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Abstract. Declarative debugging is a semi-automatic technique that starts from an in-
correct computation and locates a program fragment responsible for the error by building
a tree representing this computation and guiding the user through it to find the error.
Membership equational logic (MEL) is an equational logic that in addition to equations
allows to state of membership axioms characterizing the elements of a sort. Rewriting
logic is a logic of change that extends MEL by adding rewrite rules, that correspond to
transitions between states and can be nondeterministic. In this paper we propose a cal-
culus to infer normal forms and least sorts with the equational part, and sets of reachable
terms through rules. We use an abbreviation of the proof trees computed with this cal-
culus to build appropriate debugging trees for missing answers (results that are erroneous
because they are incomplete), whose adequacy for debugging is proved. Using these trees
we have implemented a declarative debugger for Maude, a high-performance system based
on rewriting logic, whose use is illustrated with an example.

1. Introduction

Declarative debugging [20], also known as declarative diagnosis or algorithmic debugging, is
a debugging technique that abstracts the execution details, which may be difficult to follow in
declarative languages, and focus on the results. We can distinguish between two different kinds of
declarative debugging: debugging of wrong answers, that is applied when a wrong result is obtained
from an initial value and has been widely employed in the logic [12, 22], functional [14, 15], multi-
paradigm [3, 9], and object-oriented [4] programming languages; and debugging of missing answers
[5, 1], applied when a result is incomplete, which has been less studied because the calculus involved
is more complex than in the case of wrong answers. Declarative debugging starts from an incorrect
computation, the error symptom, and locates the code (or the absence of code) responsible for the
error. To find this error the debugger represents the computation as a debugging tree [13], where
each node stands for a computation step and must follow from the results of its child nodes by some
logical inference. This tree is traversed by asking questions to an external oracle (generally the user)
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until a buggy node—a node containing an erroneous result, but whose children are all correct—is
found. Hence, we distinguish two phases in this scheme: the debugging tree generation and its
navigation following some suitable strategy [21].

In this paper we present a declarative debugger of missing answers for Maude specifications.
Maude [6] is a high-level language and high-performance system supporting both equational and
rewriting logic computation. The Maude system supports several approaches for debugging: trac-
ing, term coloring, and using an internal debugger [6, Chap. 22]. However, these tools have the
disadvantages that they are supposed to be used only when a wrong result is found ; and both the
trace and the Maude debugger (that is based on the trace) show the statements applied in the order
in which they are executed and thus the user can lose the general view of the proof of the incorrect
computation that produced the wrong result.

Declarative debugging of wrong answers in Maude specifications was already studied in [17],
where we presented how to debug wrong results due to errors in the statements of the specification. In
[18] we extended the concept of missing answers, usually attached to incomplete sets of results, to deal
with erroneous normal forms and least sorts in equational theories. However, in a nondeterministic
context such as that of Maude modules other problems can arise. We show in this paper how to
debug missing answers in rewriting specifications, that is, expected results that the specification is
not able to compute. This kind of problems appears in Maude when using its breadth-first search,
that finds all the reachable terms from an initial one given a pattern, a condition, and a bound in
the number of steps. To debug this kind of errors we have extended our calculus to deduce sets
of reachable terms given an initial term, a bound in the number of rewrites, and a condition to
be fulfilled. Unlike other proposals like [5], our debugging framework combines the treatment of
wrong and missing answers and, moreover, is able to detect missing answers due to both missing
rules and wrong statements. The state of the art can be found in [21], where different algorithmic
debuggers are compared and that will include our debugger in its next version. Roughly speaking,
our debugger has the pros of building different kinds of debugging trees (one-step and many-steps)
and applying the missing answers technique to debug normal forms and least sorts1 (the different
trees are a novelty in the declarative debugging world), and only it and DDT [3] implement the
Hirunkitti’s divide and query navigation strategy, provide a graphical interface, and debug missing
answers; as cons, we do not provide answers like “maybe yes,” “maybe not,” and “inadmissible,”
and do not perform tree compression. However, these features have recently been introduced in
specific debuggers, and we expect to implement them in our debugger soon. Finally, some of the
features shared by most of the debuggers are: the trees are abbreviated in order to shorten and ease
the debugging process (in our case, since we obtain the trees from a formal calculus, we are able
to prove the correctness and completeness of the technique), which mitigates the main problem of
declarative debugging, the complexity of the questions asked to the user; trusting of statements;
undo and don’t know commands; and different strategies to traverse the tree. We refer to [21, 16]
for the meaning of these concepts. With respect to other approaches, such as the Maude sufficient
completeness checker [6, Chap. 21] or the sets of descendants [8], our tool provides a wider approach,
since we handle conditional statements and our equations are not required to be left-linear.

The rest of the paper is structured as follows. Section 2 provides a summary of the main
concepts of rewriting logic and Maude specifications. Section 3 describes our calculus and Section 4
shows the debugging trees obtained from it. Finally, Section 5 concludes and mentions some future
work.

Detailed proofs of the results can be found in [19], while additional examples, the source code
of the tool, and other papers on the subject, including the user guide [16], where a graphical user
interface for the debugger is presented, are all available from the webpage http://maude.sip.ucm.
es/debugging.

1Although the least sort error can be seen as a Maude-directed problem, normal forms are a common
feature in several programming languages.
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2. Rewriting Logic and Maude

Maude modules are executable rewriting logic specifications. Rewriting logic [10] is a logic
of change very suitable for the specification of concurrent systems that is parameterized by an
underlying equational logic, for which Maude uses membership equational logic (MEL) [2], which,
in addition to equations, allows to state of membership axioms characterizing the elements of a sort.
Rewriting logic extends MEL by adding rewrite rules.

For our purposes in this paper, we are interested in a subclass of rewriting logic models [10]
that we call term models, where the syntactic structure of terms is kept and associated notions such
as variables, substitutions, and term rewriting make sense. These models will be used in Section 4
to represent the intended interpretation that the user had in mind while writing a specification.
Since we want to find the discrepancies between the intended model and the initial model of the
specification as written, we need to consider the relationship between a specification defined by a set
of equations E and a set of rules R, and a model defined by possibly different sets of equations E′

and of rules R′; in particular, when E′ = E and R′ = R, the term model coincides with the initial
model built in [10].

Given a rewrite theory R = (Σ, E,R), with Σ a signature, E a set of equations, and R a set
of rules, a Σ-term model has an underlying (Σ, E′)-algebra whose elements are equivalence classes
[t]E′ of ground Σ-terms modulo some set of equations and memberships E′ (which may be different
from E), and there is a transition from [t]E′ to [t′]E′ when [t]E′ →∗

R′/E′ [t′]E′ , where rewriting is

considered on equivalence classes [10, 7]. The set of rules R′ may also be different from R, that
is, the term model is TΣ/E′,R′ for some E′ and R′. In such term models, the notion of valuation
coincides with that of (ground) substitution. A term model TΣ/E′,R′ satisfies, under a substitution
θ, an equation u = v, denoted TΣ/E′,R′ , θ |= u = v, when θ(u) =E′ θ(v), or equivalently, when
[θ(u)]E′ = [θ(v)]E′ ; a membership u : s, denoted TΣ/E′,R′ , θ |= u : s, when the Σ-term θ(u) has sort
s according to the information in the signature Σ and the equations and memberships E′; a rewrite
u ⇒ v, denoted TΣ/E′,R′ , θ |= u ⇒ v, when there is a transition in TΣ/E′,R′ from [θ(u)]E′ to [θ(v)]E′ ,
that is, when [θ(u)]E′ →∗

R′/E′ [θ(v)]E′ . Satisfaction is extended to conditional sentences as usual. A

Σ-term model TΣ/E′,R′ satisfies a rewrite theory R = (Σ, E,R) when TΣ/E′,R′ satisfies the equations
and memberships in E and the rewrite rules in R in this sense. For example, this is obviously the
case when E ⊆ E′ and R ⊆ R′; as mentioned above, when E′ = E and R′ = R the term model
coincides with the initial model for R.

Maude functional modules [6, Chap. 4], introduced with syntax fmod ... endfm, are exe-
cutable membership equational specifications that allow the definition of sorts (by means of key-
word sort(s)); subsort relations between sorts (subsort); operators (op) for building values of these
sorts, giving the sorts of their arguments and result, and which may have attributes such as being
associative (assoc) or commutative (comm), for example; memberships (mb) asserting that a term
has a sort; and equations (eq) identifying terms. Both memberships and equations can be condi-
tional (cmb and ceq). Maude system modules [6, Chap. 6], introduced with syntax mod ... endm,
are executable rewrite theories. A system module can contain all the declarations of a functional
module and, in addition, declarations for rules (rl) and conditional rules (crl).

We present how to use this syntax by means of an example. Given a maze, we want to obtain
all the possible paths to the exit. First, we define the sorts Pos, List, and State that stand for
positions in the labyrinth, lists of positions, and the path traversed so far respectively:

(mod MAZE is

pr NAT . sorts Pos List State .

Terms of sort Pos have the form [X,Y], where X and Y are natural numbers, and lists are built
with nil and the juxtaposition operator _ _:

subsort Pos < List . op [_,_] : Nat Nat -> Pos [ctor] .

op nil : -> List [ctor] . op _ _ : List List -> List [ctor assoc id: nil] .
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Terms of sort State are lists enclosed by curly brackets, that is, {_} is an “encapsulation
operator” that ensures that the whole state is used:

op {_} : List -> State [ctor] .

The predicate isSol checks whether a list is a solution in a 5× 5 labyrinth:

vars X Y : Nat . var P Q : Pos . var L : List .

op isSol : List -> Bool .

eq [is1] : isSol(L [5,5]) = true .

eq [is2] : isSol(L) = false [owise] .

The next position is computed with rule expand, that extends the solution with a new position
by rewriting next(L) to obtain a new position and then checking whether this list is correct with
isOk. Note that the choice of the next position, that could be initially wrong, produces an implicit
backtracking:

crl [expand] : { L } => { L P } if next(L) => P /\ isOk(L P) .

The function next is defined in a nondeterministic way, where sd denotes the symmetric differ-
ence:

op next : List -> Pos .

rl [n1] : next(L [X,Y]) => [X, Y + 1] .

rl [n2] : next(L [X,Y]) => [sd(X, 1), Y] .

rl [n3] : next(L [X,Y]) => [X, sd(Y, 1)] .

isOk(L P) checks that the position P is within the limits of the labyrinth, not repeated in L,
and not part of the wall by using an auxiliary function contains:

op isOk : List -> Bool .

eq isOk(L [X,Y]) = X >= 1 and Y >= 1 and X <= 5 and Y <= 5

and not(contains(L, [X,Y])) and not(contains(wall, [X,Y])) .

op contains : List Pos -> Bool .

eq [c1] : contains(nil, P) = false .

eq [c2] : contains(Q L, P) = if P == Q then true else contains(L, P) fi .

Finally, we define the wall of the labyrinth as a list of positions:

op wall : -> List .

eq wall = [2,1] [2,2] [3,2] [2,3] [4,3] [5,3] [1,5] [2,5] [3,5] [4,5] .

endm)

Now, we can use the module to search the labyrinth’s exit from the position [1,1] with the
Maude command search, but it cannot find any path to escape. We will see in Section 4.1 how to
debug it.

3. A Calculus for Missing Answers

We describe in this section a calculus to infer, given a term and some constraints, the complete
set of reachable terms from this term that fulfill the requirements. The proof trees built with this
calculus have nodes that justify why the terms are included in the corresponding sets (positive infor-
mation) but also nodes that justify why there are no more terms (negative information). These latter
nodes are then used in the debugging trees to localize as much as possible the reasons responsible
for missing answers. This calculus integrates the calculus to deduce substitutions, normal forms,
and least sorts that was presented in [18], and that we reproduce here to give the reader an overall
view of debugging of missing answers in Maude specifications. Moreover, these calculi extend the
calculus in [17], used to deduce judgments corresponding to oriented equations t → t′, memberships
t : s, and rewrites t ⇒ t′, and to debug wrong answers. All the results in this paper refer to the
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complete calculus comprising these three calculi, and thus we consider this work as the final step in
the development of foundations for a complete declarative debugger for Maude.

From now on, we assume a rewrite theory R = (Σ, E,R) satisfying the Maude executability
requirements, i.e., E is confluent, terminating, maybe modulo some equational axioms such as
associativity and commutativity, and sort-decreasing, while R is coherent with respect to E; see [6]
for details. Equations corresponding to the axioms form the set A and the equations in E − A can
be oriented from left to right.

We introduce the inference rules used to obtain the set of reachable terms given an initial one,
a pattern [6], a condition, and a bound in the number of rewrites. First, the pattern P and the
condition C (that can use variables bound by the pattern) are put together by creating the condition
C′ ≡ P := ⊛ ∧ C, where ⊛ is a “hole” that will be filled by the concrete terms to check if they
fulfill both the pattern and the condition. Throughout this paper we only consider a special kind
of conditions and substitutions that operate over them, called admissible. They correspond to the
ones used in Maude modules and are defined as follows:

Definition 3.1. A condition C1 ∧ · · · ∧ Cn is admissible if, for 1 ≤ i ≤ n, Ci is

• an equation ui = u′
i or a membership ui : s and vars(Ci) ⊆

⋃i−1
j=1 vars(Cj), or

• a matching condition ui := u′
i, ui is a pattern and vars(u′

i) ⊆
⋃i−1

j=1 vars(Cj), or

• a rewrite condition ui ⇒ u′
i, u

′
i is a pattern and vars(ui) ⊆

⋃i−1
j=1 vars(Cj).

Note that the lefthand side of matching conditions and the righthand side of rewrite conditions
can contain extra variables that will be instantiated once the condition is solved.

Definition 3.2. A condition C ≡ P := ⊛ ∧ C1 ∧ · · · ∧ Cn is admissible if P := t ∧ C1 ∧ · · · ∧ Cn is
admissible for t any ground term.

Definition 3.3. A kind-substitution, denoted by κ, is a mapping between variables and terms of
the form v1 7→ t1; . . . ; vn 7→ tn such that ∀1≤i≤n . kind(vi) = kind(ti), that is, each variable has the
same kind as the term it binds.

Definition 3.4. A substitution, denoted by θ, is a mapping between variables and terms of the form
v1 7→ t1; . . . ; vn 7→ tn such that ∀1≤i≤n . sort(vi) ≥ ls(ti), that is, the sort of each variable is greater
than or equal to the least sort of the term it binds. Note that a substitution is a special type of
kind-substitution where each term has the sort appropriate to its variable.

Definition 3.5. Given an atomic condition C, we say that a substitution θ is admissible for C if

• C is an equation u = u′ or a membership u : s and vars(C) ⊆ dom(θ), or
• C is a matching condition u := u′ and vars(u′) ⊆ dom(θ), or
• C is a rewrite condition u ⇒ u′ and vars(u) ⊆ dom(θ).

The calculus presented in this section (in Figures 1–4) will be used to deduce the following
judgments, that we introduce together with their meaning for a Σ-term model T ′ = TΣ/E′,R′ defined
by equations and memberships E′ and by rules R′:

• Given a term t and a kind-substitution κ, T ′ |= adequateSorts(κ)  Θ when either Θ =
{κ} ∧ ∀v ∈ dom(κ).T ′ |= κ[v] : sort(v) or Θ = ∅ ∧ ∃v ∈ dom(κ).T ′ 6|= κ[v] : sort(v),
where κ[v] denotes the term bound by v in κ. That is, when all the terms bound in the
kind-substitution κ have the appropriate sort, then κ is a substitution and it is returned;
otherwise (at least one of the terms has an incorrect sort), the kind-substitution is not a
substitution and the empty set is returned.

• Given an admissible substitution θ for an atomic condition C, T ′ |= [C, θ]  Θ when
Θ = {θ′ | T ′, θ′ |= C and θ′ ↾dom(θ)= θ}, that is, Θ is the set of substitutions that fulfill the
atomic condition C and extend θ by binding the new variables appearing in C.
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• Given a set of admissible substitutions Θ for an atomic condition C, T ′ |= 〈C,Θ〉  Θ′

when Θ′ = {θ′ | T ′, θ′ |= C and θ′ ↾dom(θ)= θ for some θ ∈ Θ}, that is, Θ′ is the set of
substitutions that fulfill the condition C and extend any of the admissible substitutions in
Θ.

• T ′ |= disabled(a, t) when the equation or membership a cannot be applied to t at the top.
• T ′ |= t →red t′ when either T ′ |= t →1

E′ t′ or T ′ |= ti →
!
E′ t′i, with ti 6= t′i, for some subterm

ti of t such that t′ = t[ti 7→ t′i], that is, the term t is either reduced one step at the top or
reduced by substituting a subterm by its normal form.

• T ′ |= t →norm t′ when T ′ |= t →!
E′ t′, that is, t′ is in normal form with respect to the

equations E′.
• Given an admissible condition C ≡ P := ⊛ ∧ C1 ∧ · · · ∧ Cn, T

′ |= fulfilled(C, t) when there
exists a substitution θ such that T ′, θ |= P := t ∧ C1 ∧ · · · ∧ Cn, that is, C holds when ⊛ is
substituted by t.

• Given an admissible condition C as before, T ′ |= fails(C, t) when there exists no substitution
θ such that T ′, θ |= P := t ∧ C1 ∧ · · · ∧ Cn, that is, C does not hold when ⊛ is substituted
by t.

• T ′ |= t :ls s when T ′ |= t : s and moreover s is the least sort with this property (with respect
to the ordering on sorts obtained from the signature Σ and the equations and memberships
E′ defining the Σ-term model T ′).

• T ′ |= t ⇒top S when S = {t′ | t →top
R′ t′}, that is, the set S is formed by all the reachable

terms from t by exactly one rewrite at the top with the rules R′ defining T ′. Moreover,
equality in S is modulo E′, i.e., we are implicitly working with equivalence classes of ground
terms modulo E′.

• T ′ |= t ⇒q S when S = {t′ | t →top

{q} t′}, that is, the set S is the complete set of reachable

terms (modulo E′) obtained from t with one application of the rule q ∈ R′ at the top.
• T ′ |= t ⇒1 S when S = {t′ | t →1

R′ t′}, that is, the set S is constituted by all the reachable
terms (modulo E′) from t in exactly one step, where the rewrite step can take place anywhere
in t.

• T ′ |= t  C
n S when S = {t′ | t →≤n

R′ t′ and T ′ |= fulfilled(C, t′)}, that is, S is the set of all
the terms (modulo E′) that satisfy the admissible condition C and are reachable from t in
at most n steps.

We first introduce in Figure 1 the inference rules defining the relations [C, θ] Θ, 〈C,Θ〉 Θ′,
and adequateSorts(κ)  Θ. Intuitively, these judgments will provide positive information when
they lead to nonempty sets (indicating that the condition holds in the first two judgments or that
the kind-substitution is a substitution in the third one) and negative information when they lead
to the empty set (indicating respectively that the condition fails or the kind-substitution is not a
substitution):

• Rule PatC computes all the possible substitutions that extend θ and satisfy the matching of
the term t2 with the pattern t1 by first computing the normal form t′ of t2, obtaining then all
the possible kind-substitutions κ that make t′ and θ(t1) equal modulo axioms (indicated by
≡A), and finally checking that the terms assigned to each variable in the kind-substitutions
have the appropriate sort with adequateSorts(κ). The union of the set of substitutions thus
obtained constitutes the set of substitutions that satisfy the matching.

• Rule AS1 checks whether the terms of the kind-substitution have the appropriate sort to
match the variables. In this case the kind-substitution is a substitution and it is returned.

• Rule AS2 indicates that, if any of the terms in the kind-substitution has a sort bigger than
the required one, then it is not a substitution and thus the empty set of substitutions is
returned.

• Rule MbC1 returns the current substitution if a membership condition holds.
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θ(t2) →norm t′ adequateSorts(κ1) Θ1 . . . adequateSorts(κn) Θn

[t1 := t2, θ] 
⋃n

i=1 Θi

PatC

if {κ1, . . . , κn} = {κθ | κ(θ(t1)) ≡A t′}

t1 : sort(v1) . . . tn : sort(vn)

adequateSorts(v1 7→ t1; . . . ; vn 7→ tn) {v1 7→ t1; . . . ; vn 7→ tn}
AS1

ti :ls si

adequateSorts(v1 7→ t1; . . . ; vn 7→ tn) ∅
AS2 if si 6≤ sort(vi)

θ(t) : s

[t : s, θ] {θ}
MbC1

θ(t) :ls s
′

[t : s, θ] ∅
MbC2 if s′ 6≤ s

θ(t1) ↓ θ(t2)

[t1 = t2, θ] {θ}
EqC1

θ(t1) →norm t′1 θ(t2) →norm t′2

[t1 = t2, θ] ∅
EqC2 if t′1 6≡A t′2

θ(t1) 
t2 :=⊛

n+1 S

[t1 ⇒ t2, θ] {θ′θ | θ′(θ(t2)) ∈ S}
RlC

if n = min(x ∈ N : ∀i ≥ 0 (θ(t1) 
t2 :=⊛

x+i S))

[C, θ1] Θ1 · · · [C, θm] Θm

〈C, {θ1, . . . , θm}〉 
m
⋃

i=1

Θi

SubsCond

Figure 1: Calculus for substitutions

• Rule MbC2 is used when the membership condition is not satisfied. It checks that the least
sort of the term is not less than or equal to the required one, and thus the substitution does
not satisfy the condition and the empty set is returned.

• Rule EqC1 returns the current substitution when an equality condition holds, that is, when
the two terms can be joined with equations, abbreviated as t1 ↓ t2.

• Rule EqC2 checks that an equality condition fails by obtaining the normal forms of both
terms and then examining that they are different.

• Rewrite conditions are handled by rule RlC. This rule extends the set of substitutions
by computing all the reachable terms that satisfy the pattern (using the relation t  C

n S

explained below) and then using these terms to obtain the new substitutions.
• Finally, rule SubsCond computes the extensions of a set of admissible substitutions {θ1, . . . , θn}
by using the rules above with each of them.

We use these judgments to define the inference rules of Figure 2, that describe how the normal
form and the least sort of a term are computed:

• Rule Dsb indicates when an equation or membership a cannot be applied to a term t. It
checks that there are no substitutions that satisfy the matching of the term with the lefthand
side of the statement and that fulfill its condition. Note that we check the conditions from
left to right, following the same order as Maude and making all the substitutions admissible.

• Rule Rdc1 reduces a term by applying one equation when it checks that the conditions can
be satisfied, where the matching conditions are included in the equality conditions. While
in the previous rule we made explicit the evaluation from left to right of the condition to
show that finally the set of substitutions fulfilling it was empty, in this case we only need
one substitution to fulfill the condition and the order is unimportant.

• Rule Rdc2 reduces a term by reducing a subterm to normal form (checking in the side
condition that it is not already in normal form).
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[l := t, ∅] Θ0 〈C1,Θ0〉 Θ1 . . . 〈Cn,Θn−1〉 ∅

disabled(a, t)
Dsb

if a ≡ l → r ⇐ C1 ∧ . . . ∧ Cn ∈ E or
a ≡ l : s ⇐ C1 ∧ . . . ∧ Cn ∈ E

{θ(ui) ↓ θ(u′
i)}

n
i=1 {θ(vj) : sj}

m
j=1

θ(l) →red θ(r)
Rdc1 if l → r ⇐

∧n
i=1 ui = u′

i ∧
∧m

j=1 vj : sj ∈ E

t →norm t′

f(t1, . . . , t, . . . , tn) →red f(t1, . . . , t
′, . . . , tn)

Rdc2 if t 6≡A t′

disabled(e1, f(t1, . . . , tn)) . . . disabled(el, f(t1, . . . , tn)) t1 →norm t1 . . . tn →norm tn

f(t1, . . . , tn) →norm f(t1, . . . , tn)
Norm

if {e1, . . . , el} = {e ∈ E | e ≪top
K f(t1, . . . , tn)}

t →red t1 t1 →norm t′

t →norm t′
NTr

t →norm t′ t′ : s disabled(m1, t
′) . . . disabled(ml, t

′)

t :ls s
Ls

if {m1, . . . ,ml} = {m ∈ E | m ≪top
K t′ ∧ sort(m) < s}

Figure 2: Calculus for normal forms and least sorts

fulfilled(C, t)

t C
0 {t}

Rf1
fails(C, t)

t C
0 ∅

Rf2

θ(P ) ↓ t {θ(ui) ↓ θ(u′
i)}

n
i=1 {θ(vj) : sj}

m
j=1 {θ(wk) ⇒ θ(w′

k)}
l
k=1

fulfilled(C, t)
Fulfill

if C ≡ P := ⊛ ∧
∧n

i=1 ui = u′
i ∧

∧m
j=1 vj : sj ∧

∧l
k=1 wk ⇒ w′

k

[P := t, ∅] Θ0 〈C1,Θ0〉 Θ1 · · · 〈Ck,Θk−1〉 ∅

fails(C, t)
Fail if C ≡ P := ⊛ ∧ C1 ∧ . . . ∧ Ck

Figure 3: Calculus for solutions

• Rule Norm states that the term is in normal form by checking that no equations can be
applied at the top considering the variables at the kind level (which is indicated by ≪top

K )
and that all its subterms are already in normal form.

• Rule NTr describes the transitivity for the reduction to normal form. It reduces the term
with the relation →red and the term thus obtained then is reduced to normal form by using
again →norm .

• Rule Ls computes the least sort of the term t. It computes a sort for its normal form (that
has the least sort of the terms in the equivalence class) and then checks that memberships
deducing lesser sorts, applicable at the top with the variables considered at the kind level,
cannot be applied.

In these rules Dsb provides the negative information, proving why the statements (either equa-
tions or membership axioms) cannot be applied, while the remaining rules provide the positive
information indicating why the normal form and the least sort are obtained.

Once these rules have been introduced, we can use them in the rules defining the relation
t C

n S. First, we present in Figure 3 the rules related to n = 0 steps:
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fulfilled(C, t) t ⇒1 {t1, . . . , tk} t1  
C
n S1 . . . tk  

C
n Sk

t C
n+1

k
⋃

i=1

Si ∪ {t}

Tr1

fails(C, t) t ⇒1 {t1, . . . , tk} t1  
C
n S1 . . . tk  

C
n Sk

t C
n+1

k
⋃

i=1

Si

Tr2

f(t1, . . . , tm) ⇒top St t1 ⇒1 S1 · · · tm ⇒1 Sm

f(t1, . . . , tm) ⇒1 St ∪
⋃m

i=1{f(t1, . . . , ui, . . . , tm) | ui ∈ Si}
Stp

t ⇒q1 Sq1 · · · t ⇒ql Sql

t ⇒top

l
⋃

i=1

Sqi

Top if {q1, . . . , ql} = {q ∈ R | q ≪top
K t}

[l := t, ∅] Θ0 〈C1,Θ0〉 Θ1 · · · 〈Ck,Θk−1〉 Θk

t ⇒q
⋃

∀ θ∈Θk

{θ(r)}
Rl if q : l ⇒ r ⇐ C1 ∧ . . . ∧ Ck ∈ R

t →norm t1 t1  
C
n {t2} ∪ S t2 →norm t′

t C
n {t′} ∪ S

Red

Figure 4: Calculus for missing answers

• Rule Rf1 indicates that when only zero steps are used and the current term fulfills the
condition, the set of reachable terms consists only of this term.

• Rule Rf2 complements Rf1 by defining the empty set as result when the condition does not
hold.

• Rule Fulfill checks whether a term satisfies a condition. The premises of this rule check
that all the atomic conditions hold, taking into account that it starts with a matching
condition with a hole that must be filled with the current term and thus proved with the
premise θ(P ) ↓ t. Note that when the condition is satisfied we do not need to check all the
substitutions, but only to verify that there exists one substitution that makes the condition
true.

• To check that a term does not satisfy a condition, it is not enough to check that there exists
a substitution that makes it to fail; we must make sure that there is no substitution that
makes it true. We use the rules shown in Figure 1 to prove that the set of substitutions that
satisfy the condition (where the first set of substitutions is obtained from the first matching
condition filling the hole with the current term) is empty. Note that, while rule Fulfill
provides the positive information indicating that a condition is fulfilled, this one provides
negative information, proving that the condition fails.

Now we introduce in Figure 4 the rules defining the relation t C
n S when the bound n is greater

than 0, which can be understood as searches in zero or more steps:

• Rules Tr1 and Tr2 show the behavior of the calculus when at least one step can be used.
First, we check whether the condition holds (rule Tr1) or not (rule Tr2) for the current term,
in order to introduce it in the result set. Then, we obtain all the terms reachable in one
step with the relation ⇒1, and finally we compute the reachable solutions from these terms
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constrained by the same condition and the bound decreased in one step. The union of the
sets obtained in this way and the initial term, if needed, corresponds to the final result set.

• Rule Stp shows how the set for one step is computed. The result set is the union of the
terms obtained by applying each rule at the top (calculated with t ⇒top S) and the terms
obtained by rewriting one step the arguments of the term. This rule can be straightforwardly
adapted to the more general case in which the operator f has some frozen arguments (i.e.,
that cannot be rewritten); the implementation of the debugger makes use of this more
general rule.

• How to obtain the terms by rewriting at the top is explained by rule Top, that specifies
that the result set is the union of the sets obtained with all the possible applications of each
rule of the program. We restrict these rules to those whose lefthand side, with the variables
considered at the kind level, matches the term.

• Rule Rl uses the rules in Figure 1 to compute the set of terms obtained with the application
of a single rule. First, the set of substitutions obtained from matching with the lefthand
side of the rule is computed, and then it is used to find the set of substitutions that satisfy
the condition. This final set is used to instantiate the righthand side of the rule to obtain
the set of reachable terms. The kind of information provided by this rule corresponds to
the information provided by the substitutions; if the empty set of substitutions is obtained
(negative information) then the rule computes the empty set of terms, which also corre-
sponds with negative information proving that no terms can be obtained with this program
rule; analogously when the set of substitutions is nonempty (positive information). This
information is propagated through the rest of inference rules justifying why some terms are
reachable while others are not.

• Finally, rule Red reduces the reachable terms in order to obtain their normal forms. We
use this rule to reproduce Maude behavior, first the normal form is computed and then the
rules are applied.

Now we state that this calculus is correct in the sense that the derived judgments with respect
to the rewrite theory R = (Σ, E,R) coincide with the ones satisfied by the corresponding initial
model TΣ/E,R, i.e., for any judgment ϕ, ϕ is derivable in the calculus if and only if TΣ/E,R |= ϕ.
This is well known for the judgments corresponding to equations t = t′, memberships t : s, and
rewrites t ⇒ t′ [11, 10].

Theorem 3.6. The calculus of Figures 1, 2, 3, and 4 is correct.

Once these rules are defined, we can build the tree corresponding to the search result shown in
Section 2 for the maze example. We recall that we have defined a system to search a path out of a
labyrinth but, given a concrete labyrinth with an exit, the program is unable to find it. First of all,
we have to use a concrete bound to build the tree. It must suffice to compute all the reachable terms,
and in this case the least of these values is 4. We have depicted the tree in Figure 5, where we have
abbreviated the equational condition {L:List} := ⊛ ∧ isSol(L:List) = true by C and isSol(L)

= true by isSol(L). The leftmost tree justifies that the search condition does not hold for the
initial term (this is the reason why Tr2 has been used instead of Tr1) and thus it is not a solution.
Note that first the substitutions from the matching with the pattern are obtained (L 7→ [1,1] in
this case), and then these substitutions are used to instantiate the rest of the condition, that for
this term does not hold, which is proved by ∗1. The next tree shows the set of reachable terms in
one step (the tree ∗2, explained below, computes the terms obtained by rewrites at the top, while
the tree on its right shows that the subterms cannot be further rewritten) and finally the rightmost
tree, that has a similar structure to this one and will not be studied in depth, continues the search
with a decreased bound.

The tree ∗1 shows why the current list is not a solution (i.e., the tree provides the negative
information proving that this fragment of the condition does not hold). The reason is that the term
isSol(L) is reduced to false, when we needed it to be reduced to true.
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1 →norm 1
Norm

[1,1] →norm [1,1]
Norm

{[1,1]} →norm {[1,1]}
Norm

[{L:List} := {[1,1]}, ∅] L 7→ [1,1]}
PatC

∗1
〈isSol(L), {L 7→ [1,1]}〉 ∅

SubsCond

fails(C, {[1,1]})
Fail

∗2

[1,1] ⇒top ∅
Top 1 ⇒top ∅

Top

1 ⇒1 ∅
Stp

[1,1] ⇒1 ∅
Stp

{[1,1]} ⇒1 {[1,1][1,2]}
Stp

∗3

{[1,1][1,2]} C
3 ∅

Tr2

{[1,1]} C
4 ∅

Tr2

Figure 5: Tree for the maze example

isSol([1,1]) →red false
Rdc1

false →norm false
Norm

isSol([1,1]) →norm false
NTr

true →norm true
Norm

[isSol(L) = true, L 7→ [1,1]] ∅
EqC2

Figure 6: Tree ∗1 for the search condition

The tree labeled with ∗2 is sketched in Figure 7. In this tree the applications of all the rules
whose lefthand side matches the current term ({[1,1]}) are tried. In this case only the rule expand
(abbreviated by e) can be used, and it generates a list with the new position [1,2]; the tree ∗4 is used
to justify that the first condition of expand holds and extends the set of substitutions that fulfill the
condition thus far to the set {θ1, θ2, θ3}, where θ1 ≡ L 7→ [1,1]; P 7→ [1,2], θ2 ≡ L 7→ [1,1]; P 7→
[1,0], and θ3 ≡ L 7→ [1,1]; P 7→ [0,1]. The substitution θ1 also fulfills the next condition,
isOk(L P), which is proved with the rule EqC1 in ♣ (where the big triangle is a computation in the
calculus of [17] proving that the conditions of the equations hold), while the substitutions θ2 and θ3
fail; the trees ▽ proving it are analogous to the one shown in Figure 6. This substitution θ1 is thus
the only one inferred in the root of the tree, where the node ♣ provides the positive information
proving why the substitution is obtained and its siblings (▽) the negative information proving why
the other substitutions are not in the set.

1 →norm 1
Norm

{[1,1]} →norm {[1,1]}
Norm

[{L} := {[1,1]}, ∅] {L 7→ [1,1]}
PatC

∗4

�
�
�

A
A
A

isOk([1,1][1,2]) → true
Rep

→ true → true
Rf

→

(♣) [isOk(L P), θ1] {θ1}
EqC1

▽ ▽

〈isOk(L P), {θ1, θ2, θ3}〉 {θ1}
SubsCond

{[1,1]} ⇒e {[1,1][1,2]}
Rl

{[1,1]} ⇒top {[1,1][1,2]}
Top

Figure 7: Tree ∗2 for the applications at the top

The tree ∗4, shown in Figure 8, is in charge of inferring the set of substitutions obtained when
checking the first condition of the rule expand, namely next(L) => P. The condition is instantiated
with the substitution obtained from matching the term with the lefthand side of the rule (in this
case L 7→ [1,1]) and, since it is a rewrite condition, the set of reachable terms—computed with ∗5,
which will not be further discussed here—is used to extend this substitution, obtaining a set with
three different substitutions (that we previously abbreviated as θ1, θ2, and θ3).

4. Debugging Trees

We describe in this section how to obtain appropriate debugging trees from the proof trees in-
troduced in the previous section. Following the approach shown in [17], we assume the existence of
an intended interpretation I of the given rewrite theory R = (Σ, E,R). This intended interpretation
is a Σ-term model corresponding to the model that the user had in mind while writing the specifi-
cation R. Therefore the user expects that I |= ϕ for any judgment ϕ deduced with respect to the
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∗5

next([1,1]) P:=⊛

2 {[1,2], [1,0], [0,1]}
Tr2

[next(L) ⇒ P, L 7→ [1,1]] {L 7→ [1,1]; P 7→ [1,2], L 7→ [1,1]; P 7→ [1,0], L 7→ [1,1]; P 7→ [0,1]}
RlC

〈next(L) ⇒ P, {L 7→ [1,1]}〉 {L 7→ [1,1]; P 7→ [1,2], L 7→ [1,1]; P 7→ [1,0], L 7→ [1,1]; P 7→ [0,1]}
SubsCond

Figure 8: Tree ∗4 for the first condition of expand

rewrite theory R. We will say that a judgment is valid when it holds in the intended interpretation
I, and invalid otherwise. Our goal is to find a buggy node in any proof tree T rooted by the initial
error symptom detected by the user. This could be done simply by asking questions to the user
about the validity of the nodes in the tree according to the following top-down strategy: If all the
children of N are valid, then finish pointing out at N as buggy; otherwise, select the subtree rooted
by any invalid child and use recursively the same strategy to find the buggy node. Proving that this
strategy is complete is straightforward by using induction on the height of T . By using the proof
trees computed with the calculus of the previous section as debugging trees we are able to locate
wrong statements, missing statements, and wrong search conditions, which are defined as follows:

• Given a statement A ⇐ C1 ∧ · · · ∧ Cn (where A is either an equation l = r, a membership
l : s, or a rule l ⇒ r) and a substitution θ, the statement instance θ(A) ⇐ θ(C1)∧· · ·∧θ(Cn)
is wrong when all the atomic conditions θ(Ci) are valid in I but θ(A) is not.

• Given a rule l ⇒ r ⇐ C1 ∧ · · · ∧ Cn and a term t, the rule has a wrong instance if the
judgments [l := t, ∅]  Θ0, [C1,Θ0]  Θ1, · · · , [Cn,Θn−1]  Θn are valid in I but the
application of Θn to the righthand side does not provide all the results expected for this
rule.

• Given a condition l := ⊛ ∧ C1 ∧ · · · ∧ Cn and a term t, if [l := t, ∅] Θ0, [C1,Θ0] Θ1,
· · · , [Cn,Θn−1] ∅ are valid in I (meaning that the condition does not hold for t) but the
user expected the condition to hold, then we have a wrong search condition instance.

• Given a condition l := ⊛ ∧ C1 ∧ · · · ∧ Cn and a term t, if there exists a substitution θ such
that θ(l) ≡A t and all the atomic conditions θ(Ci) are valid in I, but the condition is not
expected to hold, then we also have a wrong search condition instance.

• A statement or condition is wrong when it admits a wrong instance.
• Given a term t, there is a missing equation for t if the computed normal form of t does
not correspond with the one expected in I. A specification has a missing equation if there
exists a term t such that there is a missing equation for t.

• Given a term t, there is a missing membership for t if the computed least sort for t does not
correspond with the one expected in I. A specification has a missing membership if there
exists a term t such that there is a missing membership for t.

• Given a term t, there is a missing rule for t if all the rules applied to t at the top lead to
judgments t ⇒qi Sqi valid in I but the union

⋃

Sqi does not contain all the reachable terms
from t by using rewrites at the top. A specification has a missing rule if there exists a term
t such that there is a missing rule for t.2

In our debugging framework, when a wrong statement is found, this specific statement is pointed
out; when a missing statement is found, the debugger indicates the operator at the top of the term
in the lefthand side of the statement that is missing; and when a wrong condition is found, the
specific condition is shown. We will see in the next section that some extra information will be kept
in the tree to provide this information. It is important not to confuse missing answers with missing

2Actually, what the debugger reports is that a statement is missing or the conditions in the remaining
statements are not the intended ones (thus they are not applied when expected and another one would be
needed), but the error is not located in the statements used in the conditions, since they are also checked
during the debugging process.
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statements; the current calculus detects missing answers due to both wrong and missing statements
and wrong search conditions.

4.1. Abbreviated Proof Trees

We will not use proof trees T directly as debugging trees, but a suitable abbreviation which we
denote by APT (T ) (from Abbreviated Proof Tree), or simply APT when T is clear from the context.
The reason for preferring the APT is that it reduces and simplifies the questions that will be asked
to the user while keeping the soundness and completeness of the technique. This transformation
relies on the following proposition:

Proposition 4.1. Let N be a buggy node in some proof tree in the calculus of Figures 1, 2, 3, and
4, w.r.t. an intended interpretation I. Then:

(1) N is the consequence of a Rep→, Rep⇒, Mb, Rdc1, Norm, Ls, Fulfill, Fail, Top, or Rl
inference rule.

(2) The error associated to N is a wrong statement, a missing statement, or a wrong search
condition.

To indicate the error associated to the buggy node, we assume that the nodes inferred with
these inference rules are decorated with some extra information to identify the error when they are
pointed out as buggy. More specifically, nodes related to wrong statements keep the label of the
statement, nodes related to missing statements keep the operator at the top that requires more
statements to be defined, and nodes related to wrong conditions keep the condition.

The key idea in the APT , whose rules are shown in Figure 9, is to keep the nodes related to the
inference rules indicated in Proposition 4.1, making use of the rest of rules to improve the questions
asked to the user. The abbreviation always starts by applying (APT1). This rule simply duplicates
the root of the tree and applies APT ′, which receives a proof tree and returns a forest (i.e., a set
of trees). Hence without this duplication the result of the abbreviation could be a forest instead of
a single tree. The rest of the APT rules correspond to the function APT ′ and are assumed to be
applied top-down: if several APT rules can be applied at the root of a proof tree, we must choose
the first one, that is, the rule of least number. The following advantages are obtained:

• Questions associated to nodes with reductions are improved (rules (APT2), (APT3),
(APT5), (APT6), and (APT7)) by asking about normal forms instead of asking about
intermediate states. For example, in rule (APT2) the error associated to t → t′ is the one
associated to t → t′′, which is not included in the APT . We have chosen to introduce t → t′

instead of simply t → t′′ in the APT as a pragmatic way of simplifying the structure of the
APT s, since t′ is obtained from t′′ and hence likely simpler.

• The rule (APT4) deletes questions about rewrites at the top (that can be difficult to answer
due to matching modulo) and associates the information of those nodes to questions related
to the set of reachable terms in one step with rewrites in any position, that are in general
easier to answer.

• It creates, with the variants of the rules (APT8) and (APT9), two different kinds of tree,
one that contains judgments of rewrites with several steps and another that only contains
rewrites in one step. The one-step debugging tree follows strictly the idea of keeping only
nodes corresponding to relevant information. However, the many-steps debugging tree also
keeps nodes corresponding to the transitivity inference rules. The user will choose which
debugging tree (one-step or many-steps) will be used for the debugging session, taking into
account that the many-steps debugging tree usually leads to shorter debugging sessions (in
terms of the number of questions) but with likely more complicated questions. The number
of questions is usually reduced because keeping the transitivity nodes for rewrites gives to
some parts of the debugging tree the shape of a balanced binary tree (each transitivity
inference has two premises, i.e., two child subtrees), and this allows the debugger to use



290 A. RIESCO, A. VERDEJO, AND N. MARTÍ-OLIET

(APT1) APT

(

T1 . . . Tn

aj
R1

)

=
APT ′

(

T1 . . . Tn

aj
R1

)

aj

(APT2) APT ′





T1 . . . Tn

t → t′′
Rep

→

T ′

t → t′
Tr→



 =

{

APT ′(T1) . . .APT
′(Tn) APT

′(T ′)
t → t′

Rep
→

}

(APT3) APT ′





T1 . . . Tn

t → t′′
Rdc1 T ′

t → t′
NTr



 =

{

APT ′ (T1) . . . APT ′ (Tn) APT ′ (T ′)
t → t′

Rdc1

}

(APT4) APT ′





T1 . . . Tn

t ⇒top S′ Top T ′
1 . . . T

′
m

t ⇒1 S
Stp



 =

{

APT ′ (T1) . . . APT ′ (Tn) APT ′ (T ′
1) . . . APT ′ (T ′

m)
t ⇒1 S

Top

}

(APT5) APT ′



 T ′
T1 . . . Tn

t ⇒ t′
Rep

⇒

T ′′

t1 ⇒ t2
EC



 =

{

APT ′(T ′) APT ′(T1) . . .APT
′(Tn) APT

′(T ′′)
t1 ⇒ t2

Rep
⇒

}

(APT6) APT ′





T
T1 . . . Tn

aj ′
R1 T ′

aj
Red



 =

{

APT ′ (T ) APT ′ (T1) . . . APT ′ (Tn) APT ′ (T )
aj

R1

}

(APT7) APT ′

(

Tt→norm t′ T1 . . . Tn

t :ls s
Ls

)

=

{

APT ′ (Tt→norm t′) APT ′ (T1) . . . APT ′ (Tn)
t ′ :ls s

Ls

}

(APTo
8) APT ′

(

T1 T2

t ⇒ t′
Tr⇒

)

= APT ′(T1)
⋃

APT ′(T2)

(APTm
8 ) APT ′

(

T1 T2

t ⇒ t′
Tr⇒

)

=

{

APT ′(T1) APT
′(T2)

t ⇒ t′
Tr⇒

}

(APTo
9) APT ′

(

T1 . . . Tn

aj
Tr

)

= APT ′ (T1)
⋃

. . .
⋃

APT ′ (Tn)

(APTm
9 ) APT ′

(

T1 . . . Tn

aj
Tri

)

=

{

APT ′ (T1) . . . APT ′ (Tn)
aj

Tri

}

(APT10) APT ′

(

T1 . . . Tn

aj
R2

)

=

{

APT ′(T1) . . .APT
′(Tn)

aj
R2

}

(APT11) APT ′

(

T1 . . . Tn

aj
R1

)

= APT ′(T1)
⋃

. . .
⋃

APT ′(Tn)

R1 any inference rule R2 either Mb, Rep→, Rep⇒, Rdc1, Norm, Fulfill, Fail, Ls, Rl, or Top

1 ≤ i ≤ 2 aj , aj ′ any judgment

Figure 9: Transforming rules for obtaining abbreviated proof trees

efficiently the divide and query navigation strategy. On the contrary, removing the tran-
sitivity inferences for rewrites (as rules (APTo

8) and (APTo
9) do) produces flattened trees

where this strategy is no longer efficient. On the other hand, in rewrites t ⇒ t′ and searches
t  C

n S appearing as conclusion of a transitivity inference rule, the judgment can be more
complicated because it combines several inferences. The user must balance the pros and
cons of each option, and choose the best one for each debugging session.
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(♠) 1 →norm 1
Norm

s

(♠) [1,1] →norm [1,1]
Norm

[ , ]

(♠) {[1,1]} →norm {[1,1]}
Norm

{ }
isSol(P1) → f

Rdc
is2 ⋆1 ▽ . . . ▽ ⋆2

{[1,1]} C
4 ∅

Tr2

Figure 10: Abbreviated proof tree for the maze example

• The rule (APT11) removes from the tree all the nodes not associated with relevant infor-
mation, since the rule (APT10) keeps the relevant information and the rules are applied
in order. We remove, for example, nodes related to judgments about sets of substitutions,
disabled statements, and rewrites with a concrete rule, that can be in general difficult to an-
swer. Moreover, it removes from the tree trivial judgments like the ones related to reflexivity
or congruence.

• Since the APT is built without computing the associated proof tree, it reduces the time
and space needed to build the tree.

The following theorem states that we can safely employ the abbreviated proof tree as a basis
for the declarative debugging of Maude system and functional modules: the technique will find a
buggy node starting from any initial symptom. We assume that the information introduced by the
user during the session is correct.

Theorem 4.2. Let T be a finite proof tree representing an inference in the calculus of Figures 1, 2,
3, and 4 w.r.t. some rewrite theory R. Let I be an intended interpretation of R s.t. the root of T is
invalid in I. Then:

• APT (T ) contains at least one buggy node (completeness).
• Any buggy node in APT (T ) has an associated wrong statement, missing statement, or wrong
condition in R (correctness).

The trees in Figures 10–12 depict the (one-step) abbreviated proof tree for the maze exam-
ple, where C stands for {L:List}:= ⊛ ∧ isSol(L:List), P1 for [1,1], L1 for [1,1][1,2],
L2 for [1,1][1,0], L3 for [1,1][0,1], t for true, f for false, n for next, e for expand, L for
[1,1][1,2][1,3][1,4], and ∗′5 for the application of APT ′ to ∗5. We have also extended the in-
formation in the labels with the operator or statement associated to the inference. More concretely,
the tree in Figure 10 abbreviates the tree in Figure 5; the first two premises in the abbreviated
tree abbreviate the first premise in the proof tree (which includes the tree in Figure 6), keeping
only the nodes associated with relevant information according to Proposition 4.1: Norm, with the
operator associated to the reduction, and Rdc1, with the label of the associated equation. The tree
⋆1, shown in Figure 11, abbreviates the second premise of the tree in Figure 5 as well as the trees
in Figures 7 and 8; it only keeps the nodes referring to normal forms, searches in one step, that
are now associated to the rule Top, each of them referring to a different operator (the operator s_
is the successor constructor for natural numbers), and the applications of rules (Rl) and equations
(Rep→). Note that the equation describing the behavior of isOk has not got any label, which is
indicated with the symbol ⊥; we will show below how the debugger deals with these nodes. The
tree ⋆2, presented in Figure 12, shares these characteristics and only keeps nodes related to one-step
searches and application of rules.

These APT rules are combined with trusting mechanisms that further reduce the proof tree
(note that the correctness of these techniques relies on the decisions made by the user):

• Statements can be trusted in several ways: non labelled statements are always trusted (i.e.,
the nodes marked with (♦) in Figure 11 will be discarded by the debugger), statements and
modules can be trusted before starting the debugging process, and statements can also be
trusted on the fly.
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(♠) 1 →norm 1
Norm

s

(♠) [1,1] →norm [1,1]
Norm

[ , ]

∗′5 (♦) isOk(L1) → t
Rep

⊥ (♦) isOk(L2) → f
Rep

⊥ (♦) isOk(L3) → f
Rep

⊥

{[1,1]} ⇒e {[1,1][1,2]}
Rl

e

(♥) 1 ⇒1 ∅
Top

s

(♥) [1,1] ⇒1 ∅
Top

[ , ]

{[1,1]} ⇒1 {[1,1][1,2]}
Top

{ }

Figure 11: Abbreviated tree ⋆1

▽ . . . ▽

n(L) ⇒n1 [1,5]
Rl

n1

▽ . . . ▽

n(L) ⇒n2 [0,4]
Rl

n2

▽ . . . ▽

n(L) ⇒n3 [1,3]
Rl

n3

(‡) n(L) ⇒1 {[1,5], [0,4], [1,3]}
Top

n ▽ . . . ▽

(†) {[1,1][1,2][1,3][1,4]} ⇒e ∅
Rl

e

(†) {[1,1][1,2][1,3][1,4]} ⇒1 ∅
Top

{ }

Figure 12: Abbreviated tree ⋆2

• A correct module can be given before starting a debugging session. By checking the cor-
rectness of the judgments against this module, correct nodes can be deleted from the tree.

• We consider that constructed terms (terms built only with constructors, pointed out with
the ctor attribute, and also known as data terms in other contexts) are in normal form and
thus inferences of the form t →norm t with t constructed are removed from the tree. This
would remove from the tree the nodes marked with (♠) in Figures 10 and 11.

• Constructed terms of certain sorts or built with some operators can be considered final,
which indicates that they cannot be further rewritten. For example, we could consider
terms of sorts Nat and List to be final and thus the nodes marked with (♥) in Figure 11
would be removed from the tree.

Once this tree has been built, we can use it to debug the error shown in Section 2. Using the
top-down navigation strategy our tool would show all the children of the root and ask the user to
select an incorrect one. The last one (the root of ⋆2) is incorrect and can be selected, and then the
user has to answer about the validity of the child of this node. Since it is also incorrect the debugger
selects it as current one (the path thus far has been marked with (†) in Figure 12) and the debugger
shows its children. The first child (‡) is erroneous, but this time its children are all correct, so the
tool points it out as buggy and it is associated to an erroneous fragment of code. More concretely,
the rule used to infer this judgment was Top, and it is associated with the operator next (that was
abbreviated as n), i.e., another rule for this operator is needed. Indeed, if we check the module we
notice that the movement to the right has not been specified. We can fix it by adding:
rl [n4] : next(L [X,Y]) => [X + 1, Y] .

A detailed session of this example is available in the webpage maude.sip.ucm.es/debugging.

5. Conclusions and Future Work

We have presented in this paper a debugger of missing answers for Maude specifications. The
trees for this kind of debugging are obtained from an abbreviation of a proper calculus whose
adequacy for debugging has been proved. This work extends our previous work on wrong and
missing answers [17, 18] and provides a powerful and complete debugger for Maude specifications.
Moreover, we also provide a graphical user interface that eases the interaction with the debugger
and improves its traversal. The tree construction, its navigation, and the user interaction (excluding
the GUI) have been all implemented in Maude itself. For more information, see http://maude.

sip.ucm.es/debugging.
We plan to add new navigation strategies like the ones shown in [21] that take into account

the number of different potential errors in the subtrees, instead of their size. Moreover, the current
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version of the tool allows the user to introduce a correct but maybe incomplete module in order to
shorten the debugging session. We intend to add a new command to introduce complete modules,
which would greatly reduce the number of questions asked to the user. Finally, we also plan to
create a test generator to test Maude specifications and debug the erroneous test with the debugger.
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