
International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 295-310
http://rewriting.loria.fr/rta/

SIMULATION IN THE CALL-BY-NEED LAMBDA-CALCULUS WITH

LETREC

MANFRED SCHMIDT-SCHAUSS 1 AND DAVID SABEL 1 AND ELENA MACHKASOVA 2

1 Dept. Informatik und Mathematik, Inst. Informatik, Goethe-University, PoBox 11 19 32, D-60054
Frankfurt, Germany
E-mail address, M. Schmidt-Schauß: schauss@ki.informatik.uni-frankfurt.de
E-mail address, D. Sabel: sabel@ki.informatik.uni-frankfurt.de

2 Division of Science and Mathematics, University of Minnesota, Morris, MN 56267-2134, U.S.A
E-mail address, E. Machkasova: elenam@morris.umn.edu

Abstract. This paper shows the equivalence of applicative similarity and contextual ap-
proximation, and hence also of bisimilarity and contextual equivalence, in the deterministic
call-by-need lambda calculus with letrec. Bisimilarity simplifies equivalence proofs in the
calculus and opens a way for more convenient correctness proofs for program transfor-
mations. Although this property may be a natural one to expect, to the best of our
knowledge, this paper is the first one providing a proof. The proof technique is to transfer
the contextual approximation into Abramsky’s lazy lambda calculus by a fully abstract
and surjective translation. This also shows that the natural embedding of Abramsky’s
lazy lambda calculus into the call-by-need lambda calculus with letrec is an isomorphism
between the respective term-models. We show that the equivalence property proven in
this paper transfers to a call-by-need letrec calculus developed by Ariola and Felleisen.

1. Introduction

Non-strict programming languages such as the core-language of Haskell can be modeled
using call-by-need lambda calculi. Contextual semantics, based on an operational semantics,
describes behavior of expressions in all possible contexts and can model the semantics of
different variants of these calculi. Applicative bisimulation is a restricted form of contextual
equivalence: if two closed expressions behave the same on all arguments, then they are
bisimilar. It allows more convenient proofs of e.g. correctness of program transformations.
Abramsky & Ong showed that applicative bisimulation is the same as contextual equivalence
in a specific simple lazy lambda calculus [Abr90, Abr93], and Howe [How89, How96] proved
that in classes of calculi applicative bisimulation is the same as contextual equivalence. This
leads to the expectation that some form of applicative bisimulation may be used for calculi
with Haskell’s cyclic let(rec). Howe’s method is applicable to calculi with non-recursive let
even in the presence of non-determinism [Man10]. However, in the case of (cyclic) letrec

1998 ACM Subject Classification: F.4.2, F.3.2, F.3.3, F.4.1.
Key words and phrases: semantics, contextual equivalence, bisimulation, lambda calculus, call-by-need,

letrec.

c© M. Schmidt-Schauß, D. Sabel, and E. Machkasova
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.295

296 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

and non-determinism the method fails, as a recent counterexample shows [SS09a]. This
raises a question: which call-by-need calculi with letrec permit applicative bisimilarity as a
tool for proving contextual equality.

We show in this paper that for the minimal extension of Abramsky’s lazy lambda
calculus with letrec which implements sharing and explicit recursion, the equivalence of
contextual equivalence and applicative bisimulation indeed holds. The technique used is
via two translations: W from a call-by-need letrec-calculus into a full call-by-name letrec
calculus using infinite trees as justification for the correctness (i.e. full abstraction), and
N translating the letrec expressions away using a family of fixpoint combinators. Full
abstraction of the translation, an analysis of applicative contexts, and a variant of behavioral
similarity then show that the applicative similarity can be transferred between the calculi
and that the embedding of the lazy lambda calculus into the call-by-need calculus is an
isomorphism of the respective term models.

In [Jef94] there is an investigation into the semantics of a lambda-calculus that permits
cyclic graphs, and where a fully abstract denotational semantics is described. However, the
calculus is different from our calculi in its expressiveness since it permits strictness anno-
tations and a parallel convergence test, where the latter is required for the full abstraction
property of the denotational model. Expressiveness of programming languages was investi-
gated e.g. in [Fel91] and the usage of syntactic methods was formulated as a research pro-
gram there, with non-recursive let as the paradigmatic example. Our isomorphism-theorem
6.9 shows that this approach is extensible to a cyclic let.

Related work on calculi with recursive bindings includes the following foundational
papers. An early paper that proposes cyclic let-bindings (as graphs) is [Ari94], where re-
duction and confluence properties are discussed. [Ari95, Ari97, Mar98] present call-by-need
lambda calculi with non-recursive let and a let-less formulation of call-by-need reduction.
For a calculus with non-recursive let it is shown in [Mar98] that call-by-name and call-by-
need evaluation induce the same observational equivalences. Call-by-need lambda calculi
with a recursive let that closely correspond to our calculus Lneed are also presented in
[Ari95, Ari97, Ari02]. In [Ari02] it is shown that there exist infinite normal forms and that
the calculus satisfies a form of confluence. In this paper we show that the letrec calculus
of [Ari97] is equivalent to Lneed w.r.t. convergence and contextual equivalence (see Theo-
rem 7.1) and that bisimulation for the letrec calculus of [Ari97] is equivalent to contextual
equivalence. This supports our experience and view that contextual equivalence is a more
central notion than a specific standard reduction.

Outline: In Sect. 3 we introduce the two letrec-calculi and recall results for Abramsky’s
lazy lambda calculus. In Sect. 4 and 5 the translations W and N are introduced and the
full-abstraction results are obtained. In Sect. 6 we show that bisimulation and contextual
equivalence are the same in the call-by-need calculus with letrec. In Sect. 7 we show that
our result is transferable to the letrec-calculus of [Ari97]. Finally, we conclude in Sect. 8.

2. Common Notions and Notations for Calculi

Before we explain the specific calculi, some common notions are introduced. A calculus
definition consists of its syntax together with its operational semantics which defines the
evaluation of programs and the implied equivalence of expressions.

Definition 2.1. An untyped deterministic calculus D is a four-tuple (E , C,→,W), where
E are expressions, C : E → E is a set of functions (which usually represents contexts), →

SIMULATION IN THE CALL-BY-NEED LAMBDA-CALCULUS WITH LETREC 297

is a small-step reduction relation (usually the normal-order reduction), which is a partial
function on expressions, and W ⊂ E is a set of values of the calculus.

For C ∈ C and an expression s, the functional application is denoted as C[s]. For
contexts, this is the replacement of the hole of C by s. We also assume that the identity
function Id is contained in C with Id [s] = s for all expressions s.

The transitive closure of → is denoted as
+
−→ and the transitive and reflexive closure of →

is denoted as
∗
−→. Given an expression t, a sequence t → t1 → . . . → tn is called a reduction

sequence; it is called an evaluation if tn is a value, i.e. tn ∈ W . Then we say s converges and
denote this as s↓tn or as s↓ if tn is not important. If there is no tn s.t. s↓tn then s diverges,
denoted as s⇑. When dealing with multiple calculi, we often use the calculus name to mark

its expressions and relations, e.g.
D
−→ denotes a reduction relation in D.

Contextual approximation and equivalence can be defined in a general way:

Definition 2.2. Let D = (E , C,→,W) be a calculus and s, t be D-expressions. Contextual
approximation ≤D and contextual equivalence ∼D are defined as:

s ≤D t iff ∀C ∈ C : C[s]↓D ⇒ C[t]↓D
s ∼D t iff s ≤D t ∧ t ≤D s

Note that ≤D is a precongruence and that ∼D is a congruence.

We are interested in translations between calculi that are faithful w.r.t. the corre-
sponding contextual preorders. Recall that we developed such translations between cal-
culi with contextual equivalences in [SS08b, SS09b]: A translation τ : (E1, C1,→1,W1) →
(E2, C2,→2,W2) is a mapping τE : E1 → E2 and a mapping τC : C1 → C2 such that
τC(Id1) = Id2 . The following notions are defined:

• τ is compositional iff τ(C[e]) = τ(C)[τ(e)] for all C, e.
• τ is convergence equivalent iff e↓1 ⇐⇒ τ(e)↓2 for all e.
• τ is adequate iff for all e, e′ ∈ E1: τ(e) ∼2 τ(e

′) =⇒ e ∼1 e
′.

• τ is fully abstract iff for all e, e′ ∈ E1: e ∼1 e
′ ⇐⇒ τ(e) ∼2 τ(e

′).

From [SS08b, SS09b] it is known that a compositional and convergence equivalent trans-
lation is adequate.

3. Three Calculi

In this section we present the calculi that we use in the paper: the two calculi Lneed and
Lname with letrec, which have the same syntax, but differ in their reduction strategies, and
Abramsky’s “lazy lambda calculus”, which is a pure lambda calculus with a call-by-name
reduction that has abstractions as successful results.

3.1. The Call-by-Need Calculus Lneed

We begin with the call-by-need lambda calculus Lneed which is exactly the call-by-need
calculus of [SS07]. The set E of Lneed -expressions is as follows where x, xi are variables:

si, s, t ∈ E ::= x | (s t) | (λx.s) | (letrec x1 = s1, . . . , xn = sn in t)

We assign the names application, abstraction, or letrec-expression to the expressions (s t),
(λx.s), (letrec x1 = s1, . . . , xn = sn in t), respectively. A group of letrec bindings is
abbreviated as Env.

298 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

(lbeta) C[((λx.s)S r)] → C[(letrec x = r in s)]
(cp-in) (letrec x = sS ,Env in C[xV]) → (letrec x = s,Env in C[s])

where s is an abstraction or a variable
(cp-e) (letrec x = sS ,Env , y = C[xV] in r) → (letrec x = s,Env , y = C[s] in r)

where s is an abstraction or a variable
(llet-in) (letrec Env1 in (letrec Env2 in r)S) → (letrec Env1,Env2 in r)
(llet-e) (letrec Env1, x = (letrec Env2 in sx)

S in r)
→ (letrec Env1,Env2, x = sx in r)

(lapp) C[((letrec Env in t)S s)] → C[(letrec Env in (t s))]

Figure 1: Reduction rules of Lneed

We assume that variables xi in letrec-bindings are all distinct, that letrec-expressions
are identified up to reordering of binding-components, and that, for convenience, there is
at least one binding. letrec-bindings are recursive, i.e., the scope of xj in (letrec x1 =
s1, . . . , xn−1 = sn−1 in sn) are all expressions si with 1 ≤ i ≤ n. Free and bound variables in
expressions and α-renamings are defined as usual. The set of free variables in t is denoted as
FV (t). We use the distinct variable convention, i.e., all bound variables in expressions are
assumed to be distinct, and free variables are distinct from bound variables. The reduction
rules are assumed to implicitly α-rename bound variables in the result if necessary.

A context C is an expression from Lneed extended by a symbol [·], the hole, such that [·]
occurs exactly once (as subexpression) in C. Given a term t and a context C, we write C[t]
for the Lneed -expression constructed from C by plugging t into the hole, i.e, by replacing [·]
in C by t, where this replacement is meant syntactically, i.e., a variable capture is permitted.

Definition 3.1. The reduction rules for the calculus and language Lneed are defined in
Fig. 1, where the labels S, V are used for the exact definition of the normal-order reduction
below. Several reduction rules are denoted by their name prefix, e.g. the union of (llet-in)
and (llet-e) is called (llet). The union of (llet) and (lapp) is called (lll).

For the definition of the normal order reduction strategy of the calculus Lneed we use
the labeling algorithm in Figure 2, which detects the position to which a reduction rule is
applied according to the normal order. It uses the following labels: S (subterm), T (top
term), V (visited). We use ∨ when a rule allows two options for a label, e.g. sS∨T stands
for s labeled with S or T . A labeling rule l → r is applicable to a (labeled) expression s if
s matches l with the labels given by l where s may have more labels than l if not otherwise
stated. The labeling algorithm has as input an expression s and then exhaustively applies
the rules in Fig. 2 to sT , where no other subexpression in s is labeled. The label T is used
to prevent the labeling algorithm from visiting letrec-environments that are not at the
top of the expression. The labeling algorithm either terminates with fail or with success,
where in general the direct superterm of the S-marked subexpression indicates a potential
normal-order redex. The use of such a labeling algorithm corresponds to the search of a
redex in term graphs where it is usually called unwinding.

Example 3.2. For the expression letrec x = x in x the labeling does not fail:

(letrec x = x in x)T →(letrec x = x in xS)V → (letrec x = xS in xV)V

SIMULATION IN THE CALL-BY-NEED LAMBDA-CALCULUS WITH LETREC 299

(letrec Env in t)T → (letrec Env in tS)V

C[(s t)S∨T] → C[(sS t)V]
(letrec x = s,Env in C[xS]) → (letrec x = sS ,Env in C[xV])
(letrec x = s, y = C[xS],Env in t) → (letrec x = sS , y = C[xV],Env in t)

if s was not labeled and if C[x] 6= x
(letrec x = sV , y = C[xS],Env in t) → fail if C[x] 6= x
(letrec x = C[xS]V ,Env in t) → fail if C[x] 6= x

Figure 2: Labeling algorithm for Lneed

But for the expressions letrec x = (y x), y = (x y) in x and letrec x = (x λu.u) in x
the labeling fails.

Definition 3.3 (Normal Order Reduction of Lneed). Let t be an expression. Then a single

normal order reduction step
need
−−−→ is defined as follows: first the labeling algorithm is applied

to t. If the labeling algorithm terminates successfully, then one of the rules in Figure 1 is
applied, if possible, where the labels S, V must match the labels in the expression t (again
t may have more labels). The normal order redex is defined as the left-hand side of the
applied reduction rule. The notation for a normal-order reduction that applies the rule a is
need ,a
−−−−→, e.g.

need ,lapp
−−−−−−→ applies the rule (lapp).

Definition 3.4. A reduction context Rneed is any context, such that its hole is labeled with
S or T by the labeling algorithm.

Note that the normal order redex as well as the normal order reduction is unique.
A weak head normal form in Lneed (Lneed -WHNF) is either an abstraction λx.s, or an
expression (letrec Env in λx.s). The notions of convergence, divergence and contextual
approximation are as defined in Sect. 2. Note that black holes, i.e. expressions with cyclic
dependencies in a normal order reduction context, diverge, e.g. letrec x = x in x. Other
expressions which diverge are open expressions where a free variable appears (perhaps after
several reductions) in reduction position. A specific representative of diverging expressions
is Ω := (λz.(z z)) (λx.(x x)), i.e. Ω⇑need .

Example 3.5. We consider the expression t1 := letrec x = (y λu.u), y = λz.z in x.
The labeling algorithm applied to t1 yields (letrec x = (yV λu.u)V , y = (λz.z)S in xV)V .

The only reduction rule that matches this labeling is the reduction rule (cp-e), i.e. t1
need
−−−→

(letrec x = ((λz′.z′) λu.u), y = (λz.z) in x) = t2. The labeling of t2 is (letrec x =
((λz′.z′)S λu.u)V , y = (λz.z) in xV)V , which makes the reduction (lbeta) applicable, i.e.

t2
need
−−−→ (letrec x = (letrec z′ = λu.u in z′), y = (λz.z) in x) = t3. The labeling

of t3 is (letrec x = (letrec z′ = λu.u in z′)S , y = (λz.z) in xV)V . Thus an (llet-e)-

reduction is applicable to t2, i.e. t3
Lneed−−−→ (letrec x = z′, z′ = λu.u, y = (λz.z) in x) =

t4. Application of the labeling algorithm to t4 yields: (letrec x = z′S , z′ = λu.u, y =

(λz.z) in xV)V . Thus the normal order reduction is a (cp-in)-reduction, i.e. t4
Lneed−−−→

(letrec x = z′, z′ = λu.u, y = (λz.z) in z′) = t5 The labeling of t5 is (letrec x =
z′, z′ = λu.uS , y = (λz.z) in z′V)V . Again a (cp-e) reduction is applicable, i.e. t5 →
(letrec x = z′, z′ = λu.u, y = (λz.z) in λu′.u′) = t6 The labeling algorithm applied to t6

300 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

yields (letrec x = z′, z′ = λu.u, y = (λz.z) in λu′.u′S)V , but no reduction is applicable to
t6, since t6 is a WHNF.

3.2. The Call-by-Name Calculus Lname

Now we define a call-by-name calculus on the Lneed -syntax. The syntax of the calculus
Lname is the same as that of Lneed , but the reduction rules are different. This calculus Lname

has a different call-by-name-reduction than the one in [SS07], since that calculus treats only
beta-redexes as call-by-name, but uses a sharing variant for (cp).

The reduction contexts Rname are contexts of the form L[A] where the context classes
A and L are defined by L ∈ L ::= [·] | letrec Env in L; A ∈ A ::= [·] | (A s) where s is

any expression. Normal order reduction
name
−−−→ is defined by the following three rules:

(lapp) Rname [(letrec Env in t) s] → Rname [letrec Env in (t s)]
(beta) Rname [((λx.s) t)] → Rname [s[t/x]]
(cp) L[letrec Env , x = s in Rname [x]] → L[letrec Env , x = s in Rname [s]]

Note that
name
−−−→ is unique. An Lname -WHNF is defined as an expression of the form

L[λx.s]. We write s↓name iff there is a normal-order reduction to a Lname -WHNF, i.e. iff

s
name,∗
−−−−→ L[λx.s′].

3.3. The Lazy Lambda Calculus

In this subsection we give a short description of the lazy lambda calculus [Abr90],
denoted with Llazy , which is a call-by-name lambda calculus. The set E of Llazy -expressions
is that of the usual (untyped) lambda calculus: s, si, t ∈ E ::= x | (s1 s2) | (λx.s) where e, ei
are expressions, and xmeans a variable. The set W of values are the Llazy -abstractions. The
reduction contexts Rlazy are defined by Rlazy ∈ Rlazy := [·] | (Rlazy s) where s is any Llazy -

expression. A
lazy
−−→-reduction is defined by the rule: (beta) Rlazy [((λx.s) t)] → Rlazy [s[t/x]].

The
lazy
−−→-reduction is unique.
We repeat the definitions and the required properties of Llazy , where proofs can be found

in [How89, How96, Abr90, Abr93]. For basic definitions and confluence see e.g. [Bar84].
Since this calculus is well-studied and some properties are folklore, there are different and
alternative proofs of the properties below. We require these properties in other sections
and as properties of the target of translations, which allows us to lift the properties to the
calculi Lname and Lneed .

Definition 3.6 (Simulation in Llazy). Let η be a binary relation on closed Llazy -expressions.
Then s [η]lazy t holds iff s↓λx.s′ implies

(

t↓λx.t′ and for all closed Llazy -expressions r the

relation s′[r/x] η t′[r/x] holds
)

. The relation ≤b,lazy is defined as the greatest fixpoint of
the operator [·]lazy .

For a relation η on closed expressions, let the open extension ηo be defined as s ηo t iff
for all closing substitutions σ: σ(s) η σ(t). Note that by the theorem below, this can be
shown to be equivalent to: for all closing substitutions σ that replace variables by closed
abstractions or Ω: σ(s) η σ(t). As an example ≤o

b,lazy is the open extension of ≤b,lazy .
There are several variants of behaviorally and contextually defined relations in Llazy ,

that are all equivalent to contextual approximation.

SIMULATION IN THE CALL-BY-NEED LAMBDA-CALCULUS WITH LETREC 301

Theorem 3.7. In Llazy , all the following relations are equivalent to contextual approxima-
tion ≤lazy :

(1) ≤o
b,lazy .

(2) The relation ≤lazy,1 where s ≤lazy,1 t iff for all closing contexts C: C[s]↓ =⇒ C[t]↓.
(3) The relation ≤lazy,2, defined as: s ≤lazy,2 t iff for all closed contexts C and all closing

substitutions: C[σ(s)]↓ =⇒ C[σ(t)]↓.
(4) The relation ≤o

b,lazy,1 where ≤b,lazy,1 is defined using the Kleene-construction:

≤b,lazy,1=
⋂

i≥0 ≤′
b,i, where ≤′

b,0 is the relation E × E, and ≤′
b,i+1 := [≤′

b,i]lazy for
all i.

(5) The relation ≤o
b,lazy,2 where ≤b,lazy,2 is defined as: s ≤b,lazy,2 t iff for all n ≥ 0 and

all closed expressions ri, i = 1, . . . , n: s r1 . . . rn↓ =⇒ t r1 . . . rn↓.
(6) The relation ≤o

b,lazy,3, where ≤b,lazy,3 is defined as: s ≤b,lazy,3 t iff for all n ≥ 0
and all ri, i = 1, . . . , n, where ri may be a closed abstraction or Ω: s r1 . . . rn↓ =⇒
t r1 . . . rn↓.

(7) The relation ≤o
b,lazy,4, where ≤b,lazy,4 is the greatest fixpoint of the operator [·]lazy,aΩ

on closed expressions. By definition s [η]lazy,aΩ t holds iff s↓λx.s′ implies t↓λx.t′

and for all closed Llazy -abstractions r and r = Ω, the relation s′[r/x] η t′[r/x] holds.

Beta-reduction is a correct program transformation in Llazy :

Theorem 3.8. Let s, t be Llazy -expressions. If s
beta
−−→ t, then s ∼lazy t. For all Llazy -

expressions s, t: Ω ≤lazy s. If s, t are closed and s⇑ and t⇑, then s ∼lazy t.

Also the following can easily be derived from Theorem 3.7 and Theorem 3.8.

Proposition 3.9. For open Llazy -expressions s, t, where all free variables of s, t are in
{x1, . . . , xn}: s ≤lazy t ⇐⇒ λx1, . . . xn.s ≤lazy λx1, . . . xn.t

Proposition 3.10. Given any two closed Llazy -expressions s, t: for all closed Llazy -
abstractions r and also for r = Ω s r ≤lazy t r ⇐⇒ s ≤lazy t.

Proof. The if-direction follows from the congruence property. The only-if direction follows
from Theorem 3.7.

4. The Translation W : Lneed → Lname

The translation W : Lneed → Lname is defined as the identity on expressions and
contexts, but the convergence predicates are changed. We will prove that contextual equiv-
alence based on Lneed -evaluation and contextual equivalence based on Lname -evaluation are
equivalent. We will use infinite trees to connect both evaluation strategies. Note that [SS07]
already shows that infinite tree convergence is equivalent to call-by-need convergence. Thus,
we mainly treat call-by-name evaluation in this section.

We recall the definition of an infinite tree from [SS07], and describe the set of trees as
a calculus in the sense of Section 2 called Ltree : The set of infinite trees T is co-inductively
defined using the grammar T ∈ T ::= x | (T1 T2) | λx.T | ⊥ where x is a variable, T, T1, T2

are infinite trees, ⊥ is a (special) constant. Contexts are trees with exactly one occurrence
of a hole (as a subexpression).

302 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

Definition 4.1. Tree reduction contexts R for (infinite) trees are inductively defined by
R ::= [·] | (R T), where T stands for an infinite tree. The only reduction on trees is:

(betaTr) ((λx.s) r) → s[r/x]

If the reduction rule is applied in an R-context, it is a normal order reduction on trees
tree
−−→.

Values are trees of the form λx.T , i.e. abstractions.

Now we define a translation IT from Lname -expressions into Ltree -expressions.
We use Dewey notation, i.e. strings over {1, 2}, as positions of infinite trees, where

numbers are separated by a period. Here 1 refers to the left and 2 to the right subtree
of an application, and 1 to the body of an abstraction. The empty string is denoted as
ε. For an infinite tree T its label at position p (written as T ⇂p) is defined as usual, i.e.
(T1 T2)⇂1.p = T1⇂p, (T1 T2)⇂2.p = T2⇂p, (λx.T)⇂ε = λx, (T1 T2)⇂ε = app, x⇂ε = x, and
⊥⇂ε = ⊥. The subtree of T at position p is T |p.

Definition 4.2. Given an expression t, the infinite tree IT (t) of t is defined by the labels at
valid positions, where the positions and the labels of IT (t) for every position are computed
by the following algorithm, using the notation C[t′⇃p] if the algorithm searches the label at
position p and is currently at the subexpression t′. Given the expression t and a position
p, if and only if the following rules (7→) (where C,Ci are Lname -contexts, s, t are Lname -
expressions) exhaustively applied to t⇃p end with a label l ∈ {λx, app, x,⊥}, then p is a
position of IT (t) and IT (t)⇂p = l .

The final steps in the label computation are as follows:

C[(λx.s)⇃ε] 7→ λx
C[(s t)⇃ε] 7→ app
C[x⇃ε] 7→ x if x is a free or a lambda-bound variable
C[letrec x = C[x⇃ε],Env in s] 7→ ⊥
C[letrec x1 = C1[y1], . . . , xn = Cn[x1⇃ε],Env in s] 7→ ⊥

For the general cases, we proceed as follows:

1. C[(λx.s)⇃1.p] 7→ C[λx.(s⇃p)]
2. C[(s t)⇃1.p] 7→ C[(s⇃p t)]
3. C[(s t)⇃2.p] 7→ C[(s t⇃p)]
4. C[(letrec Env in r)⇃p] 7→ C[(letrec Env in r⇃p)]
5. C1[(letrec x = s,Env in C2[x⇃p])] 7→ C1[(letrec x = s⇃p,Env in C2[x])]
6. C1[letrec x = s, y = C2[x⇃p],Env in r] 7→ C1[letrec x = s⇃p, y = C2[x],Env in r]

In all cases not mentioned above, the result is undefined, and hence the position p is not a
position of the tree.

Lemma 4.3. Let s, t ∈ Lname . Then s
name,cp
−−−−−→ t or s

name,lapp
−−−−−−→ t implies IT (s) = IT (t).

Proof. For (cp) let s = C1[letrec x = s,Env in C2[x]] and t = C1[letrec x =
s,Env in C2[s]]. Then for IT (s) and IT (t) the only change may happen at the posi-
tion that corresponds to x in C2[x], but as the computation of the labels shows, the labels
remain unchanged.

For (lapp) let s = C[(letrec Env in s′) t′] and t = C[letrec Env in (s′ t′)]. Then it
is again easy to observe that every label of every position is identical for IT (s) and IT (t).

SIMULATION IN THE CALL-BY-NEED LAMBDA-CALCULUS WITH LETREC 303

Lemma 4.4. Let s1 := Rname [(λx.s) t]
name,beta
−−−−−−→ Rname [s[t/x]] =: s2. Then IT (s1)

tree
−−→

IT (s2).

Proof. The redex ((λx.s) t) is mapped by IT to a unique tree position within a tree reduction
context in IT (s1). The computation IT transforms ((λx.s) t) into a subtree σ((λx.s) t),
where σ is a substitution replacing variables by infinite trees. The tree reduction replaces
σ((λx.s) t) by σ(s)[σ(t)/x], hence the lemma holds.

Proposition 4.5. Let s be an expression with s↓name . Then IT (s)↓tree .

Proof. This follows by induction on the length of a normal order reduction of s. The base
case holds, since IT (L[(λx .s)]) is always a value tree. For the induction step we consider the
first reduction of s, say s → s′. The induction hypothesis shows IT (s ′)↓tree . If the reduction
s → s′ is a (name,lapp) or (name,cp) reduction, then Lemma 4.3 implies IT (s)↓tree . If

s
name,beta
−−−−−−→ s′, then Lemma 4.4 shows IT (s)

tree
−−→ IT (s ′) and thus IT (s)↓tree .

Now we show the other direction:

Lemma 4.6. Let s be an expression such that IT (s) = R[T], where R is a tree reduction

context and T 6= ⊥. Then there is an expression s′ such that s
name,(lapp)∨(cp),∗
−−−−−−−−−−−−→ s′, IT (s ′) =

IT (s), s′ = R[s′′], IT (L[s ′′]) = T, where R = L[A[·]] is a reduction context for some L-
context L and some A-context A, s′′ is a free variable, an abstraction or an application iff
T is a free variable, an abstraction or an application, respectively, and the position p of the
hole in R is also the position of the hole in A[·].

Proof. The tree T may be an abstraction, an application, or a free variable in R[T]. Let p
be the position of the hole of R. We will show by induction on the label-computation for p

in s that there is a reduction s
name,(lapp)∨(cp),∗
−−−−−−−−−−−−→ s′, where s′ as claimed in the lemma.

We consider the label-computation for p to explain the induction measure, where we use
the rule numbers of Definition 4.2. Let q be such that the label computation for p is of the
form 4∗q and q does not start with 4. The measure for induction is a tuple (a, b), where a
is the length of q, and b ≥ 0 is the maximal number with q = 2bq′. The base case is (a, a):
Then the label computation is of the form 2∗ and indicates that s is of the form L[A[s′′]]
and satisfies the claim of the lemma. For the induction step we have to check several cases:

(1) The label computation is of the form 4∗2+4 Then a normal-order (lapp) can
be applied to s resulting in s1. The label-computation for p w.r.t. s1 is of the
same length, and only applications of 2 and 4 are interchanged, hence the second
component of the measure is strictly decreased.

(2) The label computation is of the form 4∗2∗5 Then a normal-order (cp) can be
applied to s resulting in s1. The length q is strictly decreased by 1, and perhaps
one 6.-step is changed into a 5.-step. Hence the measure is strictly reduced.

Lemma 4.7. Let s be an expression with IT (s)
tree
−−→ T. Then there is some s′ with

s
name,∗
−−−−→ s′ and IT (s ′) = T.

Proof. If IT (s)
tree
−−→ T , then IT (s) = R[(λx .t1) t2] where R is a reduction context and

T = R[t1[t2/x]]. Let p be the position of the hole ofR in IT (s). We first apply Lemma 4.6 to

s and the tree context R[([·] t2)] and thus obtain a reduction s
name,∗
−−−−→ s′, such that IT (s) =

IT (s ′) and s′ = R[r] where R = L[A[·]] is a reduction context and IT (L[r]) = (λx .t1), and

304 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

r is an abstraction. It is obvious that IT (s ′)|p.2 = t2 and that R = L[A′[[·] r2]]. Thus

s′ = L[A′[((λx.r1) r2)]]
name,beta
−−−−−−→ L[A′[r1[r2/x]] = s′′. Now one can verify that IT (s ′′) = T

must hold.

Proposition 4.8. Let s be an expression with IT (s)↓tree . Then s↓name .

Proof. We use induction on the length k of a tree reduction IT (s)
tree,k
−−−→ T , where T is

a value tree. For the base case it is easy to verify that if IT (s) is a value tree, then

s
name,cp,∗
−−−−−−→ L[λx.s′] for some L-context and some s′. I.e. s ↓name . The induction step

follows by Lemma 4.7.

Corollary 4.9. For all Lname-expressions s: s↓name if, and only if IT (s)↓tree .

Theorem 4.10. ≤name = ≤need

Proof. We have shown that Lname -convergence is equivalent to infinite tree convergence.
In [SS07] it was shown that Lneed -convergence is equivalent to infinite tree convergence.
Hence, Lname -convergence and Lneed -convergence are equivalent, which also implies that
both contextual preorders and also the contextual equivalences are identical.

Corollary 4.11. W is convergence equivalent and fully abstract.

5. Translation N : Lname → Llazy

We use multi-fixpoint combinators as defined in [Gol05] to translate letrec-expressions
into equivalent ones without a letrec. The translated expressions belong to Llazy .

Definition 5.1. Given n > 1, a family of n fixpoint combinators Y n
i for i = 1, . . . , n can

be defined as follows:

Y n
i := λf1, . . . , fn.((λx1, . . . , xn.fi (x1 x1 . . . xn) . . . (xn x1 . . . xn))

(λx1, . . . , xn.f1 (x1 x1 . . . xn) . . . (xn x1 . . . xn))
. . .
(λx1, . . . , xn.fn (x1 x1 . . . xn) . . . (xn x1 . . . xn)))

The idea of the translation is to replace (letrec x1 = s1, . . . , xn = sn in r) by
r[S1/x1, . . . , Sn/xn] where Si := Y n

i F1 . . . Fn and Fi := λx1, . . . , xn.si.
In this way the fixpoint combinators implement the generalized fixpoint property:

Y n
i F1 . . . Fn ∼ Fi (Y n

1 F1 . . . Fn) . . . (Y
n
n F1 . . . Fn). However, our translation uses modi-

fied expressions, as shown below.
Consider the expression Y n

i F1 . . . Fn. Expanding the notations,
we get ((λf1, . . . , fn.(Xi X1 . . . Xn)) F1 . . . Fn) where Xi =
λx1 . . . xn.(fi (x1 x1 . . . xn) . . . (xn x1 . . . xn)). Reducing further:

(λf1, . . . , fn.(Xi X1 . . . Xn)) F1 . . . Fn
β,∗
−−→ (X ′

i X
′
1 . . . X ′

n),
where X ′

i = λx1 . . . xn.(Fi (x1 x1 . . . xn) . . . (xn x1 . . . xn))

We take the latter expression as the definition of the multi-fixpoint translation, where
we avoid substitutions and instead generate β-redexes.

Definition 5.2. The translation N :: Lname → Llazy is recursively defined as:

SIMULATION IN THE CALL-BY-NEED LAMBDA-CALCULUS WITH LETREC 305

• N(letrec x1 = s1, . . . , xn = sn in r) = ((λx1. . . . xn.(N(r))) U1 . . . Un)

where Ui = (λx1, . . . , xn.xi x1 . . . xn) X
′
1 . . . X ′

n,
X ′

i = λx1 . . . xn.Fi(x1x1 . . . xn) . . . (xnx1 . . . xn),
Fi = λx1, . . . , xn.N(si).

• N(s1 s2) = (N(s1) N(s2))
• N(λx.s) = λx.N(s)
• N(x) = x.

We extend N to contexts by treating the hole as a constant, i.e. N([·]) = [·].

Convergence equivalence of the translation N follows by inspecting the relation between
Lname - and the translated Llazy -reductions. The full proof can be found in [SS10]

Proposition 5.3. N is convergence equivalent, i.e. ∀t ∈ Lname : t↓name ⇐⇒ N(t)↓lazy .

Lemma 5.4. The translation N is compositional, i.e. for all expressions t and all contexts
C: N(C[t]) = N(C)[N(t)].

Proof. This easily follows by structural induction on the definition.

Proposition 5.5. For all s, t ∈ Lname : N(s) ≤lazy N(t) =⇒ s ≤name t, i.e. N is adequate.

Proof. Since N is convergence equivalent (Proposition 5.3) and compositional by Lemma
5.4, we derive that N is adequate (see [SS08b] and Section 2).

Lemma 5.6. For letrec-free expressions s, t of Lname the following holds: s, t ∈ Llazy and
s ≤name t =⇒ s ≤lazy t.

Proof. Clearly every letrec-free expression of Lname is also an Llazy expression. Let s, t
be letrec-free such that s ≤name t. Let C be an Llazy -context such that C[s]↓lazy , i.e.

C[s]
lazy,k
−−−→ λx.s′. By comparing the reduction strategies in Lname and Llazy , we obtain that

C[s]
name,k
−−−−→ λx.s′ (by the identical reduction sequence), since C[s] is letrec-free. Thus,

C[s]↓name and also C[t]↓name , i.e. there is a normal order reduction in Lname for C[t] to
a WHNF. Since C[t] is letrec-free, we can perform the identical reduction in Llazy and
obtain C[t]↓lazy .

The language Llazy is embedded into Lname (and also Lneed) by the identity embedding
ι(s) = s. In the following proposition we show that every Lneed -WHNF (and also every
Lname -WHNF) is contextually equivalent to an abstraction:

Proposition 5.7. For all s ∈ Lname : s ∼name ι(N(s)). If s is an Lneed -WHNF and
N(s)↓lazyv where v is an abstraction, then s ∼need ι(v).

Proof. We first show that for all expressions s ∈ Lname : s ∼name ι(N(s)). Since N is
the identity mapping on letrec-free expressions of Lname and N(s) is letrec-free, we
have N(ι(N(s))) = N(s). Hence adequacy of N (Proposition 5.5) implies s ∼name ι(N(s)).
Theorem 3.8 shows N(s) ∼lazy v and Proposition 5.5 show that ι(v) ∼name ι(N(s)) ∼name s.
Finally, Theorem 4.10 shows the claim.

Proposition 5.8. For all s, t ∈ Lname : s ≤name t =⇒ N(s) ≤lazy N(t).

Proof. For this proof we treat Llazy expressions as Lname expressions. Let s, t ∈ Lname and
s ≤name t. By Proposition 5.7: N(s) ∼name s ≤name t ∼name N(t) and thus N(s) ≤name

N(t). Since N(s) and N(t) are letrec-free, we can apply Lemma 5.6 and thus have
N(s) ≤lazy N(t).

306 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

Now we put all parts together, where (N ◦W)(s) means N(W (s)):

Theorem 5.9. N and N ◦ W are fully-abstract, i.e. for all Lneed -expressions s, t:
s ≤need t ⇐⇒ N(W (s)) ≤lazy N(W (t)).

6. On Simulation in Lneed

First we show that finite simulation (see [SS08a]) is correct for Lneed :

Proposition 6.1. Let s, t be closed expressions in Lneed . The following holds:
(

For all

closed abstractions r and for r = Ω: s r ≤need t r
)

⇐⇒ s ≤need t.

Proof. The ⇐ direction is trivial. We show the nontrivial part. Assume that for all closed
abstractions r and for r = Ω: s r ≤need t r. Then we transfer the problem to Llazy as follows:
N(s) and N(t) are closed expressions in Llazy . Since the translation N is surjective, every
closed Llazy -expression is in the image of N . Thus for every closed Llazy -expression r′ that
is an abstraction or Ω, there is some Lneed -expression r, such that N(r) = r′. We have
N(s) r′↓ =⇒ N(t) r′↓, since N(s r) = (N(s) N(r)), and since N is fully abstract. We can
apply Proposition 3.10 and obtain N(s) ≤lazy N(t). Now Theorem 5.9 shows s ≤need t.

Now we show that the co-inductive definition of an applicative simulation results in a
relation equivalent to contextual preorder. We show the following helpful lemma:

Lemma 6.2. For all closed expressions s and r and Lneed -WHNFs w: (s r)↓w ⇐⇒ ∃v :
s↓v ∧ (v r)↓w.

Proof. In order to prove “⇒” let (s r)↓w. There are two cases, which can be verified

by induction on the length k of a reduction sequence (s r)
need ,k
−−−−→ w: (s r)

need ,∗
−−−−→

((λx.s′) r)
need ,∗
−−−−→ w, where s

need ,∗
−−−−→ (λx.s′), and the claim holds. The other case is

(s r)
need ,∗
−−−−→ (letrec Env in ((λx.s′) r))

need ,∗
−−−−→ w, where s

need ,∗
−−−−→ (letrec Env in (λx.s′)).

In this case ((letrec Env in (λx.s′)) r)
need ,(lapp)
−−−−−−−→ (letrec Env in ((λx.s′) r))

need ,∗
−−−−→ w,

and thus the claim is proven. The “⇐”-direction can be proven in a similar way using
induction on the length of reduction sequences.

Definition 6.3. We define in Lneed a simulation ≤b,need as follows:
Let s, t be closed expressions and η be a binary relation on closed expressions. Then
s [η]need t holds iff s↓needv implies that t↓needw, and for all closed letrec-free abstractions r
and for r = Ω: (v r) η (w r).

The relation ≤b,need is defined to be the greatest fixpoint of [·]need within binary relations
on closed expressions. Its open extension is denoted with ≤o

b,need .

Proposition 6.4. In Lneed , for closed s, t the statement s ≤b,need t is equivalent to the
following condition for s, t:
∀n ≥ 0, and for all ri, i = 1, . . . , n that may be closed letrec-free abstractions or Ω:
(s r1 . . . rn)↓need =⇒ (t r1 . . . rn)↓need .

Proof. This follows from Lemma 6.2. The complete proof can be found in [SS10].

SIMULATION IN THE CALL-BY-NEED LAMBDA-CALCULUS WITH LETREC 307

Now we can prove that the simulation relation ≤b,need is equivalent to the contextual
preorder on closed expressions:

Theorem 6.5. For closed expressions s, t: s ≤b,need t ⇐⇒ s ≤need t.

Proof. Let ≤need ,0 the restriction of ≤need to closed expressions. It is easy to verify that
≤need ,0 ⊆ [≤need ,0]need and thus for closed expressions s, t: s ≤need t =⇒ s ≤b,need t.
For the other direction let s ≤b,need t. The criterion in Proposition 6.4 then implies
that for all n ≥ 0 : s r1 . . . rn ↓need =⇒ t r1 . . . rn ↓need , where ri are closed
letrec-free abstractions or Ω. Full-abstraction of N ◦ W (see Theorem 5.9) implies that
N(W (s r1 . . . rn)) ↓lazy =⇒ N(W (t r1 . . . rn)) ↓lazy . Since N and W translate applica-
tions into applications, this also shows that N(W (s)) N(W (r1)) . . . N(W (rn)) ↓lazy =⇒
N(W (t)) N(W (r1)) . . . N(W (rn)) ↓lazy . Moreover, since every Llazy -abstractions is an
N ◦W -image of a letrec-free abstraction, we also conclude that N(W (s)) ≤b,lazy,3 N(W (t)).
Now Theorem 3.7 and full abstraction of N ◦W finally show s ≤need t.

Using the characterization in Proposition 6.4, it is possible to prove non-trivial equa-
tions, as shown in the example below.

Example 6.6. We consider two fixpoint combinators Y1 and Y2, where Y1 is
defined non-recursively, while Y2 uses recursion. The definitions are: Y1 :=
λf.((λx.f (x x))(λx.f (x x))), Y2 := letrec fix = λf .f (fix f) in fix .

Using Proposition 6.4 we can easily derive that Y1 K ∼need Y2 K where K := λa.(λb.a).
This follows since (Y1 K r1 . . . rn) converges for all n. The obtained WHNF is equivalent
(some letrec-bindings are garbage collected, and some variable-to-variable chains are elim-
inated) to (letrec w = (x x), k = (λa.(λb.a)), x = (λy.(k(yy))) in λu.w). Normal-order
reduction of (Y2 K r1 . . . rn) also always converges, where the WHNF is equivalent to the
expression (letrec w = (fix k),fix = (λf .(f (fix f))), k = (λa.(λb.a)) in (λu.w)). Thus
Y1 K ∼need Y2 K and both expressions are greatest elements w.r.t. ≤need .

For open expressions, we can lift the properties from Llazy , which also follows from full
abstraction of N ◦W and from Lemma 3.9.

Lemma 6.7. Let s, t be any expressions, and let the free variables of s, t be in {x1, . . . , xn}.
Then s ≤need t ⇐⇒ λx1, . . . , xn.s ≤need λx1, . . . , xn.t

The results above imply the following theorem:

Main Theorem 6.8. ≤need = ≤o
b,need .

The main theorem implies that our embedding of the call-by-need letrec calculus into
Abramsky’s lazy lambda calculus is isomorphic w.r.t. the corresponding term models, i.e.:

Theorem 6.9. The identical embedding ι : Elazy → Eneed leads to an isomorphism between
the term-models: Let the preorder, the quotients modulo ∼lazy and ∼need , and the lifting of

ι be marked with an overbar. Then ι : Elazy → Eneed is a bijection, and for all s1, s2 ∈ Elazy :
s1 ≤lazy s2 ⇐⇒ ι(s1) ≤need ι(s2).

308 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

7. The Call-by-Need Lambda Calculus of Ariola & Felleisen

For the sake of completeness we show that our results are transferable to the call-by-
need lambda calculus with letrec of [Ari97]. The syntax is identical to the calculus Lneed ,
but the standard reduction strategy of [Ari97] differs from our normal order reduction. In
particular [Ari97] do not provide a standard reduction strategy but an equational system
from which we will derive a standard reduction.

We will show that the normal order reduction and the standard reduction corresponding
to the equational system of [Ari97] are interchangeable and thus define the same notion of
contextual equivalence. As a further result we show that bisimilarity can also be based on
the strategy according to [Ari97] and coincides with contextual equivalence.

We recall the standard reduction strategy of [Ari97]. We will denote the notions related
to Ariola & Felleisen’s calculus with a prefix or mark “AF”, if necessary. First we introduce
AF-evaluation contexts RAF that play a role similar to our reduction contexts:

RAF ::= [·] | (RAF s) | letrec Env in RAF | letrec Env , x = RAF in RAF [x]
| letrec x1 = RAF , x2 = RAF [x1], . . . xn = RAF [xn−1],Env in RAF [xn]

In Figure 3 the standard reductions (abbreviated as AF-reduction) of [Ari97, Section 8]
are shown where L is an L-context as introduced in Sect. 3.2 and RAF,i, R

′
AF , R

′′
AF are

RAF -contexts. The calculus of [Ari97] uses the notion of a black hole which represents a
cyclic dependency of the form letrec x1 = RAF [xn], x2 = RAF [x1], . . . xn = RAF [x1]. In
contrast to [Ari97], we do not consider a black hole to be an answer and therefore do not
copy it in (deref) rules. This reflects the authors’ intention, as shown by a similar copy
restriction in [Ari94].

(βneed) RAF [(λx.s) r] → RAF [(letrec x = r in s)]
(lift) RAF [(letrec Env in L[λx.s]) r] → RAF [letrec Env in (L[λx.s] r)]
(deref) RAF,1[letrec Env , x = λy.s in RAF,2[x]]

→ RAF,1[letrec Env , x = λy.s in RAF,2[λy.s]]
(derefenv) R

′
AF [letrec x1 = λy.s, x2 = RAF,2[x1], . . . , xn = RAF,n[xn−1],Env in R′′

AF [xn]]
→ R′

AF [letrec x1 = λy.s,
x2 = RAF,2[λy.s], . . . , xn = RAF,n[xn−1],Env in R′′

AF [xn]]
(assoc) RAF,1[letrec Env1, x = (letrec Env2 in L[λx.s]) in RAF,2[x]]

→ RAF,1[letrec Env1,Env2, x = L[λx.s] in RAF,2[x]]
(assocenv)R

′
AF [letrec x1 = (letrec Env2 in L[λx.s]),

x2 = RAF,2[x1], . . . , xn = RAF,n[xn−1],Env1 in R′′
AF [xn]]

→ R′
AF [letrec Env2, x1 = L[λx.s],

x2 = RAF,2[x1], . . . , xn = RAF,n[xn−1],Env1 in R′′
AF [xn]]

Figure 3: Reduction rules defining
AF
−−→

AF-answers are terms of the form L[λx.s]. We write s
AF
−−→ t, iff s is transformed

into t by one of the rules in Fig. 3. If s
AF,∗
−−−→ v where v an AF-answer, then we write

s ↓AF v or s ↓AF , resp. if the answer v is not of interest. For the corresponding contextual
approximation and equivalence we use ≤AF and ∼AF as symbols.

Compared to the reduction strategy in Lneed , the AF-reduction performs the let-
shiftings (lapp), (llet-in), (llet-e) as late as possible. A difference from Lneed is that

SIMULATION IN THE CALL-BY-NEED LAMBDA-CALCULUS WITH LETREC 309

sometimes reduction steps must be performed in deeply nested lets. For instance, in
letrec x = (letrec y = λz.z in (λu.z)(λuu)) in x the Lneed reduction will apply (llet-e)
immediately, whereas AF will reduce (λu.z)(λuu) first, and only then apply (assoc).

In [SS10] we prove:

Theorem 7.1. ↓need = ↓AF , ≤need = ≤AF and ∼need = ∼AF .

Definition 7.2 (AF-simulation). Let s, t be closed expressions and η be a binary relation
on closed expressions. Then s [η]AF t holds iff s↓AF v implies that t↓AFw, where v and w
are answers, and for all closed letrec-free abstractions r and for r = Ω: (v r) η (w r). The
relation ≤b,AF is defined to be the greatest fixpoint of [·]AF within the binary relations on
closed expressions. Its open extension is denoted with ≤o

b,AF .

It remains to show that ≤o
b,AF = ≤AF . As a first step we derive an alternative charac-

terization of ≤b,AF . The proof can be found in [SS10].

Proposition 7.3. For closed s, t ∈ Lneed the relation s ≤b,AF t is equivalent to: ∀n ≥ 0,
and for all ri, i = 1, . . . , n that may be letrec-free abstractions or Ω: (s r1 . . . rn)↓AF =⇒
(t r1 . . . rn)↓AF .

Proposition 7.4. ≤b,need = ≤b,AF

Proof. Since ↓need = ↓AF the previous proposition and Proposition 6.4 show the claim.

From Theorem 6.5 we already know that ≤b,need is equivalent to ≤need on closed ex-
pressions. Thus ≤b,AF is identical to ≤need on closed expressions. This easily extends to
the open extension of ≤b,AF . Thus we have:

Theorem 7.5. ≤AF = ≤o
b,AF

8. Conclusion

In this paper we show that co-inductive bisimulation, in the style of Howe, is equivalent
to contextual equivalence in a deterministic call-by-need calculus with letrec (i.e. let with
cyclic bindings). As a further work one may extend the proof to a call-by-need letrec cal-
culus with case, constructors, and seq, but not to non-determinism, since counterexamples
exist that show that contextual equivalence cannot be characterized by the usual notion of
bisimulation.

Acknowledgement

The authors thank the anonymous reviewers for their valuable comments.

310 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

References

[Abr90] S. Abramsky. The lazy lambda calculus. In D. A. Turner (ed.), Research Topics in Functional
Programming, pp. 65–116. Addison-Wesley, 1990.

[Abr93] S. Abramsky and C.-H. Luke Ong. Full abstraction in the lazy lambda calculus. Inf. Comput.,
105(2):159–267, 1993.

[Ari94] Z. M. Ariola and J. W. Klop. Cyclic Lambda Graph Rewriting. In Proc. IEEE LICS, pp. 416–425.
IEEE Press, 1994.

[Ari95] Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. A call-by-need lambda calculus.
In POPL’95, pp. 233–246. ACM Press, San Francisco, California, 1995.

[Ari97] Z. M. Ariola and M Felleisen. The call-by-need lambda calculus. J. Funct. Programming, 7(3):265–
301, 1997.

[Ari02] Z. M. Ariola and S. Blom. Skew confluence and the lambda calculus with letrec. Annals of Pure
and Applied Logic, 117:95–168, 2002.

[Bar84] H. P. Barendregt. The Lambda Calculus. Its Syntax and Semantics. North-Holland, Amsterdam,
New York, 1984.

[Fel91] M. Felleisen. On the expressive power of programming languages. Science of Computer Program-
ming, 17(1–3):35–75, 1991.

[Gol05] M. Goldberg. A variadic extension of Curry’s fixed-point combinator. Higher-Order and Symbolic
Computation, 18(3-4):371–388, 2005.

[How89] D. Howe. Equality in lazy computation systems. In Proc. IEEE LICS, pp. 198–203. 1989.
[How96] D. Howe. Proving congruence of bisimulation in functional programming languages. Inform. and

Comput., 124(2):103–112, 1996.
[Jef94] A. Jeffrey. A fully abstract semantics for concurrent graph reduction. In Proc. IEEE LICS, pp.

82–91. 1994.
[Man10] M. Mann and M. Schmidt-Schauß. Similarity implies equivalence in a class of non-deterministic

call-by-need lambda calculi. Information and Computation, 208(3):276 – 291, 2010.
[Mar98] J. Maraist, M. Odersky, and P. Wadler. The call-by-need lambda calculus. J. Funct. Programming,

8:275–317, 1998.
[SS07] M. Schmidt-Schauß. Correctness of copy in calculi with letrec. In Term Rewriting and Applications

(RTA-18), LNCS, vol. 4533, pp. 329–343. Springer, 2007.
[SS08a] M. Schmidt-Schauß and E. Machkasova. A finite simulation method in a non-deterministic call-

by-need calculus with letrec, constructors and case. In Proc. of RTA 2008, no. 5117 in LNCS, pp.
321–335. Springer-Verlag, 2008.

[SS08b] M. Schmidt-Schauß, J. Niehren, J. Schwinghammer, and D. Sabel. Adequacy of compositional
translations for observational semantics. In 5th IFIP TCS 2008, IFIP, vol. 273, pp. 521–535.
Springer, 2008.

[SS09a] M. Schmidt-Schauß, E. Machkasova, and D. Sabel. Counterexamples to simulation in non-
deterministic call-by-need lambda-calculi with letrec. Frank report 38, Inst. f. Informatik, Goethe-
University, Frankfurt, 2009.

[SS09b] M. Schmidt-Schauß, J. Niehren, J. Schwinghammer, and D. Sabel. Adequacy of compositional
translations for observational semantics. Frank report 33, Inst. f. Informatik, Goethe-University,
Frankfurt, 2009.

[SS10] M. Schmidt-Schauß, D. Sabel, and E. Machkasova. Simulation in the call-by-need lambda-calculus
with letrec. Frank report 40, Inst. f. Informatik, Goethe-University, Frankfurt, 2010.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

