
International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 177-192
http://rewriting.loria.fr/rta/

COMPUTING RELATIVE NORMAL FORMS IN REGULAR TREE LANGUAGES

ALEXANDER KOLLER1 AND STEFAN THATER1

1 Saarland University
Saarbrücken, Germany
E-mail address: koller@mmci.uni-saatland.de
E-mail address: stth@coli.uni-saarland.de

ABSTRACT. We solve the problem of computing, out of a regular languageL of trees and a rewriting
systemR, a regular tree automaton describing the setL′ ⊆ L of trees which cannot beR-rewritten into
a tree inL. We call the elements ofL′ the relative normal forms ofL. We apply our algorithm to the
problem of computing weakest readings of sentences in computational linguistics, by approximating
logical entailment with a rewriting system, and give the first efficient and practically useful algorithm
for this problem. This problem has been open for 25 years in computational linguistics.

1. Introduction

One key task in computational linguistics is to represent the meaning of a natural language
sentence using some formal representation(reading), and to model inference on the level of natural
language [1] as inference on the corresponding meaning representations. The classical approach [2]
uses logical languages, such as first or higher order predicate logic, to represent sentence meanings.
But when the sentence isambiguous, it is often infeasible to explicitly enumerate all the different
readings: The number of readings is worst-case exponential in the length of the sentence, and it is
not uncommon for a sentence to have millions of readings if they contain a number of ambiguous
constituents.

The standard technique to address this issue isunderspecification[3, 4, 5, 6]: all readings of an
ambiguous sentence are represented by a single, compactunderspecified representation (USR), such
as a dominance graph [7]. Individual readings can be enumerated from an USR if necessary, but this
step is postponed for as long as possible. This offers a partial solution to the problem of managing
ambiguity. However, it is much less clear how todisambiguatea sentence, i.e. to determine the
reading that the speaker actually intended in the given context.

In the absence of convincing disambiguation techniques, it has been proposed to work with the
weakest readingsof a sentence in practical applications [8]: If the readings are a set of formulas (say,
of predicate logic), the weakest readings are those readings that are minimal with respect to logical
entailment. From an application perspective, the weakest readings capture the “safe” information
that is common to all possible readings; they are also linguistically interesting [9]. Because there
are so many readings, it is infeasible to compute all readings and test all pairs for entailment using
a theorem prover. However, although the problem has been open for over 25 years [9, 10], the best

Key words and phrases:normal forms,tree automata, incomplete inference, computational linguistics.

c© A. Koller and S. Thater
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.177

178 A. KOLLER AND S. THATER

known algorithm [11] is still quadratic in the number of readings and therefore too slow for practical
use.

In this paper, we solve this problem for a sound but incomplete approximation of entailment
by means of a rewrite system. Technically, we consider the problem of computing, from a regular
tree languageL of trees and a rewrite systemR, a regular tree automaton representing the subset
L′ ⊆ L consisting of all trees that cannot beR-rewritten into a tree inL. We call the elements ofL′

therelative normal formsof L with respect toR. To do this, we first represent the one-step rewriting
relation ofR in terms of a linearcontext tree transducer, which extends ordinary tree transducers
by rewriting an entire context in each derivation step instead of a single symbol. We then compute
the pre-image ofL under this transducer, and intersectL with the complement of the pre-image. We
show that an automaton accepting the pre-image can be computed in linear time ifL is represented
by a deterministic automaton. For a certain special case, which holds in our application, we show
that we can even obtain adeterministicautomaton for the pre-image in linear time. Altogether,
we obtain an algorithm for computing weakest readings that is quadratic in the size of the tree
automaton describingL, instead of quadratic in the size ofL.

Despite the incompleteness, the approximation of entailment as rewriting is sufficient in our
application: For one specific rewrite system, our algorithm computes a mean of 4.5 weakest readings
per sentence in a text corpus, down from about three million readings that the sentences have on
average. It takes 20 ms per sentence on average to do this. Thus, we see our algorithm as a practical
solution to the problem of computing weakest readings in computational linguistics. On the other
hand, our algorithm handles arbitrary linear rewriting systems and is therefore much more generally
applicable. For instance, our earlier work on redundancy elimination [12], which was based on tree
automata intersection as well, falls out as a special case; and we anticipate that further approximative
inference techniques for natural language will be developed based on this paper in the future.

Plan of the paper.In Sect. 2, we define the problem and review dominance graphs and tree
automata. We then define context tree transducers, use them to compute the pre-image ofL under
R, and analyze the complexity of the algorithm in Sect. 3. We go through an example from the
application in Sect. 4, and conclude in Sect. 5.

2. Definitions

We start by reviewing some dominance graph theory and defining the problem we want to
solve.

2.1. Dominance graphs

Semantic ambiguity, which is present when a natural-language sentence can have more than one
possible meaning, is a serious problem in natural language processing with large-scale grammars.
For instance, the mean number of possible meaning representations per sentence in the Rondane
text corpus [13] is about 5· 109. It is obviously impractical to enumerate all of these meaning
representations. Instead, computational linguists typically useunderspecificationapproaches, in
which a single compactdescriptionof the possible meanings is computed instead of all possible
semantic readings.

One formal approach to underspecification, which we use in this paper, is that of usingdom-
inance graphs[7]. Dominance graphs assume that the individual semantic representations of the
sentence – say, formulas of predicate logic – are represented as trees, and then describe sets of trees

RELATIVE NORMAL FORMS 179

Figure 1: A dominance graph that represents the six readings of the sentenceevery student did not
read a book(a) and its six configurations (b – g).

by specifying parent and ancestor relationships between nodes. They are equivalent to leaf-labeled
normal dominance constraints [4].

We assume finite ranked signaturesΣ,Σ′, . . . of tree constructorsf with aritiesar(f). We define
a (finite constructor) tree toverΣ to be a functiont : D → Σ, whereD is a tree domain (i.e., a finite
subset ofN∗ that is closed under prefix and left sibling), such that every nodeu ∈ D hasar(t(u))
many children. Alternatively, we can see each tree as a ground term overΣ. We writeTΣ for the set
of trees overΣ.

Definition 2.1. A (compact) labeled dominance graphover a ranked signatureΣ is a quadruple
G = (V,E⊎D,L,<), where(V,E⊎D) is a directed graph,L : V Σ is a partial(node) labeling
functionand<⊆V ×V a strict linear order onV, such that

(1) the graph(V,E) defines a collection of node disjoint trees of height 0 or 1 (we call the edges
in E tree edges, the treesfragments, the roots of the fragmentsroots and all other nodes
holes);

(2) if (v,v′) ∈ D, thenv is a hole andv′ is a root inG (we call the edges inD dominance edges);
(3) the labeling functionL assigns a nodev a label with arityn iff v is a root withn outgoing

tree edges (we writef |n to indicate thatf has arityn);
(4) every hole has at least one outgoing dominance edge.

We writeWG for the roots andLG for the labeling function ofG, and we will say thatv is a
hole of uif (u,v)∈ E. We will typically just saydominance graphfor “compact labeled dominance
graph”.

Dominance graphs can be seen as descriptions of sets of trees, which can be obtained from the
graph by “plugging” roots into holes so that dominance edges are realized as dominance. We call
these trees theconfigurationsof the graph. An example graph (for the sentence “every student did
not read a book”) and its six configurations are shown in Fig. 1, where we draw tree edges as solid
lines and dominance edges as dotted lines, directed from top to bottom. The signature includes
the symbols¬|1, ∀x|2, and studx|0; we read the trees over this signature as simplified formulas
of predicate logic, taking∀x(P,Q) to abbreviate∀x(P → Q) and∃x(P,Q) for ∃x(P∧Q). Atomic
formulas such asstud(x) are abbreviated by single function symbols such asstudx of arity 0. Now
the six configurations, (b) – (g), are the six trees whose nodes are the (labeled) roots of the graph,
such that all dominance edges in the graph are realized as reachability in the tree.

Formally, we define apluggingof a dominance graphG = (V,E⊎D,L,<) to be an injective
partial functionp : V V mapping each hole to a root. We can apply a plugging to a dominance
graph to obtain a directed graphp(G) = (V ′,E′) such thatV ′ =WG andE′ = {(v, p(v′)) | (v,v′)∈E}.
We call p(G) anunlabeled configurationof G iff (i) p(G) is a tree, and (ii) if(v,v′) ∈ D, thenp(v)
dominatesv′ in p(G), i.e., there is a directed path fromp(v) to v′ in the treep(G). By takingWG as
a ranked signature (withar(u) = ar(LG(u))) and ordering the children of each node according to<,
we can readp(G)as a finite constructor treet ∈ TWG. An unlabeled configurationt can be mapped to

180 A. KOLLER AND S. THATER

a finite constructor treeLG(t) ∈ TΣ – called alabeled configuration– by labeling each nodeu∈V ′

with LG(u). The configurations in Fig. 1 are all labeled. We say that a graph isconfigurableif it has
a (labelled or unlabelled) configuration.

Throughout this paper, we restrict ourselves tohypernormally connecteddominance graphs.
We say thatG is hypernormally connected (hnc)iff each pair of nodes is connected by a simplehy-
pernormal path. A hypernormal path [7] in a dominance graphG is a path in the undirected version
of G that does not use two dominance edges that are incident to the same hole. Hnc graphs have a
number of desirable properties. For instance, the problem of deciding whether a dominance graph
has a configuration is NP-complete in general, but polynomial if the graph is hnc. Furthermore, hnc
dominance graphs can be translated into equivalent tree automata (see below). Note that virtually
all dominance graphs that are used in linguistics applications are hnc [14].

2.2. Weakest readings

In order to perform inferences on the semantic representations for a sentence, it is desirable
to identify the “correct” semantic representation from among all the (many) possibilities. Unfortu-
nately, there are no satisfying models that would allow this. One alternative that has been proposed
as a workaround is to compute theweakest readings– that is, the least informative semantic repre-
sentations [8]. This idea exploits the fact that a set of predicate logic formulas is partially ordered
with respect to logical entailment; the weakest readings are then the (configurations representing
the) minimal elements of this order. In Fig. 1, (f) entails (g), (b) entails (c), and so on; (d) and
(g) are incomparable, and indeed, (d) and (g) are the weakest readings of the dominance graph in
Fig. 1a. The problem that motivates this paper is how to efficiently compute the weakest readings
of a dominance graph.

A brute-force approach to this problem would be to compute all labeled configurations of a
dominance graph, and then to run a theorem prover for each pair of configurations to establish the
entailment order. Although this is clearly impractically slow when real-world sentences have an
average of several billions of readings, the best known algorithm [11] is essentially just an optimiza-
tion of this approach, and in particular is quadratic in the number of configurations.

Here we take a different approach. We will work with a sound but incomplete approximation of
entailment using a rewriting system. Notice that the entailment between (f) and (g) can be explained
by the fact that (f) can be rewritten into (g) by applying the rewrite rule

∃y(P,∀x(Q,R))→∀x(Q,∃y(P,R))1 (2.1)

if x does not occur inP. In positive contexts, the right-hand side of this rule is always entailed by
the left-hand side; in this sense, the rule is sound. Now (g) can be recognized as a weakest reading
because it cannot be rewritten into another tree which is also a configuration of the dominance
graph.

In order to obtain a sound model of first-order entailment, we must make the rewriting system
sensitive to the logical polarity of the subformula at which we apply a rewrite rule: If we were to
apply (2.1) to the configuration (c), we would rewrite it into (b), which is logicallystrongerthan (c).
That is, we must restrict (2.1) such that it can only be used for subformulas that occur in a logically
positive context.

1∀x,∃y ∈ Σ are uninterpreted binary constructors. To ensure finiteness of the rewrite systems we use, we assume there
is only a finite set of variablesx,y, . . . in the language of semantic representations.P,Q,R are ordinary variables of the
rewrite system.

RELATIVE NORMAL FORMS 181

More generally, we assume a finite alphabetAnn of annotations; we want to assign a single
annotation to every node of a tree inTΣ. We assign astarting annotation a0 ∈ Ann to the root of
each tree, and use anannotator functionann : Ann×Σ×N→ Ann to compute the annotations for
the other nodes: If some nodeu is annotated witha and has labelf ∈ Σ, then we annotate thei-th
child of u with ann(a, f , i) for all 1≤ i ≤ ar(f). We then define anannotated rewriting system Ras
a finite set of pairsa : r, wherea∈ Ann andr is a rewrite rule overΣ. A treet ∈ Σ can be rewritten
into a treet ′, t →R t ′, if there is a rulea : r and a nodeu in t with annotationa such thatt rewrites
into t ′ by applyingr at nodeu. We write→∗

R for the reflexive, transitive closure of→R.
Using this terminology, we can capture logical polarities by usingAnn= {+,−}, a0 =+, and

ann such thatann(+,∀x,1) =−, ann(+,∀x,2) = +, and so on. We can then rephrase (2.1) more
precisely as follows:

+ : ∃y(P,∀x(Q,R))→∀x(Q,∃y(P,R)) (2.2)

This rule will still rewrite (f) into (g) because it is applied at the root (with annotation+), but it
will not rewrite (c) into (b), because the redex has annotation−. We will extend (2.2) to a full rewrite
system, which correctly characterizes (d) and (g) as the only two weakest readings, in Section 4.

Now observe that if we have an annotated rewriting system in which every rule makes the
formula logically weaker, then all weakest readings will have the property that it is not possible to
rewrite them into some other configuration. More generally, we will say that all weakest readings
are inrelative normal formwith respect to the set of all configurations.

Definition 2.2. Let L be a set of trees over some signatureΣ, and letR be an (annotated) rewrite
system overΣ. We say that a treet ∈ L is in relative normal formwith respect toR iff there is no
treet ′ ∈ L such thatt →R t ′. We write RNFR(L) for the relative normal forms inL with respect toR.

In the example, (d) and (g) are in relative normal form because they are in normal form, i.e. they
cannot be rewritten at all. However, in general a tree may be in relative normal form without being
in normal form, if all possible results of rewrites are not inL. For example, consider the setL =
{ f (f (g(h(a)))), f (g(f (h(a)))), f (f (h(g(a))))} and a rewrite systemR that consists of the single
rule f (g(x))→ g(f (x)). The treef (f (g(h(a)))) rewrites tof (g(f (h(a))))∈ L, and is therefore not
in relative normal form. However, while we could further rewrite this tree intog(f (f (h(a)))), the
result is no longer inL, so f (g(f (h(a)))) is in relative normal form. The treef (f (h(g(a)))) does
not contain a redex in the first place, and is therefore also in relative normal form.

2.3. Dominance graphs as tree automata

The problem that we solve in this paper is to find an efficient algorithm for computing the rel-
ative normal forms in regular tree languages with respect to an annotated rewriting system. This
solves the problem of computing the weakest readings of a dominance graph because the configu-
ration sets of dominance graphs are regular tree languages, and it is known how to compute tree
automata for accepting them. We will now recall some definitions regarding tree automata and
transducers, and then sketch the translation of dominance graphs as tree automata.

Let Σ be a finite ranked signature as above, and letX be a finite set of (variable) symbols. We
write TΣ(X) for TΣ∪{a|0 | a∈X }. If Xm is a set ofm variables, we write Con(m)(Σ) for thecontexts
with m holes, i.e. those trees inTΣ(Xm) in which each element ofXm occurs exactly once. If
C ∈ Con(m)(Σ), thenC[t1, . . . , tm] =C[t1/x1, . . . , tm/xm], wherex1, . . . ,xm are the variables from left
to right.

Definition 2.3. A top-down tree transducerfrom Σ to ∆ is a 5-tupleM = (Q,Σ,∆,q0,δ), whereQ is
a finite set of states,Σ and∆ are ranked signatures, andq0 ∈Q is the initial state. The rules inδ are of

182 A. KOLLER AND S. THATER

Figure 2: A tree automaton accepting the labeled configurations of the dominance graph in
Fig. 1(a).

the formq(f (x1, . . . ,xn))→C[q1(xi1), . . . ,qm(xim)], where f ∈ Σ, q,q1, . . . ,qm ∈ Q, C ∈ Con(m)(∆),
andxik ∈ {x1, . . . ,xn} for all k.

If t is a tree inTΣ∪∆∪Q, then we say thatM derivest ′ in one step fromt, t →M t ′, if there are
a contextC′, treest1, . . . , tn and a transition ruleq(f (x1, . . . ,xn))→C[q1(xi1), . . . ,qm(xim)] such that
t = C′[q(f (t1, . . . , tn))] andt ′ = C′[C[q1(ti1), . . . ,qm(tim)]]. Thederivation relation→∗ of M is the
reflexive, transitive closure of→. Thetranslation relationτM of M is

τM = {(t, t ′) | t ∈ TΣ andt ′ ∈ T∆ andq0(t)→
∗ t ′}.

A tree transducer is calledlinear if no variable occurs twice, andnon-deletingif every variable
occurs at least once on the right-hand side of each rule. It is calleddeterministicif for every q∈ Q
and f ∈ Σ, there is at most one rule whose left-hand side isq(f (x1, . . . ,xn)).

A top-down tree automatonoverΣ is a top-down transducerA= (Q,Σ,Σ,q0,δ) such that every
rule in δ is of the formq(f (x1, . . . ,xn))→ f (q1(x1), . . . ,qn(xn)). We writeL (A) = {t | (t, t) ∈ τA}
for the languageaccepted byA.

A bottom-up tree automatonis a 4-tupleA= (Q,Σ,QF ,δ) in which QF ⊆ Q is the set offinal
statesand the transition rules inδ are of the formf (q1(x1), . . . ,qn(xn))→ q(f (x1, . . . ,xn)). Deriva-
tions and languages are defined in analogy to the top-down case, see [15] for details. A bottom-up
automaton is called deterministic if for everyf ∈ Σ andq1, . . . ,qn ∈ Q there is at most one rule
whose left-hand side isf (q1(x1), . . . ,qn(xn)).

For every top-down automatonA, there is a bottom-up automatonA′ with L (A) =L (A′). For
every bottom-up automatonA, there is a deterministic bottom-up automatonA′ with L (A) =L (A′).

Now any hnc dominance graphG can be translated into a top-down tree automatonAG that
accepts the language of all labeled configurations, and into a deterministic top-down tree automaton
Au

G that accepts the language of all unlabeled configurations ofG [12]. The states of these automata
correspond to hnc subgraphs ofG, and the transition rules encode decompositions of this subgraph
into smaller subgraphs by removing afreeroot and its holes. A rootu in a configurable graphG is
called free iffG has a configuration whose root isu; it can be tested in linear time whether a root in
a configurable hnc graph is free [16].2

The tree automaton we obtain for the labeled configurations of the graph in Fig. 1 (a) is shown
in Fig. 2. The first rule states that we can choose¬ as the root of a configuration, and obtain
the subgraph{2,3,4,5,6} by removing it. We can then choose∀x as the root in this subgraph,
splitting it into two weakly connected components,{4} and{3,5,6}, and so on. This automaton

2The algorithm in [16] is defined in terms ofsolved forms. Our definition is equivalent for hnc dominance graphs.

RELATIVE NORMAL FORMS 183

accepts exactly the six labeled configurations of the original dominance graph. In practice, the tree
automata computed for dominance graphs remain small; for instance, the graphs obtained for the
sentences in the Rondane treebank [13] contain on average 14 roots and have 5·109 configurations,
whereas the automata have 320 rules and can be computed in 20 ms on average [12].

3. Computing relative normal forms

We will now show how relative normal forms of regular tree languages with respect to a linear
rewriting system can be computed. We will first sketch the basic idea and show an (inefficient)
solution based on pre-images of regular tree languages under regular tree translations. We will then
introducecontext tree transducers, which allow us to use linear transducers and obtain an efficient
algorithm.

Throughout, we limit ourselves to linear rewriting systems, which are sufficient for our appli-
cation.

3.1. Relative normal forms as non-pre-images

As we defined above, a treet in some setL of trees is in relative normal form iff there is no other
treet ′ in L into whicht can be rewritten in one step. This can have two possible reasons: Eithert is
in normal form, i.e. there is no rewrite step that can be applied to it at all; ort can be rewritten, but
no possible result of these rewrite steps is inL.

The key idea in this paper is to model the one-step rewriting relation of a rewriting systemR
with a top-down tree transducerMR, such thatt →R t ′ iff (t, t ′)∈ τR. Given such a transducer, we can
then determine the relative normal forms as those trees that cannot be rewritten with the transducer.

Lemma 3.1. Let L be a set of trees, let R be a rewriting system, and let M be a transducer such that
t →R t ′ iff (t, t ′) ∈ τM. Then

RNFR(L) = L∩ τ−1
M (L).

For the case whereL is a regular language of trees, the intersection can be computed efficiently
using a construction on the tree automata. Complements of regular tree languages can also be
computed on the automata themselves, although this requires computing the determinization of the
tree automataton if it is nondeterministic, which may take exponential time. The question is how
we can encode one-step rewriting in a tree transducer, and how we can compute the pre-image ofL
underτM.

For the first question, we can directly build a top-down transducer to encode the one-step rewrit-
ing relation. The transducer has two states,q andq̄. The stateq indicates that the transducer will
apply a rewrite rule at some node below the current node; it is the start state. The state ¯q indicates
that the transducer will not apply any rewrite rule at the nodes below the current node; we require
that all leaves of the tree are read in this state.

The transducer has two types of transitions. First, when the transducer is in state ¯q, it must copy
the current symbol into the output tree; it may also choose to do this in stateq:

q̄(f (x1, . . . ,xn)) → f (q̄(x1), . . . , q̄(xn)) for all f ∈ Σ
q(f (x1, . . . ,xn)) → f (q̄(x1), . . . ,q(xi), . . . , q̄(xn)) for some 1≤ i ≤ n and all f ∈ Σ (3.1)

184 A. KOLLER AND S. THATER

In addition, in stateq, M may choose to apply a rewrite rule and switch to state ¯q. Let’s say we
have a linear rewrite rulef (g(x1,x2),x3)→ g(x1, f (x2,x3)). We can represent an application of this
rule with the following transition rules:

q(f (x,y)) → g(q̄g,1(x), f (q̄g,2(x), q̄(y)))
q̄g,1(g(x,y)) → q̄(x)
q̄g,2(g(x,y)) → q̄(y),

(3.2)

where crucially there are no other transitions for ¯qg,1 and q̄g,2 than these, i.e. by using these
states we simultaneously enforce the left-hand subtree below thef node to have root labelg, and
copy its two subtrees into thex1 andx2 positions of the rewriting rule.

In other words, it is possible to capture the one-step rewriting relation as the translation relation
of a top-down tree transducer. But now consider how to computeτ−1

M (L) for a regular tree language
L. One possible idea is to consider a top-down tree transducerML such thatτML = {(t, t) | t ∈ L}; it
is clear that such a transducer exists. We can then concatenateM andML; τ−1

M (L) is the domain of
M ◦ML.

For deterministic tree transducers, it is known that the domain of a tree transducer is a regular
tree language, and how to compute it ([17], Theorem 4.1; [18], p. 693). However, these algorithms
are only applicable todeterministictransducers, and the transducers defined above are not determin-
istic (in stateq, they may choose to either copy or rewrite). Furthermore, even if the transducers
could be made deterministic, they compute regular tree automata of exponential size if the trans-
ducer is not linear. Indeed, the transducers shown above are not linear, because the first rule for the
rewriting case duplicatesx. This makes the use of these algorithms unattractive in our case.

3.2. Context tree transducers

However, although the above transducers can have non-linear rules, the extent of the non-
linearity is limited: Every time a non-linear rule is applied, some other rules must be applied which
will delete most of the copied trees, and retain only disjoint parts of them. This means that the
machinery which the domain automaton construction uses to accommodate non-linear transducers
is not necessary in our setting.

Consider the transition rules in (3.2). The only reason why we need to copy theg subtree twice
is that we were not able to specify that the transducer should read the contextf (g(x1,x2),x3) in the
input tree directly. If we had a way to directly use this context on the left-hand side, each ofx1,
x2, andx3 could appear only once on the right-hand side, and thus we could get away with a linear
transducer. We will now extend the definition of top-down transducers in such a way that they can
accept contexts on the left-hand side.

Definition 3.2. A (top-down) context tree transducerfrom Σ to ∆ is a 5-tupleM = (Q,Σ,∆,q0,δ).
δ is a finite set of transition rules of the formq(C[x1, . . . ,xn]) → D[q1(xi1), . . . ,qm(xim)], where
C∈ Con(n)(Σ), D ∈ Con(m)(∆), q,q1, . . . ,qm ∈ Q, andxik ∈ {x1, . . . ,xn} for all k.

If t is a tree inTΣ∪∆∪Q, then we say thatM derivest ′ in one step fromt, t → t ′, if there is
a contextC′, treest1, . . . , tn, and a transition ruleq(C[x1, . . . ,xn]) →M D[q1(xi1), . . . ,qm(xim)] such
that t = C′[q(C[t1, . . . , tn])] and t ′ = C′[D[q1(ti1), . . . ,qm(tim)]]. The derivation relation→∗

M is the
reflexive, transitive closure of→M. Thetranslation relationτM of M is

τM = {(t, t ′) | t ∈ TΣ andt ′ ∈ T∆ andq0(t)→
∗ t ′}.

A context tree transducer is calledlinear if no variable occurs twice, andnon-deletingif every
variable occurs at least once on the right-hand side of each rule.

RELATIVE NORMAL FORMS 185

A context tree automatonis a context tree transducer withΣ= ∆ and transition rules of the form
q(C[x1, . . . ,xn])→C[q1(x1), . . . ,qn(xn)]. We take thelanguageL (A) of a context tree automatonA
to be the domain ofτA.

Every top-down transducer is trivially also a top-down context transducer. Conversely, not
every translation relation of a context transducer can be represented as the translation relation of an
ordinary top-down transducer. For instance, the relation{(f (a,b),b)} is the translation relation of
a context transducer with rulesq(f (a,x))→ q′(x) andq′(b)→ b. However, a top-down transducer
must either outputb when it reads thef or when it reads theb; either way, it must also accept
an input treef (b,b). Every translation relation of a context transducer can also be computed by
the “transformation language” of [19]. More specifically, context tree transducers are equivalent
to extended left-hand side tree transducers (xTs) [20]. It is clear that an xT can encode a context
transducer by specifying all constructors in the context in its tree pattern. Furthermore, an xT can
be simulated in a context transducer by having a transition rule for every contextC that satisfies the
tree pattern on the left-hand side of each xT rule.

On the other hand, contextautomataare equivalent to ordinary tree automata. This can be
shown as for regular tree grammars.

3.3. Rewriting with context tree transducers

Given a linear rewriting systemR, it is now straightforward to produce a context tree transducer
MR whose translation relation is the one-step rewriting relation ofR. First,MR uses the rules in (3.1)
to be able to copy parts of the input tree to the output unchanged. Second, for each rewrite rule
C[x1, . . . ,xn]→C′[xi1, . . . ,xin], MR contains a transition rule as follows:

q(C[x1, . . . ,xn])→C′[q̄(xi1), . . . , q̄(xin)]. (3.3)

Unlike the transducer in Section 3.1, this transducer is now linear. We will exploit this in
Section 3.4 to obtain a more efficient algorithm for computing a pre-image.

But before we do this, let us extend the construction of context tree transducers for rewriting
systems to annotated rewriting systems. Let’s say we have an annotation alphabetAnn, an annotator
functionann, and a linear annotated rewriting systemR overΣ andAnn. We can obtain a context
tree transducerMR for the one-step rewriting relation ofRby keeping track of the current annotation
of nodes in the input tree in the state. In particular, we split the stateq into statesqa1, . . . ,qan where
Ann = {a1, . . . ,an}. We retain a single state ¯q, as no further rewriting can take place in this state,
and the annotation is therefore irrelevant.

The initial state ofMR is qa0, wherea0 is the starting annotation. We then have the following
versions of the transition rules in (3.1); these rules copy symbols to the output tree and keep track
of the current annotation.

q̄(f (x1, . . . ,xn)) → f (q̄(x1), . . . , q̄(xn)) for all f ∈ Σ
qa(f (x1, . . . ,xn)) → f (q̄(x1), . . . ,qann(a, f ,i)(xi), . . . , q̄(xn)) for some 1≤ i ≤ n and all f ∈ Σ

(3.4)
In addition,MR contains the following version of the transition rules in (3.3). It applies the

rewriting rulea : C[x1, . . . ,xn]→C′[xi1, . . . ,xin] if the transducer is at a node in the input tree which
is annotated witha.

qa(C[x1, . . . ,xn])→C′[q̄(xi1), . . . , q̄(xin)]. (3.5)

Lemma 3.3. Let t, t ′ be trees, and let R be a linear annotated rewrite system. Then t→R t ′ iff
(t, t ′) ∈ τMR.

186 A. KOLLER AND S. THATER

3.4. Pre-images under linear context tree translations

Finally, we show how to compute the pre-image of a regular tree language under the translation
relation of a linear context tree transducer.

Proposition 3.4. Let L be a regular tree language, and let M be a linear context tree transducer.
Thenτ−1

M (L) is a regular tree language.

Proof. Let M = (P,Σ,∆, p0,δ), and letB= (Q,∆,q0,γ) be a top-down tree automaton withL (B) =
L. We construct a context tree automatonA= (P×Q,Σ,Σ,〈p0,q0〉,η) with L (A) = τ−1

M (L).
Let p(C[x1, . . . ,xn]) → D[p1(xi1), . . . , pn(xin)] be in δ . Furthermore, letq(D[x1, . . . ,xn]) →

∗
B

D[q1(x1), . . . ,qn(xn)], where we extend→B to a binary relation onTQ∪∆∪{x1,...,xn} by usingxi →B xi

for all i. Then we letA contain the transition rule

〈p,q〉(C[x1, . . . ,xn])→C[〈pk1,qk1〉(x1), . . . ,〈pkn,qkn〉(xn)],

whereki j = j for all j.
Intuitively, A should read a contextC if M can translate this into a context whichB accepts.

We keep track of the states in whichM andB are during this process inA’s state. IfA is in a state
〈p,q〉, M must translateC from statep; it will output a contextD, whichB must accept from stateq.
During its run,M assigns statesp1, . . . , pn to the holes ofC; similarly, B assigns statesq1, . . . ,qn to
the holes ofD. BecauseM is linear, the holes ofC andD correspond to each other bijectively, and
we can build the new states〈pi ,qi〉 in whichA must then read the subtrees below the holes ofC.

3.5. Complexity

In the worst case, the algorithm in the proof of Prop. 3.4 constructs a tree automaton with at
most|P| · |Q| states and at most|δ | · |Q| ·m transition rules, wherem is the maximum number of state
tuples(q1, . . . ,qn) which B can assign to the holes of any contextD on the right-hand side of a rule
in M. If B is deterministic, we havem= 1, i.e. we can construct the pre-image automaton in time
O(|B| · |M|)=O(|B| · |R|). This means that by exploiting the linearity, we avoid the exponential blow-
up in the automaton size from the domain automaton construction in [17]. IfB is nondeterministic,
mmay be exponential in the size ofM, where the exponent is the maximum number of variables on
the right-hand side of a transition rule.

One further complication is that the construction in Lemma 3.1 requires us to compute the
complement of the pre-image automatonA. Even ifB is deterministic,A may not be, and so the
automaton forL (A) may be exponentially larger becauseA must be determinized. However, the
rewriting systems and tree automata that we use in our application have certain properties that make
the deterministic pre-image automata small as well. We first define these special properties, and
then prove the complexity result.

Definition 3.5. The left-hand sizeof a rewriting systemR overΣ is the maximum number of con-
structors fromΣ that is used on the left-hand side of a rule inR.

We call a top-down tree automatonboth way deterministicif it is deterministic and the bottom-
up tree automaton that is obtained by reversing all transition rules is also deterministic.

Now we can prove the key complexity result for our application.

Proposition 3.6. Let B be a both way deterministic top-down tree automaton, and let R be a linear
rewriting system of left-hand size at most 2. Then it is possible to compute a deterministic bottom-up
tree automaton A such thatL (A) = τ−1

MR
(L (B)) in time O(|B| · |R|).

RELATIVE NORMAL FORMS 187

Proof. First, we build the nondeterministic top-down context automatonN with L (N)= τ−1
MR

(L (B))
as in the proof of Prop. 3.4. This automaton has three types of rules, of the following forms:

(1) 〈pa,q〉(f (x1, . . . ,xn))→ f (〈p̄,q1〉(x1), . . . ,〈pa′ ,qi〉(xi), . . . ,〈p̄,qn〉(xn))
(2) 〈p̄,q〉(f (x1, . . . ,xn))→ f (〈p̄,q1〉(x1), . . . ,〈p̄,qn〉(xn))
(3) 〈pa,q〉(C[x1, . . . ,xn])→C[〈p̄,q1〉(x1), . . . ,〈p̄,qn〉(xn)]

Rules of types 1 and 2 encode decisions of the transducer to copy symbols, whereas rules of
type 3 encode a decision to rewriteC into some other context.

In a second step, we build an ordinary nondeterministic bottom-up tree automatonN′ such that
L (N′) = L (N). This can be done by breaking the transition rules for contexts with more than one
constructor up into ordinary transition rules that read single constructors, and reversing the direction
of all arrows. We can do this for the three rule types as follows:

(1) f (〈p̄,q1〉(x1), . . . ,〈pa′ ,qi〉(xi), . . . ,〈p̄,qn〉(xn))→ 〈pa,q〉(f (x1, . . . ,xn))
(2) f (〈p̄,q1〉(x1), . . . ,〈p̄,qn〉(xn))→ 〈p̄,q〉(f (x1, . . . ,xn))
(3) If C is of the form f (x,g(y,z))and there is a type 2 rule inN′ of the form

g(〈p̄,q2〉(x2),〈p̄,q3〉(x3))→ 〈p̄,q′〉(g(x2,x3)), then the rule
〈pa,q〉(f (x1,g(x2,x3)))→ f (〈p̄,q1〉(x1),g(〈p̄,q2〉(x2),〈p̄,q3〉(x3))) gets broken up into the
following two rules:

g(〈p̄,q2〉(x2),〈p̄,q3〉(x3))→ 〈pg,q′〉(g(x2,x3))

f (〈p̄,q1〉(x1),〈p
g,q′〉(y))→ 〈pa,q〉(f (x1,y)).

The form f (g(x,y),z) is analogous. IfC is of the form f (x,y), then we simply reverse the
rule into f (〈p̄,q1〉(x1),〈p̄,q2〉(x2))→ 〈pa,q〉(f (x1,x2)).

Finally, we determinizeN′ into a deterministic bottom-up automatonA such thatL (A) =
L (N′) andA does not contain states that are not reachable in a bottom-up run of the automaton.
According to the standard construction, we haveQA ⊆ P(QN′); but which of these states are actu-
ally reachable? First, for anyq ∈ QA, if 〈p,q〉 ∈ q and〈p′,q′〉 ∈ q, thenq= q′: BecauseB, if read
as a bottom-up transducer, is deterministic, theq on the right-hand sides of type 1 and 2 rules inN′

is uniquely determined byf and theq1, . . . ,qn, and the type 3 rules are constructed to maintain this
invariant too. Furthermore, we know that for everyq ∈ QA, there is aq∈ QB such that〈p̄,q〉 ∈ q,
by induction using the type 2 rules. We also know that there is at most onepf for f ∈ Σ such that
there is aq with 〈pf ,q〉 ∈ q: namely the one for the most recentf that was read with a type 3 rule.
Finally, q may contain an arbitrary number of pairs of the form〈pa,q〉 for annotationsa.

This means that|QA|= O(|QB| · |Σ| ·2|Ann|) whereAnn is the annotation alphabet, i.e. the size
of A’s state alphabet is linear in that ofB. In addition,A has at most as many transition rules asN′.
If B hask rules andm is the maximum arity of symbols inΣ, this amounts tok ·m rules of type 1,k
rules of type 2, and at most 2· |R| · |QB| rules of type 3. That is, the size ofA’s rule set is linear in
k. Because bothN andN′ can be computed fromB in linear time (as we argued above), this means
that we computeA in linear time.

In our application to scope underspecification, the tree automataAu
G for the unlabeled configura-

tions of a hnc dominance graph (e.g., the unlabeled version of the automaton in Fig. 2) are both way
deterministic, and the rewriting rules we use (such as (2.2)) only permute two adjacent constructors,
i.e. they are all of left-hand size two. In other words, for anyAu

G we can compute a deterministic
automaton for the pre-image language in linear time. It is then straightforward to compute the com-
plement automaton̄A and intersect it withAu

G, obtaining an automatonAW as the end result; this last
step can take timeO(|Au

G| · |Ā|) = O(|Au
G|

2) in the worst case. Altogether we obtain an algorithm for

188 A. KOLLER AND S. THATER

Figure 3: Sizes of automata in the Rondane treebank.

computing weakest readings that is quadratic in|Au
G|, which is a huge improvement over the best

previous algorithm, which was quadratic in|L (Au
G)|.

We have implemented a version of this algorithm which is further optimized to exploit certain
properties of dominance graphs, and evaluated it empirically [21]. We ran the algorithm on the
tree automata obtained from the dominance graphs for a subset of 623 sentences in the Rondane
corpus [13]. Each of these dominance graphs describes a set of formulas of a variant of higher-
order predicate logic, for which we chose suitable rewriting rules for approximating entailment. We
find that the mean number of configurations represented by the automata drops from about three
million for the original automata to 4.5 for the resulting automataAW, and we reduce 67% of the
sentences to a single weakest reading. The entire computation can be performed in about 20 ms per
sentence on average. This means that although modeling weakest readings in terms of a rewriting
system is incomplete with respect to true logical entailment, the approximation and our algorithm
are highly useful on practical data.

It is interesting to observe that although the intersection construction can potentially makeAW

larger thanAu
G, this does not actually happen in practice. This is shown in Fig. 3: The black line plots

the sizes of theAu
G, whereas the grey line plots the sizes of theAW. The horizontal axis represents

groups of sentences, where each groupi contains all sentences with⌈ei−1⌉ to ⌊ei⌋ readings; the
vertical axis plots the mean number of transition rules in the automata (note the logarithmic scale).
The grey bars indicate the number of sentences in each group. As the figure shows, theAW tend to
be much smaller than the original automata for each group. Averaged over all automata obtained
from the subcorpus, the original automata have 180 transitions, whereas the result automata have
68; 87% of the automata are smaller after the intersection. It remains an open question to explain
why the intersection decreases the automaton size so consistently.

4. An example

We finish by demonstrating our algorithm on the initial problem of computing the weakest
readings of the dominance graph in Fig. 1(a). We assume the following annotated rewriting system,
in which (2.2) is repeated as (4.1):

+ : ∃y(P,∀x(Q,R))→∀x(Q,∃y(P,R)) (4.1)

− : ∀x(P,∃y(Q,R))→∃y(Q,∀x(P,R)) (4.2)

+ : ¬(∃y(P,Q))→∃y(P,¬(Q)) (4.3)

+ : ∀x(P,¬(Q))→¬(∀x(P,Q)) (4.4)

RELATIVE NORMAL FORMS 189

This rewrite system translates into a top-down context tree transducerMR with the following
transition rules; we show the type 1 and 2 rules only for∃y.

p+(∃y(x1,∀x(x2,x3)))→∀x(p̄(x2),∃y(p̄(x1), p̄(x3)))

p+(∀x(x1,∃y(x2,x3)))→∃y(p̄(x2),∀x(p̄(x1), p̄(x3)))

p+(∀x(x1,¬(x2)))→¬(∀x(p̄(x1), p̄(x2)))

p+(¬(∃y(x1,x2)))→∃y(p̄(x1),¬(p̄(x2)))

p+(∃y(x1,x2))→∃y(p̄(x1), p
+(x2)) p+(∃y(x1,x2))→∃y(p

+(x1), p̄(x2))

p−(∃y(x1,x2))→∃y(p̄(x1), p
−(x2)) p−(∃y(x1,x2))→∃y(p

−(x1), p̄(x2))

p̄(∃y(x1,x2))→∃y(p̄(x1), p̄(x2)) . . .

p̄(studx)→ studx p̄(booky)→ booky p̄(readx,y)→ readx,y

We can now consider an automatonAG representing the configurations of a dominance graph, as
in Fig. 2, and compute a nondeterministic top-down context automatonN with L(N) = τ−1

MR
(L(AG)),

as in the proof of Prop. 3.4. In the example,N looks as follows. Note that we are only showing
transitions between productive states, and we abbreviate the state〈qG′ , pa〉 asqa

G′ . Note also that
the construction in Prop. 3.4 would usually be executed on the unlabeled versionAu

G of AG, but we
show the labeled version here becauseAG is already both ways deterministic in this example, and
easier to read.

q+1,...,6(∃y(x1,∀x(x2,x3)))→∃y(q̄5(x1),∀x(q̄4(x2), q̄1,6(x3)))

q+1,...,6(¬(∃y(x1,x2)))→¬(∃y(q̄5(x1), q̄2,4,6(x2))) q+1,...,6(∀x(x1,x2))→∀x(q̄4(x1),q
+
1,3,5,6(x2))

q+1,...,6(¬(x1))→¬(q−2,...,6(x1)) q̄1,...,6(∃y(x1,x2)))→∃y(q̄5(x1), q̄1,2,4,6(x2))

q̄1,...,6(∀x(x1,x2))→∀x(q̄4(x1), q̄1,3,5,6(x2)) q̄1,...,6(¬(x1))→¬(q̄2,...,6(x1))

q−2,...,6(∀x(x1,∃y(x2,x3)))→∀x(q̄4(x1),∃y(q̄5(x2), q̄6(x3)))

q̄2,...,6(∃y(x1,x2)))→∃y(q̄5(x1), q̄2,4,6(x2)) q̄2,...,6(∀x(x1,x2))→∀x(q̄4(x1), q̄3,5,6(x2))

q+1,3,5,6(¬(∃y(x1,x2)))→¬(∃y(q̄5(x1), q̄6(x2)))

q̄1,3,5,6(∃y(x1,x2)))→∃y(q̄5(x1), q̄1,6(x2)) q̄1,3,5,6(¬(x1))→¬(q̄3,5,6(x1))

q̄1,2,4,6(∀x(x1,x2))→∀x(q̄4(x1), q̄1,6(x2)) q̄1,2,4,6(¬(x1))→¬(q̄2,4,6(x1))

q̄2,4,6(∀x(x1,x2))→∀x(q̄4(x1), q̄6(x2)) q̄3,5,6(∃y(x1,x2)))→∃y(q̄5(x1), q̄6(x2))

q̄1,6(¬(x1))→¬(q̄6(x1)) q̄4(studx)→ studx q̄5(booky)→ booky q̄6(readx,y)→ readx,y

Finally, we compute a deterministic ordinary bottom-up automatonA with L(A) = L(N) as
in the proof of Prop. 3.6. This involves breaking up rules whose left-hand sides are nontrivial
contexts up into ordinary rules, reorienting the transitions into bottom-up rules, and determinizing
the resulting automaton. The states of the determinized automaton are sets that contain states ofN
and statesqf

G that were introduced when breaking up the context rules; we suppress the set brackets
for singleton sets below. Notice that as we claimed in the proof of Prop. 3.6, if any two of ¯qG′ and
q+G′′ or q−G′′ are in the same state set, thenG′ = G′′; and there is at most one stateqf

G′ for any f ∈ Σ in
each such state set.A looks as follows:

190 A. KOLLER AND S. THATER

∃y(q̄5(x1),{q∀x
1,2,4,6, q̄1,2,4,6}(x2))→{q+1,...,6, q̄1,...,6}(∃y(x1,x2))

¬({q∃y
2,...,6, q̄2,...,6}(x1))→{q+1,...,6, q̄1,...,6}(¬(x1))

∀x(q̄4(x1),{q+1,3,5,6, q̄1,3,5,6}(x2))→{q+1,...,6, q̄1,...,6}(∀x(x1,x2))

¬({q−2,...,6, q̄2,...,6}(x1))→{q+1,...,6, q̄1,...,6}(¬(x1))

∃y(q̄5(x1), q̄2,4,6(x2)))→{q∃y
2,...,6, q̄2,...,6}(∃y(x1,x2))

∀x(q̄4(x1),{q∃y
3,5,6, q̄3,5,6}(x2))→{q−2,...,6, q̄2,...,6}(∀x(x1,x2))

∀x(q̄4(x1), q̄1,6(x2)))→{q∀x
1,2,4,6, q̄1,2,4,6}(∀x(x1,x2))

¬(q̄2,4,6(x1))→ q̄1,2,4,6(¬(x1))

¬({q∃y
3,5,6, q̄3,5,6}(x1))→{q+1,3,5,6, q̄1,3,5,6}(¬(x1))

∀x(q̄4(x1), q̄6(x2))→ q̄2,4,6(∀x(x1,x2))

∃y(q̄5(x1), q̄6(x2)))→{q∃y
3,5,6, q̄3,5,6}(∃y(x1,x2))

¬(q̄6(x1))→ q̄1,6(¬(x1)) studx → q̄4(studx) booky → q̄5(booky) readx,y → q̄6(readx,y)

A is a deterministic automaton which accepts four trees, namely the configurations (b), (c), (e),
and (f) in Fig. 1. Therefore we can obtain an automaton which accepts exactly the weakest readings
of the graph in Fig. 1 – i.e., (d) and (g) – by intersectingAG and the complement automaton̄A.

5. Conclusion

In this paper, we have presented an algorithm for computing those members of a regular tree
languageL that are in relative normal form with respect to an annotated rewriting systemR. We
have shown how to compute these elements by computing the pre-image of the tree language under
a transducer encoding the one-step rewriting relation, and then intersecting the language with the
complement of this pre-image. By definingcontexttree transducers, we were able to compute the
pre-image in linear time ifL is given in terms of a deterministic automaton; for the special case
whereR has left-hand sides of size at most two, we could show that even the deterministic automa-
ton for the pre-image is linear in size. This restriction holds in our application to computational
linguistics, where our results provide an approximate, but practically useful solution to the problem
of computing weakest readings.

From the perspective of our application, our results open up a whole new class of rewriting-
based inferences on natural-language meaning representations which can now be processed effi-
ciently. We will explore such inferences in the future. One line of research that seems particularly
intriguing is to deal with cases where multiple trees that are equivalent with respect to the underly-
ing rewrite system are left over in the language of the final tree automaton. Such cases can happen
when the rewrite system is not confluent. It would be interesting to investigate the practical impact
of augmenting the permutation system, e.g. with the Knuth-Bendix completion procedure. This
trades off a reduction in the number of relative normal forms (due to improved confluence) against
an increase in the size of the rewrite system.

Acknowledgments. We would like to thank the reviewers and particularly Joachim Niehren for
their extremely helpful comments, which influenced this paper substantially and improved it a lot.

RELATIVE NORMAL FORMS 191

References

[1] Dagan, I., Glickman, O., Magnini, B.: The PASCAL recognising textual entailment challenge. In Quiñonero-
Candela, J., Dagan, I., Magnini, B., d’Alché Buc, F., eds.: Machine Learning Challenges. Volume 3944 of Lecture
Notes in Computer Science. Springer (2006) 177–190

[2] Montague, R.: The proper treatment of quantification in ordinary English. In Thomason, R., ed.: Formal Philosophy.
Selected Papers of Richard Montague. Yale University Press, New Haven (1974)

[3] van Deemter, K., Peters, S.: Semantic Ambiguity and Underspecification. CSLI (1996)
[4] Egg, M., Koller, A., Niehren, J.: The Constraint Language for Lambda Structures. Logic, Language, and Informa-

tion 10 (2001) 457–485
[5] Copestake, A., Flickinger, D., Pollard, C., Sag, I.: Minimal recursion semantics: An introduction. Journal of Lan-

guage and Computation (2005)
[6] Blackburn, P., Bos, J.: Representation and Inference for Natural Language. A First Course in Computational Se-

mantics. CSLI Publications (2005)
[7] Althaus, E., Duchier, D., Koller, A., Mehlhorn, K., Niehren, J., Thiel, S.: An efficient graph algorithm for dominance

constraints. Journal of Algorithms48 (2003) 194–219
[8] Bos, J.: Let’s not argue about semantics. In: Proceedings of LREC. (2008) 2835–2840
[9] Kempson, R., Cormack, A.: Ambiguity and quantification. Linguistics and Philosophy4 (1981) 259–309

[10] Hobbs, J.: An improper treatment of quantification in ordinary English. In: Proceedings of the 21st ACL. (1983)
[11] Gabsdil, M., Striegnitz, K.: Classifying scope ambiguities. In: Proceedings of the First Intl. Workshop on Inference

in Computational Semantics. (1999)
[12] Koller, A., Regneri, M., Thater, S.: Regular tree grammars as a formalism for scope underspecification. In: Proceed-

ings of the 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies
(ACL-08: HLT), Columbus, Ohio (2008)

[13] Oepen, S., Toutanova, K., Shieber, S., Manning, C., Flickinger, D., Brants, T.: The LinGO Redwoods treebank:
Motivation and preliminary applications. In: Proceedings of the 19th International Conference on Computational
Linguistics (COLING’02). (2002) 1253–1257

[14] Fuchss, R., Koller, A., Niehren, J., Thater, S.: Minimal recursion semantics as dominance constraints: Translation,
evaluation, and analysis. In: Proc. of ACL, Barcelona (2004)

[15] Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree
automata techniques and applications. Available on:http://www.grappa.univ-lille3.fr/tata (2007)

[16] Bodirsky, M., Duchier, D., Niehren, J., Miele, S.: An efficient algorithm for weakly normal dominance constraints.
In: ACM-SIAM Symposium on Discrete Algorithms. (2004)

[17] Engelfriet, J.: Top-down tree transducers with regular look-ahead. Math. Systems Theory10 (1977) 289–303
[18] Engelfriet, J., Maneth, S.: A comparison of pebble tree transducers with macro tree transducers. Acta Informatica

39(9) (2003) 613–698
[19] Maneth, S., Berlea, A., Perst, T., Seidl, H.: Xml type checking with macro tree transducers. In: PODS ’05: Proceed-

ings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, New
York, NY, USA, ACM (2005) 283–294

[20] Graehl, J., Knight, K., May, J.: Training tree transducers. Computational Linguistics34(3) (2008)
[21] Koller, A., Thater, S.: Computing weakest readings. In: Proceedings of the 48th ACL. (2010)

192 A. KOLLER AND S. THATER

This work is licensed under the Creative Commons Attribution Non-Commercial No Derivatives
License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

