number of outgoing transitions
|δ(q, σ)| ≤ 2 for all states q ∈ Q2 and input letters σ ∈ Σ to two. The latter is achieved by
allowing only the successor (S,O, f, i) ∈ δ3(q, σ) with a point wise maximal function f (the
γ3-transitions) or with a function f that is maximal among the final states (S,O, f, i) ∈
δ3(q, σ) ∩ F among them (the γ4-transitions). If such elements exist, then they are unique.

The first restriction is achieved by restricting δ2 to states (S,O, f, i) for which f is
maximal with respect to S. We call an S-tight level ranking f with rank r maximal with
respect to S if it maps all final states q ∈ F ∩ S in S to r − 1, exactly one state to every
odd number o < r smaller than r (|f−1(o)| = 1) and all remaining states of S to r, and
denote the set of tight rankings that are maximal with respect to S by MS = {f ∈ T |
f is maximal with respect to S}.

As there are only |Q1| ≤ 2n states in Q1, the impact of their high outdegree is out-
weighed by the small outdegree (|δ(q, σ)| ≤ 2) of the remaining |Q2| ∈ O

(

tight(n + 1)
)

states.
Construction: For a given nondeterministic Büchi automaton A = (Σ, Q, I, δ, F) with n =
|Q| states, let D = (Σ, Q′, I ′, γ, F ′) denote the nondeterministic Büchi automaton with Q′,
I ′, F ′, Q1, Q2, and δ1 as in the construction from Section 3, and with γ = δ1∪γ2∪γ3∪γ4 for

• γ2 : Q1×Σ → 2Q2 with (S′, O, g, i) ∈ γ2(S, σ) ⇔ (S′, O, g, i) ∈ δ2(S, σ) and g ∈ MS′ ,
• γ3 : Q2×Σ → 2Q2 with γ3

(

(S,O, f, i), σ
)

= {max g

{

(S′, O′, g, i′)∈δ3

(

(S,O, f, i), σ
)}

,

• γ4 : Q2 × Σ → 2Q2 with (S′, O′′, g′, i′) ∈ γ4

(

(S,O, f, i), σ
)

if

(S′, O′, g, i′) ∈ γ3

(

(S,O, f, i), σ
)

, O′′ = ∅, i′ 6= 0 ∨ O′ = ∅, and
g′(q) = g(q) − 1 for all q ∈ O′ and g′(q) = g(q) otherwise,

where max g

{

(S′, O′, g, i′) ∈ δ3

(

(S,O, f, i), σ
)}

selects the unique element with a (point
wise) maximal function g. The supremum over all function obviously exists, but it is not
necessarily tight. (In this case, max g returns the empty set.) Since δ3 is strict with respect
to the selection of the other three elements S′, O′ and i′ for a fixed ranking function, the
mapping of γ3 consists only of singletons and the empty set.

While γ3 selects a maximal successor, γ4 selects a maximal final successor, which only
requires to decrease the value assigned to the states in O′ by the ranking function g by one.

670 SVEN SCHEWE

(Which cannot be done if their value is already 0, hence the restriction i 6= 0 or O′ = ∅.)
The tightness of g′ is then inherited from the tightness of g.

4.2. Correctness

While it is clear that the language of D is contained in the language of C, the converse
is less obvious. To prove L(C) ⊆ L(D), we show that any ω-word α rejected by A will be
accepted by D by exploiting the “standard” run ρ′ of C on α from the proof of Lemma 3.2
to build an accepting run ρ′′ of D on α.

Proposition 4.1. For a given nondeterministic Büchi automaton A = (Σ, Q, I, δ, F), the
automaton D resulting from the construction introduced in Subsection 4.1 accepts an ω-word
α : ω → Σ if and only if α is rejected by A. (L(D) = L(A))

Proof. We show L(D) = L(A) by demonstrating L(A) ⊆ L(D) ⊆ L(C) ⊆ L(A), where the
second inclusion is implied by the fact that every (accepting) run of D is also an (accepting)
run of C, and the third inclusion is shown in Lemma 3.1.

To demonstrate L(A) ⊆ L(D), we reuse the proof of Lemma 3.2 to obtain an accepting
run ρ′ = S0, S1, S2, . . . , Sp, (Sp+1, Op+1, fp+1, ip+1), (Sp+2, Op+2, fp+2, ip+2), . . . for C, where
fj(q) is the rank of (q, j) in Gα for all j > p and q ∈ Sj. (If A has no run on α, then D has
the same accepting standard run on α that stays in Q1 as C.)

Let us pick an Sp+1-tight ranking function gp+1 with the same rank as fp+1 that is
maximal with respect to Sp+1. We show that we then can construct the run

ρ′′ = S0, S1, S2, . . . , Sp, (Sp+1, O
′

p+1, gp+1, i
′

p+1), (Sp+2, O
′

p+2, gp+2, i
′

p+2), . . .

of D on α that satisfies Op+1 = ∅, and ip+1 = 0 and, for all j > p,

• (Sj+1, O
′

j+1, gj+1, i
′

j+1) ∈ γ4

(

(Sj , O
′

j , gj , i
′

j), α(j)
)

if Oj+1 = ∅ and ij+1 = i′j+1

(note that i′j+1 does not depend on taking the transition from γ3 or γ4), and

• (Sj+1, O
′

j+1, gj+1, i
′

j+1) ∈ γ3

(

(Sj , O
′

j , gj , i
′

j), α(j)
)

otherwise.

To show by induction that gj ≥ fj holds true for all j > p (where ≥ is the point wise
comparison), we strengthen the claim by claiming additionally that if, for some position
k > p, ρ′(k) is a final state, i′k+1 = ik+1 holds true, and k′ > k is the next position for which
ρ′′(k′) is final, then q ∈ O′

j implies q ∈ Oj ∨ gj(q) > fj(q) for all k < j ≤ k′.

For j = p + 1 this holds trivially (basis). For the induction step, let us first consider
the case of γ3-transitions. Then gj+1 ≥ fj+1 is implied, because gj+1 is maximal among the

Sj+1-tight level rankings ≤
Sj

α(j) gj , and gj ≥ fj holds by induction hypothesis. If ρ′(j) is a

final state and i′j+1 = ij+1 holds true, then Oj+1 = fj
−1(ij+1), and hence q ∈ O′

j implies

gj+1(q) = i′j+1 = ij+1, which implies q ∈ Oj+1 ∨ gj+1(q) > fj+1(q) (using gj+1 ≥ fj+1).

If a γ4-transition is taken, then taking a γ3-transition implied gj+1 ≥ fj+1 and gj+1(q) =
i′j+1 = ij+1 ⇒ gj+1(q) > fj+1(q) (note that Oj+1 is empty) by the previous argument. This

immediately implies gj+1 ≥ fj+1 for the γ4-transition. Consequently, Oj+1 = fj
−1(ij+1)

(which holds as ρ′(j) is final) entails that q ∈ O′

j implies q ∈ Oj+1 ∨ gj+1(q) > fj+1(q).
It remains to show that all functions gj are Sj-tight level rankings. To demonstrate

this, let q ∈ Sp+1 be a state of the automaton A such that gp+1(q) = o is the rank of
(q, p+1) in Gα for an odd number o ≤ r. (Such a state exists for every odd number o ≤ r by
construction.) Since (q, p+1) is endangered but not finite in Gα

o, all nodes (q′, j) with j > p
reachable from (q, p + 1) in Gα

o form an infinite connected sub-DAG of Gα
o, all of whose

BÜCHI COMPLEMENTATION MADE TIGHT 671

nodes have rank o. (Which, by the proof in Lemma 3.2, entails that fj(q
′) = o holds for

every vertex (q′, j) of this sub-DAG.) By definition of ρ′′, it is easy to show by induction that
gj(q

′) ≤ o holds for all of these nodes (q′, j). As we have just demonstrated gj(q
′) ≥ fj(q

′),
this entails gj(q

′) = o. Since o can be any odd number less or equal to the rank r of Gα, and
since there is, for every j > p, some vertex (q′, j) reachable from (q, p + 1) in Gα

o, gj is an
Sj-tight level ranking for all j > p.

Finally, the assumption that O′

j is empty only finitely many times implied that there

was a last position k such that O′

k is empty. But this implies that ij is stable for all j > k,
and within the next n visited fixed points in ρ′ there is one that refers to this ik+1. By
construction of ρ′′, this position is a final state in ρ′′, too.

4.3. Complexity

Extending the tight bound of Section 3 for the state space to a tight bound on the size
of the complement automaton is simple: The mappings of δ1, γ3, and γ4 consist of singletons
or the empty set, such that only the size of γ2 needs to be considered more closely.

Theorem 4.2. For a given nondeterministic Büchi automaton A with n states and an
alphabet of size s, the automaton D has size O

(

s tight(n + 1)
)

.

Proof. For all S ∈ Q1 and σ ∈ Σ, we have that γ2(S, σ) = {S′} × {∅} × MS′ × {0} for
S′ = δ(S). Thus, |γ2(S, σ)| = |MS′ |, which can be estimated by

∑m
i=1

m!
i! for m = |S′ r F |,

which is in O(n!). Thus
∑

S∈Q1, σ∈Σ
|γ2(S, σ)| ∈ O(s 2n n!) (o

(

s tight(n)
)

holds true.

(2n n! ≈
(

2n
e

)n
≈ (0.74n)n, whereas tight(n) ≈ (0.76n)n.) The claim thus follows with

Theorem 3.4, and |δ1(q1, σ)| = 1 and |γ3(q2, σ)|, |γ4(q2, σ)| ≤ 1 for all q1 ∈ Q1, q2 ∈ Q2 and
σ ∈ Σ.

Together with Proposition 2.4, this establishes tight complexity bounds for Büchi com-
plementation:

Corollary 4.3. The complexity of complementing nondeterministic Büchi automata with
n states is in Ω

(

tight(n−1)
)

and O
(

tight(n+1)
)

. The discussed complementation technique

is therefore optimal modulo a small polynomial factor in O(n2).

5. Discussion

This paper marks the end of the long quest for the precise complexity of the Büchi
complementation problem. It shows that the previously known lower bound is sharp, which
is on one hand surprising, because finding tight lower bounds is generally considered the
harder problem, and seems on the other hand natural, because Yan’s lower bound builds
on the concept of tight level rankings alone [Yan08], while the previously known upper
bound [FKV06] incorporates an additional subset construction and builds on estimations
on top of this, leaving the estimations of the lower bound the simpler concept of the two.

Similar to the complexity gap in Büchi complementation twenty years ago, the com-
plexity of Büchi determinization is known to be in nθ(n), but there is also an nθ(n) gap
between the upper [Sch09] and lower [Yan08] bound. Tightening the bounds for Büchi de-
terminization appears to be the natural next step after the introduction of an optimal Büchi
complementation algorithm.

672 SVEN SCHEWE

References

[Büc62] J. Richard Büchi. On a decision method in restricted second order arithmetic. In Proceedings of
the International Congress on Logic, Methodology, and Philosophy of Science, 1960, Berkeley,
California, USA, pages 1–11. Stanford University Press, 1962.

[FKV06] Ehud Friedgut, Orna Kupferman, and Moshe Y. Vardi. Büchi complementation made tighter.
International Journal of Foundations of Computer Science, 17(4):851–867, 2006.

[GKSV03] Sankar Gurumurthy, Orna Kupferman, Fabio Somenzi, and Moshe Y. Vardi. On complementing
nondeterministic Büchi automata. In Proceedings of the 12th Advanced Research Working Con-
ference on Correct Hardware Design and Verification Methods (CHARME 2003), 21–24 October,
L’Aquila, Italy, volume 2860 of Lecture Notes in Computer Science, pages 96–110. Springer-Verlag,
2003.

[Kur94] Robert P. Kurshan. Computer-aided verification of coordinating processes: the automata-theoretic
approach. Princeton University Press, 1994.

[KV01] Orna Kupferman and Moshe Y. Vardi. Weak alternating automata are not that weak. ACM
Transactions on Computational Logic, 2(2):408–429, July 2001.

[Löd99] Christof Löding. Optimal bounds for transformations of ω-automata. In Proceedings of the 19th
Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
1999), 13–15 December, Chennai, India, volume 1738 of Lecture Notes in Computer Science,
pages 110–121. Springer-Verlag, 1999.

[Mic88] M. Michel. Complementation is more difficult with automata on infinite words. Technical report,
CNET, Paris (Manuscript), 1988.

[Péc86] Jean-Pierre Pécuchet. On the complementation of Büchi automata. Theoretical Computer Sci-
ence, 47(3):95–98, 1986.

[Pit07] Nir Piterman. From nondeterministic Büchi and Streett automata to deterministic parity au-
tomata. Journal of Logical Methods in Computer Science, 3(3:5), 2007.

[RS59] Michael O. Rabin and Dana S. Scott. Finite automata and their decision problems. IBM Journal
of Research and Development, 3:115–125, 1959.

[Saf88] Shmuel Safra. On the complexity of ω-automata. In Proceedings of the 29th Annual Symposium
on Foundations of Computer Science (FOCS 1988), 24–26 October, pages 319–327, White Plains,
New York, USA, 1988. IEEE Computer Society Press.

[Sch09] Sven Schewe. Tighter bounds for the determinization of Büchi automata. In Proceedings of the
Twelfth International Conference on Foundations of Software Science and Computation Struc-
tures (FoSSaCS 2009), 22–29 March, York, England, UK. (to appear), 2009.

[SS78] William J. Sakoda and Michael Sipser. Non-determinism and the size of two-way automata. In
Proceedings of the 10th Annual ACM Symposium on Theory of Computing (STOC 1978), 1–3
May, San Diego, California, USA, pages 274–286. ACM Press, 1978.

[SVW87] A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper. The complementation problem for Büchi
automata with applications to temporal logic. Theoretical Computer Science, 49(3):217–239, 1987.

[TCT+08] Yih-Kuen Tsay, Yu-Fang Che, Ming-Hsien Tsai, Wen-Chin Chan, and Chi-Jian Luo. GOAL
extended: Towards a research tool for omega automata and temporal logic. In Proceedings of the
14th International Conference On Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2008), 31 March–3 April, Budapest, Hungary, volume 4963 of Lecture Notes in
Computer Science, pages 346–350. Springer-Verlag, 2008.

[Tem93] Nico M. Temme. Asymptotic estimates of Stirling numbers. Studies in Applied Mathematics,
89:233–243, 1993.

[Tho99] Wolfgang Thomas. Complementation of Büchi automata revisited. In Jewels are Forever, Con-
tributions on Theoretical Computer Science in Honor of Arto Salomaa, pages 109–122. Springer-
Verlag, 1999.

[Var07] Moshe Y. Vardi. The Büchi complementation saga. In Proceedings of the 24th Annual Symposium
on Theoretical Aspects of Computer Science (STACS 2007), 22-24 February, Aachen, Germany,
volume 4393 of Lecture Notes in Computer Science, pages 12–22. Springer-Verlag, 2007.

[Yan08] Qiqi Yan. Lower bounds for complementation of omega-automata via the full automata technique.
Journal of Logical Methods in Computer Science, 4(1:5), 2008.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

