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Abstract. We study the problem of recognizing graph powers and computing roots of
graphs. We provide a polynomial time recognition algorithm for r-th powers of graphs of
girth at least 2r + 3, thus improving a bound conjectured by Farzad et al. (STACS 2009).
Our algorithm also finds all r-th roots of a given graph that have girth at least 2r + 3 and
no degree one vertices, which is a step towards a recent conjecture of Levenshtein that
such root should be unique. On the negative side, we prove that recognition becomes an
NP-complete problem when the bound on girth is about twice smaller. Similar results
have so far only been attempted for r = 2, 3.

1. Introduction

All graphs in this paper are simple, undirected and connected. If H is a graph, its
r-th power G = Hr is the graph on the same vertex set such that two distinct vertices are
adjacent in G if their distance in H is at most r. We also call H the r-th root of G.

There are some problems naturally related to graph powers and graph roots. Suppose
P is a class of graphs (possibly consisting of all graphs), r is an integer and G is an arbitrary
graph. The questions we ask are:

• The recognition problem: Is G an r-th power of some graph from P? Formally, we
define a family of decision problems:

Problem. r-TH-POWER-OF-P-GRAPH
Instance. A graph G.
Question. Is G = Hr for some graph H ∈ P?

• The r-th root problem: Find some/all r-th roots of G which belong to P.
• The unique reconstruction problem: Is the r-th root of G in P (if any) unique?
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The above problems have been investigated for various graph classes P. There exist
characterizations of squares [15] and higher powers [3] of graphs, but they are not com-
putationally efficient. Motwani and Sudan [14] proved the NP-completeness of recognizing
graph squares and Lau [8] extended this to cubes of graphs. Motwani and Sudan [14] sug-
gested that recognizing squares of bipartite graphs is also likely to be NP-complete. This
was disproved by Lau [8], who gave a polynomial time algorithm that recognizes squares
of bipartite graphs and counts the bipartite square roots of a given graph. Apparently the
first proof that r-TH-POWER-OF-GRAPH and r-TH-POWER-OF-BIPARTITE-GRAPH
are NP-complete for any r ≥ 3 was recently announced in [10].

Considerable attention has been given to tree roots of graphs, which are quite well
understood and can be computed efficiently, see Lin and Skiena [13], Kearney and Corneil
[6] and Chang, Ko and Lu [2] who give a linear time algorithm for the r-th tree root of a
given graph. Such a root need not be unique, not even up to isomorphism, so the difficulty
lies in making consistent choices while constructing a root. Many techniques for computing
tree roots rely on some sort of correspondence between vertex neighbourhoods in T and
maximal cliques in T p. We are going to use the computation of an r-th tree root of a graph
as a black-box in our algorithms.

There has also been some work on the complexity of r-TH-POWER-OF-P-GRAPH for
such classes P as chordal graphs, split graphs and proper interval graphs [9] and for directed
graphs and their powers [7].

In this work we address the above problems for another large family of graphs, namely
graphs with no short cycles. Recall that the girth of a graph is the length of its shortest
cycle (or ∞ for a tree). For convenience we shall denote by GIRT H≥g the class of all graphs
of girth at least g, and by GIRT H+

≥g its subclass consisting of graphs with no vertices of

degree one (which we call leaves). These classes of graphs make a convenient setting for
graph roots because of the possible uniqueness results outlined below.

By [4] the recognition of squares of GIRT H≥4-graphs is NP-complete, while squares
of GIRT H≥6-graphs can be recognized in polynomial time. The techniques of recognition
(in this, and some other cases) include imposing some additional, local piece of information
about the square root (like the existence of a certain edge) such that the root can then be
reconstructed uniquely by expanding this data to the neighbouring vertices and eventually
to the whole graph. Here we also exploit this idea.

For r ≥ 3 no complexity-theoretic results have been known, but there is some very
interesting work on the uniqueness of the roots. Precisely, Levenshtein et al. [12] proved
that if G has a square root H in the class GIRT H+

≥7, then H is unique1. The same statement

was extended in [11] to r-th roots in GIRT H+
≥2r+2⌈(r−1)/4⌉+1

, using a characterization of

the neighbourhood of a vertex as the unique set satisfying a list of properties expressed in
terms of the r-th power of the graph. The main conjecture in this area remains unresolved:

Conjecture 1.1 (Levenshtein, [11]). If a graph G has an r-th root H in GIRT H+
≥2r+3,

then H is unique in that class.

The value of g = 2r + 3 is best possible, as witnessed by the cycle C2r+2, which cannot
be uniquely reconstructed from its r-th power. The best result towards Conjecture 1.1 is

1It is not possible to obtain uniqueness if the vertices of degree one are allowed, hence this technical
restriction. See [12] for details.



LARGE-GIRTH ROOTS OF GRAPHS 37

that the number of roots H under consideration is at most δ(G) (the minimal vertex degree
in G, [11]), but its proof yields only exponential time r-th root and recognition algorithms.

At the same time Farzad et al. made a conjecture about recognizing powers of graphs
of lower-bounded girth:

Conjecture 1.2 (Farzad et al., [4]). The problem r-TH-POWER-OF-GIRT H≥3r−1-GRAPH
can be solved in polynomial time.

Our contribution. Our first result gives an efficient reconstruction algorithm in Leven-
shtein’s case:

Theorem 1.3. Given any graph G, all its r-th roots in GIRT H+
≥2r+3 can be found in

polynomial time.

Next, we use this result to deal with the general case, i.e. when the roots are allowed
to have leaves. It turns out that the same girth bound of 2r + 3 admits a positive result:

Theorem 1.4. The problem r-TH-POWER-OF-GIRTH≥2r+3-GRAPH can be solved in
polynomial time.

Our result proves Conjecture 1.2 (for r ≥ 4) and is in fact stronger. It also improves
the result of [10] for r = 3, g = 10. Moreover, our algorithm for this problem is constructive
and exhaustive in the sense that it finds “all” r-th roots in GIRT H≥2r+3 modulo the
non-uniqueness of r-th tree roots of graphs, as explained in Section 4.

These positive results have a hardness counterpart:

Theorem 1.5. The problem r-TH-POWER-OF-GIRTH≥g-GRAPH is NP-complete for
g ≤ r + 1 when r is odd and g ≤ r + 2 when r is even.

The paper is structured as follows. First we prove some auxiliary results, useful both
in the construction of algorithms and in the hardness result. Section 3 contains the main
algorithm from Theorem 1.3, which is then used in Section 4 as a building block of the
general recognition algorithm from Theorem 1.4. NP-completeness is proved in Section 5.

2. Auxiliary results

Let us fix some terminology. By distH(u, v) we denote the distance from u to v in H.
The d-neighbourhood of a vertex u in H is the set of vertices of H which are exactly in
distance d from u. The 1-neighbourhood (i.e. the set of vertices adjacent to u) will be
denoted NH(u).

Our setup usually involves a pair of graphs G and H on a common vertex set V such
that G = Hr. We adopt the notation

Bv := {u ∈ V : distH(u, v) ≤ r} = NG(v) ∪ {v}

for v ∈ V (the letter B stands for “ball” of radius r in H). The lack of explicit reference
to r and H in this notation should not lead to confusion. It is important that Bv depend
only on G.

Almost all previous work on algorithmic aspects of graph powers [14, 4, 8, 9, 10] makes
use of a special gadget, called tail structure, which, applied to a vertex u in G, ensures that
in any r-th root H of G this vertex has the same, pre-determined neighbourhood. Our main
observation is that in fact such a tail structure carries a lot more information about H. It
pins down not just NH(u), but also each d-neighbourhood of u in H for d = 1, . . . , r.
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Lemma 2.1. Let G = Hr and suppose that {v0, v1, . . . , vr} ⊂ V is a set of vertices such
that NG(vr) = {vr−1, . . . , v1, v0} and NG(vi+1) ⊂ NG(vi) for all i = 0, . . . , r − 1, where the
inclusions are strict. 2

Then the subgraph of H induced by {v0, v1, . . . , vr} is a path v0 − v1 − . . . − vr and the
d-neighbourhood of v0 in H is precisely

NG(vr−d) \ NG(vr−d+1) ∪ {vd}

for all d = 1, . . . , r.

Proof. The subgraph K of H induced by {v0, . . . , vr} is connected — otherwise NG(vr)
would contain vertices from outside K. Consider any vertex u of K that has an edge to
some vertex w outside K. Clearly, distK(vr, u) = r, since otherwise w would be in NG(vr).
This means that K is a path from vr to u and u is the only vertex of that path which
has edges to vertices outside K. The condition NG(vi+1) ⊂ NG(vi) now implies that the
vertices of this path are arranged as in the conclusion of the lemma. The second conclusion
follows easily.

Note that the tail structure itself does not enforce any extra constraints on H other
than the d-neighbourhoods of v0.

In the algorithm for r-TH-POWER-OF-GIRT H≥2r+3-GRAPH we will need to solve
the following tree root problem with additional restrictions imposed on the d-neighbourhoods
of a certain vertex:

Problem. RESTRICTED-r-TH-TREE-ROOT
Instance. A graph G, r ≥ 2, a vertex v ∈ V (G) and a partition

V (G) = {v} ∪ T (1) ∪ . . . ∪ T (r) ∪ T (>r).
Question. Is G = T r for some tree T such that the

d-neighbourhood of v in T is exactly T (d) for d = 1, . . . , r?

Lemma 2.2. There is a constructive polynomial time algorithm for RESTRICTED-r-TH-
TREE-ROOT.

Proof sketch. The neighbourhood-enforcing gadget from Lemma 2.1 can be attached to the
given problem instance in such a way that the original graph has a restricted tree root if
and only if the modified graph has any tree root (with no restrictions). Then the algorithms
of [6, 2] apply to the modified instance.

3. Algorithm for roots in GIRT H+
≥2r+3

In this section we present the algorithm from Theorem 1.3, that is the polynomial
time reconstruction of all r-th roots in GIRT H+

≥2r+3 of a given graph G. There are two

structural properties of graphs H ∈ GIRT H+
≥2r+3 that will be used freely throughout the

proofs:

(*) Every x ∈ V (H) is of degree at least 2 and the subgraph of H induced by Bx is a
tree. This holds since any cycle in H within Bx would have length at most 2r + 1.
We shall depict the ball Bx in H in the tree-like fashion.

2This assumption (strictness of inclusions) can be removed at the cost of a more complicated statement,
but this generality is not needed here.
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Figure 1: The subgraph of H induced by Bx ∪ By.

(**) If there is a simple path from u to v in H of length exactly r + 1 or r + 2 then
u 6∈ Bv. Indeed, u ∈ Bv iff there is a path of length at most r from u to v in H, and
combined with the first path this would yield a cycle of length at most 2r + 2.

To describe the algorithm we introduce the following sets:

Sx,y = Bx ∩ By \
⋃

v∈By\Bx

Bv \ {x}

Px,y = Bx ∩ By ∩
⋃

v∈Sx,y

Bv

Nx,y = Bx ∩ By ∩
⋂

v∈Px,y

Bv \ {x}

Defined for arbitrary x, y ∈ V , these sets are probably quite meaningless for the reader.
The definitions are motivated by the proof of the next theorem, in which we determine
these sets in more familiar terms for the endpoints x, y of an actual edge in some r-th root
of G. Precisely:

Theorem 3.1. Suppose G = Hr for a graph H ∈ GIRT H+
≥2r+3 and xy ∈ E(H). Then

Nx,y = NH(x).

Proof. Because of the girth condition the set Bx ∪By in H consists of two disjoint trees Tx

and Ty, rooted in x and y respectively and connected by the edge xy (see Fig.1). Let us
introduce some subsets of those trees. By Wx and Wy denote the last levels:

Wx = {u ∈ Tx : distH(u, x) = r}, Wy = {u ∈ Ty : distH(u, y) = r},

by Px and Py the next-to-last levels:

Px = {u ∈ Tx : distH(u, x) = r − 1}, Py = {u ∈ Ty : distH(u, y) = r − 1},

and by Nx and Ny the children of x and y in Tx and Ty:

Nx = {u ∈ Tx : distH(u, x) = 1}, Ny = {u ∈ Ty : distH(u, y) = 1}.

Clearly Bx ∩ By = (Tx \ Wx) ∪ (Ty \ Wy), Wx = Bx \ By and Wy = By \ Bx. Note that if
r = 2 we have Nx = Px and Ny = Py.

First observe that every u ∈ Nx and every v ∈ By \ Bx = Wy are connected by a path
of length r + 2. It follows by (**) that u 6∈ Bv, which implies

Nx ⊂ Sx,y.
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It is also clear that Sx,y ⊂ Tx (because every vertex in Ty has a descendant v ∈ Wy).
Now the sum

⋃
v∈Sx,y

Bx ∩By ∩Bv contains
⋃

v∈Nx
Bx ∩By ∩Bv = (Bx ∩By) \Py. On

the other hand, if v ∈ Sx,y and u ∈ Py then u 6∈ Bv. Indeed, if u ∈ Bv then there would be
a path from u to v of length at most r. This path cannot be contained in Tx ∪ Ty (because
distH(u, x) = r, so one can only get as far as x going from u), hence it must exit Ty through
Wy and then enter Tx through Wx, finally reaching v ∈ Sx,y. However, that yields a path
from Wy to Sx,y of length at most r (in fact at most r − 1), contradicting the definition of
Sx,y. Eventually we proved

Px,y = (Bx ∩ By) \ Py.

Now we have {y} ∪ Nx ⊂ Nx,y because every vertex of {y} ∪ Nx is in distance at most
r from all the vertices of (Bx ∩By) \ Py. On the other hand, for every vertex u of Bx ∩ By

that is not in Nx ∪ {x, y} one can find a path of length r + 1 that starts in u and ends in
a vertex v ∈ (Bx ∩ By) \ Py. Then, according to (**), u 6∈ Bv, so u 6∈ Nx,y. Such a path
is obtained by going from u up the tree it is contained in (Tx or Ty) and then down in the
other tree.

Concluding, we have identified Nx,y to be Nx ∪ {y}, as required.

The previous theorem should be understood as follows. Given a graph G, we want to
find its r-th root H. If we fix at least one edge xy of H in advance, we can compute the
neighbourhood NH(x) of x using only the data available in G. But then we can move on
in the same way, computing the neighbours of those neighbours etc.

Algorithm 1 Input: G,r. Output: All r-th roots of G in GIRT H+
≥2r+3

pick a vertex x with smallest |Bx|
for all y in Bx do

H =reconstructFromOneEdge(G,xy)
if H ∈ GIRT H+

≥2r+3 and Hr = G output H

end for

reconstructFromOneEdge(G, e):
H = (V (G), {e})
for all u ∈ V set processed[u]:=false

while H has an unprocessed vertex x of degree at least 1 do

y = any neighbour of x in H

E(H) = E(H) ∪ {xz for all z ∈ Nx,y}
processed[x]:=true

end while

return H

The r-th root algorithm is now straightforward. The procedure reconstructFromOneEdge
attempts to compute H from G assuming the existence of a given edge e in H. This is re-
peated for all possible edges from a fixed vertex x. It remains to notice that Nx,y can be
computed in polynomial time.
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Figure 2: The notation of Section 4.

4. Removing the no-leaves restriction

In this section we obtain a polynomial time algorithm for the general recognition prob-
lem r-TH-POWER-OF-GIRT H≥2r+3-GRAPH, proving Theorem 1.4. We start with a few
definitions (see Fig.2).

For a graph H, which is not a tree, let core(H) denote the largest induced subgraph of
H whose every vertex has degree at least two. Alternatively this can be defined as follows.
Given H, let H ′ be the graph obtained from H by removing all leaves (vertices of degree

one) and inductively define H(1) = H ′, H(n) = (H(n−1))′. This process eventually stabilizes
at the graph core(H).

A vertex v ∈ V (H) is called a core vertex if it belongs to core(H) and a non-core vertex
otherwise. The non-core vertices are grouped into trees attached to the core. For every

vertex v ∈ core(H) we denote by Tv the tree attached at v (including v) and by T
(d)
v (for

d ≥ 0) the set of vertices of Tv located in distance d from v. For a non-core vertex u the
link of u (denoted link(u)) is its closest core vertex and the depth of u (denoted depth(u))
is the distance from u to link(u).

4.1. Outline of the algorithm.

The algorithm for r-TH-POWER-OF-GIRT H≥2r+3-GRAPH processes the input graph
G in several steps (see Algorithm 2). First, we check if G has a tree r-th root [6, 2]. If not,
then we split the vertices of G into the core and non-core vertices of any of its r-th roots.
Lemma 4.1 shows how to find such a partition and ensures that it is uniquely determined
only by the graph G.

Let G̃ be the subgraph of G induced by all the vertices that are classified as belonging
to the core of any possible r-th root H. We now employ the algorithm from the previous
section to find all r-th roots H̃ of G̃ which have girth at least 2r + 3 and no leaves (there
are at most δ(G) of them; conjecturally there is at most one).

Finally, we must attach the non-core vertices to each of the possible H̃. It turns out that
once the core is fixed, the link of each non-core vertex can be uniquely determined, so we can
pin down all the sets V (Tv). However, we cannot simply look for any r-th tree root of the
subgraph of G induced by V (Tv), because we have to ensure that the tree structure that we
are going to impose on V (Tv) is compatible with the neighbourhood information contained
in the rest of G. Fortunately Lemma 4.2 guarantees that for a fixed G and core(H), all

the sets T
(d)
v for d = 1, . . . , r are also uniquely determined. Since all the distances from the

vertices of Tv to the rest of the graph depend only on the vertex depths and the structure
of the core, this is exactly the additional piece of data we need. Any tree root satisfying
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the given depth constraints will be compatible with the rest of the graph. Concluding,
the problem we are left with for each Tv is the RESTRICTED-r-TH-TREE-ROOT from
Section 2. If all these instances have positive solutions, then the graph H defined as H̃ with
the trees Tv attached at each core vertex v is an r-th root of G.

The next two subsections describe the two crucial steps: detecting non-core vertices
and the reconstruction of trees Tv.

4.2. Finding core and non-core vertices.

The next lemma shows how to detect all vertices located “close to the bottom” of the
trees Tv in H.

Lemma 4.1. Suppose H ∈ GIRT H≥2r+3 and Hr = G.Then the following conditions are
equivalent for a vertex u ∈ H:

(1) u 6∈ H(r).
(2) There is some vertex v ∈ H, v 6= u such that Bu ⊆ Bv.

< r

u v

Bu

a)

u

v

v′

dist(v, v′) = r + 1

Bu

b)

Figure 3: The proof of Lemma 4.1.

Proof. If u 6∈ H(r), then by the definition u becomes a leaf after at most r − 1 steps of
the leaf-removal procedure and is removed in the subsequent step. Let v be the last vertex
adjacent to u just before u is removed (see Fig.3a). Clearly all the vertices reachable from
u in at most r steps are also reachable from v in at most r steps, so Bu ⊆ Bv.

If, on the other hand, u ∈ H(r) then u is not removed in the first r steps of cutting off
the leaves of H, which means there exist at least two disjoint paths of length r starting at u

(see Fig.3b). However, it implies that for every vertex v ∈ Bu there exists another v′ ∈ Bu

(on one of those paths) such that distH(v, v′) = r + 1, hence v′ ∈ Bu \ Bv. Therefore Bu is
not contained in Bv for any v 6= u.

Recursively deleting all vertices u such that Bu ⊆ Bv for some v 6= u determines the
consecutive sets V (H(r)), V (H(2r)), V (H(3r)), . . . for any r-th root H ∈ GIRT H≥2r+3 of
G using only the information available in G. Eventually we obtain V (core(H)) which is the

vertex set of G̃.

4.3. Attaching the trees Tv.

For each possible core(H) we need to decide on a way of attaching the remaining (non-
core) vertices to H in a way which ensures that Hr = G. It turns out that all the data
necessary to ensure the compatibility can be read off from G and core(H), so again this
data is common for all the possible r-th roots of G that have a fixed core.
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Lemma 4.2. Suppose that H ∈ GIRT H≥2r+3 is a graph such that H is not a tree and
Hr = G. Then for every non-core vertex u of H we have:

• either Bu ∩ V (core(H)) = ∅, in which case depth(u) > r, or
• the subgraph of H induced by Bu ∩V (core(H)) is a tree whose only center is link(u)

and whose height (the distance from the center to every leaf) is r − depth(u).

Proof. The first statement is obvious. As for the second, the subgraph induced by Bu ∩
V (core(H)) consists of all the vertices of V (core(H)) in distance at most r− depth(u) from
link(u). Since core(H) is a graph of girth at least 2r + 3 with no degree one nodes, these
vertices induce a tree in H, and all the leaves of this tree are exactly in distance r−depth(u)
from link(u). Therefore link(u) is the unique center of that tree.

Lemma 4.2 yields a method of partitioning the non-core vertices into the sets V (Tv)

and subdividing each V (Tv) into a disjoint union {v} ∪ T
(1)
v ∪ . . . ∪ T

(r)
v ∪ T

(>r)
v of vertices

in distance 1, 2, . . . , r and more than r from v using only the data from G and core(H).
Indeed, for the vertices u with Bu ∩ V (core(H)) 6= ∅ one finds the center and height of the
subtree of core(H) induced by Bu ∩ V (core(H)) and applies the second part of Lemma 4.2

to obtain both link(u) and depth(u), thus classifying u to the appropriate T
(d)
v . The links

of all remaining vertices are determined using the fact that all vertices in one connected

component of G \
⋃

v∈core(H),d=0,...,r−1 T
(d)
v have the same link.

Algorithm 2

Input: G,r.
Output: r-th roots of G in GIRT H≥2r+3 (one per each core)

check if G = T r for some tree T

G̃ := G

while G̃ has vertices u, v with Bu ⊆ Bv do

remove from G̃ all u such that Bu ⊆ Bv for some v

end while

for every graph H̃ ∈ GIRT H+
≥2r+3 such that H̃r = G̃ do

H := H̃

for every vertex v ∈ V (H̃) do

find V (Tv) and a partition V (Tv) = {v} ∪ T
(1)
v ∪ . . . ∪ T

(r)
v ∪ T

(>r)
v

use restrictedTreeRoot to reconstruct some tree Tv

extend H by attaching Tv at v

end for

if all Tv existed output H

end for

5. Hardness results

Now we sketch the hardness of recognition for powers of graphs of lower-bounded girth
(Theorem 1.5). For the reductions we use the following NP-complete problem (see [5, Prob.
SP4]). It has already been successfully applied in this context ([4, 8, 9, 10]).



44 A. ADAMASZEK AND M. ADAMASZEK

Problem. HYPERGRAPH 2-COLORABILITY (H2C)
Instance. A finite set S and a collection S1, . . . , Sm of subsets of S.
Question. Can the elements of S be colored with two colors A, B such that each

set Sj has elements of both colors?
An instance of this problem (also known as SET-SPLITTING) will be denoted S =

(S;S1, . . . , Sm). We shall refer to the elements of the universum S as x1, . . . , xn. Any
assignment of colors A and B to the elements of S which satisfies the requirements of the
problem will be called a 2-coloring.

In this section we fix r and let k = ⌊ r
2⌋, so that r = 2k or r = 2k + 1 depending on

parity.

5.1. Case of odd r = 2k + 1

Consider an instance S = (S;S1, . . . , Sm) of H2C. The following two definitions describe
an auxiliary graph that will be used as a base for further constructions. The reader is referred
to Fig.4 for a self-explanatory presentation of the graphs KS and HS defined below.

Definition 5.1. For an instance S = (S;S1, . . . , Sm) let VS be the following set of vertices:

• Sj, xi for all subsets and elements,
• A,B,X,

• T
(l)
i,j for every pair i, j such that xi ∈ Sj and every l = 1, . . . , k − 1,

• P
(l)
i for every xi and every l = 1, . . . , k − 1,

• the tail vertices S
(l)
j for each j and l = 1, . . . , r.

Definition 5.2. Given any instance S = (S;S1, . . . , Sm) define a graph KS on the vertex
set VS with the following edges:

• a path Sj − T
(1)
i,j − . . . − T

(k−1)
i,j − xi whenever xi ∈ Sj,

• a path xi − P
(1)
i − . . . − P

(k−1)
i for every xi,

• X − xi for all i,

• the tail paths, that is Sj − S
(1)
j − S

(2)
j − . . . − S

(r)
j for every j.

This graph encodes only the structure of S. To encode the coloring we link the loose
paths from xi to either A or B.

Definition 5.3. Given an instance S and a color assignment, define the graph HS to be

KS with the additional edges P
(k−1)
i −A whenever xi has color A and P

(k−1)
i −B whenever

xi has color B.

Note that HS has girth 2k + 2 = r + 1. Now comes the graph to be used in our
NP-completeness reduction:

Definition 5.4. For any instance S = (S;S1, . . . , Sm) of H2C put

GS = KS
r ∪ ES

where ES is the set of edges from A and B to each of X, xi, Sj, T
(l)
i,j , P

(l)
i , and S

(1)
j for all

possible i, j, l.

Observe that GS is defined independently of any particular color assignment. Moreover,
by analyzing Fig.4 it is not hard to check the following lemma:

Lemma 5.5. For any 2-colored instance S we have GS = HS
r.
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S1
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S3

x1

x2

x3

x4

A

B

X

S
(1)
1S

(r)
1

S
(1)
2S

(r)
2

S
(1)
3S

(r)
3

T
(1)
1,1

T
(k−1)
1,1

T
(1)
4,3

T
(k−1)
4,3

P
(1)
1

P
(k−1)
1

Figure 4: For S = ({x1, . . . , x4}; {x1, x2}, {x1, x3, x4}, {x2, x4}}) the graph KS consists of
all but the shaded edges. The graph HS (made of all the edges above) encodes
the coloring with x1, x4 of color A and x2, x3 of color B. It is a 2-coloring of S
since all Sj are in distance 2k from A and B.

Proof of Theorem 1.5 for odd r. Given an instance S = (S;S1, . . . , Sm) construct the graph
GS . If S has a 2-coloring, then GS is the r-th power of a graph with girth at least r + 1,
namely GS = HS

r by Lemma 5.5.
For the inverse implication suppose that GS = Hr for some graph H. Define the

coloring as follows: xi has color A (resp. B) if there is a path of length at most k from xi

to A (resp. B) in H. Clearly each xi is assigned at most one color since otherwise A and
B would be adjacent in Hr.

The tail structure Sj, S
(1)
j , . . . , S

(r)
j of each Sj satisfies the assumptions of Lemma 2.1,

so it enforces that in H:

• for every j the k-neighbourhood of Sj is precisely {xi : xi ∈ Sj}∪{S
(k)
j } (as in KS),

• A and B are exactly in distance 2k from each Sj (by the definition of ES).

Therefore for each j there has to be at least one vertex in {xi : xi ∈ Sj} that is k steps from
A and at least one that is k steps from B. This proves that the obtained coloring solves the
H2C instance.

5.2. Case of even r = 2k

We omit this case for reasons of space. The argument is similar, but requires a slight
modification to the graphs KS , HS and GS .

6. Conclusions and open problems

In this work we presented an efficient algorithmic solution to Levenshtein’s reconstruc-
tion conjecture and we applied it to a more general, unrestricted r-th root problem. From
a high-level perspective, it was possible because we could extract the “core of the problem”
which has very few solutions (as the conjecture suggests), so we could hope that these can
be found quickly. We also hope that the reverse flow of ideas is possible, so that some im-
proved algorithmic edge-by-edge reconstruction technique might help resolve Levenshtein’s
conjecture.
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Another (probably challenging) problem is to find a complete girth-parametrized com-
plexity dichotomy, that is to close the gap between r + 1 (or r + 2) and 2r + 3. We believe
that the r-th power recognition remains NP-complete even for graphs of girth 2r.

In fact it would even be very interesting to investigate possible complexity results for
finding square roots in GIRT H≥5 or GIRT H+

≥5 (completing the complexity dichotomy

of [4]). Note that the complete graph G = Kn has a square root in the class GIRT H+
≥5

if and only if there exists a graph on n vertices that has girth 5 and diameter 2. By
the Hoffman-Singleton theorem (see [16, 1]) such a graph may exist only for n = 5, 10, 50
and 3250. The first three of these graphs are known, and the existence of the last one
(for n = 3250) is a long-standing open problem. Therefore, any efficient algorithm for
SQUARE-OF-GIRT H+

≥5-GRAPH might (at least in principle) solve this problem.

Acknowledgement

The authors thank the anonymous STACS referees for helpful comments.

References

[1] N.Biggs, Algebraic Graph Theory, Cambridge Univ. Press
[2] Maw-Shang Chang, Ming-Tat Ko, Hsueh-I Lu, Linear-Time Algorithms for Tree Root Problems, Proc.

10th SWAT, LNCS 4059 (2006)
[3] F.Escalante, L.Montejano, T.Rojano, Characterization of n-path graphs and of graphs having nth root,

Journal of Combinatorial Theory, Series B, 16: 282-298 (1974)
[4] Babak Farzad, Lap Chi Lau, Van Bang Le, Nguyen Ngoc Tuy, Computing Graph Roots Without Short

Cycles, Proc. 26th STACS (2009) 397-408
[5] M.R.Garey, D.S.Johnson, Computers and Intractability — A Guide to the Theory of NP-Completeness,

Freeman, Oxford, UK, 1979
[6] P.E.Kearney, D.G.Corneil Tree powers, Journal of Algorithms 29 (1998) 111-131
[7] Martin Kutz, The complexity of Boolean matrix root computation, Theor. Comp. Sci. 325 (2004) 373-390
[8] Lap Chi Lau, Bipartite Roots of Graphs, ACM Transactions on Algorithms, Vol.2, No.2, April 2006,

178-208
[9] Lap Chi Lau, Derek G. Corneil Recognizing Powers of Proper Interval, Split and Chordal Graphs, SIAM

J. Discrete Math., Vol.18, No.1, 2004, 83-102
[10] Van Bang Le and Ngoc Tuy Nguyen, Hardness Results and Efficient Algorithms for Graph Powers, WG

2009
[11] V.I. Levenshtein, A conjecture on the reconstruction of graphs from metric balls of their vertices, Discrete

Mathematics 308(5-6): 993-998 (2008)
[12] V.I. Levenshtein, E.V. Konstantinova, E.Konstantinov, S.Molodtsov, Reconstruction of a graph from

2-vicinities of its vertices, Discrete Applied Mathematics 156(9): 1399-1406 (2008)
[13] Y.-L.Lin, S.S.Skiena, Algorithms for square roots of graphs, SIAM J. Discrete Math. 8 (1995), 99-118
[14] R.Motwani, M.Sudan, Computing Roots of Graphs is Hard, Discrete Applied Mathematics 54(1): 81-88

(1994)
[15] A.Mukhopadhyay, The square root of a graph, Journal of Combinatorial Theory, Series B, 2: 290-295

(1967)
[16] R.R.Singleton, There is no irregular Moore graph, American Mathematical Monthly 75, vol 1 (1968)

42-43

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.




