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ABSTRACT. We study continuous-time stochastic games with time-bounded reachability objectives.
We show that each vertex in such a game has a value (i.e., an equilibrium probability), and we classify
the conditions under which optimal strategies exist. Finally, we show how to compute optimal
strategies in finite uniform games, and how to compute ε-optimal strategies in finitely-branching
games with bounded rates (for finite games, we provide detailed complexity estimations).

1 Introduction

Markov models are widely used in many diverse areas such as economics, biology, or
physics. More recently, they have also been used for performance and dependability anal-
ysis of computer systems. Since faithful modeling of computer systems often requires both
randomized and non-deterministic choice, a lot of attention has been devoted to Markov mod-
els where these two phenomena co-exist, such as Markov decision processes and stochastic
games. The latter model of stochastic games is particularly apt for analyzing the interaction
between a system and its environment, which are formalized as two players with antago-
nistic objectives (we refer to, e.g., [10, 5, 11] for more comprehensive expositions of results
related to games in formal analysis and verification of computer systems). So far, most of
the existing results concern discrete-time Markov decision processes and stochastic games,
and the accompanying theory is relatively well-developed (see, e.g., [9, 4]).

In this paper, we study continuous-time stochastic games (CTGs) and hence also
continuous-time Markov decision processes (CTMDPs) with time-bounded reachability objec-
tives. Roughly speaking, a CTG is a finite or countably infinite graph with three types
of vertices—controllable vertices (boxes), adversarial vertices (diamonds), and actions (cir-
cles). The outgoing edges of controllable and adversarial vertices lead to the actions that
are enabled at a given vertex. The outgoing edges of actions lead to controllable or adversar-
ial vertices, and every edge is assigned a positive probability so that the total sum of these
probabilities is equal to 1. Further, each action is assigned a positive real rate. A simple finite
CTG is shown below.
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A game is played by two players, � and ♦, who are responsible for selecting the actions
(i.e., resolving the non-deterministic choice) in the controllable and adversarial vertices, re-
spectively. The selection is timeless, but performing a selected action takes time which is
exponentially distributed (the parameter is the rate of a given action). When a given action
is finished, the next vertex is chosen randomly according to the fixed probability distribu-
tion over the outgoing edges of the action. A time-bounded reachability objective is specified
by a set T of target vertices and a time bound t > 0. The goal of player � is to maximize the
probability of reaching a target vertex before time t, while player ♦ aims at minimizing this
probability.

Note that events such as component failures, user requests, message receipts, excep-
tions, etc., are essentially history-independent, which means that the time between two suc-
cessive occurrences of such events is exponentially distributed. CTGs provide a natural and
convenient formal model for systems exhibiting these features, and time-bounded reacha-
bility objectives allow to formalize basic liveness and safety properties of these systems.

Previous work. Although the practical relevance of CTGs with time-bounded reach-
ability objectives to verification problems is obvious, to the best of our knowledge there
are no previous results concerning even very basic properties of such games. A more re-
stricted model of uniform CTMDPs is studied in [2, 7]. Intuitively, a uniform CTMDP is a
CTG where all non-deterministic vertices are controlled just by one player, and all actions
are assigned the same rate. In [2], it is shown that the maximal and minimal probability
of reaching a target vertex before time t is efficiently computable up to an arbitrarily small
given error, and that the associated strategy is also effectively computable. An open ques-
tion explicitly raised in [2] is whether this result can be extended to all (not necessarily
uniform) CTMDP. In [2], it is also shown that time-dependent strategies are more powerful
than time-abstract ones, and this issue is addressed in greater detail in [7] where the mutual
relationship between various classes of time-dependent strategies in CTMDPs is studied.
Furthermore, in [1] reward-bounded objectives in CTMDPs are studied.

Our contribution is twofold. Firstly, we examine the fundamental properties of CTGs,
where we aim at obtaining as general (and tight) results as possible. Secondly, we consider
the associated algorithmic issues. Concrete results are discussed in the following paragraphs.

Fundamental properties of CTGs. We start by showing that each vertex v̂ in a CTG
with time-bounded reachability objectives has a value, i.e., an equilibrium probability of
reaching a target vertex before time t. The value is equal to supσ infπ Pσ,π

v̂ (Reach≤t(T))
and infπ supσ P

σ,π
v̂ (Reach≤t(T)), where σ and π range over all time-abstract strategies of

player � and player ♦, and Pσ,π
v̂ (Reach≤t(T)) is the probability of reaching T before time t

in a play obtained by applying the strategies σ and π. This result holds for arbitrary CTGs
which may have countably many vertices and actions. This immediately raises the question
whether each player has an optimal strategy which achieves the outcome equal to or better
than the value against every strategy of the opponent. We show that the answer is negative
in general, but an optimal strategy for player ♦ is guaranteed to exist in finitely-branching
CTGs, and an optimal strategy for player � is guaranteed to exist in finitely-branching CTGs
with bounded rates (see Definition 2). These results are tight, which is documented by appro-
priate counterexamples. Moreover, we show that in the subclasses of CTGs just mentioned,
the players have also optimal CD strategies (a strategy is CD if it is deterministic and “count-
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ing”, i.e., it only depends on the number of actions in the history of a play, where actions
with the same rate are identified). Note that CD strategies still use infinite memory and in
general they do not admit a finite description. A special attention is devoted to finite uni-
form CTGs, where we show a somewhat surprising result—both players have finite memory
optimal strategies (these finite memory strategies are deterministic and their decision is based
on “bounded counting” of actions; hence, we call them “BCD”).

Algorithms. We show that for finite CTGs, ε-optimal strategies for both players are com-
putable in |V|2 · |A| · bp · (|R| + 1)O((maxR)·t+ln 1

ε ) time, where |V| and |A| is the number
of vertices and actions, resp., bp is the maximum bit-length of transition probabilities and
rates (we assume that rates and the probabilities in distributions assigned to the actions are
represented as fractions of integers encoded in binary), |R| is the number of rates, maxR
is the maximal rate, and t is the time bound. This solves the open problem of [2] (in fact,
our result is more general as it applies to finite CTGs, not just to finite CTMDPs). Actually,
the algorithm works also for infinite-state CTGs as long as they are finitely-branching, have
bounded rates, and satisfy some natural “effectivity assumptions” (see Corollary 14). For
example, this is applicable to the class of infinite-state CTGs definable by pushdown au-
tomata (where the rate of a given configuration depends just on the current control state),
and also to other automata-theoretic models. Finally, we show how to compute the optimal
BCD strategies for both players in finite uniform CTGs.

Due to space constraints, proofs are omitted here. Full proofs can be found in [3]. In the
following we just try to indicate basic ideas behind the proofs. This is not always possible,
because some arguments are tricky and occasionally we also rely on relatively advanced
calculations. Nevertheless, the results themselves should be easy to understand.

2 Definitions

In this paper, the sets of all positive integers, non-negative integers, rational numbers, real
numbers, non-negative real numbers, and positive real numbers are denoted by N, N0,
Q, R, R≥0, and R>0, respectively. Let A be a finite or countably infinite set. A probability
distribution on A is a function f : A → R≥0 such that ∑a∈A f (a) = 1. The support of f is
the set of all a ∈ A where f (a) > 0. A distribution f is rational if f (a) ∈ Q for every
a ∈ A, positive if f (a) > 0 for every a ∈ A, and Dirac if f (a) = 1 for some a ∈ A. The set
of all distributions on A is denoted by D(A). A σ-field over a set Ω is a set F ⊆ 2Ω that
includes Ω and is closed under complement and countable union. A measurable space is a
pair (Ω,F ) where Ω is a set called sample space and F is a σ-field over Ω whose elements
are called measurable sets. A probability measure over a measurable space (Ω,F ) is a function
P : F → R≥0 such that, for each countable collection {Xi}i∈I of pairwise disjoint elements
of F , P(

⋃
i∈I Xi) = ∑i∈I P(Xi), and moreover P(Ω) = 1. A probability space is a triple

(Ω,F ,P), where (Ω,F ) is a measurable space and P is a probability measure over (Ω,F ).
Given two measurable sets X, Y ∈ F such that P(Y) > 0, the conditional probability of X
under the condition Y is defined as P(X | Y) = P(X ∩ Y)/P(Y). We say that a property
A ⊆ Ω holds for almost all elements of a measurable set Y if P(Y) > 0, A ∩ Y ∈ F , and
P((A ∩Y) | Y) = 1.

In our next definition we introduce continuous-time Markov chains (CTMCs). The
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literature offers several equivalent definitions of CTMCs (see, e.g., [8]). For purposes of this
paper, we adopt the variant where transitions have discrete probabilities and the rates are
assigned to states.

DEFINITION 1. A continuous-time Markov chain (CTMC) is a tuple
M = (M, → , Prob, R, Init), where M is a finite or countably infinite set of states, → ⊆ M×M
is a transition relation such that every s ∈ M has at least one outgoing transition, Prob is a
function which to each s ∈ M assigns a positive probability distribution over the set of its outgoing
transitions, R is a function which to each s ∈ M assigns a positive real rate, and Init is the initial
probability distribution on M.

We write s x→ s′ to indicate that s→ s′ and Prob(s)(s→ s′) = x. A time-abstract path is
a finite or infinite sequence u = u0, u1, . . . of states such that ui−1→ ui for every 1 ≤ i <
length(u), where length(u) is the length of u (the length of an infinite sequence is ∞). A timed
path (or just path) is a pair w = (u, t), where u is a time-abstract path and t = t1, t2, . . . is a
sequence of positive reals such that length(t) = length(u). We put length(w) = length(u), and
for every 0 ≤ i < length(w), we usually write w(i) and w[i] instead of ui and ti, respectively.

Infinite paths are also called runs. The set of all runs in M is denoted RunM, or just
Run whenM is clear from the context. A template is a pair (u, I), where u = u0, u1, . . . is a
finite time-abstract path and I = I0, I1, . . . a finite sequence of non-empty intervals in R≥0

such that length(u) = length(I). Every template (u, I) determines a basic cylinder Run(u, I)
consisting of all runs w such that w(i) = ui for all 0 ≤ i < length(u), and w[j] ∈ Ij for all
0 ≤ i < length(u)− 1. ToM we associate the probability space (Run,F ,P) where F is the
σ-field generated by all basic cylinders Run(u, I) and P : F → R≥0 is the unique probability
measure on F such that

P(Run(u, I)) = Init(u0) ·
length(u)−2

∏
i=0

Prob(ui)(ui → ui+1) ·
(

e−R(ui)·sup(Ii) − e−R(ui)·inf(Ii)
)

Note that if length(u) = 1, the “big product” above is empty and hence equal to 1.
Now we formally define continuous-time games, which generalize continuous-

time Markov chains by allowing not only probabilistic but also non-deterministic choice.
Continuous-time games also generalize the model of continuous-time Markov decision pro-
cesses studied in [2, 7] by splitting the non-deterministic vertices into two disjoint subsets of
controllable and adversarial vertices, which are controlled by two “players” with antagonistic
objectives. Thus, one can model the interaction between a system and its environment.

DEFINITION 2. A continuous-time game (CTG) is a tuple G = (V, A, E, (V�, V♦), P, R) where
V is a finite or countably infinite set of vertices, A is a finite or countably infinite set of actions, E
is a function which to every v ∈ V assigns a non-empty set of actions enabled in v, (V�, V♦) is a
partition of V, P is a function which assigns to every a ∈ A a probability distribution on V, and R
is a function which assigns a positive real rate to every a ∈ A.

We require that V ∩ A = ∅ and use N to denote the set V ∪ A. We say that G is finitely-
branching if for each v ∈ V the set E(v) is finite (note that P(a) for a given a ∈ A can still have an
infinite support.) We say that G has bounded rates if supa∈A R(a) < ∞, and that G is uniform if
R is a constant function. Finally, we say that G is finite if both V and A are finite.
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If V� or V♦ is empty (i.e., there is just one type of vertices), then G is a continuous-time
Markov decision process (CTMDP). Technically, our definition of CTMDP is slightly different
from the one used in [2, 7], but the difference is only cosmetic. The two models are equiva-
lent in a well-defined sense (a detailed explanation is included in [3]). Also note that P and
R associate the probability distributions and rates directly to actions, not to pairs of V × A.
This is perhaps somewhat non-standard, but leads to simpler notation (since each vertex
can have its “private” set of enabled actions, this is no restriction).

A play of G is initiated in some vertex. The non-deterministic choice is resolved by
two players, � and ♦, who select the actions in the vertices of V� and V♦, respectively.
The selection itself is timeless, but some time is spent by performing the selected action
(the time is exponentially distributed with the rate R(a)), and then a transition to the next
vertex is chosen randomly according to the distribution P(a). The players can also select the
actions randomly, i.e., they select not just a single action but a probability distribution on the
enabled actions. Moreover, the players are allowed to play differently when the same vertex
is revisited. We assume that both players can see the history of a play, but cannot measure
the elapsed time.

Let � ∈ {�, ♦}. A strategy for player � is a function which to each wv ∈ N∗V� assigns
a probability distribution on E(v). The sets of all strategies for player � and player ♦ are
denoted by Σ and Π, respectively. Each pair of strategies (σ, π) ∈ Σ×Π together with an
initial vertex v̂ ∈ V determine a unique play of the game G, which is a CTMC G(v̂, σ, π)
where N∗A is the set of states, the rate of a given wa ∈ N∗A is R(a) (the rate function of
G(v̂, σ, π) is also denoted by R), and transitions exist only between states of the form wa
and wava′, where wa x→wava′ iff one of the following conditions is satisfied:
• v ∈ V�, a′ ∈ E(v), and x = P(a)(v) · σ(wv)(a′) > 0
• v ∈ V♦, a′ ∈ E(v), and x = P(a)(v) · π(wv)(a′) > 0

The initial distribution is determined as follows:
• Init(v̂a) = σ(v̂)(a) if v̂ ∈ V� and a ∈ E(v̂);
• Init(v̂a) = π(v̂)(a) if v̂ ∈ V♦ and a ∈ E(v̂);
• in the other cases, Init returns zero.

Note that the set of states of G(v̂, σ, π) is infinite. Also note that all states reachable from
a state v̂a, where Init(v̂a) > 0, are alternating sequences of vertices and actions. We say
that a state w of G(v̂, σ, π) hits a vertex v ∈ V if v is the last vertex which appears in w (for
example, v1a1v2a2 hits v2). Further, we say that w hits T ⊆ V if w hits some vertex of T.
From now on, the paths (both finite and infinite) in G(v̂, σ, π) are denoted by Greek letters
α, β, . . .. Note that for every α ∈ RunG(v̂,σ,π) and every i ∈N0 we have that α(i) = wa where
wa ∈ N∗A.

We denote by R(G) the set of all rates used in G (i.e., R(G) = {R(a) | a ∈ A}), and by
H(G) the set of all vectors of the form i : R(G) → N0 satisfying ∑r∈R(G) i(r) < ∞. When
G is clear from the context, we write just R and H instead of R(G) and H(G), respectively.
For every i ∈ H, we put |i| = ∑r∈R i(r). For every r ∈ R, we denote by 1r the vector of
H such that 1r(r) = 1 and 1r(r′) = 0 if r′ 6= r. Further, for every wx ∈ N∗N we define
the vector iwx ∈ H such that iwx(r) returns the cardinality of the set {j ∈ N0 | 0 ≤ j <
length(w), w(j) ∈ A, R(w(j)) = r} (Note that the last element x of wx is disregarded.) Given
i ∈ H and wx ∈ N∗N, we say that wx matches i if i = iwx.
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We say that a strategy τ is counting (C) if τ(wv) = τ(w′v) for all w, w′ ∈ N∗ such that
iwv = iw′v. In other words, a strategy τ is counting if the only information about the history
of a play w which influences the decision of τ is the vector iwv. Hence, every counting
strategy τ can be considered as a function from H× V to D(A), where τ(i, v) corresponds
to the value of τ(wv) for every wv matching i. A counting strategy τ is bounded counting
(BC) if there is k ∈ N such that τ(wv) = τ(w′v) whenever |w|, |w′| ≥ k. A strategy τ is
deterministic (D) if τ(wv) is a Dirac distribution for all wv. Strategies that are not necessarily
counting are called history-dependent (H), and strategies that are not necessarily deterministic
are called randomized (R). Thus, we obtain the following six types of strategies: BCD, BCR,
CD, CR, HD, and HR. The most general (unrestricted) type is HR, and the importance of the
other types of strategies becomes clear in subsequent sections.

In this paper, we are interested in continuous-time games with time-bounded reachability
objectives, which are specified by a set T ⊆ V of target vertices and a time bound t ∈ R>0.
The goal of player � is to maximize the probability of reaching a target vertex before the
time bound t, while player ♦ aims at minimizing this probability. Let v̂ be the initial vertex.
Then each pair of strategies (σ, π) ∈ Σ×Π determines a unique outcome Pσ,π

v̂ (Reach≤t(T)),
which is the probability of all α ∈ RunG(v̂,σ,π) that visit T before time t (i.e., there is i ∈ N0

such that α(i) hits T and ∑i−1
i=0 α[i] ≤ t). A fundamental question (answered in Section 3)

is whether continuous-time games with time-bounded reachability objectives have a value,
i.e., a unique equilibrium outcome. We say that v̂ ∈ V has a value if

sup
σ∈Σ

inf
π∈Π
Pσ,π

v̂ (Reach≤t(T)) = inf
π∈Π

sup
σ∈Σ
Pσ,π

v̂ (Reach≤t(T))

If v̂ has a value, then val(v̂) denotes the value of v̂ defined by the above equality. Further, if v̂
has a value, it makes sense to define ε-optimal and optimal strategies in v̂. Let ε ≥ 0. We say
that a strategy σ ∈ Σ is an ε-optimal maximizing strategy in v̂ (or just ε-optimal in v̂) if

inf
π∈Π
Pσ,π

v̂ (Reach≤t(T)) ≥ val(v̂)− ε ,

and that a strategy π ∈ Π is an ε-optimal minimizing strategy in v̂ (or just ε-optimal in v̂) if

sup
σ∈Σ
Pσ,π

v̂ (Reach≤t(T)) ≤ val(v) + ε

A strategy is optimal in v̂ if it is 0-optimal in v̂, and just optimal if it is optimal in every v̂.

3 The Existence of Values and Optimal Strategies
In this section we first prove that every vertex in a CTG with time-bounded reachability
objectives has a value. This result holds without any additional restrictions (i.e., for CTGs
with possibly countable state-space and infinite branching degree). From this we immedi-
ately obtain the existence of ε-optimal strategies for both players for every ε > 0. Then, we
study the existence of optimal strategies. We show that even though optimal minimizing
strategies may not exist in infinitely-branching CTGs, they always exist in finitely-branching
ones. As for optimal maximizing strategies, we show that they do not necessarily exist
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even in finitely-branching CTGs, but they are guaranteed to exist if a game is both finitely-
branching and has bounded rates (see Definition 2).

For the rest of this section, we fix a CTG G = (V, A, E, (V�, V♦), P, R), a set T ⊆ V of
target vertices, and a time bound t > 0. Given i ∈ H where |i| > 0, we denote by Fi the
probability distribution function of the random variable ∑r∈R ∑i(r)

i=1 X(r)
i where all X(r)

i are

mutually independent and each X(r)
i is an exponentially distributed random variable with

the rate r (for reader’s convenience, basic properties of exponentially distributed random
variables are recalled in [3]). We also define F0 as a constant function returning 1 for every ar-
gument (here 0 ∈ H is the empty history, i.e., |0| = 0). In the special case whenR is a single-
ton, we use F` and f` to denote Fi and fi such that i(r) = `, where r is the only element ofR.
Further, given ∼ ∈ {<,≤, =} and k ∈ N, we denote by Pσ,π

v̂ (Reach≤t
∼k(T)) the probability

of all α ∈ RunG(v̂,σ,π) that visit T for the first time in the number of steps satisfying ∼ k and
before time t (i.e., there is i ∈N0 such that i = min{j | α(j) hits T} ∼ k and ∑i−1

i=0 α[i] ≤ t).
The following theorem says that every vertex in a CTG with bounded reachability ob-

jectives has a value. Let us note that the powerful result of Martin [6] about weak deter-
minacy of Blackwell games cannot be applied in this setting, at least not immediately. As
we shall see, the ideas presented in the proof of Theorem 3 are useful also for designing an
algorithm which for a given ε > 0 computes ε-optimal strategies for both players.

THEOREM 3. Every vertex v ∈ V has a value.

Roughly speaking, Theorem 3 is proved in the following way. Given σ ∈ Σ, π ∈ Π, j ∈ H,
and u ∈ V, we denote by Pσ,π(u, j) the probability of all runs α ∈ RunG(u,σ,π) such that for
some n ∈ N0 the state α(n) hits T and matches j, and for all 0 ≤ j < n we have that α(j)
does not hit T. Then we introduce two functions A,B : H×V → [0, 1] where

A(i, v) = sup
σ∈Σ

inf
π∈Π

∑
j∈H

Fi+j(t) · Pσ,π(v, j) B(i, v) = inf
π∈Π

sup
σ∈Σ

∑
j∈H

Fi+j(t) · Pσ,π(v, j)

Intuitively, A(i, v) and B(i, v) give the “best” probability achievable by player � and
player ♦ in a vertex v, assuming that the history of a play matches i. Hence, it suf-
fices to prove that A = B, because then also A(0, v) = B(0, v) = val(v), where 0
returns zero for every argument. The equality A = B is obtained by demonstrating
that both A and B are equal to the (unique) least fixed point of a monotonic function
V : (H×V → [0, 1])→ (H×V → [0, 1]) defined as follows: for every H : H× V → [0, 1],
i ∈ H, and v ∈ V we have that

V(H)(i, v) =


Fi(t) v ∈ T
supa∈E(v) ∑u∈V P(a)(u) · H(i + 1R(a), u) v ∈ V� \ T

infa∈E(v) ∑u∈V P(a)(u) · H(i + 1R(a), u) v ∈ V♦ \ T

The details are technical and can be found in [3].
Observe that due to Theorem 3, both players have ε-optimal strategies in every vertex v

(for every ε > 0). This follows directly from the definition of val(v) given in Section 2.
Now we examine the existence of optimal strategies. We start by observing that optimal
minimizing and optimal maximizing strategies do not necessarily exist, even if we restrict
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ourselves to games with finitely many rates (i.e., R(G) is finite) and finitely many distinct
transition probabilities.

OBSERVATION 4. Optimal minimizing and optimal maximizing strategies in continuous-time
games with time-bounded reachability objectives do not necessarily exist, even if we restrict our-
selves to games with finitely many rates (i.e., R(G) is finite) and finitely many distinct transition
probabilities.

However, if G is finitely-branching, then the existence of an optimal minimizing CD
strategy can be established by adapting the construction used in the proof of Theorem 3.
Observe that we do not require that G has bounded rates.

THEOREM 5. If G is finitely-branching, then there is an optimal minimizing CD strategy.

The issue with optimal maximizing strategies is slightly more complicated. First,
we observe that optimal maximizing strategies do not necessarily exist even in finitely-
branching games.

OBSERVATION 6. Optimal maximizing strategies in continuous-time games with time-bounded
reachability objectives may not exist, even if we restrict ourselves to finitely-branching games.

Now we show that if G is finitely-branching and has bounded rates, then there is an
optimal maximizing CD strategy. To achieve that, we introduce the notion of k-step opti-
mal strategies, which optimize the outcome in finite plays of length k. Observe that, due
to Theorem 3, for all k ∈ N and v ∈ V we have that supσ∈Σ infπ∈Π Pσ,π

v (Reach≤t
≤k(T)) =

infπ∈Π supσ∈Σ P
σ,π
v (Reach≤t

≤k(T)). We use valk(v) to denote the k-step value defined by this
equality, and we say that strategies σk ∈ Σ and πk ∈ Π are k-step optimal if for all v ∈ V, π ∈
Π, and σ ∈ Σ we have infπ∈Π Pσk ,π

v (Reach≤t
≤k(T)) = supσ∈Σ P

σ,πk

v (Reach≤t
≤k(T)) = valk(v).

The existence and basic properties of k-step optimal strategies are stated in our next lemma.

LEMMA 7. If G is finitely-branching and has bounded rates, then we have the following:
1. For all ε > 0, k ≥ (supR)te2 − ln ε, σ ∈ Σ, π ∈ Π, and v ∈ V we have that

Pσ,π
v (Reach≤t(T))− ε ≤ Pσ,π

v (Reach≤t
≤k(T)) ≤ Pσ,π

v (Reach≤t(T))

2. For every k ∈ N, there are k-step optimal BCD strategies σk ∈ Σ and πk ∈ Π. Further, for
all ε > 0 and k ≥ (supR)te2 − ln ε we have that every k-step optimal strategy is also an
ε-optimal strategy.

If G is finitely-branching and has bounded rates, one may be tempted to construct an op-
timal maximizing strategy σ by selecting those actions that are selected by infinitely many
k-step optimal BCD strategies for all k ∈ N (these strategies are guaranteed to exist by
Lemma 7 (2)). However, this is not so straightforward, because the distributions assigned to
actions in finitely-branching games can still have an infinite support. Intuitively, this issue
is overcome by considering larger and larger finite subsets of the support so that the total
probability of all of the infinitely many omitted elements approaches zero. Hence, a proof
of the following theorem is somewhat technical.

THEOREM 8. If G is finitely-branching and has bounded rates, then there is an optimal maximizing
CD strategy.
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3.1 Optimal Strategies in Finite Uniform CTGs

In this subsection, we restrict ourselves to finite uniform CTGs and prove that both play-
ers have optimal BCD strategies in such games. Roughly speaking, the result is obtained by
showing that optimal CD strategies (which are guaranteed to exist by Theorem 5 and Theo-
rem 8) can be safely redefined into greedy strategies after performing a finite (and effectively
computable) number of steps. Greedy strategies try to maximize/minimize the probability
of reaching T in as few steps as possible, and hence they can ignore the history of a play.
Hence, the original optimal CD strategies become stationary after a finite number of steps,
which means that they are in fact BCD. We also show that this result is tight in the sense
that optimal BCD strategies do not necessarily exist in uniform CTGs with infinitely many
states. In Section 4, we use these results to design an algorithm which computes the optimal
BCD strategies in finite uniform games.

In this subsection, we assume that the previously fixed CTG G is finite and that
R(a) = r > 0 for all a ∈ A. We start by introducing greedy strategies.

DEFINITION 9. A strategy σ ∈ Σ is greedily maximizing if for all v ∈ V and σ′ ∈ Σ one of the
following two conditions is satisfied:
• For all i ∈N0 we have infπ∈Π Pσ,π

v (Reach<∞
≤i (T)) = infπ∈Π Pσ′,π

v (Reach<∞
≤i (T)).

• There is i ∈ N0 such that infπ∈Π Pσ,π
v (Reach<∞

≤i (T)) > infπ∈Π Pσ′,π
v (Reach<∞

≤i (T)) and
for all j < i we have infπ∈Π Pσ,π

v (Reach<∞
≤j (T)) = infπ∈Π Pσ′,π

v (Reach<∞
≤j (T)).

Similarly, π ∈ Π is greedily minimizing if for all v ∈ V and π′ ∈ Π one of the following
conditions holds:
• For all i ∈N0 we have supσ∈Σ P

σ,π
v (Reach<∞

≤i (T)) = supσ∈Σ P
σ,π′
v (Reach<∞

≤i (T)).
• There is i ∈ N0 such that supσ∈Σ P

σ,π
v (Reach<∞

≤i (T)) < supσ∈Σ P
σ,π′
v (Reach<∞

≤i (T)) and
for all j < i we have supσ∈Σ P

σ,π
v (Reach<∞

≤j (T)) = supσ∈Σ P
σ,π′
v (Reach<∞

≤j (T)).

A strategy τ is stationary if τ is deterministic and τ(wv) depends just on v for every vertex v.

Note that time plays no role in greedily maximizing/minimizing strategies. Our next
lemma reveals that greedy stationary strategies exist and can be effectively computed in
polynomial time in finite CTGs.

LEMMA 10. There is a greedily maximizing stationary strategy σg, and a greedily minimizing
stationary strategy πg. Moreover, the strategies σg and πg are computable in polynomial time.

Now we can state the main theorem of this subsection.

THEOREM 11. Let σg be a greedily maximizing stationary strategy, and πg a greedily minimizing
stationary strategy. Let σ be an optimal maximizing CD strategy, and π an optimal minimizing CD
strategy. Then for all sufficiently large k ∈ N we have that BCD strategies σ′ ∈ Σ and π′ ∈ Π
defined by

σ′(i, v) =

{
σ(i, v) if i < k;

σg(v) otherwise.
π′(i, v) =

{
π(i, v) if i < k;

πg(v) otherwise.

are optimal. Moreover, if all transition probabilities in G are rational, then σ′ and π′ are optimal for
all k ≥ rt(1 + m|A|

2·|V|2), where m is the maximal denominator of transition probabilities.
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A natural question is whether Theorem 11 can be extended to infinite-state uniform CTGs.
The question is answered in our next observation.

OBSERVATION 12. Optimal BCD strategies do not necessarily exist in uniform infinite-state CTGs,
even if they are finitely-branching and use only finitely many distinct transition probabilities.

4 Algorithms
Now we present algorithms which compute ε-optimal BCD strategies in finitely-branching
CTGs with bounded rates and optimal BCD strategies in finite uniform CTGs. In this sec-
tion, we assume that all rates and distributions used in the considered CTGs are rational.

4.1 Computing ε-optimal BCD strategies

For the rest of this subsection, let us fix a CTG G = (V, A, E, (V�, V♦), P, R), a set T ⊆ V
of target vertices, a time bound t > 0, and some ε > 0. For simplicity, let us first assume
that G is finite; as we shall see, our algorithm does not really depend on this assumption, as
long as the game is finitely-branching, has bounded rates, and its structure can be effectively
generated (see Corollary 14). Let k = (maxR)te2 − ln( ε

2 ). Then, due to Lemma 7, all k-step
optimal strategies are ε

2 -optimal.
For every i ∈ H, where |i| ≤ k, and for every v ∈ V, our algorithm computes an ac-

tion C(i, v) ∈ E(v) which represents the choice of the constructed ε-optimal BCD strategies
σε ∈ Σ and πε ∈ Π. That is, for every i ∈ H, where |i| ≤ k, and for every v ∈ V�, we put
σε(i, v)(C(i, v)) = 1, and for the other arguments we define σε arbitrarily so that σε remains
a BCD strategy. The strategy πε is induced by the function C in the same way.

To compute C(i, v), our algorithm uses a family of probabilities R(i, u) of reaching T
from u before time t in at most k− |i| steps using the strategies σε and πε and assuming that
the history matches i. Actually, our algorithm computes the probabilities R(i, u) only up
to a sufficiently small error so that the actions chosen by C are “sufficiently optimal” (i.e.,
the strategies σε and πε are ε-optimal, but they are not necessarily k-step optimal for the k
chosen above). Our algorithm works in two phases:

1. For i ∈ H, where |i| ≤ k, compute a number `i(t) > 0 such that |Fi(t)−`i(t)|
Fi(t) ≤ ε2|i|+1

22|i|+1 . For
every a ∈ A and u ∈ V, compute a floating point representation p(a)(u) of P(a)(u)
satisfying |P(a)(u)−p(a)(u)|

P(a)(u) ≤ ε2k+1

22k+1 .
2. Compute (in a bottom up fashion) the functions R and C as follows: Given i ∈ H,

where |i| ≤ k, and v ∈ V, we have that

R(i, v) =


`i(t) if v ∈ T
0 if v 6∈ T and |i| = k
maxa∈E(v) ∑u∈V p(a)(u) · R(i + 1R(a), u) if v ∈ V� \ T and |i| < k
mina∈E(v) ∑u∈V p(a)(u) · R(i + 1R(a), u) if v ∈ V♦ \ T and |i| < k

For all |i| < k and v 6∈ T, we put C(i, v) = a where a is an action that realizes the
maximum (or minimum).
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In [3] we show that the strategies σε and πε are indeed ε-optimal. Complexity analysis of the
algorithm reveals the following (bp denotes the maximum bit-length of P(a)(v) and rates,
assuming that we represent P(a)(v) and rates as fractions of integers encoded in binary).

THEOREM 13. Assume that G is finite. Then for every ε > 0 there are ε-optimal BCD strategies
σε ∈ Σ and πε ∈ Π computable in time |V|2 · |A| · bp · (|R|+ 1)O((maxR)·t+ln 1

ε ).

Note that our algorithm needs to analyze only a finite part of G. Hence, it also works for
infinite games which satisfy the conditions formulated in the next corollary.

COROLLARY 14. Let G be a finitely-branching game with bounded rates and let v ∈ V. Assume
that the vertices and actions of G reachable from v in a given finite number of steps are effectively
computable, and that an upper bound on rates is also effectively computable. Then for every ε > 0
there are effectively computable BCD strategies σε ∈ Σ and πε ∈ Π that are ε-optimal in v.

4.2 Computing optimal BCD strategies in uniform finite games

For the rest of this subsection, we fix a finite uniform CTG G = (V, A, E, (V�, V♦), P, R)
where R(a) = r > 0 for all a ∈ A. Let k = rt(1 + m|A|

2·|V|2) (see Theorem 11).
The algorithm works similarly as the one of Section 4.1, but there are also some differ-

ences. Since we have just one rate, the vector i becomes just a number i. Similarly as in
Section 4.1, our algorithm computes an action C(i, v) ∈ E(v) representing the choice of the
constructed optimal BCD strategies σmax ∈ Σ and πmin ∈ Π. By Lemma 11, every optimal
strategy can, from the k-th step on, start to behave as a fixed greedy stationary strategy, and
we can compute such a greedy stationary strategy in polynomial time. Hence, the optimal
BCD strategies σmax and πmin are defined as follows:

σmax(i, v) =

{
C(i, v) if i < k;

σg(v) otherwise.
πmin(i, v) =

{
C(i, v) if i < k;

πg(v) otherwise.

To compute the function C, our algorithm uses a table of symbolic representations of the
(precise) probabilities R(i, v) (here i ≤ k and v ∈ V) of reaching T from v before time t in at
most k− i steps using the strategies σmax and πmin and assuming that the history matches i.

The function C and the family of all R(i, v) are computed (in a bottom up fashion) as
follows: For all 0 ≤ i ≤ k and v ∈ V we have that

R(i, v) =


Fi(t) if v ∈ T

∑∞
j=0 Fi+j(t) · Pσg,πg

v (Reach<∞
=j (T)) if v 6∈ T and i = k

maxa∈E(v) ∑u∈V P(a)(u) · R(i + 1, u) if v ∈ V� \ T and i < k
mina∈E(v) ∑u∈V P(a)(u) · R(i + 1, u) if v ∈ V♦ \ T and i < k

For all i < k and v ∈ V, we put C(i, v) = a where a is an action maximizing or minimizing
∑u∈V P(a)(u) · R(i + 1, u), depending on whether v ∈ V� or v ∈ V♦, respectively. The
effectivity of computing such an action (this issue is not trivial) is discussed in the proof of
the following theorem.

THEOREM 15. The BCD strategies σmax and πmin are optimal and effectively computable.
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5 Conclusions, Future Work
We have shown that vertices in CTGs with time bounded reachability objectives have a
value, and we classified the subclasses of CTGs where a given player has an optimal strat-
egy. We also proved that in finite uniform CTGs, both players have optimal BCD strate-
gies. Finally, we designed algorithms which compute ε-optimal BCD strategies in finitely-
branching CTGs with bounded rates, and optimal BCD strategies in finite uniform CTGs.

There are several interesting directions for future research. First, we can consider more
general classes of strategies that depend on the elapsed time (in our setting, strategies are
time-abstract). In [2], it is demonstrated that time-dependent strategies can achieve better
results than the time-abstract ones. Further, [7] shows the power of time-dependent strate-
gies differs when the player knows only the time consumed by the last action, or the com-
plete timed history of a play. It is not immediately clear whether Theorem 3 still holds for
time-dependent strategies, and whether it makes sense to think about optimal strategies in
this setting. Second, a generalization to semi-Markov processes and games, where arbitrary
(not only exponential) distributions are considered, would be desirable. Another interesting
open problem is the existence of optimal BCD strategies in (not necessarily uniform) games.
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