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ABSTRACT. For a general class of infinite data structures including streams, binary trees,
and the combination of finite and infinite lists, we investigate the notion of productivity.
This generalizes stream productivity. We develop a general technique to prove productivity
based on proving context-sensitive termination, by which the power of present termination
tools can be exploited. In order to treat cases where the approach does not apply directly,
we develop transformations extending the power of the basic approach. We present a tool
combining these ingredients that can prove productivity of a wide range of examples fully
automatically.

1. Introduction

Some computations potentially go on forever. A standard example is the sieve of Er-
atosthenes producing the infinitely many prime numbers. The result of such a computation
is then an infinite stream of elements. Although the computation itself goes on forever,
there is a kind of termination involved that is called productivity: every finite initial part
will be produced after a finite number of steps. We will consider computations specified by a
number of rewrite rules that are interpreted as a lazy functional program. Then productivity
can be characterized and investigated as a property of term rewriting, as was investigated
before in [6, 11, 4, 19, 12].

Streams can be seen as infinite terms. Even when restricting to data structures rep-
resenting the result of a computation, it is natural not to restrict to streams. In case the
computation possibly ends, then the result is not a stream but a finite list, and when paral-
lelism is considered, naturally infinite trees come in. In this paper we develop techniques for
automatically proving productivity of specifications in a wide range of infinite data struc-
tures, including streams, the combination with finite lists, and several kinds of infinite trees.
Earlier techniques specifically for stream specifications were given in [6, 4, 19]. A key idea
of our approach is to prove productivity by proving termination of contert-sensitive rewrit-
ing [17, 9], that is, the restricted kind of rewriting in which rewriting is disallowed inside
particular arguments of particular symbols. As strong tools like AProVE [8] and p-Term
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[13] have been developed to prove termination of context-sensitive rewriting automatically,
the power of these tools can now be exploited to prove productivity automatically. As the
underlying technique is completely different from the technique of [6, 4], it is expected that
both approaches have their own merits. Indeed, there are examples where the technique of
[6, 4] fails and our technique succeeds. The comparison the other way around is hard to
make as the technique of 6, 4| only applies for proving productivity for a single ground term
while our technique applies for proving productivity for all ground terms.

Through this paper we consider two kinds of terms: finite terms and infinite terms. As
the elements of the infinite data structures we intend to define are infinite terms, infinite
terms are unavoidable here. On the other hand, terms occurring in our specifications are
finite. Rewriting has been investigated both for finite and infinite terms. But rewriting
finite terms is much easier and better understood than infinitary rewriting, and for many
properties, like several variants of termination, there is strong tool support to investigate
these properties. We follow the policy to use infinite terms only where necessary, and exploit
understanding and tool support for rewriting finite terms as much as possible. In this way
we need the concept of infinite terms, but not of infinitary rewriting. Following this policy,
elements of infinite data structures over a data set D are considered as infinite terms in
which elements of D act as constants, and the infinite terms are composed from constructor
symbols taken from a set C, and elements of D. In this world of infinite terms we want
to avoid that data elements are infinite terms themselves. For instance, in considering
streams over natural numbers as infinite terms, we want to be able to consider a stream
0:1:2:3:4:---, but we do not want the data elements in such a stream to be infinite
terms like s°°(0). When specifying elements of infinite data structures over a data set D, the
set D may be described as the set of (finite) ground normal forms of some rewriting system
Ry over data signature ;. As an example, for natural numbers with + we can choose
Ya=1{0,s,+}, and Ry consists of the rules 0 +z — z and s(z) +y — s(x +y). Apart from
>q and Ry the specification then is given by a set R, of rewrite rules over CUX;UY,, where
> consists of constants and auxiliary operations to be introduced for the specification. For
instance, for defining the above mentioned stream nat =0:1:2:3:4:--- we introduce an
auxiliary function f € ¥, on streams that replaces each element by its successor, and specify
nat by choosing Rs to consist of the two rules

nat — 0 : f(nat), f(z:0)—s(x):f(o).

Here we have C = {:}, ¥; = {0,s}, Rq = 0, 35 = {nat,f}, and z, o are variable symbols of
type data and stream, respectively. In this setting productivity means that for every n the
initial term can be rewritten to a (finite) term in which all symbols on depth less than n
are constructor symbols. This notion of productivity is consistent with stream productivity
as in [6, 4, 19], formalizing the spirit of stream productivity as introduced in [15]. It is also
consistent with productivity as defined in [11, 12| for a setting even more general than ours.

Proving productivity may be hard. For the sieve of Eratosthenes proving productivity
is beyond the scope of fully automatic techniques as it depends on the fact that there are
infinitely many prime numbers. Moreover, we can specify an extra stream by filtering out
every element in this stream of prime numbers that is distinct from its predecessor plus 2.
This yields a stream specification, easily expressed in the format of this paper, of which
productivity is equivalent to the existence of infinitely many prime twins: a well-known
open problem in number theory. As expected for such a format suitable for expressing a
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well-known open problem, productivity is an undecidable property. This has been proved
independently by several people in |5, 16].

In contrast to [6, 4|, we focus on requiring productivity not only for a single initial term,
like nat in the above example, but for all finite ground terms. An easy induction argument
shows that productivity holds for all ground terms if and only if every ground term rewrites
to a term of which the root is a constructor symbol. As in [19] this characterization is the
basis of our productivity investigations, but now for more general infinite data structures
than only streams. A main reason for the focus on productivity for all ground terms is this
technical convenience. In many cases, however, productivity of a single ground terms is
equivalent to productivity for all ground terms over the operations that are relevant for the
single ground term. If this does not hold and one is interested in productivity for a single
ground term, our approach fails while the approach of [6, 4] may succeed.

The paper is organized as follows. In Section 2 we introduce infinite terms and give
examples of several infinite data structures consisting of infinite terms. In Section 3 we in-
troduce our notions of proper specifications and productivity. Being interested in determin-
istic computations, in proper specifications we require the rewrite systems to be orthogonal.
A first basic result (Theorem 3.4) states that a specification is productive if for all rules
the root of the right-hand side is a constructor symbol. In Section 4 we relate productivity
to context-sensitive rewriting. The main result (Theorem 4.1) states that a specification
is productive if context-sensitive termination holds for the rules of the specification, where
rewriting is only allowed in the data arguments of the constructor symbols, and in all argu-
ments of the other symbols. For cases where these approaches fail, in Section 5 we investigate
transformations that transform a proper specification into another one, such that produc-
tivity of the original specification can be concluded from productivity of the transformed
specification, the latter typically proved by the basic techniques from the earlier sections.
Through these sections we give several examples of specifications of streams and binary
trees for which productivity is proved. For many of these, productivity cannot be proved
by earlier techniques. In Section 6 we describe an implementation of our techniques, by
which productivity of all productive examples presented in this paper can be proved fully
automatically. We conclude in Section 7.

2. Infinite Terms

Intuitively, a term (both finite and infinite) is defined by saying which symbol is at
which position. Here, a position p € N* is a finite sequence of natural numbers. In order
to be a proper term, some requirements have to be satisfied as indicated in the following
definition. As we will only consider infinite terms over a set C of constructors and a set D
of data (disjoint from C), our terms will be two-sorted!: a sort s for the (infinite) terms to
be defined, and a sort d for the data. Every f € C is assumed to be of type d" x s — s for
some n,m € N. We write ar(d, f) = n and ar(s, f) = m. We write L for undefined.

Definition 2.1. A (possibly infinite) term of sort s over C,D is defined to be a map ¢ :
N* — CUDU{L} such that
e the root t(e) of the term ¢ is a constructor symbol, so t(¢) € C, and

n [11, 12] an arbitrary many-sorted setting is proposed. Our approach easily generalizes to a more
general many-sorted setting, but for notational convenience we restrict to the two-sorted setting.
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e for all p € N* and all i € N we have
t(pi) e D < t(p) eCA1<i<ar(d,t(p)), and
t(pi) € C < t(p) e CNar(d,t(p)) <i<ar(d,t(p))+ar(s,t(p)).

So t(pi) = L for all p,i not covered by the above two cases.
We write T°°(C, D) for the set of all terms over C, D.

An alternative equivalent definition of T°°(C, D) can be given based on co-algebra. An-
other alternative uses metric completion, where infinite terms are limits of finite terms.
However, for the results in this paper we do not need these alternatives.

A position p € N* satisfying t(p) € C is called a position of t of sort s. A position
p € N* satisfying t(p) € D is called a position of t of sort d. The depth of a position p € N*
is the length of p considered as a string.

The usual notion of finite term coincides with a term in this setting having finitely many
positions, that is, t(p) = L for all but finitely many p. In case ar(s, f) > 0 for all f € C
then no finite terms exist. This holds for streams. In case ar(d, f) = 0 for all f € C then no
position of sort D exist, and terms do not depend on D.

For f € C with ar(d, f) = n, ar(s, f) = m, n elements uy,...,u, € D and m terms
tiy ...ty we write f(u1,...,Un,t1,...,ty,) for the term t defined by t(e) = f, t(i) = u; for
every i = 1,...,n, t(ip) = ti—n(p) for every p€ N* and i =n+1,...,n+m, and t(ip) = L
ifig{l,....n+m},orie{l,...,n} and p #e.

Example 2.2 (Streams). Let D be an arbitrary given non-empty data set, and let C = {:},
with ar(d,:) = ar(s,:) = 1. Then T*(C, D) coincides with the usual notion of streams over
D, being functions from N to D. More precisely, a function f : N — D gives rise to an
infinite term ¢ defined by #(2") = : and t(2"1) = f(n) for every n € N, and ¢(w) = L for
all other strings w € N*. Conversely, every t : N* — C U D satisfying the requirements of
the definition of a term is of this shape. Note that if #D = 1, then there exists only one
such term.

In case D is finite, an alternative approach is not to consider the binary constructor ‘:’,
but unary constructors for every element of D. In this approach D does not play a role and
is irrelevant.

Example 2.3 (Finite and infinite lists). Let D be an arbitrary given non-empty data set,
and let C = {:, nil}, with ar(d,:) = ar(s,:) = 1 and ar(d, nil) = ar(s, nil) = 0. Then T*(C, D)
covers both the streams over D as in Example 2.2 and the usual (finite) lists. As in Example
2.2, a function f : N — D gives rise to an infinite term ¢ defined by #(2") = : and
t(2"1) = f(n) for every n € N, and t(w) = L for all other strings w € N*. The only way
nil can occur is where #(2") = nil for some n > 0, t(2!) = : and ¢(2°1) € D for every i < n,
and t(w) = L for all other strings w € N*, in this way representing a finite list of length n.
Conversely, every ¢t : N* — C U D satisfying the requirements of the definition of a term is
of one of these two shapes. In the literature this combination of finite and infinite lists is
sometimes called lazy lists.

Example 2.4 (Binary trees). For infinite binary trees several variants fit in our format. We
will meet the following:
e Infinite binary trees with nodes labeled by D are obtained by choosing C = {b}
with ar(d,b) = 1 and ar(s,b) = 2. In Example 4.4 the nodes are labeled by D x D,
obtained by choosing ar(d,b) = 2 instead.
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e The combination of finite and infinite binary trees with nodes labeled by D is ob-
tained by choosing C = {b,nil} with ar(d,b) = 1, ar(s,b) = 2 and ar(d,nil) =
ar(s,nil) = 0. In Example 3.5 the nodes are unlabeled, obtained by choosing
ar(d,b) = 0 instead.

3. Specifications and Productivity

Throughout this paper we use some basics of term rewriting as is introduced e.g. in
[1, 17]. In particular, a term rewriting system (TRS) is called orthogonal if the left-hand
sides of the rules do not overlap, and every variable occurs at most once in every left-hand
side of a rule.

We consider specifications in order to define elements of T°(C, D). We do this for the
special case where D consists of the ground normal forms of an orthogonal terminating TRS
R, over a signature ;. Here all symbols of ¥; are considered to be of sort d* — d for some
n > 0. For defining elements of T°(C, D) we introduce a set X5 of defined symbols of sort s,
disjoint from C, all being of sort d” x s™ — s for some n, m € N, just like the elements of C.
The real specification is given by a set Ry of rewrite rules of sort s being of a special shape.
Although the goal is to define elements of T*(C, D), most times being infinite, all terms in
the specification are finite, and rewriting always refers to rewriting finite terms. All terms
are well-sorted, that is, for every symbol f occurring in a term the sort of the term on the
i-th argument equals the sort expected at that argument.

Definition 3.1. A proper specification (X4,3s,C, Rq, Rs) consists of ¥4, %, C, Ry as de-
scribed above and a TRS R, over X3 U C U 3 consisting of rules of the shape

f(ul,...,un,tb...,tm) —)t,

where

f € Xsis of type d* x s — s,
for every ¢ = 1,...,m the term ¢; is either
— a variable of sort s, or
—t; =g(dy,...,dg,01,...,07) for some g € C with ar(d,g) = k and ar(s,g) = I,
where o1, ..., 07 are variables of sort s, and dy, ..., d; are terms over Y,
t is a (well-sorted) term of sort s,
Rs U Ry is orthogonal, and
every term of the shape f(u1,...,un,t1,...,ty) for f € X4, uy,...,u, € D, and in
which every ¢; is of the shape g(u},...,u),t\,...,t,,) for g € C and u},...,ul, € D,
matches with the left-hand side of a rule from Rj;.

Intuitively, the last bullet requires exhaustiveness of pattern matching, as is a standard
requirement in functional programming. Orthogonality is required for forcing unicity of the
result of computation. The second bullet requires simplicity of left-hand sides of rules; in
case this restriction does not hold it can be obtained by unfolding the rules and introducing
extra symbols.

A proper specification is therefore a generalization of proper stream specifications as
given in [18, 19]. Fixing C, D, typically a proper specification will be given by R4, Rs in
which Y4, 3¢ and the arities are left implicit since they are implied by the terms occurring
in Ry, Rs. If a proper specification is only given by R, then R; is assumed to be empty.
This is what we will do several times, starting in Example 3.5.
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For a term ¢ = f(---) we write root(¢t) = f; the symbol f is called the root of ¢.

A specification is called productive for a given ground term of sort s if every finite part
of the intended resulting infinite term can be computed in finitely many steps. As the
intended resulting infinite term consists of constructor symbols and data elements, and all
ground terms of sort d rewrite to data elements by assumption, this is equivalent to the
following.

Definition 3.2. A proper specification (X4, ¥s,C, Rq, Rs) is productive for a ground term ¢
of sort s if for every k € N there is a reduction t =% g t' for which every symbol of sort
s in ' on depth less than k is in C.

An important consequence of productivity is well-definedness: the term admits a unique
interpretation as an infinite term. Intuitively, existence follows from taking the limit of the
process of computing a constructor on every level, and reduce data terms to normal form.
Uniqueness follows form orthogonality. For an investigation of well-definedness of stream
specifications we refer to [18|.

As in [19], in this paper we are interested in productivity for all finite ground terms of
sort s rather than a single one. The following proposition states that for this case reaching
a constructor on every arbitrary depth is equivalent to reaching a constructor at the root.
As the latter characterization is simpler, this is the basis of all further observations on
productivity in this paper. In [11, 12] productivity is also required for infinite terms, being
a stronger restriction than ours, see Example 4.2. Again we stress that in this section all
terms are finite.

Proposition 3.3. A specification (X4, %s,C, Rq, Rs) is productive for all ground terms of
sort s if and only if every ground term t of sort s admits a reduction t =% g t' for which
root(t') € C.

Proof. The “only if” direction of the proposition is obvious. For the “if” direction, we prove
the following claim by induction on k.

Claim. Let k£ € N, and for all ground terms ¢ of sort s we have t =% 5, t'

with root(t') € C. Then t —% | t" for a term ¢” in which every symbol of

sort s on depth less than k is in C.
If k = 1, then the claim directly holds by choosing t” = t'.

Otherwise, we have t =% g t' = f(u1,...,un, t1,. .., ty) with root(t') = f € C, with

f of type d" x s™ — s. Applying the induction hypothesis to t1,..., ¢, yields t; =% g, t/
with all symbols of sort s in ¢/ are on depth < k—1, for i =1,...,m. Now

t—=hoor, UL, b tn) 2RO, J(UL, U ] )

proves the claim. [

Our first theorem gives a simple syntactic criterion for productivity, which can also be
seen as a particular case of the analysis of friendly nesting specifications as given in [4].

Theorem 3.4. Let S = (X4,%5,C, Ry, Rs) be a proper specification in which for every £ — r
in Rs the term r is not a variable and root(r) € C. Then S is productive.

Proof. According to Proposition 3.3 for every ground term ¢ of sort s it suffices to prove
that ¢t =% g, t' for a term #' satisfying root(#') € C. We do this by induction on ¢. Let
t=f(ul,. ., Un,t1,...,ty) for m,n > 0. If f € C we are done. So we may assume f € Xg.
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As they are ground terms of sort d, all u; rewrite to elements of D. By the induction
hypothesis, all ¢; rewrite to terms with root in C, and in which the arguments of sort d
rewrite to elements of D. Now by the last requirement of properness, the resulting term
matches with the left-hand side of a rule from R;. By the assumption, by rewriting according
to this rule a term is obtained of which the root is in C. [

Example 3.5. Choose C = {b, nil} with ar(s,b) = 2 and ar(d, b) = ar(d, nil) = ar(s,nil) =0
representing the combination of finite and infinite unlabeled binary trees. Then

¢ — b(b(nil,c), c)

is a proper specification that is productive due to Theorem 3.4; the symbol ¢ represents an
infinite tree in which the number of nodes on depth n is exactly the n-th Fibonacci number.
In the same setting
p = b(f(p),nil)
f(b(z,5)) — b(F(y).b(nil, f(x)))
f(nil) — nil

is a proper specification that is productive due to Theorem 3.4. The symbol p represents
the infinite tree of which the initial part until depth 100 is shown in the following picture,
in which the root of the tree is shown on top left:

4. Proving Productivity by Context-Sensitive Termination

As intended for generating infinite terms, the TRS Ry U Ry will never be terminating.
However, when disallowing rewriting inside arguments of sort s of constructor symbols, it
may be terminating. The main result of this section states that if this is the case, then
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the specification is productive. The variant of rewriting with the restriction that rewriting
inside certain arguments of certain symbols is disallowed, is called context-sensitive rewriting
[17, 9]. In context-sensitive rewriting, for every symbol f the set u(f) of arguments of f is
specified inside which rewriting is allowed. More precisely, p-rewriting — g, with respect
to a TRS R is defined inductively by

e if / = r € R and p is a substitution, then £p —g , rp;
o if i € pu(f) and t; —py t; and t; = t; for all j # 4, then f(t1,...,tn) —Rru
F, ... th).

In our setting we choose pu by u(c) = {1,...,ar(d,c)} for all ¢ € C, and u(f) =
{1,...,ar(f)} for all f € 43U X,, where we write ar(f) = ar(d, f) + ar(s, f) for f € Xs.
In the rest of this paper the only instance of context-sensitive rewriting we consider is with
respect to this particular p, which is left implicit from now on. So in p-rewriting, rewriting
inside s-arguments of constructor symbols is disallowed, and is allowed in all other positions.
A TRS is called p-terminating if p-rewriting is terminating.

Theorem 4.1. Let (X4,%s,C, Rq, Rs) be a proper specification for which Rs U Ry is u-
terminating for p as defined above. Then the specification is productive.

Proof. We define a ground p-normal form to be a ground term that can not be rewritten by
p-rewriting. We prove the following claim by induction on ¢:

Claim: If ¢ is a ground p-normal form of sort s, then the root(t) € C.

Assume root(t) ¢ C. Then t = f(uy,...,up,t1,...,tm) for f € 3y, uq,...,u, are of sort
d, and ti,...,ty are of sort s. Since u(f) = {1,...,n+ m}, they are all ground p-normal
forms. So u1,...,u, € D. By the induction hypothesis all ¢; have their roots in C. Since t;
is a p-normal form and the arguments of sort d are in u(c) for every ¢ € C, the arguments
of t; of sort d are all in D. Due to the shape of the rules now a rule is applicable on ¢ on
the root level, so satisfies the restriction of p-rewriting, contradicting the assumption that ¢
is a p-normal form. This concludes the proof of the claim.

According to Proposition 3.3 for productivity we have to prove that every ground term
t of sort s rewrites to a term having its root in C. Apply p-rewriting on t as long as possible.
Due to p-termination this will end in a term on which p-rewriting is not possible, so a
ground p-normal form. Due to the claim this ground p-normal form has its root in C. L]

Example 4.2. Consider the following stream specification

ones — 1:ones f0:0) — f(o)
fl:0) — 1:f(0)

Productivity for all ground terms including f(ones) follows from Theorem 4.1: entering this
rewrite system in the tool AProVE [8] or u-Term [13] together with the context-sensitivity
information that rewriting is disallowed in the second argument of ‘:’ fully automatically
yields a proof of context-sensitive termination. Alternatively, by entering this specification
in our tool yields exactly the same proof.

In this specification f is the stream function that removes all zeros. So productivity
depends on the fact that the stream of all zeros does not occur as the interpretation of a
subterm of any ground term in this specification. For instance, by adding the rule zeros —
0 : zeros the specification is not productive any more as f(zeros) does not rewrite to a term
having a constructor as its root.
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This also shows the difference between our requirement of productivity of all finite
ground terms and the requirement in [11, 12] of productivity of all terms, including infinite
terms. There this example is not productive on the infinite term representing the stream
of all zeros. Finally we mention that the technique from [4] fails to prove productivity for
f(ones), since the specification is not data obliviously productive.

Example 4.3. We specify the sorted stream of Hamming numbers: all positive natural
numbers that are not divisible by other prime numbers than 2, 3 and 5. Here D = {s"(0) |
n > 0}. For + and * we have the standard rules, we also need comparison cmp for which
cmp(n, m) yields 0 if n = m, s(0) if n > m and s(s(0)) if n < m. So Ry consists of the rules

r+0 — = cmp(0,0) — 0
r+s(y) — s(x+y) cmp(s(z),0) — s(0)

zx0 — 0 cmp(0,s(x)) — s(s(0))
zxs(y) — (zxy)+z cmp(s(z),s(y)) — cmp(z,y)

For R; we need a function mul to multiply a stream element-wise by a number, a function
mer for merging two sorted streams, and an auxiliary function f. Finally we have a constant
h for the sorted stream of Hamming numbers. The rules of R, read:
mul(z,y:0) — xxy:mul(z, o) f(0,z:0,y:7) — x:m )
mer(z:o,y:7) — f(cmp(z,y),z:0,y:7) f(s(0),0,y:7) — y:mer(o,T)
f(s(s(x)),y:0,7) — y:m )
h — s(0) : mer(mer(mul(s*(0), h), mul(s®(0), h)), mul(s®(0), h))
Now we have a proper stream specification, being the folklore functional program for generat-
ing Hamming numbers, up to notational details. Productivity is proved fully automatically
by our tool: p-Term [13] is called together with the context-sensitivity information that
rewriting is disallowed in the second argument of ‘:’; yielding a proof of context-sensitive

termination. So by Theorem 4.1 productivity can be concluded.
For completeness we mention that the tool of [6, 4] also finds a proof of productivity of

h in this example.

Example 4.4. The Calkin-Wilf tree [3| is a binary tree in which every node is labeled by
a pair of natural numbers. The root is labeled by (1, 1), and every node labeled by (m,n)
has children labeled by (m,m + n) and (m 4 n,n). It can be proved that for all natural
numbers m,n > 0 that are relatively prime the pair (m,n) occurs exactly once as a label
of a node, and no other pairs occur. So the labels of the nodes represent positive rational
numbers, and every positive rational number m/n occurs exactly once as a pair (m,n).
There is one constructor b with ar(d,b) = ar(s,b) = 2. From Example 4.3 we take the data
set D consisting of the natural numbers, and also the symbol + and its two rules. Now the

Calkin—Wilf tree c is defined by
¢ = f(s(0),5(0)), f(z,y) = b(z,y,f(z,2+y),f(z+yy))

Our tool proves productivity of this specification by calling p-Term [13] that proves context-
sensitive termination, hence proving productivity by Theorem 4.1.

Theorem 4.1 can be seen as a strengthening of Theorem 3.4: if all roots of right-hand
sides of rules from Ry are in C then Ry U Ry is p-terminating, as is shown in the following
proposition.
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Proposition 4.5. Let S = (¥4,%5,C, R4, Rs) be a proper specification in which for every
¢ — r in Rs the term r is not a variable and root(r) € C. Then Rs U Ry is u-terminating.

Proof. Assume there exists an infinite p-reduction. For every term in this reduction count
the number of symbols from ¥; that are on allowed positions. Due to the assumptions by
every Rg4-step this number remains the same, while by every Rgs-step this number decreases
by one. So this reduction contains only finitely many Rg-steps. After these finitely many Rj-
steps an infinite Rg-reduction remains, contradicting the assumption that Ry is terminating.

L]

The reverse direction of Theorem 4.1 does not hold, as is illustrated in the next example.

Example 4.6. Consider the proper (stream) specification (X4, 3s,C, Ry, Rs), where ¥4 =
{0,1}, Ry =10, C = {:} with ar(d,:) = ar(s,:) = 1, and R, being the below TRS:

p — zip(alt,p)
alt — 0:1:alt
zip(x :0,7) — x:zip(T,0)

This specification is productive, as we will see later in Example 5.2. However, it ad-
mits an infinite context-sensitive reduction p — zip(alt, p) which is continued by repeatedly
reducing the redex p.

The stream p describes the sequence of right and left turns in the well-known dragon
curve, obtained by repeatingly folding a paper ribbon in the same direction.

5. Transformations for Proving Productivity

To be able to handle examples like the above, we investigate transformations of such
specifications for which productivity of the original system can be concluded from produc-
tivity of the transfomed one. Whenever productivity of a specification cannot be determined
directly, then we apply one of these transformations and try to prove productivity of the
transformed specification, instead.

One such transformation is the reduction of right-hand sides, that is, a rule £ — r of
Ry is replaced by ¢ — 1’ for a term 7’ satisfying r —R.U Ry r’. Write R = Ry U Ry, and
write R’ for the result of this replacement. Then by construction we have —p C %E, and
—r € —pg - <5, that is, every —g-step can be followed by zero or more — g-steps to
obtain a — g/-step. We present our theorems in this more general setting such that they are
applicable more generally than only for reduction of right-hand sides.

Theorem 5.1. Let S = (X4, %5,C, Ry, Rs) and 8’ = (X4,%s,C, Ry, R,,) be proper specifica-
tions satisfying —p C —% for R=R;U Ry and R’ = R, U Ry. If §' is productive, then
S is productive, too.

Proof. Let 8’ be productive, i.e., every ground term t of sort s admits a reduction t =7, ¢/
for which root(¢') € C. Then by —r C —>}§ we conclude t —7}, t/, proving productivity of
S. n
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Example 5.2. We apply this theorem to Example 4.6. Observe that we can rewrite the
right-hand side of the rule p — zip(alt, p) as follows:

zip(alt,p) — zip(0: 1 : alt,p) — 0 : zip(p, 1 : alt)

So we may transform our specification by replacing Rs; by the TRS R/ consisting of the
following rules:
p — 0:zip(p,1:alt)
alt — 0:1:alt
zip(x :0,7) — x:zip(T,0)

Clearly, this is a proper specification that is productive due to Theorem 3.4. Now produc-
tivity of the original specification follows from Theorem 5.1 and —r C —>E5. Our tool
finds exactly this proof.

Concluding productivity of the original system from productivity of the transformed
system is called soundness, the converse is called completeness. The following example
shows the incompleteness of Theorem 5.1.

Example 5.3. Consider the two proper (stream) specifications S and S’ defined by

Rs: c — f(o) R.: c — f(c)
flo) — 0:0 flx:0) = 0:2:0
Here C = {:}, Ry = 0, ¥4 = {0}. Since ¢ - f(c) 2 0 :cand f(---) -r 0 : -+ we

conclude productivity of S, as ¢ and f are the only symbols in ;.

For the TRS R, we have that — r. C —>ES, since any step with the rule
f(x : 0) > 0: a2 : 0 of R, can also be done with the rule f(o) — 0 : o of Rs. How-
ever, 8’ is not productive, as the only reduction starting in c is ¢ — f(c) — f(f(c)) — --- in
which the root is never in C.

Next we prove that with the extra requirement —g C — g/ - <7, as holds for reduction
of right-hand sides, we have both soundness and completeness.

Theorem 5.4. Let S = (X4, %5,C, Ry, Rs) and 8§’ = (X4, %s,C, Ry, R,,) be proper specifica-
tions satisfying —p C —3 and g C —p - 5 for R=R;URy and R’ = R, U Ry.
Then S is productive if and only if 8" is productive.

Proof. The “if” direction follows from Theorem 5.1.
For the “only-if” direction first we prove the following claim:
Claim: If t =g t' and t =7 t”, then there exists a term v satisfying t' =7} v
and t" =7, v.
Let t —g t' be an application of the rule £ — r in R, so t = C[lp] and t' = C|[rp] for
some C, p. According to the Parallel Moves Lemma ([17|, Lemma 4.3.3, page 101), we can

write t" = C"[lp1,...,¢py], and t',¢" have a common R-reduct C"[rpy,...,rp,]. Due to
lp; =R rp; and —g C — g - <3 there exist ¢; satisfying fp; — g/ t; and rp; —% t;, for all
i=1,...,n. Now choosing v = C"[t1,...,t,] proves the claim.

Using this claim, by induction on the number of — g-steps from ¢ to ¢’ one proves the
generalized claim: If ¢ —7 ¢’ and t —7 t”, then there exists a term v satisfying ¢ —7, v and
t" = .

Let ¢t be an arbitrary ground term of sort s. Due to productivity of S there exists t/
satisfying t —7 ¢’ and root(t') € C. Applying the generalized claim for ¢t = ¢ yields a term



412 HANS ZANTEMA AND MATTHIAS RAFFELSIEPER

v satisfying ' —}, v and ¢t =%, v. Since root(t') € C and ¢ —% v we obtain root(v) € C.
Now ¢t —%, v implies productivity of &' ]

Example 5.3 generalizes to a general application of Theorem 5.1 other than rewriting
right-hand sides as follows. Assume a rule from R in a proper transformation contains an
s-variable o in the left-hand side being an argument of the root. Then for every ¢ € C
this rule may be replaced by an instance of the same rule, obtained by replacing o by
c(x1,...,&py,01,...,0m), where ar(d, c) = n,ar(s,c) = m. If this is done simultaneously for
every ¢ € C, so replacing the original rule by #C instances, then the result is again a proper
specification. Also the requirements of Theorem 5.1 hold, even — g C —g. We show this
transformation by an example.

Example 5.5. We want to analyze productivity of the following variant of Example 4.6, in
which p has been replaced by a stream function, and Ry is the below TRS:
p(o) — zip(o,p(0))
alt — 0:1:alt
zip(z:o0,7) — x:zip(T,0)
Proving productivity by Theorem 3.4 fails. Also proving productivity with the technique
of Theorem 4.1 fails, since there exists the infinite context-sensitive reduction

p(alt) — zip(alt, p(alt)) — ....
——

Furthermore, reducing the right-hand side of p(¢) — zip(o,p(c)) can only be done
by applying the first rule, not creating a constructor as the root of the right-hand side.
What blocks rewriting using the zip rule is the variable ¢ in the first argument of zip.
Therefore, we apply Theorem 5.1 as sketched above, note that C = {:}, and replace the rule
p(c) — zip(o,p(o)) by the single rule p(z : 0) — zip(z : o,p(z : )) to obtain the TRS RY.
This now allows us to rewrite the new right-hand side by the zip rule, replacing the previous
rule by p(z : o) = x : zip(p(z : 0),0), i.e., we obtain the TRS R/ consisting of the following
rules:

p(x:0) — x:zip(p(z:0),0)
alt — 0:1:alt
zip(z :o0,7) — x:zip(T,0)

Productivity of RY follows from Theorem 3.4. This implies productivity of R, due to
Theorem 5.1 which in turn implies productivity of our initial specification S, again due to
Theorem 5.1. Our tool finds exactly the proof as given here.

Example 5.6. For stream computations it is often natural also to use finite lists. The
data structure combining streams and finite lists is obtained by choosing C = {:, nil}, with
ar(d,:) = ar(s,:) = 1 and ar(d,nil) = ar(s,nil) = 0, as mentioned in Example 2.3. An
example using this is defining the sorted stream p=1:2:2:3:3:3:4:--- of natural
numbers, in which n occurs exactly n times for every n € N. This stream can be defined by
a specification not involving finite lists, but here we show how to do it in this extended data
structure based on standard operations like conc. Apart from conc we use copy, for which
copy(k,n) is the finite list of k copies of n, for k,n € N, and a function f for generating
p = f(0). Taking D to be the set of ground terms over {0,s} and Ry = ), we choose Rs to
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consist of the following rules:

p — f(0) f(x) — conc(copy(z,z),f(s(x)))
copy(s(z),y) — y:copy(z,y) conc(nil,o) — o
copy(0,z) — nil conc(xz : o,7) — x:conc(o,T)

Note that productivity of this system is not trivial: if the rule for f is replaced by f(z) —
conc(copy(x, z),f(x)), then the system is not productive.

Productivity cannot be proved directly by Theorem 3.4 or Theorem 4.1; context-sensitive
termination does not even hold for the single f rule. However by replacing the f rule by the
two instances

f(0) — conc(copy(0,0),f(s(0))) and f(s(z)) — conc(copy(s(x),s(x)),f(s(s(z)))),
and then applying rewriting right-hand sides by which these two rules are replaced by
f(0) — f(s(0)) and f(s(z)) — s(z) : conc(copy(x,s(z)),f(s(s(x))))

yields a proper specification for which context-sensitive termination is proved by AProVE
[8] or pu-Term [13], proving productivity of the original example by Theorem 5.1 and The-
orem 4.1. Our tool finds a similar proof as given here: right-hand sides were slightly more
rewritten.

Example 5.7. We conclude this section by an example in binary trees, in which the nodes
are labeled by natural numbers, so there is one constructor b : d x s2 — s and D consists of
ground terms over {0,s}. The rules are

c — b(0,f(g(0),left(c)),g(0)) left(b(x, zs,ys)) — xs
g(z) — b(z,g(s(x)), g(s(x))) f(b(z, zs,ys),zs) — b(xz,ys,f(zs,v5))
To get an impression of the hardness of this example, observe that f and left are similar to
zip and tail for streams, respectively, and the recursion in the rule for ¢ has the flavor of

¢ — 0:zip(--- ,tail(c)). Our tool proves productivity by Theorem 5.1 and Theorem 4.1, by
first rewriting right-hand sides and then proving context-sensitive termination.

6. Implementation

We have implemented a tool to check productivity of proper specifications using the
techniques presented in this paper. It is accessible via the web-interface

http://pclinlb0.win.tue.nl:8080/productivity.
The input format requires the following ingredients:

e the variables,
e the operation symbols with their types,
e the rewrite rules.

Details of the format can be seen from the examples that are available. All other information,
like which symbols are in C is extracted by the tool from these ingredients.

As a first step, the tool checks that the input is indeed a proper specification. Checking
syntactic requirements, such as no function symbol returning sort d has an argument of sort
s, the TRS is 2-sorted and orthogonal, and the left-hand sides have the required shape, are
all straightforward. However, to verify the last requirement of a proper specification, namely
that the TRS is exhaustive, is a hard job if we allow D to be the set of ground normal forms
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of any terminating orthogonal R;. Instead we restrict to the class of proper specifications
in which D consists of the constructor ground terms of sort d, i.e., the terms in D do not
contain symbols occurring as root symbol in a left-hand side of a rule in Rz. To check
whether this is the case, we use anti-matching as described in [14]. It can easily be shown
that the normal forms of ground terms w.r.t. R4 are only constructor terms if and only if
there is no anti-matching term that has a defined symbol as root and only terms built from
constructors and variables as arguments. The idea of the proof is that such a term could be
instantiated to a ground term, which is a normal form due to the anti-matching property.
Then, checking exhaustiveness of R4 has to only consider constructor terms for both data
and structure arguments.

To analyze productivity of a given proper specification, the tool first investigates whether
Theorem 3.4 can be applied directly: it checks whether the roots of all right-hand sides are
constructors. If this simple criterion does not hold, then it tries to show context-sensitive
termination using the existing termination prover p-Term, by which productivity will follow
by Theorem 4.1.

If both of these first attempts fail then the tool tries to transform the given specification.
Since rewriting of right-hand sides is both sound and complete, as was shown in Section 5,
a productive specification can never be transformed into an unproductive one by this tech-
nique. Therefore, this is the first transformation to try. However, large right-hand sides
often make it harder for termination tools to prove context-sensitive termination. There-
fore, the tool tries to only rewrite positions on right-hand sides that appear to be needed to
obtain a constructor prefix tree of a certain, adjustable depth. This is done by traversing the
term in an outermost fashion and only trying to rewrite arguments if the possibly matching
rules require a constructor for that particular argument. If at least one right-hand side
could be rewritten, a new specification with the rewritten right-hand sides is created. Since
rewriting of right-hand sides is not guaranteed to terminate, we limit the maximal number
of rewriting steps. After rewriting the right-hand sides in this way, the tool again tries to
prove productivity of the transformed TRS using our basic techniques.

As shown in Examples 5.5 and 5.6, it can be helpful to replace a variable by all con-
structors of its sort applied to variables. Therefore, in case productivity could not be shown
so far, it is tried to instantiate a variable on a position of a right-hand side that is required
by the rules for the defined symbol directly above it. Then the instantiated right-hand sides
are rewritten again to obtain new specifications for which productivity is analyzed further.

The described transformations are applied in the order of their presentation a number
of times. If a set limit of applications of transformations is reached, the tool finally tries to
rewrite to deeper context-prefixes on right-hand sides and does a final check for productivity,
using a larger timeout value.

Using these heuristics the tool is able to automatically prove productivity of all pro-
ductive examples presented in this paper. This especially includes the example of a stream
specification given in the following section, which could not be proved to be productive by
any other automated technique we are aware of.

7. Conclusions and Related Work

We have presented new techniques to prove productivity of specifications of infinite ob-
jects like streams. Until now several techniques were developed for proving productivity of
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stream specifications, but not for other infinite data structures like infinite trees or the com-
bination of streams and finite lists. In this paper we gave several examples of applying our
techniques to these infinite data structures. We implemented a tool by which productivity
of all of these examples could be proved fully automatically. For the non-stream examples
there are hardly other techniques to compare. For streams there are examples where our
technique outperforms all earlier techniques. For instance, the techniques from [6, 4] fail to
prove productivity of Example 4.2. For this example the technique from [19] succeeds, but
this technique fails as soon binary stream operations come in like zip. To our knowledge our
technique is the first that can deal with productivity for f(p) of the specification consisting
of the combination of Example 4.6 (describing the paper folding stream) and the two rules
f(0:0) = f(o), f(1:0) — 1:f(0). Our tool first performs rewriting of the right-hand side
of the p-rule and then proves context-sensitive termination by u-Term. Note the subtlety in
this example: as soon as a ground term t can be composed of which the interpretation as
a stream contains only finitely many ones, then the system will not be productive for f(¢).
So as a consequence we conclude that the paper folding stream p contains infinitely many
ones, as the specification is productive for f(p).

Some ideas in this paper are related to earlier observations. In [10] the observation was
made that if right-hand sides of stream definitions have ‘:’ as its root, then well-definedness
can be concluded, comparable to what we did by Theorem 3.4, and can be concluded from
friendly-nestingness in [4]. A similar observation can be made about process algebra, where
a recursive specification is called guarded if right-hand sides can be rewritten to a choice
among terms all having a constructor on top, see e.g. [2], Section 5.5. In that setting every
specification has at least one solution, while guardedness also implies there is at most one
solution (|2], Theorem 5.5.11). So guardedness implies well-definedness, being of the flavor of
combining Theorem 3.4 with rewriting right-hand sides. From both of these observations we
obtain well-definedness, which is a slightly weaker notion than productivity. An investigation
of well-definedness for stream specifications based on termination was made in [18]. We want
to stress that productivity is strictly stronger than well-definedness, which is shown by the
stream specification ¢ — f(c), f(z:0) — 0: c, being well-defined but not productive.

As far as we know the relationship of productivity with context-sensitive termination as
expressed in Theorem 4.1 is new. Some ingredients of this relationship were given before in
[19] where productivity of stream specifications was related to outermost termination and
in [7] where outermost termination was related to context-sensitive termination. An alter-
native way to proceed would have been a further elaboration of combining the approaches
from [19] and [7] to prove productivity: if the combination of the specification and a partic-
ular overflow rule is outermost terminating, then the specificiation is productive. Here for
proving outermost termination the approach from [7] can be used. However, for examples
like Example 4.3 this approach fails, even in combination with rewriting right-hand sides,
while context-sensitive termination can be proved by standard tools, proving productivity
by Theorem 4.1. For the other way around we only found examples where the direct ap-
proach is successful, too, in combination with rewriting right-hand sides. Apart from these
experiments some intuition why our approach is to be preferred is the following. By the
technique from [7]| to prove outermost termination by proving context-sensitive termination
of a transformed system, the size of the system increases dramatically. If the goal is to prove
productivity, compared to the approach of this paper it is quite a detour to first transform
the problem to outermost termination and then use such a strongly expanding transfor-
mation to relate it to context-sensitive termination, while it can be done directly without
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such an expansion by Theorem 4.1. Summarizing, we do not expect that the power of our
approach can be improved by extending it by trying to prove outermost termination of the
specification extended by the overflow rule, neither for streams nor for other infinite data
structures.
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