
LIPIcs Leibniz International Proceedings in Informatics

Recurrence and Transience for
Probabilistic Automata

M. Tracol 1∗, C. Baier 2, M. Grösser 2

1 LRI

University Paris-South

France

tracol@lri.fr

2 Technische Universität Dresden

Germany

{baier|groesser}@tcs.inf.tu-dresden.de

ABSTRACT.
In a context of ω-regular specifications for infinite execution sequences, the classical Büchi condition,
or repeated liveness condition, asks that an accepting state is visited infinitely often. In this paper,
we show that in a probabilistic context it is relevant to strengthen this infinitely often condition. An
execution path is now accepting if the proportion of time spent on an accepting state does not go to
zero as the length of the path goes to infinity. We introduce associated notions of recurrence and
transience for non-homogeneous finite Markov chains and study the computational complexity of
the associated problems. As Probabilistic Büchi Automata (PBA) have been an attempt to generalize
Büchi automata to a probabilistic context, we define a class of Constrained Probabilistic Automata
with our new accepting condition on runs. The accepted language is defined by the requirement
that the measure of the set of accepting runs is positive (probable semantics) or equals 1 (almost-sure
semantics). In contrast to the PBA case, we prove that the emptiness problem for the language of a
constrained probabilistic Büchi automaton with the probable semantics is decidable.

1 Introduction

In a context of system analysis, ω-regular specifications are used to evaluate the long term

properties of a system [14]. An ω-regular specification can be decomposed into a safety part

and a liveness part. Typically, if the system is an elevator reacting to a user, an ω-regular

specification can ensure that the system will never do something ”wrong” (for instance hav-

ing its door open while moving), and that the system will eventually do something ”good”

after a stimulus (for instance the elevator should stop on level i after a finite number of steps

if the user asks to). The avoidance of the ”wrong” event is the safety part, and the ”even-

tually good” event is the liveness part. The liveness can be violated only in the limit. As

underlines [6], a weakness of the classical definition is that the requirements can be satisfied

by evolutions of the system which are quite unsatisfactory because no bound can be put on

the response time. For instance, as the elevator is used by different users, they may have to

wait an increasing and maybe unbounded amount of time to reach their level. Alternative

∗This research was funded by the French program on Computer Security ANR-07-SESU-013

c© Tracol, Baier, Grösser; licensed under Creative Commons License-NC-ND.
Foundations of Software Technology and Theoretical Computer Science (Kanpur) 2009.
Editors: Ravi Kannan and K. Narayan Kumar; pp 395–406
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany.
Digital Object Identifier: 10.4230/LIPIcs.FSTTCS.2009.2335

396 RECURRENCE AND TRANSIENCE FOR PROBABILISTIC AUTOMATA

definitions for liveness have been proposed, in order to bound the distance between con-

secutive responses [6, 3]. In [6], the authors present the alternative notion of finitary liveness:

finitary liveness assumes the existence of an unknown bound b such that every stimulus is

followed by a response within b transitions. In this paper, instead of asking for a bound on

the number of steps between ”good” events, we will ask that the proportion of ”good” events

on a run does not go to zero as the length of the run goes to infinity.

In [4], the authors consider ω-regular properties on Markov chains, and in [2], the au-

thors extend Büchi automata to a probabilistic context. They introduce the class PBA>0 of

Probabilistic Büchi Automata, which can be seen as a resolution of the non-determinism on

a Büchi automaton by a probabilistic choice. In [2], as for the classical Büchi condition, a

run is accepted if it visits infinitely often an accepting state, and a word is accepted if the

probability of the set of associated accepted runs is non zero. This definition leads to a class

of languages which is closed under the elementary operations of union, intersection and

complementation. Moreover, the class of languages defined by PBA>0 strictly subsumes

the class of ω-regular languages. Unfortunately, working on these objects is difficult since

basic problems such as the emptiness problem for the language of an automaton in PBA>0

is undecidable [1].

In this paper, we consider alternative definitions of accepting runs. We introduce the

notion of the Support of a run: a state s is in the support of a run r if the portion of time the

state s is visited by r between time 0 and T, does not go to zero as T goes to infinity. We

introduce the class CPBA of Constrained Probabilistic Büchi Automata. A run on an automaton

in CPBA is accepting if there exists an accepting state in its support. As for PBA>0, a word

is accepted by a CPBA>0 if the probability of the set of associated accepted runs is non zero.

We show that the class of languages associated to CPBA>0 is not closed under com-

plementation, however the emptiness problem is now in PSPACE. As it is done in [1] for

the class PBA, we consider the class CPBA=1 of Constrained Probabilistic Büchi Automata

with an almost sure semantics. We prove that solving the emptiness problem of the language

of an automaton in CPBA=1 is equivalent to solving the same problem on an automaton in

the class PBA=1.

The fact that with positive probability an accepting state is in the support of a run can

be seen as a recurrence property, by analogy with the classical homogeneous Markov chain

theory. We define notions of recurrence and transience for non homogeneous probabilistic

processes, in a context of Finite Probabilistic Tables (FPT, [16, 15]). An FPT can be seen as

a non-homogeneous Markov chain on a finite state space with a finite number of transition

functions. The main results of the paper are:

• Notions of weak and strong transience and recurrence for non homogeneous Markov

processes.

• The study of the computational complexity of the associated problems, in particular

the PSPACE-completeness of the strong recurrence problem, and the undecidability

of the two states strong recurrence problem.

• The decidability of the emptiness problem for the languages of automata in CPBA>0

and CPBA=1.

• The study of the expressivity of our new classes of automata. In particular the set of

the complement of languages of automata in PBA=1 is expressible with automata in

TRACOL, BAIER, GRÖSSER FSTTCS 2009 397

CPBA>0.

The paper is organized as follows: In section 2 we briefly recall the basic notions of finite

probabilistic tables and define (constrained) probabilistic automata on infinite words. In

section 3 we define the notions of transience and recurrence on finite probabilistic tables and

study the computational complexity of the associated problems. In section 4 we consider the

classes CPBA>0 and CPBA=1 and possible generalizations. Section 5 concludes the paper.

2 Preliminaries

Throughout the paper, we assume some familiarity with classical automata theory on in-

finite words [9]. We will use the notion of Finite Probabilistic Table (FPT) as a general

framework for probabilistic automata. An FPT is the ”structural part” of a probabilistic

automaton, on which no acceptance condition has been made precise. An FPT can also be

seen as a particular kind of non-homogeneous Markov chain, where only a finite number of

transition functions are available. If S is a finite set, we write ∆(S) for the set of probability

distributions on S.

DEFINITION 1.[Finite Probabilistic Tables [16]] A Finite Probabilistic Table (FPT), is a tuple
T = (S, Σ, {Ma, a ∈ Σ}, α), where S is a finite set (representing the states), α ∈ ∆(S) is
the initial distribution, Σ is a finite set (representing the alphabet), and for all a ∈ Σ, Ma is
a Markov matrix of order |S| (Ma represents the transition probabilities from state to state

related to the symbol a).

We write Ma = (ma
si,s j

)i,j∈{1,...,|S|}. The component ma
s,t corresponds to the probability of

going from state s to state t when the transition matrix Ma is chosen. If w = a1...al ∈ Σ∗, we

write Mw for the product Ma1 · ... · Mal , whose components are the mw
si,s j

. Often, we will use

the notation δ for the transition function: if w ∈ Σ∗ and s, t ∈ S, δ(s, w)(t) is the probability

to arrive in t if we start on s and read w. In other words, δ(s, w)(t) = mw
s,t. We generalize

the notation and write δ(s, w) for the set of states t ∈ S such that δ(s, w)(t) > 0. Finally, if

A ⊆ S (resp. α ∈ ∆(S)), δ(A, w) (resp. δ(α, w)) is the set of states t ∈ S such that there exists

s ∈ A with δ(s, w)(t) > 0 (resp. s ∈ S s.t. α(s) > 0 and δ(s, w)(t) > 0). We will often define

an FPT as a tuple T = (S, Σ, δ, α), since we can compute easily δ and the Ma, a ∈ Σ one from

the other.

Let T = (S, Σ, δ, α) be an FPT. A run on T , or a run on S and Σ, is an alternating

sequence s0a1s1a2..., finite or infinite, of states in S and letters in Σ. The trace of a run r,

written Tr(r), is the sequence of its letters, and In f (r) is the set of states which appear

infinitely often in r. Given a finite run r = s0a1s1...ansn we denote by |r| = n the length of

r and by r|k = s0a1s1...aksk its prefix of length k. Similarly for a finite word w ∈ Σ∗, |w| is

the length of w and w|k denotes its prefix of length k. We write Ω for the set of infinite runs

on T . If n ∈ N, Xn is the random variable on Ω which associates to a run r its n-th state.

The set of cones of the form Cw = {r ∈ Ω|Tr(r|n) = w}, for w ∈ Σn, induces a σ-field F
on Ω which is the smallest σ-field with respect to which all the Xn, n ≥ 0, are measurable.

The initial distribution α on S, and an infinite word w = a1a2... ∈ Σω, uniquely determine

a probability measure P
α
w on F such that Xn, n ≥ 0 is a non-homogeneous Markov chain

on (Ω,F , P
α
w), with P

α
w(X0 = s) = α(s), and P

α
w(Xn+1 = t|Xn = s) = δ(s, an+1)(t) for all

398 RECURRENCE AND TRANSIENCE FOR PROBABILISTIC AUTOMATA

n ∈ N and s, t ∈ S. (See [11, 13, 18, 7]). We may forget the α in the notation when clear from

the context.

DEFINITION 2.[Support of an infinite sequence] Let Σ be a finite alphabet, and w = a0, a1, ... ∈
Σω. Let ρ = b0b1...bl ∈ Σ∗. We call the proportion of ρ in w the limit-sup of the proportion
of time spent reading ρ when reading a1, ..., an:

prop(ρ, w) = Limn→∞

|{i ∈ [1; n − l] s.t. ai = b0 ∧ ... ∧ ai+l = bl}|

n
.

The support of the sequence w, written Supp(w), is the set of words ρ ∈ Σ∗ such that
prop(ρ, w) > 0.

For instance, if we consider a run r on an automaton A as an infinite sequence on S∪ Σ,

the set of states in the support of r can be seen as the set of states on which r spends a

non negligible amount of time. It is a subset of In f (r), and the inclusion is strict in general.

Instead of imposing acceptance conditions on the set of states that are visited infinitely often

in a run, in this paper we will impose acceptance conditions on the set of states that are

visited with a “non negligible” portion, i.e. that are in the support of the run. This gives rise

to the class of constrained probabilistic automata.

A probabilistic automaton is just a pair A = (T , Acc) where T = (S, Σ, δ, α) is an

FPT and Acc is an acceptance condition. We consider here acceptance conditions of the

following types: Büchi, where Acc ⊆ S is a subset of final states, Street and Rabin, where

Acc = {(H1, K1), . . . , (Hn, Kn)} is a set of acceptance pairs and Muller, where Acc ⊆ 2S is a

set of final sets. Given a subset T ⊆ S of states we call T accepting according to a

• Büchi acceptance condition Acc ⊆ S, if T ∩ Acc 6= ∅. In the sequel we will denote a

Büchi acceptance condition by F.

• Rabin acceptance condition Acc = {(H1, K1), . . . , (Hn, Kn)}, if there exists 1 ≤ i ≤ n

such that T ∩ Hi = ∅ and T ∩ Ki 6= ∅.

• Streett acceptance condition Acc = {(H1, K1), . . . , (Hn, Kn)}, if for every 1 ≤ i ≤ n it

holds that T ∩ Hi 6= ∅ or T ∩ Ki = ∅.

• Muller acceptance condition Acc ⊆ 2S, if T ∈ Acc.

As indicated above we will distinguish between two types of automata, namely

• (classical) probabilistic automata, where a run is called accepting for w ∈ Σω iff

Tr(r) = w and In f (r) is accepting and

• constrained probabilistic automata, where a run is called accepting for w ∈ Σω iff

Tr(r) = w and Supp(r) is accepting.

For both types of automata we distinguish two semantics, the probable semantics, where

the accepted language of A is:

L>0(A) = {w ∈ Σω|Pw({r|r is accepting f or w}) > 0}

and the almost-sure semantics where the accepted language of A is:

L=1(A) = {w ∈ Σω|Pw({r|r is accepting f or w}) = 1}.

Given an automaton with a Büchi acceptance condition, we call a (classical) probabilistic

automaton a PBA and we call a constrained probabilistic automaton a CPBA (the analogous

notations apply to Street (PSA, CPSA), Rabin (PRA, CPRA) and Muller (PMA, CPMA) au-

tomata). The class of PBA is denoted PBA. In the following, when K is a class of automata

and x ∈ {> 0, = 1}, we write CKx for the associated class of languages. We will some-

TRACOL, BAIER, GRÖSSER FSTTCS 2009 399

times write PBAx, resp. PBAx, to denote a PBA, resp. the class of PBA, with the associated

semantics given by x.

By [2, 1], CPBA>0 is closed under union, intersection and complementation. However,

the emptiness problem of a PBA>0 is shown to be undecidable. On the other hand, the

emptiness problem for an automaton in PBA=1 is shown to be decidable, but the class

CPBA=1 is not any more closed under complementation.

Remarks: Taking an inf limit instead of a sup limit in the definition of the support, we

could express the fact that the proportion of time spent on a particular set of states stays

bounded away from zero as the length increases. The two different possible definitions for

the support of a run would lead to different classes of automata, which recognize different

languages and can express different properties of interest. However, we will see that the

same algorithms can be used on both classes of automata, for the natural problems such as

the emptiness problem. In this paper, we will use the limit-sup to define the support of a

run, but the results could be easily adapted to handle the inf limit case.

3 Finite non-homogeneous Markov chains

We are interested in basic questions concerning our models of probabilistic automata (PBA,

CPBA), such as the emptiness problem of the language of a given automaton, or the univer-

sality problem for this language. Such problems can be presented in the general framework

of finite non-homogeneous Markov chains. In the past, researcher working in this domain

seem to have been mostly interested in considerations on the ergodic properties of such

chains ([15, 17]). In general they did not take into account the fact that the number of transi-

tion functions of the process may be finite, which is crucial when dealing with probabilistic

automata. We start with some remarks on homogeneous Markov chains, and next we study

severall problems of interest concerning non-homogenous Markov chains.

3.1 Recurrence and transience for non-homogeneous Markov chains

Homogeneous Markov chains

We fix Xi, i ≥ 0 a homogeneous Markov chain on a finite state space S. If α ∈ ∆(S), P
α is

the probability distribution on the set of runs on the chain with initial distribution α. Recall,

[11], that a state s ∈ S is called recurrent if P
s({r|s ∈ In f (r)}) > 0. Otherwise it is called

transient. Note that we sometimes identify s with the Dirac distribution µs ∈ ∆(S) with

µs(s) = 1.

THEOREM 3.[Recurrence and the ergodic theorem, [11]] Given a homogeneous Markov
chain with finite state space S and s ∈ S, s is recurrent iff P

s({r|s ∈ In f (r)}) = 1, iff
P

s({r|s ∈ Supp(r)}) > 0, iff P
s({r|s ∈ Supp(r)}) = 1.

Thus, in the homogeneous case, a state s is recurrent if almost all the runs on the chain

visit infinitely often s, or equivalently if almost all the runs spend a non negligible amount

of time on s. We will see in the next subsection that this equivalence does not hold in the

context of non-homogeneous Markov chains. Notice that the notion of finitary liveness of [6]

400 RECURRENCE AND TRANSIENCE FOR PROBABILISTIC AUTOMATA

is not adapted to the probabilistic context. Indeed, even if s is recurrent, on a homogeneous

Markov chain, for almost all the runs on the chain, the distance between two consecutive

occurrences of s is not bounded.

Non-homogeneous Markov chains

For the following we fix an FPT T = (S, Σ, δ, α).

Accessibility: a state s ∈ S is said to be accessible in T if there exists n ∈ N and a word

ρ ∈ Σn such that δ(α, ρ)(s) > 0. That is, with positive probability the process can be in state

s after a finite number steps. By simple reachability considerations, we can compute the set

Acc(T) of the accessible states in T in time polynomial in the size of the FPT.

Given a homogeneous Markov chain on S and s ∈ S, theorem 3 shows that P
s({r|s ∈

In f (r)}) > 0 iff P
s({r|s ∈ Supp(r)}) > 0. This is not the case in the context of non-

homogeneous Markov chains, which motivates the two following definitions for recurrence.

DEFINITION 4.[Strong Recurrence, Weak Recurrence] Let Xn, n ∈ N be a non homogeneous

Markov chain on a finite state space S, and s ∈ S. Let P be the probability distribution on
the set of runs of the chain. We say that s is weakly recurrent (resp. strongly recurrent), if

P({r|s ∈ In f (r)}) > 0 (resp. P({r|s ∈ Supp(r)}) > 0)

Otherwise, s is said to be weakly transient (resp. strongly transient).

Given an FPT T = (S, Σ, δ, α), several algorithmic problems may arise, concerning

transience and recurrence. The first question is whether we can find w ∈ Σω such that

a given state s ∈ S is weakly, or strongly, recurrent, for the associated non-homogeneous

Markov chain on T .

Problem 1 (Weak recurrence (resp. strong recurrence))

Input: An FPT T = (S, Σ, δ, α), F ⊆ S.

Question: Is there w ∈ Σω such that

P
α
w[{r|F ∩ In f (r) 6= ∅}] > 0. (resp. P

α
w[{r|F ∩ Supp(r) 6= ∅}] > 0).

The undecidability of the emptiness problem for PBA>0 [2], implies that the weak re-

currence problem is undecidable. In contrast, we will see that the strong recurrence problem

is PSPACE-complete (theorem 10). We cannot generalize our approach to several states, as

we will prove that the following problem is undecidable (theorem 15):

Problem 2 (Two states strong recurrence)

Input: An FPT T = (S, Σ, δ, α), s, t ∈ S.

Question: Is there w ∈ Σω s.t. P
α
w[{r|s ∈ Supp(r) and t ∈ Supp(r)}] > 0?

Consider now the universal analog of the weak recurrence problem (resp. of the strong

recurrence problem): do we have that for all w ∈ Σω, Pw[{r|s ∈ In f (r)}] > 0? (resp.

Pw[{r|s ∈ Supp(r)}] > 0). By contraposition, these problems can be reformulated as fol-

lows.

Problem 3 (Universal weak recurrence (resp. universal strong recurrence))

Input: An FPT T = (S, Σ, δ, α), F ⊆ S.

Question: Is there w ∈ Σω such that

P
α
w[{r|F ∩ In f (r) = ∅}] = 1. (resp. P

α
w[{r|F ∩ Supp(r) = ∅}] = 1).

TRACOL, BAIER, GRÖSSER FSTTCS 2009 401

By the results of [1], since CPBA>0 is closed under complementation, the universal weak

recurrence problem is undecidable. We will show later that CCPBA>0 is not closed under

complementation, hence we cannot conclude directly for the complexity of the universal

strong recurrence problem.

The condition Pw[{r|F ∩ In f (r) 6= ∅}] > 0 (as well as the condition Pw[{r|F ∩Supp(r) 6=
∅}] > 0), can be seen as a Büchi condition. One can be interested in the co-Büchi condition:

a run is accepted if no state in F is visited infinitely often. The associated problems in our

context are the following.

Problem 4 (Weak transience (resp. strong transience))

Input: An FPT T = (S, Σ, δ, α), F ⊆ S.

Question: Is there w ∈ Σω such that

P
α
w[{r|F ∩ In f (r) = ∅}] > 0. (resp. P

α
w[{r|F ∩ Supp(r) = ∅}] > 0.)

The weak transience and strong transience problems are both PSPACE -complete (the-

orem 14). As before, we can consider the universal versions of these problems.

Problem 5 (Universal weak transience (resp. universal strong transience))

Input: An FPT T = (S, Σ, δ, α), F ⊆ S.

Question: Is there w ∈ Σω such that

P
α
w[{r|F ∩ In f (r) 6= ∅}] = 1. (resp. P

α
w[{r|F ∩ Supp(r) 6= ∅}] = 1.)

The universal weak and strong transience problems are PSPACE-complete (theorem

12). The following of the section is devoted to the proofs of the complexity of the previous

problems.

3.2 Computational complexity of the recurrence problems.

Our decision procedures will often rely on the notion of probabilistic loop, which correspond

to the set of homogeneous Markov chains that one can define on an FPT.

DEFINITION 5.[Probabilistic loop] A probabilistic loop in T is a couple (C, ρ), where C ⊆ S

and ρ ∈ Σ∗ are such that δ(C, ρ) ⊆ C.

If F ⊆ S, a probabilistic loop around F in T is a probabilistic loop (C, ρ) in T such that
for all s ∈ C, there exists ρ′s a prefix of ρ, such that δ(s, ρ′s) ∩ F 6= ∅.

A probabilistic loop (C, ρ) in T induces an homogeneous Markov chain Xn, n ∈ N with

state space C and transitions probabilities given, for all s, t ∈ C, by P[Xn+1 = t|Xn = s] =
δ(s, ρ)(t). Let A be the set of states in C which are recurrent for this chain. The Support of

the loop (C, ρ) is the set of states t in S such that there exists s ∈ A and ρ′ a prefix of ρ with

δ(s, ρ′)(t) > 0.

We consider first the strong recurrence problem. We fix an instance T = (S, Σ, δ, α), F ⊆
S, of the strong recurrence problem. We can assume that F = {s}, with no loss on generality.

We will prove in this subsection that s is strongly recurrent for a non-homogeneous Markov

chain on the probabilistic table iff s is accessible and there exists a probabilistic loop around

s in T . This will imply the PSPACE completeness of the strong recurrence problem. The

next example shows that this equivalence does not hold in general, if Σ is infinite.

Example 1 Let S = {s, t}. For δ ∈]0; 1] consider the Markov matrix Mδ =

(

1 − δ δ
0 1

)

. The graph

402 RECURRENCE AND TRANSIENCE FOR PROBABILISTIC AUTOMATA

of the associated Markov chain is: s

1−δ

�� δ
// t

1

��

Suppose that the chain is initiated on state s: α = {s}. Consider now the family of matrices
M = {M1/2i , i ∈ N}. It is not difficult to see that for any finite product of matrices in M, the
associated homogeneous Markov chain Xn, n ≥ 0 on S is aperiodic and t is the only state in the
support of the stationary distribution. By theorem 3, this implies that s is transient for the (homo-
geneous) chain. This implies that there exists no probabilistic loop around s in T . However, if we
consider the non-homogeneous Markov chain Xn, n ≥ 0 on S whose transitions probabilities are
given by the matrices M1/2, M1/22, M1/23 , ..., then P

α
1/2,1/22...

[{r|∀n ∈ N Xn(r) = s}] > 0, and in

particular P
α
1/2,1/22...

[{r|s ∈ Supp(r) > 0}] > 0, which proves that s is strongly recurrent for the

(non-homogeneous) chain.

We give a couple of definitions and lemma to prove our theorem. The notion of filter

will allow us to build a probabilistic loop around a state s by aggregating the successors of

this state.

DEFINITION 6.[Filters] Let S be a finite state space, and Σ be a finite alphabet. A filter on

S and Σ is a finite sequence of couples on S ∪ {·} and Σ ∪ {·}, where · is a special symbol
denoting an “indefinite place“.

A filter can be seen as a word in ((S ∪ {·})(Σ ∪ {·}))∗. Two filters x and y will be said

to coincide, written x = y, if they have the same length and at each place either they have

the same elements, or at least one has got an empty place. If u and v are two filters on S and

Σ, then uv is the natural concatenated filter: For instance, if w = a1...al ∈ Σ∗ and s ∈ S, then

(s, w, s) is the filter (s, a1), (·, a2), ..., (·, al), (s, ·).

We start with a combinatorial lemma. The proportion prop(w, r) of a filter w in a run r

is naturally defined the same way as we defined the proportion of a subword in a run, using

a limit-sup.

LEMMA 7. Let S be a finite state space and Σ be a finite alphabet. Let r be a run on S and
Σ, and let u be a filter on S and Σ. Suppose prop(u, r) > 1/N, where N ∈ N and N > |u|.
Then there exists another filter v on S and Σ such that prop(uvu, r) > 1/(2 · N). Moreover,

we can choose v such that |v| ≤ 2 · N.

We will apply recursively the following lemma to build a probabilistic loop around s.

LEMMA 8. Let ρ ∈ Σ∗. Suppose P
α
w[{r|prop((s, ρ), r) > 0}] > 0, and let t ∈ δ(s, ρ). Then,

there exists ρ′ ∈ Σ∗ such that:

s ∈ δ(t, ρ′), and P
α
w[{r|prop((s, ρρ′), r) > 0}] > 0.

THEOREM 9. Let T = (S, Σ, δ, α), s ∈ S, be an instance of the strong recurrence problem.
Then the following are equivalent:

• There exists w ∈ Σω such that s is strongly recurrent for the associated non-homogeneous
Markov chain on T .

• s is accessible, and there exists a probabilistic loop around s in T .

Moreover, in the positive case, the letters of the trace of the loop can all be taken in the
support of w.

TRACOL, BAIER, GRÖSSER FSTTCS 2009 403

PROOF. (sketch) Notice that one way is easy: if there exists ρ0 ∈ Σn such that δ(α, ρ0)(s) >

0 and if there exists a probabilistic loop (C, ρ) around s, then P
α
ρ0·ρω({r|s ∈ Supp(r)}) > 0,

and s is strongly recurrent for the chain associated to w = ρ0 · ρω.

We prove now that the strong recurrence problem is PSPACE complete. First, we know

that we can compute in PTIME if s is accessible from α. Thus, the strong recurrence problem

is PTIME equivalent to the problem of finding if there exists a probabilistic loop around s.

We reduce the problem of Finite Intersection of Regular Languages, which is known to be

PSPACE complete [12], to our strong recurrence problem.

Problem 6 (Finite Intersection of Regular Languages)

Input: A1, ...,Al a family of deterministic automata (on finite words) on the same finite alphabet Σ.

Question: Do we have L(A1) ∩ ...∩ L(Al) = ∅ ?

THEOREM 10. The strong recurrence problem is PSPACE complete.

We consider now the complexity of the co-Büchi problems.

PROPOSITION 11. Let T = (S, Σ, δ, α) be an FPT, and F ⊆ S. Then the following are

equivalent:
1. ∃w ∈ Σω s.t. P

α
w[{r|F ∩ In f (r) = ∅}] > 0.

2. ∃w ∈ Σω s.t. P
α
w[{r|F ∩ Supp(r) = ∅}] > 0.

3. There exists an accessible probabilistic loop on S whose support does not contain any

state in F

THEOREM 12. The universal weak and strong transience problems (problem 5) are PSPACE
complete.

PROOF. As for the strong recurrence problem, we can build a nondeterministic Turing

machine which finds a relevant probabilistic loop in PSPACE. For the PSPACE hardness, we

can also reduce the finite intersection of regular languages problem to these problems.

PROPOSITION 13. Let T = (S, Σ, δ, α) be an FPT, and F ⊆ S. Then the following are
equivalent:

1. ∃w ∈ Σω s.t. Pw[{r|F ∩ In f (r) 6= ∅}] = 1.
2. ∃w ∈ Σω s.t. Pw[{r|F ∩ Supp(r) 6= ∅}] = 1.

3. There exists ρ0 and ρ in Σ∗ such that (δ(α, ρ0), ρ) is a probabilistic loop around F.

PROOF. 3 ⇒ 2 and 2 ⇒ 1 are simple. Suppose 1: ∃w ∈ Σω s.t. P
α
w[{r|F ∩ In f (r) 6= ∅}] >

0. Write w = a1a2.... For i ∈ N, let Hi = δ(α, w|i) =
⋃

s|α(s)>0 δ(s, w|i).

Since S is finite, there exists H ⊆ S such that infinitely often, Hi = H. Let i0 ∈ N such

that Hi0 = H. Let t ∈ H. Then P
α
w[{r|Xi0 (r) = t}] > 0. Since P

α
w[{r|F ∩ In f (r) 6= ∅}] = 1, F

must be reachable from t after a finite number of steps. That is, there exists lt ∈ N such that

δ(t, ai0+1ai0+2...ai0+lt
)(F) > 0. Let l0 = Maxt∈H lt, and l ≥ l0 such that δ(s, w|i0+l) = H. Then

ρ0 = w|i0 and ρ = ai0+1, ..., ai0+l satisfy the conditions of 3.

THEOREM 14. The weak transience and strong transience problems (problem 4) are PSPACE
complete.

PROOF. The proof of the fact that these problems are in PSPACE is the same as for the

strong recurrence problem: a nondeterministic Turing machine can guess ρ0 and ρ and ver-

ify in PSPACE the requirements. Concerning the PSPACE hardness, we point out that the

404 RECURRENCE AND TRANSIENCE FOR PROBABILISTIC AUTOMATA

exact same reduction as for the strong recurrence problem is also a reduction for the Inter-

section of Regular Languages problem to our problem.

We can reduce the emptiness problem for an automaton in PBA>0 to problem 2:

THEOREM 15. Problem 2 is undecidable.

4 Probabilistic automata

In this section we study our new classes of constrained probabilistic automata using the

results from the previous section. We start our discussion with the class CPBA>0. As a

CPBA is structurally an FPT plus a set of final states, we can use the results of the last section,

and the notion of probabilistic loop. A probabilistic loop on a CPBA will be accepting if its

support contains an accepting state. For the following, we fix a CPBA A = (T , F), where

T = (S, Σ, δ, α) is an FPT and F ⊆ S. The past section yields the following theorem.

THEOREM 16. The following are equivalent:

1. L>0(A) 6= ∅.
2. A accepts a lasso shape word.

3. There exists an accessible and accepting probabilistic loop on A.

PROOF. 1 ⇔ 3 comes from theorem 9. 2 ⇒ 1 is direct. Suppose 3. If x ∈ Σ∗ is such that

δ(α, x)(s) > 0 and y ∈ Σ∗ is the trace of the loop, the word x · yω is a lasso shape word and

belongs to the language of the automaton.

COROLLARY 17. The emptiness problem of the language of a CPBA with the probable
semantics is PSPACE complete.

PROPOSITION 18. CCPBA>0 is not closed under complementation.

In particular, the proof shows that the set of ω-regular languages is not a subset of

the set of languages definable by automata in CPBA>0. The following proposition, using a

construction of [10], shows that the class of the complements of languages of automata in

PBA=1 is a subset of the class of languages recognized by automata in CPBA>0.

PROPOSITION 19. If A ∈ PBA, there exists A′ ∈ CPBA such that |A′| ≤ |A| + 1 and
L>0(A′) = L=1(A)c. Moreover, the inclusion {L=1(A)c|A ∈ PBA} ⊆ CCPBA>0 is strict.

As a corollary, since the emptiness of the language of a CPBA>0 can be decided in

PSPACE, this proves that the universality problem of the language of an automaton in

PBA=1 can be decided in PSPACE. The following proposition shows that the emptiness

problems on the classes PBA=1 and CPBA=1 are equivalent. Given a probabilistic automa-

ton A with final states set F, we can consider the language LPBA=1
(A) of the set of words

accepted by A when A is considered in PBA=1, and also the language LCPBA=1
(A) of the

set of words accepted by A when A is considered in CPBA=1.

TRACOL, BAIER, GRÖSSER FSTTCS 2009 405

PROPOSITION 20. Let A be a probabilistic automaton with final states set F. Then:

• LPBA=1
(A) = ∅ iff LCPBA=1

(A) = ∅.
• LPBA=1

(A) = Σω iff LCPBA=1
(A) = Σω.

PROOF. Follows directly from propositions 11 and 13, as the condition on the probabilistic

loop around the final state set is a structural condition, which does not depend on consider-

ations on Inf or Supports sets of the runs.

By theorem 12 and theorem 14, the complexity of the emptiness problem and the uni-

versality problem of the language of an automaton in CPBA=1 or in PBA=1 is in PSPACE.

This improves the previous results of [1] which showed using different tools that the empti-

ness problem for the language of an automaton in PBA=1 is in EXPTIME. Note that the

upcoming paper [5] shows PSPACE-completeness for the emptiness problem and the uni-

versality problem of the language of an automaton in PBA=1.

PROPOSITION 21. The class of languages CPBA=1 is a subclass of CCPBA=1 , and the inclusion
is strict.

PROOF. The inclusion follows from the construction of a layered automaton, as in propo-

sition 19. We can show that {w|a ∈ Supp(w)} ∈ CCPBA=1 − CPBA=1 .

We have seen that in contrast to (classical) probabilistic automata, for constrained prob-

abilistic automata, the emptiness problem for Büchi acceptance under the probable seman-

tics becomes decidable. However, for Street, resp. Muller acceptance condition, the empti-

ness problem for the probable semantics is undecidable. Surprisingly, for Rabin (and thus

parity) acceptance, we can prove as for theorem 10 that the problem is decidable.

THEOREM 22. The emptiness problem for CPSA, resp. CPMA, under the probable seman-
tics is undecidable.

PROOF. With Acc = {({s}, S), ({t}, S)}, resp. Acc = {T : {s, t} ⊆ T ⊆ S}, problem 2 (two

states strong recurrence) reduces to the emptiness problem for CPSA>0, resp. CPMA>0. As

theorem 15 shows the undecidability of problem 2, the claim follows.

THEOREM 23. The emptiness problem for CPRA under the probable semantics is decidable.

Remarks: If we use the alternative definition for the support of a run, such that a state s is

in the support of a run if the Inf limit of the time spent on s is non zero, we get different

classes of automata, with different languages. However, the emptiness problem and all the

natural problems can still be solved using the same tools. For instance, the language of

an associated PCA automaton is still non empty iff there exists an accessible and accepting

probabilistic loop. Thus, the complexity of the problems we studied does not change.

5 Conclusion

This paper presents an alternative definition to the the classical ”infinitely often” Büchi con-

dition. We presented several notions of recurrence and transience on finite probabilistic

tables and gave the precise computational complexity of several of the associated prob-

lems. We used these results to prove the decidability of basic problems on new classes of

406 RECURRENCE AND TRANSIENCE FOR PROBABILISTIC AUTOMATA

probabilistic automata on infinite words. Several theoretical questions are still open, e.g.,

the complexity of the universal strong recurrence problem. The possibility to find classes

of probabilistic automata on which the basic problems such as the emptiness problem are

computable, and which may be used to specify relevant properties in a system verification

context, could motivate future work. Another issue is in the context of infinite duration

games, where we can change the classical ω-regular condition of [8], or the extensions of

[6], by our notion of acceptance.

Bibliography

[1] C. Baier, N. Bertrand, and M. Grösser. On Decision Problems for Probabilistic Büchi

Automata. In Proc. of FOSSACS ’08, volume 4962 of LNCS. Springer, 2008.

[2] C. Baier and M. Grösser. Recognizing omega-regular Languages with Probabilistic

Automata. In Proc. of LICS ’05, pages 137–146. IEEE CS Press, 2005.

[3] M. Bojanczyk and T. Colcombet. Bounds in omega-regularity. In Proc. of LICS ’06,

pages 285–296. IEEE CS Press, 2006.

[4] D. Bustan, S. Rubin, and M.Y. Vardi. Verifying omega-Regular Properties of Markov

Chains. In Proc. of CAV ’04, volume 3114 of LNCS, pages 189–201. Springer, 2004.

[5] R. Chadha, A.P. Sistla, and M. Viswanathan. Power of randomization in automata on

infinite strings. In to appear in Proc. of the 20th International Conference on Concurrency

Theory (CONCUR’09), Lecture Notes in Computer Science. Springer, 2009.

[6] K. Chatterjee, T.A. Henzinger, and F. Horn. Stochastic Games with Finitary Objectives.

[7] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. Jour-

nal of the ACM, 42(4):857–907, 1995.

[8] L. de Alfaro and TA Henzinger. Concurrent omega-regular games. In Logic in Computer

Science, 2000. Proceedings. 15th Annual IEEE Symposium on, pages 141–154, 2000.

[9] E. Grädel, W. Thomas, and T. Wilke. Automata, Logics, and Infinite Games: A Guide

to Current Research, volume 2500 of LNCS. Notes in Comp. Sci. Springer, 2002.

[10] M. Größer. Reduction Methods for Probabilistic Model Checking. PhD thesis, Technische

Universität Dresden, 2008.

[11] J.G. Kemeny and J.L. Snell. Finite Markov Chains. Springer-Verlag, 1983.

[12] D. Kozen. Lower bounds for natural proof systems. In Foundations of Computer Science,

1977., 18th Annual Symposium on, pages 254–266, 1977.

[13] V.G. Kulkarni. Modeling and Analysis of Stochastic Systems. Chapman & Hall/CRC, 1995.

[14] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems: specification.

Springer.

[15] A. Paz. Ergodic theorems for infinite probabilistic tables. Ann. Math. Statist, 41:539–550,

1970.

[16] A. Paz. Introduction to probabilistic automata. Academic Press New York, 1971.

[17] E. Seneta. Non-Negative Matrices and Markov Chains. Springer, 2006.

[18] M.Y. Vardi. Automatic verification of probabilistic concurrent finite state programs. In

Foundations of Computer Science, 1984., 26th Annual Symposium on, pages 327–338, 1985.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

