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ABSTRACT. We show that the integrality gap of the standard SDP for VERTEX COVER on instances of
n vertices remains 2 − o(1) even after the addition of all hypermetric inequalities. Our lower bound
requires new insights into the structure of SDP solutions behaving like ℓ1 metric spaces when one
point is removed. We also show that the addition of all ℓ1 inequalities eliminates any solutions that
are not convex combination of integral solutions. Consequently, we provide the strongest possible
separation between hypermetrics and ℓ1 inequalities with respect to the tightening of the standard
SDP for VERTEX COVER.

1 Introduction

A vertex cover for a graph G = (V, E) is a subset of the vertices touching all edges. The min-

imum VERTEX COVER problem (VC) is to find a minimal vertex cover for a graph. While the

corresponding decision version for VERTEX COVER is a classic NP-hard problem, the exact

approximability of the minimum VERTEX COVER problem remains one of the outstanding

open problems in approximation algorithms.

In terms of lower bounds, Dinur and Safra [6] show that VERTEX COVER is NP-hard to

approximate within a factor better than 1.36. Assuming Khot’s [15] Unique Games conjec-

ture holds, Khot and Regev [16] show that computing a 2−Ω(1) approximation is NP-hard.

As for upper bounds, a very simple argument based on maximal matchings shows that VER-

TEX COVER admits a polynomial time 2 approximation. The best approximation algorithm

known is due to Karakostas [13] and has an approximation ratio of 2 − Ω(
√

1/ log n).

Closing the gap between the known upper and lower bounds on VERTEX COVER’s ap-

proximability (or obtaining a tight lower bound without relying on the Unique Games Con-

jecture) has proved particularly difficult. As a result researchers have focused on studying

how well we can approximate VERTEX COVER using algorithmic techniques proven suc-

cessful for other optimization problems. One such family of algorithms arises by first for-

mulating the optimization problem as a (intractable) quadratic integer problem and then

relaxing the integrality constraint to obtain a semidefinite program (SDP) that can be solved

in polynomial time up to any desired precision. This approach was first introduced by

Goemans and Williamson [11] and used to obtain a breakthrough 0.878-approximation al-

gorithm for MAX CUT. Subsequently, many SDP-based algorithms have been discovered

and which yield the best approximation algorithms known for several optimization prob-

lems [2, 14, 13].

The quality of an SDP relaxation is typically measured by its integrality gap, namely,

the ratio between the true optimal solution and the relaxed SDP solution. It is generally

accepted that a lower bound on the integrality gap is a lower bound on the approximation
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ratio achievable by any algorithm based on the SDP relaxation. Unfortunately, so far no SDP

relaxation for VERTEX COVER has been found whose integrality gap is not 2 − o(1).

Indeed, Kleinberg and Goemans [10] show that the obvious “standard” SDP for VERTEX

COVER (defined in Section 2.2) has integrality gap 2 − o(1). But can this standard SDP be

tightened with further constraints to reduce the integrality gap? A series of papers studies

whether so-called ℓ1 inequalities can decrease the integrality gap. The use of ℓ1 inequalities

is motivated by the fact that solutions to the standard quadratic programming formulation

for VERTEX COVER lie in an ℓ1 metric space. Further motivation comes from a paper by

Hatami et al. [12] showing that adding all ℓ1 inequalities to the standard SDP for VERTEX

COVER yields true optimal solutions. Now, adding all ℓ1 inequalities yields an intractable

SDP relaxation. The natural question that then emerges is whether there is a subset of ℓ1 in-

equalities which decreases the integrality gap while keeping the program tractable. Indeed

such subsets have been useful for other optimization problems: For instance, the simplest

ℓ1 inequality, the triangle inequality, is crucial in the Arora-Rao-Vazirani SDP algorithm

for SPARSEST CUT [2] and subsequently in the best tractable SDP formulation for VERTEX

COVER [13]. Avis and Umemoto [3] used k-gonal inequalities (a family of ℓ1 inequalities

generalizing the triangle inequality) to design a PTAS for MAX CUT on certain sparse graph

families. However, results for VERTEX COVER have so far all been negative: A series of

papers [4, 12, 9] culminates in showing that adding so-called hypermetric inequalities (the

most well known canonical family of ℓ1 inequalities, and a generalization of k-gonal inequal-

ities) of bounded support does not reduce the integrality gap. The latter is also motivated by

the fact that, as k grows, the k-gonal inequalities become increasingly stronger. This will be

discussed in Section 2.1.

In this paper, we bring this series of results to its “completion” by showing, somewhat

surprisingly, that hypermetrics never help for VERTEX COVER:

THEOREM 1. The integrality gap of the standard SDP relaxation for VERTEX COVER tight-

ened with all hypermetric inequalities is 2 − o(1).

Theorem 1 may provide further evidence of the true inapproximability of the VERTEX

COVER problem. It was consistent with previous results that tightening the standard SDP

relaxation for VERTEX COVER with hypermetrics of sufficiently large support (note that such

SDPs might not be “tractable”: they would only be computable in time polynomial in the

number of constraints added) might give an integrality gap of 2 − Ω(1).

Our result extends several ideas from [9]. Indeed the graph instances and our SDP

vector construction is similar to the one used in [9] (and related to those used in [8]). Our

improvement relies on some new insights we develop for controlling the value of certain

“hypermetric-like” inequalities on ℓ1 embeddable metrics. (An in-depth comparison to pre-

vious constructions can be found in Section 3.4.)

But if hypermetrics don’t help, can we hope that the family of all ℓ1 inequalities helps?

The answer seems to depend on the problem; for example, in the MINIMUM MULTICUT

problem [1] the addition of all ℓ1 inequalities does not yield integrality gap 1. In contrast,

we show that for VERTEX COVER the opposite is true:

THEOREM 2. Consider a vector solution of the standard SDP for VERTEX COVER that along
with (at least) one antipode vector satisfies all ℓ1 inequalities. Then the solution is in the
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integral hull, and therefore the integrality gap is 1.

In particular, Theorems 1 and 2 together show that to reduce the integrality gap one must

employ “unnatural” ℓ1-inequalities. As mentioned above, Hatami et al. [12] prove a similar

result to Theorem 2 showing that strengthening the standard SDP for VERTEX COVER with

all ℓ1 inequalities yields an SDP with no integrality gap. However, we emphasize that their

result, which is essentially proved by exploiting the optimality of the SDP solution, does not

rule out the possibility of a feasible SDP solution outside the integral hull.

Relations to Lift-and-project systems Lift-and-project procedures, such as those defined

by Lovász and Schrijver [18] and Lasserre [17], take an initial LP or SDP relaxation and

then systematically derive (over successive rounds) all inequalities valid for the integral

hull. Relaxations for VERTEX COVER in the Lovász-Schrijver hierachy are incomparable to

those studied here (see [9]); the VERTEX COVER SDP relaxation produced after k rounds of

Lasserre’s tightening satisfies all ℓ1 inequalities of support k. Strong integrality gaps for lift-

and-project derived SDPs (but incomparable to those proved here) are proved by Georgiou

et al. [8] and Schoenebeck [19] for the Lovász-Schrijver and Lasserre systems, respectively.

2 Preliminaries

2.1 Metric Spaces, and ℓ1 and Hypermetric Inequalities

A finite metric space (X, d) is ℓ1 embeddable, or simply an ℓ1-metric, if there exists a mapping

f : X → R
n such that for all x, y ∈ X we have d(x, y) = ‖ f (x) − f (y)‖1. The mapping f

is called an isometry. We now survey those facts about ℓ1 metric spaces we will need. For

proofs see [5].

Fix a finite set of points X of size n which we will denote by [n]. For each S ⊆ X define

the cut metric δS : [n] × [n] → {0, 1} such that δS(i, j) = 1 if |S ∩ {i, j}| = 1 and 0 otherwise.

Cut metrics are clearly ℓ1 embeddable, and moreover, every ℓ1 embeddable metric space d

can be represented as a convex combination of cut metrics, namely d(i, j) = ∑S λSδS(i, j),

where λS ≥ 0. We then say that (X, d) is realized by {λS}S⊆X (realization is not unique in

general). An ℓ1 inequality is an inequality ∑ij Bijxij ≤ 0 that holds for all ℓ1 embeddable

metrics d, that is ∑ij Bijd(i, j) ≤ 0. It is possible to show that ∑ij Bijxij ≤ 0 is an ℓ1 inequality

if and only if it satisfies ∑ij Bijd(i, j) ≤ 0 for all cut metrics d.

A canonical discrete class of ℓ1 inequalities is the class of hypermetric inequalities.

DEFINITION 3. For any b ∈ Z
n with ∑

n
i=1 bi = 1, the inequality ∑ij bibjxij ≤ 0 is a hyperme-

tric inequality. The support of a hypermetric inequality is the support of b = (b1, . . . , bn).

It is well known that hypermetric inequalities are ℓ1-inequalities, that is ∑ij bibjd(i, j) ≤
0 for all ℓ1-metrics d (this also follows as a corollary from Lemma 5 below). Note that the

hypermetrics include the triangle inequality (by taking bi = bj = 1, bk = −1 and b is

0 elsewhere), and all other k-gonal inequalities (e.g., the pentagonal inequality) which are

simply those hypermetrics where each bi is ±1 or 0.

Both hypermetric inequalities and ℓ1 inequalities define convex cones. The cone of

hypermetric inequalities is contained in the cone of ℓ1 inequalities, and the containment
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is strict for dimension at least 7. The cone of hypermetric inequalities is polyhedral, and

many of its facets define facets in the ℓ1 cone. Since no hypermetric inequality is a positive

multiple of another, it follows that only finitely many hypermetrics define facets of the cut

cone. A canonical example of such facets are the k-gonal inequalities defined above. It is

important to note that k-gonal inequalities are stronger the larger k is in the following sense:

for every k > 1 there exists a metric on n-points satisfying all (2t + 1)-gonal inequalities,

0 < t < k while the (2k + 1)-inequality is violated (Corollary 28.3.3 in [5]).

2.2 SDP Formulations for Vertex Cover and Integrality Gap Constructions

Let G = (V, E) be a graph with V = [n]. The standard SDP relaxation for VERTEX COVER is

min ∑i∈V ‖zi + z0‖2
2/4

s.t. ‖zi − z0‖2
2 + ‖zj − z0‖2

2 = ‖zi − zj‖2
2 ∀ij ∈ E

‖zi‖2
2 = 1 ∀i ∈ {0} ∪ V,

(1)

where the zi are vectors∗. Note that any vector solution {zi}i∈{0}∪V of (1) induces a distance

function d(i, j) = ‖zi − zj‖2
2.

The SDP relaxation (1) is in general stronger than the standard LP relaxation for VER-

TEX COVER. Unlike the standard LP, showing that (1) has an integrality gap of 2 − o(1) is

non-trivial [10]. The graph instances witnessing the integrality gap rely on a powerful com-

binatorial theorem due to Frankl and Rödl [7] that shows that there cannot be a large family

of sets of certain cardinality, all of whose pairwise intersections satisfy a certain condition.

DEFINITION 4. Given γ > 0, the Frankl-Rödl graph G
γ
m is the graph on the 2m vertices of the

m-dimensional hypercube {−1, 1}m having edges between those vertices with Hamming
distance exactly (1 − γ)m.

The theorem of Frankl and Rödl [7] implies that for any constant γ > 0, a vertex cover

of the graphs G
γ
m has size 2m − o(2m). In fact, it follows from their work that G

γ
m enjoys these

properties even for sufficiently large subconstant γ; this was made explicit in [8] showing

that one can set γ = Ω(
√

log m/m) to ensure that no small vertex covers exist.

To appreciate the theorem, notice that for γ = 0 the graph G
γ
m is just a perfect matching,

and hence has a vertex cover of size only half the graph. But by making γ only slightly

positive the minimum vertex cover of the obtained graph ”jumps” in size to be almost all

the vertices!

Frankl-Rödl graphs have been used to prove all the tight integrality gap results [10, 4,

12, 8, 9] for VERTEX COVER SDPs mentioned in the introduction. Most of these papers study

(implicitly or explicitly) whether there exists some small enough subset of ℓ1-inequalities

that can be added to the standard SDP relaxation (1) to reduce the integrality gap. Let us

briefly explain the role of ℓ1 inequalities in this context. The metric induced by an inte-

gral solution of (1) is (a scalar multiple of) the cut metric associated with the vertex cover.

Therefore, ℓ1 inequalities are valid for all integral solutions. In the extreme, adding all ℓ1-

inequalities eliminates the integrality gap [12], and thus focusing on this family of inequali-

ties seems natural.
∗Note that the edge constraint can be equivalently written (and is perhaps more well-known) as (z0 − zi) ·

(z0 − zj) = 0.
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In this paper we analyze the performance of the standard SDP for VERTEX COVER

strengthened with hypermetric inequalities, namely, the SDP (1) strengthened by

∑
ij

bibj‖zi − zj‖2
2 ≤ 0, ∀b ∈ Z

n+1 such that
n+1

∑
i

bi = 1. (2)

In the above, if we only use integer vectors b of support k we obtain the SDP for VERTEX

COVER strengthened by all hypermetrics of support k.

Charikar [4] was the first to show tight integrality gaps when we add triangle inequal-

ity (a hypermetric of support three) to SDP (1). In [12] a similar result was shown when

pentagonal inequalities are added. The strongest negative result analyzing the effect of ℓ1-

inequalities on the standard SDP for VERTEX COVER is due to Georgiou et al. [9] where it is

shown that the addition of hypermetrics with support O(
√

log n/ log log n) cannot reduce

the integrality gap below 2 − o(1).

3 Hypermetrics Cannot Strengthen the Standard SDP for VC

3.1 Preparatory Observations about Hypermetric Inequalities

How can we show that a certain metric d satisfies all hypermetric inequalities? Of course

the simplest way would be to take an ℓ1 embeddable metric d that “automatically” satisfies

all such inequalities. But by [12] we know that if the solution metric is ℓ1 embeddable

then the value of the SDP will be the same as the integral optimum. However, this type of

reasoning is still useful: our solution d will be “almost” ℓ1 embeddable: if we remove the

point associated with v0 the rest of the points will in fact be ℓ1 embeddable; nevertheless,

we will pick our solution so that we have an integrality gap as large as 2 − o(1). Next we

present some simple lemmas that will help in analyzing hypermetric inequalities for such

“almost-ℓ1” metrics.

We start by analyzing a generalization of the notion of hypermetric inequalities (hyper-

metrics correspond to the case q = 1).

LEMMA 5. Let (X, d), be an ℓ1-metric on n points realized by {λS}S⊆X. Let b1, . . . , bn ∈ Z be
such that ∑

n
i bi = q. Then ∑1≤i<j≤n bibjd(i, j) ≤ ⌊(q/2)2⌋∑S λS.

PROOF.

∑
1≤i<j≤n

bibjd(i, j) = ∑
1≤i<j≤n

bibj ∑
S

λSδS(i, j) = ∑
S

λS ∑
1≤i<j≤n

bibjδS(i, j)

= ∑
S

λS ∑
i∈S,j 6∈S

bibj = ∑
S

λS

(

∑
i∈S

bi

)(

q − ∑
i∈S

bi

)

≤ ∑
S

λS(⌊(q/2)2⌋).

The last inequality follows from the geometric-mean arithmetic-mean inequality for inte-

gers.

We next show that when an ℓ1-metric has a unit representation, that is, points are vec-

tors in R
n of unit ℓ2

2 norm, then it is sometimes possible to bound the sum of the cut co-

efficients. We say that an ℓ1-metric with a unit representation has large diameter if it has

diameter 4. (Notice that the diameter of any metric with unit representation is at most 4.)
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LEMMA 6. Let d be an ℓ1-metric with unit representation that has large diameter. Then

∑S λS = 4.

PROOF. Having a large diameter is equivalent to having two unit vectors in the represen-

tation that are antipodes. Without loss of generality, let z1 = −z2. Also, since any S ⊆ X

induces a cut, we may assume that {λS}S⊆X are non-zero only for sets S that contain 1. Now

note that 4 = ‖z1 − z2‖2 = d12 = ∑S 6∋2 λS so our task is to show that λS = 0 whenever 2 ∈ S.

Let i ∈ [n]. Then ‖z1 − zi‖2 + ‖zi − z2‖2 = 4− 2(z1zi + z2zi) = 4 = ‖z1 − z2‖2. Since for ev-

ery S, δS(1, i) + δS(2, i) ≥ δS(1, 2) and since ‖z1 − zi‖2 + ‖zi − z2‖2 = ‖z1 − z2‖2, we know

that whenever λS > 0 we must have δS(1, i) + δS(2, i) = δS(1, 2). But for S that contains 1

and 2 the right hand side is 0, and hence the left hand side is too and i ∈ S. This is true for

all i, and hence S = X which makes it a trivial cut that can be ignored.

COROLLARY 7. Let d̃ be an ℓ1-metric space with large diameter unit representation, and let
d be the restriction of d̃ on a subset of the points. Further, let b1, . . . , bn ∈ Z be such that

∑
n
i bi = q. Then ∑i,j bibjd(i, j) ≤ 4⌊(q/2)2⌋.

PROOF. Let λS be a realization of d̃. By Lemma 6 we have ∑S λS = 4. We now apply

Lemma 5 to d̃ to get ∑i,j bibjd̃(i, j) ≤ ∑S λS (⌊q/2⌋)2 = 4 (⌊q/2⌋)2. Since d is a restriction of

d̃ the corollary follows.

3.2 The Vector Solution

Our construction is based on tensored vectors. Recall that the tensor product u ⊗ v of

vectors u ∈ R
n and v ∈ R

m is the vector in R
nm indexed by ordered pairs from n × m

and assuming the value uivj at coordinate (i, j). Define u⊗d to be the vector in R
nd

ob-

tained by tensoring u with itself d times. Let P(x) = c1xt1 + . . . + cqxtq be a polynomial

with nonnegative coefficients. Then TP is the function that maps a vector u to the vector

TP(u) = (
√

c1u⊗t1 , . . . ,
√

cqu⊗tq). Polynomial tensoring can be used to manipulate inner

products in the sense that TP(u) · TP(v) = P(u · v).

Recall Definition 4 of the graphs G
γ
m for which we want to build a vector solution for

SDP (1) strengthened by (2). For γ > 0 where 1/γ is even, our SDP solution will be the result

of the tensoring polynomial P(x) = c2(x + 1)x2m/γ + c1x1/γ + (1 − (c1 + 2c2))x applied on

the normalized m-dimensional hypercube {−1, 1}m , where all c1, c2 and 1 − (c1 + 2c2) are

non-negative. Note that regardless of c1, c2, we have P(1) = 1. Let ui be the normalized

vectors of the hypercube, namely {±1/
√

m}m. Our solution vectors are then

wi = (18γ,
√

1 − (18γ)2TP(ui)), i = 1, . . . , 2m, (3)

w0 = (1, 0, . . . , 0).

Regardless of the exact choice of P, the value of the objective with the vectors {wi} in (1) is

2m(1/2 + 9γ). To achieve a big integrality gap, we will use the smallest possible value of γ

that ensures that no small vertex covers exist, namely γ = Θ(
√

log m/m).

The following lemma whose proof is deferred to the appendix shows that there exist

appropriate constants c1, c2 such that the vector solution both satisfies the standard SDP and

the triangle inequality.
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LEMMA 8. For sufficiently big m, there exist positive c1, c2 (both of order Θ(γ)), such that for
G

γ
m, the vectors (3) satisfy the standard SDP (1) strengthened with the triangle inequality.

Moreover, c2 > 9γ.

An analogous lemma (Lemma 3) with different bounds on the constants c1 and c2 was

proved in [8], and the proof is very similar. Indeed, the precise constraints on c1, c2 given by

Lemma 8 will be crucial for our analysis here and are not implied by Lemma 3 in [8].

Lemma 8 immediately implies that the integrality gap of SDP (1) is at least
2m−o(2m)

2m(1/2+9γ)
,

which is of course 2 − o(1). Therefore Theorem 1 will follow if we additionally show that

the vectors (3) satisfy any hypermetric inequality (2). This is taken care of in Section 3.3.

3.3 Proof of Theorem 1

Let ∑ij Bijxij ≤ 0 be a hypermetric inequality, with Bij = bibj, bi ∈ Z, i = 0, . . . , n. Our goal

is to show that for the vectors (3), ∑0≤i<j≤n Bij‖wi − wj‖2
2 ≤ 0. By definition, for i, j ≥ 1,

‖wi − wj‖2
2 = 2 − 2((18γ)2 + (1 − (18γ)2)P(ui · uj)) = (1 − (18γ)2)‖TP(ui) − TP(uj)‖2

2 ,

and ‖wi − w0‖2
2 = 2(1 − 18γ). Hence,

∑
0≤i<j≤n

Bij‖wi − wj‖2
2 = 2(1 − 18γ)

n

∑
i=1

B0i + (1 − (18γ)2) ∑
1≤i<j≤n

Bij‖TP(ui) − TP(uj)‖2
2

Therefore, we need to show

n

∑
i=1

B0i + (1 + 18γ)
1

2 ∑
1≤i<j≤n

Bij‖TP(ui)− TP(uj)‖2
2 ≤ 0 . (4)

Let now (Y, d) be a metric defined as Y = {1, . . . , n}, and d(i, j) = ‖TP(ui) − TP(uj)‖2
2.

All points TP(ui) are normalized sign vectors. By considering all points TP(ui) along with

their antipodes −TP(ui) we can obtain the metric (Ỹ, d̃), where again d̃ is the square Eu-

clidean distance of the vectors. Clearly, d is a restriction of d̃ on a subset of points (recall that

the tensoring polynomial P is not odd).

CLAIM 9. The metric (Ỹ, d̃) is ℓ1 with large diameter unit representation.

PROOF. (Ỹ, d̃) has large diameter because all antipodes are present. Now, the vectors

ui have unit ℓ2
2 norm, and so do the vectors TP(ui), i = 1, . . . , n. Notice that in Ỹ we have

excluded the point that corresponds to z0 in the SDP. Now, applying the tensor operation on

a ±1 vector results in a, say, M-dimensional, ±1 vector, and hence applying a polynomial

on such a vector yields a vector which assumes one of two values in each of the coordinates,

and further, one of the values, say xi, i = 1, . . . , M, is the negation of the other. The same

holds by including all their antipodes. In other words, all points ±TP(ui) are vertices of a

box centered at the origin. It is easy to see that the ℓ2
2-metric associated with such a box is ℓ1

embeddable: any vector TP(ui) (or its antipode) has the form u′
i = (s

(i)
1 x1, . . . , s

(i)
M xM) where

s
(i)
t ∈ {±1} and it can be mapped by f to (2s

(i)
1 x2

1, . . . , 2s
(i)
M x2

M). Hence for any two i, j ∈ V

‖u′
i − u′

j‖2
2 =

M

∑
t=1

(s
(i)
t xt − s

(j)
t xt)

2 =
M

∑
t=1

|2s
(i)
t x2

t − 2s
(j)
t x2

t | = ‖ f (u′
i)− f (u′

j)‖1.



210 ON THE TIGHTENING OF THE STANDARD SDP FOR VERTEX COVER

Therefore, for the metric (Y, d) we can apply Corollary 7 with q = ∑
n
i=1 bi = 1 − b0 and

conclude that the left hand side of expression (4) is upper-bounded by

b0(1− b0)+ (1+ 18γ)2⌊(1− b0)
2/4⌋ ≤

{

0 if b0 ≥ 0,
1
2 (1 − b0)((1 − 18γ)b0 + (1 + 18γ)) < 0 if b0 ≤ −2.

Therefore, we have shown that all hypermetrics are satisfied except perhaps those for which

b0 = −1 (like the triangle inequality, pentagonal inequality, etc.).

In order to deal with the case b0 = −1 we look deeper into the structure of TP(ui).

To start, we simplify our notation by abbreviating (ui · uj + 1)(ui · uj)
2m/γ, (ui · uj)

1/γ, and

ui · uj by Hij, Mij and Lij, respectively, the “high”, “medium” and “low” order terms. Then,

P(ui · uj) = c2Hij + c1Mij + (1 − (c1 + 2c2))Lij. Note that for distinct ui, uj, we have |ui ·
uj| ≤ 1− 1/m, and hence Hij is negligible. We therefore omit it in what follows. As b0 = −1,

it follows that ∑
n
i=1 B0i = b0(1 − b0) = −2 and hence that the left hand side of (4) is

− 2 + (1 + 18γ) ∑
1≤i<j≤n

Bij(1 − P(ui · uj))

≈− 2 + (1 + 18γ) ∑
1≤i<j≤n

Bij(1 − c1Mij − (1 − (c1 + 2c2))Lij) . (5)

Now we make some simple observations. We have (∑
n
i=1 bi)

2 = ∑
n
i=1 b2

i + 2 ∑1≤i<j≤n bibj,

and since ∑
n
i=1 bi = 1 − b0 = 2 we get

∑
1≤i<j≤n

Bij =
1

2
(4 −

n

∑
i=1

b2
i ). (6)

Now, note that for unit vectors u, v we have ‖u − v‖2
2 = 2(1 − u · v). Hence the values

2(1 − Mij), 1 ≤ i < j ≤ n, are the ℓ2
2 distances of unit vectors that have undergone the

polynomial tensoring transformation using some monomial (similarly for the values 2(1 −
Lij)). Arguing exactly as in Claim 9, the vectors form an ℓ1-metric that has a large diameter

unit representation, and so by Corollary 7 we have

∑
1≤i<j≤n

Bij(1 − Mij) ≤ 2, and ∑
1≤i<j≤n

Bij(1 − Lij) ≤ 2. (7)

We now use (6), (7), to conclude that

∑
1≤i<j≤n

Bij(1 − c1Mij − (1 − c1 − 2c2)Lij)

= 2c2 ∑
1≤i<j≤n

Bij + c1 ∑
1≤i<j≤n

Bij(1 − Mij) + (1 − c1 − 2c2) ∑
1≤i<j≤n

Bij(1 − Lij)

≤ c2

(

4 −
n

∑
i=1

b2
i

)

+ 2c1 + 2(1 − c1 − 2c2) = −c2

n

∑
i=1

b2
i + 2.
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Recall here that by Lemma 8, c2 > 9γ, and the SDP vectors {wi} satisfy the triangle

inequality. Therefore when b0 = −1 we may assume that ∑
n
i=1 b2

i ≥ 4. Theorem 1 now

follows since (5) is upper-bounded by

−2 + (1 + 18γ)

(

−c2

n

∑
i=1

b2
i + 2

)

≤ −2 + (1 + 18γ) (−36γ + 2) = −648γ2. (8)

3.4 Discussion and a strengthened version of Theorem 1

In this section we look a bit more carefully at how our result differs from previous work and

use the resulting observations to obtain a strengthened version of Theorem 1.

As mentioned in Section 2.2 all previous works [10, 4, 12, 9] studying integrality gaps

for VERTEX COVER SDPs use Frankl-Rödl graphs G
γ
m on n = 2m vertices. Moreover, they all

employ tensoring polynomials of some sort to construct their vector solutions. Perhaps the

most useful parameter differentiating the vector solutions amongst these papers (including

the current paper) is each solution’s minimal distance ∆ = mini 6=j ‖wi − wj‖2
2. In [4, 12] ∆

behaves like 1/m. To a large degree, what allowed the improvement of [9] was a modifica-

tion of the tensoring polynomials thereby increasing the minimal distance ∆ to a constant

(an arbitrary small one). The analysis of [9] then showed that the resulting solution satisfies

all hypermetrics of support O(∆/γ) with an integrality gap of 2 − Θ(∆) (in particular, tak-

ing the smallest possible γ, namely γ = Θ(
√

m/ log m), the analysis in [9] shows that the

solution satisfies all hypermetrics of support O(
√

log log n/ log n)).

In the present work we use similar vectors as the one used in [9] but get more mileage

by more carefully analyzing the structure of the ℓ1-metric that emerges from the solution.

In particular, while both [12] and [9] use the fact that removing w0 from the vector solution

gives an ℓ1-metric, in the current paper we crucially use the fact that our vectors arise by

applying tensoring polynomials to “sign” vectors. More precisely, we exploit the fact that

the ℓ1-metric corresponding to the vectors {wi}i≥1 has a unit representation with large di-

ameter. The bottom line is that our new analysis allows us to show that any hypermetric

(not just those with support O(∆/γ)) is satisfied as long as ∆/γ is a sufficiently large con-

stant (our argument does not work for the vector construction of [4] but also does not rule

out that same vector construction satisfying SDP (1) strengthened by (2)). But note now that

if we take γ = Θ(
√

log m/m) when defining our Frankl-Rödl instances, then for ∆/γ to be

constant it suffices to use a tensoring construction where the minimum distance ∆ is of order

up to O(
√

log m/m). In particular, the integrality gap obtained by our analysis is 2 − O(γ);

so taking γ = Θ(
√

log m/m) gives the following strengthened version of Theorem 1:

THEOREM 10. The integrality gap of the standard SDP relaxation for VERTEX COVER on in-

stances of n vertices tightened with all hypermetric inequalities is 2−O(
√

log log n/ log n).

Interestingly, the lower bound in Theorem 10 almost matches the upper bound given by

Karakostas [13] who gives an SDP for VERTEX COVER tightened with the triangle inequality

and which has integrality gap 2 − Ω(
√

1/ log n).
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4 ℓ1 Embeddability Implies Integrality

This section is devoted to proving Theorem 2 which is based on the following simple ob-

servation. Let the metric induced by SDP (1) be ℓ1, realized by some {λS}S⊆X. Since every

subset S induces a cut, we may restrict ourselves only to subsets S that contain the element

0, corresponding to z0. Now let Λ = ∑S λS and consider an orthonormal basis {eY}Y⊆X (eY

is indexed by all subsets of X, and is 1 in the Y-th coordinate and 0 elsewhere). For every

A ⊆ X we define uA = ∑S:A⊆S

√
λSeS. Associate also the singleton {0} with the vector u∅

corresponding to the empty set ∅. The key observation is that the mapping zi 7→ u{i} is an

isometry. This is because u{i} − u{j}‖2
2 equals

∑
S:i∈S

λS + ∑
S:j∈S

λS − 2 ∑
S:{i,j}⊆S

λS = ∑
S:i∈S

λS − ∑
S:{i,j}⊆S

λS + ∑
S:j∈S

λS − ∑
S:{i,j}⊆S

λS

= ∑
S:j 6∈S&i∈S

λS + ∑
S:i 6∈S&j∈S

λS = ∑
S

λSδS(i, j)

The last expression is exactly ‖zi − zj‖2
2. Theorem 2 now follows from Lemma 11 below.

LEMMA 11. Let G = (V, E) be a graph for which the metric induced by the solution of the
standard SDP (1) is an ℓ1-metric with unit representation {zi} that has large diameter. Then
the vector solution is a convex combination of vertex covers.

PROOF. For every S ⊆ {1, . . . , n} consider the characteristic vector yS ∈ {0, 1}n with

yS
i = 1 if and only if i ∈ S. We prove (A) If λS > 0 then S is a vertex cover; and (B)

1
4

(

‖z1 + z0‖2, . . . , ‖zn + z0‖2
)

= ∑S
1
Λ

λSyS.

For (A) note that the SDP edge constraints simply require that the triangle inequality

‖z0 − zi‖2 + ‖z0 − zj‖2 − ‖zi − zj‖2 ≥ 0 is tight. The same is true for the vectors u{i}, u{j},

since the mapping zi 7→ u{i} is an isometry. It follows that for every edge ij ∈ E we have

(u∅ − u{i})(u∅ − u{j}) = u2
∅
− u∅ · u{i} − u∅ · u{i} + u{i} · u{j}

=

(

∑
S

λS − ∑
S∋i

λS

)

−



∑
S∋j

λS − ∑
S⊇{i,j}

λS





= ∑
S 6∋i

λS − ∑
j∈S 6∋i

λS = ∑
j 6∈S 6∋i

λS,

and the last expression equals 0. Since cut coefficients are non-negative, claim 1 follows.

For (B) it suffices to show that for every i ∈ V, 1
4‖zi + z0‖2 = 1

Λ ∑S:i∈S λS. To that end,

recall that ‖z0 − zi‖2 = ∑S δS(0, i) and 0 ∈ S. Hence, 2ziz0 = 2− ∑S 6∋i λS, and 1
4‖z0 + zi‖2 =

1
4

(

4 − ∑S 6∋i λS

)

. The latter equals 1
Λ ∑S:i∈S λS iff ∑S λS = 4. This is guaranteed by Lemma 6,

since the ℓ1-metric induced by SDP (1) has large diameter.

5 Discussion - Open Problems

Our work raises two natural questions. Theorem 1 implies that the most interesting ℓ1 in-

equalities are those that are not hypermetric. Given that hypermetrics are the most natural



inequalities to consider, can we identify another family of interesting yet natural inequal-

ities that could potentially strengthen the standard SDP for VERTEX COVER? Since such

inequalities are produced by the Lasserre system, it seems we must better characterize the

constraints derived by that system. Second, it is interesting to investigate to what extent our

arguments apply to general ℓ1 inequalities. A positive answer could potentially give a first

step towards showing tight integrality gaps for VERTEX COVER in the Lasserre system.
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Appendix

PROOF. [Lemma 8 - sketch] Let G
γ
m = (V, E). The standard SDP (1) strengthened with the

triangle inequality requires for our vectors wi that

‖wi − w0‖2 + ‖wj − w0‖2 = ‖wi − wj‖2 , ∀ij ∈ E (the edge constraints) (9)

‖wi − w0‖2 + ‖wj − w0‖2 ≥ ‖wi − wj‖2 , ∀i, j ∈ V (the triangle inequality) (10)

and that all vectors have unit norm. For an edge ij ∈ E we have ui · uj = −1 + 2γ. Recalling

that wi = (18γ,
√

1 − (18γ)2TP(ui)) where P is our “tensoring” polynomial (see section 3.2),

it is easy to see that for the above constraints to hold it suffices to have

−1 − 18γ

1 + 18γ
= P(−1 + 2γ) ≤ P(x), ∀x ∈ [−1, 1], (11)

where the left equality takes care of the edge constraints and the right inequality implies the

triangle inequality. Set c1 = η1γ and c2 = η2γ.

For any distinct points of the hypercube, the high order term of P is negligible so we

can disregard it. Recall that 1/γ is even. For the edge constraint, i.e. the right inequality

in (11), we require P′(−1 + 2γ) = 0, and P′′(−1 + 2γ) > 0. The former requires that η1(1 −
2γ)1/γ−1 = 1− (η1 + 2η2)γ. The left constraint of condition (11) requires that − 1−18γ

1+18γ = (1−
(η1 + 2η2)γ)(−1 + 2γ) + η1γ(1 − 2γ)1/γ. Solving the system of inequalities with respect

to η1, η2 and taking the limit γ → 0 (or equivalently m → ∞) we get that η1 = e2 and

η2 = (36 − 3 − e2)/2 > 9. Finally it is easy to check that the second derivative is positive as

required.
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