
International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 209-226
http://rewriting.loria.fr/rta/

AN EFFICIENT NOMINAL UNIFICATION ALGORITHM

JORDI LEVY 1 AND MATEU VILLARET 2

1 Artificial Intelligence Research Institute (IIIA),
Spanish Council for Scientific Research (CSIC), Barcelona, Spain.
E-mail address: levy@iiia.csic.es
URL: http://www.iiia.csic.es/~levy

2 Departament d’Informàtica i Matemàtica Aplicada (IMA),
Universitat de Girona (UdG), Girona, Spain.
E-mail address: villaret@ima.udg.edu
URL: http://ima.udg.edu/~villaret

Abstract. Nominal Unification is an extension of first-order unification where terms can
contain binders and unification is performed modulo α-equivalence. Here we prove that the
existence of nominal unifiers can be decided in quadratic time. First, we linearly-reduce
nominal unification problems to a sequence of freshness and equalities between atoms,
modulo a permutation, using ideas as Paterson and Wegman for first-order unification.
Second, we prove that solvability of these reduced problems may be checked in quadratic
time. Finally, we point out how using ideas of Brown and Tarjan for unbalanced merging,
we could solve these reduced problems more efficiently.

1. Introduction

Nominal techniques introduce mechanisms for renaming via name-swapping, for name-
binding, and for freshness of names. They were introduced at the beginning of this decade
by Gabbay and Pitts [Pit01, Gab01, Pit03]. These first works have inspired a sequel
of papers where bindings and freshness are introduced in other topics, like nominal al-
gebra [Gab06, Gab07, Gab09], equational logic [Clo07], rewriting [Fer05, Fer07], unifica-
tion [Urb03, Urb04], and Prolog [Che04, Urb05].

In this paper we study the complexity of Nominal Unification [Urb03, Urb04], an exten-
sion of first-order unification where terms can contain binders and unification is performed
modulo α-equivalence. Moreover, (first-order) variables (unknowns) are allowed to “cap-
ture” bound variables (atoms) contrarily to unification in λ-calculus. In [Urb03, Urb04]
it is described a sound and complete, but inefficient (exponential), algorithm for nominal
unification. Later this algorithm was extended to deal with the new-quantifier and locality
in [Fer05]. In [Cal07] there is a description of a direct but exponential implementation in

Key words and phrases: Nominal Logic, Unification.
This research has been partially founded by the CICYT research projects Mulog2 (TIN2007-68005-C04)

and SuRoS (TIN2008-04547).

c© J. Levy and M. Villaret
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.209

210 J. LEVY AND M. VILLARET

Maude, and a polynomial implementation in OCAML based on termgraphs. In [Cal08], it
is described a polynomial algorithm for nominal unification. In [Lev08] it is proved that the
problem can be solved in quadratic time by quadratic reduction to Higher-Order Pattern
Unification, that is claimed to be linear [Qia96]. Therefore, the present algorithm does not
improve the complexity bounds already known. However, it has to be noticed that in this
paper we describe a practical implementation, and that it is really difficult to obtain a prac-
tical algorithm from the proof described in [Qia96]. In [Cal10] there is a quadratic algorithm
for nominal unification, independently found by Calvès, and also based on Paterson and
Wegman’s first-order unification algorithm. Other extensions of nominal unification have
been studied in [Che05, Dow09, Dow10].

This paper proceeds as follows. In Section 2 we describe nominal logic and the nominal
unification algorithm of [Urb03, Urb04]. In Section 3 we prove that freshness equations and
suspensions are mere syntactic sugar. We can translate them in terms of basic nominal
equations, with a linear increasing in the size of the problem. In Section 4 we describe the
Paterson-Wegman linear algorithm for First-Order Unification [Pat78] and some preliminary
ideas of how we plan to adapt this algorithm to nominal unification. In Section 5, we
introduce replacings as L = (a1 ← b1) · · · (an ← bn). We say that t and u are equivalent
modulo L, written t =L u, if an. · · · a1.t ≈ bn. · · · b1.u. In some cases we need to compute
some kind of composition of replacings. This leads us to the introduction of generalized
replacings in Section 6. The adaptation of Paterson-Wegman’s algorithm is described in
Section 7. It allows us to translate a nominal unification problem into a set of replacing
equations in linear time. Section 8 is devoted to the verification of these replacing equations.
There we prove that it can be done in quadratic time. Finally, in Section 9 we discuss on
the possibility of improving this bound and do this verification in quasi-linear time.

2. Preliminaries

Nominal terms contain variables and atoms. Only variables may be instantiated, and
only atoms may be bound. They roughly correspond to the higher-order notions of free and
bound variables, respectively, but are considered as completely different entities. Therefore,
contrarily to the higher-order perspective, in nominal terms it makes no sense the distinction
between free and bound variables depending on the existence of a binder above them.

Nominal terms1 (typically t, u, . . .) are given by the grammar:

t ::= 〈t1, t2〉 | f(t1, . . . , tn) | a | a.t |πX

where f is a function symbol, a is an atom, π is a permutation (finite list of swappings),
and X is a variable.

A swapping (a b) is a pair of atoms of the same sort. The effect of a swapping over an
atom is defined by (a b) a = b and (a b) b = a and (a b) c = c, when c 6= a, b. For the rest
of terms the extension is straightforward, in particular, (a b) (c.t) =

(
(a b) c

)
.
(
(a b) t

)
. A

permutation is a (possibly empty) sequence of swappings. Suspensions are uses of variables
with a permutation of atoms waiting to be applied once the variable is instantiated.

Substitutions are sort-respecting functions and behave like in first-order logic, hence
allowing atom capture, for instance [X 7→ a]a.X = a.a.

1For simplicity, we do not consider the unit value nor the pairing. Instead of them we consider n-ary
function symbols.

AN EFFICIENT NOMINAL UNIFICATION ALGORITHM 211

A freshness environment (typically ∇) is a list of freshness constraints a#X stating
that the instantiation of X cannot contain free occurrences of a.

The notion of nominal term α-equivalence, noted ≈, is defined by means of the following
theory:

∇ ⊢ t1 ≈ u1 · · · ∇ ⊢ tn ≈ un
∇ ⊢ f(t1, . . . , tn) ≈ f (u1, . . . , un)

(≈-function)
∇ ⊢ a ≈ a

(≈-atom)

a 6= a′ ∇ ⊢ t ≈ (a a′) t′ ∇ ⊢ a#t′

∇ ⊢ a.t ≈ a′.t′
(≈-abst-2) ∇ ⊢ t ≈ t′

∇ ⊢ a.t ≈ a.t′
(≈-abst-1)

(a#X) ∈ ∇ for all a such that π a 6= π′ a

∇ ⊢ πX ≈ π′X
(≈-susp.)

where the freshness predicate # is defined by:

∇ ⊢ a#t1 · · · ∇ ⊢ a#tn
∇ ⊢ a#f(t1, . . . , tn)

(#-function)
a 6= a′

∇ ⊢ a#a′
(#-atom)

∇ ⊢ a#a.t
(#-abst-1)

a 6= a′ ∇ ⊢ a#t

∇ ⊢ a#a′.t
(#-abst-2)

(π−1 a#X) ∈ ∇

∇ ⊢ a#πX
(#-susp.)

Their intended meanings are: ∇ ⊢ a# t holds if, for every substitution σ respecting the
freshness environment ∇ (i.e. avoiding the atom captures forbidden by ∇), a is not free in
σ(t); ∇ ⊢ t ≈ u holds if, for every substitution σ respecting the freshness environment ∇, t
and u are α-convertible.

A nominal unification problem (typically P) is a set of equations of the form t
?

≈ u or
a# ?t, equational problems and freshness problems respectively. A solution of a nominal
problem is given by a substitution σ and a freshness environment ∇. Formally, the pair
〈∇, σ〉 solves P if, ∇ ⊢ a#σ(t), for freshness problems a# ?t ∈ P , and ∇ ⊢ σ(t) ≈ σ(u),

for equational problems t
?

≈ u ∈ P .

Example 2.1. The solutions of the equation a.X
?

≈ b.X can not instantiate X with terms
containing free occurrences of the atoms a and b, for instance if we apply the substitution
[X 7→ a] to both sides of the equation we get [X 7→ a]a.X = a.a for the left hand side and
[X 7→ a]b.X = b.a for the right hand side, and obviously a.a 6≈ b.a.

The most general solution of this equation is 〈{a#X, b#X}, []〉.

The first linear First-Order Unification algorithm was described by Paterson and Weg-
man [Pat78]. Here we describe it in terms of transformation rules as it is done by Martelli
and Montanari in [Mar82].

Definition 2.2. The Paterson-Wegman can be described by the following two transforma-
tion rules.
Simplification:

{X1, X
′

1, . . . } = f(Y1, . . . , Ym)
{X2, X

′

2, . . . } = f(Z1, . . . , Zm)
X1 = X2

=⇒

{X1, X
′

1, . . . , X2, X
′

2, . . . } = f(Y1, . . . , Ym)
Y1 = Z1

. . .
Ym = Zm

212 J. LEVY AND M. VILLARET

Variable:
{X1, X

′

1, . . . } = t
{X2, X

′

2, . . . } = ∅
X1 = X2

=⇒ {X1, X

′

1, . . . , X2, X
′

2, . . . } = t

At every transformation, the selected equation X1 = X2 has to be maximal in the sense
that there is no other equation Xm

1 = Xm
2 and a set of equations of the form

{Xm
i , . . . } = fm−1(. . . , X

m−1
i , . . .), . . . , {X1

i , . . . } = f1(. . . , Xi, . . .) for i = 1 or i = 2.

3. Three Initial Simplifications

In this section we show how we can simplify nominal unification problems getting rid of
freshness equations, of suspensions, and flattening all applications and abstractions. We will
show that these simplifications only increase the size of the problem linearly. Lemma 3.1
shows us how to encode a freshness equation as an equality equation, and Lemma 3.2,
how to encode a suspension also as an equality. Therefore, we can conclude that freshness
equations and suspensions are mere syntactic sugar in nominal unification.

Lemma 3.1. Let b 6= a. Then, P ∪ {a#t} and P ∪ {a.b.t
?

≈ b.b.t} have the same solutions.

Proof. We first prove that 〈a#t, Id〉 is a solution of {a.b.t
?

≈ b.b.t} when b 6= a

....
t ≈ t

a#t.... (lemma 2.7)

b#(a b) t

b.t ≈ a.(a b) t
(≈-abst-2)

a#t

a#b.t
(#-abst-2)

a.b.t ≈ b.b.t
(≈-abst-2)

In this proof we prove t ≈ t from an empty set of assumptions. We can prove that this
is always possible, for any term t, by structural induction on t. We also prove b#(a b) t from
a#t, using Lemma 2.7 of [Urb04].

Now, since ∇′ ⊢ σ(∇) and ∇ ⊢ t ≈ t′ implies ∇′ ⊢ σ(t) ≈ σ(t′) (see Lemma 2.14 of

[Urb04]), we have that, if 〈∇, σ〉 solves a#?t, then 〈∇, σ〉 solves a.b.t
?

≈ b.b.t.
Second, analyzing the previous proof, we see that the inference rules applied in each

situation were the only applicable rules. Therefore, any solution 〈∇, σ〉 solving a.b.t
?

≈ b.b.t,
also solves a#?t, because any proof of σ(a.b.t) ≈ σ(b.b.t) contains a proof of a#σ(t) as a
sub-proof.

From, these two fact we conclude that a# ?t and a.b.t
?

≈ b.b.t have the same set of

solutions, for any b 6= a. Therefore, {a# ?t} ∪ P and {a.b.t
?

≈ b.b.t} ∪ P , also have the
same set of solutions, for any nominal unification problem P . From this we conclude that

P ∪ {a#t} and P ∪ {a.b.t
?

≈ b.b.t} have the same set of solutions.

Lemma 3.2. P ∪ {t
?

≈ (a b)u} and P ∪ {a.b.t
?

≈ b.a.u} have the same solutions.

Proof. If a = b the proof is obvious. If a 6= b, then the proof is similar to proof of Lemma 3.1.

In this case, the proof of a.b.t
?

≈ b.a.u from t
?

≈ (a b)u is as follows:

t ≈ (a b)u

b.t ≈ b.(a b)u
(≈-abst-1)

a#a.u
(#-abst-1)

a.b.t ≈ b.a.u
(≈-abst-2)

AN EFFICIENT NOMINAL UNIFICATION ALGORITHM 213

Lemma 3.3. Let X be a fresh variable not occurring elsewhere. Then,

P ∪ {a.t
?

≈ u} and P ∪ {a.X
?

≈ u,X
?

≈ t} are equivalent

P ∪ {f(t1, . . . , tn)
?

≈ u} and P ∪ {f(t1, . . . , ti−1, X, ti+1, tn)
?

≈ u,X
?

≈ ti} are equivalent,

P ∪ {(a b) t
?

≈ u} and P ∪ {(a b)X
?

≈ u,X
?

≈ t} are equivalent,

P ∪ {t1
?

≈ t2} and P ∪ {X
?

≈ t1, X
?

≈ t2} are equivalent, and

P ∪ {Y1
?

≈ Y2} and [Y1 7→ Y2]P are equivalent.

Proof. Let us consider the first statement. If 〈∇, σ〉 solves P ∪ {a.t
?

≈ u}, then it is enough

to extend σ with X 7→ σ(t) to get a solution of P ∪ {a.X
?

≈ u,X
?

≈ t}. In the opposite

direction, any solution of P ∪ {a.X
?

≈ u,X
?

≈ t} is a solution of P ∪ {a.t
?

≈ u}, because, for
any three terms t1, t2 and t3, if a.t2 ≈ t1 and t2 ≈ t3, then a.t3 ≈ t1.

Notice that the previous lemma does not hold for unification in λ-calculus. For instance,
{λa.f(a) =? λb.f(b)} is trivially solvable. However, {λa.X =? λb.b,X =? a} is unsolvable
because, in λ-calculus, we have to avoid variable-capture in substitutions. This fact pre-
vented Qian [Qia96] to apply this simplification in his linear-time algorithm for higher-order
pattern unification.

Theorem 3.4. There exists a linear reduction from Nominal Unification to a simplified ver-

sion of Nominal Unification where all equations are of the form X
?

≈ a, X
?

≈ f(Y1, . . . , Yn)

or X
?

≈ a.Y .

Proof. We apply four reductions. First, applying Lemma 3.1, we can remove all freshness
equations. Second, applying the transformations of Lemma 3.3 widely, replacing the first
set of equations by the second whenever t is not a variable (in the first and third rules), or
ti is not a variable (in the second rule), or t1 and t2 are not variables (in the forth rule),
we can flat all equations. Now, all equations have a variable in one side and a term of
the form a, a.X, f(X1, . . . , Xn), or (a b)X in the other side. In particular, all suspensions

will occur in equations of the form X
?

≈ (a b)Y . Applying Lemma 3.2, we can remove all

them, translating them into a.b.X
?

≈ b.a.Y . Forth, all these equations can be translated

into Z3
?

≈ a.Z1, Z3
?

≈ b.Z2, Z1
?

≈ b.X, Z2
?

≈ a.Y , where Z1, Z2 and Z3 are fresh.
A simple analysis shows that all these transformations are linear.

4. A First (Naive) Idea

Considering the similarities between Nominal Unification and FO Unification, a nat-
ural way to address the implementation of an efficient nominal unification algorithm is to
postpone as much as possible the test of freshness predicates and equality between atoms.
We can adapt algorithm of Definition 4.1 as follows. Instead of equations between variables,
we use equations between variables affected by a permutation: X1 = πX2. Moreover, these
equations are coupled with a set of freshness restrictions with the form of an implication:
a 6= π1b1 ∧ · · · ∧ a 6= πnbn ⇒ a#π0X2. The application rule is quite similar to the one used
in algorithm 4.1, but the abstraction rule involves the extension of the permutation, the
addition of a new associated freshness restriction and of additional conditions to the rest of
freshness restrictions.

214 J. LEVY AND M. VILLARET

Definition 4.1. Consider the following (sound but incomplete) nominal unification algo-
rithm. Given a set of simplified equations, transform them into a set of multi-equations
as follows. First, transform any equation X ?= t into a multi-equation {X} = t, and sec-
ond, transform any pair of multi-equations {X} = t1, {X} = t2 into {X} = t1, {X

′} = t2,
X = X ′, and add a multi-equation {X} = ∅ for any variable not occurring in the left of
any multi-equation, until all variables occur in the left of a multi-equation exactly once.
Then, apply the following transformation rules wisely.
Application:

{X1, S1} = f(Y1, . . . , Ym)
{X2, S2} = f(Z1, . . . , Zm)
X1 = πX2

P1 ⇒ c1#π1X2

· · ·
Pn ⇒ cn#πnX2

=⇒

{X1, S1, πX2, πS2} = f(Y1, . . . , Ym)

Y1 = πZ1, · · · , Ym = πZm

P1 ⇒ c1#π1Z1, . . . , P1 ⇒ c1#π1Zm

· · ·
Pn ⇒ cn#πnZ1, . . . , Pn ⇒ cn#πnZm

Abstraction:

{X1, S1} = a.Y
{X2, S2} = b.Z
X1 = πX2

P1 ⇒ c1#π1X2

· · ·
Pn ⇒ cn#πnX2

=⇒

{X1, S1, πX2, πS2} = a.Y

Y = (a πb)πZ
P1 ∧ c1 6= π1 b⇒ c1#π1Z
· · ·
Pn ∧ cn 6= π1 b⇒ cn#πnZ
a 6= πb⇒ a#πZ

Atom:
{X1, S1} = a
{X2, S2} = b
X1 = πX2

P1 ⇒ c1#π1X2

· · ·
Pn ⇒ cn#πnX2

=⇒

{X1, S1, πX2, πS2} = a

a = πb
P1 ⇒ c1 6= π1b
· · ·
Pn ⇒ cn 6= πnb

Notice that the algorithm previously described is incomplete. For instance, the variable
X1 in {X1, S1} = f(Y1, . . . , Ym) could be already affected by a permutation, which makes
the rule inapplicable. However, these rules allow us to solve the following example:

Example 4.2. The Nominal unification problem a3.a2.a1.f(c1, c2)
?

≈ b3.b2.b1.f(d1, d2) is
transformed by the naive algorithm into the following set of conditional equalities and
inequalities.

c1 = (a1 (a2 (a3b3)b2)(a3 b3)b1)(a2 (a3b3)b2)(a3 b3)d1
c2 = (a1 (a2 (a3b3)b2)(a3 b3)b1)(a2 (a3b3)b2)(a3 b3)d2
a3 6= b3 ∧ a3 6= b2 ∧ a3 6= b1 ⇒ a3 6= d1
a3 6= b3 ∧ a3 6= b2 ∧ a3 6= b1 ⇒ a3 6= d2
a2 6= (a3 b3)b2 ∧ a2 6= (a3 b3)b1 ⇒ a2 6= (a3 b3)d1
a2 6= (a3 b3)b2 ∧ a2 6= (a3 b3)b1 ⇒ a2 6= (a3 b3)d2
a1 6= (a2 (a3b3)b2)(a3 b3)b1 ⇒ a1 6= (a2 (a3b3)b2)(a3 b3)d1
a1 6= (a2 (a3b3)b2)(a3 b3)b1 ⇒ a1 6= (a2 (a3b3)b2)(a3 b3)d2

AN EFFICIENT NOMINAL UNIFICATION ALGORITHM 215

It is easy to see that a generalization of this simple problem to

an.a1.f(c1, . . . , cm)
?

≈ bn.b1.f(d1, . . . , dm)

would result in a set of inequalities of size O(nm). The number of comparisons of atoms
that have to be checked in order to compute the result of applying the permutation and
check the equalities is also O(nm).

5. Simple Replacings

In this section we introduce a new concept, similar to the idea of substitution and of
swapping, but with some differences. Thus, we have preferred to call it with the new name
replacings.

Definition 5.1. A replacing is a (possibly empty) list of pairs of atoms L = (a1 ← b1) · · · (an
← bn).

Given two terms t and u and a replacing L = (a1 ← b1) · · · (an ← bn), we say that t
and u are equivalent modulo L, noted t =L u, if an. · · · a1.t ≈ bn. · · · b1.u.

Any replacing may be associated with a permutation of atoms, defined as follows.
This definition and the following lemma, helps us to see replacings as permutations, plus
a set of associated freshness equations. The example bellow also shows that the associated
permutation is not enough to characterize a replacing.

Definition 5.2. Given a replacing L, we define its associated permutation ΠL inductively
as follows

(1) Π[] = [], being [] the empty list, and empty sequence of swappings.
(2) Π(a←b)L = (a ΠLb)ΠL

Lemma 5.3. Given a replacing L = (a1 ← b1) · · · (an ← bn) and two terms t and u, t =L u
holds, iff

(1) t ≈ ΠLu, and
(2) for any i = 1, . . . , n, if ai 6= Π(ai+1←bi+1)...(an←bn)bj for all j = i, . . . , 1, then

ai#Π(ai+1←bi+1)...(an←bn)u.

Example 5.4. Notice that the permutation ΠL does not characterize the replacing L. For
instance, we have

Π(a←b) = Π(b←a) = Π(b←a)(a←b) = Π(a←b)(b←a) = Π(a←b)(a←b) = (a b) = (b a)

However, assuming a 6= b, we have

t =(a←b) u ⇔ t =(a←b)(a←b) u ⇔ t = (a b)u ∧ a#u
t =(b←a) u ⇔ t =(b←a)(b←a) u ⇔ t = (a b)u ∧ b#u

t =(b←a)(a←b) u ⇔ t =(a←b)(b←a) u ⇔ t = (a b)u

If for any pair of term we have t =L u ⇔ t =L′ u, then this will be also true for any
pair of atoms, and we will have ΠL = ΠL′ . This motivates the following definition.

Definition 5.5. We say that two replacings L and L′ are equivalent if, for any pair of terms
t and u, we have t =L u iff t =L′ u

Lemma 5.6. t =(a1←b1)···(an←bn) u iff u =(b1←a1)···(bn←an) t.

216 J. LEVY AND M. VILLARET

The following lemma describes a method to check if c =L d in time O(|L|).

Lemma 5.7. Given two atoms c and d and a replacing (a← b)L:

c =(a←b)L d iff c = a and b = d, or

c 6= a, b 6= d and c =L d.

Next, we will describe a normalization procedure of replacings. We say that a replacing
(a1 ← b1) · · · (an ← bn) is normalized if a1, . . . , an is a list of pairwise distinct atoms, and
b1, . . . , bn too. Lemma 5.8 states that, any normalized replacing may be characterized by a
set, instead of a list), of pairs of atoms. Lemma 5.9 shows how we can remove duplicated
pairs and normalized replacings, on the expenses of adding freshness equations.

When atoms are not repeated in a replacing, then they are basically2 a permutation,
as the following lemma states.

Lemma 5.8. If L = (a1 ← b1) · · · (an ← bn) is a normalized replacing, i.e. a replacing

where a1, . . . , an is a list of pairwise distinct atoms, and b1, . . . , bn too, then

(1) ΠL is a permutation satisfying ΠL(bi) = ai, for i = 1, . . . , n,
(2) (a1 ← b1) · · · (an ← bn) and (aπ(1) ← bπ(1)) · · · (aπ(n) ← bπ(n)) are equivalent, for

any permutation π.
(3) For any a, b ∈ A, a =L b iff ΠL(a) = b.

Proof. By induction on n. For any i = 1, . . . , n, we have

Π(a1←b1)···(an←bn)bi = (a1 Π(a2←b2)···(an←bn)b1) · · · (ai Π(ai+1←bi+1)···(an←bn)bi)

=Π(ai+1←bi+1)···(an←bn)

︷ ︸︸ ︷

. . . (anbn) bi
︸ ︷︷ ︸

=ai

Hence, the i-th swapping changes Π(ai+1←bi+1)···(an←bn)bi by ai. Now we are going to prove
that ai is not affected by the swappings (aj Π(aj+1←bj+1)···(an←bn)bj) where j > i. On one
hand, by assumption, aj 6= ai when j > i. On the other hand, Π(aj+1←bj+1)···(an←bn)bj 6= ai
because (aj+1 ← bj+1) · · · (an ← bn) is a strictly shorter replacing, and i ∈ {j + 1, . . . , n},
therefore by induction hypothesis (Π(aj+1←bj+1)···(an←bn))

−1(ai) = bi 6= bj .

Lemma 5.9. The replacing L(a ← b)L′ where a occurs on the left in L, and b occurs on

the right in L, is equivalent to LL′. In other words, L1(a← c)L2(d← b)L3(a← b)L4 and

L1(a← c)L2(d← b)L3 L4 are equivalent.

If a occurs on the left in L, but b does not occur in the right in L, then, for any pair of

terms t and u, t =L(a←b)L′ u iff b#u and t =LL′ u.
Similarly, if a does not occur on the left in L, but b occurs in the right in L, then, for

any pair of terms t and u, t =L(a←b)L′ u iff a#t and t =LL′ u.

Proof. In nominal logic, and in λ-calculus we have the following implications:

If a#t and a.t ≈ b.u, then b#u and t ≈ u (5.1)

If t ≈ u, a#t and b#u, then a.t ≈ b.u (5.2)

By definition of replacing, t =(a1←b1)...(an←bn) u is equivalent to an. · · · .a1.t ≈ bn. · · · .b1.u.
For the first statement: For a given i, if ai ∈ {ai−1, . . . , a1}, then ai#ai−1. · · · .a1.t and

t =(a1←b1)...(an←bn) u (using 5.1) imply ai−1. · · · .a1.t ≈ bi−1. · · · .b1.u, hence
t =(a1←b1)...(ai−1←bi−1)(ai+1←bi+1)...(an←bn) u.

2Notice that we still have to ensure the freshness conditions

AN EFFICIENT NOMINAL UNIFICATION ALGORITHM 217

Lemmas 5.8 and 5.9 describe a characterization of replacings in terms of a set of pairs
of atoms (normalized replacing), and a set of freshness equations. In the following we make
explicit this characterization in terms of a set of pairs, called rewriting set, and a set of
forbidden atoms.

Definition 5.10. Given a replacing L, we define the sets of rewriting pairs and forbidden
atoms, noted Rew(L) and For(L), as follows

Rew(L) = {(a← b) ∈ A× A | a 6= b ∧ a =L b}

For(L) = {a ∈ A | ¬(a =L a)}

Lemma 5.11. Replacings L and L′ are equivalent iff Rew(L) = Rew(L′) and For(L) =
For(L′).

Lemma 5.12. For any replacing L we have

Rew([]) = ∅

Rew(L(a← b)) =

{
Rew(L) ∪ {a← b} if a 6= b and ∀c.a← c 6∈ Rew(L) and ∀c.c← b 6∈ Rew(L)

Rew(L) otherwise

For([]) = ∅

For(L(a← b)) =

For(L) ∪ {b} if ∃c.a← c ∈ Rew(L) and ∀d.d← b 6∈ Rew(L)
For(L) ∪ {a} if ∃d.d← b ∈ Rew(L) and ∀c.a← c 6∈ Rew(L)
For(L) otherwise

Proof. Given a replacing, we can use Lemma 5.9 to remove pairs with a duplicated com-
ponent wisely until we obtain a normalized replacing. By Lemma 5.8, this normalized
replacing is the rewriting set, whereas the set of freshness equations define the set of for-
bidden atoms. Then we can check that the previous recursions hold.

6. Generalized Replacings

Sometimes, simple replacings are not enough to represent the equations between atoms
that we have to check. In some cases, we have to use a kind of composition of replacings. In
this section we show how the notion of simple replacing may be generalized for this purpose,
and how we can extend the definition of set of rewritings and set of forbidden atoms.

Definition 6.1. A generalized replacing is an expression generated by the grammar

L ::= Id | (a← b) :: L | L1 ◦ L2 | L
−1

with the following semantics
t =Id u, if t ≈ u,
t =(a←b)::L u, if a.t =L b.u,
t =L1◦L2

u, if there exists a term v such that t =L1
v and v =L2

u, and
t =L−1 u, if u =L t.
The sets Rew(L) and For(L) are defined for generalized replacings as for simple re-

placings.

Lemma 6.2. Any generalized replacing is equivalent to a composition of simple replacings

accordingly to the following equivalences between replacings

(L1 ◦ L2) ◦ L3 = L1 ◦ (L2 ◦ L3)
(a← b) ::

(
L1 ◦ L2

)
=

(
(a← b) :: L1

)
◦
(
(a← b) :: L2

)

(a1 ← b1) :: · · · :: (an ← bn) :: Id = (a1 ← b1) · · · (an ← bn)

218 J. LEVY AND M. VILLARET

The following lemma shows us how we can recursively compute the set of rewritings
and of forbidden atoms of a generalized replacing.

Lemma 6.3.

Rew(Id) = For(Id) = ∅

Rew
(
(a← b) :: L

)
= Rew(L) \ {a← c | ∀c ∈ A} \ {c← b | ∀c ∈ A} ∪

{
{a← b} if a 6= b
∅ if a = b

For
(
(a← b) :: L

)
= For(L) ∪ {c | a← c ∈ Rew(L) ∨ c← b ∈ Rew(L)}

Rew(L1 ◦ L2) = {a← c | ∃b ∈ A a← b ∈ Rew(L1) ∧ b← c ∈ Rew(L2)}
∪{a← b | a← b ∈ Rew(L1) ∧ b 6∈ For(L2)}
∪{a← b | a← b ∈ Rew(L2) ∧ a 6∈ For(L1)}

For(L1 ◦ L2) = For(L1) ∪ For(L2)

Rew(L−1) = {(b← a) | (a← b) ∈ Rew(L)}

For(L−1) = For(L)

7. A Paterson-Wegman Style Algorithm

In this section we describe our nominal unification algorithm in the style of Paterson
and Wegman [Pat78], or, to be precise, in the style of the description that Martelli and
Montanari [Mar82] makes of this algorithm.

First, w.l.o.g. we consider that we have a single nominal equation (we get rid of freshness

equations, by Lemma 3.1, and reduce {t1
?

≈ u1, . . . , tn
?

≈ un} to f(t1, . . . f(tn−1, tn) . . .)
?

≈
f(u1, . . . f(un−1, un) . . .), provided that there exists a binary constant f). Then, we flatten

this equation, obtaining a set of equations of the form X
?

≈ f(Y1, . . . , Yn), X
?

≈ a.Y , X
?

≈ a

or X
?

≈ (a b)Y , and a single equation X1
?

≈ X2, where X1 and X2 do not occur elsewhere
bellow any other symbol. Finally, by Lemma 3.2, we can get rid of equations of the form

X
?

≈ (a b)Y . By Theorem 3.4, the resulting nominal unification problem has size O(|P |) on
the size of the original problem.

Following the notation of [Mar82], equations of the form X
?

≈ f(Y1, . . . , Yn), X
?

≈ a.Y ,

and X
?

≈ a are written in the form {X} = f(Y1, . . . , Yn), {X} = a.Y , and {X} = a,

respectively. The equation X1
?

≈ X2 is written as X1 =Id X2, using the replacing Id. Then,
we apply the following transformation rules wisely, where the equation X1 =L X2 is in all
cases a maximal equation, in the sense of Definition 2.2. Like in the classical Paterson-
Wegman algorithm, there always exists an equation satisfying this condition, and we can
find this equation intelligently, such that the total time consumed by this search is linearly
bounded on the size of the original problem (see [Pat78] for more details).

Definition 7.1. Consider the following set of transformation rules:
Application:

{ΠL1X1,ΠL′1
X ′

1, . . . } = f(Y1, . . . , Ym)

{ΠL2X2,ΠL′2
X ′

2, . . . } = f(Z1, . . . , Zm)

X1 =L X2

=⇒

{

ΠL1X1,ΠL′1
X ′

1, . . . ,

ΠL1◦LX2,ΠL1◦L◦L
−1
2 ◦L′2

X ′
2, . . .

}

= f(Y1, . . . , Ym)

Y1 =
L1◦L◦L

−1
2

Z1

· · ·
Ym =

L1◦L◦L
−1
2

Zm

AN EFFICIENT NOMINAL UNIFICATION ALGORITHM 219

Abstraction:

{ΠL1
X1,ΠL′

1
X ′1, . . . } = a.Y

{ΠL2
X2,ΠL′

2
X ′2, . . . } = b.Z

X1 =L X2

=⇒

{

ΠL1
X1,ΠL′

1
X ′1, . . . ,

ΠL1◦LX2,ΠL1◦L◦L
−1
2
◦L′

2
X ′2, . . .

}

= a.Y

Y =(a←b)::(L1◦L◦L
−1
2

) Z

Atom:

{ΠL1
X1,ΠL′

1
X ′1, . . . } = a

{ΠL2
X2,ΠL′

2
X ′2, . . . } = b

X1 =L X2

=⇒

{

ΠL1
X1,ΠL′

1
X ′1, . . . ,

ΠL1◦LX2,ΠL1◦L◦L
−1
2
◦L′

2
X ′2, . . .

}

= a

a =
L1◦L◦L

−1
2

b

Variable:

{ΠL1
X1,ΠL′

1
X ′1, . . . } = t

{ΠL2
X2,ΠL′

2
X ′2, . . . } = ∅

X1 =L X2

=⇒

{

ΠL1
X1,ΠL′

1
X ′1, . . .

ΠL1◦LX2,ΠL1◦L◦L
−1
2
◦L′

2
X ′2, . . .

}

= t

{ΠL1
X1,ΠL′

1
X ′1, . . . } = ∅

{ΠL2
X2,ΠL′

2
X ′2, . . . } = t

X1 =L X2

=⇒

{

ΠL2◦L−1X1,ΠL2◦L−1◦L−1
1
◦L′

1
X ′1, . . .

ΠL2
X2,ΠL′

2
X ′2, . . .

}

= t

Theorem 7.2. Given a simplified nominal unification problem P , P is solvable if, and only

if, the rules of Definition 7.1 transform the problem into a set of equations of the form

{ΠL1
1
X1

1 , . . . ,ΠL
r1
1
Xr1

1 } = t1
· · ·

{ΠL1
m
X1

m, . . . ,ΠL
rm
m

Xrm
m } = tm

a1 =L1
b1

· · ·
an =Ln

bn

where {a1 =L1
b1, . . . , an =Ln

bn} holds, and the equations ti =L
j
i

Xj
i , for i = 1, . . . ,m and

j = 1, . . . , ri, are solvable.

When P is solvable, then set of equations ti =L
j
i

Xj
i encode a solution.

Moreover, the size of the DAG representing the new set of equations is O(|P |), and it

can be obtained in time O(|P |).

Proof. Soundness and completeness results from the rules ≈-abst-1, ≈-abst-2, and ≈-fun
and ≈-atom of [Urb04], conveniently written in terms of replacings. The transformations
resemble Paterson-Wegman transformations (Definition 2.2), and the termination proof is
based on the same ideas. Notice that some transformations duplicate some L’s. Therefore,
the linear bound only applies representing equations as DAGs.

Example 7.3. The equation a.b.X
?

≈ b.b.X can be simplified as:
{
{X} = ∅, {Y1} = a.Y3, {Y2} = b.Y4, {Y3} = b.X, {Y4} = b.X, Y1 =Id Y2

}

Applying twice the abstraction rule we obtain:
{
{X} = ∅, {Y1, Y2} = a.Y3, {Y3,Π(a←b)::IdY4} = b.X, X =(b←b)::(a←b)::Id X

}

One application of the variable rule gives us the simplified equations
{
{Y1, Y2} = a.Y3, {Y3,Π(a←b)::IdY4} = b.X, {X,Π(b←b)::(a←b)::IdX} = ∅

}

220 J. LEVY AND M. VILLARET

Example 7.4. From a. b. a
︸︷︷︸

Y4
︸ ︷︷ ︸

Y3
︸ ︷︷ ︸

Y1

?

≈ b. b.X
︸︷︷︸

Y5
︸ ︷︷ ︸

Y2

, we obtain {Y1, Y2} = a.Y3
{Y3,Π(a←b)::IdY5} = b.Y4
{Y4,Π(b←b)::(a←b)::IdX} = a

.

8. Efficient Checking of Replacings

Using the algorithm described in Definition 7.1, we obtain a set of replacing equations
of the form a =L b, a set of equations of the form {ΠL1X1, . . . ,ΠLrXr} = t that codify the
solution, and a DAG that represents the generalized replacings L’s. Now, we will describe
how we can check the solvability of these equations in quadratic time.

The main idea is to compute, for every node of the DAG, the two sets Rew(L) and
For(L), where L is the replacing represented by this node. We will use the values of these
sets already computed for the descendants of the node. Therefore, we proceed from the
leaves of the DAG to the roots. We assume that we have a total ordering on the atoms A.
For efficiency, we compute three lists for every node L: a list RL that contains the elements
of Rew(L) ordered by the first component, RR with the elements of Rew(L) ordered by the
second component, and an ordered list F with the elements of For(L). Moreover, the lists
RL and RR are doubly linked, such that knowing the position of an element (a← b) in RL,
we can know its position in RR and vice versa. Lemma 6.3 describes how to compute these
list. Just as an example, Figure 1 shows how to compute RL, RR and F for L = L1 ◦ L2,
being RLi, RRi and Fi, for i = 1, 2, the respective lists for Li.

To check if a set of equations P of the form {ΠL1
X1, . . . ,ΠLr

Xr} = t has solution, and
what is this solution, we compute the set of atoms that cannot occur free in the instance
of X, written For(X). This computation aborts (using rule 5) if P is unsolvable.

Definition 8.1. Given a set of equations P , for every variable X, we compute For(X) as
the minimal set of atoms that satisfy all the following rules, or we abort.

(1) If P contains {ΠL1
X1, . . . ,ΠLr

Xr} = t,
then Π

L−1
j

(
ΠLi

(
For(Xi)

)
∪ For(Li)

)
⊆ For(Xj), for i 6= j = 1, . . . , r.

(2) If P contains {ΠL1
X1, . . . ,ΠLr

Xr} = f(Y1, . . . , Ym),
then ΠLi

(For(Xi)) ∪ For(Li) ⊆ For(Yj), for i = 1, . . . , r, and j = 1, . . . ,m.
(3) If P contains {ΠL1

X1, . . . ,ΠLr
Xr} = a.Y ,

then ΠLi
(For(Xi)) ∪ For(Li) \ {a} ⊆ For(Y), for i = 1, . . . , r.

(4) If P contains {ΠLX,ΠL′X, . . . } = t and ΠL(a) 6= ΠL′(a), for some a ∈ A, then
a ∈ For(X).

(5) If P contains {ΠL1
X1, . . . ,ΠLr

Xr} = a and a ∈ ΠLi
(For(Xi)) ∪ For(Li), for some

i = 1, . . . , r, then P is unsolvable and abort.

Lemma 8.2. Given a set of equations of the form {ΠL1
X1, . . . ,ΠLr

Xr} = t, we can com-

pute For(X), for every variable X, or abort, in quadratic time on the size of the DAG-

representation of the equations.

Moreover, the solution encoded by the equations is {a#X | a ∈ For(X)}.

Proof. At every node of the DAG representing a generalized replacing L, we compute
Rew(L) and For(L), using the values Rew(Li) and For(Li) previously computed for

AN EFFICIENT NOMINAL UNIFICATION ALGORITHM 221

Input: RL1, RR1, F1, RL2, RR2, F2

Output: RL,RR,F

i1 := 1 ; i2 := 1 ; j1 := 1 ; j2 := 1
while i1 ≤ RR1.size() and i2 ≤ RL2.size() do

let (a← b) = RR1[i1] and (b′ ← c) = RL1[i2]
if b = b′ then

following the double links, change (a← b) in RL1 by (a← c)
following the double links, change (b← c) in RR2 by (a← c)
remove (a← b) from RR1 and (b← c) from RL2

i1 := i1 + 1
i2 := i2 + 1

else if b < b′ then
while j2 ≤ F2.size() and F2[j2] < b do j2 := j2 + 1
if j2 ≤ F2.size() and F2[j2] = b then

remove (a← b) from RR1 and RL1

i1 := i1 + 1
else while j1 ≤ F1.size() and F1[j1] < b do j1 := j1 + 1

if j1 ≤ F1.size() and F1[j1] = b′ then
remove (b′ ← c) from RR2 and RL2

i2 := i2 + 1
if i1 = RR1.size() then

while i2 ≤ RL2.size() do
while j1 ≤ F1.size() and F1[j1] < b′ do j1 := j1 + 1
if j1 ≤ F1.size() and F1[j1] = b′ then

remove (b′ ← c) from RR2 and RL2

i2 := i2 + 1
else while i1 ≤ RR1.size() do

while j2 ≤ F2.size() and F2[j2] < b do j2 := j2 + 1
if j2 ≤ F2.size() and F2[j2] = b then

remove (a← b) from RR1 and RL1

i1 := i1 + 1
RL := merge(RL1, RL2)
RR := merge(RR1, RR2)
F := merge(F1, F2)
return RR,RL, F

Figure 1: Computation of Rew(L1◦L2) and For(L1◦L2) in timeO(|Rew(L1)|+|Rew(L2)|+
|For(L1)|+ |For(L2)|).

the descendants Li of the node. This computation takes at worst linear time for ev-
ery node, being the worst case the composition of replacings L = L1 ◦ L2 with time
O(|Rew(L1)| + |Rew(L2)| + |For(L1)| + |For(L2)|), described in Figure 1. Therefore, the
overall computation takes quadratic time. Then, using the rules of Definition 8.1, in qua-
dratic time we can check if all equations are solvable.

Theorem 8.3. Nominal Unification can be decided in quadratic time.

Proof. By Theorem 3.4 we can assume that nominal equations are simplified. Then, by
Theorem 7.2, we can transform these equations into an equivalent set of equations of the
form a =L b or {ΠL1

X1, . . . ,ΠLr
Xr} = t represented as a DAG, in linear time on the

222 J. LEVY AND M. VILLARET

size of the original equations. Equations a =L b are solvable if (a ← b) ∈ Rew(L). By
Lemma 8.2, we can compute For(X) for every variable, checking the solvability of equations
{ΠL1

X1, . . . ,ΠLr
Xr} = t.

Example 8.4. Consider example 7.3, where we obtain
{
{Y1, Y2} = a.Y3, {Y3,Π(a←b)::IdY4} = b.X, {X,Π(b←b)::(a←b)::IdX} = ∅

}
.

The DAG representation with Rew(L) and For(L) of every node representing a gener-
alized replacing is as follows.

{Y1, Y2} = a.Y3 {Y3,Π•Y4} = b.X {X,Π•X} = ∅

(b← b) :: •

(a← b) :: •

Id

Rew = {} For = {a}

Rew = {a← b} For = {}

Rew = {} For = {}

Definition 8.1 computes For(Y3) = For(X) = {a}, For(Y4) = {b}, For(Y1) = For(Y2) =
∅. Now, considering only original variables, i.e. X, we obtain the solution a#X.

In example 7.4, the equation {Y4,Π(b←b)::(a←b)::IdX} = a, using rule 5 of Definition 8.1,
allows us to deduce that the problem is unsolvable.

9. Conclusions, can we do it better?

We have presented an efficient algorithm that computes nominal unifiers in quadratic
time. This result does not improve the bound found by ourself by reduction to the problem
of Higher-Order Pattern Unification [Lev08]. The natural question now is: can we still
improve this bound?

A careful analysis of the algorithm of Figure 1 shows us that it is basically a merge
function, and that the complete check of the whole DAG of replacings is not very distinct
from a merge-sort algorithm. In fact, if we could ensure that, when L = L1 ◦ L2, we have
|Rew(L)| + |For(L)| ≥ |Rew(L1)| + |For(L1)| + |Rew(L2)| + |For(L2)| and |Rew(L1)| +
|For(L1)| ≈ |Rew(L2)| + |For(L2)|, then the cost of the algorithm would be dominated
by T (n) = 2T (n/2) + O(n) that has solution O(n logn). If we could ensure |Rew(L)| +
|For(L)| ≥ |Rew(L1)|+ |For(L1)|+ |Rew(L2)|+ |For(L2)|, but not the balance between the
data structures of L1 and L2, then we could implement the sorted lists using AVL, and apply
the ideas of Brown and Tarjan [Bro79] for merging of unbalanced sorted lists. This unbalance
merge of two lists of sizes n1 and n2 can be done in time O(n1 log n2

n1
). Therefore, the time

of the complete checking would be dominated by T (n) = T (n1) + T (n2) + O(n1 log n2

n1
),

where n = n1+n2. In this case, the solution is also O(n logn). Therefore, we can conclude
that we can check a set of replacings in time O(n log n) on the size of the tree (not the
DAG) representing the replacing. This means that, when the DAG is a tree, for instance
in example 4.2, we can check the replacings in quasi-linear time.

To conclude, consider the following example, that shows that the quadratic bound seems
difficult to improve in the general case.

AN EFFICIENT NOMINAL UNIFICATION ALGORITHM 223

Example 9.1. Given a permutation π of m = |π| elements, an a value n, we can construct
the following two equation of size O(n+m)

aπ1
. · · · .aπm .f(f(. . . f(Y,Xn) . . . , X2), X1) ≈

a1. · · · .am.f(X1, f(X2, . . . f(Xn, Y) . . .))

Y ≈ f(a1, f(a2, . . . f(am−1, am) . . .))

From these equations we get the following DAG. This problem is solvable, if we have π2n =
Id. It seems difficult to answer this question in time faster than O(nm).

a1 =• a1 a2 =• a2 am =• am

• ◦ •

• ◦ •

• ◦ •

(aπm ← am) :: •

(aπ1
← a1) :: •

Id

· · ·

· · ·

· · ·

n

m

224 J. LEVY AND M. VILLARET

Appendix

Example 9.2 (Cont. of Example 4.2). In fact, we would obtain the same result from
the lazy application of the transformation rules of the nominal unification algorithm from
[Urb04]. Those rules basically encode the inference rules presented in Section 2, namely
we use here the ones for ≈-abst-1 and ≈-abst-2. What we do is to delay the check for
equality or difference between atoms of two abstractions because one of them can have a
permutation applied on it, and we don’t want to compute permutations until the end. By
default we apply the rule for ≈-abst-2 constraining the freshness predicate to the proviso
of difference between abstractions.

a2.a1.f(c1, c2)
?

≈ (a3b3)b2.b1.f(d1, d2)
a3 6= b3 =⇒ a3#b2.b1.f(d1, d2)

a1.f(c1, c2)
?

≈ (a2(a3b3)b2)(a3b3)b1.f(d1, d2)
a3 6= b3 =⇒ a3#b2.b1.f(d1, d2)
a2 6= (a3b3)b2 =⇒ a2#(a3b3)b1.f(d1, d2)

f(c1, c2)
?

≈ (a1(a2(a3b3)b2)(a3b3)b1)(a2(a3b3)b2)(a3b3)f(d1, d2)
a3 6= b3 =⇒ a3#b2.b1.f(d1, d2)
a2 6= (a3b3)b2 =⇒ a2#(a3b3)b1.f(d1, d2)
a1 6= (a2(a3b3)b2)(a3b3)b1 =⇒ a1#(a2(a3b3)b2)(a3b3)f(d1, d2)

c1
?

≈ (a1(a2(a3b3)b2)(a3b3)b1)(a2(a3b3)b2)(a3b3)d1

c2
?

≈ (a1(a2(a3b3)b2)(a3b3)b1)(a2(a3b3)b2)(a3b3)d2
a3 6= b3 =⇒ a3#b2.b1.f(d1, d2)
a2 6= (a3b3)b2 =⇒ a2#(a3b3)b1.f(d1, d2)
a1 6= (a2(a3b3)b2)(a3b3)b1 =⇒ a1#(a2(a3b3)b2)(a3b3)f(d1, d2)

Now, we get rid of the freshness constraints, translating them into disequalities by means
of rules of the nominal unification algorithm from [Urb04] for the freshness predicates of
Section 2.

c1
?

≈ (a1(a2(a3b3)b2)(a3b3)b1)(a2(a3b3)b2)(a3b3)d1

c2
?

≈ (a1(a2(a3b3)b2)(a3b3)b1)(a2(a3b3)b2)(a3b3)d2
a3 6= b3 ∧ a3 6= b2 ∧ a3 6= b1 =⇒ (a3 6= d1 ∧ a3 6= d2)
a2 6= (a3b3)b2 ∧ a2 6= (a3b3)b1 =⇒ (a2 6= (a3b3)d1 ∧ a2 6= (a3b3)d2)
a1 6= (a2(a3b3)b2)(a3b3)b1 =⇒ (a1 6= (a2(a3b3)b2)(a3b3)d1 ∧ a1 6= (a2(a3b3)b2)(a3b3)d2)

References

[Bro79] Mark R. Brown and Robert Endre Tarjan. A fast merging algorithm. J. of the ACM, 26(2):211–226,
1979.

[Cal07] Christophe Calvès and Maribel Fernández. Implementing nominal unification. ENTCS, 176(1):25–
37, 2007.

[Cal08] Christophe Calvès and Maribel Fernández. A polynomial nominal unification algorithm. Theoretical
Computer Science, 403(2-3):285–306, 2008.

AN EFFICIENT NOMINAL UNIFICATION ALGORITHM 225

[Cal10] Christophe Calvès. Complexity and Implementation of Nominal Algorithms. Ph.D. thesis, King’s
College London, 2010.

[Che04] James Cheney and Christian Urban. α-prolog: A logic programming language with names, binding
and α-equivalence. In Proc. of the 20th Int. Conf. on Logic Programming, ICLP’04, LNCS, vol.
3132, pp. 269–283. 2004.

[Che05] James Cheney. Equivariant unification. In Proc. of the 16th Int. Conf. on Term Rewriting and

Applications, RTA’05, LNCS, vol. 3467, pp. 74–89. 2005.
[Clo07] R. Clouston and A. Pitts. Nominal equational logic. ENTCS, 1496:223–257, 2007.
[Dow09] Gilles Dowek, Murdoch Gabbay, and Dominic Mulligan. Permissive nominal terms and their unifi-

cation. In Proc. of the 24th Convegno Italiano di Logica Computazionale, CILC’09. 2009.
[Dow10] Gilles Dowek, Murdoch Gabbay, and Dominic Mulligan. Permissive nominal terms and their unifi-

cation. Logic Journal of the IGPL, 2010.
[Fer05] Maribel Fernández and Murdoch Gabbay. Nominal rewriting with name generation: abstraction

vs. locality. In Proc. of the 7th Int. Conf. on Principles and Practice of Declarative Programming,

PPDP’05, pp. 47–58. 2005.
[Fer07] Maribel Fernández and Murdoch Gabbay. Nominal rewriting. Information and Computation,

205(6):917–965, 2007.
[Gab01] Murdoch Gabbay and A. Pitts. A new approach to abstract syntax with variable binding. Formal

Aspects of Computing, 13(3–5):341–363, 2001.
[Gab06] Murdoch Gabbay and Aad Mathijssen. Nominal algebra. In Proc. of the 18th Nordic Workshop on

Programming Theory, NWPT’06. 2006.
[Gab07] Murdoch Gabbay and Aad Mathijssen. A formal calculus for informal equality with binding. In

Logic, Language, Information and Computation, LNCS, vol. 4576, pp. 162–176. Springer, 2007.
[Gab09] Murdoch Gabbay and Aad Mathijssen. Nominal (universal) algebra: equational logic with names

and binding. Journal of Logic and Computation, 19(6):1455–1508, 2009.
[Lev08] Jordi Levy and Mateu Villaret. Nominal unification from a higher-order perspective. In Proc. of the

19th Int. Conf on Rewriting Techniques and Applications, RTA’08, LNCS, vol. 5117, pp. 246–260.
2008.

[Mar82] Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM Trans. Program.

Lang. Syst., 4(2):258–282, 1982.
[Pat78] Mike Paterson and Mark N. Wegman. Linear unification. J. Comput. Syst. Sci., 16(2):158–167,

1978.
[Pit01] Andrew Pitts. Nominal logic: A first order theory of names and binding. In Proc. of the 4th

Int. Symp. on Theoretical Aspects of Computer Software, TACS’01, LNCS, vol. 2215, pp. 219–242.
2001.

[Pit03] A. Pitts. Nominal logic, a first order theory of names and binding. Information and Computation,
186:165–193, 2003.

[Qia96] Zhenyu Qian. Unification of higher-order patterns in linear time and space. J. of Logic and Com-

putation, 6(3):315–341, 1996.
[Urb03] C. Urban, A. Pitts, and M. Gabbay. Nominal unification. In Proc. of the 17th Int. Work. on

Computer Science Logic, CSL’03, LNCS, vol. 2803, pp. 513–527. 2003.
[Urb04] C. Urban, A. Pitts, and M. Gabbay. Nominal unification. Theoretical Computer Science, 323:473–

497, 2004.
[Urb05] Christian Urban and James Cheney. Avoiding equivariance in alpha-prolog. In Proc. of the

Int. Conf. on Typed Lambda Calculus and Applications, TLCA’05, LNCS, vol. 3461, pp. 401–416.
2005.

226 J. LEVY AND M. VILLARET

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

