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ABSTRACT. In their seminal work, Alon, Matias, and Szegedy introduced several sketching tech-
niques, including showing that4-wise independence is sufficient to obtain good approximations of
the second frequency moment. In this work, we show that their sketching technique can be extended
to product domains[n]k by using the product of4-wise independent functions on[n]. Our work
extends that of Indyk and McGregor, who showed the result fork = 2. Their primary motivation was
the problem of identifying correlations in data streams. In their model, a stream of pairs(i, j) ∈ [n]2

arrive, giving a joint distribution(X, Y ), and they find approximation algorithms for how close the
joint distribution is to the product of the marginal distributions under various metrics, which naturally
corresponds to how closeX andY are to being independent. By using our technique, we obtain a
new result for the problem of approximating theℓ2 distance between the joint distribution and the
product of the marginal distributions fork-ary vectors, instead of just pairs, in a single pass. Our
analysis gives a randomized algorithm that is a(1 ± ǫ) approximation (with probability1 − δ) that
requires space logarithmic inn andm and proportional to3k.
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1. Introduction

In their seminal work, Alon, Matias and Szegedy [4] presented celebrated sketching techniques
and showed that4-wise independence is sufficient to obtain good approximations of the second
frequency moment. Indyk and McGregor [12] make use of this technique in their work introduce
the problem of measuring independence in the streaming model. There they give efficient algo-
rithms for approximating pairwise independence for theℓ1 andℓ2 norms. In their model, a stream
of pairs(i, j) ∈ [n]2 arrive, giving a joint distribution(X,Y ), and the notion of approximating pair-
wise independence corresponds to approximating the distance between the joint distribution and the
product of the marginal distributions for the pairs. Indyk and McGregor state, as an explicit open
question in their paper, the problem of whether one can estimatek-wise independence onk-tuples
for anyk > 2. In particular, Indyk and McGregor show that, for theℓ2 norm, they can make use
of the product of4-wise independent functions on[n] in the sketching method of Alon, Matias, and
Szegedy. We extend their approach to show that on the productdomain[n]k, the sketching method
of Alon, Matias, and Szegedy works when using the product ofk copies of4-wise independent
functions on[n]. The cost is that the memory requirements of our approach grow exponentially
with k, proportionally to3k.

Measuring independence andk-wise independence is a fundamental problem with many ap-
plications (see e.g., Lehmann [13]). Recently, this problem was also addressed in other models by,
among others, Alon, Andoni, Kaufman, Matulef, Rubinfeld and Xie [1]; Batu, Fortnow, Fischer,
Kumar, Rubinfeld and White [5]; Goldreich and Ron [11]; Batu, Kumar and Rubinfeld [6]; Alon,
Goldreich and Mansour [3]; and Rubinfeld and Servedio [15].Traditional non-parametric methods
of testing independence over empirical data usually require space complexity that is polynomial
to either the support size or input size. The scale of contemporary data sets often prohibits such
space complexity. It is therefore natural to ask whether we will be able to design algorithms to test
for independence in streaming model. Interestingly, this specific problem appears not to have been
introduced until the work of Indyk and McGregor. While arguably results for theℓ1 norm would be
stronger than for theℓ2 norm in this setting, the problem forℓ2 norms is interesting in its own right.
The problem for theℓ1 norm has been recently resolved by Braverman and Ostrovsky in [8]. They
gave an(1 ± ǫ, δ)-approximation algorithm that makes a single pass over a data stream and uses
polylogarithmic memory.

1.1. Our Results

In this paper we generalize the “sketching of sketches” result of Indyk and McGregor. Our
specific theoretical contributions can be summarized as follows:

Main Theorem.
Let ~v ∈ R(nk) be a vector with entries~vp ∈ R for p ∈ [n]k. Let h1, . . . , hk : [n] → {−1, 1} be
independent copies of 4-wise independent hash functions; that is,hi(1), . . . , hi(n) ∈ {−1, 1} are
4-wise independent hash functions for eachi ∈ [k], andh1(·), . . . , hk(·) are mutually independent.
DefineH(p) =

∏k
i=1 hj(pj), and the sketchY =

∑

p∈[n]k ~vpH(p).

We prove that the sketchY can be used to give an efficient approximation for‖~v‖2; our result
is stated formally in Theorem 4.2. Note thatH is not4-wise independent.

As a corollary, the main application of our main theorem is toextend the result of Indyk and
McGregor [12] to detect the dependency ofk random variables in streaming model.
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Corollary 1.1. For everyǫ > 0 and δ > 0, there exists a randomized algorithm that computes,
given a sequencea1, . . . , am of k-tuples, in one pass and usingO(3kǫ−2 log 1

δ
(log m + log n))

memory bits, a numberY so that the probabilityY deviates from theℓ2 distance between product
and joint distribution by more than a factor of(1 + ǫ) is at mostδ.

1.2. Techniques and a Historical Remark

This paper is merge from [7, 9, 10], where the same result was obtained with different proofs.
The proof of [10] generalizes the geometric approach of Indyk and McGregor [12] with new geo-
metric observations. The proofs of [7, 9] are more combinatorial in nature. These papers offer new
insights, but due to the space limitation, we focus on the proof from [9] in this paper. Original
papers are available on line and are recommended to the interested reader.

2. The Model

We provide the general underlying model. Here we mostly follow the notation of [7, 12].
Let S be a stream of sizem with elementsa1, . . . , am, whereai ≡ (a1

i , . . . , a
k
i ) ∈ [n]k. (When

we have a sequence of elements that are themselves vectors, we denote the sequence number by
a subscript and the vector entry by a superscript when both are needed.) The streamS defines an
empiricaldistribution over[n]k as follows: the frequencyf(ω) of an elementω ∈ [n]k is defined as
the number of times it appears inS, and the empirical distribution is

Pr[ω] =
f(ω)

m
for anyω ∈ [n]k.

Sinceω = (ω1, . . . , ωk) is a vector of sizek, we may also view the streaming data as defining
a joint distribution over the random variablesX1, . . . ,Xk corresponding to the values in each di-
mension. (In the case ofk = 2, we write the random variables asX andY rather thanX1 andX2.)
There is a natural way of defining marginal distribution for the random variableXi: for ωi ∈ [n],
let fi(ωi) be the number of timesωi appears in theith coordinate of an element ofS, or

fi(ωi) =
∣

∣{aj ∈ S : ai
j = ωi}

∣

∣ .

The empirical marginal distributionPri[·] for theith coordinate is defined as

Pri[ωi] =
fi(ωi)

m
for anyωi ∈ [n].

Next let~v be the vector inR[n]k with ~vω = Pr[ω]−
∏

1≤i≤k Pri[ωi] for all ω ∈ [n]k. Our goal
is to approximate the value

‖~v‖ ≡





∑

ω∈[n]k

∣

∣

∣

∣

∣

∣

Pr[ω]−
∏

1≤i≤k

Pri[ωi]

∣

∣

∣

∣

∣

∣

2



1
2

. (2.1)

This represent theℓ2 norm between the tensor of the marginal distributions and the joint distribution,
which we would expect to be close to zero in the case where theXi were truly independent.

Finally, our algorithms will assume the availability of 4-wise independent hash functions. For
more on 4-wise independence, including efficient implementations, see [2, 16]. For the purposes of
this paper, the following simple definition will suffice.
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Definition 2.1. (4-wise independence)A family of hash functionsH with domain[n] and range
{−1, 1} is 4-wise independentif for any distinct valuesi1, i2, i3, i4 ∈ [n] and anyb1, b2, b3, b4 ∈
{−1, 1}, the following equality holds,

Pr
h←H

[h(i1) = b1, h(i2) = b2, h(i3) = b3, h(i4) = b4] = 1/16.

Remark 2.2. In [12], the family of 4-wise independent hash functionsH is called 4-wise indepen-
dent random vectors. For consistencies within our paper, wewill always view the objectH as a
hash function family.

3. The Algorithm and its Analysis for k = 2

We begin by reviewing the approximation algorithm and associated proof for theℓ2 norm given
in [12]. Reviewing this result will allow us to provide the necessary notation and frame the setting
for our extension to generalk. Moreover, in our proof, we find that a constant in Lemma 3.1
from [12] that we subsequently generalize appears incorrect. (Because of this, our proof is slightly
different and more detailed than the original.) Although the error is minor in the context of their
paper (it only affects the constant factor in the order notation), it becomes more important when
considering the proper generalization to largerk, and hence it is useful to correct here.

In the casek = 2, we assume that the sequence(a1
1, a

2
1), (a

1
2, a

2
2), . . . , (a

1
m, a2

m) arrives an item
by an item. Each(a1

i , a
2
i ) (for 1 ≤ i ≤ m) is an element in[n]2. The random variablesX andY

over [n] can be expressed as follows:






Pr[i, j] = Pr[X = i, Y = j] = |{ℓ : (a1
ℓ , a

2
ℓ ) = (i, j)}|/m

Pr1[i] = Pr[X = i] = |{ℓ : (a1
ℓ , a

2
ℓ ) = (i, ·)}|/m

Pr2[j] = Pr[Y = j] = |{ℓ : (a1
ℓ , a

2
ℓ ) = (·, j)}|/m.

We simplify the notation and usepi ≡ Pr[X = i], qj ≡ Pr[Y = j], ri,j = Pr[X = i, Y = j]. and
si,j = Pr[X = i] Pr[Y = j].

Indyk and McGregor’s algorithm proceeds in a similar fashion to the streaming algorithm pre-
sented in [4]. Specifically lets1 = 72ǫ−2 ands2 = 2 log(1/δ). The algorithm computess2 random
variablesY1, Y2, . . . , Ys2 and outputs their median. The output is the algorithm’s estimate on the
norm ofv defined in Equation 2.1. EachYi is the average ofs1 random variablesYij: 1 ≤ j ≤ s1,
whereYij are independent, identically distributed random variables. Each of the variablesD = Dij

can be computed from the algorithmic routine shown in Figure1.

2-D APPROXIMATION
(

(a1
1, a

2
1), . . . , (a

1
m, a2

m)
)

1 Independently generate 4-wise independent random functionsh1, h2 from [n] to {−1, 1}.
2 for c← 1 to m
3 do Let thecth item(a1

c , a
2
c) = (i, j)

4 t1 ← t1 + h1(i)h2(j), t2 ← t2 + h1(i), t3 ← t3 + h2(j).
5 ReturnY = (t1/m− t2t3/m

2)2.

Figure 1: The procedure for generating random variableY for k = 2.

By the end of the process 2-D APPROXIMATION, we havet1/m =
∑

i,j∈[n] h1(i)h2(j)ri,j , t2/m =
∑

i∈[n] h1(i)pi, andt3/m =
∑

i∈[n] h2(i)qi. Also, when a vector is inR(n2), its indices can be

represented by(i1, i2) ∈ [n]2. In what follows, we will use a bold letter to represent the index of a
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high dimensional vector, e.g.,vi ≡ vi1,i2 . The following Lemma shows that the expectation ofY is
‖v‖2 and the variance ofY is at most8(E[Y ])2 becauseE[Y 2] ≤ 9E[Y ]2.

Lemma 3.1. ([12]) Let h1, h2 be two independent instances of 4-wise independent hash functions
from [n] to {−1, 1}. Let v ∈ Rn2

andH(i)(≡ H
(

(i1, i2)
)

= h1(ii) · h2(i2). Let us defineY =
(

∑

i∈[n]2 H(i)vi

)2
. ThenE[Y ] =

∑

i∈[n]2 ~v2
i and E[Y 2] ≤ 9(E[Y ])2, which impliesVar[Y ] ≤

8E2[Y ].

Proof. We haveE[Y ] = E[(
∑

i H(i)~vi)
2] =

∑

i ~v
2
i E[H2(i)] +

∑

i 6=j ~vi~vjE[H(i)H(j)]. For all
i ∈ [n]2, we knowh2(i) = 1. On the other hand,H(i)H(j) ∈ {−1, 1}. The probability that
H(i)H(j) = 1 is Pr[H(i)H(j) = 1] = Pr[h1(i1)h1(j1)h2(i2)h2(j2) = 1] = 1/16 +

(

4
2

)

1/16 +
1/16 = 1/2. The last equality holds is becauseh1(i1)h1(j1)h2(i2)h2(j2) = 1 is equivalent to
saying either all these variables are 1, or exactly two of these variables are -1, or all these variables
are -1. Therefore,E[h(i)h(j)] = 0. Consequently,E[Y ] =

∑

i∈[n]2(~vi)
2.

Now we bound the variance. Recall thatVar[Y ] = E[Y 2]− E[Y ]2, we bound

E[Y 2] =
∑

i,j,k,l∈[n]2

E[H(i)H(j)H(k)h(l)]~vi~vj~vk~vl ≤
∑

i,j,k,l∈[n]2

|E[H(i)H(j)H(k)H(l)]|·|~vi~vj~vk~vl|.

Also |E[H(i)H(j)H(k)H(l)]| ∈ {0, 1}. The quantityE[H(i)H(j)H(k)H(l)] 6= 0 if and only
if the following relation holds,

∀s ∈ [2] : ((is = js) ∧ (ks = ls)) ∨ ((is = ks) ∧ (js = ls)) ∨ ((is = ls) ∧ (ks = js)) . (3.1)

Denote the set of 4-tuples(i, j,k, l) that satisfy the above relation byD. We may also view each
4-tuple as an ordered set that consists of 4 points in[n]2. Consider the unique smallest axes-parallel
rectangle in[n]2 that contains a given 4-tuple inD (i.e. contains the four ordered points). Note this
could either be a (degenerate) line segment or a (non-degenerate) rectangle, as we discuss below.
Let M : D → {A,B,C,D} be the function that maps an elementσ ∈ D to the smallest rectan-
gle ABCD defined byσ. Since a rectangle can be uniquely determined by its diagonals, we may
write M : D → (χ1, χ2, ϕ1, ϕ2), whereχ1 ≤ χ2 ∈ [n], ϕ1 ≤ ϕ2 ∈ [n] and the corresponding
rectangle is understood to be the one with diagonal{(χ1, ϕ1), (χ2, ϕ2)}. Also, the inverse function
M−1(χ1, χ2, ϕ1, ϕ2) represents the pre-images of(χ1, χ2, ϕ1, ϕ2) in D. (χ1, χ2, ϕ1, ϕ2) is degen-
erate if eitherχ1 = χ2 or ϕ1 = ϕ2, in which case the rectangle (and its diagonals) correspondto
the segment itself, orχ1 = χ2 andϕ1 = ϕ2, and the rectangle is just a single point.

Example 3.2. Let i = (1, 2), j = (3, 2), k = (1, 5), and l = (3, 5). The tuple is inD and
its corresponding bounding rectangle is a non-degenerate rectangle. The functionM(i, j,k, l) =
(1, 3, 2, 5).

Example 3.3. Let i = j = (1, 4) andk = l = (3, 7). The tuple is also inD and minimal bound-
ing rectangle formed by these points is an interval{(1, 4), (3, 7)}. The functionM(i, j,k, l) =
(1, 3, 4, 7).

To start we consider the non-degenerate cases. Fix any(χ1, χ2, ϕ1, ϕ2) with χ1 < χ2 andφ1 <

φ2. There are in total
(4
2

)2
= 36 tuples(i, j,k, l) inD with M(i, j,k, l) = (χ1, χ2, ϕ1, ϕ2). Twenty-

four of these tuples correspond to the setting where none ofi, j,k, l are equal, as there are twenty-
four permutations of the assignment of the labelsi, j,k, l to the four points. (This corresponds
to the first example). In this case the four points form a rectangle, and we have|~vi~vj~vk~vl| ≤
1
2((~vχ1,ϕ1~vχ2,ϕ2)

2 + (~vχ1,ϕ2~vχ2,ϕ1)
2). Intuitively, in these cases, we assign the “weight” of the

tuple to the diagonals.
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The remaining twelve tuples inM−1(χ1, χ2, ϕ1, ϕ2) correspond to intervals. (This corre-
sponds to the second example.) In this case two ofi, j,k, l correspond to one endpoint of the inter-
val, and the other two labels correspond to the other endpoint. Hence we have either|~vi~vj~vk~vl| =
(~vχ1,ϕ1~vχ2,ϕ2)

2 or |~vi~vj~vk~vl| = (~vχ1,ϕ2~vχ2,ϕ1)
2, and there are six tuples for each case.

Therefore for anyχ1 < χ2 ∈ [n] andϕ1 < ϕ2 ∈ [n] we have:
∑

(i,j,k,l)∈

M−1(χ1,χ2,ϕ1,ϕ2)

|vivjvkvl| ≤ 18((vχ1 ,ϕ1vχ2,ϕ2)
2 + (vχ1,ϕ2 , vχ2,ϕ1)

2).

The analysis is similar for the degenerate cases, where the constant 18 in the bound above is
now quite loose. When exactly one ofχ1 = χ2 or ϕ1 = ϕ2 holds, the size ofM−1(χ1, χ2, ϕ1, ϕ2)

is
(4
2

)

= 6, and the resulting intervals correspond to vertical or horizontal lines. When bothχ1 = χ2

andϕ1 = ϕ2, then|M−1(χ1, χ2, ϕ1, ϕ2)| = 1. In sum, we have Following the same analysis as for
the non-degenerate cases, we find

∑

i,j,k,l∈D

|~vi~vj~vk~vl| =
∑

χ1≤χ2

ϕ1≤ϕ2

∑

(i,j,k,l)∈

M−1(χ1,χ2,ϕ1,ϕ2)

|~vi~vj~vk~vl|

≤
∑

χ1<χ2

ϕ1<ϕ2

18((~vχ1,ϕ1~vχ2,ϕ2)
2 + (~vχ1,ϕ2~vχ2,ϕ1)

2) +
∑

χ1=χ2

ϕ1<ϕ2

6((~vχ1,ϕ1~vχ2,ϕ2)
2 + (~vχ1,ϕ2~vχ2,ϕ1)

2)

+
∑

χ1<χ2

ϕ1=ϕ2

6((~vχ1,ϕ1~vχ2,ϕ2)
2 + (~vχ1,ϕ2~vχ2,ϕ1)

2) +
∑

χ1=χ2

ϕ1=ϕ2

(~vχ1,ϕ1~vχ2,ϕ2)
2

≤ 9
∑

i∈[n]2

j∈[n]2

(~vi~vj)
2 = 9E2[Y ].

Finally, we have
∑

i,j,k,l∈[n]2 |E[H(i)H(j)H(k)H(l)]| · |~vi~vj~vk~vl| ≤
∑

i,j,k,l∈D |~vi~vj~vk~vl| ≤

9E2[Y ] andVar[Y ] ≤ 8E[Y ]2.

We emphasize the geometric interpretation of the above proof as follows. The goal is to bound
the variance by a constant timesE2[Y ] =

∑

i,j∈[n]2
(~vivj)

2, where the index set is the set of all possi-
ble lines in plane[n]2 (each line appears twice). We first show thatVar[Y ] ≤

∑

i,j,k,l∈D |~vi~vj~vk~vl|,
where the 4-tuple index set corresponds to a set of rectangles in a natural way. The main idea of [12]
is to use inequalities of the form|~vi~vj~vk~vl| ≤

1
2((~vχ1,ϕ1~vχ2,ϕ2)

2 + (~vχ1,ϕ2~vχ2,ϕ1)
2) to assign the

“weight” of each4-tuple to the diagonals of the corresponding rectangle. Theabove analysis shows
that18 copies of all lines are sufficient to accommodate all 4-tuples. While similar inequalities could
also assign the weight of a4-tuple to the vertical or horizontal edges of the corresponding rectangle,
using vertical or horizontal edges is problematic. The reason is that there areΩ(n4) 4-tuples but
only O(n3) vertical or horizontal edges, so some lines would receiveΩ(n) weight, requiringΩ(n)
copies. This problem is already noted in [7].

Our bound here isE[Y 2] ≤ 9E2[Y ], while in [12] the bound obtained isE[Y 2] ≤ 3E2[Y ].
There appears to have been an error in the derivation in [12];some intuition comes from the fol-

lowing example. We note that|D| is at least
(4
2

)2
·
(

n
2

)2
= 9n4 − 9n2. (This counts the number

of non-degenerate4-tuples.) Now if we setvi = 1 for all 1 ≤ i ≤ n2, we haveE[Y 2] ≥ |D| =
9n4− 9n2 ∼ 9E2(D), which suggestsVar[D] > 3E2[D]. Again, we emphasize this discrepancy is
of little importance to [12]; the point there is that the variance is bounded by a constant factor times
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the square of the expectation. It is here, where we are generalizing to k ≥ 3, that the exact constant
factor is of some importance.

Given the bounds on the expectation and variance for theDi,j , standard techniques yield a
bound on the performance of our algorithm.

Theorem 3.4.For everyǫ > 0 andδ > 0, there exists a randomized algorithm that computes, given
a sequence(a1

1, a
2
1), . . . , (a

1
m, a2

m), in one pass and usingO(ǫ−2 log 1
δ
(log m+log n)) memory bits,

a numberMed so that the probabilityMed deviates from‖v‖2 by more thanǫ is at mostδ.

Proof. Recall the algorithm described in the beginning of Section 3: let s1 = 72ǫ−2 and s2 =
2 log δ. We first computess2 random variablesY1, Y2, . . . , Ys2 and outputs their medianMed, where
eachYi is the average ofs1 random variablesYij : 1 ≤ j ≤ s1 andYij are independent, identically
distributed random variables computed by Figure 1. By Chebyshev’s inequality, we know that for
any fixedi,

Pr
(∣

∣Yi − ‖~v‖
∣

∣

)

≥ ǫ‖~v‖] ≤
Var(Yi)

ǫ2‖~v‖2
=

(1/s1)Var[Y ]

ǫ2‖~v‖2
=

(9ǫ2/72)‖~v‖2

ǫ2‖~v‖2
=

1

8
.

Finally, by standard Chernoff bound arguments (see for example Chapter 4 of [14]), the probability
that more thans2/2 of the variablesYi deviate by more thanǫ‖~v‖ from ‖~v‖ is at mostδ. In case this
does not happen, the medianMed supplies a good estimate to the required quantity‖~v‖ as needed.

4. The General Casek ≥ 3

Now let us move to the general case wherek ≥ 3. Recall that~v is a vector inRnk
that maintains

certain statistics of a data stream, and we are interested inestimating itsℓ2 norm ‖~v‖. There is a
natural generalization for Indyk and McGregor’s method fork = 2 to construct an estimator for
‖~v‖: let h1, . . . , hk : [n] → {−1, 1} be independent copies of 4-wise independent hash functions
(namely,hi(1), . . . , hi(n) ∈ {−1, 1} are4-wise independent hash functions for eachi ∈ [k], and
h1(·), . . . , hk(·) are mutually independent.). LetH(p) =

∏k
i=1 hj(pj). The estimatorY is defined

asY ≡
(

∑

p∈[n]k ~vpH(p)
)2

.

Our goal is to show thatE[Y ] = ‖~v‖2 andVar[Y ] is reasonably small so that a streaming
algorithm maintaining multiple independent instances of estimatorY will be able to output an ap-
proximately correct estimation of‖~v‖ with high probability. Notice that when‖~v‖ represents theℓ2

distance between the joint distribution and the tensors of the marginal distributions, the estimator
can be computed efficiently in a streaming model similarly toas in Figure 1. We stress that our
result is applicable to a broader class ofℓ2-norm estimation problems, as long as the vector~v to
be estimated has a corresponding efficiently computable estimator Y in an appropriate streaming
model. Formally, we shall prove the following main lemma in the next subsection.

Lemma 4.1. Let~v be a vector inRnk
, andh1, . . . , hk : [n] → {−1, 1} be independent copies of

4-wise independent hash functions. DefineH(p) =
∏k

i=1 hj(pj), andY ≡
(

∑

p∈[n]k ~vpH(p)
)2

.

We haveE[Y ] = ||~v|| andVar[Y ] ≤ 3kE[Y ]2.

We remark that the bound on the variance in the above lemma is tight. One can verify that
when the vector~v is a uniform vector (i.e., all entries of~v are the same), the variance ofY is
Ω(3kE[Y ]2). With the above lemma, the following main theorem mentionedin the introduction
immediately follows by a standard argument presented in theproof of Theorem 3.4 in the previous
section.
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Theorem 4.2. Let ~v be a vector inR[n]k that maintains an arbitrary statistics in a data stream
of sizem, in which every item is from[n]k. Let ǫ, δ ∈ (0, 1) be real numbers. If there exists an
algorithm that maintains an instance ofY usingO(µ(n,m, k, ǫ, δ)) memory bits, then there exists
an algorithmΛ such that:

(1) With probability≥ 1−δ the algorithmΛ outputs a value between[(1− ǫ)‖~v‖2, (1+ ǫ)‖~v|2]
and

(2) the space complexity ofΛ is O(3k 1
ǫ2

log 1
δ
µ(n,m, k, ǫ, δ)).

As discussed above, an immediate corollary is the existenceof a one-pass space efficient
streaming algorithm to detect the dependency ofk random variables inℓ2-norm:

Corollary 4.3. For everyǫ > 0 and δ > 0, there exists a randomized algorithm that computes,
given a sequencea1, . . . , am of k-tuples, in one pass and usingO(3kǫ−2 log 1

δ
(log m + log n))

memory bits, a numberY so that the probabilityY deviates from the square of theℓ2 distance
between product and joint distribution by more than a factorof (1 + ǫ) is at mostδ.

4.1. Analysis of the SketchY

This section is devoted to prove Lemma 4.1, where the main challenge is to bound the variance
of Y . The geometric approach of Indyk and McGregor [12] presented in Section 3 for the case of
k = 2 can be extended to analyze the general case. However, we remark that the generalization
requires new ideas. In particular, instead of performing “local analysis” that maps each rectangle
to its diagonals, a more complex “global analysis” is neededin higher dimensions to achieve the
desired bounds. The alternative proof we present here utilizes similar ideas, but relies on a more
combinatorial rather than geometric approach.

For the expectation ofY , we have

E[Y ] = E





∑

p,q∈[n]k

~vp · ~vq ·H(p) ·H(q)





=
∑

p∈[n]k

~v2
p · E

[

H(p)2
]

+
∑

p6=q∈[n]k

~vp · ~vq · E [H(p)H(q)]

=
∑

p∈[n]k

~v2
p = ||~v||2,

where the last equality follows byH(p)2 = 1, andE [H(p)H(q)] = 0 for p 6= q.
Now, let us start to proveVar[Y ] ≤ 3kE[Y ]2. By definition,Var[Y ] = E[(Y − E[Y ])2], so we

need to understand the following random variable:

Err ≡ Y − E[Y ] =
∑

p6=q∈[n]k

H(p)H(q)~vp~vq. (4.1)

The random variableErr is a sum of terms indexed by pairs(p,q) ∈ [n]k × [n]k with p 6= q. At
a very high level, our analysis consists of two steps. In the first step, we group the terms inErr
properly and simplify the summation in each group. In the second step, we expand the square of
the sum inVar[Y ] = E[Err2] according to the groups and apply Cauchy-Schwartz inequality three
times to bound the variance.

We shall now gradually introduce the necessary notation forgrouping the terms inErr and
simplifying the summation. We remind the reader that vectors over the reals (e.g.,~v ∈ Rnk

) are
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denoted by~v, ~w,~r, and vectors over[n] are denoted byp,q,a,b, c,d and referred asindex vectors.
We useS ⊆ [k] to denote a subset of[k], and letS̄ = [k]\S. We useHam(p,q) to denote the
Hamming distanceof index vectorsp,q ∈ [n]k, i.e., the number of coordinates wherep andq are
different.

Definition 4.4. (Projection and inverse projection)Let c ∈ [n]k be an index vector andS ⊆ [k] a
subset. We define theprojection ofc to S, denoted byΦS(c) ∈ [n]|S|, to be the vectorc restricted
to the coordinates inS. Also, leta ∈ [n]|S| andb ∈ [n]k−|S| be index vectors. We define theinverse
projection ofa andb with respect toS, denoted byΦ−1

S (a,b) ∈ [n]k, as the index vectorc ∈ [n]k

such thatΦS(c) = a andΦS̄(c) = b.

We next definepair groupsand use the definition to group the terms inErr.

Definition 4.5. (Pair Group)Let S ⊆ [k] be a subset of size|S| = t. Let c,d ∈ [n]t be a pair of
index vectors withHam(c,d) = t (i.e., all coordinates ofc andd are distinct.). Thepair group
σS(c,d) is the set of pairs(p,q) ∈ [n]k × [n]k such that (i) on coordinateS, ΦS(p) = c and
ΦS(q) = d, and (ii) on coordinatēS, p andq are the same, i.e.,ΦS̄(p) = ΦS̄(q). Namely,

σS(c,d) =
{

(p,q) ∈ [n]k × [n]k :
(

c = ΦS(p)
)

∧
(

d = ΦS(q)
)

∧
(

ΦS̄(p) = ΦS̄(q)
)}

.

(4.2)

To give some intuition for the above definitions, we note thatfor everya ∈ [n]|S̄|, there is a
unique pair(p,q) ∈ σS(c,d) with a = ΦS̄(p) = ΦS̄(q), and so|σS(c,d)| = n|S̄|. On the other
hand, for every pair(p,q) ∈ [n]k × [n]k with p 6= q, there is a unique non-emtpyS ⊆ [k] such
thatp andq are distinct on exactly coordinates inS. Therefore,(p,q) belongs to exactly one pair
groupσS(c,d). It follows that we can partition the summation inErr according to the pair groups:

Err =
∑

S⊆[k]
S 6=∅

∑

c,d∈[n]|S|,
Ham(c,d)=|S|

∑

(p,q)∈
σS(c,d)

H(p)H(q)~vp~vq. (4.3)

We next observe that for any pair(p,q) ∈ σS(c,d), sincep andq agree on coordinates in̄S,
the value of the productH(p)H(q) depends only onS, c andd. More precisely,

H(p)H(q) =
∏

i∈[k]

hi(pi)hi(qi) =

(

∏

i∈S

hi(pi)hi(qi)

)

·





∏

i∈S̄

hi(pi)
2



 =
∏

i∈S

hi(pi)hi(qi),

which depends only onS, c andd sinceΦS(p) = c andΦS(q) = d. This motivates the definition
of projected hashing.

Definition 4.6. (Projected hashing)Let S = {s1, s2, . . . , st} be a subset of[k], wheres1 < s2 <
· · · < sj. Let c ∈ [n]t. We define theprojected hashingHS(c) =

∏

i≤t hsi
(ci).

We can now translate the random variableErr as follows:

Err =
∑

S⊆[k]
S 6=∅

∑

c,d∈[n]|S|,
Ham(c,d)=|S|









HS(c)HS(d)
∑

(p,q)∈
σS(c,d)

~vp~vq









. (4.4)

Fix a pair groupσS(c,d), we next consider the sum
∑

(p,q)∈σS(c,d) ~vp~vq. Recall that for every

a ∈ [n]|S̄|, there is a unique pair(p,q) ∈ σS(c,d) with a = ΦS̄(p) = ΦS̄(q). The sum can be
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viewed as the inner product of two vectors of dimensionn|S̄| with entries indexed bya ∈ [n]|S̄|. To
formalize this observation, we introduce the definition ofhyper-projectionas follows.

Definition 4.7. (Hyper-projection)Let ~v ∈ Rnk
, S ⊆ [k], andc ∈ [n]|S|. Thehyper-projection

ΥS,c(~v) of ~v (with respect toS andc) is a vector~w = ΥS,c(~v) in R[n]k−|S|
such that~wd = ~vΦ−1

S
(c,d)

for all d ∈ [n]k−|S|.

Using the above definition, we continue to rewrite theErr as

Err =
∑

S⊆[k]
S 6=∅

∑

c,d∈[n]|S|,
Ham(c,d)=|S|

HS(c)HS(d) · 〈ΥS,c(~v),ΥS,d(~v)〉. (4.5)

Finally, we consider the productHS(c)HS(d) again and introduce the following definition to
further simplify theErr.

Definition 4.8. (Similarity and dominance)Let t be a positive integer.

• Two pairs of index vectors(c,d) ∈ [n]t × [n]t and(a,b) ∈ [n]t × [n]t aresimilar if for all
i ∈ [t], the two sets{ci, di} and{ai, bi} are equal. We denote this as(a,b) ∼ (c,d).
• Let c andd ∈ [n]t be two index vectors. We sayc is dominated byd if ci < di for all

i ∈ [t]. We denote this asc ≺ d. Note thatc ≺ d⇒ Ham(c,d) = t.

Now, note that if(a,b) ∼ (c,d), thenHS(a)HS(b) = HS(c)HS(d) since the value of the
productHS(c)HS(d) depends on the values{ci, di} only as a set. It is also not hard to see that∼
is an equivalence relation, and for every equivalent class[(a,b)], there is a unique(c,d) ∈ [(a,b)]
with c ≺ d. Therefore, we can further rewrite theErr as

Err =
∑

S⊆[k]
S 6=∅

∑

c≺d∈[n]|S|

HS(c)HS(d) ·





∑

(a,b)∼(c,d)

〈ΥS,a(~v),ΥS,b(~v)〉



 . (4.6)

We are ready to bound the termE[Err2] by expanding the square of the sum according to
Equation (4.6). We first show in Lemma 4.9 below that all the cross terms in the following expansion
vanish.

Var[Y ] =
∑

S,S′⊆[k]
S,S′ 6=∅

∑

c≺d∈[n]|S|

c′≺d′∈[n]|S|′

E[HS(c)HS(d)HS′(c′)HS′(d′)]·









∑

(a,b)∼(c,d)

〈ΥS,a(~v),ΥS,b(~v)〉









∑

(a′,b′)∼(c′,d′)

〈ΥS′,a′(~v),ΥS′,b′(~v)〉







 . (4.7)

Lemma 4.9. LetS andS′ be subsets of[k], andc ≺ d ∈ [n]|S| andc′ ≺ d′ ∈ [n]|S
′| index vectors.

We haveE[HS(c)HS(d)HS′(c′)HS′(d′)] ∈ {0, 1}. Furthermore, we have
E[HS(c)HS(d)HS′(c′)HS′(d′)] = 1 iff (S = S′) ∧ (c = c′) ∧ (d = d′).

Proof. Recall thath1, . . . , hk are independent copies of4-wise independent uniform random vari-
ables over{−1, 1}. Namely, for everyi ∈ [k], hi(1), . . . , hi(n) are 4-wise independent, and
h1(·), . . . , hk(·) are mutually independent. Observe that for everyi ∈ [k], there are at most4
terms out ofhi(1), . . . , hi(n) appearing in the productHS(c)HS(d)HS′(c′)HS′(d′). It follows
that all distinct terms appearing inHS(c)HS(d)HS′(c′)HS′(d′) are mutually independent uniform
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random variable over{−1, 1}. Therefore, the expectation is either 0, if there is somehi(j) that
appears an odd number of times, or 1, if allhi(j) appear an even number of times. By inspection,
the latter case happens if and only if(S = S′) ∧ (c = c′) ∧ (d = d′).

By the above lemma, Equation (4.7) is simplified to

Var[Y ] =
∑

S⊆[k]
S 6=∅

∑

c≺d∈[n]|S|





∑

(a,b)∼(c,d)

〈ΥS,a(~v),ΥS,b(~v)〉





2

. (4.8)

We next apply the Cauchy-Schwartz inequality three times tobound the above formula. Con-
sider a subsetS ⊆ [k] and a pairc ≺ d ∈ [n]|S|. Note that there are precisely2|S| pairs(a,b) such
that(a,b) ∼ (c,d). Thus, by the Cauchy-Schwartz inequality:










∑

(a,b)∈[n]|S|

(a,b)∼(c,d)

〈ΥS,a(~v),ΥS,b(~v)〉











2

≤ 2|S|
∑

(a,b)∈[n]|S|

(a,b)∼(c,d)

(〈ΥS,a,ΥS,b〉)
2

≤ 2|S|
∑

(a,b)∈[n]|S|

(a,b)∼(c,d)

〈ΥS,a(~v),ΥS,a(~v)〉 · 〈ΥS,b,ΥS,b(~v)〉.

Notice that in the second inequality, we applied Cauchy-Schwartz in a component-wise manner.
Next, for a subsetS ⊆ [k], we can apply the Cauchy-Schwartz inequality a third time (from the
third line to the fourth line) as follows:

∑

c≺d∈[n]|S|











∑

(a,b)∈[n]|S|

(a,b)∼(c,d)

〈ΥS,a(~v),ΥS,b(~v)〉











2

≤ 2|S|
∑

c≺d∈[n]|S|

∑

(a,b)∈[n]|S|

(a,b)∼(c,d)

〈ΥS,a(~v),ΥS,a(~v)〉 · 〈ΥS,b(~v),ΥS,b(~v)〉

= 2|S|
∑

c,d∈[n]|S|

Ham(c,d)=|S|

〈ΥS,c(~v),ΥS,c(~v)〉 · 〈ΥS,d(~v),ΥS,d(~v)〉

≤ 2|S|
∑

c,d∈[n]|S|

〈ΥS,c(~v),ΥS,c(~v)〉 · 〈ΥS,d(~v),ΥS,d(~v)〉

= 2|S|





∑

c∈[n]|S|

〈ΥS,c(~v),ΥS,c(~v)〉





2

.

Finally, we note that by definition, we have
∑

c∈[n]|S|〈ΥS,c(~v),ΥS,c(~v)〉 = ||~v||2, which equals
to E[Y ]. It follows that the variance in Equation (4.8) can be bounded by

Var[Y ] ≤
∑

S⊆[k],S 6=∅

2|S| · E[Y ]2 = E[Y ]2
k
∑

i=1

(

k

i

)

2i = (3k − 1)E[Y ]2,
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which finishes the proof of Lemma 4.1.

5. Conclusion

There remain several open questions left in this space. Lower bounds, particularly bounds that
depend non-trivially on the dimensionk, would be useful. There may still be room for better algo-
rithms for testingk-wise independence in this manner using theℓ2 norm. A natural generalization
would be to find a particularly efficient algorithm for testing k-out-of-s-wise independence (other
than handling each set ofk variable separately). More generally, a question given in [12], to identify
random variables whose correlation exceeds some thresholdaccording to some measure, remains
widely open.
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