
Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 465-476
www.stacs-conf.org

WEAKENING ASSUMPTIONS FOR DETERMINISTIC

SUBEXPONENTIAL TIME NON-SINGULAR MATRIX COMPLETION

MAURICE JANSEN

Institute for Theoretical Computer Science
FIT Building, Tsinghua University
100084 Beijing, China.
E-mail address: maurice.julien.jansen@gmail.com

URL: http://itcs.tsinghua.edu.cn/~mjjansen/

Abstract. Kabanets and Impagliazzo [9] show how to decide the circuit polynomial iden-
tity testing problem (CPIT) in deterministic subexponential time, assuming hardness of
some explicit multilinear polynomial family {fm}m≥1 for arithmetic circuits.

In this paper, a special case of CPIT is considered, namely non-singular matrix com-
pletion (NSMC) under a low-individual-degree promise. For this subclass of problems it
is shown how to obtain the same deterministic time bound, using a weaker assumption in
terms of the determinantal complexity dc(fm) of fm.

Building on work by Agrawal [17], hardness-randomness tradeoffs will also be shown in
the converse direction, in an effort to make progress on Valiant’s VP versus VNP problem.
To separate VP and VNP, it is known to be sufficient to prove that the determinantal
complexity of the m × m permanent is mω(log m). In this paper it is shown, for an ap-
propriate notion of explicitness, that the existence of an explicit multilinear polynomial
family {fm}m≥1 with dc(fm) = mω(log m) is equivalent to the existence of an efficiently

computable generator {Gn}n≥1 for multilinear NSMC with seed length O(n1/
√

log n). The
latter is a combinatorial object that provides an efficient deterministic black-box algorithm
for NSMC. “Multilinear NSMC” indicates that Gn only has to work for matrices M(x) of
poly(n) size in n variables, for which det(M(x)) is a multilinear polynomial.

1. Introduction

Let F be a field of characteristic zero, let Q ⊆ F denote the field of rational numbers,
and let Xn = {x1, x2, . . . , xn} be a set of variables. AF(Xn) denotes the set of affine
forms over Xn and F. In this paper we study a special case of circuit polynomial identity
testing, namely the non-singular matrix completion problem over F. Matrix completion is
an important problem, both in theory and in practice. The history of the problem dates
back to work by Lovász [1] and Edmonds [2].

1998 ACM Subject Classification: F.2.3 Tradeoffs among Complexity Measures.
Key words and phrases: computational complexity, arithmetic circuits, hardness-randomness tradeoffs,

identity testing, determinant versus permanent.
This work was supported in part by the National Natural Science Foundation of China Grant 60553001,

and the National Basic Research Program of China Grant 2007CB807900,2007CB807901.

c© M. Jansen
CC© Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2477

466 M. JANSEN

As was done in [3] for CPIT, we study non-singular matrix completion under a promise
restriction on individual degrees:

Problem. NSMCk
r (F) : k × k Non-Singular Matrix Completion over F with individual

degrees at most r.

• Input: A k × k matrix M(x) with entries in AF(Xn).
• Promise : Individual degrees of the polynomial det(M) are bounded by r.
• Question: Does there exist a ∈ Fn such that det M(a) 6= 0 ?

Over a field of characteristic zero, the problem is equivalent to asking whether
detM(x) 6≡ 0. Since detn has O(n6) size skew circuits [4], and is universal for skew circuits

(Implicit in [5], see Proposition 3.1), NSMC
poly(n)
r(n) (F) is equivalent to identity testing poly(n)

size skew circuits over F, under the semantic promise that the circuit outputs a polynomial
with individual degrees bounded by r(n). Over Q, for any r(n), the latter can be verified
with a coRP-algorithm, using the Schwartz-Zippel Lemma [6, 7]. Moreover, Lovász showed
that a random assignment for x maximizes the rank of M(x) with high probability [1].

Whether there exists an efficient deterministic algorithm for matrix completion is a
major open problem. Currently, such an algorithm exists only for special instances. For
example, Ivanyos, Karpinkski and Saxena give a polynomial time deterministic algorithm
for finding a maximum rank completion, provided M(x) is of the form M0 +x1M1 +x2M2 +
. . . + xnMn, where M1,M2, . . . ,Mn are rank one matrices [8].

Kabanets and Impagliazzo provide algebraic hardness-randomness tradeoffs for CPIT
[9]. They show that the existence of an explicit polynomial with super-polynomial arithmetic
circuit size, implies CPIT, and hence NSMC, can be decided deterministically in time 2nǫ

,
for any ǫ > 0, provided n is large enough. In order to make progress towards unconditionally
proven deterministic subexponential time algorithms for NSMC, it is important to consider
whether the same bound can be obtained for NSMC under any weaker assumptions.

In this paper we will only assume hardness of an explicit polynomial for skew circuits,
or equivalently, we make hardness assumptions in terms of determinantal complexity [10].
In other words, we aim for specialized algebraic hardness-randomness tradeoffs for the skew
circuit model. For this, we will use the hardness-randomness tradeoffs for constant-depth
arithmetic circuits due to Dvir, Shpilka and Yehudayoff [3] as a starting point.

Another motivation is the VP versus VNP question, or the permanent versus determi-
nant problem [10]. The latter problem asks us to prove lower bounds for the determinantal
complexity of an explicit1 polynomial. We firmly establish the role of NSMC in the quest
for such lower bounds, firstly, by the characterization mentioned in the abstract. Secondly,
it is shown that the existence of an explicit multilinear polynomial family {fm}m≥1 with

dc(fm) = mω(1) is equivalent to the existence of an efficiently computable multilinear gen-

erator {Gn}n≥1 for NSMC
poly(n)
1 with seed length ⌈nǫ⌉, for some 0 < ǫ < 1.

2. Results

We require some formal definitions to properly state the results.

1Necessarily in the sense of Definition 2.2. A sufficient condition would require an even more stringent
notion.

WEAKENING ASSUMPTIONS FOR DETERMINISTIC SUBEXPONENTIAL TIME NSMC 467

Definition 2.1 ([10]). The determinantal complexity dc(f) of a polynomial f ∈ F[Xn] is
defined to be the minimum size of a matrix M with entries in AF(Xn) such that detM = f .

We use standard definitions of arithmetic circuits and formulas with binary addition
and multiplication operations (See [11]). Arithmetic circuit complexity of f is denoted
by L(f). A skew circuit satisfies that for every multiplication gate one of its inputs is a
variable or a constant. Lskew(f) denotes skew circuit size of f . The following is our notion
of explicitness of a multilinear polynomial:

Definition 2.2. Let {fm}m≥1 be a family of multilinear polynomials with fm ∈
Z[x1, x2, . . . , xm]. We say this family is explicit provided there exists a deterministic Turing

machine running in time 2O(m), that on input e ∈ {0, 1}m, outputs the binary representation
of the coefficient of the monomial xe1

1 xe2
2 . . . xem

m of fm.

Hardness Hypothesis 1 (HH1). There exists an explicit family of multilinear polynomials
{fm}m≥1, such that L(fm) = mω(1).

Hardness Hypothesis 2 (HH2). There exists an explicit family of multilinear polynomials

{fm}m≥1, such that dc(fm) = mω(1).

If in the above we replace mω(1) by mω(log m), we refer to this as Strengthened HH1 and
Strengthened HH2.

Proposition 2.3. HH2 is equivalent to the statement that there exists an explicit family of
multilinear polynomials {fm}m≥1, such that Lskew(fm) = mω(1). A similar statement holds

for Strengthened HH2, but with mω(1) replaced by mω(log m).

Proof. In one direction this follows from the fact that the n × n determinant has skew
circuits of size O(n6) [4]. For the converse, apply the fact that if fm can be computed by a
skew circuit of size s, then dc(fm) = O(s) (Implicit in [5], see Proposition 3.1).

Proposition 2.4. Strengthened HH1 ⇒ Strengthened HH2 ⇒ HH1 ⇒ HH2 .

Proof. The first and the last implication follow from Proposition 2.3. To show that
Strengthened HH2 ⇒ HH1, suppose we have an explicit multilinear p-family {fm}m≥1,

such that dc(fm) = mω(log m). This implies dc(fm) = mω(log m), even when restricting to

m ∈ M, for any infinite set M. If L(fm) 6∈ mω(1), then there exists constant c > 0 and
an infinite set M′, such that L(fm) ≤ mc, for all m ∈ M′. Using the construction of [12],

we obtain formulas for fm of size 2O(log L(fm) log m) = mO(log m), for m ∈ M′. Hence by [5],
dc(fm) = mO(log m), for m ∈ M′. This is a contradiction.

Our algorithms will be of the black-box kind. This is formalized as follows:

Definition 2.5. For a function ℓ : N → N, a multilinear (ℓ(n), n)-generator for NSMCk
r (F)

is given by a multilinear polynomial mapping Gn : Fℓ(n) → Fn. We say Gn provides a test
for NSMCk

r (F), if for any instance M(x) of NSMCk
r (F), it holds that

(∃a ∈ Fn),det M(a) 6= 0 iff (∃b ∈ Fℓ(n)),det M(Gn(b)) 6= 0.

Families {Gn}n≥1 of generators are also simply called “generator”. For a generator
{Gn}n≥1 with coefficients in Z, we say it is efficiently computable, if there exists a deter-

ministic Turing machine M that runs in time 2O(ℓ(n)), so that on input (i, n, e), where i

468 M. JANSEN

and n are given in binary and e ∈ {0, 1}ℓ(n), M computes the binary representation of the

coefficient of the monomial xe1
1 xe2

2 . . . x
eℓ(n)

ℓ(n) of the ith component (Gn)i in the image of Gn.

We are now ready to state the results.

Theorem 2.6. If HH2 holds over F, then for any 0 < ǫ < 1, there exists an efficiently
computable multilinear (⌈nǫ⌉, n)-generator {Gn}n≥1, such that for any k(n) ∈ nO(1) and

r(n) ∈ O(1), Gn provides a test for NSMC
k(n)
r(n)(F), for all large enough n.

Theorem 2.7. If Strengthened HH2 holds over F, then there exists an efficiently computable

multilinear (O(n1/
√

log n), n)-generator {Gn}n≥1, such that for any k(n) ∈ nO(1) and r(n) ∈

2O(
√

log n), Gn provides a test for NSMC
k(n)
r(n)(F), for all large enough n.

From this we will derive the following:

Theorem 2.8. If HH2 holds over Q, then non-singular matrix completion over Q for
matrices M(x) of poly(n) size and with coefficients of poly(n) bits, where the individual
degrees of det(M(x)) are bounded by a constant, can be decided deterministically in time
2nǫ

, for any ǫ > 0, provided n is large enough.

Theorem 2.9. If Strengthened HH2 holds over Q, then non-singular matrix completion
over Q for matrices M(x) of poly(n) size and with coefficients of poly(n) bits, can be de-

cided deterministically in time 2O(n1/
√

log n log n), under the promise that individual degrees of

det(M(x)) are bounded by 2O(
√

log n).

A central technical part of this paper is the following “Root Extraction Lemma” for
skew circuits, which is of independent interest:

Lemma 2.10. Let n, s, and m be integers with s ≥ n. Let P (x, y) ∈ F[Xn, y] be a non-zero
polynomial such that Lskew(P) = s. Let f ∈ F[Xn] be a polynomial with deg(f) = m such

that P (x, f(x)) ≡ 0. Then Lskew(f) ≤ s · 2O(log2 m)r4+log m, where r = degy(P).

Finally, we also prove the following randomness-to-hardness results:

Theorem 2.11. If for some 0 < ǫ < 1, there exists an efficiently computable multilin-
ear (⌈nǫ⌉, n)-generator {Gn}n≥1, such that for any k(n) ∈ nO(1), Gn provides a test for

NSMC
k(n)
1 (F), for all large enough n, then HH2 holds over F.

Theorem 2.12. If there exists an efficiently computable multilinear (O(n1/
√

log n), n)-

generator {Gn}n≥1, such that for any k(n) ∈ nO(1), Gn provides a test for NSMC
k(n)
1 (F),

for all large enough n, then Strengthened HH2 holds over F.

Theorem 2.12 & Theorem 2.7 and Theorem 2.11 & Theorem 2.6 provide us with char-
acterizations, which we summarize as follows:

Corollary 2.13.

(1) HH2 holds over F if and only if there exists an efficiently computable multilinear

(⌈nǫ⌉, n)-generator {Gn}n≥1, for some 0 < ǫ < 1, such that for all k(n) ∈ nO(1), Gn

provides a test for NSMC
k(n)
1 (F), for all large enough n.

(2) Strengthened HH2 holds over F if and only if there exists an efficiently computable

multilinear (O(n1/
√

log n), n)-generator {Gn}n≥1, such that for all k(n) ∈ nO(1), Gn

provides a test for NSMC
k(n)
1 (F), for all large enough n.

WEAKENING ASSUMPTIONS FOR DETERMINISTIC SUBEXPONENTIAL TIME NSMC 469

3. Preliminaries

For a polynomial f , Hk(f) denotes the homogeneous part of degree k, and H≤k(f) ,
∑k

i=0 Hi(f).
An algebraic branching program (ABP) Φ over F ∪ Xn is given by a directed acyclic

graph G with source node s and sink node t. Edges of G are labeled with elements of Xn∪F.
The weight of a directed path in Φ is defined to be the product of the edge labels. The
polynomial computed by Φ is defined to be the sum of weights over all directed s, t-paths.
For the size of Φ we count the number of edges in G. For a polynomial f , B(f) is the size of
any smallest ABP computing f . This generalizes in the obvious way to multi-output ABPs,
by having several sink nodes t1, t2, . . . , tm. One easily proves the following proposition:

Proposition 3.1. Lskew(f) = Θ(B(f)).

We will use this to switch freely between skew circuits and ABPs. The latter model
gives us some convenience. For example, for ABPs it is easy to see that if f(x1, x2, . . . , xn)
is computed by an ABP A of size sA, and g is computed by an ABP B of size sB, then
f(g, x2, . . . , xn) can be computed by an ABP of size O(sAsB). Indeed, simply replace each
edge labeled with x1 in A with the s, t-dag given by B. Addition and multiplication of
ABPs is done by parallel and series composition, respectively.

Proposition 3.2. Suppose Φ is a skew circuit of size s computing f ∈ F[Xn]. Then for
any i, there exists a skew circuit of size O(s · i) computing Hj(f) for all 0 ≤ j ≤ i.

Proof. This is achieved using the standard homogenization trick of keeping for each gate in
Φ, i + 1 many copies that compute the homogeneous components up to degree i.

Lemma 3.3 (cf. Lemma 2.4 in [3]). Suppose P (x, y) ∈ F[Xn, y] can be computed by a skew

circuit over F of size s. Then for any i, ∂iP
∂iy

can be computed by a skew circuit of size

O(r · s), where r = degy(P).

Proof. Let C(x, y) be a skew circuit for P of size s. We can compute C0(x), C1(x), . . . , Cr(x)
with an r + 1-output skew circuit of size O(r · s) by evaluating C(x, ai) at r + 1 distinct

elements a1, a2, . . . , ar+1 ∈ F, and then use linear interpolation. Next we can compute ∂iP
∂iy

by adding O(r2) many gates. Since r ≤ s, the lemma follows.

Lemma 3.4 (Lemma 2.1 in [13]). Let f ∈ F[Xn] be a non-zero polynomial such that the
degree of f in xi is bounded by ri, and let Si ⊆ F be of size at least ri + 1, for all i ∈ [n].
Then there exists (s1, s2, . . . , sn) ∈ S1 × S2 × . . . × Sn with f(s1, s2, . . . , sn) 6= 0.

Lemma 3.5 (Nisan-Wigderson Design [14]). Let n,m be integers with n < 2m. There
exists a family of sets S1, S2, . . . , Sn ⊆ [ℓ], such that (1) ℓ = O(m2/ log n), (2) For each i,
|Si| = m, and (3) For every i 6= j, |Si ∩ Sj | ≤ log n. Furthermore, the above family of sets

can be computed deterministically in time poly(n, 2ℓ).

Berkowitz [15] observes that Samuelson’s algorithm [16] for computing the characteristic
polynomial, does not use divisions and can be implement in NC2 (Also see [4]). From this
one derives the following statement, sufficient for our purpose:

Proposition 3.6. The determinant of an n × n matrix M with integer entries of at most
m bits each can be computed in time poly(n,m).

470 M. JANSEN

4. Root Extraction within the Skew Circuit Model

We start with the observation that Theorem 3.1 in [3] can be modified into the following
lemma. A proof will appear in the full version of this paper.

Lemma 4.1. Let n, s, and m be integers with s ≥ n. Let P (x, y) ∈ F[Xn, y] be a non-zero
polynomial with s = Lskew(P). Let f ∈ F[Xn] be a polynomial with deg(f) = m such that
P (x, f(x)) ≡ 0. Then Lskew(f) = O(s · rmr+1), where r = degy(P).

Comparing this with the s · 2O(log2 m)r4+log m bound of Lemma 2.10, which can be
bounded by s·mO(log m+log r), we see that we get a significant improvement for any m << 2r.

Let us briefly indicate the idea behind the proof of Lemma 2.10. Similar as was done
in [3], we want to approximate f up to some degree k, i.e. find a polynomial g with
H≤k(f) = H≤k(g). In [3] this is done in increments of k by one. This will not be good
enough for our purpose. Due to the nature of the skew circuit model, typically any increment
of k requires duplication of previously constructed circuitry, leading to an overall exponential
blowup by a factor of 2m. The solution is to aim for a faster convergence rate that doubles k
in stages. This way, one can keep circuit blow-up due to duplications more or less in check.

We now proceed with the proof of Lemma 2.10. In the following, for any polynomial q
the homogeneous component Ht[q] will also be denoted by qt.

Lemma 4.2. Let P ∈ F[Xn, y] be such that degy(P) = r. Write P =
∑r

i=0 Ci(x)yi, and let

P ′(x, y) =
∑r

i=0 iCi(x)yi−1. Let f ∈ F[Xn] be such that P (x, f(x)) = 0 and P ′(0, f(0)) =
ξ0 6= 0. Let k ≥ 1 be an integer. Suppose g ∈ F[Xn] satisfies H≤k[g] = H≤k[f]. Then for
any 1 ≤ j ≤ k,

fk+j = gk+j −
1

ξ0

(

P (x, g)k+j +

j−1
∑

i=1

(fk+i − gk+i)P
′(x, g)j−i

)

.

Proof. Let h = (fk+1 − gk+1) + . . . + (f2k − g2k). Then

0 = H≤2k[P (x, f(x))]

= H≤2k[P (x, g + h)]

= H≤2k[

r
∑

i=0

Ci(x) (g + h)i]

= H≤2k[
r
∑

i=0

Ci(x)
(

gi + i · gi−1 · h
)

]

= H≤2k[P (x, g) + P ′(x, g) · h]

Let 1 ≤ j ≤ k be given. By the above

0 = P (x, g)k+j +

j
∑

i=1

(fk+i − gk+i)P
′(x, g)j−i

= P (x, g)k+j + (fk+j − gk+j)P
′(x, g)0 +

j−1
∑

i=1

(fk+i − gk+i)P
′(x, g)j−i

Since P ′(x, g)0 = P ′(0, g(0)) = P ′(0, f(0)), the lemma follows.

WEAKENING ASSUMPTIONS FOR DETERMINISTIC SUBEXPONENTIAL TIME NSMC 471

Applying the above lemma for g = H≤k(f) yields the following corollary:

Corollary 4.3. Let P ∈ F[Xn, y] be such that degy(P) = r. Write P =
∑r

i=0 Ci(x)yi, and

let P ′(x, y) =
∑r

i=0 iCi(x)yi−1. Let f ∈ F[Xn] be such that P (x, f(x)) = 0 and P ′(0, f(0)) =
ξ0 6= 0. Let k ≥ 1 be an integer. Then for any 1 ≤ j ≤ k,

fk+j = −
1

ξ0

(

P (x, g)k+j +

j−1
∑

i=1

fk+i · P
′(x, g)j−i

)

, (4.1)

where g = H≤k[f].

Lemma 4.4. Let P ∈ F[Xn, y] be such that degy(P) = r. Write P =
∑r

i=0 Ci(x)yi, and let

P ′(x, y) =
∑r

i=0 iCi(x)yi−1. Let f ∈ F[Xn] be such that P (x, f(x)) = 0 and P ′(0, f(0)) =
ξ0 6= 0. Let k ≥ 1 be an integer. Let

P = {P (x, g)j : 1 ≤ j ≤ 2k} ∪ {P ′(x, g)j : 1 ≤ j ≤ k − 1},

where g = H≤k[f]. Suppose any polynomial in P can be computed by a single output ABP
of size at most B. Then for any 1 ≤ j ≤ k, there exist a (j + 1)-output ABP Φj computing
1, fk+1, fk+2, . . . , fk+j of size at most 2Bj2.

Proof. We prove the lemma by induction on j. For j = 1, we see by Corollary 4.3 that
fk+1 = − 1

ξ0
P (x, g)k+j . Hence we have an single output ABP computing fk+1 of size at most

B. This means we certainly can compute 1 and fk+1 by means of a 2-output ABP of size
at most 2B.

Now suppose 1 < j < k. By induction hypothesis we have a j-output ABP Φj−1 of size
at most 2B(j − 1)2 computing 1, fk+1, fk+2, . . . , fk+j−1. The ABP Φj is constructed from
Φj−1 by first of all passing along all of 1, fk+1, fk+2, . . . , fk+j−1 to the outputs. Then by
drawing wires from each of these we can compute fk+j according to Equation (4.1). For this
we use a new copy of a single output ABP computing some polynomial in P exactly j times.
This construction can be implemented such that size(Φj) ≤ size(Φj−1)+jB+j+1 ≤ 2Bj2

(For this exact count we use that the cross wires are not actually needed, since we can
identify nodes).

Lemma 4.5. Let n, s, r,m and be integers with s ≥ n. Let P ∈ F[Xn, y] be a non-zero
polynomial with degy(P) = r. Write P =

∑r
i=0 Ci(x)yi, and let P ′(x, y) =

∑r
i=0 iCi(x)yi−1.

Assume that both P and P ′ can be computed by skew circuits of size at most s over F. Let
f ∈ F[Xn] be a polynomial with deg(f) = m such that P (x, f(x)) ≡ 0 and P ′(0, f(0)) 6= 0.

Then f can be computed by a skew circuit of size at most s · 2O(log2 m)r3+log m.

Proof. We compute f in at most ⌈log m⌉ stages. At stage i we construct an ABP Ψi

computing H≤2i [f] of size si.
For stage i = 0, since H≤2i [f] is an affine linear form in n variables, Ψ0 can be con-

structed with s0 = O(n).
We now describe stage i, for i > 0. Let g = H≤2i−1 [f]. In the previous stage an ABP

Ψi−1 was constructed for g of size si−1.
We claim P (x, g) and P ′(x, g) can be computed by an ABP of size O(rsi−1 + r2s).

Namely, like in proof of Lemma 3.3, we have for any i, an ABP of size O(rs) computing
Ci(x). Using r copies of the ABP computing g we can then compute

∑r
i=0 Ci(x)gi with

size O(rsi−1 + r2s). Similarly, for P ′(x, g).

472 M. JANSEN

Hence, by Proposition 3.2 and Proposition 3.1, for any j ≤ 2i, P (x, g)j can be computed
by an ABP of size O(2i(rsi−1+r2s)). Similarly, for any j ≤ 2i−1, P ′(x, g)j can be computed
by an ABP of size O(2i−1(rsi−1 + r2s)).

Therefore, we can apply Lemma 4.4 with k = 2i−1 and B := O(2i(rsi−1 + r2s)). This
gives us an ABP Φ2k computing fk+1, fk+2, . . . , f2k of size at most 2Bk2. Combining Ψk

and Φ2k to add all components of f gives us the ABP Ψ2k computing H≤2k[f] of size
O(23i(rsi−1 + r2s) + si−1). We can thus bound si ≤ αr23i · (si−1 + rs), for some absolute

constant α > 1. From this, one gets that si ≤ s · βi2+1ri+2, for some absolute constant
β > 1.

Taking i = ⌈log m⌉, we see there exists an ABP computing f with size bounded by

s · 2O(log2 m)r3+log m. Applying Proposition 3.1 completes the proof.

4.1. Proof of Lemma 2.10

Write P =
∑r

i=0 Ci(x)yi with Cr(x) 6≡ 0. Let P i(x, y) = ∂iP
∂iy

. Then P r(x, y) = r!·Cr(x).

Since the characteristic of F is zero, r! 6= 0, and hence P r(x, f(x)) 6≡ 0. By assumption,
P 0(x, f(x)) ≡ 0. Let i be the smallest number such that P i(x, f(x)) 6≡ 0. Then 0 < i ≤ r,
and P i−1(x, f(x)) ≡ 0. We have that there exists x0 ∈ F such that P i(x0, f(x0)) 6= 0.

Let Q(x, y) = P i−1(x+x0, y), and let g = f(x+x0). Q is computable by a skew circuit

of size O(r · s) by Lemma 3.3. Let Q′ = ∂Q
∂y . Observe Q′(x, y) = P i(x + x0, y). Q is a

nonzero polynomial such that Q(x, g(x)) = P i−1(x + x0, f(x + x0)) ≡ 0, and Q′(0, g(0)) =
P i(x0, f(x0)) 6= 0. We apply Lemma 4.5 and obtain a skew circuit Ψ computing g(x) of

size s · 2O(log2 m)r4+log m. From this a skew circuit computing f is obtained that is at most
a constant factor larger by performing the substitution x := x − x0 within Ψ.

5. Constructing a Generator from a Hard Polynomial

With the “Root Extraction” Lemmas 2.10 and 4.1 proved, the following lemma fol-
lows by the technique of Lemma 7.6 in [9], which was also employed to prove Lemma 4.1
in [3]. We use the notation that for a set S ⊆ [ℓ] of size m, and a vector of variables
y = (y1, y2, . . . , yl), f(y|S) denotes f(ys1, ys2, . . . , ysm), where s1, s2, . . . , sm is an arbitrary
ordering of the elements of S. A proof of the lemma will appear in the full version of this
paper.

Lemma 5.1. Let n, r and s be integers, and let g ∈ F[Xn] be a non-zero polynomial with
individual degrees bounded by r with Lskew(g) = s ≥ n. Let m > log n be an integer
and let S1, S2, . . . , Sn ⊆ [ℓ] be given by Lemma 3.5, so that ℓ = O(m2/ log n), |Si| = m,
and |Si ∩ Sj| ≤ log n. Let f ∈ F[z1, z2, . . . , zm] be a multilinear polynomial such that
g(f(y|S1), f(y|S2), . . . , f(y|Sn)) ≡ 0, where y = (y1, y2, . . . , yℓ) is a vector of variables. Then

Lskew(f) ≤ sn · min(2c1(log2 m)r4+log m, c2 · rm
r+1), for absolute constants c1, c2 > 1.

WEAKENING ASSUMPTIONS FOR DETERMINISTIC SUBEXPONENTIAL TIME NSMC 473

5.1. Proof of Theorem 2.6 and 2.7

Proof. We first consider Theorem 2.7. Suppose {fm} is an explicit multilinear family with

dc(fm) = mω(log m). Consider some large enough n. Set m = ⌈2
1
2

√
log n⌉. Construct

the Nisan-Wigderson design S1, S2, . . . , Sn as in Lemma 5.1 with ℓ(n) = O(m2/ log n) =

O(n1/
√

log n). We claim the required (ℓ(n), n)-generator Gn can be given by

Gn(y1, y2, . . . , yℓ(n)) , (fm(y|S1), fm(y|S2), . . . , fm(y|Sn)),

To verify this, consider any k(n) ∈ nO(1) and r(n) ∈ 2O(
√

log n), and arbitrary k(n) ×
k(n) matrix M(x) with entries in AF(Xn). Let g = det(M(x)). Assume the individual
degrees of g are bounded by r(n) = poly(m). Observe it suffices to verify that if g 6≡ 0,
then det(M(Gn(y))) 6≡ 0. Due to [4], we know g has a skew circuit over F of size at
most O(n · k(n)6) ≤ nd, for some constant d (provided n is large enough). Hence by
Lemma 5.1, if det(M(Gn(y))) ≡ 0, we obtain a skew circuit over F for fm of size at most

nd+1 · 2c1(log
2 m)r(n)4+log m ≤ 24(d+1) log2 m · 2c1(log

2 m)r(n)4+log m. Since r(n) = poly(m)
and n is assumed to be large enough, this contradicts the hardness of fm. (Here we use
dc(fm) = O(Lskew(fm))).

For Theorem 2.6 one argues similarly, but with m := ⌈nǫ⌉. We bound the size of the
skew circuit for fm by c2n

d+1 · r(n)mr(n)+1 ≤ c2r(n)m(d+1)/ǫ+r(n)+1. This contradicts the

hardness of fm, assuming dc(fm) = mω(1), for any constant 0 < ǫ < 1 and r(n) = O(1),
provided n is large enough.

We now check that in any of the above cases, {Gn}n≥1 is efficiently computable. Given

(i, n, e), where e ∈ {0, 1}ℓ(n), one first constructs the sets S1, S2, . . . , Sn. This can be done

deterministically in time 2O(ℓ(n)) by Lemma 3.5. Then if for some j 6∈ Si, ej = 1, return
zero. Otherwise, let c = e|Si . Return the coefficient of the monomial xc1

1 xc2
2 . . . xcm

m of fm.

Since fm is explicit, this coefficient can be computed deterministically in time 2O(m). Hence
the total deterministic time is bounded by 2O(ℓ(n)).

Remark 5.2. From the above we see an (⌈nǫ⌉, n)-generator for NSMC
poly(n)
r(n) (F) can be

obtained by assuming dc(fm) = mω(r(m1/ǫ)). For example, assuming dc(fm) = mω(log log m)

yields an (⌈nǫ⌉, n)-generator for NSMC
poly(n)
log log n(F), for any 0 < ǫ < 1.

6. Using the Generator to decide NSMC(Q) Deterministically

Theorem 6.1. Let ℓ(n) and r(n) be functions of type N → N such that log n < ℓ(n) < n, for
all large enough n. If there exists an efficiently computable multilinear (ℓ(n), n)-generator

{Gn}n≥1, such that for any p(n) ∈ nO(1), Gn provides a test for NSMC
p(n)
r(n)(Q), for all large

enough n, then for any k(n) ∈ nO(1), NSMC
k(n)
r(n)(Q) can be decided deterministically in time

2O(ℓ(n) log n+ℓ(n) log r(n)), provided coefficients of the input matrix have bit size nO(1).

Proof. Say Gn is defined over variables z1, z2, . . . , zℓ(n). Consider an arbitrary matrix M of

size k(n), with entries in AQ(Xn), where coefficients have bit size nO(1), and with individual
degrees of det(M(x)) bounded by r(n). We assume wlog. that entries of M are in AZ(Xn),

since we can multiply out all denominators and still leave bit sizes bounded by nO(1).

474 M. JANSEN

For large enough n, by Definition 2.5, (∃a ∈ Qn),det M(a) 6= 0 iff (∃b ∈
Qℓ(n)),det M(Gn(b)) 6= 0. Let m = ℓ(n). We have that (∃b ∈ Qm),det M(Gn(b)) 6= 0
if and only if h := det M(Gn(z)) 6≡ 0. Individual degrees of h are at most nr(n). By
Lemma 3.4, if h 6≡ 0, then for some b ∈ V m, h(b) 6= 0, where V = {0, 1, . . . , nr(n)}. Hence
we can use the following test, for any n larger than some fixed threshold depending on k:

Algorithm. Test (input : an instance M(x) of NSMC
k(n)
r(n)(Z))

(1) Let V = {0, 1, . . . , nr(n)}.
(2) For all b ∈ V ℓ(n), compute vb := det(M(Gn(b))).

(3) If for all b ∈ V ℓ(n), vb = 0, then Reject else Accept.

If the above algorithm accepts, one also knows a non-singular completion. Let us
estimate the running time. Since Gn is efficiently computable, for any b ∈ V ℓ(n), Gn(b)j
can be computed in time 2O(m). Each entry of N := M(Gn(b)) is an integer computable in

time 2O(m). By Proposition 3.6, det(N) is computable in time poly(k(n), 2O(m)) = 2O(m).

Hence the total time is bounded by 2O(m) · (nr(n) + 1)m = 2O(m log n+m log r(n)).

Using Theorem 6.1, the proofs of Theorem 2.8 and Theorem 2.9 immediately follow
from Theorem 2.6 and Theorem 2.7, respectively.

7. Constructing a Hard Polynomial from a Generator

Let δ > 0. We say a function ℓ : R>0 → R>0 is δ-nice if 1) ℓ is monotone increasing, 2)
ℓ(t)1+δ < t and |ℓ(t + 1)1+δ − ℓ(t)1+δ| ≤ 1, for all large enough t, and 3) for all large enough
N , given N in unary, we can2 compute an n such that N = ⌈ℓ(n)1+δ⌉ deterministically in

time 2O(N).

Theorem 7.1. Let δ > 0, and let ℓ : R>0 → R>0 be a δ-nice function. Given any effi-
ciently computable multilinear (⌈ℓ(n)⌉, n)-generator {Gn}n≥1, we can construct an explicit
multilinear family {gN}N≥1, such that if for some integer d > 0, Gn provides a test for

NSMCnd

1 (F) for all large enough n, then for all large enough N , dc(gN) > ℓ−1(N1/(1+δ))d,
over the field F.

Proof. Consider some large enough N . Let n be such that N = ⌈ℓ(n)1+δ⌉ (such an n can be

found in time 2O(N)). Let m = ⌈ℓ(n)⌉. We have that N ≤ n. Let V = {1, 2, . . . , N +1} ⊆ F.
Similarly3 as in [17], define the polynomial gN (x1, x2, . . . , xN) =

∑

I⊆[1,N] cI
∏

i∈I xi, where

cI is taken to be an integer nonzero solution of the following system of linear equations:
∑

I⊆[1,N]

cI

∏

i∈I

Gn(a1, a2, . . . , am)i = 0, (7.1)

for all a ∈ V m. These are (N + 1)m equations in 2N variables. Provided n is large
enough, m log(N +1) < N , and hence there exists a nonzero solution over F. The technical
conditions placed on ℓ(t) ensure gN is defined for all large enough N . Below we will argue

how to compute an integer solution within time 2O(N), so that gN is explicit in the sense of
Definition 2.2.

2Note: conditions 1) and 2) imply the n in condition 3) always exists, provided N is large enough.
3Agrawal [17] works with a different notion of a generator, and does not demand integer coefficients for

explicitness.

WEAKENING ASSUMPTIONS FOR DETERMINISTIC SUBEXPONENTIAL TIME NSMC 475

For the purpose of contradiction, suppose that dc(gN) ≤ nd. Hence we can write
gN = det(M), where M is an nd × nd matrix with entries in AF(XN). The entries of
M are elements of AF(Xn), since AF(XN) ⊆ AF(Xn). Since F is an infinite field and
gN 6≡ 0, there exists a ∈ Fn such that det(M(a)) = gN (a1, a2, . . . , aN) 6= 0. The individual
degrees of gN are bounded by one. Hence, by Definition 2.5, there exists b ∈ Fm such
that gN (Gn(b)1, Gn(b)2, . . . , Gn(b)N) = det(M(Gn(b))) 6= 0. This implies h 6≡ 0, where
h(z) := gN (Gn(z)1, Gn(z)2, . . . , Gn(z)N). Observe that individual degrees of h are bounded
by N . Hence by Lemma 3.4, there exists b′ ∈ V m such that h(b′) 6= 0, but this contradicts

(7.1). Therefore dc(gN) > nd ≥ ℓ−1(N1/(1+δ))d, for all large enough N .
We now argue how to obtain an integer solution to (7.1). Since Gn is efficiently com-

putable, we can compute any coefficient Gn(a1, a2, . . . , am)i by summing over all 2m mono-

mials. This takes time 2O(m). We write (7.1) as Ax = 0, for an r × 2N matrix A, with

integer coefficients of bit size 2O(m) and r = (N + 1)m. To construct A takes time 2O(N).
First, we want to find an independent set S of rank(A) many rows of A, and then

extend S to an independent set of size 2N . Let e1, e2, . . . , e2N denote the standard basis

row-vectors of F2N
. One can do this as follows:

(1) let vi equal row i of A, for i ∈ [r], and let vr+i = ei, for i ∈ [2N].
(2) let S = ∅
(3) for i = 1 to r + 2N

(4) let S′ = S ∪ {vi}
(5) compute β = det(BBT), where B is the |S′| × 2N matrix of rows in S′.
(6) if β 6= 0, then set S = S′

By the Binet-Cauchy Theorem, det(BBT) =
∑

I⊆2N ,|I|=|S′|[det(BI)]
2, where BI is the

|S′|× |S′| matrix consisting of the columns in I of B. Hence β 6= 0 if and only if there exists
a set I of |S′| independent columns in B. The latter holds if and only if S′ is an independent
set. The above procedure therefore maintains the invariant that after execution of line 6,
S is an independent set with {v1, . . . , vi} ⊆ span(S) (We use the convention that ∅ is an
independent set with span(∅) = {0}). This implies that after the rth iteration, S contains
rank(A) many rows of A, and after the final iteration, S is a basis.

Entries of BBT have bit size 2O(N). By Proposition 3.6, det(BBT) can be computed

in time 2O(N). Hence the above procedure takes time 2O(N) in total.
Let B be the matrix consisting of the rows in S computed by the above procedure. B is

computable in time 2O(N). Consider the adjugate adj(B). It satisfies B ·adj(B) = det(B)I.
Hence we can pick a nonzero column from adj(B) that is a solution to the original system
(7.1). The entry adj(B)ij = (−1)i+jMji, where Mij is the determinant of the matrix B
with rows i and j removed. The latter is an integer, and by Proposition 3.6 it is computable
in time 2O(N).

One proves Theorem 2.11 using Theorem 7.1 with ℓ(t) = tǫ, and selecting a small
δ > 0 such that ǫ(1 + δ) ∈ Q ∩ (0, 1). Then ℓ is δ-nice. This yields an explicit multilinear
family {gN}N≥1, such that for any d, for all large enough N , dc(gN) > Nd/(ǫ(1+δ)). Hence

dc(gN) = Nω(1).
For Theorem 2.12, assume wlog. {Gn}n≥1 is an efficiently computable multilinear

(⌈ℓ(n) := c · n1/
√

log n⌉, n)-generator, for a constant c ∈ Z>0. Then ℓ−1(n) = 2log2(n/c), and

476 M. JANSEN

ℓ is δ-nice, for δ = 1. Theorem 7.1 yields an explicit multilinear family {gN}N≥1, such that

for any d, for all large enough N , dc(gN) > 2d·log2(N1/2

c
). Hence dc(gN) = Nω(log N).

References

[1] L. Lovász. On determinants, matching, and random algorithms. In FCT’79: Fundamentals of Compu-
tation Theory, pages 565–574, 1979.

[2] J. Edmonds. Systems of distinct representatives and linear algebra. Journal of Research of the National
Bureau of Standards, 71B:241–245, 1967.

[3] Z. Dvir, A. Shpilka, and A Yehudayoff. Hardness-randomness tradeoffs for bounded depth circuits. In
Proceedings of the 40th Annual STOC, pages 741–748, 2008.

[4] M. Mahajan and V. Vinay. Determinant: Combinatorics, algorithms, and complexity. Chicago Journal
of Theoretical Computer Science, 1997(Article 5), 1997.

[5] L. Valiant. Completeness classes in algebra. Technical Report CSR-40-79, Dept. of Computer Science,
University of Edinburgh, April 1979.

[6] J.T. Schwartz. Fast probabilistic algorithms for polynomial identities. J. Assn. Comp. Mach., 27:701–
717, 1980.

[7] R. Zippel. Probabilistic algorithms for sparse polynomials. In Edward W. Ng, editor, Proceedings of
the International Symposium on Symbolic and Algebraic Manipulation (EUROSAM ’79), volume 72 of
Lect. Notes in Comp. Sci., pages 216–226, Marseilles, June 1979. Springer Verlag.

[8] N.Saxena G. Ivanyos, M. Karpinksi. Deterministic polynomial time algorithms for matrix completion
problems. Technical Report ECCC TR09-58, Electronic Colloquium in Computational Complexity,
2009.

[9] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity testing means proving circuit
lower bounds. Computational Complexity, 13(1–2):1–44, 2004.

[10] T. Mignon and N. Ressayre. A quadratic bound for the determinant and permanent problem. Interna-
tional Mathematics Research Notices, pages 4241–4253, 2004.

[11] P. Bürgisser, M. Claussen, and M.A. Shokrollahi. Algebraic Complexity Theory. Springer Verlag, 1997.
[12] L. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel computation of polynomials using few

processors. SIAM J. Comput., 12:641–644, 1983.
[13] N. Alon. Combinatorial nullstellensatz. Combinatorics, Probability and Computing, 8(1–2):7–29, 1999.
[14] N. Nisan and A. Wigderson. Hardness versus randomness. J. Comp. Sys. Sci., 49:149–167, 1994.
[15] S. Berkowitz. On computing the determinant in small parallel time using a small number of processors.

Inf. Proc. Lett., 18:147–150, 1984.
[16] P.A. Samuelson. A method of determining explicitly the coefficients of the characteristic polynomial.

Annals of Mathematical Statistics, 13:424–429, 1942.
[17] M. Agrawal. Proving lower bounds via pseudo-random generators. In Proc. 25th Annual Conference on

Foundations of Software Technology and Theoretical Computer Science, pages 92–105, 2005.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

