Symposium on Theoretical Aspects of Computer Science 2009 (Freiburg), pp. 673—-684
www.stacs-conf.org

STRONG COMPLETENESS OF COALGEBRAIC MODAL LOGICS

LUTZ SCHRODER! AND DIRK PATTINSON?

! DFKI Bremen and Department of Computer Science, Universitat Bremen
E-mail addressLut z. Schr oeder @If ki . de

2 Department of Computing, Imperial College London
E-mail addressdi r k@loc. i c. ac. uk

ABSTRACT. Canonical models are of central importance in modal logic, in particular as they wit-
ness strong completeness and hence compactness. While the canonical model construction is well
understood for Kripke semantics, non-normal modal logics often present subtle difficulties — up to
the point that canonical models may fail to exist, as is the case e.g. in most probabilistic logics. Here,
we present a generic canonical model construction in the semantic framework of coalgebraic modal
logic, which pinpoints coherence conditions between syntax and semantics of modal logics that guar-
antee strong completeness. We apply this method to reconstruct canonical model theorems that are
either known or folklore, and moreover instantiate our method to obtain new strong completeness
results. In particular, we prove strong completeness of graded modal logic with finite multiplicities,
and of the modal logic of exact probabilities.

In modal logic, completeness proofs come in two flavouwsakcompleteness, i.e. derivability of

all universally valid formulas, is often proved usifigite modelconstructions, andtrong com-
pleteness, which additionally allows for a possibly infinite set of assumptions. The latter entails
recursive enumerability of the set of consequences of a recursively enumerable set of assumptions,
and is usually established using (infinitgnonical modelsThe appeal of the first method is that it
typically entails decidability. The second method yields a stronger result and has some advantages
of its own. First, it applies in some cases where finite models fail to exist, which often means that the
logic at hand is undecidable. In such cases, a completeness proof via canonical models will at least
salvage recursive enumerability. Second, it allows for schematic axiomatisations, e.g. pertaining to
the infinite evolution of a system or to observational equivalence, i.e. statements to the effect that
certain states cannot be distinguished by any formula.

In the realm of Kripke semantics, canonical models exist for a large variety of logics and are
well understood, see e.g. [2]. But there is more to modal logic than Kripke semantics, and indeed
the natural semantic structures used to interpret a large class of modal logics go beyond pure re-
lations. This includes e.g. the selection function semantics of conditional logics [4], the semantics
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of probabilistic logics in terms of probability distributions, and the game frame semantics of coali-
tion logic [16]. To date, there is very little research that provides systematic criteria, or at least

a methodology, for establishing strong completeness for logics not amenable to Kripke semantics.
This is made worse as the question of strong completeness crucially depends on the chosen semantic
domain, which as illustrated above may differ widely. It is precisely this variety in semantics that
makes it hard to employ the strong-completeness-via-canonicity approach, as in many cases there
is no readily available notion of canonical model. The present work improves on this situation by
providing a widely applicable generic canonical model construction. More precisely, we establish
the existence of quasi-canonical models, that is, models based on the set of maximally consistent
sets of formulas that satisfy the truth lemma, as there may be no unique, or canonical, such model in
our more general case. In order to cover the large span of semantic structures, we avoid a commit-
ment to a particular class of models, and instead work within the framework of coalgebraic modal
logic [15] which precisely provides us with a semantic umbrella for all of the examples above. This

is achieved by using coalgebras for an endofun@tas the semantic domain for modal languages.

As we illustrate in examples, the semantics of particular logics is then obtained by particular choices
of T'. Coalgebraic modal logic serves in particular as a general semantic framework for non-normal
modal logics. As such, it improves on neighbourhood semantics in that it retains the full semantic
structure of the original models (neighbourhood semantics offers only very little actual semantic
structure, and in fact may be regarded as constructed from syntactic material [18]).

In this setting, our criterion can be formulated as a set of coherence conditions that relate
the syntactic component of a logic to its coalgebraic semantics, together with a purely semantic
condition stating that the endofunctdrthat defines the semantics needs to preserve inverse limits
weakly, and thus allows for a passage from the finite to the infinite. We are initially concerned with
the existence of quasi-canonical models relative to the claat Bfcoalgebras, that is, whith logics
that are axiomatisable by formulas of modal depth uniformly equal to one [17]. As in the classical
theory, the corresponding result for logics with extra frame conditions requires that the logic is
canonical, i.e. the frame that underlies a quasi-canonical model satisfies the frame conditions, which
holds in most cases, but for the time being needs to be established individually for each logic.

Our new criterion is then used to obtain both previously known and novel strong completeness
results. In addition to positive results, we dissect a number of logics for which strong completeness
fails and show which assumption of our criterion is violated. In particular, this provides a handle
on adjusting either the syntax or the semantics of the logic at hand to achieve strong completeness.
For example, we demonstrate that the failure of strong completeness for probabilistic modal logic
(witnessed e.g. by the set of formulas assigning probability— 1/n to an event for alk but ex-
cluding probabilityl) disappears in the logic of exact probabilities. Moreover, we show that graded
modal logic, and more generally any description logic [1] with qualified number restrictions, role
hierarchies, and reflexive, transitive, and symmetric roles, is strongly complete over the multigraph
model of [5], which admits infinite multiplicities. While strong completeness fails for the naive
restriction of this model to multigraphs allowing only finite multiplicities, we show how to salvage
strong completeness using additive (finite-)integer-valued measures. Finally, we prove strong com-
pleteness of several conditional logics w.r.t. conditional frames (also known as selection function
models); for at least one of these logics, strong completeness was previously unknown.

1. Preliminaries and Notation

Our treatment of strong completeness is parametric in both the syntax and the semantics of a wide
range of modal logics. On the syntactic side, we finadal similarity type\ consisting of modal
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operators with associated arities. Given a similarity typand a countable sét of atomic propo-
sitions, the sef(A) of A-formulasis inductively defined by the grammar

FA)3 ¢ u=p|L][=¢|oNth]|L(d1,... ¢n)
wherep € P andL € A is n-ary; further boolean operators'(—, <, T) are defined as usual.
Given any setX (e.g. of formulas, atomic propositions, or sets (!)), we wRtep(X) for the set
of propositional formulas oveK andA(X) = {L(x1,...,x,) | L € Aisn-ary,z1,...,2, € X}
for the set of formulas arising by applying exactly one operator to elements die instantiate
our results to a variety of settings later with the following similarity types:

Examples 1.1. 1. The similarity typeAx of standard modal logic consists of a single unary
operatord.

2. Conditional logic [4] is defined over the similarity type1, = {=-} where the binary operator
= is read as a non-monotonic conditional (default, relevant etc.), usually written in infix notation.

3. Graded modal operators [8] appear in expressive description logics [1] in the guise of so-called
qualified number restrictions; although we discuss only modal aspects, we use mostly description
logic notation and terminology below. The operators of graded modal logic (GML)aig, =
{(> k) | k € N} with (> k) unary. We write> k. ¢ instead of(> k)¢. A formula> k. ¢ is read as
‘at leastk successor states satisfy and we abreviat€lgp = - > 1.-¢.

4. The similarity typeApys, of probabilistic modal logic (PML) [14] contains the unary modal
operatorsL,, for p € Q N[0, 1], read as ‘with probability at leagt, ... .

We split axiomatisations of modal logics into two parts: the first group of axioms is responsible for
axiomatising the logic w.r.t. the class all (coalgebraic) models, whereas the second consists of
frame conditions that impose additional conditions on models. As the class of all coalgebraic mod-
els, introduced below, can always be axiomatised by formulaanif1, i.e. containing exactly one

level of modal operators [17] (and conversely, every collection of such axioms admits a complete
coalgebraic semantics [18]), we restrict the axioms in the first group accordingly. More formally:

Definition 1.2. A (modal) logicis a triple £ = (A,.A4,0) where A is a similarity type, 4 C
Prop(A(Prop(P))) is a set ofrank-1 axiomsand©®© C F(A) is a set offrame conditions We

say thatl is arank-1 logicif © = 0. If ¢ € F(A), we writet-, ¢ if ¢ can be derived from

AU O with the help of propositional reasoning, uniform substitution, and the congruence rule: from
¢1 = Y1y, Pp > Py infer L(py, ..., én) < L(1,...,1,) WheneverL € A is n-ary. For

a setd C F(A) of assumptions, we writ® -, ¢ if -, &1 A -+ A ¢, — ¢ for (finitely many)

b1, ...,0n € D. Asetd is L-inconsistenif & -, 1, and otherwise&-consistent

Examples 1.3. 1. The modal logid< comes about as the rank-1 loditx, Ak, ) where A, =
{O0T,0(p — ¢q¢) — (Op — Oq)}. The logicsK4,54, KB, ... arise asAg, Ax,©0) where©
contains the additional axioms that define the respective logic [2]6eg.{0p — OOp} in the
case ofi(4.

2. For conditional logic, we take the similarity type-, together with rank-1 axioms = T,
r= (p—q) — ((r = p) — (r = q)) stating that the binary conditional is normal in its second
argument. Typical additional rank-1 axioms are

(ID) a=a (identity)
(DIS) (a=c)N(b=c)— ((aVd)=c) (disjunction)
(C™m) (a=c)AN(a=b)— ((aAND) = ¢) (cautious monotony)

which together form the so-calle®ystem C a modal version of the well-known KLM
(Krauss/Lehmannn/Magidor) axioms of default reasoning due to Burgess [3].
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3. The axiomatisation of GML given in [8] consists of the rank-1 axioms
O(p — ¢q) — (Op — Hq)
>k.p—>lpforli<k
>kpe Vi, ,2i-@AN)AZ(k—1).(p A )
Op—4q) = (Zkp—=kq)
Frame conditions of interest include e.g. reflexiviy-¢ > 1. p), symmetry  — O >1.p), and
transitivity > 1. >n.p — >n.p).

To keep our results parametric also in the semantics of modal logic, we work in the framework of
coalgebraic modal login order to achieve a uniform and coherent presentation. In this framework,
the particular shape of models is encapsulated by an endofufictdfet — Set, the signature
functor (recall that such a functor maps every séto a setl’ X, and everymagf : X — Y toa
mapT'f : TX — TY in such a way that composition and identities are preserved), which may be
thought of as a parametrised data type. We fix the dat8, T etc. throughout the generic part of

the development. The role of models in then playedbgoalgebras:

Definition 1.4. A T-coalgebrais a pairC = (C,~) whereC is a set (thestate spacef C) and
~v: C'— TC is a function, the transition structure 6f

We think of T'C' as a type of successors, polymorphicCin The transition structure associates
a structured collection of successorg) to each state € C. The following choices of signature
functors give rise to the semantics of the modal logics discussed in Expl. 1.3.

Examples 1.5. 1. Coalgebras for the covariant powerset fun@atefined on setX by P(X) =
{A| A C X} and on mapg by P(f)(A) = f[A] are Kripke frames, as relatiod® C W x W
on a setV of worlds are in bijection with functions of typd” — P(WW). Restricting the powerset
functor tofinite subsets, i.e. puttin@,,(X) = {A C X | A finite}, one obtains the class of image
finite Kripke frames a$,,-coalgebras.

2. The semantics of conditional logic is captured coalgebraically by the endofuhthtat maps
a setX to the set(P(X) — P(X)) of selection functions oveX (the action ofS on functions
f: X — Yisgiven byS(f)(s)(B) = f[s(f[B])]). The ensuingS-coalgebras are precisely the
conditional frames of [4].

3. The((infinite) multiset functor3,, maps a setX to the set5,,.X of multisets overX, i.e.
functions of typeX — N U {oo}. Accordingly, B..-coalgebras armultigraphs(graphs with edges
annotated by multiplicities). Multigraphs provide an alternative semantics for GML which is in
many respects more natural than the original Kripke semantics [5], as also confirmed by new results
below.

4. Finally, if supp(n) = {x € X | p(x) # 0} is the support of a functiom : X — [0,1]
andD(X) = {p : X — [0,1] | supp(p) finite, >~ pu(x) = 1} is the set of finitely supported
probability distributions onX, thenD-coagebras are probabilistic transition systems, the semantic
domain of PML.

The link between coalgebras and modal languages is provided by predicate liftings [15], which are
used to interpret modal operators. Essentially, predicate liftings convert predicates on the state space
X into predicates on the s&tX of structured collections of states:

Definition 1.6. [15] An n-ary predicate lifting(n € N) for T is a family of maps\y : PX" —
PT X, whereX ranges over all sets, satisfying thaturality condition

/\X(f_l[Al]ﬂ SR f_l[An]) = (Tf)_l[)‘Y(Alﬂ o 7An)]
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forall f: X - Y, Ay, ..., A, € PY. (For the categorically minded, is a natural transformation
o" — Qo T, whereQ denotes contravariant powerset.)s&kucturefor a similarity typeA over
an endofunctofl’ is the assignment of am-ary predicate lifting[ L] to everyn-ary modal operator
L eA.

Given a valuationt” : P — P(C) of the propositional variables andZ-coalgebra(C, ), a
structure forA allows us to define a satisfaction relatign. . 1) between states «f and formulas
¢ € F(A) by stipulating that =,y piff c € V(p) and

¢ Eenyy Lo, - o) 1t A(c) € [Llo([¢1], - -, [on]),

where[¢] = {c € C' | ¢ F(¢,,,v) ¢} An L-modelis now amode] i.e. a triple(C,~, V') as above,

such that =, ¥ forall all c € C and all substitution instancesof AU ©. An L-frameis
aT-coalgebra(C, ) such that(C,~, V') is anL-model for all valuationd’. The reader is invited

to check that the following predicate liftings induce the standard semantics for the modal languages
introduced in Expl. 1.1.

Examples 1.7. 1. A structure for Ax over the covariant powerset funct@? is given by
[O]x(A) ={Y € P(X) | Y C A}. The frame classes defined by the frame conditions men-
tioned in Expl. 1.3.1 are well-known; e.g. a Kripke fraifi€, R) is a K4-frame iff R is transitive.

2. Putting[=]x(A,B) = {f € S(X) | f(A) C B} reconstructs the semantics of conditional
logic in a coalgebraic setting.

3. Astructure for GML oveB is given by[(> k)] x (A) = {f : X — NU{oo} | >, c4 f(z) >
k}. The frame conditions mentioned in Expl. 1.3.3 correspond to conditions on multigraphs that
can be read off directly from the logical axioms. E.g. a multigraph satisfies the transitivity axiom
>1. >n.p — >n.p iff wheneverz has non-zero transition multiplicity tg andy has transition
multiplicity at leastn to z, thenx has transition multiplicity at least to z.

4. The structure oveP that captures PML coalgebraically is given by the the predicate lifting
[Lp]x(A) = {p € D(X) | 2opeam(x) = p}forp € [0,1] N Q.

From now onfix a modal logicC = (A, A, ©) and a structure forA over a functorZ’. We say that
L is strongly completdéor some class of models if ever§-consistent set of formulas is satisfiable
in some state of some model in that class. Restrictinfintte sets® defines the notion ofveak
completenessnany coalgebraic modal logics are only weakly complete [17].

Definition 1.8. Let X be a set. If) € F(A) and7 : P — P(X) is a valuation, we write)r for
the result of substituting (p) for p in ¢, with propositional subformulas evaluated according to the
boolean algebra structure B{ X ). (Hence 7 is a formula over the s§?(X') of atoms.) A formula
¢ € Prop(A(P(X)) is one-stepl-derivable denoted-L. ¢, if ¢ is propositonally entailed by the
set{y7 | 7: P — P(X),y € A}. Asetd C Prop(A(P(X))) is one-stepC-consistenif there do
not exist formulasss, . .., ¢, € ® such that-> =(¢1 A -+ A ¢,). Dually, theone-step semantics
[#]% € TX of aformulag € Prop(A(P(X)) is defined inductively by[L(A1, ..., A,)]% =
[L]x(A1,...,Ap) for Ay,...; A, € X. Aset® C Prop(A(P(X))) is one-step satisfiablé
ﬂ¢@[[¢]]}< # (). We say thatC (or A) is separatingif ¢ € T X is uniquely determined by the set
{p e A(P(X)) |t € [[gb]]ﬁ{}. We call £ (or .A) one-step sound every one-step derivable formula
¢ € Prop(A(P(X))) is one-step valid, i.€]¢]} = X.

Henceforth, we assume thatis one-step soundso that everyl’-coalgebra satisfies the rank-1
axioms; in the absence of frame conditiofs=£ (), this means in particular that evefircoalgebra
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is anL-frame. The above notions of one-step satisfiability and one-step consistency are the main
concepts employed in the proof of strong completeness in the following section.

Given a structure fo\ overT, every set5 of rank-1 axioms oveA defines a subfunctdfs of
B with Ts(X) = N{[¢7]x | ¢ € B,7: P — P(X)} C TX. This functor induces a structure for
which B is one-step sound.

Example 1.9. The additional rank-1 axioms of Expl. 1.3.2 induce subfunc&yf the functorS
of Expl. 1.5.2. E.g. we have

SimX ={f €S(X)|VAC X. f(A) C A}
Sup,pisyX ={f € S(X) |VA,BC X. f(A) CANf(AUB) C f(A)U f(B)
S, prs,emyX ={f € S(X) |[VA,BC X. f(A) CAN(f(B)C A= f(A)NB C f(B))}
(it is an amusing exercise to verify the last claim).

X)
X)

—

2. Strong Completeness Via Quasi-Canonical Models

We wish to establish strong completenessCdby defining a suitabld’-coalgebra structuré on
the setS of maximally £-consistent subsets ¢7(A ), equipped with the standard valuatidifp) =
{T" € S| p € T'}. The crucial property required is thate coherenti.e.

C(F) € [[L]](Qghﬂ%n) — L((bla"'a(bn) € F7

whereg = {A € S| ¢ € A}, for L € An-ary,T € S, and¢y,...,d, € F(A), as this allows
proving, by a simple induction over the structure of formulas,

Lemma 2.1(Truth lemma) If ¢ is coherent, then for all formulag, I' =(5.¢ v ¢ iff ¢ € T

We define ajuasi-canonical modeb be a mode(sS, ¢, V') with ¢ coherent; the term quasi-canonical
serves to emphasise that the coherence condition does not determine the transition sfructure
uniquely. By the truth lemma, quasi-canonical models foare £-models, i.e. satisfy all sub-
stitution instances of the frame conditions. The first question is now under which circumstances
guasi-canonical models exist; we proceed to establish a widely applicable criterion. This criterion
has two main aspects:lacal form of strong completeness involving only finite sets, and a preser-
vation condition on the functor enabling passage from finite sets to certain infinite sets. We begin
with the latter part:

Definition 2.2. A surjective w-cochain (of finite sets)s a sequencéX,,),en Of (finite) sets
equipped with surjective functions, : X,,1; — X, calledprojections Theinverse limitlim X,

of (X)) is the set{(z;) € [[;cn Xi | Yn.pn(®ny1) = x5} of coherentfamilies (z;). Thelimit
projectionsare the maps;((z,)nen) = i, © € N; note that ther; are surjective, i.e. every € X;
can be extended to a coherent family. Since all set functors preserve surje¢fidfs) is a sur-
jectivew-cochain with projection§’p,,. The functorl” weakly preserves inverse limits of surjective
w-cochains of finite setd for every surjectivew-cochain(X,,) of finite sets, the canonical map
T'(lim X,,) — lim T'X,, is surjective, i.e. every coherent family,) in [[ 7X,, is inducedby a (not
necessarily unique) € T'(lim X,,) in the sense thafr,(t) = t, for all n.

Example 2.3. Let A be a finite alphabet; then the set8, n € N, form a surjectivev-cochain of
finite sets with projectiong,, : A"*' — A", (a1,...,a,41) — (a1,...,a,). The inverse limit
lim A" is the setA“ of infinite sequences ovet. The covariant powerset functét preserves this
inverse limit weakly: given a coherent family of subséts C A", i.e. p,[Bn+1] = B, for all n,
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we define the seB C A“ as the set of all infinite sequencgs,),>1 such thata,...,a,) € B,

for all n; it is easy to check that inded8l induces theB,,, i.e.r,[B] = B,,. However,B is by no
means uniquely determined by this property: Observefhas just defined is a safety property. The
intersection ofB with any liveness propert¢’, e.g. the se’ of all infinite sequences containing
infinitely many occurrences of a fixed letter.i will also satisfyr,,[B N C| = B,, for all n.

The second part of our criterion is an infinitary version of a local completeness property called
one-step completeness, which has been used previousigakcompleteness proofs [15, 17].

Definition 2.4. We say that( is strongly one-step complete over finite séter finite X, every
one-step consistent subgebf Prop(A(P(X))) is one-step satisfiable.

The difference with plain one-step completeness is dhabove may be infinite. Consequently,
strong and plain one-step completeness coincide in case the modal similarity typaite, since

in this caseProp(A(P(X))) is, for finite X, finite up to propositional equivalence. The announced
strong completeness criterion is now the following.

Theorem 2.5. If £ is strongly one-step complete over finite sets and separating,countable,
and T weakly preserves inverse limits of surjectivecochains of finite sets, thefi has a quasi-
canonical model.

Proof sketch.The most natural argument is via the dual adjunction between sets and boolean alge-
bras that associates to a set the boolean algebra of its subsets, and to a boolean algebra the set of its
ultrafilters. For economy of presentation, we outline a direct proof instead: we prove that

() every maximally one-step consistebtC Prop(A(2()) is one-step satisfiable,

where2l = {¢ | ¢ € F(A)} C P(S).

The existence of the required coherent coalgebra strugture .S follows immediately, since the
coherence requirement fg(I'), I" € S, amounts to one-step satisfaction of a maximally one-step
consistent subset &frop(A(2)).

To prove &), letA = {L,, | n € N}, letP = {p,, | n € N}, letF,, denote the set of-formulas
of modal nesting depth at mostthat employ only modal operators frofy, = { Ly, ..., L,} and
only the atomic propositionsy, . . . , p,, and letS,, be the set of maximally consistent subsetgpf
ThenS is (isomorphic to) the inverse |imlt£1 Sn, where the projections,,.1 — S, and the limit
projectionsS — S,, are just intersection witlF,,. As the sets5,, are finite, we obtain by strong one-
step completeness € T'S,, such that,, =5 @ N Prop(A(2,,)), where2l,, = {6NS, | ¢ € Fn}.
By separation(t,,),cn is coherent, and hence is induced by sameT'S by weak preservation of
inverse limits; thent =4 ®. n

Together with the Lindenbaum Lemma we obtain strong compéste as a corollary.
Corollary 2.6. Under the conditions of Thm. 2.5,is strongly complete fo£-models.

Both Thm. 2.5 and Cor. 2.6 do apply to the case has frame conditions. Whefiis of rank 1

(i.e. © = (), Cor. 2.6 implies thatZ is strongly complete for (models based ofrframes. In

the presence of frame conditions, the underlying frame of anodel need not be af-frame, so

that the question arises wheth@iis also strongly complete fof-frames. In applications, positive
answers to this question, usually referred to as the canonicity problem, typically rely on a judicious
choice of quasi-canonical model to ensure that the latter i£-frame, often the largest quasi-
canonical model under some orderingDA. Detailed examples are given in Sec. 3.

Remark 2.7. It is shown in [13] thatl" admits a strongly complete modal logicf weakly pre-
serves (arbitrary) inverse limitand preserves finite setd' he essential contribution of the above
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result is to remove the latter restriction, which fails in important examples. Moreover, the observa-
tion that we need only considsurjectivew-cochains is relevant in some applications, see below.

Remark 2.8. A last point that needs clearing up is whether strong completeness of coalgebraic
modal logics can be established by some more general method than quasi-canonical models of the
quite specific shape used here. The answer is negative, at least in the case of rank4l: libdias
been shown in [12] that every sughadmits models which consist of the maximatitisfiablesets
of formulas and obey the truth lemma. Under strong completeness, such models are quasi-canonical.
This seems to contradict the fact that some canonical model constructions in the literature,
notably the canonical Kripke models for graded modal logics [8, 6], employ state spaces which
have multiple copies of maximally consistent sets. The above argument indicates that such logics
fail to be coalgebraic, and indeed this is the case for GML with Kripke semantics. As mentioned
above, GML has an alternative coalgebraic semantics over multigraphs, and we show below that
this semantics does admit quasi-canonical models in our sense.

3. Examples

We now show how the generic results of the previous section can be applied to obtain canonical
models and associated strong completeness and compactness theorems for a large variety of struc-
turally different modal logics. We have included some negative examples where canonical models
necessarily fail to exist due to non-compactness, and we analyse which conditions of Thm. 2.5 fail

in each case. We emphasise that in the positive examples, the verification of said conditions is
entirely stereotypical. Weak preservation of inverse limits of surjecth@chains usually holds
without the finiteness assumption, which is therefore typically omitted.

Example 3.1(Strong completeness of Kripke semantics&dr. Recall from Expl. 1.5.1 that Kripke
frames are coalgebras for the powerset fundfdf = P(X). Strong completeness df with
respect to Kripke semantics is, of course, well known. We briefly illustrate how this can be derived
from our coalgebraic treatment. To see tliétis strongly one-step complete over finite s&fs

let ® C Prop(Ax(P(X))) be maximally one-step consistent. It is easy to check that X |

O{z} € ¢} satisfiesh. To prove that the powerset functor weakly preserves inverse limitsXlet

be anw-cochain, and let4,, € P(X,,)) be a coherent family. Thef¥,,) is itself a cochain, and the
setA = lim 4, C lim X, induces(4,,) (w.r.t. the subset ordering gR(.X)). Separation is clear.

By Thm. 2.5, there exists a quasi-canonical Kripke model for all normal modal logics. In particular,
the standard canonical model [4] is quasi-canonical; it withesses strong completeness (w.r.t. frames)
of all canonical logics such a4, 54, S5.

Example 3.2 (Failure of strong completeness &f over finitely branching models)As seen in

Expl. 1.5.1, finitely branching Kripke frames are coalgebras for the finite powerset fuRgtor

It is clear that quasi-canonical models fail to exist in this case, as compactness fails over finitely
branching frames: one can easily construct formglashat force a state to have at leastifferent
successors. The obstacle to the application of Thm. 2.5 is that the finite powerset functor fails to
preserve inverse limits weakly, as the inverse limit of.anochain of finite sets may fail to be finite.

Example 3.3(Conditional logic) Recall from Expl. 1.5.2 that the conditional logeX is inter-
preted over the functa$ (X ) = P(X) — P(X). To prove strong one-step completeness over finite
setsX, let® C Prop(AcL(P(X))) be maximally one-step consistent. Defifie P(X) — P(X)
by f(A) =N{B C X | A= B € &};itis mechanical to check thgt|=! ®. To see thas weakly
preserves inverse limits, 1€f,,) be a surjectives-cochain, letX = lim X,,, and let(f,, € S(Xy))
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be coherent. Defing : P(X) — P(X) by letting (x,,) € f(A) for a coherent family(z,,) € X

iff wheneverA = r,,1[B] for somen and someB C X, thenz,, € f,(B). Using surjectivity

of the projections of X,,), it is straightforward to prove thaf induces(f,). Finally, separation

is clear. By Thm. 2.5, it follows that the conditional logi¢X has a quasi-canonical model, and
hence thatCK is strongly complete for conditional frames. In the case of the additional rank-1
axioms mentioned in Expl. 1.3.2 and the corresponding subfunct&slescribed in Expl. 1.9, the
situation is as follows.

Identity: The functorSy;p, weakly preserves inverse limits of surjectivecochains. In the
notation above, putz,,) € f(A) iff the condition above holds and:,,) € A.

Identity and disjunction: The functorS;;p prg; weakly preserves inverse limits of surjective
w-cochains: putz,) € f(A) iff (z,) € A and wheneve(z,,) € 7! B C A, thenz,, € f..(B).

System C:lt is open whether the the functdl;;p prs,cay Weakly preserves inverse limits of
surjectivew-cochains, and whether System C is strongly complete over conditional frames.

Indeed it appears to be an open problem to &ingisemantics for which System C is strongly
complete, other than the generalised neighbourhood semantics as described e.g. in [18], which is
strongly complete for very general reasons but provides little in the way of actual semantic infor-
mation. The classical preference semantics according to Lewis is only known to be weakly com-
plete [3]. Friedman and Halpern [9] do silently prove strong completeness of System C w.r.t. plau-
sibility measures; however, on close inspection the latter turn out to be essentially equivalent to the
above-mentioned generalised neighbourhood semantics. Moreover, Segerberg [19] proves strong
completeness for a whole range of conditional logics @emeralconditional frames, where, in
analogy to corresponding terminology for Kripke frames, a general conditional frame is equipped
with a distinguished set adidmissible propositionmiting both the range of valuations and the
domain of selection functions. In contrast, our method yields full conditional frames in which the
frame conditions hold foanyvaluation of the propositional variables. While in the cas€'&f and
its extension by D alone, these models differ from Segerberg’s only in that they insert default val-
ues for the selection function on non-admissible propositions, the canonical model for the extension
of CK by {ID, DIS} has non-trivial structure on non-admissible propositions, and we believe that
our strong completeness result for this logic is genuinely new.

Example 3.4(Strong completeness of GML over multigraphBecall from Expl. 1.5.3 that graded
modal logic (GML) has a coalgebraic semantics in terms of the multiset fuitttor To prove
strong one-step completeness over finite $étdet & C Prop(Aga(P(X))) be maximally one-
step consistent. We defiig € B..(X) by B(4A) > n < >n. A € ®; itis easy to check thaB

is well-defined and additive. To prove weak preservation of inverse limit&Xlg} be anv-cochain,
let X = lim X,,, and let(B,, € B (X)) be coherent. Then defing € B (X) pointwise by

noting that the sequende3,,(z,)) is decreasing by coherence. A straightforward computation
shows thatB induces(B,,). Separation is clear.

By the above and Thm. 2.5, all extensions of GML have quasi-canonical multigraph models.
While the technical core of the construction is implicit in the work of Fine [8] and de Caro [6],
these authors were yet unaware of multigraph semantics, and hence our re<althit strongly
complete over multigraphisas not been obtained previously.

The standard frame conditions for reflexivity, symmetry, and transitivity (Expls. 1.5.3
and 1.7. 3) and arbitrary combinations thereof are easily seen to be satisfied in the quasi-canonical
model constructed above. We point out that this contrasts with Kripke semantics in the case of the
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graded version of4, i.e. GML extended with the reflexivity and transitivity axioms of Expl. 1.5.3:
as shown in [7], the complete axiomatisation of graded modal logic over transitive reflexive Kripke
frames includes two rather strange combinatorial artefacts, which by the above disappear in the
multigraph semantics. The reason for the divergence (which we regard as an argument in favour of
multigraph semantics) is that, while in many cases multigraph models are easily transformed into
equivalent Kripke models by just making copies of states, no such translation exists in the transitive
reflexive case (transitivity alone is unproblematic).

Observe moreover that the above extends straightforwardly to decription ldgI€O(R)
with qualified number restrictions and a role hierar@yvhere roles may be distinguished as, in any
combination, transitive, reflexive, or symmetric. As shown in [10, ,CO(R) is undecidable
for manyR, even when only transitive roles are considered. For undecidable logics, completeness
is in some sense the ‘next best thing’, as it guarantees if not recursiveness then at least recursive
enumerability of all valid formulas, and hence enables automatic reasoning. Essentially, our results
show that the natural axiomatisation 4CC Q(R) with transitive, symmetric and reflexive roles is
strongly complete over multigrapha result which fails for the standard Kripke semantics.

Example 3.5(Failure of strong completeness of image-finite GME)milarly to the case of image-

finite Kripke frames, one can model an image-finite version of graded modal logic coalgebraically
by exchanging the functd8,., for the finite multiset functor3, where3(X) consists of all maps

X — N with finite support. Of course, the resulting logic is non-compact and hence fails to admit
a canonical model. This is witnessed not only by the same family of formulas as in the case of
image-finite Kripke semantics, which targets finiteness of the number of different successors, but
also by the set of formula§>n.a | n € N}, which targets finiteness of multiplicities. Analysing

the conditions of Thm. 2.5, we detect two violations: not only does weak preservation of inverse
limits fail, but there is also no way to find an axiomatisation which is strongly one-step complete
over finite sets (again, consider sétsn. {z} | n € N}).

Strong completeness of image-finite GML can be recovered by slight adjustments to the syntax and
semantics. We formulate a more general approach, as follows.

Example 3.6(Strong completeness of the logic of additive measurég fix an at most countable
commutative monoid// (e.g. M = N). We think of the elements a¥/ as describing the measure

of a set of elements. To ensure compactness, we have to allow some sets to have undefined measure.
That is, we work with coalgebras for the endofunctay defined by

Ty (X) = {2, pn) | A C P(X) closed under disjoint uniong : A — M additive}

The modal logic of additivé//-valued measures is given by the similarity typgy = {E,, | m €
M} whereE,,, ¢ expresses that has measuren, i.e.

[EnlxB = {(% ) € Tu(X) | B €A, u(B) =m}.

Ay is clearly separating. The logic is axiomatised by the following two axioms:

E,a— —E,a (n#m) and E,(aAb)AE,(aA—-b) — Enina.
These axioms are strongly one-step complete over finite Xetsf ® C Prop(Ay (P(X))) is
maximally one-step consistent, thélt, 1) |=! ® whereA € 2 iff E,,A € ® for some necessarily
uniquem, in which casqu(A) = m. Moreover,T); weakly preserves inverse limif§ = lim X,
with finite X,,: a coherent family((2.,,, 1) € Tar (X)) is induced by(, 1) € Ta(X), where
A= {r,1[B] | n€N,Be,}andu(r, [B]) = u.(B) is easily seen to be well-defined and
additive. Theorem 2.5 now guarantees existence of quasi-canonical models. A simple example is
M = 7,/2Z, which induces a logic of even and odd.
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For the casel/ = N, we obtain a variant of graded modal logic with finite multiplicities, where
we code> k.¢ as—\/ ., Ex¢. However, it may still be the case that a state has a family of
successor sets of unbounded measure, so that undefinedness of the measure of the entire state space
just hides an occurrence of infinity. This defect is repaired by insisting that the measure of the whole
state space is finite at the expense of disallowing the modal opdigiarthe language, as follows.

Example 3.7(Strong completeness of finitely branchiGdIL ™). To force the entire state space to
have finite measure, we additionally introducenaasurabilityoperatorE, interpreted by[E] B =
{(, 1) | B € A}, and impose obvious axioms guaranteeing that measurés$ are defined on
boolean subalgebras &f(X), in particularET (i.e. u(X) is finite), andE,,a — FEa. In order to
achieve compactness, we now leave a bolt hole on the syntactical side and exclude the éperator
In other words, the syntax @iML™ is given by the similarity type\,,; = {E} U {E, | n > 0},

and we interpreGML™ over coalgebras for the functé,, defined by

By (X) = {(2, 1) | 2 boolean subalgebra (X)), . : 20 — N additive}.

Separation is clear. The axiomatisation(@IL~ is given by the axiomatisation of the modal logic
of additive measures, the above-mentioned axioms& oand the additional axiom

Ena A Eb — En(a Ab)V Ep(a A =b)V \oopon(Ex(a Ab) A En_g(a A b))

which compensates for the absencefigf Strong one-step completeness over finite sets and weak
preservation of inverse limits is shown analogously as in Expl. 3.6, so that we obstiongly
complete finitely branching graded modal logidML~. The tradeoff is that the operator k.¢ is

no longer expressible as\/,, ;. E;¢ in GML™ which only allows to formulate the implication
>1.0 — >n.o.

Example 3.8(Failure of strong completeness for PML over finitely supported probability distribu-
tions). Like image-finite graded modal logic, probabilistic modal logic as introduced in Expl. 1.5.4
fails to be compact, and violates the conditions of Thm. 2.5 on two counts, namely weak preser-
vation of inverse limits and strong one-step completeness over finite sets. The first issue is related
to image-finiteness, while the second is rooted in the structure of the real numbers: e.g. the set
{L1/2-1/ma | n € N} U {=Ly2a} is finitely satisfiable but not satisfiable.

Example 3.9(Strong completeness of the logic of exact probabilitids) order to remove the
above-mentioned failure of compactness, we consider the fragment of probabilistic modal logic
containing only operatorg), stating that a given event has probability exagtlfThis is, of course,

less expressive than the operatagsbut still allows reasonable statements such as that rolling a six
on a die happens with probability/6.) Moreover, we require probabilities to be rational and allow
probabilities to be undefined, thus following the additive measures approach as outlined above,
where we consider a subfunctor B, defined by the requirement that the whole set has meadsure
However, we are able to impose stronger conditions on the doftain P(X) of a probability
measureP on X: we require thatX € A andthatd, B € %, B C Aimply A — B € FA, which is
reflected in the additional axion1s; T andEya A Ey(a A b) — E,_q(a A —b). Itis natural that we
cannot force closure under intersection, as there is in general no way to infer the exact probability
of AN B from the probabilities ofA and B. Along the same lines as above, we now obtain quasi-
canonical models, and hence strong completeness and compactness, of the arising modal logic of
exact probabilities.
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4. Conclusion

We have laid out a systematic method of proving existence of canonical models in a generic seman-
tic framework encompassing a wide range of structurally different modal logics. We have shown
how this method turns the construction of canonical models into an entirely mechanical exercise
where applicable, and points the way to obtaining compact fragments of non-compact logics. As
example applications, we have reproved a number of known strong completeness result and estab-
lished several new results of this kind; specifically, the latter includes strong completeness of the
following logics.

e The modal logic of exact probabilities, with operatdss ‘with probability exactlyp’.

e Graded modal logic over transitive reflexive multigraphs, i.e. the natural graded version of
S4, and more generally description logic with role hierarchies including transitive, reflexive, and
symmetric roles and qualified number restrictions also on non-simple (e.g. transitive) roles.

e The conditional logic” K 4+ {ID, DIS}, i.e. with the standard axioms of identity and disjunc-
tion, interpreted over conditional frames.

A number of interesting open problems remain, e.g. to find further strongly complete variants of
probabilistic modal logic or to establish strong completeness of the full set of standard axioms of
default logic, Burgess’ System C [3], over the corresponding class of conditional frames.
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