
LIPIcs Leibniz International Proceedings in Informatics

Mediating for Reduction
(on Minimizing Alternating Büchi Automata)

Parosh A. Abdulla1, Yu-Fang Chen1, Lukáš Holı́k2, Tomáš Vojnar2

1 University of Uppsala, Sweden,
{parosh,yu-fang.chen}@it.uu.se

2 FIT, Brno University of Technology, Czech Republic,
{holik,vojnar}@fit.vutbr.cz

ABSTRACT. We propose a new approach for minimizing alternating Büchi automata (ABA). The
approach is based on the so called mediated equivalence on states of ABA, which is the maximal equiv-
alence contained in the so called mediated preorder. Two states p and q can be related by the mediated
preorder if there is a mediator (mediating state) which forward simulates p and backward simulates
q. Under some further conditions, letting a computation on some word jump from q to p (due to
they get collapsed) preserves the language as the automaton can anyway already accept the word
without jumps by runs through the mediator. We further show how the mediated equivalence can
be computed efficiently. Finally, we show that, compared to the standard forward simulation equiv-
alence, the mediated equivalence can yield much more significant reductions when applied within
the process of complementing Büchi automata where ABA are used as an intermediate model.

1 Introduction
Alternating Büchi automata (ABA) are succinct state-machine representations of ω-regular
languages (regular sets of infinite sequences). They are widely used in the area of formal
specification and verification of non-terminating systems. One of the most prominent ex-
amples of the use of ABA is the complementation of nondeterministic Büchi automata [9].
It is an essential step of the automata-theoretic approach to model checking when the speci-
fication is given as a positive Büchi automaton [12] and also learning based model checking
for liveness properties [4]. The other important usage of ABA is as the intermediate data
structure for translating a linear temporal logic (LTL) specification to an automaton [7].

However, because of the compactness of ABA∗, usually the algorithms that work on
them are of high complexity. For example, both the complementation and the LTL transla-
tion algorithms transform an intermediate ABA to an equivalent NBA. The transformation
is exponential in the size of the input ABA. Hence, one may prefer to reduce the size of the
ABA (with some relatively cheaper algorithm) before giving it to the exponential procedure.

In the study of Fritz and Wilke, simulation-based minimization is proven as a very
effective tool for reducing the size of ABA [6]. However, they considered only forward sim-
ulation relations. Inspired by some previous works [1], we believe that backward simulation
can be used for reducing the size of ABA as well. Unfortunately, as will be explained in
Section 3, quotienting wrt. backward simulation (i.e., simplify the automaton by collapsing
backward simulation equivalent states) does not preserve the language.

∗ABA’s are exponentially more succinct than the nondeterministic ones.

c© Abdulla,Chen, Holı́k,Vojnar; licensed under Creative Commons License-NC-ND.
Foundations of Software Technology and Theoretical Computer Science (Kanpur) 2009.
Editors: Ravi Kannan and K. Narayan Kumar; pp 1–12
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany.
Digital Object Identifier: 10.4230/LIPIcs/FSTTCS/2009/2302

2 MINIMIZING ALTERNATING BÜCHI AUTOMATA

In this paper, we develop an approach that uses backward simulation for simplifying
ABA indirectly. Instead of looking for a suitable fragment of backward simulation that can
be used to reduce the number of states of an ABA, we combine backward and forward
simulation to form an even coarser relation called mediated preorder that can be used for
minimization. The performance of minimizing ABA with mediated preorder is evaluated on
a large set of experiments. In the experiments, we apply different simulation-based mini-
mization approaches to improve the complementation algorithm of nondeterministic Büchi
automata. The experimental results show that the minimization using mediated preorder
significantly outperforms the minimization using forward simulation. To be more specific,
in average, mediated minimization results in a 30% better reduction in the number of states
and 50% better reduction in the number of transitions than forward minimization on the
intermediate ABA. Moreover, in the complemented nondeterministic Büchi automata, me-
diated minimization results in a 100% better reduction in the number of states and 300%
better reduction in the number of transitions than forward minimization.

2 Basic Definitions
Given a finite set X, we use X∗ to denote the set of all finite words over X and Xω for the
set of all infinite words over X. The empty word is denoted ε and X+ = X∗ \ {ε}. The
concatenation of a finite word u ∈ X∗ and a finite or infinite word v ∈ X∗ ∪ Xω is denoted
by uv. For a word w ∈ X∗ ∪ Xω, |w| is the length of w (|w| = ∞ if w ∈ Xω), wi is the ith
letter of w and wi the ith prefix of w (the word u with w = uv and |u| = i). w0 = ε. The
concatenation of a finite word u and a set S ⊆ X∗ ∪ Xω is defined as uS = {uv | v ∈ S}.

An alternating Büchi automaton is a tuple A = (Σ, Q, ι, δ, α) where Σ is a finite alphabet,
Q is a finite set of states, ι ∈ Q is an initial state, α ⊆ Q is a set of accepting states, and δ : Q×
Σ→ 22Q

is a total transition function. A transition ofA is of the form p a−→ P where P ∈ δ(q, a).
A tree T over Q is a subset of Q+ that contains all nonempty prefixes of each one of its

elements (i.e., T ∪ {ε} is prefix-closed). Furthermore, we require that T contains exactly one
r ∈ Q, the root of T, denoted root(T). We call the elements of Q+ paths. For a path πq, we
use leaf (πq) to denote its last element q. Define the set branches(T) ⊆ Q+ ∪ Qω such that
π ∈ branches(T) iff T contains all prefixes of π and π is not a proper prefix of any path in
T. In other words, a branch of T is either a maximal path of T, or it is a word from Qω such
that T contains all its nonempty prefixes. We use succT(π) = {r | πr ∈ T} to denote the set
of successors of a path π in T, and height(T) to denote the length of the longest branch of T.
The tree U over Q is a prefix of T iff U ⊆ T and for every π ∈ U, succU(π) = succT(π) or
succU(π) = ∅. The suffix of T defined by a path πq is the tree T(πq) = {qψ | πqψ ∈ T}.

Given a word w ∈ Σω, a tree T over Q is a run ofA on w, if for every π ∈ T, leaf (π)
w|π|−−→

succT(π) is a transition of A. Finite prefixes of T are called partial runs on w. A run T of A
over w is accepting iff every infinite branch of T contains infinitely many accepting states.
A word w is accepted by A from a state q ∈ Q iff there exists an accepting run T of A over
w with root(T) = q. The language of a state q ∈ Q in A, denoted LA(q), is the set of all
words accepted by A from q. Then L(A) = LA(ι) is the language of A. For simplicity
of presentation, we assume in the rest of the paper that δ never allows a transition of the
form p a−→ ∅. This means that no run can contain a finite branch. Any automaton can be
easily transformed into one without such transitions by adding a new accepting state q with
δ(q, a) = {{q}} for every a ∈ Σ and replacing every transition p a−→ ∅ by p a−→ {q}.

ABDULLA,CHEN, HOLÍK,VOJNAR FSTTCS 2009 3

3 Simulation Relations
In this section, we give the definitions of forward and backward simulation over ABA and
discuss some of their properties. The notion of backward simulation is inspired by a similar
tree automata notion studied in [1, 3]—namely, the upward simulation parametrised by a
downward simulation (the connection between tree automata and ABA follows from the
fact that the runs of ABA are in fact trees).

For the rest of the section, we fix an ABAA = (Σ, Q, ι, δ, α). We define relations �α and
�ι on Q s.t. q �α r iff q ∈ α =⇒ r ∈ α and q �ι r iff q = ι =⇒ r = ι. For a binary relation
� on a set X, the relation�∀∃ on subsets of X is defined as Y �∀∃ Z iff ∀z ∈ Z. ∃y ∈ Y. y � z,
i.e., iff the upward closure of Z wrt. � is a subset of the upward closure of Y wrt. �.

Forward Simulation. A forward simulation on A is a relation �F ⊆ Q×Q such that p �F r
implies that (i) p �α r and (ii) for all p a−→ P, there exists a r a−→ R such that P �∀∃F R.

For the basic properties of forward simulation, we rely on the work [8] by Gurumurthy
et al. In particular, (i) there exists a unique maximal forward simulation �F on A which is
reflexive and transitive, (ii) for any q, r ∈ Q such that q �F r, it holds that LA(q) ⊆ LA(r),
and (iii) quotienting wrt. �F ∩ �−1

F preserves the language of A.

Backward Simulation. Let �F be a forward simulation on A. A backward simulation on A
parameterized by �F is a relation �B ⊆ Q × Q such that p �B r implies that (i) p �ι r,
(ii) p �α r, and (iii) for all q a−→ P ∪ {p}, p 6∈ P, there exists a s a−→ R ∪ {r}, r 6∈ R such that
q �B s and P �∀∃F R. The below lemma describes some properties of backward simulation.

LEMMA 1. For any reflexive and transitive forward simulation�F onA, there exists a unique
maximal backward simulation�B onA parameterized by�F that is reflexive and transitive.

Backward simulation itself cannot be used for quotienting. In [2], we give an exam-
ple of an automaton, where quotienting using backward simulation does not preserve lan-
guage. However, in Section 4.1, we show how backward simulation can be used to define a
new relation for reducing ABA.

Let �F and �B be forward and backward simulations on A, which are both reflexive
and transitive. For every x ∈ {B, F, α}, we extend the relation �x to Q+ ×Q+ such that for
π, ψ ∈ Q+, π �x ψ iff |π| = |ψ| and for all 1 ≤ i ≤ |π|, πi �x ψi. We say that ψ forward
simulates π, ψ backward simulates π, or ψ is more accepting than π when π �F ψ, π �B ψ,
or π �α ψ, respectively. This notation is further extended to trees. For trees T, U over Q and
for x ∈ {α, F}, we write, T �x U if branches(T) �∀∃x branches(U). Similarly, we say that U
forward simulates T, or U is more accepting than T when T �F U, or T �α U, respectively.
Note that �x is reflexive and transitive for all the variants of x ∈ {F, B, α} defined over
states, paths, or trees (this follows from the assumption that the original relations �F and
�B on states are reflexive and transitive). Moreover, �B ⊆ �α, �B ⊆ �ι, and �F ⊆ �α.

The following two lemmas formulate properties of the simulation relations that we will
use in the rest of the paper.

LEMMA 2. For any p, r ∈ Q with p �F r and a partial run T of A on w ∈ Σω with the root p,
there is a partial run U of A on w with the root r such that T �F U.

For a tree T over Q, π ∈ T, and 1 ≤ i ≤ |π|, the set T 	i π is the union of branches
of suffix trees T(πiq), q ∈ succT(πi), with the branches of the suffix tree T(πi+1) excluded.

4 MINIMIZING ALTERNATING BÜCHI AUTOMATA

�F

T

p

�F U

r

(a) Lemma 2

πi

πi+1

succT (πi)

T 	i π

T

(b) The notation T 	i π

�∀∃F

T

p

π
T 	i π

U

r

ψ
U 	i ψ

�B

(c) Lemma 3

Figure 1: Illustration of the lemmas

Formally, let Qi = succT(πi) \ {πi+1} be the set of all successors of πi in T without the
successor continuing in π. Then T 	i π =

⋃
q∈Qi branches(T(πiq)) (notice that if i = 0, then

T 	i π = ∅).

LEMMA 3. For any p, r ∈ Q with p �B r, a partial run T ofA on w ∈ Σω and π ∈ branches(T)
with leaf (π) = p, there is a partial run U of A on w and ψ ∈ branches(U) with leaf (ψ) = r
such that π �B ψ, and for all 1 ≤ i ≤ |π|, T 	i π �∀∃F U 	i ψ.

4 Mediated Equivalence and Quotienting
Here we discuss the possibility of an indirect use of backward simulation for simplifying
ABA via quotienting. We do not look for a suitable fragment of backward simulation only.
Instead, we (1) combine backward and forward simulation to form an equivalence that sub-
sumes both backward and forward simulation equivalence and (2) take a certain fragment
of this equivalence, called mediated equivalence, that can be used for quotienting.

4.1 The Notion and Intuition of Mediated Equivalence
Collapsing states of an automaton wrt. some equivalence allows a run that arrives to some
state to jump to another equivalent state and continue from there. Alternatively, this can be
viewed as extending the source state of the jump by the outgoing transitions of the target
state†. The equivalence must have the property that the language is not increased even
when the jumps (or, alternatively, transition extensions) are allowed. This is what we aim
at when introducing the mediated equivalence ≡M based on a so called mediated preorder �M.
The mediated preorder �M will in particular be defined as a suitable transitive fragment of
�F ◦ �−1

B in the following.
The intuition behind allowing a run to jump from a state r to a state q such that q �F

◦ �−1
B r is the existence of the so called mediator, i.e., a state s such that q �F s �−1

B r
(cf. Fig. 2(a)). The state s can be reached in the same way and in the same context‡ as r, and,
at the same time, the automaton can continue from s in the same way as from q. Hence,
intuitively, the newly allowed run based on the jump from r to q does not add anything to
the language because it can anyway be realized through s without jumps.

Unfortunately, the relation �F ◦ �−1
B cannot be directly used as it is not transitive, and

taking its symmetric closure would thus not yield an equivalence. We thus have to take
some of its transitive fragments. This is natural as if the automaton can safely jump from q1
to q2 and from q2 to q3, it should be able to safely jump from q1 to q3 too.

This is, however, still not enough. Not all of the transitive fragment of �F ◦ �−1
B can

be used for quotienting. We can only take a fragment �M that is forward extensible, meaning

†The first view is better when explaining the intuition whereas the other is easier to be used in proofs.
‡If a state s is a leaf of a partial run, then by a context of s we mean all the other leaves of the partial run.

ABDULLA,CHEN, HOLÍK,VOJNAR FSTTCS 2009 5

V
s

W

ι

U

q

r

T
r

u

v

w

(a) The Mediator

V
s y

y

ι

W

U

q

r

T
r r

u

v

w

(b) Potential Problems

Figure 2: Basic Intuition Behind Mediated Equivalence

that if q1 �M q2 �F q3, then q1 �M q3. The intuitive meaning of this requirement is the
following. When a run jumps from r to q, it may be the case that r is again reached later on
or it appears in the context of itself (cf. Fig. 2(b)). If r is reached in the continuation of the
run from q, the mediated preorder assures that there is some state y in the run continuing
from the mediator s that forward simulates r. Similarly, if the context of r contains another
occurrence of r, there is some state y in the context of s that forward simulates r. However,
this forward simulation is in general guaranteed to hold only when no further jumps are
allowed. In order to guarantee a possibility of further simulation, we require that if the
computation is allowed to jump from r to q, it is allowed to jump from y to q too.

Finally, to make the mediated equivalence applicable, we must pose one more require-
ment. Namely, we require that the transitions of the given ABA are not �F-ambiguous,
meaning that no two states on the right hand side of a transition are forward equivalent.
Intuitively, allowing such transitions goes against the spirit of the backward simulation. For
a mediator p to backward simulate a state r wrt. rules ρ1 : p′ a−→ P ∪ {p}, p 6∈ P, and
ρ2 : r′ a−→ R ∪ {r}, r 6∈ R, it must be the case that each state x in the context P of p within ρ1
is less restrictive (i.e., forward bigger) than some state y in the context R of r within ρ2. The
state r itself is not taken into account when looking for y because we aim at extending its be-
haviour by collapsing (and it could then become less restrictive than the appropriate x). In
the case of �F-ambiguity, the spirit of this restriction is in a sense broken since the forward
behaviour of r may still be taken into account when checking that the context of p is less
restrictive than that of r. This is because the behaviour of r appears in R as the behaviour
of some other state r′′ too. Consequently, r and r′′ may back up each other in a circular way
when checking the restrictiveness of the contexts within the construction of the backward
simulation. Both of them can then seem extensible, but once their behaviour gets extended,
the restriction of their context based on their own original behaviour is lost, which may then
increase the language (an example of such a scenario is given in [2]). However, in Section
5, we show that �F-ambiguity can be efficiently removed.

Mediated Preorder and Equivalence. Let�F be a reflexive and transitive forward sim-
ulation onA, and�B a reflexive and transitive backward simulation onA parameterized by
�F. A preorder �M ⊆ �F ◦ �−1

B such that for all q, r, s ∈ Q, q �M r �F s implies q �M s, is
a mediated preorder induced by �F and �B. The relation ≡M = �M ∩ �−1

M is then a mediated
equivalence induced by �F and �B.

LEMMA 4.[3] There is a unique maximal mediated preorder �M induced by �F and �B.

6 MINIMIZING ALTERNATING BÜCHI AUTOMATA

4.2 Extending Automata According to Mediated Preorder Preserves Language
Quotient Automata versus Extended Automata. We first show that quotienting can be seen
as a simpler operation of adding transitions and accepting states. Let A = (Σ, Q, ι, δ, α) be
an ABA and let ≡ be an equivalence on Q such that ≡ = � ∩ �−1 for some preorder �. Let
the automaton A/≡ be the quotient of A wrt. ≡ that arises by merging ≡-equivalent states
of A, and let A+ be the automaton extended according to �, that is created as follows: for
every two states q, r ofAwith q � r, (i) add all outgoing transitions of q to r, (ii) if q ≡ r and
q is final, make r final.

The automata A/≡ and A+ are formally defined as follows. Let Q/≡ denote the
quotient of Q wrt. ≡, and let [q] denote the equivalence class of ≡ containing q. Then
A/≡ = (Σ, Q/≡, [ι], δ/≡, {[q] | q ∈ α}) and A+ = (Σ, Q, δ+, ι, α+), where α+ = {p | ∃q ∈
α. q ≡ p} and, for each a ∈ Σ, q ∈ Q, δ/≡([q], a) =

⋃
p∈[q]{{[p′] | p′ ∈ P} | P ∈ δ(p, a)} and

δ+(q, a) =
⋃

p∈Q∧p�q δ(p, a). It is not difficult to show that L(A/≡) ⊆ L(A+) [2] (Lemma
8 in [2]). Hence, if adding transitions and accepting states according to � preserves the
language, then quotienting according to ≡ preserves the language too.

Language Preservation by Mediated Equivalence. We now give a sketch of the proof
that extending automata according to the mediated preorder preserves the language. The
full proofs can be found in [2]. For the rest of the section, we fix an ABA A = (Σ, Q, ι, δ, α),
a reflexive and transitive forward simulation �F onA such thatA is �F-unambiguous, and
a reflexive and transitive backward simulation �B on A parameterized by �F. Let �M be a
mediated preorder induced by�F and�B, and letA+ be the automaton extended according
to �M. Let ≡M = �M ∩�−1

M .
We want to prove that L(A+) = L(A). The nontrivial part is showing that L(A+) ⊆

L(A)—the converse is obvious. To prove L(A+) ⊆ L(A), we need to show that, for every
accepting run of A+ on a word w, there is an accepting run of A on w. We proceed as
follows. We first prove Lemma 5, which shows how partial runs of A with an increased
power of their leaves (wrt. �F) can be built incrementally from other runs of A, bridging
the gap between A and A+. Then we prove Lemma 7 saying that, for every partial run on
a word w of A+, there is a partial run of A on w that is more accepting (recall that partial
runs are finite). By carry this result over to infinite runs we get the proof of Theorem 8.

Consider a partial run T ofA on a word w, we choose for each leaf p of T an�M-smaller
state p′. Suppose that we allow p to make one step using the transitions of p′ or to become
accepting if p′ is accepting and p′ ≡M p. (Thus, we give the leaves of T a part of the power
they would have in A+). We will show that there exists a partial run U of A on w such that
(1) it is more accepting than T, and (2) the leaves of U can mimic the next step of the leaves
of T even if the leaves of T use their extended power.

The above is formalized in Lemma 5 using the following notation. For a partial run T
of A on w, we define ext as an extension function that assigns to every branch π of T a state
ext(π) such that ext(π) �M leaf (π).

Let U be a partial run ofA on w. For two branches π ∈ branches(T) and ψ ∈ branches(U),
we say that ψ strongly covers π wrt. ext, denoted π �ext ψ, iff π �α ψ and ext(π) �F leaf (ψ).
Similarly, we say that ψ weakly covers π wrt. ext, denoted π �w-ext ψ, iff π �α ψ and
ext(π) �M leaf (ψ). We extend the concept of covering to partial runs as follows. We write
T �ext U (U strongly covers T wrt. ext) iff branches(T) �∀∃ext branches(U) and root(T) �B

ABDULLA,CHEN, HOLÍK,VOJNAR FSTTCS 2009 7

root(U). Likewise, we write T �w-ext U (U weakly covers T wrt. ext) iff branches(T) �∀∃w-ext
branches(U) and root(T) �B root(U). Note that we have �ext ⊆ �w-ext for branches as well
for partial runs because �F ⊆ �M. So, the strong covering implies the weak one.

LEMMA 5. For any partial run T of A on a word w with an extension function ext, there is
a partial run U of A on w with T �ext U.

Proving Lemma 5 is the most intricate part of the proof of Theorem 8. We introduce the
concepts used within the proof of Lemma 5 and provide an overview of the proof.

If T �ext T, we are done as in the statement of the lemma, we can take T to be U. So,
suppose that T �ext T. Observe that root(T) �B root(T), and every branch of T weakly
covers itself, which means that T �w-ext T. We will show how to reach U by a chain of
partial runs derived from T. The partial runs within the chain will all weakly cover T. Runs
further from T will in some sense cover T more strongly than the runs closer to T. The last
partial run of the chain will cover T strongly. To do this, we need a suitable measure that,
for a partial run V of A on w with T �w-ext V, tells us how strongly V covers T.

To define the measure, we concentrate on branches of V that cause that V does not cover
T strongly. These are branches ψ ∈ branches(V) for which there is no π ∈ branches(T) with
π �ext ψ (there are only some π ∈ branches(T) with π �w-ext ψ). We call them strict weakly
covering branches. Let swT(V) denote the tree which is the subset of V containing prefixes
of strict weakly covering branches of V wrt. T. Note that T �ext V iff V contains no strict
weakly covering branches, which is equivalent to swT(V) = ∅. For a partial run W of A
on w, we will define which of V and W cover T more strongly by comparing swT(V) and
swT(W). For this, we need the following definitions.

Given a finite tree X over Q and τ ∈ Q+, we define the tree decomposition of X according
to τ as the sequence of (finite) sets of paths 〈τ, X〉 = X	1 τ, X	2 τ, . . . , X	|τ| τ. We also let
〈ε, X〉 = branches(X), which is a sequence of length 1. Notice that under the condition that
τ 6∈ branches(X), 〈τ, X〉 = ∅ . . . ∅ implies that X = ∅§.

Let τV ∈ V ∪ {ε} and τW ∈ W ∪ {ε} be such that τV 6∈ branches(swT(V)) and τW 6∈
branches(swT(W)). We say that W covers T more strongly than V wrt. τV and τW , denoted
V ≺T

τV ,τW
W, iff root(V) �B root(W) and 〈τV , swT(V)〉 @ 〈τW , swT(W)〉, where @ is a binary

relation on sequences of sets of paths defined as follows.
For two sets of paths P and P′, we use P ≺∀∃F P′ to denote that P �∀∃F P′ but not

P′ �∀∃F P. In other words, the upward closure of P′ wrt. �F is a proper subset of the
upward closure of P wrt. �F. Then, for sequences of finite sets S, S′ ∈ (2Q)+, S @ S′

iff there is some k ∈ N, k ≤ min{|S|, |S′|}, such that Sk ≺∀∃F S′k and for all 1 ≤ j < k,
Sj �∀∃F S′j. It is not hard to show that the relation @ is a partial order. Observe that @
does not allow infinite increasing chains of sequences where the length of the sequences
is bounded by some constant (this follows from that �F compares only paths of an equal
length and therefore every increasing chain of finite sets of paths related by ≺∀∃F is finite).
Moreover, S @ ∅ . . . ∅ for every sequence of sets of paths S 6= ∅ . . . ∅.

§Note that if τ ∈ branches(X), 〈τ, X〉 = ∅ . . . ∅ does not imply X = ∅ as τ could be the only branch of X. This
is important as for a partial run Y and τ′ ∈ Y, if τ′ 6∈ branches(Y), the implications 〈τ′, swT(Y)〉 = ∅ . . . ∅ =⇒
swT(Y) = ∅ =⇒ T �ext Y hold. However, the first implication does not hold if τ′ ∈ branches(Y).

8 MINIMIZING ALTERNATING BÜCHI AUTOMATA

LEMMA 6. Given a partial run V of A on w s.t. T �w-ext V, T 6�ext V, and τV ∈ V ∪ {ε} with
τV 6∈ branches(swT(V)), we can construct a partial run W of A on w with T �w-ext W and
a path τW ∈W with τW 6∈ branches(swT(W)) such that V ≺T

τV ,τW
W.

PROOF. [Sketch] The proof of Lemma 6 relies on Lemma 3 and the definition of �M. We
first choose a suitable branch π of swT(V) as follows. Let 1 ≤ k ≤ |τV | be some index such
that swT(V)	k τV is nonempty. If τV = ε, then k = 1. We choose some π′ ∈ swT(V)	k τV
which is minimal wrt. �F, meaning that there is no π′′ ∈ swT(V) 	k τV different from
π′ such that π′′ �F π′. We put π = τk

Vπ′. We note that this is the place where we use
the �F-unambiguity assumption. If A was �F-ambiguous, there need not be a k such that
swT(V)	k τV contains a minimal element wrt. �F.

From ext(π) �M leaf (π), there is a mediator s with ext(π) �F s �B leaf (π). We apply
Lemma 3 to V, π, leaf (π) and s, which give us a partial run W and ψ ∈ branches(W) with
leaf (ψ) = s such that π �B ψ, and for all 1 ≤ i ≤ |π|, V 	i π �∀∃F W 	i ψ. Let τW = ψ. The
proof can be concluded by showing that (i) T �w-ext W, (ii) τW 6∈ branches(swT(W)), and (iii)
〈τV , swT(V)〉 @ 〈τW , swT(W)〉, which implies V ≺T

τV ,τW
W.

Now we construct a run U strongly covering T as follows. Starting from T and ε, we can
construct a chain T ≺T

ε,τ1
T1 ≺T

τ1,τ2
T2 ≺T

τ2,τ3
T3 . . . by successively applying Lemma 6 for each

i, τi ∈ Ti, τi 6∈ branches(swT(Ti)), and T �w-ext Ti. Observe that by the definition of stronger
covering, we have that 〈ε, swT(T)〉 @ 〈τ1, swT(T1)〉 @ 〈τ2, swT(T2)〉 @ 〈τ3, swT(T3)〉 . . . No-
tice that, for each i, as T �w-ext Ti, height(Ti) = height(T). Therefore the length of τi as well
as the length of 〈τi, swT(Ti)〉 are bounded by height(T).

Recall that (i) the relation @ is a partial order, (ii) that @ does not allow infinite increas-
ing chains of sequences where the length of the sequences is bounded by some constant, and
(iii) that S @ ∅ . . . ∅ for every sequence S 6= ∅ . . . ∅. This means that after a finite number
of steps, this chain must arrive to its last Tk and τk with 〈τk, swT(Tk)〉 = ∅ . . . ∅. This means
that swT(Tk) = ∅, which implies that T �ext Tk. We can put U = Tk and Lemma 5 is proven.

Now we can use Lemma 5 to prove Lemma 7. It relates partial runs of A+ with partial
runs of A by the relation �α+⇒α defined as follows. For two states q and r, q �α+⇒α r iff
q ∈ α+ =⇒ r ∈ α. For two paths π, ψ ∈ Q+, π �α+⇒α ψ iff |π| = |ψ| and for all
1 ≤ i ≤ |π|, πi ∈ α+ =⇒ ψi ∈ α. Finally, for finite trees T and U over Q, we use
T �α+⇒α U to denote that branches(T) �∀∃α+⇒α branches(U).

LEMMA 7. For any partial run T of A+ on w ∈ Σω, there exists a partial run U of A on w
such that root(T) �B root(U) and T �α+⇒α U.

The proof of Lemma 7 is done by induction on the structure of T, where the induction
step employs Lemma 5 (which bridges the gap between A+ and A by showing that there
is a partial run of A strongly covering T even when the power of its leaves is extended by
transitions of some �M-smaller states). With Lemma 7 in hand, we can prove that for each
accepting run ofA+ on a word w, there is an accepting run ofA on w. This requires to carry
Lemma 7 from finite partial runs to full infinite runs¶. This results in Theorem 8, which
together with the fact that L(A/≡) ⊆ L(A+) immediately gives Corollary 9.

¶For an accepting run T ofA+ on a word w, Lemma 7 gives us for every k ∈N and a prefix of T of the height
k a partial run of U of the same height that is more accepting. From the infinite set of partial runs of A obtained
this way, we can construct an accepting run of A on w. The details may be found in [2] and in [2].

ABDULLA,CHEN, HOLÍK,VOJNAR FSTTCS 2009 9

THEOREM 8. L(A+) = L(A).

COROLLARY 9. Quotienting with mediated equivalence preserves the language.

5 Algorithm for Computing Mediated Preorder
In this section, we describe an algorithm for computing mediated preorder on an ABA A =
(Σ, Q, ι, δ, α). We first explain how to compute the maximal forward simulation �F and
backward simulation �B of A. Both �F and �B will be used as the input parameters for
computing the mediated preorder �M. In the rest of the section, we will fix A as the input
ABA, use n for the number of states in A, and use m for the number of transitions in A.

Forward Simulation. The algorithm for computing maximal forward simulation �F on
A can be found in Fritz and Wilke’s work [5] (it is called direct simulation in their paper).
They reduce the problem of computing maximal forward simulation to a simulation game.
Although Fritz and Wilke use a slightly different definition of ABA, it is easy to translate A
to an ABA under their definition with O(n + m) states and O(nm) transitions and then use
their algorithm to compute �F. The time complexity of the above procedure is O(nm2).

Removing Ambiguity. As shown in Section 4.1, A needs to be �F-unambiguous for me-
diated minimization. Here we describe how to modifyA to make it not�F-ambiguous. The
modification does not change the the language of A and also the forward simulation rela-
tion �F, therefore we do not need to recompute forward simulation again for the modified
automaton.

Here we describe the ambiguity removal procedure. For every transition p a−→ P with
P = {p1, . . . , pk} and for each i ∈ {1, . . . , k}, we check if there exists some i < j ≤ k such
that pj �F pi. If there is one, remove pi from P. This procedure has time complexity O(n2m).

Backward Simulation. We now show how to translate the problem of computing maximal
backward simulation to a problem of computing maximal simulation on a labeled transition
system.

Computing Simulation on Labeled Transition Systems. Let T = (S,L,→) be a finite labeled
transition system (LTS), where S is a finite set of states, L is a finite set of labels, and → ⊆
S×L× S is a transition relation. A simulation on T is a binary relation �L on S such that if
q �L r and (q, a, q′) ∈ →, then there is an r′ with (r, a, r′) ∈ → and q′ �L r′.

Here we describe the problem of computing the maximal simulation on an LTS. Given
an LTS T = (S,L,→) and an initial preorder I ⊆ S × S, the task is to find out the unique
maximal simulation on T included in I. An algorithm for computing maximal simulation�I

on the LTS T included in I with time complexity O(|L|.|S|2 + |S|.|→|) and space complexity
O(|L|.|S|2) can be found in [1].

Computing Backward Simulation via a Reduction to LTS. The problem of computing the
maximal backward simulation onA can be reduced to the problem of computing simulation
on an LTS. In order to simplify the explanation of the reduction, we first make the following
definition. An environment is a tuple of the form (p, a, P \ {p′}) obtained by removing a state
p′ ∈ P from the transition p a−→ P of A. Intuitively, an environment records the neighbors of
the removed state p′ in the transition p a−→ P. We denote the set of all environments of A by
Env(A). Formally, we define the LTS A� = (Q�, Σ, ∆�) as follows:

10 MINIMIZING ALTERNATING BÜCHI AUTOMATA

Figure 3: An example of the reduction from an ABA transition to LTS transitions

• Q� = {q� | q ∈ Q} ∪ {(p, a, P)� | (p, a, P) ∈ Env(A)}.
• ∆� = {(p, a, P \ {p′})� a−→ p�, p′� a−→ (p, a, P \ {p′})� | P ∈ δ(p, a), p′ ∈ P}.

An example of the reduction is given in Figure 3. The goal of this reduction is to obtain
a simulation relation on A� with the following property: p� is simulated by q� in A� iff
p �B q in A. However, the maximal simulation on A� is not sufficient to achieve this goal.
Some essential conditions for backward simulation (e.g., p �B q =⇒ p �α q) are missing in
A�. This can be fixed by defining a proper initial preorder I.

Formally, we define I = {(q�1 , q�2) | q1 �ι q2 ∧ q1 �α q2} ∪ {((p, a, P)�, (r, a, R)�) |
P �∀∃F R}. Observe that I is a preorder. Recall that according to the definition of the
backward simulation, p �B r implies that (1) p �ι r, (2) p �α r, and (3) for all transi-
tions q a−→ P ∪ {p}, p 6∈ P, there exists a transition s a−→ R ∪ {r}, r 6∈ R such that q �B s and
P �∀∃F R. The set {(q�1 , q�2) | q1 �ι q2 ∧ q1 �α q2} encodes the conditions (1) and (2) required
by the backward simulation, while the set {((p, a, P)�, (r, a, R)�) | P �∀∃F R} encodes the
condition (3). A simulation relation �I can be computed using the aforementioned proce-
dure with LTS A� and the initial preorder I. The following theorems shows the correctness
and complexity of computing backward simulation.

THEOREM 10. For all q, r ∈ Q, we have q �B r iff q� �I r�.

THEOREM 11. Computing backward simulation has both time and space complexity O(nm3).

The complexity comes from three parts of the procedure: (1) compiling A into its cor-
responding LTS A�, (2) computing the initial preorder I, and (3) running the algorithm
for computing the LTS simulation relation. The LTS A� has at most nm+n states and 2nm
transitions. It follows that Part (3) has time complexity O(|Σ|n2m2) and space complexity
O(|Σ|n2m2). In [2], we show that among the three parts, Part (3) has the highest time‖ and
space complexity and therefore computing backward simulation also has time complexity
O(|Σ|n2m2) and space complexity O(|Σ|n2m2). Under our definition of ABA, every state
has at least one outgoing transition for each symbol in Σ. It follows that m ≥ |Σ|n. There-
fore, we can also say that the procedure for computing maximal backward simulation has
time complexity O(nm3) and space complexity O(nm3).

Mediated Preorder. Here we explain how to compute the mediated preorder �M of A
from �F and �B. It is proved in [1] that �M equals the maximal relation R ⊆�F ◦ �−1

B
satisfying x R y �F z =⇒ x (�F ◦ �−1

B) z. Based on the result, we can obtain the mediated
preorder by the following procedure. Initially, let �M = �F ◦ �−1

B . For all (p, q) ∈ �M, if
there exists some (q, r) ∈ �F such that (p, r) /∈ �F ◦ �−1

B , remove (p, q) from �M. A naive
implementation of this simple procedure has time complexity O(n3).

‖In [2] we will describe an efficient algorithm for computing I. It has time complexity O(n2m2) and space
complexity O(n2m2).

ABDULLA,CHEN, HOLÍK,VOJNAR FSTTCS 2009 11

6 Experimental Results
In this section, we evaluate the performance of mediated minimization by applying it to
accelerate the algorithm proposed by Vardi and Kupferman [9] for complementing nonde-
terministic Büchi automata (NBA). In this algorithm, ABA’s are used as intermediate no-
tion for the complementation. To be more specific, the complementation algorithm has two
steps: (1) it translates an NBA to an ABA that recognizes its complement language, and (2) it
translates the ABA back to an equivalent NBA. The second step is an exponential procedure
(exponential in the size of the ABA), hence reducing the size of the ABA before the second
step usually pays off.

The experimentation is carried out as follows. Three sets of 100 random NBA’s (of |Σ| =
2,4, and 8, respectively) are generated by the GOAL [11] tool and then used as inputs of the
complementation experiments. We compare results of experiments performed according
to the following different options: (1) Original: keep the ABA as what it is, (2) Mediated:
minimizing the ABA with mediated equivalence, and (3) Forward: minimizing the ABA
with forward equivalence.

For each input NBA, we first translate it to an ABA that recognizes its complement lan-
guage. The ABA is (1) processed according to one of the options described above and then
(2) translated back to an equivalent NBA using an exponential procedure ∗∗. The results
are given in Table 1 and Table 2. Table 1 is an overall comparison between the three dif-
ferent options and Table 2 is a more detailed comparison between Mediated and Forward
minimization.

|Σ| NBA Complemented-NBA Time (ms) Timeout
St. Tr. St. Tr. (10 min)

Original
2 2.5 3.3

13.9 52.75 5500.9 0
Mediated 6.68 34.02 524.7 0
Forward 9.45 55.25 5443.7 1
Original

4 3.3 6.0
46.4 348.5 9298.6 6

Mediated 20.42 235.5 1985.4 6
Forward 26.88 325.6 1900.6 7
Original

8 4.7 11.9
127.1.3 1723.4 33429.4 24

Mediated 57.63 1738.3 12930.6 21
Forward 81.23 2349.2 22734.2 24

Table 1: Combining minimization with complementation.

In Table 1, the columns
“NBA” and “Complemented-
NBA” are the average statisti-
cal data of the input NBA and
the complemented NBA. The
column “Time(ms)” is the av-
erage execution time in mil-
liseconds. “Timeout” is the
number of cases that cannot
finish within the timeout pe-
riod (10 min). Note that in the table, the cases that cannot finish within the timeout period
are excluded from the average number. From this table, we can see that minimization by
mediated equivalence can effectively speed up the complementation and also reduce the
size of the complemented NBA’s.

|Σ| Minimized-ABA Complemented-NBA
St. Tr. St. Tr.

Average 2 33.54% 51.62% 63.3% 235.56%
Difference 4 36.24% 51.44% 89.9% 298.99%

8 27.94% 40.88% 152.3% 412.7%

Table 2: Comparison: Mediated v.s. Forward

In Table 2, we compare the perfor-
mance between Mediated and Forward
minimization in detail. The columns
“Minimized-ABA” and “Complemented-
NBA” are the average difference in the
sizes of the ABA after minimization and the complemented BA. From the table, we observe
that mediated minimization results in a much better reduction than forward minimization.

∗∗For the option “Original”, we also use the optimization suggested in [9] that only takes consistent subset.

12 MINIMIZING ALTERNATING BÜCHI AUTOMATA

7 Conclusion and Future Work
We combined forward and backward simulation to form a coarser relation called mediated
preorder and showed that quotienting wrt. mediated equivalence preserves the language of
ABA. Moreover, we developed an efficient algorithm for computing mediated equivalence.
Experimental results show that the mediated reduction of ABA significantly outperforms
the reduction based on forward simulation. In the future, we would like to extend our
experiments to other applications such as LTL to NBA translation. We would like to extend
the mediated equivalence by building it on top of even coarser forward simulation relations,
e.g., delayed or fair forward simulation [6]. Also, we intend to study possibilities of using
mediated preorder to remove redundant transitions (in a similar way to [10]). We believe
that the extensions described above can improve the performance of mediated reduction.

Acknowledgements. The work was supported by the CONNECT project, the UPMARC
project, the Czech Science Foundation (projects 102/07/0322, 102/09/H042), the Barrande
project MEB 020840, and the Czech institutional project MSM 0021630528.

References
[1] P. Abdulla, A. Bouajjani, L. Holı́k, L. Kaati, T. Vojnar. Computing Simulations over TA:

Efficient Techniques for Reducing TA. In Proc. of TACAS’08, LNCS 4963, Springer, 2008.
[2] P. Abdulla, Y.-F. Chen, L. Holı́k, T. Vojnar. Mediating for Reduction (On Minimizing Al-

ternating Büchi Automata). Tech. Rep. FIT-TR-2009-02, Brno Univ. of Technology, 2009.
[3] P. Abdulla, L. Holı́k, L. Kaati, and T. Vojnar. A Uniform (Bi-)simulation-based Frame-

work for Reducing Tree Automata. ENTCS, 2009(251):27–48, 2009.
[4] A. Farzan, Y.-F. Chen, E. Clarke, Y.-K. Tsay, and B.-Y. Wang. Extending Automated

Compositional Verification to the Full Class of Omega-regular Languages. In Proc. of
TACAS’08, LNCS 4963, Springer, 2008.

[5] C. Fritz and T. Wilke. State Space Reductions for Alternating Büchi Automata: Quoti-
enting by Simulation Equivalences. In Proc. of FSTTCS’02, LNCS 2556, Springer, 2002.

[6] C. Fritz and T. Wilke. Simulation Relations for Alternating Büchi Automata. Theoretical
Computer Science, 338(1-3):275–314, 2005.

[7] P. Gastin and D. Oddoux. Fast LTL to Büchi Automata Translations. In Proc. of CAV’01,
LNCS 2102, Springer, 2001.

[8] S. Gurumurthy, O. Kupferman, F. Somenzi, and M. Vardi. On Complementing Nonde-
terministic Büchi Automata. In Proc. of CHARME’03, LNCS 2860, Springer, 2003.

[9] O. Kupferman and M. Vardi. Weak Alternating Automata Are Not That Weak. ACM
Transactions on Computational Logic, 2(3):408–429, 2001.

[10] F. Somenzi and R. Bloem. Efficient Büchi Automata from LTL Formulae. In Proc. of
CAV’00, LNCS 1855, Springer, 2000.

[11] Y.K. Tsay, Y.F. Chen, M.H. Tsai, K.N. Wu, W.C. Chan. GOAL: A Graphical Tool for Ma-
nipulating Büchi Automata & Temp. Formulae. TACAS’07, LNCS 4424, Springer, 2007.

[12] M. Vardi. Automata-theoretic Model Checking Revisited. In Proc. of VMCAI’07,
LNCS 4349, Springer, 2007.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

