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ABSTRACT. In their seminal work, Alon, Matias, and Szegedy introduced several sketching tech-
niques, including showing thatwise independence is sufficient to obtain good approximations of
the second frequency moment. In this work, we show that their sketching technique can be extended
to product domaingn]® by using the product of-wise independent functions dn]. Our work
extends that of Indyk and McGregor, who showed the result fer2. Their primary motivation was

the problem of identifying correlations in data streams. In their model, a stream of paiyse [n]?

arrive, giving a joint distributior{ X, V'), and they find approximation algorithms for how close the
joint distribution is to the product of the marginal distributions under various metrics, which naturally
corresponds to how closE andY are to being independent. By using our technique, we obtain a
new result for the problem of approximating thedistance between the joint distribution and the
product of the marginal distributions fdrary vectors, instead of just pairs, in a single pass. Our
analysis gives a randomized algorithm that id at ¢) approximation (with probability — ¢) that
requires space logarithmic tnandm and proportional tG*.
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1. Introduction

In their seminal work, Alon, Matias and Szegedy [4] preseémgebrated sketching techniques
and showed that-wise independence is sufficient to obtain good approxionatiof the second
frequency moment. Indyk and McGregor [12] make use of théarigue in their work introduce
the problem of measuring independence in the streaming Inddeere they give efficient algo-
rithms for approximating pairwise independence for gh@and/, norms. In their model, a stream
of pairs(i, j) € [n]? arrive, giving a joint distributior{ X, Y'), and the notion of approximating pair-
wise independence corresponds to approximating the distagtween the joint distribution and the
product of the marginal distributions for the pairs. IndyidaMcGregor state, as an explicit open
guestion in their paper, the problem of whether one can agtildwise independence drtuples
for anyk > 2. In particular, Indyk and McGregor show that, for thenorm, they can make use
of the product ofi-wise independent functions ¢n| in the sketching method of Alon, Matias, and
Szegedy. We extend their approach to show that on the prodacain[»]*, the sketching method
of Alon, Matias, and Szegedy works when using the producdt obpies of4-wise independent
functions on[n]. The cost is that the memory requirements of our approacw gsponentially
with k, proportionally to3".

Measuring independence akevise independence is a fundamental problem with many ap-
plications (see e.g., Lehmann [13]). Recently, this pnobleas also addressed in other models by,
among others, Alon, Andoni, Kaufman, Matulef, Rubinfeldiafie [1]; Batu, Fortnow, Fischer,
Kumar, Rubinfeld and White [5]; Goldreich and Ron [11]; Bakumar and Rubinfeld [6]; Alon,
Goldreich and Mansour [3]; and Rubinfeld and Servedio [Ts&ditional non-parametric methods
of testing independence over empirical data usually regsfrace complexity that is polynomial
to either the support size or input size. The scale of conteanp data sets often prohibits such
space complexity. It is therefore natural to ask whether Wiebe able to design algorithms to test
for independence in streaming model. Interestingly, thexgic problem appears not to have been
introduced until the work of Indyk and McGregor. While arglyaresults for the/; norm would be
stronger than for thé, norm in this setting, the problem fés norms is interesting in its own right.
The problem for th¢; norm has been recently resolved by Braverman and Ostrongi8}.i They
gave an(1 + e, §)-approximation algorithm that makes a single pass over & stabam and uses
polylogarithmic memory.

1.1. Our Results

In this paper we generalize the “sketching of sketches”lredundyk and McGregor. Our
specific theoretical contributions can be summarized /st

Main Theorem.

Let 7 € R("") be a vector with entries,, € R for p € [n]*. Lethy,... hy : [n] — {—1,1} be
independent copies of 4-wise independent hash functibas;ig, 7;(1),...,h;(n) € {—1,1} are
4-wise independent hash functions for each [k], andh(-), ..., hi(-) are mutually independent.

Define H (p) = [1;_, h(p;), and the sketch” = 3 .« tip H (p).
We prove that the sketch can be used to give an efficient approximation|fa}{2; our result
is stated formally in Theorem 4.2. Note thdtis not4-wise independent.

As a corollary, the main application of our main theorem igxtend the result of Indyk and
McGregor [12] to detect the dependencykafandom variables in streaming model.
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Corollary 1.1. For everye > 0 andd > 0, there exists a randomized algorithm that computes,
given a sequence, ..., an, of k-tuples, in one pass and usir@(3"¢ 2 log 3 (logm + logn))
memory bits, a number so that the probabilityy” deviates from thé, distance between product
and joint distribution by more than a factor ¢f + ¢) is at most.

1.2. Techniques and a Historical Remark

This paper is merge from [7, 9, 10], where the same result Wwasred with different proofs.
The proof of [10] generalizes the geometric approach of kralyd McGregor [12] with hew geo-
metric observations. The proofs of [7, 9] are more combii@tin nature. These papers offer new
insights, but due to the space limitation, we focus on thefpfimm [9] in this paper. Original
papers are available on line and are recommended to thesitgdrreader.

2. The Model
We provide the general underlying model. Here we mostlhfolthe notation of [7, 12].
Let S be a stream of sizew with elementsuy, . . ., a,,, wherea; = (a}, ..., aF) € [n]*. (When

we have a sequence of elements that are themselves vectodenete the sequence number by
a subscript and the vector entry by a superscript when betmeeded.) The streafdefines an
empirical distribution overn)* as follows: the frequency(w) of an element € [n]* is defined as
the number of times it appears ) and the empirical distribution is

Prlw] = % for anyw € [n]*.

Sincew = (w1, ...,wy) is a vector of sizé;, we may also view the streaming data as defining
a joint distribution over the random variablés, ..., X, corresponding to the values in each di-
mension. (In the case &f= 2, we write the random variables a&andY rather thanX; and X5.)
There is a natural way of defining marginal distribution foe random variable;: for w; € [n],
let f;(w;) be the number of times; appears in théth coordinate of an element 6f, or

fz(wz) = Haj €S a§- = w,}‘ .
The empirical marginal distributioRr;[-] for theith coordinate is defined as

Priw;] = f"gj") for anyw; € [n].

Next let be the vector irR["" with 7, = Prlw] — [],<;<, Pr|wi] for all w € [n]*. Our goal

is to approximate the value o
2\ 2
= > [Prlwl— ] Prilw]| | - (2.1)
weln]k 1<i<k

This represent thé, norm between the tensor of the marginal distributions aagidimt distribution,
which we would expect to be close to zero in the case wher&theere truly independent.

Finally, our algorithms will assume the availability of 4s@ independent hash functions. For

more on 4-wise independence, including efficient implerigos, see [2, 16]. For the purposes of
this paper, the following simple definition will suffice.
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Definition 2.1. (4-wise independenceé) family of hash functionsH with domain|n| and range
{—1,1} is 4-wise independerif for any distinct values, iz, i3,i4 € [n] and anyby, be, b3, by €
{-1, 1}, the following equality holds,

L [h(i1) = b1, h(iz) = b2, h(i3) = b3, h(i4) = bs] = 1/16.

Remark 2.2. In [12], the family of 4-wise independent hash functidtiss called 4-wise indepen-
dent random vectors. For consistencies within our papenvilalways view the objectH as a
hash function family.

3. The Algorithm and its Analysis for & = 2

We begin by reviewing the approximation algorithm and aisded proof for the/; norm given
in [12]. Reviewing this result will allow us to provide thecessary notation and frame the setting
for our extension to generdl. Moreover, in our proof, we find that a constant in Lemma 3.1
from [12] that we subsequently generalize appears incor(Because of this, our proof is slightly
different and more detailed than the original.) Althougk #rror is minor in the context of their
paper (it only affects the constant factor in the order matdt it becomes more important when
considering the proper generalization to largeand hence it is useful to correct here.

In the casé: = 2, we assume that the sequertag, a?), (a3, a3), ..., (al,,a2,) arrives an item
by an item. Eacl{a;,a?) (for 1 < i < m) is an element irin]2. The random variableX andY
over [n] can be expressed as follows:

Prfi,j] = Pr[X =iY =j] = |{{: (a7, af) = (i,)}/m
Prifi] = Pr[X =i = [t (ag,a7) = (i,)}|/m
Pro[j] = Pr[Y =] = [{e: (ag, af) = (5)}H/m.

We simplify the notation and uge = Pr[X =i, ¢; = Pr[Y =j],r;; = Pr[X =4,Y = j]. and
si; = Pr[X =i Pr[Y = j].

Indyk and McGregor’s algorithm proceeds in a similar faghio the streaming algorithm pre-
sented in [4]. Specifically let; = 72¢~2 andsy = 2log(1/d). The algorithm computes, random
variablesY, Y, ..., Y, and outputs their median. The output is the algorithm’snestie on the
norm ofv defined in Equation 2.1. Ead}) is the average of; random variables’;: 1 < j < sy,
whereY;; are independent, identically distributed random varigibgach of the variable® = D;;
can be computed from the algorithmic routine shown in Figure

2-D APPROXIMATION ((a},a}),..., (a},,a%))

1 Independently generate 4-wise independent random &@nsgii, ~o from [n] to {—1,1}.
2 forc—1tom

3 do Let thecth item (al, a?) = (4, 7)

4 tl<—t1+h1(’i)h2(j),t2<—t2+h1(i),t3<—t3+h2(j).

5 ReturnY = (tl/m — t2t3/m2)2.

Figure 1: The procedure for generating random variabfer & = 2.

By the end of the process 2-DPRROXIMATION, We havety /m = 3, i, ha(0)h2 (f)ri . t2/m =
Yicm M (D)pi, andtz/m = 3,11 ha(i)g;. Also, when a vector is iR, its indices can be
represented byii, i) € []?. In what follows, we will use a bold letter to represent theer of a
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high dimensional vector, e.g; = v;, ;,. The following Lemma shows that the expectatioryois
|lv||? and the variance df is at mos8(E[Y])? becausé[Y?] < 9E[Y]2.

Lemma 3.1. ([12]) Let hy, he be two independent instances of 4-wise independent hastidius

from [n] to {—1,1}. Letv € R" and H(i)(= H ((i1,i2)) = h1(4;) - ha(iz). Let us defing” =
2

(Ziew H(i)vi) . ThenE[Y] = Yicp2 @ and E[Y2] < 9(E[Y])?, which impliesVar[y] <

SE2[Y].

Proof. We haveE[Y] = E[(3; H)%:)?] = > WE[H?(1)] + X GoE[H (1) H(j)]. For all
i € [n]%, we knowh?(i) = 1. On the other handH (i)H(j) € {— 1 ,1}. The probability that
H@H() = 1is PrHWOH() = 1] = Prlhy(i)hi (1) ha(ia)ha(jz) = 1] = 1/16 + (3)1/16 +

1/16 = 1/2. The last equality holds is because(ii)h1(j1)ha(i2)h2(j2) = 1 is equivalent to
saying either all these variables are 1, or exactly two afe¢heriables are -1, or all these variables
are -1. Thereforeli[h(i)h(j)] = 0. ConsequentlyE[Y ]—Ele[n (%)2.

Now we bound the variance. Recall thatr[Y] = E[Y?] — E[Y]?, we bound
EY? = ) EHGOHGH®MGGRG < Y [EHGHG)H&)HWD)]|555G]-
i,j,k,1€[n]? i,j.k,1€[n]?

Also |E[H(i)H (j)H (k)H (1)]| € {0,1}. The quantityE[H (i)H (j)H (k)H (1)] # 0 if and only
if the following relation holds,

Vs € [2] : ((Zs = ]s) A (ks = ls)) \ ((Zs = ks) A (]s = ls)) \4 ((Zs = ls) A (ks = ]s)) . (31)
Denote the set of 4-tupled, j, k, 1) that satisfy the above relation Iy. We may also view each
4-tuple as an ordered set that consists of 4 poings]ih Consider the unique smallest axes-parallel
rectangle inn)? that contains a given 4-tuple i (i.e. contains the four ordered points). Note this
could either be a (degenerate) line segment or a (non-degeheectangle, as we discuss below.
Let M : D — {A,B,C, D} be the function that maps an element D to the smallest rectan-
gle ABCD defined bys. Since a rectangle can be uniquely determined by its didgowa may
write M : D — (x1, x2,¥1,%2), Wherex; < x2 € [n], 1 < @2 € [n] and the corresponding
rectangle is understood to be the one with diagdgt, »1), (x2, ¢2)}- Also, the inverse function
M~ (x1, x2, @1, p2) represents the pre-images(afi, x2, 1, v2) in D. (x1, X2, ©1, ¥2) is degen-
erate if eithery; = x2 Or o1 = 9, in Which case the rectangle (and its diagonals) correspmnd
the segment itself, oy; = x2 andyp; = 4, and the rectangle is just a single point.

Example 3.2. Leti = (1,2), j = (3,2), k = (1,5), andl = (3,5). The tuple is inD and
its corresponding bounding rectangle is a non-degeneeatangle. The functiod/ (i, j, k,1) =
(1,3,2,5).

Example 3.3. Leti = j = (1,4) andk = 1 = (3,7). The tuple is also irD and minimal bound-
ing rectangle formed by these points is an intefidl, 4), (3,7)}. The functionM (i, j, k,1) =
(1,3,4,7).

To start we consider the non-degenerate cases. Fik@anyz, ¢1, v2) With xy1 < x2 and¢; <
¢9. There are in tota@)2 = 36 tuples(i, j, k,1) in Dwith M (i, j, k,1) = (x1, X2, ©1, p2). Twenty-
four of these tuples correspond to the setting where nongjdt, 1 are equal, as there are twenty-
four permutations of the assignment of the labiefsk,1 to the four points. (This corresponds
to the first example). In this case the four points form a regita and we haveu;vjuiv| <
2 (Tyr 01 Uxo00)> + (Tyr,00Uxa,00)2). INtuitively, in these cases, we assign the “weight” of the

2
tuple to the diagonals.
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The remaining twelve tuples i/ ~!(x1, x2, ¢1, v2) correspond to intervals. (This corre-
sponds to the second example.) In this case twigjok, 1 correspond to one endpoint of the inter-
val, and the other two labels correspond to the other entlpbience we have either; vy vi| =
(Tyy 01 Uxa,p0) 2 OF |Ti050k 0| = (Tyyy .00 Uxa,01 ) @Nd there are six tuples for each case.

Therefore for any; < x2 € [n] andy; < ¢y € [n] we have:

Z |vivjuul| < 18((”)(1,901”)(2,502)2 + (UX1,90271)X2,501)2)'

(ke
M~ (x1,x2,91,92)

The analysis is similar for the degenerate cases, whereotieant 18 in the bound above is
now quite loose. When exactly one gf = 2 or ¢o; = 9 holds, the size oM ~1(x1, x2, ¢1, ©2)
is (5) = 6, and the resulting intervals correspond to vertical ordntal lines. When botly; = y»
andy; = o, then| M ~1(x1, x2, v1,¢2)| = 1. In sum, we have Following the same analysis as for
the non-degenerate cases, we find

E |03 0Tk 01| = E E oo
i,j,k,1eD X1<Xx2 (i.j.k1)€
1502 M~ (x1,x2,91.92)

< Z 18((6X1,<p16xz,s&2)2 + (6X1790277X2,<p1)2) + Z 6((77)(1,30177)(27902)2 + (Uxhcpzaxz,cpl)Q)

X1<Xx2 X1=X2
p1<p2 p1<p2
— — 2 — — 2 rd e 2
+ Z 6((Tx1,01 Uxzrpa)” + (Ux,00Uxa,01) ") + Z (Ux1,01 Uxa,02)
xX1<Xx2 X1=X2
Pp1=p2 P1=P2
<9 ) (#i)? = 9E[Y].
ie[n]2
j€n)?

Finally, we have}_; ; \ 1ep2 [E[H)HG)H (K)HD)]| - [6:050k0| < D255k 1ep | G050k 0] <
9E?[Y] andVar[Y] < 8E[Y]%

We emphasize the geometric interpretation of the abovef potollows. The goal is to bound
the variance by a constant times[Y] = D iiein? (%1v3)?, where the index set is the set of all possi-
ble lines in plangn)? (each line appears twice). We first show that[Y] < >ijklep [Uitivki],
where the 4-tuple index set corresponds to a set of rec&irgéenatural way. The main idea of [12]
is to use inequalities of the form®; ook vi| < 5((Uy, 01 0xa.0)> T (Uxi 00 Uxarer)?) tO assign the
“weight” of each4-tuple to the diagonals of the corresponding rectangle.alioe analysis shows
that18 copies of all lines are sufficient to accommodate all 4-tsipWhile similar inequalities could
also assign the weight offatuple to the vertical or horizontal edges of the corresfrondectangle,
using vertical or horizontal edges is problematic. Theaads that there ar€(n*) 4-tuples but
only O(n?) vertical or horizontal edges, so some lines would recgi(e) weight, requiring(n)
copies. This problem is already noted in [7].

Our bound here i&[Y?] < 9E?[Y], while in [12] the bound obtained B[Y?] < 3E*[Y].
There appears to have been an error in the derivation in Eifzhie intuition comes from the fol-

lowing example. We note thaD| is at Ieast(;*)2 : (g‘)2 = 9n* — 9n2. (This counts the number
of non-degeneraté-tuples.) Now if we set; = 1 forall 1 < i < n?, we haveE[Y?] > |D| =
Int —9n? ~ 9E2(D), which suggest¥ar[D] > 3E?|D]. Again, we emphasize this discrepancy is

of little importance to [12]; the point there is that the eente is bounded by a constant factor times
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the square of the expectation. It is here, where we are detiegato £ > 3, that the exact constant
factor is of some importance.

Given the bounds on the expectation and variance forlhg standard techniques yield a
bound on the performance of our algorithm.

Theorem 3.4. For everye > 0 andd > 0, there exists a randomized algorithm that computes, given
asequencéu},a?),. .., (a},, aZ), in one pass and using (e 2 log 3 (log m+log n)) memory bits,

my 'm

a numbeMed so that the probabilityMed deviates from|v||> by more thare is at most.

Proof. Recall the algorithm described in the beginning of SectioeBs; = 72¢ 2 andsy =
2log 6. We first computes, random variable®, Ys, . . ., Y, and outputs their mediavied, where
eachy; is the average of; random variable3’;: 1 < j < s; andYj; are independent, identically
distributed random variables computed by Figure 1. By ChRéy's inequality, we know that for
any fixedi,
. . Var(V;)  (1/sp)Var[Y]  (9¢2/72)|9])> 1

Pr(fy =19l 2 dfl) < = aEE - - awE s
Finally, by standard Chernoff bound arguments (see for @@@hapter 4 of [14]), the probability
that more tham, /2 of the variables’; deviate by more tha#|7|| from ||7]| is at mos®. In case this
does not happen, the medisfed supplies a good estimate to the required quartityas neededs

4. The General Casé > 3

Now let us move to the general case whiere 3. Recall that is a vector iR™" that maintains
certain statistics of a data stream, and we are interestesdtimating itsls norm ||7||. There is a
natural generalization for Indyk and McGregor's method #o& 2 to construct an estimator for
|T]]: let hy, ..., hg : [n] — {—1,1} be independent copies of 4-wise independent hash functions
(namely,h;(1),...,hi(n) € {—1,1} ared-wise independent hash functions for each [k], and
hi(),..., hi(-) are mutually independent.). Lét(p) = Hf;l h;(p;). The estimatod” is defined

2
asY = (Zpew ﬁpH(p))

Our goal is to show thaE[Y] = ||#|?> and Var[Y] is reasonably small so that a streaming
algorithm maintaining multiple independent instancesstingatorY” will be able to output an ap-
proximately correct estimation ¢jf/|| with high probability. Notice that whefi|| represents thé,
distance between the joint distribution and the tensordi@fmarginal distributions, the estimator
can be computed efficiently in a streaming model similarlyasoin Figure 1. We stress that our
result is applicable to a broader class/gfnorm estimation problems, as long as the vectto
be estimated has a corresponding efficiently computabimaistr Y in an appropriate streaming
model. Formally, we shall prove the following main lemmahe hext subsection.

Lemma 4.1. Let 7 be a vector inR™, andhy, ..., hy, : [n] — {—1,1} be independent copies of

2
4-wise independent hash functions. Deflfigp) = [F_, h;(p;), andY = (Zpe[n]k ﬁpH(p)) :
We havel[Y] = ||7]| and Var[Y] < 3F¥E[Y]2.

We remark that the bound on the variance in the above lemnighis tOne can verify that
when the vectot is a uniform vector (i.e., all entries af are the same), the variance Bfis
Q(3*E[Y]?). With the above lemma, the following main theorem mentiomethe introduction
immediately follows by a standard argument presented iptbef of Theorem 3.4 in the previous
section.
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Theorem 4.2. Let & be a vector inRl"" that maintains an arbitrary statistics in a data stream
of sizem, in which every item is fronm]*. Lete, 6 € (0,1) be real numbers. If there exists an
algorithm that maintains an instance &fusingO(u(n, m, k, €,6)) memory bits, then there exists
an algorithmA such that:
(1) With probability> 1 — § the algorithmA outputs a value betwed(l — ¢)||7]|?, (1 +¢)||7]?]
and
(2) the space complexity dfis O(3* % log $u(n,m, k, €, 5)).

As discussed above, an immediate corollary is the existefce one-pass space efficient
streaming algorithm to detect the dependenck cdndom variables ifi,-norm:

Corollary 4.3. For everye > 0 andd > 0, there exists a randomized algorithm that computes,
given a sequence, ..., an, of k-tuples, in one pass and usir@(3"¢ 2 log ;(logm + logn))
memory bits, a numbeY” so that the probabilityy” deviates from the square of tle distance
between product and joint distribution by more than a fadbf1 + ¢) is at mosb.

4.1. Analysis of the Sketcht”

This section is devoted to prove Lemma 4.1, where the mailhecigg is to bound the variance
of Y. The geometric approach of Indyk and McGregor [12] preskemeSection 3 for the case of
k = 2 can be extended to analyze the general case. However, wekrémaathe generalization
requires new ideas. In particular, instead of performiragcdl analysis” that maps each rectangle
to its diagonals, a more complex “global analysis” is neeidedigher dimensions to achieve the
desired bounds. The alternative proof we present hereegilsimilar ideas, but relies on a more
combinatorial rather than geometric approach.

For the expectation df’, we have

EY] = E Z Up - Uq - H(p) - H(q)
p,q€[n]k
= > %-EHEI+ Y G -U-E[H(p)H()
peE[n]* p#acn]®
= Y =P,
pE[n]*
where the last equality follows b§f (p)? = 1, andE [H (p)H (q)] = 0 for p # q.
Now, let us start to prov®ar[Y] < 3*E[Y]2. By definition, Var[Y] = E[(Y — E[Y])?], so we
need to understand the following random variable:

Err=Y -E[Y]= Y H(p)H(q)tply- (4.1)
p#q€([n]”

The random variabl&rr is a sum of terms indexed by paifg, q) € [n]* x [n]* with p # q. At
a very high level, our analysis consists of two steps. In ttet §itep, we group the terms itrr
properly and simplify the summation in each group. In theoedcstep, we expand the square of
the sum inVar[Y] = E[Err?] according to the groups and apply Cauchy-Schwartz indguhliee
times to bound the variance.

We shall now gradually introduce the necessary notatiorgfouping the terms irE'rr and

simplifying the summation. We remind the reader that vectarer the reals (e.gi, € R”k) are
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denoted byy, w, 7", and vectors over| are denoted by, q, a, b, ¢, d and referred amdex vectors
We useS C [k] to denote a subset ¢k|, and letS = [£]\S. We useHam(p, q) to denote the
Hamming distancef index vectorg, q € [n], i.e., the number of coordinates whesendq are
different.

Definition 4.4. (Projection and inverse projectior)et ¢ € [n]* be an index vector anfl C [k] a
subset. We define tharojection ofc to S, denoted bybs(c) € [n]!¥], to be the vectoe restricted
to the coordinates if. Also, leta € [n]°l andb € [n]*~!%| be index vectors. We define tieerse
projection ofa andb with respect toS, denoted byb ' (a, b) € [n]*, as the index vectat € [n]*

such thatbg(c) = aand®g(c) = b.

We next defingoair groupsand use the definition to group the termsinr.

Definition 4.5. (Pair Group)Let S C [k] be a subset of sizg5| = t. Letc,d € [n]' be a pair of
index vectors withHam(c,d) = ¢ (i.e., all coordinates of andd are distinct.). Thepair group
os(c,d) is the set of pairdp,q) € [n]* x [n]* such that (i) on coordinat§, ®s(p) = c and
®g(q) = d, and (i) on coordinaté, p andq are the same, i.e®g(p) = ®5(q). Namely,

os(e,d) = {(p.a) € [n]" x [n]*: (c = @5(p)) A (d = @s(a)) A (05(p) = Ps(@) } -
(4.2)

To give some intuition for the above definitions, we note flsateverya < [n]l°!, there is a
unique pair(p, q) € og(c,d) with a = ®5(p) = ®5(q), and sojos(c,d)| = n!°l. On the other
hand, for every paifp,q) € [n]¥ x [n]¥ with p # q, there is a unique non-emtgy C [k] such
thatp andq are distinct on exactly coordinates $h Therefore(p, q) belongs to exactly one pair
groupos(c,d). It follows that we can partition the summationfirr according to the pair groups:

Err=)_ > > H(p)H(qQ)Tpy. (4.3)
SC[k] c,de[n]!Sl, (p.a)e
S#0  Ham(c,d)=|S| os(c,d)

We next observe that for any pdis, q) € os(c,d), sincep andq agree on coordinates i,
the value of the produdt (p) H(q) depends only oi¥, c andd. More precisely,

H(p)H(a) = [] hi(pi)hi(a:) = (H hi(l?i)hi((h')> : (H hi(Pi)Z) = [ [ hiwi)hi(a:),
]

i€k €S ieS €S
which depends only o, ¢ andd since®s(p) = c and®s(q) = d. This motivates the definition
of projected hashing

Definition 4.6. (Projected hashing)et S = {s1, s2,...,s:} be a subset of], wheres; < s2 <
- < sj. Lete € [n]'. We define theprojected hashingis(c) = [Lict hsi(ci)-

We can now translate the random variaBler as follows:

Err=Y > Hs(c)Hg(d) Y Uiy | - (4.4)
SC[k] c,de[n]!s!, (p.a)€
S#D Ham(c,d)=|S| os(c,d)

Fix a pair grouprs(c, d), we next consider the suE(p,q)EUS(c,d) UpUq. Recall that for every
a € [n]ll, there is a unique paiip, q) € os(c,d) with a = ®s(p) = ®5(q). The sum can be
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viewed as the inner product of two vectors of dimensitfl with entries indexed by € [n]‘g . To
formalize this observation, we introduce the definitiorhgper-projectionas follows.

Definition 4.7. (Hyper-projection)Let ¥ € R, S C [k], andc € [n]!Sl. Thehyper-projection
Ys.(7) of & (with respect te andc) is a vectonii = Yg.(7) in R ™' such thatig = Up=1(ca)
foralld € [n]*~15l,

Using the above definition, we continue to rewrite fiier as

Err=Y" > Hg(e)Hs(d) - (Ys,e(D), Ys,a(D)). (4.5)
SCIk] c,de[n]‘s‘,
S#0 Ham(c,d)=|S|
Finally, we consider the produéfs(c)Hs(d) again and introduce the following definition to
further simplify theErr.

Definition 4.8. (Similarity and dominance)et ¢ be a positive integer.
e Two pairs of index vectoréc,d) € [n]t x [n]* and(a, b) € [n] x [n] aresimilar if for all
i € [t], the two setdc;,d; } and{a;, b;} are equal. We denote this @s b) ~ (c,d).
e Letc andd € [n]' be two index vectors. We sayis dominated by if ¢; < d; for all
i € [t]. We denote this as < d. Note thatc < d = Ham(c,d) = t.

Now, note that if(a,b) ~ (c,d), thenHg(a)Hs(b) = Hgs(c)Hg(d) since the value of the
productHg(c)Hg(d) depends on the valuds;, d;} only as a set. It is also not hard to see that
is an equivalence relation, and for every equivalent digsd)], there is a uniquéc,d) € [(a, b)]
with ¢ < d. Therefore, we can further rewrite tlie-r as

Err=7% HS(C)HS(d)'( > <Ts,a<6>,Ts,b<ﬁ>>). (4.6)

SC[k] c=<dg[n]!S! (a,b)~(c,d)
S#0D

We are ready to bound the terB{Err?] by expanding the square of the sum according to
Equation (4.6). We first show in Lemma 4.9 below that all tresstterms in the following expansion
vanish.

Var[Y] = ) > E[Hs(c)Hs(d)Hs () Hg (d')]-
S,8'Clk] c<de[n]!S!
S,S’;ﬁ@ c/<d’€[n}‘5‘,

( > <Ts,a<ﬁ>,rs,b<v*>>)< > <ngaf<v>,rs¢b/<ﬁ>>>]. (4.7)
( (a’,b’

a,b)~(c,d) )~(c’,d’)

Lemma 4.9. Let.S and S’ be subsets dk], andc < d € []l° andc’ < d’ € [n]!¥' index vectors.
We haveF[Hgs(c)Hg(d)Hg (¢')Hg/(d')] € {0,1}. Furthermore, we have
E[Hs(c)Hs(d)He (/) He (d')] = 1iff (S = ') A (¢ = ¢) A (d = d).

Proof. Recall thathq, ..., hy are independent copies ¢fwise independent uniform random vari-
ables over{—1,1}. Namely, for everyi € [k], hi(1),...,h;(n) are 4-wise independent, and
hi(+),...,hi(-) are mutually independent. Observe that for everg [k|, there are at most
terms out ofh;(1),...,h;(n) appearing in the produdis(c)Hg(d)Hg/(c')Hg/(d’). It follows
that all distinct terms appearing fig(c)Hs(d)Hg/ (c')Hg/(d’) are mutually independent uniform
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random variable ovef—1,1}. Therefore, the expectation is either O, if there is sadn{g) that
appears an odd number of times, or 1, if/glj) appear an even number of times. By inspection,
the latter case happens if and only.§ = S’) A (c =) A (d = d'). m

By the above lemma, Equation (4.7) is simplified to

2
VarY]= > > ( > <Ts,a<ﬁ>,rs,b<v*>>). (4.8)
(

S:SC[k c=de[n]!S! a,b)~(c,d)

We next apply the Cauchy-Schwartz inequality three timdsotind the above formula. Con-
sider a subse$ C [k] and a paic < d € [n]/®]. Note that there are precise’| pairs(a, b) such
that(a,b) ~ (c,d). Thus, by the Cauchy-Schwartz inequality:

2

> (Ysal®), Tsp(D)) < 280 3" ((Toa, Top))?

(a,b)E[TLNS‘ (a,b)e[n]\s\

(ab)~(c,d) (a,b)~(c,d)
< 2B N (Yga(@), Tsal®) - (Tsp, Tsp(@)).

(a,b)e[n]!*]

(a,b)~(c,d)

Notice that in the second inequality, we applied Cauchyw&etr in a component-wise manner.
Next, for a subsef C [k], we can apply the Cauchy-Schwartz inequality a third timnen(f the
third line to the fourth line) as follows:

2

Z Z (Ys.a(V), Ysp(?))
c<de(n]!S| (a,b)e[n]!¥
(a,b)~(c,d)
< 28y > (Tsal@), Toal@) - (Top(®), Ysp(@))
c<den]!Sl (a,b)e[n]s
(a,b)~(c,d)
= 28 N (T5e(@), Ys,e(D)) - (Ys,a(7), Ts.a(®))
c,deln]!s!
Ham(c,d)=|S|
< 2N (Te(B), Tse(D)) - (Ts,a(D), Ts.a(@))
c,de[n]!S!
2
= 23T (Tse(8), Tsel@) | -
ce[n]ls|

Finally, we note that by definition, we hal€ ;51 (Y s,c(V), Ts,c(?)) = ||#7]|?, which equals
to E[Y]. It follows that the variance in Equation (4.8) can be bowhbig
k

Varly] < > 28LEYP =EN]? ) <’“> 2l = (3¢ — B[V,

SCIkL,S#0 i=1
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which finishes the proof of Lemma 4.1.

5. Conclusion

There remain several open questions left in this space. Lbawnds, particularly bounds that
depend non-trivially on the dimensidn would be useful. There may still be room for better algo-
rithms for testingk-wise independence in this manner using ¢h@orm. A natural generalization
would be to find a particularly efficient algorithm for tegtik-out-of-s-wise independence (other
than handling each set éfvariable separately). More generally, a question gived 2}, [to identify
random variables whose correlation exceeds some thresofatding to some measure, remains
widely open.
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