
Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 549-560
www.stacs-conf.org

AN EFFICIENT QUANTUM ALGORITHM FOR SOME INSTANCES OF

THE GROUP ISOMORPHISM PROBLEM

FRANÇOIS LE GALL

Department of Computer Science, The University of Tokyo
E-mail address: legall@is.s.u-tokyo.ac.jp

Abstract. In this paper we consider the problem of testing whether two finite groups are
isomorphic. Whereas the case where both groups are abelian is well understood and can
be solved efficiently, very little is known about the complexity of isomorphism testing for
nonabelian groups. Le Gall has constructed an efficient classical algorithm for a class of
groups corresponding to one of the most natural ways of constructing nonabelian groups
from abelian groups: the groups that are extensions of an abelian group A by a cyclic
group Zm with the order of A coprime with m. More precisely, the running time of that
algorithm is almost linear in the order of the input groups. In this paper we present
a quantum algorithm solving the same problem in time polynomial in the logarithm of
the order of the input groups. This algorithm works in the black-box setting and is the
first quantum algorithm solving instances of the nonabelian group isomorphism problem
exponentially faster than the best known classical algorithms.

1. Introduction

Testing group isomorphism (the problem asking to decide, for two given finite groups G
and H, whether there exists an isomorphism between G and H) is a fundamental problem
in computational group theory but little is known about its complexity. It is known that
the group isomorphism problem (for groups given by their multiplication tables) reduces
to the graph isomorphism problem [18], and thus the group isomorphism problem is in
the complexity class NP ∩ coAM (since the graph isomorphism problem is in this class
[2]). Miller [24] has developed a general technique to check group isomorphism in time

O(nlog n+O(1)), where n denotes the size of the input groups and Lipton, Snyder and Zalcstein
[22] have given an algorithm working in O(log2 n) space. However, no polynomial-time
algorithm is known for the general case of this problem.

Another line of research is the design of algorithms solving the group isomorphism prob-
lem for particular classes of groups. For abelian groups polynomial-time algorithms follow
directly from efficient algorithms for the computation of the Smith normal form of integer
matrices [8, 15]. More efficient methods have been given by Vikas [28] and Kavitha [16] for

1998 ACM Subject Classification: F.2.2 Nonnumerical Algorithms and Problems.
Key words and phrases: Quantum Algorithms, Group Isomorphism Problem, Black-box Groups.
This work was done while the author was a researcher at Kyoto University, affiliated with the ERATO-

SORST Quantum Computation and Information Project, Japan Science and Technology Agency.

c© F. Le Gall
CC© Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2484

550 F. LE GALL

abelian groups given by their multiplication tables, and fast parallel algorithms have been
constructed by McKenzie and Cook [23] for abelian permutation groups. The current fastest
algorithm solving the abelian group isomorphism problem for groups given as black-boxes
has been developed by Buchmann and Schmidt [5] and works in time O(n1/2(log n)O(1)).
However, as far as nonabelian groups are concerned, very little is known. For solvable groups
Arvind and Torán [1] have shown that the group isomorphism problem is in NP ∩coNP un-
der certain complexity assumptions but, until recently, the only polynomial-time algorithms
testing isomorphism of nontrivial classes of nonabelian groups were a result by Garzon and
Zalcstein [12], which holds for a very restricted class, and a body of works initiated by
Cooperman et al. [9] on simple groups.

Very recently, Le Gall [19] proposed an efficient classical algorithm solving the group
isomorphism problem over another class of nonabelian groups. Since for abelian groups the
group isomorphism problem can be solved efficiently, that work focused on one of the most
natural next targets: cyclic extensions of abelian groups. Loosely speaking such extensions
are constructed by taking an abelian group A and adding one element y that, in general,
does not commute with the elements in A. More formally the class of groups considered in
[19], denoted by S , was the following.

Definition 1.1. Let G be a finite group. The group G is said to be in the class S if there
exist a normal abelian subgroup A in G and an element y ∈ G of order coprime with |A|
such that G = 〈A, y〉.

In technical words G is an extension of an abelian group A by a cyclic group Zm with
gcd(|A|,m) = 1. This class of groups includes all the abelian groups and many non-abelian
groups too, as discussed in details in [19]. For example, for A = Z

4
3 and m = 4, there are

exactly 9 isomorphism classes in S (1 class of abelian groups and 8 classes of nonabelian
groups). Moreover, the class S includes several groups that have been the target of quantum
algorithms, as discussed later. The main result in [19] was the following theorem.

Theorem 1.2 ([19]). There exists a deterministic algorithm checking whether two groups
G and H in the class S (given as black-box groups) are isomorphic and, if this is the case,

computing an isomorphism from G to H. Its running time has for upper bound n1+o(1),
where n = min(|G|, |H|).

In the present paper, we focus on quantum algorithms solving the group isomorphism
problem in the black-box setting. Cheung and Mosca [7] have shown how to compute
the decomposition of an abelian group into a direct product of cyclic subgroups in time
polynomial in the logarithm of its order on a quantum computer, and thus how to solve
the abelian group isomorphism problem in time polynomial in log n in the black-box model.
This then gives an exponential speed-up with respect to the best known classical algorithms
for the same task. One can naturally ask whether a similar speed-up can be obtained for
classes of nonabelian groups. In this paper, we prove that this is the case. Our main result
is the following theorem.

Theorem 1.3. There exists a quantum algorithm checking with high probability whether
two groups G and H in the class S given as black-box groups are isomorphic and, if this is
the case, computing an isomorphism from G to H. Its running time is polynomial in log n,
where n = min(|G|, |H|).

To our knowledge, this is the first quantum algorithm solving nonabelian instances of the
group isomorphism problem exponentially faster than the best known classical algorithms.

QUANTUM ALGORITHM FOR SOME INSTANCES OF THE GROUP ISOMORPHISM PROBLEM 551

Our algorithm relies on several new quantum reductions to instances of the so-called abelian
Hidden Subgroup Problem, a problem that can be solved efficiently on a quantum computer.
Our result can then be seen as an extension of the polynomial-time library of computational
tasks which can be accomplished using Shor’s factoring and discrete logarithm algorithms
[27], and further quantum algorithms for abelian groups. We also mention that groups in
the class S appear at several occasions in the quantum computation literature, mostly
connected to the Hidden Subgroup Problem over semidirect product groups [4, 10, 13, 25].
Our techniques may have applications in the design of further quantum algorithms for this
problem, or for other similar group-theoretic tasks.

Our quantum algorithm follows the same line as the classical algorithm in [19], but the
two main technical parts are both significantly improved and modified.

Since a group G in the class S may in general be written as the extension of an abelian
group A1 by a cyclic group Zm1

and as the extension of an abelian group A2 by a cyclic
group Zm2

with A1 6∼= A2 and m1 6= m2, we use, as in [19], the concept of a standard
decomposition of G, which is an invariant for the groups in the class S in the sense that
two isomorphic groups have similar standard decompositions (but the converse is false). A
method for computing efficiently standard decompositions in the black-box model was one
of the main contributions of [19], where the time complexity of this step was O(n1+o(1)) due
to the fact that the procedure proposed had to try, in the worst case, for each generator g of
G, all the divisors of |g|. Instead, in the present work we propose a different procedure for
this task (Section 3), which can be implemented in time polynomial in log n on a quantum
computer, based on careful reductions to group-theoretic problems for which known efficient
quantum algorithms are known: order finding, decomposing abelian groups and constructive
membership in abelian groups.

Knowing standard decompositions of G and H allows us to consider only the case where
H and G are two extensions of the same abelian group A by the same cyclic group Zm

(Proposition 6.1). Two matrices M1 and M2 in the group GL(r, F) of invertible matrices of
size r×r over some well-chosen finite field F can then be associated to the action of Zm on A
in the groups G and H respectively. The second main technical contribution of [19] showed
that, loosely speaking, testing isomorphism of G and H then reduces (when the order of
A is coprime with m) to checking whether there exists an integer k ∈ {1, . . . ,m} such that
M1 and Mk

2 are conjugate in GL(r, F). The strategy adopted in [19] to solve this problem
had time complexity close to n in the worst case (basically, all the integers k in {1, . . . ,m}
were checked). In the present paper, we give a poly(log n) time quantum algorithm for this
problem. More generally, we show in Section 5 that the problem of testing, for any two
matrices M1 and M2 in GL(r, F) where r is any positive integer and F is any finite field,
whether there exists a positive integer k such that M1 and Mk

2 are conjugate in the group
GL(r, F) reduces to solving an instance of a problem we call Set Discrete Logarithm.
This quantum reduction is efficient in that it can be implemented in time polynomial in
both r and log |F|, and works by considering field extensions of F and matrix invariants of
M1 and M2.

Loosely speaking, the problem Set Discrete Logarithm asks, given two sets {x1, . . . ,
xv} and {y1, . . . , yv} of elements in F, to compute an integer k such that {yk

1 , . . . , yk
v} =

{x1, . . . , xv}, if such an integer exists. This computational problem is a generalization of
the standard discrete logarithm problem (which is basically the case v = 1) but appears to
be much more challenging. The quantum algorithm we propose (in Section 4) works in time
polynomial in v and log |F|, and relies on a reduction to several instances of the abelian

552 F. LE GALL

Hidden Subgroup Problem. Our solution to the problem Set Discrete Logarithm is
then an extension of the computational tasks which can be solved efficiently using known
quantum algorithms for abelian groups.

2. Preliminaries

2.1. Group theory and standard decompositions

We assume that the reader is familiar with the basic notions of group theory and state
without proofs definitions and properties of groups we will use in this paper.

For any positive integer m, we denote by Zm the additive cyclic group of integers
{0, . . . ,m − 1}, and by Z

∗
m the multiplicative group of integers in {1, . . . ,m − 1} coprime

with m.
Let G be a finite group. For any subgroup H and any normal subgroup K of G we

denote by HK the subgroup {hk | h ∈ H, k ∈ K} = {kh | h ∈ H, k ∈ K}. Given a set
S of elements of G, the subgroup generated by the elements of S is written 〈S〉. We say
that two elements g1 and g2 of G are conjugate in G if there exists an element y ∈ G such
that g2 = yg1y

−1. For any two elements g, h ∈ G we denote by [g, h] the commutator of
g and h, i.e., [g, h] = ghg−1h−1. More generally, given two subsets S1 and S2 of G, we
define [S1, S2] = 〈[s1, s2] | s1 ∈ S1, s2 ∈ S2〉. The commutator subgroup of G is defined as

G′ = [G,G]. The derived series of G is defined recursively as G(0) = G and G(i+1) = (G(i))′.

The group G is said to be solvable if there exists some integer k such that G(k) = {e}.
Given two groups G1 and G2, a map φ : G1 → G2 is a homomorphism from G1 to G2 if,
for any two elements g and g′ in G1, the relation φ(gg′) = φ(g)φ(g′) holds. We say that
G1 and G2 are isomorphic if there exists a one-one homomorphism from G1 to G2, and we
write G1

∼= G2.
Given any finite group G, we denote by |G| its order and, given any element g in G,

we denote by |g| the order of g in G. For any prime p, we say that a group is a p-group
if its order is a power of p. If |G| = pei

1 . . . per
r for distinct prime numbers pi, then for each

i ∈ {1, . . . , r} the group G has a subgroup of order pei

i . Such a subgroup is called a Sylow pi-
subgroup of G. Moreover, if G is additionally abelian, then each Sylow pi-group is unique
and G is the direct product of its Sylow subgroups. Abelian p-groups have remarkably
simple structures: any abelian p-group is isomorphic to a direct product of cyclic p-groups
Zpf1 × · · · × Zpfs for some positive integer s and positive integers f1 ≤ . . . ≤ fs, and this

decomposition is unique. We say that a set {g1, . . . , gt} of elements of an abelian group G
is a basis of G if G = 〈g1〉 × · · · × 〈gt〉 and the order of each gi is a prime power.

For a given group G in the class S in general many different decompositions as an
extension of an abelian group by a cyclic group exist. For example, the abelian group
Z6 = 〈x1, x2 | x

2
1 = x3

2 = [x1, x2] = e〉 can be written as 〈x1〉 × 〈x2〉, 〈x2〉 × 〈x1〉 or
〈x1, x2〉 × {e}. That is why we introduce the notion of a standard decomposition, as it was
done in [19].

Definition 2.1. Let G be a finite group in the class S . For any positive integer m denote
by Dm

G the set (possibly empty) of pairs (A,B) such that the following three conditions
hold: (i) A is a normal abelian subgroup of G of order coprime with m; and (ii) B is a
cyclic subgroup of G of order m; and (iii) G = AB. Let γ(G) be the smallest positive

integer such that D
γ(G)
G 6= ∅. A standard decomposition of G is an element of D

γ(G)
G .

QUANTUM ALGORITHM FOR SOME INSTANCES OF THE GROUP ISOMORPHISM PROBLEM 553

2.2. Black-box groups

In this paper we work in the black-box model. A black-box group is a representation of
a group G where elements are represented by strings, and an oracle is available to perform
group operations. To be able to take advantage of the power of quantum computation
when dealing with black-box groups, the oracles performing group operations have to be
able to deal with quantum superpositions. These quantum black-box groups have been first
studied by Ivanyos et al. [14] and Watrous [29, 30], and have become the standard model
for studying group-theoretic problems in the quantum setting.

More precisely, a quantum black-box group is a representation of a group where elements
are represented by strings (of the same length, supposed to be logarithmic in the order of the
group). We assume the usual unique encoding hypothesis, i.e., each element of the group is
encoded by a unique string, which is crucial for technical reasons (without it, most quantum
algorithms do not work). A quantum oracle VG is available, such that VG(|g〉|h〉) = |g〉|gh〉
for any g and h in G (using strings to represent the group elements), and behaving in an
arbitrary way on other inputs. We say that a group G is input as a black-box if a set of
strings representing generators {g1, . . . , gs} of G with s = O(log |G|) is given as input, and
queries to the oracle can be done at cost 1. The hypothesis on s is natural since every
group G has a generating set of size O(log |G|), and enables us to make the exposition of
our results easier. Also notice that a set of generators of any size can be converted efficiently
into a set of generators of size O(log |G|) if randomization is allowed.

Any efficient quantum black-box algorithm gives rise to an efficient concrete quantum
algorithm whenever the oracle operations can be replaced by efficient procedures. Espe-
cially, when a mathematical expression of the generators input to the algorithm is known,
performing group operations can be done directly on the elements in polynomial time (in
log |G|) for many natural groups, including permutation groups and matrix groups.

Quantum algorithms are very efficient for solving computational problems over abelian
groups. In the following theorem, we describe the main results we will need in this paper.

Theorem 2.2 ([7, 14, 27]). There exists quantum algorithms solving, in time polynomial
in log |G|, the following computational tasks with probability at least 1− 1/poly(|G|):

(i) Given a group G given as a black-box (with unique encoding) and any element g ∈ G,
compute the order of g in G.

(ii) Given an abelian group G given as a black-box (with unique encoding), compute a
basis (g1, . . . , gs) of G.

(iii) Given an abelian group G given as a black-box (with unique encoding), a basis
(g1, . . . , gs) of G, and any g ∈ G, compute a decomposition of g over (g1, . . . , gs),
i.e., integers u1, . . . , us such that g = gu1

1 · · · g
us
s .

Actually, all the tasks in Theorem 2.2 can be seen as black-boxes versions of instances
of the so-called Hidden Subgroup Problem (HSP) over abelian groups. It is known that
the abelian HSP can be solved in time polynomial in log |G| [17], even if G is given as a
black-box group with unique encoding [14, 26].

3. Computing a Standard Decomposition

In this section we present a quantum algorithm computing a standard decomposition
of any group in the class S in time polynomial in the logarithm of the order of the group.

554 F. LE GALL

The precise description of the algorithm, which we denote Procedure Decompose, is
given in metacode in Figure 1. Further descriptions on how each step is implemented follow.

Procedure Decompose

input: a set of generators {g1, . . . , gs} of a group G in S with s = O(log |G|).
output: a pair (U, v) where U is a subset of G and v ∈ G.

1 compute generators {g′1, . . . , g
′
t} of the derived subgroup G′ with t = O(log |G|);

2 compute κ = lcm(|g1|, . . . , |gs|);
3 factorize κ and write κ = pe1

1 · · · p
er
r where the prime numbers pi are distinct;

4 U ← {g′1, . . . , g
′
t}; V ← ∅; Σ← ∅;

5 for i = 1 to r
6 do

7 Γi ← ∅;

8 for j = 1 to s do Γi ← Γi ∪ {g
κ/p

ei
i

j };

9 if [Γi, G
′] = e and gcd(pi, |G

′|) 6= 1 then U ← U ∪ Γi;
10 if [Γi, G

′] = e and gcd(pi, |G
′|) = 1

11 then

12 search for an element γi ∈ Γi such that 〈Γi〉G
′ = 〈γi, G

′〉;
13 if no such element exists
14 then U ← U ∪ Γi

15 else Σ← Σ ∪ {γi};
16 endthen

17 if [Γi, G
′] 6= e then { take an element γi ∈ Γi such that |γi| = maxγ∈Γi

|γ|;
18 V ← V ∪ {γi}; }
19 enddo

20 for all w in Σ
21 do

22 if there exists an element z in Σ such that [w, z] 6= e
23 then { if zwz−1 ∈ 〈w〉 then U ← U ∪ {w} else V ← V ∪ {w}; }
24 enddo

25 for all w ∈ Σ\(U ∪ V)
26 do

27 if [w, u] = {e} for all u ∈ U then U ← U ∪ {w} else V ← V ∪ {w};
28 enddo

29 b← Πg∈V |g|; z ← Πg∈V g; v ← z|z|/b;
30 output (U, v);

Figure 1: Procedure Decompose.

• At Step 1 a set of generators {g′1, . . . , g
′
t} of the derived subgroup G′ with t =

O(log |G|) is computed in time polynomial in log |G| with success probability 1 −
1/poly(|G|) using the classical algorithm by Babai et al. [3].
• The order of G′ at Steps 9 and 10, and the orders of elements at Steps 2, 17 and 29

are computed using the quantum algorithms for Tasks (i) and (ii) in Theorem 2.2.
• The least common multiple at Step 2 is computed using standard algorithms, and

is factorized at Step 3 using Shor’s factoring algorithm [27].

QUANTUM ALGORITHM FOR SOME INSTANCES OF THE GROUP ISOMORPHISM PROBLEM 555

• At Step 12, notice that [Γi, G
′] = e implies that 〈Γi〉G

′ is an abelian group. For each
element γi in Γi (there are O((log |G|)2) such elements), the quantum algorithms
for Tasks (i) and (ii) in Theorem 2.2 are used to check whether |〈Γi〉G

′| = |〈γi, G
′〉|.

Since necessarily 〈γi, G
′〉 ≤ 〈Γi〉G

′, this test is sufficient to check whether 〈Γi〉G
′ =

〈γi, G
′〉.

• The tests at Steps 9, 10 to 17 are done by noticing that [Γi, G
′] = {e} if and only if

[γ, g′j] = e for each γ ∈ Γi and each j ∈ {1, . . . , t} .

• Testing whether zwz−1 is in 〈w〉 at Step 23 is done by trying to decompose zwz−1

over 〈w〉 using the quantum algorithm for Task (iii) in Theorem 2.2, and then
checking if the decomposition indeed represents zwz−1 (since, a priori, this algorithm
can have an arbitrary behavior when zwz−1 /∈ 〈w〉).

This description, along with Theorem 2.2 and with the observation that the sets U , V
and Σ have size O((log |G|)2), show that all the steps of Procedure Decompose can be
implemented in time polynomial in log |G|. The following theorem states its correctness.

Theorem 3.1. Let G be a group in the class S , given as a black-box group (with unique
encoding). The procedure Decompose on input G outputs, with high probability, a pair
(U, v) such that (〈U〉, 〈v〉) is a standard decomposition of G. It can be implemented in time
polynomial in log |G| on a quantum computer.

A complete proof of Theorem 3.1 can be found in the full version of this paper [20].

4. Set Discrete Logarithm

We first introduce the following useful notation. Let F be a finite field, and Σ =
{x1, . . . , xt} be any subset of F with possible repetitions, i.e., all the xi’s are elements of F,
but may not be distinct. For any integer k, we denote by Σk the subset of F with possible
repetitions {xk

1 , . . . , x
k
t }.

In this section we consider the following problem. Here u is a positive integer which is
a parameter of the problem (taking u ≥ 2 does not make the problem significantly harder,
but this enables us to give a more convenient presentation of our results).

Set Discrete Logarithm

input: two lists (S1, . . . , Su) and (T1, . . . , Tu) where, for each integer h ∈ {1, . . . , u},
Sh and Th are subsets with possible repetitions of some finite field Fh.

output: a positive integer k such that T k
h = Sh for all h ∈ {1, . . . , u}, if such k exists.

Notice that the case u = 1 with |S1| = |T1| = 1 is the usual discrete logarithm problem
over the multiplicative group of the field F1. Actually, our algorithm solving the problem
Set Discrete Logarithm will only need the multiplicative structure of the fields, and
then also works if we replace in the definition each field Fh by any multiplicative finite group
Gh. However, since the main applications of our algorithm deal with field structures, we
describe our results in the present slightly less general form.

Given an instance of Set Discrete Logarithm, let mS denote the smallest positive
integer such that xmS = 1 for all x ∈ S1 ∪ · · · ∪ Su, and let mT denote the smallest positive
integer such that ymT = 1 for all y ∈ T1 ∪ · · · ∪ Tu. The main result of this section is the
following theorem.

556 F. LE GALL

Theorem 4.1. There exists a quantum algorithm that solves with high probability the prob-
lem Set Discrete Logarithm, and runs in time polynomial in u, log(mS + mT), and
max1≤h≤u(|Sh|+ |Th|+ log |Fh|).

Proof. For the sake of brevity, let us denote Σ = S1 ∪ · · · ∪ Su ∪ T1 ∪ · · · ∪ Tu. We first
compute the orders of all the elements in Σ using Shor’s algorithm [27]. The value mS is
the least common multiple of the orders of all the elements in S1 ∪ · · · ∪ Su, and the value
mT is the least common multiple of the orders of all the elements in T1 ∪ · · · ∪ Tu. The
values mS and mT can then be computed in time polynomial in log(mS + mT), |Σ|, and
max1≤h≤u log |Fh|. Notice that, for any positive integer k, the least common multiple of the
orders of all the elements in T k

1 ∪ · · · ∪ T k
u is mT/gcd(k,mT). Then, if mS does not divide

mT , there is no solution to the problem Set Discrete Logarithm. If mS divides mT

but mS 6= mT , then a solution (if it exists) can be found by replacing the list (T1, . . . , Tu)

by the list (T
mT /mS

1 , . . . , T
mT /mS
u). Thus, without loss of generality, we suppose hereafter

that mS = mT and denote by m this value. Then a solution k can be searched for in the
set Z

∗
m.

Let {m1, . . . ,mℓ} = ∪z∈Σ{|z|} denote the set of orders of the elements in Σ. For each
h ∈ {1, . . . , u} and each i ∈ {1, . . . , ℓ}, we define the subsets

Sh,i = {x ∈ Sh | |x| = mi} and Th,i = {y ∈ Th | |y| = mi}.

Let us also define the sets

Kh,i = {k ∈ Z
∗
m | T

k
h,i = Sh,i} and Kh,i = {k ∈ Z

∗
m | T

k
h,i = Th,i}.

It is straightforward to check that the set Kh,i is a subgroup of Z
∗
m, and that the set Kh,i

is either empty, or is a coset of Kh,i in Z
∗
m.

Let K ⊆ Z
∗
m denote the set of solutions of the instance of Set Discrete Logarithm

we are considering. Then

K =
⋂

1≤h≤u

(

⋂

1≤i≤ℓ

Kh,i

)

.

The set K can be computed efficiently using a quantum computer if, for each h ∈ {1, . . . , u}
and each i ∈ {1, . . . , ℓ}, the set Kh,i is known. More precisely, this is done by using a
quantum algorithm for computing the intersections of two cosets of an abelian group —
more details can be found in the full version of this paper [20].

The final part of the proof shows how to compute these sets Kh,i. Let us fix an integer
h ∈ {1, . . . , u} and an integer i ∈ {1, . . . , ℓ}. We suppose that Sh,i and Th,i have the same size
(otherwise Kh,i = ∅ and thus K = ∅). Denote Sh,i = {x1, . . . , xv} and Th,i = {y1, . . . , yv},
where v = |Sh,i| depends on h and i. We present a quantum procedure computing a set of

generators of Kh,i, and an element kh,i in Kh,i when this set is not empty, in time polynomial
in v, log m, and log |Fh|.

We first show how to compute the subgroup Kh,i. Let ≺ be an arbitrary strict total
ordering of the elements of Fh. Without loss of generality we can suppose that x1 � x2 �
· · · � xv. Let µ be the function from Z

∗
m × {1, . . . , v} to Fh defined as follows: for any

k ∈ Z
∗
m and any j ∈ {1, . . . , v}, µ(k, j) is the j-th element (with respect to the order ≺) of

the set T k
h,i. Let f be the function from Z

∗
m to (Fh)v such that, for any k ∈ Z

∗
m:

f(k) = (µ(k, 1)y−1
1 , . . . , µ(k, v)y−1

v).

QUANTUM ALGORITHM FOR SOME INSTANCES OF THE GROUP ISOMORPHISM PROBLEM 557

Notice that the set {k ∈ Z
∗
m | f(k) = (1, . . . , 1)} is precisely the subgroup Kh,i of Z

∗
m.

Moreover, the function f is constant on cosets of Kh,i in Z
∗
m, with distinct values on

distinct cosets (since f(k1) = f(k2) implies that T k1

h,i = T k2

h,i and thus k1 ∈ k2Kh,i). This is

thus an instance of the abelian HSP, and a set of generators of Kh,i can be found in time
polynomial in v, log m and log |Fh| using the algorithm described in Subsection 2.2 (notice
that the underlying group is Z

∗
m, and that the value of the function f can be computed in

time v, log m and log |Fh|).
We now show how to compute an element kh,i in Kh,i if this set is not empty. We first try

to find an element α ∈ Z
∗
mi

such that Tα
h,i = Sh,i. This is done by, for each j ∈ {1, . . . , v},

trying to find an integer αj ∈ Z
∗
mi

such that x
αj

1 = yj, if such an integer exists (notice
that, for each j, there is at most one element αj in Z

∗
mi

satisfying this condition, which
can be computed in time polynomial in log mi and log |Fh| using the quantum algorithm
for the standard discrete logarithm problem [27]) and checking whether T

αj

h,i = Sh,i. If no

such value α can be found, we conclude that Kh,i is empty. Otherwise we take any such
value α and compute kh,i as follows. Let us write the prime power decomposition of m as

m = pǫ1
1 · · · p

ǫr
r p′η1

1 · · · p
′ηs

s qδ1
1 · · · q

δt
t , where each prime pl divides mi for l ∈ {1, . . . , r}, each

prime p′l divides α but not mi for l ∈ {1, . . . , s}, and each prime ql divides neither mi nor
α for l ∈ {1, . . . , t}. Then the integer

kh,i = α + miq
δ1
1 · · · q

δt
t mod m

is coprime with m (since α is coprime with mi and then each prime pl, p′l or ql does not
divide kh,i), and hence is in Z

∗
m. From the choice of α and since any element in Th,i has

order mi, we conclude that kh,i is in the set Kh,i.

5. Discrete Logarithm up to Conjugacy

Given a positive integer r and a finite field F, remember that GL(r, F) denotes the
multiplicative group of invertible matrices of size r× r with entries in F. In this section we
consider the following problem. Here u is again a positive integer which is a parameter of
the problem.

Discrete Log up to Conjugacy

input: two lists of matrices (M
(1)
1 , . . . ,M

(u)
1) and (M

(1)
2 , . . . ,M

(u)
2) where, for each

integer h ∈ {1, . . . , u}, M
(h)
1 and M

(h)
2 are in GL(rh, Fh) for some positive

integer rh and some finite field Fh.

output: a positive integer k and u matrices M (h) ∈ GL(rh, Fh) such that

M (h) ·M
(h)
1 = [M

(h)
2]k ·M (h) for each h ∈ {1, . . . , u}, if such elements exist.

In the statement of the above problem, the notation [M
(h)
2]k simply means M

(h)
2 raised

to the k-th power. Notice that the case u = 1 and r1 = 1 is basically the usual discrete
logarithm problem over the multiplicative group of the finite field F1.

Let m1 and m2 denote the smallest positive integers such that [M
(h)
1]m1 = I and

[M
(h)
2]m2 = I for all h ∈ {1, . . . , u}. The main result of this section is the following theorem.

558 F. LE GALL

Theorem 5.1. There exists a quantum algorithm that solves with high probability the prob-
lem Discrete Log up to Conjugacy, and runs in time polynomial in u, log(m1 + m2),
and max1≤h≤u(rh + log |Fh|)

The quantum algorithm solving the problem Discrete Log up to Conjugacy fol-
lows from an efficient reduction to the problem Set Discrete Logarithm, using the con-
cepts of elementary divisors, Jordan normal forms and similarity of matrices. A complete
proof of Theorem 5.1 is given in the full version of this paper [20].

6. Proof of Theorem 1.3

We will need the following result from [19] that shows necessary and sufficient conditions
for the isomorphism of two groups in the class S .

Proposition 6.1 (Proposition 5.1 in [19]). Let G and H be two groups in S . Let (A1, 〈y1〉)
and (A2, 〈y2〉) be standard decompositions of G and H respectively and let ϕ1 ∈ Aut(A1)
(resp. ϕ2 ∈ Aut(A2)) be the action by conjugation of y1 on A1 (resp. of y2 on A2). The
groups G and H are isomorphic if and only if the following three conditions hold: (i)
A1
∼= A2; and (ii) |y1| = |y2|; and (iii) there exist a positive integer k and an isomorphism

χ : A1 → A2 such that ϕ1 = χ−1ϕk
2χ, where ϕk

2 means ϕ2 composed by itself k times.

We now present our proof of Theorem 1.3.

Proof of Theorem 1.3. Suppose that G and H are two groups in the class S . In order to
test whether these two groups are isomorphic, we first run Procedure Decompose on G
and H and obtain outputs (U1, y1) and (U2, y2) such that (〈U1〉, 〈y1〉) and (〈U2〉, 〈y2〉) are
standard decompositions of G and H respectively with high probability (from Theorem
3.1). The running time of this step is polynomial in the logarithms of |G| and |H|, from
Theorem 3.1. Denote A1 = 〈U1〉 and A2 = 〈U2〉. The orders of A1, A2, y1 and y2 are then
computed using the quantum algorithms for Tasks (i) and (ii) in Theorem 2.2. Notice that
|G| = |A1| · |y1| and |H| = |A2| · |y2|. If |G| 6= |H|, we conclude that G and H are not
isomorphic. In the following, we suppose that |G| = |H| and denote by n this order.

If |y1| 6= |y2| we conclude that G and H are not isomorphic, from Proposition 6.1.
Otherwise denote |y1| = |y2| = m. Then we compute a basis (g1, . . . , gs) of A1 and a basis
(h1, . . . , hs′) of A2 using the quantum algorithm for Task (ii) in Theorem 2.2. Given these
bases it is easy to check the isomorphism of A1 and A2: the groups A1 and A2 are isomorphic
if and only if s = s′ and there exists a permutation σ of {1, . . . , s} such that |gi| = |hσ(i)|
for each i ∈ {1, . . . , s}. If A1 6∼= A2 we conclude that G and H are not isomorphic, from
Proposition 6.1.

Now suppose that A1
∼= A2

∼= (Z
p

f1
1

)r1 × · · · × (Z
p

ft
t

)rt , where each pi is a prime, but

pfi

i 6= p
fj

j for i 6= j. We want to decide whether the action by conjugation ϕ1 ∈ Aut(A1)

of y1 on A1 and the action by conjugation ϕ2 ∈ Aut(A2) of y2 on A2 satisfy Condition
(iii) in Proposition 6.1. Notice that, for each j ∈ {1, . . . , s}, we can compute (in time
polynomial in log n) integers uij and vij such that ϕ1(gj) = y1gjy

−1
1 = g

u1j

1 · · · g
usj
s and

ϕ2(hj) = y2hjy
−1
2 = h

v1j

1 · · ·h
vsj
s using the quantum algorithm for Task (iii) in Theorem 2.2.

Denote V = GL(r1, Zp1
)×· · ·×GL(rt, Zpt). The theory developed in [19] shows that we

can compute efficiently two elements M1 and M2 in V satisfying the following two conditions:

(a) Mm
1 = Mm

2 = I; and

QUANTUM ALGORITHM FOR SOME INSTANCES OF THE GROUP ISOMORPHISM PROBLEM 559

(b) for each integer k, M1 and Mk
2 are conjugate in the group V if and only if there

exists an isomorphism χ : A1 → A2 such that ϕ1 = χ−1ϕk
2χ.

If we denote M1 = (M
(1)
1 , . . . ,M

(t)
1) and M2 = (M

(1)
2 , . . . ,M

(t)
2), where each M

(ℓ)
1 and each

M
(ℓ)
2 are matrices in GL(rℓ, Zpℓ

), then checking if the later condition holds becomes an
instance of the problem Discrete Log up to Conjugacy, and can be solved using the
algorithm of Theorem 5.1 in time polynomial in t, log m, and max1≤ℓ≤t(rℓ + log pℓ), i.e., in
time polynomial in log n.

If the above instance of Discrete Log up to Conjugacy has no solution, we con-
clude that G and H are not isomorphic. Otherwise we take one value k such that M1 and
Mk

2 are conjugate, along with an element X ∈ V such that XM1 = Mk
2 X (such an element

is obtained from the output of the algorithm of Theorem 5.1), and compute an isomorphism

χ from A1 to A2 such that ϕ1 = χ−1ϕk
2χ. The map µ : G→ H defined as µ(xyj

1) = χ(x)ykj
2

for any x ∈ A1 and any j ∈ {0, . . . ,m − 1} is then an isomorphism from G to H — more
details on this construction can be found in the full version of this paper [20].

Acknowledgments

The author is indebted to Yoshifumi Inui for many discussions on similar topics. He
also thanks Erich Kaltofen, Igor Shparlinski and Yuichi Yoshida for helpful comments.

References

[1] Arvind, V., and Torán, J. Solvable group isomorphism. In Proceedings of the 19th IEEE Conference

on Computational Complexity (2004), pp. 91–103.
[2] Babai, L. Trading group theory for randomness. In Proceedings of the 17th annual ACM Symposium

on Theory of Computing (1985), pp. 421–429.

[3] Babai, L., Cooperman, G., Finkelstein, L., Luks, E. M., and Seress, Á. Fast Monte Carlo
algorithms for permutation groups. Journal of Computer and System Sciences 50, 2 (1995), 296–308.

[4] Bacon, D., Childs, A. M., and van Dam, W. From optimal measurement to efficient quantum
algorithms for the hidden subgroup problem over semidirect product groups. In Proceedings of the 46th

Annual IEEE Symposium on Foundations of Computer Science (2005), pp. 469–478.
[5] Buchmann, J., and Schmidt, A. Computing the structure of a finite abelian group. Mathematics of

Computation 74, 252 (2005), 2017–2026.
[6] Cantor, D., and Zassenhaus, H. A new algorithm for factoring polynomials over finite fields. Math-

ematics of Computation 36 (1981), 587–592.
[7] Cheung, K., and Mosca, M. Decomposing finite abelian groups. Quantum Information and Compu-

tation 1, 3 (2001), 26–32.
[8] Chou, T.-W. J., and Collins, G. E. Algorithms for the solution of systems of linear diophantine

equations. SIAM Journal on Computing 11, 4 (1982), 687–708.
[9] Cooperman, G., Finkelstein, L., and Linton, S. Recognizing GLn(2) in non-standard representa-

tion. In Groups and Computation II, Proceedings of a SIMACS Workshop (1997), pp. 85–100.
[10] Ettinger, M., and Høyer, P. On quantum algorithms for noncommutative hidden subgroups. Ad-

vances in Applied Mathematics 25, 3 (2000), 239–251.
[11] Friedl, K., Ivanyos, G., Magniez, F., Santha, M., and Sen, P. Hidden translation and orbit coset

in quantum computing. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing

(2003), pp. 1–9.
[12] Garzon, M. H., and Zalcstein, Y. On isomorphism testing of a class of 2-nilpotent groups. Journal

of Computer and System Sciences 42, 2 (1991), 237–248.
[13] Inui, Y., and Le Gall, F. Efficient quantum algorithms for the hidden subgroup problem over a class

of semi-direct product groups. Quantum Information and Computation 7, 5&6 (2007), 559–570.

560 F. LE GALL

[14] Ivanyos, G., Magniez, F., and Santha, M. Efficient quantum algorithms for some instances of the
non-abelian hidden subgroup problem. International Journal of Foundations of Computer Science 14,
5 (2003), 723–740.

[15] Kannan, R., and Bachem, A. Polynomial algorithms for computing the Smith and Hermite normal
forms of an integer matrix. SIAM Journal on Computing 8, 4 (1979), 499–507.

[16] Kavitha, T. Linear time algorithms for abelian group isomorphism and related problems. Journal of

Computer and System Sciences 73, 6 (2007), 986–996.
[17] Kitaev, A. Y. Quantum measurements and the abelian stabilizer problem. arXiv.org e-Print archive,

arXiv:quant-ph/9511026, 1995.
[18] Köbler, J., Torán, J., and Schöning, U. The graph isomorphism problem: its structural complexity.

Birkhäuser, 1993.
[19] Le Gall, F. Efficient isomorphism testing for a class of group extensions. In Proceedings of the 26th

International Symposium on Theoretical Aspects of Computer Science (2009), pp. 625–636. Full version
available at http://arxiv.org/abs/0812.2298.

[20] Le Gall, F. An efficient quantum algorithm for some instances of the group isomorphism problem.
Full version of the present paper. Available at http://arxiv.org/abs/1001.0608.

[21] Lidl, R., and Niederreiter, H. Finite fields. Cambridge University Press, 2008.
[22] Lipton, R. J., Snyder, L., and Zalcstein, Y. The complexity of word and isomorphism problems

for finite groups. Tech. rep., John Hopkins, 1976.
[23] McKenzie, P., and Cook, S. A. The parallel complexity of abelian permutation group problems.

SIAM Journal on Computing 16, 5 (1987), 880–909.
[24] Miller, G. On the nlog n isomorphism technique. In Proceedings of the 10th Annual ACM Symposium

on Theory of Computing (1978), pp. 51–58.
[25] Moore, C., Rockmore, D. N., Russell, A., and Schulman, L. J. The power of basis selection in

fourier sampling: hidden subgroup problems in affine groups. In Proceedings of the Fifteenth Annual

ACM-SIAM Symposium on Discrete Algorithms (2004), pp. 1113–1122.
[26] Mosca, M. Quantum Computer Algorithms. PhD thesis, Oxford university, 1999.
[27] Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum

computer. SIAM Journal on Computing 26, 5 (1997), 1484–1509.
[28] Vikas, N. An O(n) algorithm for Abelian p-group isomorphism and an O(n log n) algorithm for Abelian

group isomorphism. Journal of Computer and System Sciences 53, 1 (1996), 1–9.
[29] Watrous, J. Succinct quantum proofs for properties of finite groups. In Proceedings of the 41st Annual

Symposium on Foundations of Computer Science (2000), pp. 537–546.
[30] Watrous, J. Quantum algorithms for solvable groups. In Proceedings of the 33rd Annual ACM Sym-

posium on Theory of Computing (2001), pp. 60–67.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

