
Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 203-214
www.stacs-conf.org

EFFICIENT AND ERROR-CORRECTING DATA STRUCTURES FOR MEMBERSH IP
AND POLYNOMIAL EVALUATION

VICTOR CHEN1 AND ELENA GRIGORESCU2 AND RONALD DE WOLF3

1 Tsinghua University ITCS and MIT CSAIL
E-mail address: victor.vc@gmail.com

2 MIT CSAIL
E-mail address: elena_g@mit.edu

3 CWI. Science Park 123. 1098XG Amsterdam. The Netherlands
E-mail address: rdewolf@cwi.nl

ABSTRACT. We construct efficient data structures that are resilient against a constant fraction of
adversarial noise. Our model requires that the decoder answersmostqueries correctly with high
probability and for the remaining queries, the decoder with high probability either answers correctly
or declares “don’t know.” Furthermore, if there is no noise on the data structure, it answersall queries
correctly with high probability. Our model is the common generalization of an error-correcting data
structure model proposed recently by de Wolf, and the notion of “relaxed locally decodable codes”
developed in the PCP literature.

We measure the efficiency of a data structure in terms of itslength (the number of bits in its
representation), and query-answering time, measured by the number ofbit-probesto the (possibly
corrupted) representation. We obtain results for the following two data structure problems:

• (Membership) Store a subsetS of size at mosts from a universe of sizen such that membership
queries can be answered efficiently, i.e., decide if a given element from the universe is inS.
We construct an error-correcting data structure for this problem with length nearly linear in
s log n that answers membership queries withO(1) bit-probes. This nearly matches the asymp-
totically optimal parameters for the noiseless case: lengthO(s log n) and one bit-probe, due to
Buhrman, Miltersen, Radhakrishnan, and Venkatesh.

• (Univariate polynomial evaluation) Store a univariate polynomialg of degreedeg(g) ≤ s over
the integers modulon such that evaluation queries can be answered efficiently, i.e., we can
evaluate the output ofg on a given integer modulon.
We construct an error-correcting data structure for this problem with length nearly linear in
s log n that answers evaluation queries withpolylog s · log1+o(1) n bit-probes. This nearly
matches the parameters of the best-known noiseless construction, due to Kedlaya and Umans.

1998 ACM Subject Classification:E1, E4.
Key words and phrases:Data Structures, Error-Correcting Codes, Membership, Polynomial Evaluation.
This work was done when the author was a student at MIT. Supported by NSF award CCF-0829672 and National Nat-

ural Science Foundation of China Grant 60553001, the National Basic Research Program of China Grant 2007CB807900,
2007CB807901.

This work started when this author was visiting CWI in Summer 2008. Supported by NSF award CCF-0829672.
Supported by a Vidi grant from the Netherlands Organization for Scientific Research (NWO).

c© V. Chen, E. Grigorescu, and R. de Wolf
CC© Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2455

204 V. CHEN, E. GRIGORESCU, AND R. DE WOLF

1. Introduction

The area of data structures is one of the oldest and most fundamental parts of computer science,
in theory as well as in practice. The underlying question is a time-space tradeoff: we are given a
piece of data, and we would like to store it in a short, space-efficient data structure that allows
us to quickly answer specific queries about the stored data. On one extreme, we can store the
data as just a list of the correct answers to all possible queries. This is extremely time-efficient
(one can immediately look up the correct answer without doing any computation) but usually takes
significantly more space than the information-theoretic minimum. At the other extreme, we can
store a maximally compressed version of the data. This method is extremely space-efficient but not
very time-efficient since one usually has to undo the whole compression first. A good data structure
sits somewhere in the middle: it does not use much more space than the information-theoretic
minimum, but it also stores the data in a structured way that enables efficient query-answering.

It is reasonable to assume that most practical implementations of data storage are susceptible to
noise: over time some of the information in the data structure may be corrupted or erased by various
accidental or malicious causes. This buildup of errors may cause the data structure to deteriorate
so that most queries are not answered correctly anymore. Accordingly, it is a natural task to design
data structures that are not only efficient in space and time but also resilient against a certain amount
of adversarialnoise, where the noise can be placed in positions that make decoding as difficult as
possible.

Ways to protect information and computation against noise have been well studied in the theory
of error-correcting codes and of fault-tolerant computation. In the data structure literature, construc-
tions under often incomparable models have been designed to cope with noise. We mention a few
of these models here. First, Aumann and Bender [1] studied pointer-based data structures such as
linked lists, stacks, and binary search trees. In this model, errors (adversarial but detectable) occur
whenever all the pointers from a node are lost. They studied the dependence between the number of
errors and the number of nodes that become irretrievable, and designed a number of efficient data
structures where this dependence is reasonable.

Another model for studying data structures with noise is the faulty-memory RAM model, in-
troduced by Finocchi and Italiano [10]. In a faulty-memory RAM, there areO(1) memory cells
that cannot be corrupted by noise. Elsewhere, errors (adversarial and undetectable) may occur at
any time, even during the decoding procedure. Many data structure problems have been examined
in this model, such as sorting [8], searching [9], priority queues [13] and dictionaries [4]. How-
ever, the number of errors that can be tolerated is typically less than a linear portion of the size
of the input. Furthermore, correctness can only be guaranteed for keys that are not affected by
noise. For instance, for the problem of comparison-sorting onn keys, the authors of [8] designed
a resilient sorting algorithm that tolerates

√
n log n keys being corrupted and ensures that the set of

uncorrupted keys remains sorted.
Recently, de Wolf [19] considered another model of resilient data structures. The representa-

tion of the data structure is viewed as a bit-string, from which a decoding procedure can read any
particular set of bits to answer a data query. The representation must be able to tolerate a constant
fractionδ of adversarial noise in the bit-string1 (but not inside the decoding procedure). His model
generalizes the usual noise-free data structures (whereδ = 0) as well as the so-called “locally de-
codable codes” (LDCs) [14]. Informally, an LDC is an encoding that is tolerant of noise and allows

1We only consider bit-flip-errors here, not erasures. Since erasures are easier to deal with than bit-flips, it suffices to
design a data structure dealing with bit-flip-errors.

EFFICIENT AND ERROR-CORRECTING DATA STRUCTURES 205

fast decoding so that each message symbol can be retrieved correctly with high probability. Using
LDCs as building blocks, de Wolf constructed data structures for several problems.

Unfortunately, de Wolf’s model has the drawback that the optimal time-space tradeoffs are
much worse than in the noise-free model. The reason is that all known constructions of LDCs that
makeO(1) bit-probes [21, 7] have very poor encoding length (super-polynomial in the message
length). In fact, this encoding length provably must be super-linear in the message length [14, 16,
20]. As his model is a generalization of LDCs, data structures cannot have a succinct representation
that has length proportional to the information-theoretic bound.

We thus ask: what is a clean model of data structures that allows efficient representationsand
has error-correcting capabilities? Compared with the pointer-based model and the faulty-memory
RAM, de Wolf’s model imposes a rather stringent requirement on decoding:everyquery must
be answered correctly with high probability from the possibly corrupted encoding. While this re-
quirement is crucial in the definition of LDCs due to their connection to complexity theory and
cryptography, for data structures it seems somewhat restrictive.

In this paper we consider a broader, more relaxed notion of error-correction for data structures.
In our model, for most queries, the decoder has to return the correct answer with high probability.
However, for the few remaining queries, the decoder may claim ignorance, i.e., declare the data
item unrecoverable from the (corrupted) data structure. Still, foreveryquery, the answer is incorrect
only with small probability. In fact, just as de Wolf’s model is a generalization of LDCs, our model
in this paper is a generalization of the “relaxed” locally decodable codes (RLDCs) introduced by
Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan [3]. They relax the usual definition of an
LDC by requiring the decoder to return the correct answer onmostrather than all queries. For the
remaining queries it is allowed to claim ignorance, i.e., to output a special symbol ‘⊥’ interpreted
as “don’t know” or “unrecoverable.” As shown in [3], relaxing the LDC-definition like this allows
for constructions of RLDCs withO(1) bit-probes ofnearly linear length.

Using RLDCs as building blocks, we construct error-correcting data structures that are very
efficient in terms of time as well as space. Before we describe our results, let us define our model
formally. First, adata structure problemis specified by a setD of data items, a setQ of queries, a
setA of answers, and a functionf : D×Q→ Awhich specifies the correct answerf(x, q) of query
q to data itemx. A data structure forf is specified by four parameters:t the number bit-probes,
δ the fraction of noise,ε an upper bound on the error probability for each query, andλ an upper
bound on the fraction of queries inQ that are not answered correctly with high probability (the ‘λ’
stands for “lost”).

Definition 1.1. Let f : D×Q→ A be a data structure problem. Lett > 0 be an integer,δ ∈ [0, 1],
ε ∈ [0, 1/2], andλ ∈ [0, 1]. We say thatf has a(t, δ, ε, λ)-data structureof lengthN if there exist
an encoderE : D → {0, 1}N and a (randomized) decoderD with the following properties: for
everyx ∈ D and everyw ∈ {0, 1}N at Hamming distance∆(w, E(x)) ≤ δN ,

(1) D makes at mostt bit-probes tow,
(2) Pr[Dw(q) ∈ {f(x, q),⊥}] ≥ 1 − ε for everyq ∈ Q,
(3) the setG = {q : Pr[Dw(q) = f(x, q)] ≥ 1− ε} has size at least(1− λ)|Q| (‘G’ stands for

“good”),
(4) if w = E(x), thenG = Q.

HereDw(q) denotes the random variable which is the decoder’s output on inputsw andq. The
notation indicates that it accesses the two inputs in different ways: while it has full access to the
queryq, it only has bit-probe access (or “oracle access”) to the stringw.

206 V. CHEN, E. GRIGORESCU, AND R. DE WOLF

We say that a(t, δ, ε, λ)-data structure iserror-correcting, or anerror-correcting data structure,
if δ > 0. Settingλ = 0 recovers the original notion of error-correction in de Wolf’s model [19].
A (t, δ, ε, λ)-relaxed locally decodable code (RLDC), defined in [3], is an error-correcting data
structure for the membership functionf : {0, 1}n ×[n] → {0, 1}, wheref(x, i) = xi. A (t, δ, ε)-
locally decodable code (LDC), defined by Katz and Trevisan [14], is an RLDC withλ = 0.

Remark 1.2. For the data structure problems considered in this paper, our decoding procedures
make onlynon-adaptiveprobes, i.e., the positions of the probes are determined all at once and
sent simultaneously to the oracle. For other data structure problems it may be natural for decod-
ing procedures to be adaptive. Thus, we do not requireD to be non-adaptive in Condition 1 of
Definition 1.1.

1.1. Our results

We obtain efficient error-correcting data structures for the following two data structure prob-
lems.

M EMBERSHIP : Consider a universe[n] = {1, . . . , n} and some nonnegative integers ≤ n. Given
a setS ⊆ [n] with at mosts elements, one would like to storeS in a compact representation that
can answer “membership queries” efficiently, i.e., given an indexi ∈ [n], determine whether or
not i ∈ S. FormallyD = {S : S ⊆ [n], |S| ≤ s}, Q = [n], andA = {0, 1}. The function
MEMn,s(S, i) is 1 if i ∈ S and0 otherwise.

Since there are at least
(

n
s

)

subsets of the universe of size at mosts, each subset requiring a
different instantiation of the data structure, the information-theoretic lower bound on the space of
any data structure is at leastlog

(

n
s

)

≈ s log n bits.2 An easy way to achieve this is to storeS in
sorted order. If each number is stored in its ownlog n-bit “cell,” this data structure takess cells,
which is s log n bits. To answer a membership query, one can do a binary search on the list to
determine whetheri ∈ S using aboutlog s “cell-probes,” orlog s · log n bit-probes. The length
of this data structure is essentially optimal, but its number of probes is not. Fredman, Komlós,
and Szemerédi [11] developed a famous hashing-based data structure that has lengthO(s) cells
(which isO(s log n) bits) and only needs aconstantnumber of cell-probes (which isO(log n) bit-
probes). Buhrman, Miltersen, Radhakrishnan, and Venkatesh [5] improved upon this by designing
a data structure of lengthO(s log n) bits that answers queries withonly one bit-probeand a small
error probability. This is simultaneously optimal in terms of time (clearly one bit-probe cannot be
improved upon) and space (up to a constant factor).

None of the aforementioned data structures can tolerate a constant fraction of noise. To protect
against noise for this problem, de Wolf [19] constructed an error-correcting data structure with
λ = 0 using a locally decodable code (LDC). That construction answers membership queries in
t bit-probes and has length roughlyL(s, t) log n, whereL(s, t) is the shortest length of an LDC
encodings bits with bit-probe complexityt. Currently, all known LDCs witht = O(1) have
L(s, t) super-polynomial ins [2, 21, 7]. In fact,L(s, t) must be super-linear for all constantt, see
e.g. [14, 16, 20].

Under our present model of error-correction, we can construct much more efficient data struc-
tures with error-correcting capability. First, it is not hard to show that by composing the BMRV data
structure [5] with the error-correcting data structure for MEMn,n (equivalently, an RLDC) [3], one

2Our logs are always to base2.

EFFICIENT AND ERROR-CORRECTING DATA STRUCTURES 207

can already obtain an error-correcting data structure of lengthO((s log n)1+η), whereη is an arbi-
trarily small constant. However, following an approach taken in [19], we obtain a data structure of
lengthO(s1+η log n), which is much shorter than the aforementioned construction ifs = o(log n).

Theorem 1.3. For everyε, η ∈ (0, 1), there exist an integert > 0 and realτ > 0, such that for all
s andn, and everyδ ≤ τ , MEMn,s has a(t, δ, ε, s

2n
)-data structure of lengthO(s1+η log n).

We will prove Theorem 1.3 in Section 2. Note that the size of the good setG is at leastn− s
2 .

Hence corrupting aδ-fraction of the bits of the data structure may cause a decoding failure for at
most half of the queriesi ∈ S but not all. One may replace this factor1

2 easily by another constant
(though the parameterst andτ will then change).

POLYNOMIAL EVALUATION : Let Zn denote the set of integers modulon and s ≤ n be some
nonnegative integer. Given a univariate polynomialg ∈ Zn[X] of degree at mosts, we would
like to storeg in a compact representation so that for each evaluation querya ∈ Zn, g(a) can be
computed efficiently. Formally,D = {g : g ∈ Zn[X],deg(g) ≤ s},Q = Zn, andA = Zn, and the
function is POLYEVAL n,s(g, a) = g(a).

Since there arens+1 polynomials of degree at mosts, with each polynomial requiring a dif-
ferent instantiation of the data structure, the information-theoretic lower bound on the space of any
data structure for this problem is at leastlog(ns+1) ≈ s log n bits. Since each answer is an element
of Zn and must be represented by⌊log n⌋ + 1 bits, ⌊log n⌋ + 1 is the information-theoretic lower
bound on the bit-probe complexity.

Consider the following two naive solutions. On one hand, one can simply record the evaluations
of g in a table withn entries, each with⌊log n⌋ + 1 bits. The length of this data structure is
O(n log n) and each query requires reading only⌊log n⌋+1 bits. On the other hand,g can be stored
as a table of itss + 1 coefficients. This gives a data structure of length and bit-probe complexity
(s+ 1)(⌊log n⌋ + 1).

A natural question is whether one can construct a data structure that is optimal both in terms of
space and time, i.e., has lengthO(s log n) and answers queries withO(log n) bit-probes. No such
constructions are known to exist. However, some lower bounds are known in the weaker cell-probe
model, where each cell is a sequence of⌊log n⌋ + 1 bits. For instance, as noted in [18], any data
structure forPOLYNOMIAL EVALUATION that storesO(s2) cells (O(s2 log n) bits) requires reading
at leastΩ(s) cells. Moreover, by [17], iflog n≫ s log s and the data structure is constrained to store
sO(1) cells, then its query complexity isΩ(s) cells. This implies that the second trivial construction
described above is essentially optimal in the cell-probe model.

Recently, Kedlaya and Umans [15] obtained a data structure of lengths1+η log1+o(1) n (where
η is an arbitrarily small constant) that answers evaluation queries withO(polylog s · log1+o(1) n)
bit-probes. These parameters exhibit the best tradeoff betweens andn so far. Whens = nη for
some0 < η < 1, the data structure of Kedlaya and Umans [15] is much superior to the trivial
solution: its length is nearly optimal, and the query complexity drops frompoly n to onlypolylog n
bit-probes.

Here we construct an error-correcting data structure for the polynomial evaluation problem that
works even in the presence of adversarial noise, with length nearly linear ins log n and bit-probe
complexityO(polylog s · log1+o(1) n). Formally:

Theorem 1.4.For everyε, λ, η ∈ (0, 1), there existsτ ∈ (0, 1) such that for all positive integerss ≤
n, for all δ ≤ τ , the data structure problemPOLYEVAL n,s has a(O(polylog s·log1+o(1) n), δ, ε, λ)-
data structure of lengthO((s log n)1+η).

208 V. CHEN, E. GRIGORESCU, AND R. DE WOLF

Remark 1.5. We note that Theorem 1.4 easily holds whens = (log n)o(1). As we discussed
previously, one can just store a table of thes + 1 coefficients ofg. To make this error-correcting,
encode the entire table by a standard error-correcting code. This has length and bit-probe complexity
O(s log n) = O(log1+o(1) n).

1.2. Our techniques

At a high level, for both data structure problems we build our constructions by composing
a relaxed locally decodable code with an appropriate noiseless data structure. If the underlying
probe-accessing scheme in a noiseless data structure is “pseudorandom,” then the noiseless data
structure can be made error-correcting by appropriate compositions with other data structures. By
pseudorandom, we mean that if a query is chosen uniformly at random fromQ, then the positions of
the probes selected also “behave” as if they are chosen uniformly at random. Such property allows
us to analyze the error-tolerance of our constructions.

More specifically, for theMEMBERSHIP problem we build upon the noiseless data structure
of Buhrman et al. [5]. While de Wolf [19] combined this with LDCs to get a rather long data
structure withλ = 0, we will combine it here with RLDCs to get nearly optimal length with
small (but non-zero)λ. In order to boundλ in our new construction, we make use of the fact
that the [5]-construction is a bipartiteexpander graph, as explained below after Theorem 2.2. This
property wasn’t needed in [19]. The left side of the expander represents the set of queries, and a
neighborhood of a query (a left node) represents the set of possible bit-probes that can be chosen to
answer this query. The expansion property of the graph essentially implies that for a random query,
the distribution of a bit-probe chosen to answer this query is close to uniform.3 This property allows
us to construct an efficient, error-correcting data structure for this problem.

For the polynomial evaluation problem, we rely upon the noiseless data structure of Kedlaya
and Umans [15], which has a decoding procedure that uses the reconstruction algorithm from the
Chinese Remainder Theorem. The property that we need is the simple fact that ifa is chosen
uniformly at random fromZn, then for anym ≤ n, a modulom is uniformly distributed inZm.
This implies that for a random evaluation pointa, the distribution of certain tuples of cell-probes
used to answer this evaluation point is close to uniform. This observation allows us to construct
an efficient, error-correcting data structure for polynomial evaluation. Our construction follows the
non-error-correcting one of [15] fairly closely; the main new ingredient is to add redundancy to their
Chinese Remainder-based reconstruction by using more primes, which gives us the error-correcting
features we need.

Time-complexity of decoding and encoding.So far we have used the number of bit-probes as a
proxy for the actual time the decoder needs for query-answering. This is fairly standard, and usually
justified by the fact that the actual time complexity of decoding is not much worse than its number
of bit-probes. This is also the case for our constructions. ForMEMBERSHIP, it can be shown that
the decoder usesO(1) probes andpolylog(n) time (as do the RLDCs of [3]). ForPOLYNOMIAL

EVALUATION , the decoder usespolylog(s) log1+o(1)(n) probes andpolylog(sn) time.
The efficiency ofencoding, i.e., the “pre-processing” of the data into the form of a data struc-

ture, for both our error-correcting data structuresMEMBERSHIP and POLYNOMIAL EVALUATION

3We remark that this is different from the notion of smooth decoding in the LDC literature, which requires that for
everyfixedquery, each bit-probe by itself is chosen with probability close to uniform (though not independent of the other
bit-probes).

EFFICIENT AND ERROR-CORRECTING DATA STRUCTURES 209

depends on the efficiency of encoding of the RLDC constructions in [3]. This is not addressed
explicitly there, and needs further study.

2. The MEMBERSHIP problem

In this section we construct a data structure for the membership problem MEMn,s. First we
describe some of the building blocks that we need to prove Theorem 1.3. Our first basic building
block is the relaxed locally decodable code of Ben-Sasson et al. [3] with nearly linear length. Using
our terminology, we can restate their result as follows:

Theorem 2.1(BGHSV [3]). For everyε ∈ (0, 1/2) andη > 0, there exist an integert > 0 and
reals c > 0 and τ > 0, such that for everyn and everyδ ≤ τ , the membership problemMEMn,n

has a(t, δ, ε, cδ)-data structure forMEMn,n of lengthO(n1+η).

Note that by picking the error-rateδ a sufficiently small constant, one can setλ = cδ (the
fraction of unrecoverable queries) to be very close to0.

The other building block that we need is the following one-probe data structure of Buhrman et
al. [5].

Theorem 2.2(BMRV [5]) . For everyε ∈ (0, 1/2) and for every positive integerss ≤ n, there is
an (1, 0, ε, 0)-data structure forMEMn,s of lengthm = 100

ε2 s log n bits.

Properties of the BMRV encoding:The encoding can be represented as a bipartite graphG =

(L,R,E) with |L| = n left vertices and|R| = m right vertices, and regular left degreed = log n
ε

.
This G is anexpander graph: for each setS ⊆ L with |S| ≤ 2s, its neighborhoodΓ(S) satisfies
|Γ(S)| ≥

(

1 − ε
2

)

|S|d. For each assignment of bits to the left vertices with at mosts ones, the
encoding specifies an assignment of bits to the right vertices. In other words, eachx ∈ {0, 1}n

of weight |x| ≤ s corresponds to an assignment to the left vertices, and them-bit encoding ofx
corresponds to an assignment to the right vertices.

For eachi ∈ [n] we write Γi := Γ({i}) to denote the set ofd neighbors ofi. A crucial
property of the encoding functionEbmrv is that for everyx of weight |x| ≤ s, for eachi ∈ [n], if
y = Ebmrv(x) ∈ {0, 1}m thenPrj∈Γi [xi = yj] ≥ 1 − ε. Hence the decoder for this data structure
can just probe a random indexj ∈ Γi and return the resulting bityj. Note that this construction is
not error-correcting at all, since|Γi| errors in the data structure suffice to erase all information about
thei-th bit of the encodedx.

As we mentioned in the Section 1.1, by combining the BMRV encoding with the data structure
for MEMn,n from Theorem 2.1, one easily obtains an(O(1), δ, ε,O(δ))-data structure for MEMn,s

of lengthO((s log n)1+η). However, we can give an even more efficient, error-correcting data
structure of lengthO(s1+η log n). Our improvement follows an approach taken in de Wolf [19],
which we now describe. For a vectorx ∈ {0, 1}n with |x| ≤ s, consider a BMRV structure
encoding20n bits intom bits. The following “balls and bins estimate” is known:

Proposition 2.3(From Section 2.3 of [19]). For every positive integerss ≤ n, the BMRV bipartite
graphG = ([20n], [m], E) for MEM20n,s with error parameter 1

10 andm = 104s log(20n) has the
following property: there exists a partition of[m] into b = 10 log(20n) disjoint setsB1, . . . , Bb of
103s vertices each, such that for eachi ∈ [n], there are at leastb4 setsBk satisfying|Γi ∩Bk| = 1.

Proposition 2.3 suggests the following encoding and decoding procedures. To encodex, we
rearrange them bits of Ebmrv(x) into Θ(log n) disjoint blocks ofΘ(s) bits each, according to the

210 V. CHEN, E. GRIGORESCU, AND R. DE WOLF

partition guaranteed by Proposition 2.3. Then for each block, encode these bits with the error-
correcting data structure (RLDC) from Theorem 2.1. Given a received wordw, to decodei ∈ [n],
pick a blockBk at random. With probability at least14 , Γi ∩Bk = {j} for somej. Run the RLDC
decoder to decode thej-th bit of thek-th block ofw. Since most blocks don’t have much higher
error-rate than the average (which is at mostδ), with high probability we recoverEbmrv(x)j , which
equalsxi with high probability. Finally, we can argue that most queries do not receive a blank
symbol⊥ as an answer, using the expansion property of the BMRV encoding structure. Due to
space limitation, we give only a proof sketch of Theorem 1.3 here.

Proof of Theorem 1.3.We only construct an error-correcting data structure with error probability
0.49. By a standard amplification technique we can reduce the error probability to any other positive
constant (i.e., repeat the decoderO(log(1/ε)) times).

By Theorem 2.2, there exists an encoderEbmrv for an(1, 0, 1
10 , 0)-data structure for the mem-

bership problem MEM20n,s of lengthm = 104s log(20n). Let s′ = 103s. By Theorem 2.1, for
everyη > 0, for somet = O(1), and sufficiently smallδ, MEMs′,s′ has a(t, 105δ, 1

100 , O(δ))-data
structure of lengths′′ = O(s′1+η). Let Ebghsv andDbghsv be its encoder and decoder, respectively.

Encoding.Let B1, . . . , Bb be a partition of[m] as guaranteed by Proposition 2.3. For a string
w ∈ {0, 1}m, we abuse notation and writew = wB1 · · ·wBb

to denote the string obtained fromw
by applying the permutation on[m] according to the partitionB1, . . . , Bb. In other words,wBk

is
the concatenation ofwi wherei ∈ Bk. We now describe the encoding process.

EncoderE : on inputx ∈ {0, 1}n, |x| ≤ s,

(1) Lety = Ebmrv

(

x019n
)

and writey = yB1 . . . yBb
.

(2) Output the concatenationE(x) = Ebghsv (yB1) . . . Ebghsv (yBb
).

The length ofE(x) isN = b ·O(s′1+η) = O(s1+η log n).

Decoding.Given a stringw ∈ {0, 1}N , we writew = w(1) . . . w(b), where fork ∈ [b],w(k) denotes
thes′′-bit stringws′′·(k−1)+1 . . . ws′′·k.

DecoderD: on inputi and with oracle access to a stringw ∈ {0, 1}N ,

(1) Pick a randomk ∈ [b].
(2) If |Γi ∩Bk| 6= 1, then output a random bit.

Else, letΓi ∩ Bk = {j}. Run and output the answer given by the decoderDbghsv(j), with
oracle access to thes′′-bit stringw(k).

Analysis. We defer the analysis to the full version [6].

3. The POLYNOMIAL EVALUATION problem

In this section we prove Theorem 1.4. Given a polynomialg of degrees overZn, our goal is
to write down a data structure of length roughly linear ins log n so that for eacha ∈ Zn, g(a) can
be computed with roughlypolylog s · log n bit-probes. Our data structure is built on the work of
Kedlaya and Umans [15]. Since we cannot quite use their construction as a black-box, we first give
a high-level overview of our proof, motivating each of the proof ingredients that we need.

EFFICIENT AND ERROR-CORRECTING DATA STRUCTURES 211

Encoding based on reduced polynomials:The most naive construction, by recordingg(a) for each
a ∈ Zn, has lengthn log n and answers an evaluation query withlog n bit-probes. As explained
in [15], one can reduce the length by using the Chinese Remainder Theorem (CRT): IfP1 is a
collection of distinct primes, then a nonnegative integerm <

∏

p∈P1
p is uniquely specified by

(and can be reconstructed efficiently from) the values[m]p for eachp ∈ P1, where[m]p denotesm
mod p.

Consider the valueg(a) over Z, which can be bounded above byns+2, for a ∈ Zn. Let
P1 consist of the firstlog(ns+2) primes. For eachp ∈ P1, compute the reduced polynomial
gp := g mod p and write downgp(b) for eachb ∈ Zp. Consider the data structure that sim-
ply concatenates the evaluation table of every reduced polynomial. This data structure has length
|P1|(maxp∈P1 p)

1+o(1), which is s2+o(1) log2+o(1) n by the Prime Number Theorem. Note that
g(a) <

∏

p∈P1
p. So to compute[g(a)]n, it suffices to apply CRT to reconstructg(a) overZ from

the values[g(a)]p = gp([a]p) for eachp ∈ P1. The number of bit-probes is|P1| log(maxp∈P1 p),
which iss1+o(1) log1+o(1) n.

Error-correction with reduced polynomials: The above CRT-based construction has terrible pa-
rameters, but it serves as an important building block from which we can obtain a data structure
with better parameters. For now, we explain how the above CRT-based encoding can be made
error-correcting. One can protect the bits of the evaluation tables of each reduced polynomial by an
RLDC as provided by Theorem 2.1. However, the evaluation tables can have non-binary alphabets,
and a bit-flip in just one “entry” of an evaluation table can destroy the decoding process. To remedy
this, one can first encode each entry by a standard error-correcting code and then encode the con-
catenation of all the tables by an RLDC. This is encapsulated in Lemma 3.1, which can be viewed
as a version of Theorem 2.1 over non-binary alphabet. We defer this proof to the full version of this
paper [6].

Lemma 3.1. Let f : D × Q → {0, 1}ℓ be a data structure problem. For everyε, η, λ ∈ (0, 1),
there existsτ ∈ (0, 1) such that for everyδ ≤ τ , f has an(O(ℓ), δ, ε, λ)-data structure of length
O((ℓ|Q|)1+η).

To apply Lemma 3.1, letD be the set of degree-s polynomials overZn, Q be the set of all
evaluation points of all the reduced polynomials ofg (eachq ∈ Q specified by a pair(a, p) of an
evaluation pointa and a prime modulusp), and the data structure problemf outputs evaluations of
some reduced polynomial ofg.

By itself, Lemma 3.1 cannot guarantee resilience against noise. In order to apply the CRT to
reconstructg(a), all the values{[g(a)]p : p ∈ P1} must be correct, which is not guaranteed by
Lemma 3.1. To fix this, we add redundancy, taking a larger set of primes than necessary so that the
reconstruction via CRT can be made error-correcting. Specifically, we apply a Chinese Remainder
Code, or CRT code for short, to the encoding process.

Definition 3.2 (CRT code). Let p1 < p2 < . . . < pN be distinct primes,K < N , andT =
K
∏

i=1
pi.

The Chinese Remainder Code (CRT code)with basisp1, . . . , pN and rateK
N

over message space
ZT encodesm ∈ ZT as〈[m]p1 , [m]p2 , . . . , [m]pN

〉.
Remark 3.3. By CRT, for distinctm1,m2 ∈ ZT , their encodings agree on at mostK − 1 coor-
dinates. Hence the Chinese Remainder Code with basisp1 < . . . < pN and rateK

N
has distance

N −K + 1.

212 V. CHEN, E. GRIGORESCU, AND R. DE WOLF

It is known that good families of CRT code exist and that unique decoding algorithms for CRT
codes can correct up to almost half of the distance of the code (see e.g., [12]). The following
statement can be easily derived from known facts, and we defer its proof to the full version [6].

Theorem 3.4.For every positive integerT , there exists a setP consisting of distinct primes, with (1)
|P | = O(log T), and (2)∀p ∈ P, log T < p < 500 log T , such that a CRT code with basisP and
message spaceZT has rate1

2 , relative distance12 , and can correct up to a(1
4−O(1

log log T
))-fraction

of errors.

We apply Theorem 3.4 to a message space of sizens+2 to obtain a set of primesP1 with the
properties described above. Note that these primes are all within a constant factor of one another,
and in particular, the evaluation table of each reduced polynomial has the same length, up to a con-
stant factor. This fact and Lemma 3.1 will ensure that our CRT-based encoding is error-correcting.

Reducing the bit-probe complexity:We now explain how to reduce the bit-probe complexity of
the CRT-based encoding, using an idea from [15]. Writes = dm, whered = logC s,m = log s

C log log s
,

andC > 1 is a sufficiently large constant. Consider the following multilinear extension mapψd,m :
Zn[X] → Zn[X0, . . . ,Xm−1] that sends a univariate polynomial of degree at mosts to anm-variate
polynomial of degree less thand in each variable. For everyi ∈ [s], write i =

∑m−1
j=0 ijd

j in base

d. Defineψd,m which sendsXi toXi0
1 · · ·Xim−1

m and extends multilinearly toZn[X].
To simplify our notation, we writẽg to denote the multivariate polynomialψd,m(g). For every

a ∈ Zn, defineã ∈ Z
m
n to be ([a]n, [a

d]n, [a
d2

]n, . . . , [a
dm−1

]n). Note that for everya ∈ Zn,
g(a) = g̃(ã) (modn). Now the trick is to observe that the total degree of the multilinear polynomial
g̃ is less than the degree of the univariate polynomialg, and hence its maximal value over the integers
is much reduced. In particular, for everya ∈ Z

m
n , the valueψd,m(g)(a) over the integers is bounded

above bydmndm+1.
We now work with the reduced polynomials ofg̃ for our encoding. LetP1 be the collection

of primes guaranteed by Theorem 3.4 whenT1 = dmndm+1. Forp ∈ P1, let g̃p denoteg̃ mod p

and ãp denote the point([a]p, [ad]p, . . . , [a
dm−1

]p). Consider the data structure that concatenates
the evaluation table of̃gp for eachp ∈ P1. For eacha ∈ Zn, to computeg(a), it suffices to
computeg̃(ã) over Z, which by Theorem 3.4 can be reconstructed (even with noise) from the set
{g̃p(ãp) : p ∈ P1}.

Since the maximum value of̃g is at mostT1 = dmndm+1 (whereas the maximum value of
g is at mostdmndm+1), the number of primes we now use is significantly less. This effectively
reduces the bit-probe complexity. In particular, each evaluation query can be answered with|P1| ·
maxp∈P1 log p = (dm log n)1+o(1) bit-probes, which by our choice ofd andm is equal topolylog s·
log1+o(1) n. However, thelength of this encoding is still far from the information-theoretically
optimals log n bits. We shall explain how to reduce the length, but since encoding with multilinear
reduced polynomials introduces potential complications in error-correction, we first explain how to
circumvent these complications.

Error-correction with reduced multivariate polynomials: There are two complications that arise
from encoding with reduced multivariate polynomials. The first is that not all the points in the
evaluation tables are used in the reconstructive CRT algorithm. Lemma 3.1 only guarantees that
most of the entries of the table are decoded correctly with high probability, but not all of them (even
if the fraction of errors in the table is low, aλ-fraction of queries may be answered by⊥). So if the
entries that are used in the reconstruction via CRT are not decoded by Lemma 3.1, then the whole
decoding procedure fails.

EFFICIENT AND ERROR-CORRECTING DATA STRUCTURES 213

More specifically, to reconstruct̃g(ã) overZn, it suffices to query the point̃ap in the evaluation
table ofg̃p for eachp ∈ P1. Typically the set{ãp : a ∈ Zn} will be much smaller thanZm

p , so not
all the points inZm

p are used. To circumvent this issue, we only store the query points that are used
in the CRT reconstruction. LetBp = {ãp : a ∈ Zn}. For eachp ∈ P1, the encoding only stores the
evaluation of̃gp at the pointsBp instead of the entire domainZm

p . The disadvantage of computing
the evaluation at the points inBp is that the encoding stage takes time proportional ton. We thus
give up on encoding efficiency (which was one of the main goals of Kedlaya and Umans) in order
to guarantee error-correction.

The second complication is that the sizes of the evaluation tables may no longer be within a
constant factor of each other. (This is true even if the evaluation points come from all ofZ

m
p .) If one

of the tables has length significantly longer than the others, then a constant fraction of noise may
completely corrupt the entries of all the other small tables, rendering decoding via CRT impossible.
This potential problem is easy to fix; we apply a repetition code to each evaluation table so that all
the tables have equal length.

Reducing the length:Now we explain how to reduce the length of the data structure to nearly
s log n, along the lines of Kedlaya and Umans [15]. To reduce the length, we need to reduce
the magnitude of the primes used by the CRT reconstruction. We can effectively achieve that by
applying the CRT twice. Instead of storing the evaluation table ofg̃p, we apply CRT again and store
evaluation tables of the reduced polynomials ofg̃p instead. Whenever an entry ofg̃p is needed, we
can apply the CRT reconstruction to the reduced polynomials ofg̃p.

Note that forp1 ∈ P1, the maximum value of̃gp1 (over the integers rather than modn) is at
mostT2 = dmpdm+1

1 . Now apply Theorem 3.4 withT2 the size of the message space to obtain a
collection of primesP2. Recall that eachp1 ∈ P1 is at mostO(dm log n). So eachp2 ∈ P2 is at
mostO((dm)1+o(1) log log n), which also bounds the cardinality ofP2 from above.

For each query, the number of bit-probes made is at most|P1||P2|maxp2∈P2 log p2, which is

at most(dm)2+o(1) log1+o(1) n. Recall that by our choice ofd andm, dm = logC+1 s
C log log s

. Thus, the

bit-probe complexity ispolylog s · log1+o(1) n. Now, by Lemma 3.1, the length of the encoding is
nearly linear in|P1||P2|maxp2∈P2 p

m
2 log p2, which is at mostpolylog s·log1+o(1) n·maxp2∈P2 p

m
2 .

So it suffices to boundmaxp2∈P2 p
m
2 from above. To this end, recall that by the remark following

Theorem 1.4, we may assume without loss of generality thats = Ω(logζ n) for some0 < ζ < 1.
This implies thatlog log log n ≤ log log s− log ζ. Then for eachp2 ∈ P2,

pm
2 ≤

(

O
(

(dm)1+o(1) log log n
))m

≤ (dm)(1+o(1))m · s 1
C

+o(1).

It is easy to see that(dm)(1+o(1))m can be bounded above bys(1+o(1))(1+ 1
C
−o(1)). Thus,pm

2 =

s1+
2
C

+o(1). Putting everything together, the length of the encoding is nearly linear ins log n. As
mentioned, we defer the formal proof to the full version of this paper [6].

Acknowledgments

We thank Madhu Sudan for helpful comments and suggestions on the presentation of this paper.

214 V. CHEN, E. GRIGORESCU, AND R. DE WOLF

References

[1] Y. Aumann and M. Bender. Fault-tolerant data structures. InProceedings of 37th IEEE FOCS, pages 580–589, 1996.
[2] A. Beimel, Y. Ishai, E. Kushilevitz, and J. Raymond. Breaking theO(n1/(2k−1)) barrier for information-theoretic

Private Information Retrieval. InProceedings of 43rd IEEE FOCS, pages 261–270, 2002.
[3] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust PCPs of proximity, shorter PCPs and

applications to coding.SIAM Journal on Computing, 36(4):889–974, 2006. Earlier version in STOC’04.
[4] G. Brodal, R. Fagerberg, I. Finocchi, F. Grandoni, G. Italiano, A. Jørgenson, G. Moruz, and T. Mølhave. Optimal

resilient dynamic dictionaries. InProceedings of 15th European Symposium on Algorithms (ESA), pages 347–358,
2007.

[5] H. Buhrman, P. B. Miltersen, J. Radhakrishnan, and S. Venkatesh. Are bitvectors optimal?SIAM Journal on Com-
puting, 31(6):1723–1744, 2002. Earlier version in STOC’00.

[6] V. Chen, E. Grigorescu, and R. de Wolf. Efficient and Error-Correcting Data Structures for Membership and Poly-
nomial Evaluation, 2009. Preprint at http://arxiv.org/abs/0909.3696.

[7] K. Efremenko. 3-query locally decodable codes of subexponential length. InProceedings of 41st ACM STOC, 2009.
[8] I. Finocchi, F. Grandoni, and G. Italiano. Optimal resilient sorting and searching in the presence of memory faults.

In Proceedings of 33rd ICALP, volume 4051 ofLecture Notes in Computer Science, pages 286–298, 2006.
[9] I. Finocchi, F. Grandoni, and G. Italiano. Resilient search trees. InProceedings of 18th ACM-SIAM SODA, pages

547–553, 2007.
[10] I. Finocchi and G. Italiano. Sorting and searching in the presence of memory faults (without redundancy). InPro-

ceedings of 36th ACM STOC, pages 101–110, 2004.
[11] M. Fredman, M. Komlós, and E. Szemerédi. Storing a sparse table withO(1) worst case access time.Journal of the

ACM, 31(3):538–544, 1984.
[12] O. Goldreich, D. Ron, and M. Sudan. Chinese remaindering with errors.IEEE Transactions on Information Theory,

46(4):1330–1338, 2000.
[13] A. G. Jørgenson, G. Moruz, and T. Mølhave. Resilient priority queues. InProceedings of 10th International Work-

shop on Algorithms and Data Structures (WADS), volume 4619 ofLecture Notes in Computer Science, 2007.
[14] J. Katz and L. Trevisan. On the efficiency of local decoding procedures for error-correcting codes. InProceedings

of 32nd ACM STOC, pages 80–86, 2000.
[15] K. S. Kedlaya and C. Umans. Fast modular composition in any characteristic. InProceedings of 49th IEEE FOCS,

pages 146–155, 2008.
[16] I. Kerenidis and R. de Wolf. Exponential lower bound for 2-query locally decodable codes via a quantum argument.

Journal of Computer and System Sciences, 69(3):395–420, 2004. Earlier version in STOC’03. quant-ph/0208062.
[17] P. B. Miltersen. On the cell probe complexity of polynomial evaluation.Theor. Comput. Sci., 143(1):167–174, 1995.
[18] P. B. Miltersen. Cell probe complexity - a survey. Invited paper atAdvances in Data Structuresworkshop. Available

at Miltersen’s homepage, 1999.
[19] R. de Wolf. Error-correcting data structures. InProceedings of 26th Annual Symposium on Theoretical Aspects of

Computer Science (STACS’2009), pages 313–324, 2009. cs.DS/0802.1471.
[20] D. Woodruff. New lower bounds for general locally decodable codes. Technical report, ECCC Report TR07–006,

2006.
[21] S. Yekhanin. Towards 3-query locally decodable codes of subexponential length.Journal of the ACM, 55(1), 2008.

Earlier version in STOC’07.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

