
Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 239-250
www.stacs-conf.org

THE TRAVELING SALESMAN PROBLEM

UNDER SQUARED EUCLIDEAN DISTANCES

MARK DE BERG 1 AND FRED VAN NIJNATTEN 1 AND RENÉ SITTERS 2 AND
GERHARD J. WOEGINGER 1 AND ALEXANDER WOLFF 3

1 Department of Mathematics and Computer Science, TU Eindhoven, the Netherlands.
E-mail address: mdberg@win.tue.nl

E-mail address: f.s.b.v.nijnatten@tue.nl

E-mail address: gwoegi@win.tue.nl

2 Faculty of Economics and Business Administration, VU Amsterdam, the Netherlands.
E-mail address: rsitters@feweb.vu.nl

3 Lehrstuhl für Informatik I, Universität Würzburg, Germany.
URL: http://www1.informatik.uni-wuerzburg.de/en/staff/wolff alexander

Abstract. Let P be a set of points in R
d, and let α > 1 be a real number. We define the

distance between two points p, q ∈ P as |pq|α, where |pq| denotes the standard Euclidean
distance between p and q. We denote the traveling salesman problem under this distance
function by Tsp(d,α). We design a 5-approximation algorithm for Tsp(2,2) and generalize

this result to obtain an approximation factor of 3α−1 +
√

6
α

/3 for d = 2 and all α > 2.
We also study the variant Rev-Tsp of the problem where the traveling salesman is

allowed to revisit points. We present a polynomial-time approximation scheme for Rev-
Tsp(2, α) with α > 2, and we show that Rev-Tsp(d,α) is apx-hard if d > 3 and α > 1.
The apx-hardness proof carries over to Tsp(d, α) for the same parameter ranges.

1. Introduction

Motivated by a power-assignment problem in wireless networks (see below for a short
discussion of this application) Funke et al. [12] studied the following special case Tsp(d, α)
of the Traveling Salesman Problem (Tsp) which is specified by an integer d > 2 and a real
number α > 0. The cities are n points in d-dimensional space R

d, and the distance between
two points p and q is |pq|α, where |pq| denotes the standard Euclidean distance between p
and q.

• The objective in problem Tsp(d, α) is to find a shortest tour (under distances | · |α)
that visits every city exactly once.

1998 ACM Subject Classification: I.1.2 Algorithms, F.2.2 Nonnumerical Algorithms and Problems.
Key words and phrases: Geometric traveling salesman problem, power-assignment in wireless networks,

distance-power gradient, NP-hard, APX-hard.

c© M. de Berg, F. van Nijnatten, R. Sitters, G. J. Woeginger, and A. Wolff
CC© Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2458

240 M. DE BERG, F. VAN NIJNATTEN, R. SITTERS, G. J. WOEGINGER, AND A. WOLFF

• In the closely related problem Rev-Tsp(d, α), the objective is to find a shortest tour
that visits every city at least once; thus the salesman is allowed to revisit cities.

Note that Tsp(2, 1) is the classical two-dimensional Euclidean Tsp and that Tsp(d,∞) is
the so-called bottleneck Tsp in R

d, where the goal is to find a tour whose longest edge has
minimum length. We are, however, mainly interested in the case where α is some small
constant, and we will not touch the case α =∞.

Similarities and differences to the classical Euclidean TSP. The classical Euclidean Tsp is
np-hard even in two dimensions, but it is relatively easy to approximate. In particular, it
admits a polynomial-time approximation scheme: Given a parameter ε > 0 and a set of n

points in d-dimensional Euclidean space, one can find in 2(d/ε)O(d)
+ (d/ε)O(d)n log n time a

tour whose length is at most 1 + ε times the optimal length [23].
A crucial property of the Euclidean Tsp is that the underlying Euclidean distances

satisfy the triangle inequality. The triangle inequality implies that no reasonable salesman
would ever revisit the same city: Instead of returning to a city, it is always cheaper to skip
the city and to travel directly to the successor city. All positive approximation results for
the Euclidean Tsp rely heavily on the triangle inequality. In strong contrast to this, for
exponents α > 1 the distance function | · |α does not satisfy the triangle inequality. Thus
the combinatorial structure of the problem changes significantly—for example, revisits may
suddenly become helpful—and the existing approximation algorithms for Euclidean Tsp

cannot be applied.
Another nice property of the classical Euclidean problem Tsp(2, 1) is that, sloppily

speaking, instances with many cities have long optimal tours. Consider for instance a set P
of n points in the unit square. Then there exists a tour whose Euclidean length is bounded
by O(

√
n) [15]. This bound is essentially tight since there are point sets for which every

tour has Euclidean length Ω(
√
n). Interestingly, these results do not carry over to Tsp(2, 2)

with squared Euclidean distances. Problem #124 in the book by Bollobás [8] shows that
there always exists a tour for P such that the sum of the squared Euclidean distances is
bounded by 4, and that this bound of 4 is best possible. Since, as a rule of thumb, large
objective values are easier to approximate than small objective values, this already indicates
a substantial difference in the approximability behaviors of Tsp(2,1) and Tsp(2,2).

Previous work and our results. Funke et al. [12] note that the distance function | · |α satisfies
the so-called τ -relaxed triangle inequality with parameter τ = 2α−1 (see Section 2 for a
definition). The classical TSP under the τ -relaxed triangle inequality has been extensively
studied [2, 3, 6, 7], and all the corresponding machinery from the literature can be applied
directly to Tsp(d, α). For instance, Andreae [6] derives a (τ2 + τ)-approximation for the
classical Tsp under the τ -relaxed triangle inequality (∆τ -Tsp, for short). This result trans-
lates into a (4α−1 + 2α−1)-approximation for Tsp(· , α). For τ > 3, it is better to apply
Bender and Chekuri’s 4τ -approximation [2] for ∆τ -Tsp, which yields a 2α+1-approximation
for Tsp(· , α). Funke et al. derive a (2 ·3α−1)-approximation algorithm for Tsp(· , α), which
for the range 2 < α < log3/2 3 ≈ 2.71 is better than applying the known results [6, 2].

The best result for α < 2 is obtained by Böckenhauer et al. [7] whose Christofides-based
(3τ2/2)-approximation for ∆τ -Tsp yields a (3 · 22α−3)-approximation for Tsp(· , α).

We will demonstrate in Section 2 that essentially every variant of the original T3-
algorithm by Andreae and Bandelt [3] already gives a (2·3α−1)-approximation for Tsp(d, α).
The bottom-line of all this, and the actual starting point of our paper, is that the machinery

THE TRAVELING SALESMAN PROBLEM UNDER SQUARED EUCLIDEAN DISTANCES 241

around the τ -relaxed triangle inequality only yields a bound of roughly 2 · 3α−1. This
raises the following questions: How much can geometry help us in getting even better
approximation ratios? Can we beat the 6-approximation for Tsp(2, 2) of Funke et al.? We
answer these questions affirmatively: We develop a new variant of the T3-algorithm which
we call the geometric T3-algorithm. An intricate analysis in Section 3 shows that this yields
a 5-approximation for Tsp(2, 2). We then extend our analysis to Tsp(2, α) with α > 2,

and thus obtain a (3α−1 +
√

6
α
/3)-approximation; see Section 4. This new bound is always

better than the bound 2 · 3α−1 of Funke et al. and of our analysis of the T3-algorithm.
Finally, in Section 5, we turn our attention to the following two questions: (a) How

does the approximability of Tsp behave when we make α larger than one? (b) Does al-
lowing revisits change the complexity or the approximability of the problem? As we know,
classical Euclidean Tsp (that is, Tsp(d, 1)) is np-hard [19] and has a polynomial-time ap-
proximation scheme (PTAS) in any fixed number d of dimensions [4]. On the other hand,
Rev-Tsp(d, α) has—to the best of our knowledge—not been studied before. Concerning
question (b), complexity behaves as expected: Rev-Tsp(d, α) is NP-hard for any d > 2 and
any α > 0, and our (straightforward) hardness argument also works for Tsp(d, α). In terms
of approximability, we show that whereas the two-dimensional problem Rev-Tsp(2, α) still
has a PTAS for all values α > 2, the problem becomes apx-hard for all α > 1 in three
dimensions. We were surprised that the apx-hardness proof, too, carried over to Tsp(3, α)
for all α > 1. This inapproximability result stands in strong contrast to the behavior of the
classical Euclidean Tsp (the case α = 1).

The connection to wireless networks. Consider a wireless network whose nodes are equipped
with omni-directional antennas. The nodes are modeled as points in the plane, and every
node can communicate with all other nodes that are within its transmission radius. The
power (that is, the energy) needed to achieve a transmission radius of r is roughly propor-
tional to rα for some real parameter α called the distance-power gradient. Depending on
environmental conditions, α typically is in the range 2 to 6 [13, Chapter 1]. The goal is to
assign powers to the nodes such that the resulting network has certain desirable properties,
while the overall power consumption is minimized. A widely studied variant has the objec-
tive to make the resulting network strongly connected [1, 11, 16]. Other variants (finding
broadcast trees; having small hop diameter; etc) have been studied as well. Funke et al. [12]
suggest that it is useful to have a tour through the network, which can be used to pass a
virtual token around. The resulting power-assignment problem is Tsp(2, α).

Another setting related to Tsp(2, α) is the following. Instead of omni-directional anten-
nas, some wireless networks use directional antennas. This achieves the same transmission
radius under a smaller energy consumption [17, 22]. To model directional antennas, Cara-
giannis et al. [9] assume that a node can communicate with other nodes in a circular sector
of a given angle (where the sector’s radius is still determined by the power of the node’s
signal). For directional antennas one not only has to assign a power level to each node, but
also has to decide on the direction in which each node transmits. If the opening angle tends
to zero and the points are in general position, a strongly connected network becomes a tour.
Hence, our results on Tsp(2, α) may shed some light on the difficulty of power assignment
for directional antennas with small opening angles.

242 M. DE BERG, F. VAN NIJNATTEN, R. SITTERS, G. J. WOEGINGER, AND A. WOLFF

2. Approximating Tsp(· , α)

In this section we lay the basis for our main contribution, a 5-approximation for
Tsp(2, 2) in Section 3. We review known algorithms for a related version of Tsp, which
can be applied to our setting. As it turns out, these algorithms already yield the same
worst-case bounds as the algorithm that Funke et al. [12] gave recently.

We recall some definitions. Let S be a set, let dist(·, ·) : S × S → R>0 be a distance
function on S, and let τ > 1. We say that dist(·, ·) fulfills the τ -relaxed triangle inequality

if any three elements p, q, r ∈ S satisfy dist(p, r) 6 τ · (dist(p, q) + dist(q, r)). Recall that
we denote by ∆τ -Tsp the Tsp problem on complete graphs whose weight function (when
viewed as a distance function on the vertices) fulfills the τ -relaxed triangle inequality. The
following lemma, which has been observed by Funke et al. [12], allows us to apply algorithms
for ∆τ -Tsp to our problem. The proof relies on Hölder’s inequality.

Lemma 2.1 ([12]). Let α > 0 be a fixed constant. The distance function | · |α : R
d ×R

d →
R>0, (p, q) 7→ |pq|α fulfills the τ -relaxed triangle inequality for τ = 2α−1.

Andreae and Bandelt [3] gave an approximation algorithm for ∆τ -Tsp. Their T3-
algorithm is an adaptation of the well-known double-spanning-tree heuristic for Tsp. This
heuristic finds a minimum spanning tree (MST) in the given graph G, doubles all edges,
finds an Euler tour in the resulting multigraph, and finally constructs a Hamiltonian cycle
from the Euler tour by skipping all nodes that have already been visited. The weight of
the MST is a lower bound for the length of a Tsp-tour since removing any edge from a
tour yields a spanning tree whose weight is at least the weight of the MST. Note that
this statement holds for arbitrary weight functions. If the triangle inequality holds, the
heuristic yields a 2-approximation since then skipping over visited nodes never increases
the length of the tour, which initially equals twice the weight of the MST. For the weight
function | · |α, however, the heuristic can perform arbitrarily badly—consider a sequence of
n equally-spaced points on a line.

The T3-algorithm of Andreae and Bandelt also creates a Hamiltonian tour by short-
cutting the MST, but their algorithm never skips more than two consecutive nodes. It is
never necessary to skip more than two consecutive nodes because the cube T 3 of a tree T is
always Hamiltonian by a result of Sekanina [24]. Recall that the cube of a graph G contains
an edge uv if there is a path from u to v in G that uses at most three edges. The proof of
Sekanina is constructive; Andreae and Bandelt use it to construct a tour in MST3.

The recursive procedure of Sekanina [24] to obtain a Hamiltonian cycle in T 3 intuitively
works as illustrated in Fig. 1; for the pseudo-code, see Algorithm 1. The algorithm is
applied to a tree T and an edge e = u1u2 of T . Removing the edge e splits the tree into
two components T1 and T2. In each component Ti (i = 1, 2), the algorithm selects an
arbitrary edge ei = uiwi incident to ui and recursively computes a Hamiltonian cycle of Ti

that includes the edge ei. The algorithm returns a Hamiltonian cycle of T that includes e.
The cycle consists of the cycles in T1 and T2 without the edges e1 and e2, respectively. The
two resulting paths are stitched together with the help of e and the new edge w1w2.

Note that different choices of the edge ei in line 5 give rise to different versions of the
algorithm. The standard T3-algorithm takes an arbitrary such edge, while Andreae’s refined
version [2] makes a specific choice, which gives a better result. (In the next section we will
choose ei based on the local geometry of the MST, which will lead to an improved result
for our problem.) Andreae’s tour in MST3 has weight at most (τ2 + τ) times the weight of
the MST, which is worst-case optimal [3]. Combining his result with Lemma 2.1 yields that

THE TRAVELING SALESMAN PROBLEM UNDER SQUARED EUCLIDEAN DISTANCES 243

u1 u2

w1 w2

T1 T2e
e1 e2

Figure 1: Recursively find-
ing a Hamiltonian
cycle in the cube
of the tree T .

Algorithm 1: CycleInCube(T , e = u1u2)

for i← 1 to 2 do1

Ti ← component of T − e that contains ui2

if |Ti| = 1 then Pi ← ∅; wi ← ui3

else4

pick an edge ei = uiwi incident to ui in Ti5

if |Ti| = 2 then Πi ← ei6

else Πi ← CycleInCube(Ti, ei)− ei7

return Π1 + e+ Π2 + w1w28

the refined T3-algorithm is a (4α−1 + 2α−1)-approximation for Tsp(· , α). We now improve
on this with the help of a simple argument. We will frequently use the following definition.
Let T be a tree and let v0, . . . , vk be a simple path in T . Then we call v0vk a k-shortcut

of T . We say that a shortcut vw uses an edge e if e lies on the path connecting v and w
in T . It is not hard to see that the weight of a k-shortcut can be bounded as follows.

Lemma 2.2. Let α > 1 and let e be a k-shortcut using edges e1, . . . , ek. Then |e|α 6

kα−1
∑k

i=1 |ei|α.
Given a tree T , the tour constructed by the T3-algorithm consists of edges of T and 2-

and 3-shortcuts that use edges of T . Note that in this tour each edge of T is used exactly
twice. Thus, for α > 2, the original T3-algorithm does actually better than the bound we
obtained above for the refined T3-algorithm.

Corollary 2.3. Every version of the T3-algorithm is a (2·3α−1)-approximation for Tsp(· , α).

Note that our improved analysis of the T3-algorithm yields the same result as the
algorithm of Funke et al. [12].

Bender and Chekuri [6] designed a 4τ -approximation for ∆τ -Tsp using a different lower
bound: the optimal Tsp tour is a biconnected subgraph of the original graph. The weight
of the optimal Tsp tour is at least that of the minimum-weight biconnected subgraph.
The latter is np-hard to compute [10], but can be approximated within a factor of 2 [21].
Moreover, the square of a biconnected subgraph is always Hamiltonian. Thus using only
edges of the biconnected subgraph and two-shortcuts yields a 4τ -approximation for ∆τ -
Tsp. Combining the result of Bender and Chekuri with Lemma 2.1 immediately yields the
following result, which is better than Corollary 2.3 for α > log3/2 3 ≈ 2.71.

Corollary 2.4. The algorithm of Bender and Chekuri is a 2α+1-approximation for Tsp(· , α).

3. A 5-Approximation for TSP(2,2)

In the previous section we have used graph-theoretic arguments to determine the per-
formance of the T3-algorithm. By Corollary 2.3, the T3-algorithm yields a 6-approximation
for α = 2, independently of the dimension of the underlying Euclidean space. We now
define what we call the geometric T3-algorithm and show that it yields a 5-approximation
for Tsp(2, 2). The geometric T3-algorithm simply chooses in line 5 of Algorithm 1 the edge
ei that makes the smallest angle with the edge e.

244 M. DE BERG, F. VAN NIJNATTEN, R. SITTERS, G. J. WOEGINGER, AND A. WOLFF

b

a
c

b1 b2

s(a, b, c)

ψba ψbc

∆x

∆y

(a) a and c lie on the same side of the
line through b

b

a

c

b1

b2

s(a, b, c)

ψba

ψbc

∆x

∆y

(b) a and c lie on different sides of the line
through b

Figure 2: Two cases for computing the length of the 3-shortcut s(a, b, c).

The idea behind taking advantage of geometry is as follows. In Corollary 2.3 we have
exploited the fact that each edge is used in two (6 3)-shortcuts. The weight of a 3-shortcut
is maximum if the corresponding points lie on a line. For the case of the Euclidean MST it
is well-known that edges make an angle of at least π/3 if they share an endpoint. The same
proof also works for the MST w.r.t. | · |α. This guarantees that in line 5 of Algorithm 1, we
can pick an edge ei that makes a relatively small angle with e—if the degree of ui is larger
than 2. Otherwise, it is easy to see that ei is used by a (6 2)- and a (6 3)-shortcut, which
is favorable to being used by two 3-shortcuts, see Lemma 2.2.

Although the intuition behind our geometric T3-algorithm is clear, its analysis turns
out to be non-trivial. We start with the following lemma that can be proved with some
elementary trigonometry. Given two line segments s and t incident to the same point, we
denote the smaller angle between s and t by ∠st and define ψst = π − ∠st.

Lemma 3.1. Given a tree T , the 3-shortcut s(a, b, c) that uses the edges a, b, c of T in this

order has weight

|s(a, b, c)|2 = |a|2 + |b|2 + |c|2 + 2|a||b| cos ψba + 2|b||c| cos ψbc + 2|a||c| cos(ψba + δ · ψbc),

where δ = +1 if a and c lie on the same side of the line through b, and δ = −1 if a and c lie

on opposite sides. Moreover, |s(a, b, c)|2 6 2|a|2 + |b|2 +2|c|2 +2|a||b| cosψba +2|b||c| cos ψbc.

Lemma 3.1 (illustrated in Fig. 2) expresses the weight of a 3-shortcut in terms of the
lengths of the edges and the angles between them. Now we show that if an edge a is used in
two 3-shortcuts, two of these angles are related. Note that the T3-algorithm generates the
two 3-shortcuts that use a in two consecutive recursive calls, see Fig. 3. The T3-algorithm
is first applied to edge b and then recursively to edge a. In the recursive call, the shortcut
s(e, a, d) is generated where d is an edge incident to both a and b. Then the algorithm
returns from the recursion and generates the 3-shortcut s(a, b, c). Thus a is the middle edge
in one 3-shortcut and the first or last edge in the other 3-shortcut. We rely on the following.

Lemma 3.2. If the geometric T3-algorithm generates the two 3-shortcuts s(a, b, c) and

s(e, a, d) in two recursive calls and d is incident to both a and b, then ψba > (π − ψad)/2.

Now we are ready to prove the main result of this section.

Theorem 3.3. The geometric T3-algorithm yields a 5-approximation for Tsp(2, 2).

Proof. We express the length of each shortcut s of the T3-tour in terms of the lengths of the
MST edges that s uses. Changing the perspective, for each MST edge a, we use contrib(a)
to denote the sum of all terms that contain the factor |a|. The edge a is used in at most

THE TRAVELING SALESMAN PROBLEM UNDER SQUARED EUCLIDEAN DISTANCES 245

two shortcuts. Bounding their lengths yields an upper bound on contrib(a). The sum of all
contributions relates the length of the T3-tour to that of the MST (w.r.t. | · |α), which in
turn is a lower bound for the length of an optimal Tsp tour.

Due to Lemma 2.2, contrib(a) 6 5|a|2 if a is used in a (62)-shortcut on one side and a
(63)-shortcut on the other side. So we focus on the case that a is used in two 3-shortcuts,
see Fig. 3. We rewrite the composite terms in the bound for s(a, b, c) in Lemma 3.1 using
Young’s inequality with ε, which, given x, y ∈ R and ε > 0, states that xy 6 x2/(2ε)+y2ε/2.

Let v be the vertex that is incident to edges a and b. If there are multiple 3-shortcuts
that use edges that are incident to v then the T3-algorithm generates these in consecutive
recursive calls. We renumber the edges incident to v such that the algorithm is first applied
to vv1, then recursively to vv2 etc. Then there is some i > 1 such that b = vvi and
a = vvi+1 because the algorithm is first applied to b and then recursively to a. We define
ψi = ψvvi,vvi+1(= ψba). We rewrite the term 2|a||b| cos ψba in the bound for |s(a, b, c)|2 in
Lemma 3.1 as follows.

2|a||b| cos ψba = 2|vvi||vvi+1| cosψi 6 f(|vvi+1|, |vvi|, ψi), (3.1)

where

f(|vvi+1|, |vvi|, ψi) =







0 if ψi > π
2 ,

|vvi|2 + |vvi+1|2 cos2 ψi if ψi <
π
2 and

(
i = 1 or

(
i > 1 and ψi−1 > π

2

))
,

(
|vvi|2 + |vvi+1|2

)
cosψi if ψi <

π
2 and i > 1 and ψi−1 <

π
2 .

The second case of inequality (3.1) follows from Young’s inequality with ε = 1/ cosψi and
the third case from Young’s inequality with ε = 1. Replacing 2|b||c| cos ψbc in the bound for
|s(a, b, c)|2 in Lemma 3.1 is analogous. Together, the two replacements yield the bound

|s(a, b, c)|2 6 2|a|2 + |b|2 + 2|c|2 + f(|a|, |b|, ψba) + f(|c|, |b|, ψbc). (3.2)

We use (3.2) to bound the weights of all 3-shortcuts. The weight of the final tour is the
sum of the weights of all shortcuts. In this sum we can take the two occurrences of an
edge a = vvi+1 together and analyze the contribution of a to the tour. Note that the result
of (3.2) is still at most 3(|a|2 + |b|2 + |c|2). So if an edge a is used in a (63)-shortcut on one
side and a (6 2)-shortcut on the other side, then we still have that contrib(a) 6 5|a|2. It
remains to consider the case that a is used in two 3-shortcuts. Let s(a, b, c) and s(e, a, d) be
these 3-shortcuts. The algorithm is first applied to edge b and generates shortcut s(a, b, c),
where a is the first or the third edge of the shortcut. Then the algorithm is recursively
applied to edge a and generates shortcut s(e, a, d), where a is the middle edge. Fig. 3 shows
how the vertices are numbered in this case.

b

a
c

d

e s(a, b, c)

s(e, a, d)

ψi = ψba ψbc

ψae

v
vi

vi+1

vi+1

ψi+1 = ψad

Figure 3: Two 3-shortcuts that use edge a.

a
v vi−1

vi

vi+1

vj

6
i

6
i+1

6
i−1

Figure 4: Illustration of case III.

246 M. DE BERG, F. VAN NIJNATTEN, R. SITTERS, G. J. WOEGINGER, AND A. WOLFF

Let σa be a function that takes a sum of terms and returns the sum of all terms that
contain |a|. We derive the following expression for contrib(a).

contrib(a) = σa(weight(s(a, b, c))) + σa(weight(s(e, a, d)))

6 σa

(
2|a|2 + |b|2 + 2|c|2 + f(|a|, |b|, ψba) + f(|c|, |b|, ψbc)

)

+ σa

(
2|e|2 + |a|2 + 2|d|2 + f(|e|, |a|, ψae) + f(|d|, |a|, ψad)

)

6 4|a|2 + σa(f(|vvi+1|, |vvi|, ψi)) + σa(f(|vvi+2|, |vvi+1|, ψi+1)) (3.3)

By definition of f we have to consider three cases in (3.3) for contrib(a).

Case I: ψi > π/2 or ψi+1 > π/2.
We assume w.l.o.g. that ψi > π/2. Then we know that f(|vvi+1|, |vvi|, ψi)) = 0 and in

the worst case σa(f(|vvi+2|, |vvi+1|, ψi+1)) 6 |a|2. Thus we have that contrib(a) 6 5|a|2.
Case II: ψi < π/2 and ψi+1 < π/2 and (i = 1 or (i > 1 and ψi−1 > π/2)).

By definition of f we have:

σa(f(|vvi+1|, |vvi|, ψi)) = σa

(
|vvi|2 + |vvi+1|2 cos2 ψi

)
= |a|2 cos2 ψi

σa(f(|vvi+2|, |vvi+1|, ψi+1)) = σa

(
(|vvi+1|2 + |vvi+2|2) cosψi+1

)
= |a|2 cosψi+1

Lemma 3.2 states that ψi > (π − ψi+1)/2. We also know that ψi 6 π by definition. Thus
we have

contrib(a) 6

(

4 + cos2
π − ψi+1

2
+ cosψi+1

)

|a|2 6 5|a|2.
Case III: ψi < π/2 and ψi+1 < π/2 and i > 1 and ψi−1 < π/2.

It can be shown that this leads to a contradiction, see Fig. 4 (on page 245).

In cases I and II, the contribution of any edge |a| to the tour is at most 5|a|2. The
theorem follows by summing up the contributions of all edges.

When using the MST as a lower bound in the analysis, there is not much room for
improvement. There are instances of Tsp(2,2) where the T3-algorithm yields a tour whose
weight is 4 4

11 times that of the MST; see also [18, Theorem 4.19].

4. Approximating Tsp(2, α) with α > 2

In this section we generalize the main result of the previous section to α > 2. Our new
bound is always better than the bound 2 · 3α−1 of Funke et al. [12], see also Corollary 2.3.
For α < 3.41 our bound is better than the bound 2α+1 that follows from the algorithm of
Bender and Chekuri [6], see Corollary 2.4.

Theorem 4.1. The geometric T 3-algorithm yields a (3α−1 +
√

6
α
/3)-approximation for

Tsp(2, α) if α > 2.

Proof. If an edge a is used in a (62)-shortcut on one side and a (63)-shortcut on the other
side then the total contribution of a to the tour is at most (2α−1 +3α−1)|a|α by Lemma 2.2.
So we will focus our analysis again on the case that a is used in two 3-shortcuts. For α = 2
we can express the weight of a 3-shortcut by Lemma 3.1 and rewrite the composite terms

THE TRAVELING SALESMAN PROBLEM UNDER SQUARED EUCLIDEAN DISTANCES 247

as in inequality (3.1). For α > 2 we apply Hölder’s inequality.

|s(a, b, c)|α =
(
|s(a, b, c)|2

)α/2

6
(
2|a|2 + |b|2 + 2|c|2 + f(|a|, |b|, ψba) + f(|c|, |b|, ψbc)

)α/2

=
(
βa|a|2 + βb|b|2 + βc|c|2

)α/2
(4.1)

6 3α/2−1
(

βα/2
a |a|α + β

α/2
b |b|α + βα/2

c |c|α
)

(4.2)

We introduced the constants of type β to shorten the expression. Note that the last in-
equality holds only if α > 2.

In order to bound the contribution of an edge a that is used in two 3-shortcuts we
follow the proof of Theorem 3.3. Since the assumptions of case III in that proof led to a
contradiction, it suffices to consider cases I and II.

Case I: ψi > π/2 or ψi+1 > π/2.

contrib(a) 6 3α/2−1
(

(2 + cosψi)
α/2 + (2 + cosψi+1)

α/2
)

|a|α

6 3α/2−1
(

2α/2 + 3α/2
)

|a|α =
(

3α−1 +
√

6
α
/3

)

|a|α

Case II: ψi < π/2 and ψi+1 < π/2 and (i = 1 or (i > 1 and ψi−1 > π/2)).

contrib(a) 6 3α/2−1
(

(2 + cosψi+1)
α/2 +

(
2 + sin2 ψi+1/2

)α/2
)

︸ ︷︷ ︸

gα(ψi+1)

|a|α

Now we use the fact that the function h : [0, 2π] → R, x 7→ (2 + cos x)k + (2 + sin2 x/2)k

attains its maximum value at x = 0. Thus gα also attains its maximum in the range [0, π/2)
in x = 0. This yields

contrib(a) 6 3α/2−1 · gα(0) · |a|α 6
(
3α−1 +

√
6

α
/3

)
|a|α.

In both cases we showed that contrib(a) 6 (3α−1 +
√

6
α
/3)|a|α. The theorem follows for

α > 2 by summing up the contributions of all edges. The case α = 2 corresponds to
Theorem 3.3.

5. The Approximability of TSP and Rev-TSP

In this section we discuss complexity and approximability of Tsp and its variant Rev-
Tsp, where the salesman is allowed to revisit the cities. Recall that for any fixed dimension
d > 2, Tsp(d, 1) is np-hard [19] and admits a PTAS [4].

Theorem 5.1. Tsp(d, α) and Rev-Tsp(d, α) are np-hard for any d > 2 and α > 0.

Proof. Itai et al. [14] showed that, given n points in the unit grid, it is np-hard to decide
whether there is a Tsp tour of Euclidean length n. Thus for both of our problems it is
np-hard to distinguish between opt = n and opt > n− 1 +

√
2

α
.

248 M. DE BERG, F. VAN NIJNATTEN, R. SITTERS, G. J. WOEGINGER, AND A. WOLFF

Theorem 5.2. Tsp(d, α) and Rev-Tsp(d, α) are apx-hard for any d > 3 and any α > 1.

Proof. We only discuss the case d = 3 and α = 2—all other cases can be settled by slightly
modified arguments—Tsp. and we only consider Rev-Tsp; a similar reduction can be used
for Tsp. We reduce from {1, 2}-Tsp, the Tsp on the complete graph where the weight
of every edge is either 1 or 2; this problem is apx-hard [20]. An instance of {1, 2}-Tsp

consists of the complete graph Kn = (Vn, En) with vertex set Vn = {v1, . . . , vn}, edge
set En = {e1, . . . , em} where m = n(n − 1)/2, and edge lengths that are specified by a
weight function w : En → {1, 2}. Given Kn and w, we construct a corresponding instance
Pn,w ⊂ R

3 of Rev-Tsp(3, 2).
We start our construction by introducing several auxiliary line segments. For each

vertex vi ∈ Vn we define its spine to be the vertical line segment going from point (ni, ni, n)
to point (ni, ni, nm). For each edge ek = vivj ∈ En with i < j, we define two corresponding
line segments that are parallel to the xy-plane and that are called bones. The first bone
connects point (ni, ni, nk) on the spine of vi to the point (nj, ni, nk). The other bone
connects point (nj, nj, nk) on the spine of vj to the point (nj, ni− δk, nk), where δk = 1 if

w(ek) = 1 and δk =
√

2 if w(ek) = 2. Note that these two bones do not quite touch; they
are separated by a gap of length δk.

In order to get the instance Pn,w of Rev-Tsp(3, 2), we subdivide every single (spine
or bone) line segment introduced above by a dense, evenly distributed set of points—we
call these points cities from now on—so that every unit-length piece receives n5 cities.
The distance between adjacent cities is 1/n5, and so the cost for going from one city to
an adjacent city is 1/n10. All these cities together form instance Pn,w, and this completes
our construction. Since we have introduced line segments with a total length of at most
n · n(m− 1) +m · 2n(n − 1) < 2n4, the overall number of cities is at most 2n9.

For 1 6 i 6 n we call the cities on the spine of vi and on all bones incident to this spine
the city cluster of vi. Traversing all cities within such a city cluster is very cheap; even if
we visit every city twice, this costs at most 2 ·2n9/n10 = 4/n for all cities in all city clusters
together. In a traveling salesman tour, the only expensive steps occur when the salesman
jumps from one city cluster to another city cluster. By the above definition of δk, when
jumping from bone to bone across the gap corresponding to edge ek the incurred cost is
exactly w(ek). Note that jumping from city cluster to city cluster in any other way would
be much more expensive and would thus not reduce the total cost of the tour.

Finally, let us show that our reduction is approximation preserving. Fix an ε with
0 < ε < 1. Consider an instance Kn and w of {1, 2}-Tsp, and assume without loss of
generality that n > 4/ε. Consider an optimal tour π0 for this instance. If π0 uses ℓ > 0
edges of length 2 and n − ℓ edges of length 1, then it has cost n + ℓ. Given a PTAS for
Rev-Tsp, we show how to compute in polynomial time a tour of cost at most (1+ ε)(n+ ℓ)
for Kn and w.

First note that the tour π0 can be transformed into a tour π1 through Pn,w that makes ℓ
jumps of cost 2 and n − ℓ jumps of cost 1. That tour π1 costs at most n + ℓ+ 4/n. Using
our hypothetical PTAS for Rev-Tsp, we can compute for any ε′ > 0 in polynomial time
a tour π2 through Pn,w of cost at most (1 + ε′)copt, where copt is the cost of an optimal
Rev-Tsp tour. The existence of π1 yields copt 6 n+ℓ+4/n. The tour π2 can be transformed
into a tour π3 through Kn: Just map the jumps of π2 to the corresponding edges of Kn.
Since this mapping cannot increase the cost, tour π3 costs at most (1 + ε′)(n + ℓ + 4/n).

THE TRAVELING SALESMAN PROBLEM UNDER SQUARED EUCLIDEAN DISTANCES 249

Choosing ε′ = ε/2 and using 4/n < ε < 1, we can bound the cost of π3 from above by
(

1 +
ε

2

)

(n+ ℓ) +
(

1 +
ε

2

)

ε =
(

1 +
ε

2

)

(n+ ℓ) +
ε

2
(2 + ε) = (1 + ε)(n + ℓ)

as desired. Like π2, the tour π3 may visit vertices more than once. This can be fixed by
greedily introducing shortcuts. The shortcuts do not increase the cost of the tour since the
weight function w (trivially) fulfills the triangle inequality.

Theorem 5.3. There exists a PTAS for Rev-Tsp(2, α) for any α > 2.

Proof. Given a set P of points in the plane, consider the Gabriel graph GP that has a vertex
for each point in P . There is an edge between points p and q, if the open disk with diameter
pq is empty, in other words, if for all points r ∈ P \ {p, q}, the angle ∠prq is at most π/2.
The weight of the edge is |pq|α. Note that |pr|α + |rq|α 6 |pq|α if ∠prq is at least π/2.
Therefore, there is an optimal Tsp tour with revisits through P that only uses the edges
of GP : Indeed, if a tour uses an edge pq for which there is a point r with ∠prq > π/2,
then replacing pq by pr and rq would shorten the tour. Such a replacement is feasible since
revisiting city r is allowed. The Gabriel graph is planar. Hence we end up with an instance
of the Tsp on weighted planar graphs, for which a PTAS is known [5].

Recall that a quasi-PTAS is an approximation scheme with running time npolylog n,
where n is the size of the input. The following result follows immediately from the facts
that (a) the metric |·|α has bounded doubling dimension and (b) Tsp on metrics of bounded
doubling dimension admits a quasi-PTAS [25].

Theorem 5.4. There exists a quasi-PTAS for Rev-Tsp(d, α) for any α ∈ (0, 1] and d > 1.

6. Conclusions

In order to construct considerably better approximation algorithms for Tsp(d, α), we
expect that substantially different methods of analysis have to be found. A result of Van
Nijnatten [18, Theorem 4.19] indicates that there is not much room left for improvement
as long as we compare to the MST.

The approximability of Rev-Tsp(2, α) for 1 < α < 2 is an interesting open question.
We believe that a (quasi)-PTAS may be obtained using the framework of the PTAS for
weighted planar graph Tsp by Arora et al. [5]. A simple reduction shows that deriving a
PTAS for our problem is at least as hard as deriving a PTAS for weighted planar graph
Tsp. Assume we have a PTAS for Rev-Tsp(2, α) for some α > 1. Given a weighted planar
graph and a planar embedding, we replace each edge by a dense set of points such that
traversing a subedge basically costs zero. By making one subedge of each edge e longer, we
can make the cost of that subedge (and thus of e) in Rev-Tsp proportional to the weight
of e. Then, the costs of the optimal solutions of the two problems will be the same up to an
arbitrarily small constant factor of 1 + ε. Such a reduction is polynomially bounded if all
weights are polynomially bounded, which can be achieved by a standard rounding scheme.

A PTAS for Rev-Tsp(2, α) for any α > 1 would be an interesting generalization of the
existing PTAS’s for weighted planar graphs. Ideally, one would have a PTAS with running
time independent of α since it would contain both Euclidean Tsp and weighted planar
graph Tsp as special cases.

250 M. DE BERG, F. VAN NIJNATTEN, R. SITTERS, G. J. WOEGINGER, AND A. WOLFF

References

[1] E. Althaus, G. Călinescu, I. Mandoiu, S. Prasad, N. Tchervenski, and A. Zelikovsky. Power efficient
range assignment for symmetric connectivity in static ad hoc wireless networks. Wireless Networks,
12(3):287–299, 2006.

[2] T. Andreae. On the traveling salesman problem restricted to inputs satisfying a relaxed triangle in-
equality. Networks, 38(2):59–67, 2001.

[3] T. Andreae and H.-J. Bandelt. Performance guarantees for approximation algorithms depending on
parametrized triangle inequalities. SIAM J. Discrete Math., 8(1):1–16, 1995.

[4] S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric
problems. J. ACM, 45(5):753–782, 1998.

[5] S. Arora, M. Grigni, D. Karger, P. Klein, and A. Woloszyn. A polynomial-time approximation scheme
for weighted planar graph TSP. In Proc. 9th Annu. ACM-SIAM Symp. Discr. Algo., p. 33–41, 1998.

[6] M. A. Bender and C. Chekuri. Performance guarantees for the TSP with a parameterized triangle
inequality. Inform. Process. Lett., 73(1-2):17–21, 2000.

[7] H.-J. Böckenhauer, J. Hromkovič, R. Klasing, S. Seibert, and W. Unger. Towards the notion of stability
of approximation for hard optimization tasks and the traveling salesman problem. Theor. Comput. Sci.,
285(1):3–24, 2002.

[8] B. Bollobás. The Art of Mathematics – Coffee Time in Memphis. Cambridge Univ. Press, 2006.
[9] I. Caragiannis, C. Kaklamanis, E. Kranakis, D. Krizanc, and A. Wiese. Communication in wireless

networks with directional antennas. In F. M. auf der Heide and N. Shavit, editors, Proc. 20th Annu.

ACM Symp. Parallel Algorithms Architect., p. 344–351, 2008.
[10] K. P. Eswaran and R. E. Tarjan. Augmentation problems. SIAM J. Comput., 5(4):653–665, 1976.
[11] B. Fuchs. On the hardness of range assignment problems. Networks, 52(4):183–195, 2008.
[12] S. Funke, S. Laue, R. Naujoks, and Z. Lotker. Power assignment problems in wireless communication:

Covering points by disks, reaching few receivers quickly, and energy-efficient travelling salesman tours.
In Proc. 4th Int. IEEE Conf. Distributed Comput. Sensor Systems, LNCS 5067, p. 282–295, 2008.

[13] L. Godara. Handbook of Antennas in Wireless Communications. CRC Press, 2001.
[14] A. Itai, C. Papadimitriou, and J. Szwarcfiter. Hamilton paths in grid graphs. SIAM J. Comput., 4:676–

686, 1982.
[15] R. Karp and J. Steele. Probabilistic analysis of heuristics. In E. Lawler, J. Lenstra, A. R. Kan, and

D. Shmoys, editors, The Traveling Salesman Problem, chapter 6, p. 181–205. John Wiley, 1985.
[16] L. M. Kirousis, E. Kranakis, D. Krizanc, and A. Pelc. Power consumption in packet radio networks.

Theoret. Comput. Sci., 243(1–2):289–305, 2000.
[17] A. Nasipuri, K. Li, and U. R. Sappidi. Power consumption and throughput in mobile ad hoc networks

using directional antennas. In Proc. 11th IEEE Conf. Comput. Commun. & Networks, p. 620–626, 2002.
[18] F. van Nijnatten. Range assignment with directional antennas. Master’s thesis, TU Eindhoven, 2008.

http://alexandria.tue.nl/extra1/afstversl/wsk-i/nijnatten2008.pdf.
[19] C. Papadimitriou. The Euclidean traveling salesman problem is NP-complete. Theoret. Comput. Sci.,

4(3):237–244, 1977.
[20] C. Papadimitriou and M. Yannakakis. The traveling salesman problem with distances one and two.

Math. Oper. Res., 18(1):1–11, 1993.
[21] M. Penn and H. Shasha-Krupnik. Improved approximation algorithms for weighted 2- and 3-vertex

connectivity augmentation problems,. J. Algorithms, 22(1):187–196, 1997.
[22] R. Ramanathan. On the performance of ad hoc networks with beamforming antennas. In Proc. 2nd

ACM Int. Symp. Mobile Ad Hoc Networking & Comput., p. 95–105, 2001.
[23] S. B. Rao and W. D. Smith. Approximating geometrical graphs via “spanners” and “banyans”. In Proc.

30th Annu. ACM Symp. Theory Comput., pages 540–550, 1998.
[24] M. Sekanina. On an ordering of the set of vertices of a connected graph. Publications of the Faculty of

Science, University of Brno, 412:137–142, 1960.
[25] K. Talwar. Bypassing the embedding: Algorithms for low dimensional metrics. In Proc. 36th Annu.

ACM Symp. Theory Comput., pages 281–290, 2004.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

