
Proceedings of the
21st International Conference on
Rewriting Techniques and
Applications

RTA’10, July 11–13, 2010, Edinburgh, UK

Edited by

Christopher Lynch

LIPIcs – Vo l . 6 – RTA’10 www.dagstuh l .de/ l ip i c s

Editor
Christopher Lynch
Department of Math and Computer Science
P.O. Box 5815
Clarkson University
Potsdam, NY 13699-5815, USA
clynch@clarkson.edu

ACM Classification 1998
D.1 Programming Techniques, D.2 Software Engineering, D.3 Programming Languages, F.1 Computation
by Abstract Devices, F.2 Analysis of Algorithms and Problem Complexity, F.3. Logics and Meanings of
Programs, F.4 Mathematical Logic and Formal Languages, I.1 Symbolic and Algebraic Manipulation,
I.2 Artificial Intelligence.

ISBN 978-3-939897-18-7

Published online and open access by
Schloss Dagstuhl – Leibniz-Center for Informatics gGmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works license:
http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.
Noncommercial: The work may not be used for commercial purposes.
No derivation: It is not allowed to alter or transform this work.

The copyright is retained by the corresponding authors.

ISBN 978-3-939897-18-7 ISSN 1868-8969 http://www.dagstuhl.de/lipics

iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (Humboldt University Berlin)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Wolfgang Thomas (RWTH Aachen)
Vinay V. (Chennai Mathematical Institute)
Pascal Weil (Chair, University Bordeaux)
Reinhard Wilhelm (Saarland University, Schloss Dagstuhl)

ISSN 1868-8969

www.dagstuhl.de/lipics

RTA 2010

Contents

Preface
Christopher Lynch . XIII

Invited Talks

Automata for Data Words And Data Trees
Mikołaj Bojańczyk . 1

Realising Optimal Sharing
Vincent Van Oostrom . 5

Regular Papers

Automated Confluence Proof by Decreasing Diagrams based on Rule-Labelling
Takahito Aoto . 7

Higher-Order (Non-)Modularity
Claus Appel, Vincent van Oostrom, and Jakob Grue Simonsen 17

Closing the Gap Between Runtime Complexity and Polytime Computability
Martin Avanzini and Georg Moser . 33

Abstract Models of Transfinite Reductions
Patrick Bahr . 49

Partial Order Infinitary Term Rewriting and Böhm Trees
Patrick Bahr . 67

Unique Normal Forms in Infinitary Weakly Orthogonal Term Rewriting
Joerg Endrullis, Clemens Grabmayer, Dimitri Hendriks, Jan Willem Klop,
and Vincent van Oostrom . 85

The Undecidability of Type Related Problems in Type-Free Style System F
Ken-etsu Fujita and Aleksy Schubert . 103

On (Un)Soundness of Unravelings
Karl Gmeiner, Bernhard Gramlich, and Felix Schernhammer . 119

A Proof Calculus which Reduces Syntactic Bureaucracy
Alessio Guglielmi, Tom Gundersen, and Michel Parigot . 135

A Rewriting Logic Semantics Approach to Modular Program Analysis
Mark Hills and Grigore Rosu . 151

Infinitary Rewriting: Foundations Revisited
Stefan Kahrs . 161

Underspecified Computation of Normal Forms
Alexander Koller and Stefan Thater . 177

Order-Sorted Unification with Regular Expression Sorts
Temur Kutsia and Mircea Marin . 193

Proceedings of the 21st International Conference on Rewriting Techniques and Applications.
Editor: C. Lynch; pp. v–xii

Leibniz International Proceedings in Informatics
Schloss Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

vi Contents

An Efficient Nominal Unification Algorithm
Jordi Levy and Mateu Villaret . 209

Computing Critical Pairs in 2-Dimensional Rewriting Systems
Samuel Mimram . 227

Polynomial Interpretations over the Reals do not Subsume Polynomial Interpretations
over the Integers

Friedrich Neurauter and Aart Middeldorp . 243

Automated Termination Analysis of Java Bytecode by Term Rewriting
Carsten Otto, Marc Brockschmidt, Christian von Essen, and Jürgen Giesl 259

Declarative Debugging of Missing Answers for Maude Specifications
Adrian Riesco, Alberto Verdejo, Narciso Marti-Oliet . 277

Simulation in the Call-by-Need Lambda-Calculus with letrec
Manfred Schmidt-Schauss, David Sabel, and Elena Machkasova 295

Weak Convergence and Uniform Normalization in Infinitary Rewriting
Jakob Grue Simonsen . 311

Certified Subterm Criterion and Certified Usable Rules
Christian Sternagel and René Thiemann . 325

Termination of Linear Bounded Term Rewriting Systems
Marc Sylvestre, Irène Durand, and Géraud Sénizergues . 341

Polynomially Bounded Matrix Interpretations
Johannes Waldmann . 357

Optimizing mkbTT
Sarah Winkler, Haruhiko Sato, Aart Middeldorp, and Masahito Kurihara 373

Modular Complexity Analysis via Relative Complexity
Harald Zankl and Martin Korp . 385

Proving Productivity in Infinite Data Structures
Hans Zantema and Matthias Raffelsieper . 401

Author Index

Aoto, Takahito . 7
Appel, Claus . 17
Avanzini, Martin . 33

Bahr, Patrick .49, 67
Bojańczyk, Mikołaj . 1
Brockschmidt, Marc 259

Durand, Irène . 341

Endrullis, Joerg . 85

Fujita, Ken-etsu . 103

Giesl, Jürgen . 259
Gmeiner, Karl . 119
Grabmayer, Clemens . 85
Gramlich, Bernhard .119
Guglielmi, Alessio .135
Gundersen, Tom . 135

Hendriks, Dimitri . 85
Hills, Mark . 151

Kahrs, Stefan . 161
Klop, Jan Willem . 85
Koller, Alexander . 177
Korp, Martin . 385
Kurihara, Masahito . 373
Kutsia, Temur . 193

Levy, Jordi . 209

Machkasova, Elena .295
Marin, Mircea . 193
Marti-Oliet, Narciso 277
Middeldorp, Aart 243, 373

Mimram, Samuel .227
Moser, Georg . 33

Neurauter, Friedrich 243

Otto, Carsten . 259

Parigot, Michel . 135

Raffelsieper, Matthias 401
Riesco, Adrian . 277
Rosu, Grigore . 151

Sénizergues, Géraud .341
Sabel, David . 295
Sato, Haruhiko .373
Schernhammer, Felix119
Schmidt-Schauss, Manfred 295
Schubert, Aleksy . 103
Simonsen, Jakob Grue 17, 311
Sternagel, Christian . 325
Sylvestre, Marc . 341

Thater, Stefan . 177
Thiemann, René . 325

van Oostrom, Vincent5, 17, 85
Verdejo, Alberto . 277
Villaret, Mateu . 209
von Essen, Christian 259

Waldmann, Johannes 357
Winkler, Sarah .373

Zankl, Harald . 385
Zantema, Hans .401

Proceedings of the 21st International Conference on Rewriting Techniques and Applications.
Editor: C. Lynch; pp. vii–xii

Leibniz International Proceedings in Informatics
Schloss Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Conference Organization

Conference Chair

Fairouz Kamereddine Edinburgh, UK

Program Chair

Christopher Lynch Potsdam, USA

Program Committee

Takahito Aoto
Hubert Comon-lundh
Dan Dougherty
Gilles Dowek
Rachid Echahed
Santiago Escobar
Maribel Fernandez
Guillem Godoy
Bernhard Gramlich
Patricia Johann
Fairouz Kamareddine
Delia Kesner
Georg Moser
Hitoshi Ohsaki
Femke van Raamsdonk
Sophie Tison
Johannes Waldmann

Sendai, Japan
Cachan, France
Worcester, USA
Paris, France
Grenoble, France
Valencia, Spain
London, UK
Barcelona, Spain
Vienna, Austria
Glasgow, UK
Edinburgh, UK
Paris, France
Innsbruck, Austria
Osaka, Japan
Amsterdam, The Netherlands
Lille, France
Leipzig, Germany

RTA Steering Committee

Franz Baader
Hitoshi Ohsaki
Albert Rubio
Johannes Waldmann
Ian Mackie
Joachim Niehren

Dresden, Germany
Osaka, Japan
Barcelona, Spain
Leipzig, Germany
Palaiseau, France
Lille, France

Proceedings of the 21st International Conference on Rewriting Techniques and Applications.
Editor: C. Lynch; pp. ix–xii

Leibniz International Proceedings in Informatics
Schloss Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

External Reviewers

Albert, Elvira
Alpuente, María
Ariola, Zena
Avanzini, Martin
Ayala-Rincón, Mauricio
Bahr, Patrick
Balland, Emilie
Berger, Ulrich
Blom, Stefan
Bonelli, Eduardo
Bonfante, Guillaume
Bongaerts, Jochem
Bucciarelli, Antonio
Chiba, Yuki
Contejean, Evelyne
Corradini, Andrea
Creus, Carles
de Vries, Fer-Jan
de Vrijer, Roel
Dershowitz, Nachum
Dyckhoff, Roy
Endrullis, Joerg
Filiot, Emmanuel
Gascón, Adrià
Ghani, Neil
Ghilezan, Silvia
Gmeiner, Karl
Guiraud, Yves
Gutierrez, Raul
Hardin, Therese
Hashimoto, Kenji
Hendriks, Dimitri
Hendrix, Joe
Hym, Samuel
Jay, Barry
Kahrs, Stefan
Korp, Martin
Kuske, Dietrich

Lafont, Yves
Lescanne, Pierre
Lohrey, Markus
Lucas, Salvador
Maneth, Sebastian
Marti-Oliet, Narciso
Middeldorp, Aart
Moura, Flavio
Nakamura, Masaki
Neurauter, Friedrich
Nguyen, Van Tang
Niehren, Joachim
Nishida, Naoki
Palomino, Miguel
Payet, Etienne
Péchoux, Romain
Plump, Detlef
Rahli, Vincent
van Oostrom, Vincent
Rodenburg, Piet
Sakai, Masahiko
Sato, Haruhiko
Schernhammer, Felix
Schnabl, Andreas
Seki, Hiroyuki
Sénizergues, Géraud
Severi, Paula
Simonsen, Jakob Grue
Spoto, Fausto
Sternagel, Christian
Takai, Toshinori
Talbot, Jean-Marc
Thiemann, René
Urbain, Xavier
Urban, Christian
Vidal, German
Yamada, Toshiyuki
Zantema, Hans

Proceedings of the 21st International Conference on Rewriting Techniques and Applications.
Editor: C. Lynch; pp. xi–xii

Leibniz International Proceedings in Informatics
Schloss Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.i

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. XIII-XIV
http://rewriting.loria.fr/rta/

PREFACE

This volume contains the papers presented at the 21st International Conference on
Rewriting Techniques and Applications (RTA 2010) which was held from July 11 to July
13, 2010, in Edinburgh, Scotland as part of the 5th International Federated Logic Confer-
ence (FLOC 2010), together with the International Joint Conference on Automated Rea-
soning (IJCAR 2010), the Conference on Automated Verification (CAV 2010), the IEEE
Symposium on Logic in Computer Science (LICS 2010), the International Conference on
Logic Programming (ICLP 2010), the Conference on Theory and Applications of Satisfia-
bility Testing (SAT 2010), the Conference on Interactive Theorem Proving (ITP 2010) and
the Computer Security Foundations Symposium (CSF 2010). Workshops associated with
RTA 2010 were the 5th International Workshop on Higher-Order Rewriting (HOR 2010),
the Annual Meeting of the IFIP Working Group 1.6 on Term Rewriting, the International
Workshop on Strategies in Rewriting, Proving, and Programming (IWS 2010), the 24th
International Workshop on Unification (UNIF 2010) and the 11th International Workshop
on Termination (WST 2010).

RTA is the major forum for the presentation of research on all aspects of rewrit-
ing. Previous RTA conferences were held in Dijon (1985), Bordeaux (1987), Chapel Hill
(1989), Como (1991), Montreal (1993), Kaiserslautern (1995), Rutgers (1996), Sitges (1997),
Tsukuba (1998), Trento (1999), Norwich (2000), Utrecht (2001), Copenhagen (2002), Va-
lencia (2003), Aachen (2004), Nara (2005), Seattle (2006), Paris (2007), Hagenberg (2008)
and Brasilia (2009).

For RTA 2010, 23 regular research papers and three system descriptions were accepted
out of 48 submissions. Each paper was reviewed by at least three members of the Program
Committee, with the help of 76 external reviewers, and an electronic meeting of the Program
Committee was held using Andrei Voronkov’s EasyChair system, which was invaluable in
the reviewing process, the electronic Program Committee meeting, and the preparation of
the conference schedule, and this proceedings.

The Program Committee gave the award for Best Contribution to RTA 2010 to Patrick
Bahr for two papers: “Partial Order Infinitary Term Rewriting and Bhm Trees” and “
Abstract Models of Transfinite Reductions”.

In addition to the contributed papers, the RTA program contained an invited talk by
Mikolaj Bojanczyk on “Automata for Data Words and Data Trees” and by Vincent van
Oostrom on “Realising Optimal Sharing”. In addition, there were invited talks by David
Harel, Gordon Plotkin, Georg Gottlob and J Strother Moore, jointly with ITP, LICS, RTA
and SAT.

.

c© C. Lynch
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.XIII

XIV PREFACE

Maybe people helped to make RTA 2010 a success. I would like to thank Zhiqiang Liu for
helping with the proceedings and Ralph Eric McGregor for helping with the RTA webpage.
FLOC was hosted by the School of Informatics at the University of Edinburgh, Scotland.
Support by the conference sponsors – EPSRC, NSF, Microsoft Research, Association for
Symbolic Logic, CADE Inc., Google, Hewlett-Packard, Intel – is gratefully acknowledged.

June 2010 Christopher Lynch

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 1-4
http://rewriting.loria.fr/rta/

AUTOMATA FOR DATA WORDS AND DATA TREES

MIKO LAJ BOJAŃCZYK

University of Warsaw
E-mail address: bojan@mimuw.edu.pl

URL: www.mimuw.edu.pl/∼bojan

Abstract. Data words and data trees appear in verification and XML processing. The
term “data” means that positions of the word, or tree, are decorated with elements of an
infinite set of data values, such as natural numbers or ASCII strings. This talk is a survey
of the various automaton models that have been developed for data words and data trees.

A data word is a word where every position carries two pieces of information: a label

from a finite alphabet, and a data value from an infinite set. A data tree is defined likewise.
As an example, suppose that the finite alphabet has two labels request and grant,

and the data values are numbers (interpreted as process identifiers). A data word, such as
the one below, can be seen as log of events that happened to the processes.

request

1

request

2

request

1

request

7

request

7

request

3

grant

1

grant

3

...

The example with processes and logs can be used to illustrate how data words are used
in verification. In one formulation, verification is a decision problem with two inputs: a
correctness property, and a scheduling mechanism. The correctness property is some set
K of “correct” logs. Often in verification, one talks about infinite words. For example, we
might be interested in the following liveness property:

“For every position with label request, there exists a later position with
label grant and the same data value.”

The scheduling mechanism is represented as the set L of logs consistent with the mechanism.
For example, a rather unwise scheduler would result in the following logs:

“Every position with label grant carries the same data value as the most
recent position with label request.”

The verification problem is the question: does the scheduling mechanism guarantee the
correctness property? (In the example given here, the answer is no.) In terms of languages,
this is the question if the difference L−K is nonempty. To complete the description of the

1998 ACM Subject Classification: PREFERRED list of ACM classifications.
Key words and phrases: Automata, Infinite State Systems.
Work supported by the FET programme within the Seventh Framework Programme for Research of the

European Commission, under the FET-Open grant agreement FOX, number FP7-ICT-233599.

c© M. Bojańczyk
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.1

2 M. BOJAŃCZYK

problem, one should indicate some way of representing the languages L and K; a typical
solution is to use some variant of logic or automata.

Another application of data is in XML. Here, (finite) data trees are the pertinent object.
The data values are used to model the text content in an XML document, while the labels
are used to model tag names, as illustrated in the following example. The finite alphabet
describes three possible tag names: root, team and player. The data values are ASCII
strings that describe team names and player names. The picture below depicts an XML
document and its interpretation as a data tree.

<root>

<team> Borussia

 <player> Kuba </player>

 <player> Zidan </player>

</team>

<team> Poland

 <player> Boruc </player>

 <player> Kuba </player>

 <player> Bąk </player>

</team>

</root>

root

team

Borussia

team

Poland

player

Kuba

player

Kuba

player

Zidan

player

Boruc

player

Bąk

One might want to express correctness properties of an XML document, such as “no
player is a member of two different teams”. A typical algorithmic problem would concern
the relation between two correctness properties, such as: does correctness property L imply
correctness property K? This is a problem like the one in the verification example, although
the logics used for describing XML documents usually have a different flavor than the logics
for describing behavior of processes. Another algorithmic problem is to query documents,
such as “find the nodes that describe a player who plays in two different teams”. For
querying, algorithms should be very fast, for instance linear in the document size. For
verification, sometimes even decidability is hard to get.

The problems described above are well understood in the data-free setting, where posi-
tions carry only labels and not data values. Automata techniques have been highly successful
in this area.

What about data? What is the right automaton model for data words and data trees?
Recent years have seen a lot of work in this direction, with many incompatible definitions
being proposed. Some of the approaches are listed in the references. Which one is the right
one? What is a “regular language” in the presence of data? We do not know yet, and maybe
we never will. It is difficult (indeed, impossible, under a certain formulation) to design an
automaton model that is robust (the languages recognized have good closure properties, such
as boolean operations and projections), expressive (captures some reasonable languages,
such as “all positions with label a have the same data value”) and decidable (e.g. has
decidable emptiness). Undecidable problems, like the Post Embedding Problem, can be
easily encoded in data words, in many different ways.

The talk surveys the varied landscape of automata models for data words and data
trees. I will talk about the technical aspect of deciding emptiness, including the connection
with vector addition systems (Petri Nets), as well as the connection with well-quasi-orders.

AUTOMATA FOR DATA WORDS 3

I will also talk about the technical aspect of efficient evaluation, including the connection
with semigroup theory.

References

[1] Michael Benedikt, Wenfei Fan, and Floris Geerts. XPath satisfiability in the presence of DTDs. In
PODS, pages 25–36, 2005.

[2] H. Björklund and T. Schwentick. On notions of regularity for data languages. In FCT, pages 88–99,
2007.

[3] Miko laj Bojańczyk, S lawomir Lasota. An extension of data automata that captures XPath . To appear
in LICS, 2010.

[4] Miko laj Bojańczyk, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. Two-variable logic on data
trees and XML reasoning. J. ACM, 56(3), 2009.

[5] Miko laj Bojańczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and Claire David. Two-variable
logic on words with data. In LICS, pages 7–16, 2006.

[6] Miko laj Bojańczyk, Pawe l Parys. Efficient evaluation of nondeterministic automata using factorization
forests. To appear in ICALP, 2010.

[7] Stéphane Demri and Ranko Lazić. LTL with the freeze quantifier and register automata. ACM Trans.

Comput. Log., 10(3), 2009.
[8] Diego Figueira. Forward-XPath and extended register automata on data-trees. In ICDT, 2010. To

appear.
[9] Marcin Jurdziński and Ranko Lazić. Alternation-free modal mu-calculus for data trees. In LICS, pages

131–140, 2007.
[10] Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput. Sci., 134(2):329–363,

1994.
[11] Luc Segoufin. Automata and logics for words and trees over an infinite alphabet. In CSL, pages 41–57,

2006.

4 M. BOJAŃCZYK

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 5-6
http://rewriting.loria.fr/rta/

REALISING OPTIMAL SHARING

VINCENT VAN OOSTROM

Department of Philosophy, Utrecht University

Heidelberglaan 6, 3584 CS Utrecht, The Netherlands

E-mail address: Vincent.vanOostrom@phil.uu.nl

1998 ACM Subject Classification: F.4.2.

Key words and phrases: Optimal Sharing.

c© Vincent van Oostrom
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.5

6 VINCENT VAN OOSTROM

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 7-16
http://rewriting.loria.fr/rta/

AUTOMATED CONFLUENCE PROOF BY DECREASING DIAGRAMS

BASED ON RULE-LABELLING

TAKAHITO AOTO 1

1 RIEC, Tohoku University, 2-1-1 Katahira, Sendai, Miyagi, 980-8577, Japan

E-mail address: aoto@nue.riec.tohoku.ac.jp

URL: http://www.nue.riec.tohoku.ac.jp/user/aoto/

Abstract. Decreasing diagrams technique (van Oostrom, 1994) is a technique that can

be widely applied to prove confluence of rewrite systems. To directly apply the decreasing

diagrams technique to prove confluence of rewrite systems, rule-labelling heuristic has

been proposed by van Oostrom (2008). We show how constraints for ensuring confluence

of term rewriting systems constructed based on the rule-labelling heuristic are encoded

as linear arithmetic constraints suitable for solving the satisfiability of them by external

SMT solvers. We point out an additional constraint omitted in (van Oostrom, 2008)

that is needed to guarantee the soundness of confluence proofs based on the rule-labelling

heuristic extended to deal with non-right-linear rules. We also present several extensions

of the rule-labelling heuristic by which the applicability of the technique is enlarged.

1. Introduction

Confluent term rewriting systems form a basis of flexible computations and effective
deductions for equational reasoning [2, 10]. Thus, confluence is considered to be one of the
most important properties for term rewriting systems (TRSs for short). In contrast to the
termination proof techniques, where automation of the techniques has been actively inves-
tigated, not much attention has been paid to automation of confluence proving. Motivated
by such a situation, Aoto et.al. [1, 15] have started developing a fully-automated confluence
prover ACP.

Decreasing diagrams technique [11] is a technique that can be widely applied to prove
confluence of rewrite systems. Many confluence results are explained and are extended
based on the decreasing diagrams criterion [11, 13, 14]. In [13], rule-labelling heuristic has
been proposed to prove confluence of rewrite systems directly by the decreasing diagrams
technique. In the rule-labelling heuristic, each rewrite step is labeled by the rewrite rule
employed in that rewrite step—then the existence of the suitable ordering on labels ensures
the confluence of the TRSs. In [1, 15], the implementation of decreasing diagrams techniques
in ACP was left as a future work.

1998 ACM Subject Classification: D.3.1 [Programming Languages]: Formal Definitions and Theory; F.3.1

[Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs; F.4.2 [Mathe-

matical Logic and Formal Languages]: Grammars and Other Rewriting Systems; I.2.2 [Artificial Intelligence]:

Automatic Programming.

Key words and phrases: Confluence, Decreasing Diagrams, Automation, Term Rewriting Systems.

c© T. Aoto
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.7

8 T. AOTO

In this paper, we report a method to incorporate the confluence proof by the decreasing
diagrams based on the rule-labelling heuristic into the automated confluence provers such as
the ACP. More precisely, we show how conditions for ensuring confluence of term rewriting
systems constructed based on the rule-labelling heuristic are encoded as linear arithmetic

constraints suitable for solving the satisfiability of them by external SMT solvers (SAT
modulo theories where the linear arithmetic is employed for the underlying theory). Fur-
thermore, we point out an additional condition omitted in [13] that is needed to guarantee
the soundness of confluence proofs based on the rule-labelling heuristic. We also present
several extensions of the rule-labelling heuristic by which the applicability of the technique
is enlarged. All methods are implemented and experiments are reported.

The remainder of the paper is organized as follows. In Sec. 2, we briefly explain notions
and notations used in this paper. In Sec. 3, we explain the decreasing diagrams technique
and present an encoding of confluence criteria based on the basic version of the rule-labelling
heuristic. In Sec. 4, we explain an extension of rule-labelling heuristic for left-linear TRSs.
Here we point out the necessity of an additional condition omitted in [13]. In Sec. 5, we
present the encoding of the criterion explained in Sec. 4 with a natural generalization. In
section 6, we present two further flexibilities that can be added to the heuristic. Sec. 7
reports an implementation and experiments. Sec. 8 concludes.

2. Preliminaries

This section briefly explains notions and notations used in this paper. For omitted
definitions, we refer [2].

Abstract reduction system (ARS for short) A = 〈A, (→i)i∈I〉 consists of a set A and
indexed relations →i over A. For J ⊆ I, →J =

⋃

i∈J→i and →I is abbreviated to → if
no confusion arises. The reverse of → is denoted by ←. The reflexive transitive closure

(reflexive closure, equivalence closure) of → is denoted by
∗
→ (resp.

=
→,

∗
↔). We use ◦ for

the composition of relations. We denote a quasi-order by %, its strict part by ≻ and its
equivalence part by ≃. A quasi-order is well-founded if there exists no infinite descending
chain a0 ≻ a1 ≻ · · · . We put ≺m = {i | i ≺ m}, ≃m = {i | i ≃ m} and ≺l,m = {i | i ≺
l}∪{i | i ≺ m}. The lexicographic comparison %lex by two quasi-orders %1 and %2 is given
by 〈a1, a2〉 %lex 〈b1, b2〉 iff either a1 ≻1 b1 or a1 ≃1 b1 and a2 %2 b2.

The sets of function symbols and variables are denoted by F and V . Each function
symbol f is equipped with a natural number arity(f), the arity of f . A constant is a
function symbol with arity 0. We denote by V(t) the set of variables occurring in a term
t. A variable x ∈ V(t) is said to have a linear occurrence in t (or x is linear in t) if there
is only one occurrence of x in t. A term t is linear if all variables in V(t) are linear in t.
A position in a term is denoted by a (possibly empty) sequence of positive integers. The
empty sequence (i.e. the root position) is denoted by ǫ. If p is a position in a term t, the
subterm of t at p is denoted by t/p and we write t[s]p the term obtained from t by replacing
the subterm at p with a term s. A context is a term with a special constant � (called a
hole). A context C with precisely one occurrence of the hole is denoted by C[]. We write
C[]p if C[]/p = �. An instance of t by a substitution σ is written as tσ.

Any rewrite rule l → r satisfies the conditions (1) l /∈ V and (2) V(r) ⊆ V(l). Rewrite
rules are identified modulo variable renaming. A rewrite rule l → r is linear (left-linear,
right-linear) if l and r (l, r, respectively) are linear. A term rewriting system (TRS for
short) is a finite set of rewrite rules. It is linear (left-linear, right-linear) if so are all rules.

AUTOMATED CONFLUENCE PROOF BY DECREASING DIAGRAMS 9

There is a rewrite step s → t if there exist a context C[]p, a substitution σ, and a rewrite
rule l → r ∈ R such that s = C[lσ]p and t = C[rσ]p. The subterm occurrence of lσ at p is
the redex occurrence of this rewrite step; the occurrence of l (except variables) in s is called
the redex pattern of this rewrite step. A rewrite sequence of the form s ← u → t is called

a peak ; the one of the form s
∗
→ ◦

∗
← t is a joinable rewrite sequence. Terms s and t are

joinable if s
∗
→ ◦

∗
← t. A TRS R is confluent or Church–Rosser if s

∗
← ◦

∗
→ t implies s and

t are joinable.
Let s, t be terms whose variables are disjoint. The term s overlaps on t (at position

p) when there exists a non-variable subterm u = t/p of t such that u and s are unifiable.
Let l1 → r1 and l2 → r2 be rewrite rules w.l.o.g. whose variables are disjoint. Suppose that
l1 overlaps on l2 at position p. Let σ be the most general unifier of l1 and l2/p. Then the
term l2[l1]σ yields a critical peak l2[r1]σ ← l2[l1]σ → r2σ. The pair 〈l2[r1]σ, r2σ〉 is called
the critical pair obtained by the overlap of l1 → r1 on l2 → r2 at position p. In the case
of self-overlap (i.e. when l1 → r1 and l2 → r2 are identical modulo renaming), we do not
consider the case p = ǫ. The set of critical pairs obtained by an overlap of l1 → r1 on
l2 → r2 is denoted by CP(l1 → r1, l2 → r2). The set of critical pairs in a TRS R is denoted
by CP(R).

3. Confluence by decreasing diagrams based on rule-labelling heuristic

An ARS A = 〈A, (→i)i∈I〉 is locally decreasing w.r.t. a well-founded quasi-order % if

for any s ←l ◦ →m t there exists s
∗
→≺l ◦

=
→≃m ◦

∗
→≺l,m ◦

∗
←≺l,m ◦

=
←≃l ◦

∗
←≺m t [11]. In

this paper, we use the following variant of decreasing diagrams criterion.

Proposition 3.1 (decreasing diagrams criterion [11]). An ARS A = 〈A, (→i)i∈I〉 is con-

fluent if A is locally decreasing w.r.t. a well-founded quasi-order order %.

In [13], rule-labelling heuristic is introduced to apply the decreasing diagrams criterion
to directly prove confluence of TRSs. To use the decreasing diagrams criterion, each rewrite
step needs to be equipped with a label—in the rule-labelling heuristic, the rewrite rule
employed in the rewrite step is used as the label of each rewrite step. As in [13], let us
suppose that each rewrite rule is numbered from 1 to |R| and that each rewrite rule is
identified with its number (i : l → r ∈ R indicates that i is the number of l → r). We say
a peak s ←i u →j t is locally decreasing w.r.t. % if there is a rewrite sequence of the form

s
∗
→≺i ◦

=
→≃j ◦

∗
→≺i,j ◦

∗
←≺i,j ◦

=
←≃i ◦

∗
←≺j t.

Proposition 3.2 (confluence by rule-labelling heuristic [13]). A linear TRS R is confluent

if there exists a quasi-order % on R such that any critical peak of R is locally decreasing

w.r.t. %.

Note that well-founded of % follows from the finiteness of the set R. Based on this
proposition, a (basic) confluence proof of TRS R by decreasing diagrams based on rule-
labelling is conducted as follows.

Step 1 Check (left- and right-)linearity.

Step 2 Find a joinable rewrite sequence s
∗
→ v

∗
← t for every critical pairs 〈s, t〉 ∈ CP(i, j).

Step 3 Check whether there exists a quasi-order % on R such that s
∗
→ v

∗
← t (obtained

in the step 2) has the form s
∗
→≺i ◦

=
→≃j ◦

∗
→≺i,j ◦

∗
←≺i,j ◦

=
←≃i ◦

∗
←≺j t for every

critical pairs 〈s, t〉 ∈ CP(i, j).

10 T. AOTO

Computation of the step 1 is easy. Automation of the step 2 is partially achieved by

imposing a maximum length on rewrite steps s
∗
→ v

∗
← t. The only non-trivial part is the

step 3. We show that the step 3 can be solved by reducing the problem into the satisfiability
of an arithmetic constraint.

First, let us illustrate by an example how the requirement on the quasi-order - is

specified. Since the requirements on s
∗
→ v and v

∗
← t are symmetric, we concentrate on the

s
∗
→ v part. Suppose that we have a joinable rewrite sequence s →x1 ◦ →x2 ◦ →x3 v

∗
← t

for 〈s, t〉 ∈ CP(i, j). The requirement is that →x1 ◦ →x2 ◦ →x3 has the form
∗
→≺i ◦

=
→≃j

◦
∗
→≺i,j . We can think of five possibilities depending on where the rewrite step equivalent

to j (virtually) appears:

(i) x1, x2, x3 ∈ ≺i, j (i.e. the rewrite step equivalent to j is placed before →x1 step)
(ii) x1 ≃ j and x2, x3 ∈ ≺i, j (i.e. the rewrite step equivalent to j is →x1 step)
(iii) x1 ≺ i, x2 ≃ j and x3 ∈ ≺i, j (i.e. the rewrite step equivalent to j is →x2 step)
(iv) x1, x2 ≺ i, x3 ≃ j (i.e. the rewrite step equivalent to j is →x3 step)
(v) x1, x2, x3 ≺ i (i.e. the rewrite step equivalent to j is placed after →x3 step)

The last possibility is redundant because of the first one; thus four possibilities remain.
Since xk ∈ ≺i, j equals to (xk ≺ i) ∨ (xk ≺ j), we obtain the following requirement on the
quasi-order -.

(x1 ≺ i ∨ x1 ≺ j) ∧ (x2 ≺ i ∨ x2 ≺ j) ∧ (x3 ≺ i ∨ x3 ≺ j) from the case (i)
∨ (x1 ≃ j) ∧ (x2 ≺ i ∨ x2 ≺ j) ∧ (x3 ≺ i ∨ x3 ≺ j) from the case (ii)
∨ (x1 ≺ i) ∧ (x2 ≃ j) ∧ (x3 ≺ i ∨ x3 ≺ j) from the case (iii)
∨ (x1 ≺ i) ∧ (x2 ≺ i) ∧ (x3 ≃ j) from the case (iv)

In describing the requirement for the general case, the following assumption is assumed.

Below, each rewrite sequence is supposed to be assigned by a sequence of labels as s
∗
→i1···ik t

for s→i1 ◦ · · · ◦ →ik t.

Assumption 3.3. We assume that there exists a joinable rewrite sequence s
∗
→σ ◦

∗
←ρ t

for each critical pair 〈s, t〉 ∈ CP(i, j). Given labelling of rewrite steps, the sequences σ and

ρ of labels are denoted by JL(s, t) and JR(s, t), respectively.

Definition 3.4. We define Ldd(i, j, x1 · · ·xn) and LDD(R) as follows.

Ldd(i, j, x1 · · ·xn) = (
∧

1≤l≤n((xl ≺ i) ∨ (xl ≺ j))) ∨
∨

1≤k≤n

[

(
∧

1≤l<k(xl ≺ i)) ∧ (xk ≃ j) ∧ (
∧

k<l≤n((xl ≺ i) ∨ (xl ≺ j)))
]

LDD(R) =
∧

i,j∈R

∧

〈s,t〉∈CP(i,j)

(

Ldd(i, j, JL(s, t)) ∧ Ldd(j, i, JR(s, t))
)

Theorem 3.5. A linear TRS R is confluent if there exists a quasi-order % on R that

satisfies LDD(R).

We next explain how the existence problem of a quasi-order% onR that satisfy LDD(R)
is reduced to the satisfiability problem of an arithmetic constraint. The idea is to specify the
quasi-order % by the assignment of natural number weights, that is, i ≻ j iff the rule i has
the weight strictly larger than that of j. Here, note that sinceR is finite and the requirement
is a monotone formula, it suffices to consider the total quasi-order. Suppose non-negative
integer variables w1, . . . , w|R| are to be assigned by the weight of the rules 1, . . . , |R| ∈ R.
Then the requirement LDD(R) of % is translated to an arithmetic constraint [[LDD]](R)
over the indeterminates w1, . . . , w|R| and the existence problem of a quasi-order % satisfying

AUTOMATED CONFLUENCE PROOF BY DECREASING DIAGRAMS 11

LDD(R) is reduced to the existence problem of a suitable assignment on indeterminates
w1, . . . , w|R| which satisfies [[LDD]](R).

Definition 3.6. An arithmetic constraint [[LDD]](R) is defined as follows.

[[Ldd]](i, j, x1 · · ·xn) = (
∧

1≤l≤n((wxl < wi) ∨ (wxl < wj))) ∨
∨

1≤k≤n

[

(
∧

1≤l<k(wxl < wi)) ∧ (wxk = wj) ∧ (
∧

k<l≤n((wxl < wi) ∨ (wxl < wj)))
]

[[LDD]](R) =
∧

i,j∈R

∧

〈s,t〉∈CP(i,j)

(

[[Ldd]](i, j, JL(s, t)) ∧ [[Ldd]](j, i, JR(s, t))
)

Theorem 3.7. A linear TRS R is confluent if [[LDD]](R) is satisfiable.

Since constrains [[LDD]](R) is a boolean combination of linear arithmetic formulas (ev-
ery monomial contains only one variable), the satisfiability of [[LDD]](R) is efficiently checked
by an external SMT (SAT modulo theories) solver where the linear arithmetic is employed
for the underlying theory.

4. Rule-labelling heuristic capable of non-right-linear rules

As explained in [13], the rule-labelling heuristic is not applicable to non-linear TRSs,
but by adding some additional information to labels, the technique can be extended to han-
dle (possibly non-right-linear) left-linear TRSs. To explain this extension, let us replicate a
situation from Example 20 of [13]. Suppose i : f(x)→ h(x, x) ∈ R. To apply the decreasing
diagrams criterion (Proposition 3.1), one has to impose the local decreasingness for peaks
arising from nested overlaps of the same rewrite rule i such as:

f(C[f(a)])

f(C[h(a, a)])

h(C[f(a)], C[f(a)])

h(C[h(a, a)], C[f(a)])

h(C[h(a, a)], C[h(a, a)])

i

i

i

ii

This peak, however, is not locally decreasing as→i ◦ →i does not have the form
∗
→≺i ◦

=
→≃i

◦
∗
→≺i,i. Hence the rule-labelling heuristic fails.

An idea to solve this situation is to extend the label i to 〈m, i〉 where m is the number of
occurrences of f on the path from the redex to the root and use the lexicographic comparison
(denoted by %lex) in which the first component is compared with the usual ordering ≥ on
natural numbers [13]. Then we have labeled rewrite steps f(C[f(a)]) →〈n+1,i〉 f(C[h(a, a)])
and h(C[f(a)], C[f(a)]) →〈n,i〉 h(C[h(a, a)], C[f(a)]) →〈n,i〉 h(C[h(a, a)], C[f(a)]), provided
that the context C[] has n-occurrences of f on the path from the hole to the root. Then,
by 〈n+ 1, i〉 ≻lex 〈n, i〉, the local decreasingness of the peak is ensured.

Although it is not mentioned in [13], one should note that this extended heuristic does
not work if there is a rewrite rule such as j : g(x) → f(x) in R whose rewrite step may
increase the number of occurrences of f above a redex. For example, a critical peak below
arising from the nested overlap of redex patterns is not locally decreasing:

12 T. AOTO

g(C[s])

g(C[s′]) f(C[s])

f(C[s′])

〈n, k〉 〈n, j〉

〈n+ 1, k〉〈n, j〉

as 〈n+ 1, k〉 ≻lex 〈n, k〉 and 〈n+ 1, k〉 ≻lex 〈n, j〉.
To avoid such a situation, one needs to impose an additional condition: for any contexts

Cl[], Cr[] and x ∈ V such that Cl[x]→ Cr[x] ∈ R,

- ♯fCl[] ≥ ♯fCr[] if x is linear in Cr[x], and
- ♯fCl[] > ♯fCr[] if x is not linear in Cr[x]

where ♯f C[] denotes the number of occurrences of the function symbol f along the path
from the hole to the root in the context C[].

5. A generalization of rule-labelling heuristic for left-linear TRSs

In this section, we extend the encoding presented in Sec. 3 to the rule-labelling heuristic
for left-linear TRSs explained in Sec. 4 under the following natural generalization:

(1) Not only f but some subset G of function symbols can be designated for counting
occurrences (on the path from the redex to the root).

(2) More generally, the counting of occurrences can be generalized to the summation of
weights of ≥ 0 assigned for each function symbol’s occurrences.

The summation of weights is formalized by a notion of the weight of context.

Definition 5.1. Let C[] be a context and w : F → N be a function where N is the set of
natural numbers. The weight ♯C[] of a context C[] is defined as follows.

♯C[] =

{

0 if C[] = �

w(f) + ♯C̃[] if C[] = f(. . . , C̃[], . . .)

To encode the weight ♯C[], we introduce a non-negative integer variable zf for each
f ∈ F to be assigned by w(f). Then ♯C[] is encoded by a polynomial [[♯C[]]] whose definition
is obtained by replacing w(f) by zf in the definition of ♯C[]. Thus the label of each rewrite
step is encoded by 〈ϕ, x〉 where x ∈ {1, . . . , |R|} and ϕ is a polynomial over indeterminate
(zf)f∈F . We assume that JL(s, t) and JR(s, t) are updated accordingly. The set CP2(i, j)
of critical pairs equipped with the weight of peak rewrite steps is given like this: CP2(i, j)
= {

〈

〈[[♯lj []pσ]], s〉, 〈0, t〉
〉

| s = lj [ri]pσ ← lj [li]pσ = ljσ → rjσ = t, 〈s, t〉 ∈ CP(i, j)}.

Definition 5.2. Arithmetic constraints [[LDD2]](R) and [[CND]](R) are defined as follows.

〈ϕ, i〉 ≺lex 〈ρ, j〉 = (ϕ < ρ ∨ (ϕ = ρ ∧ wi < wj)) 〈ϕ, i〉 ≃lex 〈ρ, j〉 = (ϕ = ρ ∧ wi < wj)

[[Ldd2]](~ϕ, ~ψ, ~ρ1 · · · ~ρn) = (
∧

1≤l≤n((~ρl ≺lex ~ϕ) ∨ (~ρl ≺lex
~ψ))) ∨

∨

1≤k≤n

[

(
∧

1≤l<k(~ρl ≺lex ~ϕ)) ∧ (~ρk ≃lex
~ψ) ∧ (

∧

k<l≤n((~ρl ≺lex ~ϕ) ∨ (~ρl ≺lex
~ψ)))

]

[[LDD2]](R) =
∧

i,j∈R

∧

〈〈ϕ,s〉,〈ψ,t〉〉∈CP2(i,j)

(

[[Ldd2]](〈ϕ, i〉, 〈ψ, j〉, JL(s, t))

∧[[Ldd2]](〈ψ, j〉, 〈ϕ, i〉, JR(s, t))
)

AUTOMATED CONFLUENCE PROOF BY DECREASING DIAGRAMS 13

[[CND]](R) =
∧

{[[♯Cl[]]] ≥ [[♯Cr[]]] | Cl[x]→ Cr[x] ∈ R, x /∈ V(Cr[])}
∧

∧

{[[♯Cl[]]] > [[♯Cr[]]] | Cl[x]→ Cr[x] ∈ R, x ∈ V(Cr[])}

We here explain the constraint [[CND]](R) by an example.

Example 5.3. Let R =
{

f(g(x), y)→ h(x, f(x, y))
}

. Then the condition for variable y
which is linear in the right-hand side (rhs for short) of the rule is encoded like this:

(1) zf ≥ zh + zf (for Cl[] = f(g(x),�), Cr[] = h(x, f(x,�))).

The condition for variable x which is non-linear in rhs of the rule is encoded like this:

(2) zf + zg > zh (for Cl[] = f(g(�), y), Cr[] = h(�, f(x, y))),
(3) zf + zg > zh + zf (for Cl[] = f(g(�), y), Cr[] = h(x, f(�, y))).

Therefore [[CND]](R) = (1) ∧ (2) ∧ (3).

Theorem 5.4. A left-linear TRS R is confluent if [[LDD2]](R)∧ [[CND]](R) is satisfiable.

Example 5.5. The following TRS R1 is from [4] (Example 20 of [14]).

R1 =

{

(1) g(a) → f(g(a)) (3) a → b (5) h(x, y) → c

(2) g(b) → c (4) f(x) → h(x, x)

}

There is a (unique) critical peak of R: g(b) ←〈zg,w3〉 g(a) →〈0,w1〉 f(g(a)), which is joinable
as g(b) →〈0,w2〉 c ←〈0,w5〉 h(g(a), g(a)) ←〈0,w4〉 f(g(a)). By solving the constraint, a solution
zf = wi = 1 (i ∈ {1, 3, 5}), zf = w2 = w4 = 0 (f ∈ {a, b, c, g, h}) is obtained.

Example 5.6. Let R1 be the TRS given in Example 5.5 and R2 = R1 ∪ {g(x)→ f(f(x))}.
The weight assignment in Example 5.5 does not work for R2 because of [[CND]](R2). In fact,
the generated constraint [[LDD2]](R2)∧ [[CND]](R2) is not satisfiable if we limit zf ∈ {0, 1}.
By solving the constraint, a solution zf = wi = 1 (i ∈ {1, 5, 6}), zg = w2 = 2, w3 = 3, zf =
w5 = 0 (f ∈ {a, b, c, g, h}) is obtained. Thus one concludes R2 is confluent. This example
demonstrates that our generalization from counting of function symbol’s occurrences to
summation of weight properly extends the applicability of the rule-labelling heuristic.

6. Adding further flexibilities to the rule-labelling heuristic

In this section, we add two further flexibilities to the rule-labelling heuristic.

6.1. Adding flexibility on the lexicographic comparison

In the previous section (and also in [13]) the label 〈♯C[], i〉 is compared in such a way
that first on the weight ♯C[] and then on the weight of the rule i. It is easy to see, however,
that comparing the components in the reverse order can be used either.

Example 6.1. Let

R3 =

{

(1) c → f(a) (3) a → g(a) (5) f(x) → h(x, x)
(2) c → f(b) (4) b → g(g(a))

}

.

First note that in R3 zf > zh need to be satisfied by the rule (5). Consider the critical peak
f(a) ←〈0,w1〉 c →〈0,w2〉 f(b) and a joinable rewrite sequence f(a) →〈zf ,w3〉 f(g(a)) →〈zf+zg,w3〉

f(g(g(a))) ←〈zf ,w4〉 f(b) for it. As zf is positive, there is no chance to satisfy local decreas-
ingness condition if the comparison by 〈♯C[], i〉 is used. On the other hand, if one uses the
comparison by 〈i, ♯C[]〉, a suitable assignment is found.

14 T. AOTO

Another workaround here is to consider another joinable rewrite sequence with auxiliary

(duplicating) rewrite steps by the rule (5): f(a) → h(a, a)
∗
→ ◦

∗
← h(b, b) ← f(b). For this,

however, it is required to search a joinable rewrite sequence with non-minimal length.

Benefit from both ways of comparison is obtained easy—it suffices to prepare new
integer variables w′

1, . . . , w
′
|R| and change the encoding 〈wi, ϕ〉 to 〈wi, ϕ, w

′
i〉, where the

third component is used to encode the secondary quasi-order on rules compared after the
comparison of the context weight ϕ.

6.2. Adding flexibility on the weight function

It is also easy to see that the weight function ♯ for the context can be changed in such
a way that the counted weight on an occurrence of the same function symbol is changed
according to the argument position containing the hole.

Definition 6.2. Let C[] be a context and w : FN → N be a function, where FN = {〈f, i〉 |
f ∈ F , 1 ≤ i ≤ arity(f)}. The weight ♯′C[] of the context C[] is defined as follows.

♯′C[] =

{

0 if C[] = �

w(f, i) + ♯′C̃[] if C[] = f(. . . , C̃[], . . .) and C[]/i = C̃[]

To encode the weight ♯′C[], non-negative integer variables (zf,i)〈f,i〉∈FN
are introduced.

Using the weight function ♯′ rather than ♯ is sometimes advantageous as witnessed in the
following example.

Example 6.3. Let

R4 =

{

(1) f(f(x, y), z) → f(x, f(y, z)) (3) f(x, 1) → f(1, x)
(2) f(1, x) → x

}

.

For a critical peak f(f(w, f(x, y)), z)) ←〈zf,1,w1〉 f(f(f(w, x), y), z) →〈0,w1〉 f(f(w, x), f(y, z))),

there is a joinable rewrite sequence f(f(w, f(x, y)), z)) →〈0,w1〉 f(w, f(f(x, y), z)) →〈zf,2,w1〉

f(w, f(x, f(y, z))) ←〈0,w1〉 f(f(w, x), f(y, z))). It is readily convinced that the diagram can
not be made locally decreasing unless we distinguish zf,1 and zf,2.

7. Implementation and experiments

All techniques described in this paper have been implemented. The implementation is
written in SML/NJ1 and built upon the confluence prover ACP. We have used Yices2 [3] as
an external SMT solver. In searching of a joinable rewrite sequence of critical pairs, the
following heuristics are employed: (i) set the maximum number of rewrite steps to 5. (ii)
joinability is tested from reducts obtained in smaller steps (all joinable sequences obtained
in the smallest step are considered but not any others with larger steps.)

We have tested various versions of rule-labelling heuristic described in this paper. The
summary of experiments is described in Table 1. (1)–(5) are results of confluence proofs by
decreasing diagrams based on the rule-labelling heuristics. We have also presented results
of other confluence proving techniques for left-linear TRSs for comparison. The columns
below the title Ri show success (X) or failure (×) of the proof attempts to TRSs R1–R4

1http://www.smlnj.org/
2http://yices.csl.sri.com/

AUTOMATED CONFLUENCE PROOF BY DECREASING DIAGRAMS 15

R1 R2 R3 R4 Col.(msec)
Decreasing diagrams technique based on rule-labelling
(1) basic version (Thm. 3.7) × × × × 35 (200)
(2) counting designated function symbol’s occurrences X × × × 41 (486)
(3) with context weight (Thm. 5.4) X X × × 41 (481)
(4) (3) + extended comparison (Subsect. 6.1) X X X × 41 (795)
(5) (4) + extended context weight (Subsect. 6.2) X X X X 42 (692)

Other techniques for left-linear TRSs
development closed TRSs [12] × × × × 16 (52)
linear strongly closed TRSs [6] × × × × 24 (52)
criterion by parallel critical pairs [9] × × × × 31 (58)
criterion by simultaneous critical pairs [7] × × × × 36 (91)
upside-parallel-closed/outside-closed TRSs [8] × × × × 19 (53)

All techniques X X X X 48 (593)
All techniques except the decreasing diagrams technique × × × × 40 (84)

Table 1: A summary of experiments

in the present paper. The columns below the title Col. show the number of success tested
on a 106 collection of TRSs taken from various confluence-related papers and running time
(msec.). All experiments have been performed on a FreeBSD platform of a PC equipped
with 1.2GHz CPU and 1GB memory.

While other five techniques for left-linear TRSs proves 16–36 examples, the decreas-
ing diagrams technique based on rule-labelling proves 45 examples (R1 is contained in the
collection). Thus the comparison experimentally reveals the virtue of decreasing diagrams
technique based on rule-labelling. The very basic version of the decreasing diagrams tech-
nique based on rule-labelling for linear TRSs already proves nearly 80% of the examples that
can be proved with other extensions. Results on TRSs R2–R4 show that the refinements
presented in the paper improve the applicability of the technique. The running time for
decreasing diagrams technique based on rule-labelling is about 7–14 times larger than other
five techniques. Since 34 examples are proved both in the decreasing diagrams technique
based on rule-labelling and in the combination of other five techniques, it is better to try
the other five techniques before the decreasing diagrams technique based on rule-labelling.

A new version of the confluence prover ACP involving all the techniques presented in
the paper and the details of all experiments can be found on the webpage3 of ACP.

8. Conclusion

We have described a method to automate confluence proofs by the decreasing diagrams
based on the rule-labelling heuristic. We have shown an encoding of the confluence criterion
into that of a linear arithmetic problem suitable for solving by external SMT solvers. An
additional condition which need to be considered to guarantee the soundness of the technique
(omitted in the original description of the heuristic [13]) and several generalizations of
the heuristic which enlarge the applicability of the technique have been described. The
presented technique has been implemented and the experiments show the advantage of
incorporating the technique into automated confluence provers.

3http://www.nue.riec.tohoku.ac.jp/tools/acp/

16 T. AOTO

Automation of decreasing diagram technique based on rule-labelling heuristic for linear
TRSs has been obtained in [5] independently. Automation of the extended heuristic for left-
linear TRSs, however, has not been explored in their paper. Instead, they are developing a
new technique based on relative termination there.

In [13], another technique called self-duplication heuristic is described to deal with
rule-labelling for (possibly non-right-linear) left-linear TRSs. In self-duplication heuristic,
instead of counting function symbols’ occurrences, parallel rewrite steps are considered
to make critical peaks arising form nested overlaps of the non-right-linear rules locally
decreasing. Automation of the decreasing diagrams technique with self-duplication heuristic
remains as a future work.

Acknowledgments

The author thanks Yoshihito Toyama, Nao Hirokawa, Dominik Klein and anonymous
referees for their helpful comments. This work was partially supported by a grant from
JSPS No. 20500002.

References

[1] T. Aoto, Y. Yoshida, and Y. Toyama. Proving confluence of term rewriting systems automatically.

In Proc. of RTA 2009, LNCS, vol. 5595, pp. 93–102. Springer-Verlag, 2009.

[2] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[3] B. Dutertre and L. de Moura. The YICES SMT solver. Available from http://yices.csl.sri.com/

tool-paper.pdf.

[4] B. Gramlich and S. Lucas. Generalizing Newman’s lemma for left-linear rewrite systems. In Proc.

of RTA 2006, LNCS, vol. 4098, pp. 187–201. Springer-Verlag, 2006.

[5] N. Hirokawa and A. Middeldorp. Decreasing diagrams and relative termination. Computing Research

Repository, 0910.2853, 2009. Unpublished manuscript.

[6] G. Huet. Confluent reductions: abstract properties and applications to term rewriting systems.

Journal of the ACM, 27(4):797–821, 1980.

[7] S. Okui. Simultaneous critical pairs and Church-Rosser property. In Proc. of RTA-98, LNCS, vol.

1379, pp. 2–16. Springer-Verlag, 1998.

[8] M. Oyamaguchi and Y. Ohta. On the open problems concerning Church-Rosser of left-linear term

rewriting systems. IEICE Trans. Information and Systems, E87-D(2):290–298, 2004.

[9] Y. Toyama. On the Church-Rosser property of term rewriting systems. Technical Report 17672,

NTT ECL, 1981.

[10] Y. Toyama. Confluent term rewriting systems (invited talk). In Proc. of RTA 2005, LNCS, vol.

3467, p. 1. Springer-Verlag, 2005. Slides are available from http://www.nue.riec.tohoku.ac.jp/

user/toyama/slides/toyama-RTA05.pdf.

[11] V. van Oostrom. Confluence by decreasing diagrams. Theoretical Computer Science, 126(2):259–

280, 1994.

[12] V. van Oostrom. Developing developments. Theoretical Computer Science, 175(1):159–181, 1997.

[13] V. van Oostrom. Confluence by decreasing diagrams: converted. In Proc. of RTA 2008, LNCS, vol.

5117, pp. 306–320. Springer-Verlag, 2008.

[14] V. van Oostrom. Modularity of confluence: constructed. In Proc. of IJCAR 2008, LNCS, vol. 5195,

pp. 348–363. Springer-Verlag, 2008.

[15] J. Yoshida, T. Aoto, and Y. Toyama. Automating confluence check of term rewriting systems.

Computer Software, 26(2):76–92, 2009. In Japanese.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 17-32
http://rewriting.loria.fr/rta/

HIGHER-ORDER (NON-)MODULARITY

CLAUS APPEL 1 AND VINCENT VAN OOSTROM 2 AND JAKOB GRUE SIMONSEN 1

1 Department of Computer Science, University of Copenhagen (DIKU)

Universitetsparken 1, 2100 Copenhagen Ø

Denmark

E-mail address, C. Appel: spectrum@diku.dk

E-mail address, J. G. Simonsen: simonsen@diku.dk

2 ZENO Research Institute, Department of Philosophy, Utrecht University

Heidelberglaan 8, 3584 CS Utrecht

The Netherlands

E-mail address: Vincent.vanOostrom@phil.uu.nl

Abstract. We show that, contrary to the situation in first-order term rewriting, almost

none of the usual properties of rewriting are modular for higher-order rewriting, irrespective

of the higher-order rewriting format. We show that for the particular format of simply

typed applicative term rewriting systems modularity of confluence, normalization, and

termination can be recovered by imposing suitable linearity constraints.

1. Introduction and summary of results

The disjoint union of two rewrite systems is the rewrite system obtained by taking
the disjoint union of their signatures and taking the union of their respective sets of rules.
Modularity is the study of properties preserved and reflected when taking the disjoint union
of two rewrite systems and has been studied intensely for first-order term rewriting systems.

Higher-order term rewriting adds two features to first-order term rewriting: meta-
variables and binding. Meta-variables are variables for functions, i.e. they can be applied.
Binding allows to construct functions by means of abstraction. There are a plethora of
formats of higher-order rewriting, spanning the gap from very specific to very general sys-
tems. In this paper we consider the following common formats: Applicative TRSs [24,
Section 3.3.5], contain meta-variables, but no bound variables. The prototypical example of
an applicative TRS is Curry’s combinatory logic. Equipping applicative TRSs with a sim-
ple type discipline results in Yamada’s simply typed term rewriting systems (STTRSs) [28].
Klop’s (functional) combinatory reduction systems (CRSs) [10], contain both meta-variables
and bound variables. The prototypical example of a CRS is Church’s λ-calculus. Equipping
CRSs with a simple type discipline (and generalizing the notion of substitution), results in
Nipkow’s pattern rewrite systems (PRSs) [13]. We have chosen these formats since they are

1998 ACM Subject Classification: F.4.1, F.4.2.

Key words and phrases: Higher-order rewriting, modularity, termination, normalization.

c© C. Appel, V. van Oostrom, and J. G. Simonsen
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.17

18 C. APPEL, V. VAN OOSTROM, AND J. G. SIMONSEN

relatively well-known and moreover they allow for the ‘free’ construction of rules, without
imposing a priori restrictions on them ensuring termination or confluence.

Modularity in higher-order systems has hitherto only been investigated in isolated cases;
Klop proved that confluence is not a modular property in systems that can embed both
TRSs and λ-calculus [8], and Klop, van Oostrom and van Raamsdonk showed that acyclicity
(a term cannot be reduced to itself) of orthogonal systems, while modular for TRSs, is not
a modular property of higher-order systems [9].

In this paper we perform the first systematic study of modularity for higher-order
rewriting, see the overview in Table 1. The only non-standard notion employed in the
table, is the notion of pattern.

Table 1: Modular properties of first- and higher-order term rewriting system. The results
marked (†) are new and proved in this paper.

Property TRS STTRS CRS PRS

Confluence Yes No No No
Normalization Yes No (†) No (†) No (†)
Termination No No No No
Completeness No No No No

Confluence, for left-linear systems Yes Yes Yes Yes
Completeness, for left-linear systems Yes No (†) No (†) No (†)

Unique normal forms Yes No (†) No (†) No (†)
Normalization, non-duplicating pattern systems Yes Yes (†) ? ?
Termination, non-duplicating pattern systems Yes Yes (†) ? No (†)

Definition 1.1. A left-hand side of a rule is a pattern if all meta-variables in it are only
applied to sequences of pairwise distinct bound variables. A pattern rewrite system is one
in which all left-hand sides of rules are patterns.

For applicative TRSs and STTRSs the restriction to patterns expresses that meta-
variables do not occur actively in left-hand sides, i.e. left-hand sides do not have sub-terms
of shape Z t, for Z a meta-variable. Combinatory Logic and all applicative TRSs obtained
by Currying are pattern systems. CRSs and PRSs have the condition that left-hand sides of
rules be patterns, built into their definition, making matching and unification of left-hand
sides first-order like.

The structure of the paper is as follows. We first recapitulate the main positive and neg-
ative modularity results from first-order term rewriting, as well as the techniques employed
for obtaining them. Next we show by means of a slate of counterexamples, that none of the
standard rewriting properties is modular, neither for applicative TRSs, nor for CRSs and
PRSs. We end on a positive note, showing that imposing appropriate linearity restriction
allows one to regain modularity of some properties, in particular confluence, termination
and normalization of STTRSs.

We classify the properties discussed into existence (a normal form can/must/cannot
be obtained) and uniqueness (at most one normal form can be obtained) properties. Ter-
mination, normalization and acyclicity are existence properties, and confluence and the
unique normal forms property are uniqueness properties. Completeness combines both into
a unique existence property.

HIGHER-ORDER (NON-)MODULARITY 19

As presenting the counterexamples requires much less technical machinery than the
positive results, we postpone the introduction of that machinery to the section containing
those positive results. For now, we assume the reader to be familiar with the basic notation
for first-order term rewriting systems (TRSs), with simple types, and with the notion of
bound variables [3, 24]. This should be sufficient to understand the underlying phenomena,
although familiarity with the formats of higher-order term rewriting we treat is an advan-
tage. We refer the reader to [24, Section 3.3.5] for the definition of applicative TRSs, to [28]
for STTRSs, to [8, 10, 20] for CRSs, and to [20, 13] for PRSs. Furthermore, we assume
the reader to be familiar with the concept of orthogonality in first-order rewriting and its
(straightforward) extension to higher-order rewriting; on several occasions we shall use the
fact that orthogonal first/higher-order term rewriting systems are confluent [8, 15, 21].

Throughout the paper, we let Σ denote a (first- or higher-order) signature, and T denote
a (first- or higher-order) rewriting system; we equip both of these with integer subscripts
when more than one signature or system is needed. We denote by A⊎B the disjoint union
of sets A and B, and we denote by T0 ⊕ T1 = (Σ0 ⊎ Σ1, R0 ⊎ R1) the disjoint union of the
rewrite systems Ti = (Σi, Ri) for i ∈ {0, 1}. A property P of a class C of rewrite systems
is modular if P (T0 ⊕ T1) ⇔ P (T0) & P (T1) for all T0, T1 ∈ C.

1 We employ x, y, z to
range over variables for terms of base type, and Z, W , X to range over meta-variables, i.e.
variables which yield a term of base type when supplied with sufficiently many terms of the
appropriate types. When appropriate, we underline the redex contracted in a rewrite step.
Finally, we employ standard rewriting notation as given in [24].

1.1. Modularity in first-order rewriting

The study of modularity in term rewriting was essentially introduced by Toyama in
two seminal papers showing, respectively, that confluence is modular for TRSs [26], but
that termination is not [25]. Since then, modularity of various properties has been inves-
tigated, e.g., normalization (easily seen to be modular, see also [11]), the unique normal
forms property (modular [14]), unique normal forms wrt. reduction (not modular [14]),
completeness (not modular [25]). For the non-modular properties, restrictions (e.g., left-
and/or right-linearity, non-collapsingness) have been put forth that ensure modularity, see
for example [22, 27, 12, 23, 16]). Furthermore, modularity has been considered for sev-
eral varieties of first-order rewriting, and new proofs have been given for modularity of
confluence, cf., [19] and its references.

To set the stage for the rest of the paper, we recapitulate Toyama’s classical counterex-
ample to modularity of termination for TRSs.

Counterexample 1.2. The single rule TRS

f(a, b, x)→ f(x, x, x)

is easily proved to be terminating. However, when taking its disjoint union with the, also
trivially terminating, two-rule TRS

g(x, y) → x
g(x, y) → y

1An easy consequence of the fact that reduction steps in Ti can be embedded as reduction steps in T1⊕T2,

is that each property P studied in this paper holds for Ti if it holds for T1⊕T2. Hence our focus is exclusively

on (dis)proving P (T0 ⊕ T1) ⇐ P (T0) & P (T1).

20 C. APPEL, V. VAN OOSTROM, AND J. G. SIMONSEN

a

a

a

f

h

g

a

h

a

h

g

h

Figure 1: First-order systems: Redex creation can occur by duplicating or collapsing steps.
The rank, the maximum number of signature changes on a path from the root to a
leave in a term, cannot increase along reduction. Here, the “white” system is R0 =
{f(x)→ g(x, x), g(a, x)→ f(x)} and the “black” system is R1 = {h(y)→ y} (cf.
Counterexample 1.2).

g ga

f

g

a

f

Figure 2: Higher-order systems: Redex creation can also occur by application. The rank
(measured via the number of signature changes of head symbols of subterms) may
increase along a reduction. Here, the “white” system is R0 = {f aZ→ f (Z a)Z}
and the “black” system is R1 = {gW →W} (cf. Counterexample 2.5).

we obtain a non-terminating system as witnessed by the cycle:

f(a, b, g(a, b))→ f(g(a, b), g(a, b), g(a, b))→ f(a, g(a, b), g(a, b))→ f(a, b, g(a, b))

Intuitively, termination of the first TRS above relies on the absence of a term which reduces
both to a and b; a property destroyed by the second TRS by its ability to encode non-
deterministic choice.

Toyama’s counterexample above holds true for any higher-order format embedding
TRSs and their rewrite relation, in particular the formats considered in this paper.

The main proof technique for establishing modularity results for first-order TRSs is
based on terms in the disjoint union of TRSs being stratified in the sense that each term in
the disjoint union has a unique decomposition into layers of components residing in either
of the TRSs separately, and moreover that this stratification is preserved by rewriting in the
sense that the rank, i.e. the number of layers, cannot increase along a reduction (Figure 1).
In the higher-order case, preservation fails due to the presence of rules in which meta-
variables can be applied to each other, which allow for nesting in the rhs of rules, whence
the rank may increase along a reduction (Figure 2).

HIGHER-ORDER (NON-)MODULARITY 21

2. Counterexamples to modularity for applicative TRSs

In this section we set the stage for our positive modularity results for applicative TRSs
in Sections 5 and 6. This we do by analysing known obstacles for obtaining such results,
cf. [7], from the perspectives of simply typed STTRS and of pattern rules.

Applicative TRS can be embedded into ordinary (functional) TRSs by viewing the
symbols from their signature as nullary function symbols and adjoining one binary function
symbol for application. Therefore, one might näıvely expect the modularity results for
TRSs to carry over to applicative TRSs. In fact, they do not, the reason being the change
in status of the application symbol from being implicit in applicative TRSs to being an
explicit element of the signature in their embedding; that is, the embedding of the disjoint
union of two applicative TRSs is distinct from the disjoint union of their embeddings [7].

Remark 2.1. To prove, say, confluence of the disjoint union of the confluent applicative
TRSs {f Z→Z} and {gW→W}, one might also proceed as follows, cf. [24, Section 3.3.5]:
(1) Uncurrying yields the confluent functional TRSs {f(x)→ x} and {g(y)→ y};
(2) Modularity [26] yields confluence of the disjoint union {f(x)→ x, g(y)→ y}; and
(3) Preservation by currying [6] yields confluence of {f Z→ Z, gW →W}, as desired.
The main obstacle following this route is that typically rules of applicative TRSs do contain
active (higher-order) variables (this can be seen as the raison d’être of applicative TRSs)
and such rules cannot be in the image of the currying transformation.

Uniqueness properties. Unlike what is the case for first-order TRSs, confluence is not a mod-
ular property of applicative TRSs as famously shown by Klop [8, Theorem III.1.2.12] who
considered the disjoint union of combinatory logic and the applicative TRS {DZ Z → Z}.
In order to obtain our positive result of Section 5 we provide some further counterexamples
and identify possible causes of non-modularity.

The confluence claims in the counterexamples below are readily verified by standard
TRS theory (orthogonality resp. termination and critical pair criteria) applied to the em-
bedding of the applicative TRSs. In our first counterexample the role of combinatory logic
in Klop’s example is take over by the µ-rule, directly modeling recursion instead of encoding
it via a fixed-point combinator in combinatory logic.

Counterexample 2.2. Taking the disjoint union of the confluent applicative TRSs {µZ→
Z (µZ)} and {f W W → a, f W (sW)→ b} yields a non-confluent system as witnessed by
a← f (µ s) (µ s)→ f (µ s) (s (µ s))→ b.

Counterexample 2.3. The disjoint union of the confluent applicative TRSs {g (ZW)→
gW} and {h a→ b} is non-confluent as witnessed by g a← g (h a)→ g b.

Assigning types as a, b,W : o, Z, g, h, s : o→ o, µ : (o→ o)→ o, and f : o→ o→ o shows
that the applicative TRSs in both counterexamples are in fact STTRSs, which entails that
confluence is not modular for STTRSs. However, note that the first counterexample employs
a non-left-linear rule (e.g., the left-hand side f W W) and the second example a non-pattern
rule (with left-hand side g (ZW)). In Section 5 we show that confluence is modular for
left-linear pattern STTRSs.

The same counterexamples show that the unique normal forms property is not modular
for applicative TRSs and STTRSs.

22 C. APPEL, V. VAN OOSTROM, AND J. G. SIMONSEN

Remark 2.4. The problematic nature of non-pattern rules in applicative TRSs, i.e. rules
which contain active variables as in the first rule in Counterexample 2.3, is well-known.
For instance, adjoining to combinatory logic or the λ-calculus a combinator A defined by
A (ZW) = Z, i.e. which extracts the function from a function application, immediately
renders these calculi inconsistent in the sense that all terms become convertible [4].

Existence properties. Toyama’s Counterexample 1.2 to modularity of termination for TRSs
carries over immediately to applicative TRSs and even STTRSs, as the terminating TRSs
involved can be viewed as terminating STTRSs by assigning appropriate types to the func-
tion symbols, e.g., the type o→o→ o→ o to the ternary function symbol f . But unlike the
TRS case also normalization fails for applicative TRSs, under various restrictions, caused
by the possibility to apply meta-variables.

In Section 6 we will show that termination and normalization are modular for applica-
tive non-duplicating, typable, pattern TRSs. Here we show that any two of them are not
sufficient for modularity of termination. The termination claims in the counterexamples
below are readily verified by current automated termination tools.

Counterexample 2.5. Taking the disjoint union of the applicative (duplicating) typable
pattern TRSs {f aZ→ f (Z a)Z} and {gW →W} enables the non-normalizable reduction
f a g ↔ f (g a) g despite both TRSs being normalizing (even terminating, note that no
redex-creation is possible in either of them).

The same example provides a counterexample to modularity of (left-linear, orthogonal)
termination, acyclicity, and completeness.

Counterexample 2.6. Taking the disjoint union of the applicative left-and-right-linear
(non-typable) pattern TRSs {f Z W →Z a f} (‘left rotation’) and {g Z W →W g b} (‘right
rotation’) enables the non-normalizable reduction f g b ↔ g a f despite both TRSs being
normalizing (even terminating, based on the insertion of a and b in their ‘rotations’).

The same example provides a counterexample to modularity of (left-and-right-linear, or-
thogonal) termination, acyclicity, and completeness.

Counterexample 2.7. Taking the disjoint union of the applicative left-and-right-linear
typable (non-pattern) TRSs: {f (ZW) → Z (a f)} and {g (X Y) → Y (g b)} enables the
non-normalizable reduction f (g b) ↔ g (a f) despite both TRSs being normalizing (even
terminating, based on the same idea as in the previous counterexample). The TRSs are
seen to be typable by assigning types as: W, b : o, Z, f, Y, g : o→ o, and a,X : (o→ o)→ o.

The same example provides a counterexample to modularity of (left-and-right-linear, ty-
pable) termination and acyclicity.

3. Counterexamples to modularity for functional CRSs

For PRSs, in general, properties are preserved under signature extensions, i.e. are mod-
ular when one of the rewrite systems has no rules at all. The basic idea is to replace each
fresh function symbol (from the other signature) by a variable of identical type: If a prop-
erty does not hold with fresh function symbols, it does not hold with all fresh function
symbols replaced by fresh variables, a contradiction. Obviously, this idea fails when the

HIGHER-ORDER (NON-)MODULARITY 23

replacement of function symbols by variables is, for some reason, impossible. In particular,
for functional CRSs the replacement is impossible in the absence of meta-variables in terms.
More precisely, the rewrite relation of a functional CRS was defined in [10] as a relation on
terms without meta-variables. As we show in this section, this causes that most properties
are not even preserved under signature extensions.

Remark 3.1. The restriction of the rewrite relation to terms without meta-variables is
analogous to the restriction of the rewrite relation of first-order TRSs to ground terms. From
that perspective, the failure of modularity in case of signature extensions is unsurprising
(e.g., normalization is not modular w.r.t. the ground rewrite relation of TRSs; to wit {f(a)→
a, f(x)→ f(x)} is ground normalizing but not so when the signature is extended with a
constant b). We view our results below in a positive way, as suggesting to change the
definition of the rewrite relation of a CRS to include meta-terms, having meta-variables.

Uniqueness properties.

Counterexample 3.2. The CRS given by the rules

f(f(W)) → f(W)
f([x]Z(x)) → f(Z(a))
f([x]Z(x)) → f([x]Z(Z(x)))

can be shown to be confluent (an easy induction on terms), but is not so after extending
the signature with a unary g:

f(g(a))← f([x]g(x))→ f([x]g(g(x)))→ f(g(g(a)))

showing non-preservation of confluence.

In effect, the counterexample shows that a CRS can be confluent, i.e. confluent on terms,
but not meta-confluent, i.e. not confluent on meta-terms. This is analogous to the fact that
a TRS can be ground confluent, but not confluent.

By the same example it follows that the unique normal forms property is not preserved
under signature extension either.

Existence properties. For TRSs, termination is preserved under signature extension, as fol-
lows by an easy induction on the rank of terms as fresh function symbols partition any term
in the disjoint union into terminating components. For PRSs, termination is preserved
under signature extension as explained above. For CRSs both of these methods fails, the
former because of the lack of an appropriate notion of rank, and the latter because of the
absence of fresh meta-variables.

Counterexample 3.3. The CRS having a single, unary function symbol f , and rule

f([x][y]Z(x, y)) → Z([x][y]Z(y, x), [x]x)

is terminating, as can be shown by induction on terms (noting that the rewrite relation
for CRSs is defined on terms not on meta-terms, termination of the CRS is shown by an
easy induction on terms using that a term may contain at most one bound variable, in

24 C. APPEL, V. VAN OOSTROM, AND J. G. SIMONSEN

the absence of function symbols having arity greater than one). However, extending the
signature with a binary symbol g allows to ‘swap the roles of x and y’. For instance:

f([x][y]g(f(x), f(y))) → g(f([x][y]g(f(y), f(x))), f([x]x))
→ g(g(f([x]x), f([x][y]g(f(x), f(y)))), f([x]x))

The reduction has shape t։ g(g(f([x]x), t), f([x]x)) for t = g(g(f([x]x), t), f([x]x)), giving
rise to the spiralling reduction:

t։ g(g(f([x]x), t), f([x]x)) ։ g(g(f([x]x), g(g(f([x]x), t), f([x]x))), f([x]x)) ։ . . .

showing non-preservation of termination. Note that it is essential for non-termination that
Z(x, y) is instantiated by a term containing both x and y, something impossible without
function symbols of arity more than 1.

As the CRS is orthogonal and non-erasing, it is terminating iff it is normalizing, whence
normalization is not preserved under signature extension either.

Both for TRSs and PRSs, left-linear completeness is preserved under signature exten-
sion. For TRSs this is just a special case of modularity of left-linear completeness [27, 23].
For PRSs, it follows by replacing fresh function symbols with fresh variables as explained
above. For CRSs, left-linear completeness is not preserved under signature extension: The
CRS in Counterexample 3.3 is orthogonal, hence left-linear and confluent, and is terminat-
ing, hence complete. However, it is not terminating after adding the fresh symbol g.

4. Counterexamples to modularity for PRSs

In this section we present counterexamples to modularity for Nipkow’s pattern rewrite
systems.

Since the terms of STTRSs can be embedded directly into PRSs, one might näıvely
expect the counterexamples against modularity for STTRSs of Section 2 to carry over to
PRSs. In fact, they do not, the reason being the possible presence of abstractions in PRS
terms and the ensuing difference in substitution (of higher-order terms).

Example 4.1. As shown in Counterexample 2.5, the system {f aZ→ f (Z a)Z} is termi-
nating when viewed as an STTRS, but not so when viewed as a PRS. To wit, instantiating
the meta-variable Z in the rule to x.x yields the infinite looping reduction:

f a (x.x)→ f a (x.x)

Also, PRSs do, unlike CRSs, allow for function variables in terms, hence the counterexam-
ples against modularity for CRSs of Section 3 based on signature extension, do not carry
over to PRSs either.

Uniqueness properties. Klop showed in [8] that confluence is not a modular property for
CRSs. In particular, his counterexample [8, Theorem III.1.2.10] involves (i) the non-left-
linear first-order rule {DZ Z→ Z}, and (ii) the β-rule of the λ-calculus.

Similar to what we did in the case of applicative TRSs (Counterexample 2.2), we recast
Klop’s example as a PRS replacing λ-calculus by the µ-rule, directly modeling recursion
instead of encoding it via the fixed-point combinator in the λ-calculus.

HIGHER-ORDER (NON-)MODULARITY 25

Counterexample 4.2. The first-order TRS consisting of the following two rules

f(x, x) → a
f(x, s(x)) → b

is terminating and has no critical pairs, hence is confluent by Huet’s Critical Pair Lemma [5].
However, taking the disjoint union with the orthogonal—hence confluent—single-rule

PRS µ(x.Z(x))→ Z(µ(x.Z(x))) yields a non-confluent system as witnessed by:

a← f(µ(x.s(x)), µ(x.s(x)))→ f(µ(x.s(x)), s(µ(x.s(x))))→ b

Intuitively, confluence of the TRS above relies both on termination and on the absence of
a critical pair involving the two rules, which in turn relies on non-left-linearity and non-
convertibility of t and s(t) for any term t. Both of those features are destroyed by the PRS
above due to its ability to encode recursion, as witnessed by taking t = µ(x.s(x)).

The unique normal forms property is not modular for PRSs as shown by the same
example employed above: As the rewrite systems are confluent they both have the unique
normal forms property, but the terms a and b are distinct convertible normal forms in the
disjoint union of the TRS and the PRS.

Existence properties. Left-linear completeness is modular for TRSs [27, 23], but fails to be
so for PRSs.

Counterexample 4.3. Consider the PRS consisting of the single rule f(x.x, xy.Z(x, y))→
g(Z(a, f(x.Z(x, a), xy.Z(x, y)))) where f and g are second-order symbols and a is a first-
order symbol. The PRS is orthogonal, hence confluent. A straightforward analysis of the
terms substitutable for Z shows that no redexes can be created (in particular, the sub-term
headed by f in the right-hand side cannot give rise to a redex, as that would require Z(x, y)
to be instantiated by x which would cause the redex to be ‘erased before it is created’, so
to speak), hence the system is terminating by the Finite Developments Theorem. However,
taking the disjoint union with the left-linear and obviously complete TRS consisting of the
single rule h(x, y)→ x yields a non-terminating PRS as witnessed by:

f(x.x, xy.h(x, y))→ g(h(a, f(x.h(x, a), xy.h(x, y))))→ g(h(a, f(x.x, xy.h(x, y))))

Note the reduction sequence above is of the form t ։ g(h(a, t)) for t = f(x.x, xy.h(x, y)),
hence gives rise to the infinite spiralling reduction:

t։ g(h(a, t)) ։ g(h(a, g(h(a, t)))) ։ g(h(a, g(h(a, g(h(a, t)))))) ։ . . .

Next we turn our attention to normalization. Normalization is modular in the first-order
case as a simple bottom-up argument shows. The result does not extend to PRSs, to wit
the following counterexample.

Counterexample 4.4. The PRS consisting of the two rules

f(x.Z(x), y.y) → f(x.Z(x), y.Z(Z(y)))
f(x.x, y.Z(y)) → a

is normalizing as can be shown by induction on terms substitutable for Z (consider an
f -term: if it is not a redex, it cannot become one; if the second rule applies to it, then a is
its normal form; if only the first rule applies to it, it can only be applied once). However,

26 C. APPEL, V. VAN OOSTROM, AND J. G. SIMONSEN

combining it with the trivially normalizing one-rule TRS g(g(x))→x yields a system which
is not normalizing (it ‘reanables’ application of the first rule), as witnessed by the cycle:

f(x.g(x), y.y)↔ f(x.g(x), y.g(g(y)))

in which each term is the only possible reduct of the other.

Normalization of the PRS above relies on the left-hand side of its first rule to be non-
embeddable into its right-hand side: if it were embeddable, the term substituted for Z(Z(y))
should be reducible to, and therefore identical, to y, but then the second rule would have
been applicable to its lhs as well, ensuring normalization. By adding the projection rule of
the TRS above, the left-hand side can be embedded, thus destroying normalization.

Counterexample 4.3 witnesses that left-linear completeness is not modular for PRSs.

5. Modularity of confluence in left-linear pattern systems

For first-order left-linear TRSs, modularity of confluence is a trivial consequence of
modularity of confluence for arbitrary TRSs. However, since the latter fails in the higher-
order case, one may wonder whether left-linearity would suffice to regain modularity of
confluence. Indeed it does; the following is a direct corollary of the results of [21].

Theorem 5.1. Confluence is modular for left-linear pattern systems (applicative TRSs,
CRSs, and PRSs).

The idea of the proof, as presented in the PhD thesis of van Oostrom [17],2 is to use the
Hindley–Rosen Lemma and confluence of each of the PRSs, to reduce confluence of the
union to their commutation. The latter holds, because since the signatures are disjoint,
and since the rules of the respective PRSs were assumed to be left-linear pattern rules, they
are therefore orthogonal to each other. The results for applicative pattern TRSs and CRSs
follow since these can be embedded faithfully into PRSs.

As a consequence confluence is modular for left-linear pattern STTRSs as well.

Remark 5.2. One may wonder whether confluence is modular for non-duplicating rewrite
systems. In the case of CRSs and PRSs the answer is negative [8] (note that the β-rule of
the λ-calculus is non-duplicating as a higher-order rule). We leave the question whether
confluence is modular for non-duplicating applicative pattern (ST)TRSs to future research.

6. Normalization and termination are modular for non-duplicating pattern

STTRSs

In this section we show normalization and termination to be modular for non-duplicating
pattern STTRSs. In order to overcome the problem illustrated in Figure 2 that the classical
notion of layer will not do as the rank then could increase along reduction, we introduce
appropriate notions of component and component-type size, the idea of the latter being
that even though components may become nested (rendering the classical notion of rank
useless), this can only be done by means of applying one component to another leading
to a decrease in the size of the component types. Since this measure only takes creation

2In fact, the more general result is shown there that the (ordinary, non-disjoint) union of two left-linear

confluent PRSs is confluent, if the rules are weakly orthogonal w.r.t. each other, i.e. all critical pairs are

trivial.

HIGHER-ORDER (NON-)MODULARITY 27

of components by means of application into account, not duplication of existing ones, the
results are restricted to non-duplicating systems (they have to be in view of Section 2).

In order to stratify mixed applicative terms, we refine the standard notion of a multi-
hole context (see e.g. [24, Section 2.1.1]) based on classifying symbols into colors. A function
symbol belonging to Σγ is said to have color γ. We will conventionally refer to color 0 as
white, 1 as black, and employ both white (�) and black (�) typed holes, to be filled by
top-white and top-black terms of the appropriate types, respectively. A hole which may
be either white or black is denoted by ⊠. We will view colors both as booleans, applying
negation (γ) and exclusive-or (γ1 ⊗ γ2) to them, and as numbers, multiplying by them.

To illustrate our constructions we make use of the following running example.

Example 6.1. In T the disjoint unnion of the white rewrite system T0 = {f Z W →ZW}
with f : (o→ o)→ o→ o and a : 0, and the black rewrite system T1 = {g a→a} with g : o→ o
and b : o, we have the reduction:

g (f (f g) b)→ g (f g b)→ g (g b)→ g b→ b

One can think of components, to be defined next, as the applicative pendant of the notion
of layer, well-known from the study of modular properties of first-order term rewriting
systems, see e.g. [24, Section 5.7.1].

Definition 6.2. For γ either black or white, a γ-component is a non-empty context built
out of γ-symbols and γ-holes, which does not have active holes, i.e. holes are not applied.

Example 6.3. For the STTRSs of Example 6.1, f �� and f (f �) are 0-components, and
b, g g and g (g (g�)) are 1-components. Non-examples of components are � (empty), f g
(symbols of mixed colors), �� (active hole), f � (same color symbol and hole), and f ��.

We employ C, D, E to range over components. In the following algebraic semantics, we will
view every component C of type τ having holes of, from left to right, types σ1, . . . , σn as
an n-ary function symbol C : σ1 × . . .× σn→ τ of the component signature Σ. We employ
t, s, u to range over Σ-terms.

Definition 6.4. The component algebra has Σ-terms as carrier.

[[f]] = f

[[@]](C(~t),D(~s)) = (C D)(~t,~s) if C, D have the same color

= (C ⊠)(~t,D(~s)) if C, D have distinct colors

The component algebra gives rise to an obvious bijection mapping each (closed) Σ-term t
to its interpretation as Σ-term, which we indicate by boldface t, and vice versa. A term is
said to be top-white/black if the root symbol of its interpretation is white/black.

Example 6.5. The interpretation of the top-black term t = g (f (f g) b) of Example 6.1 is
the component term t = C(D(E1,E2)) with C = g�, D = f (f �)�, E1 = g, E2 = b.

Remark 6.6. Our choice to model decomposing terms by means of interpretation into
the component algebra is at an abstraction level intermediate between traditional ad hoc
approaches (involving notions such as special subterms, cf. [24, Section 5.7.1]), and more
recent categorical approaches (involving notions such as monads, cf. [1]), to modularity. It
should be interesting to investigate whether the latter apprach, set up to deal with functional
TRSs (and collapsing of components), can be adapted to the present setting of applicative
TRSs (and application of components).

28 C. APPEL, V. VAN OOSTROM, AND J. G. SIMONSEN

The idea of the following definition is to measure a term by the ‘applicative power’ of its
components, as expressed by their types. More precisely, terms are measured by pairs the
elements of which also take the color of the context in which the term is put, into account:
if a top-white (top-black) term is put into a white (black) context, the type of the term
itself does not contribute to its measure.

Definition 6.7. The component-type size |t|3 of term t is defined to be the pair |t| defined
by:

|C(~t)| = (γ ·#τ +#~t, γ ·#τ +#~t) if C : τ has color γ

where #b = 1, #(σ→ τ) = #σ + 1 +#τ , and #C(~t) = #τ + #~t if C : τ . We use < to
denote the order induced on Σ-terms by comparing their component-type sizes by means of
the product order of the less-than relation on such pairs of natural numbers. We use | . |0
(| . |1) to denote the projection onto the first (second) element of the pair yielded by the
component-type size function.

Example 6.8. Since we have g� : o, f (f �)� : o, g : o→ o, and b : o, for the components in
Example 6.3, the component-type size |t| of the top-black term t = g (f (f g) b) is (1 ·#o+
n, 0 ·#o+ n) with n = #o+#(o→ o) + #o. Therefore n = 1 + 3 + 1 = 5 and |t| = (6, 5).
That is, only if the (top-black) term t is put into a white context, the type o of the term
itself also contributes (1) to the component-type size; otherwise, when put into a black
context, only the sub-components contribute (5) to the component-type size.

Lemma 6.9. The component algebra equipped with < constitutes a well-founded (weakly)
monotone Σ-algebra [24, Definitions 6.2.1,6.4.28].

Proof. Well-foundedness of < is trivial. Application (@) being the only non-nullary symbol
it suffices to check its (weak) monotonicity. This follows by calculation.

Example 6.10. Instead of computing directly |g (g b)| = (1, 0) < (6, 5) = |g (f g b)|, the
lemma allows to conclude |g (g b)| < |g (f g b)| from |g b| = (1, 0) < (4, 5) = |f g b| by stricit
monotonicity of application in its second argument. The subterm property [24, Defini-
tion 6.4.28] does not hold: |f | = (0, 3) ≮ (0, 1) = |f a| (it does for ‘special’ subterms).

In the traditional terminology of the theory of modularity [16, 24], the following key lemma
bounds the component-type size of a term having amonochrome top, by the component-type
sizes of its principal/alien subterms.

Lemma 6.11. If all symbols in t have color γ and φ is a substitution, then for b ∈ {0, 1}:

|tφ|b ≤ (b⊗ γ) ·#τ +
∑

Z∈t

|φ(Z)|γ

with equality holding in case t is a non-empty pattern. Conversely, t is a non-empty pattern
in case equality holds and all φ(Z) are top-γ.4

Proof. By induction on t and calculation.

3The component-type size is an adaptation of the rank introduced in [2, Definition 8.56].
4The summation in the inequality is intended to quantify over occurrences of variables in t.

HIGHER-ORDER (NON-)MODULARITY 29

Example 6.12. Let φ(Z) = g and φ(W) = b.
If l = f Z W then all symbols in l are white and |lφ| = |f g b| = (4, 5). Computing the

right-hand side of the inequality in the lemma for, respectively, b = 0 and b = 1 yields the
same pair (4, 5). Since the range of φ consists of top-white terms, we must conversely have
by the lemma that l is a non-empty pattern which indeed it is.

If r = ZW them all (none!) symbols in r are white and |rφ| = |g b| = (1, 0). Computing
the right-hand side of the inequality in the lemma for, respectively, b = 0 and b = 1 yields
the strictly greater pair (4, 5).

Definition 6.13. A rewrite rule is non-duplicating if no free (meta-)variable occurs more
often in its right-hand side than in its left-hand side.

The following lemma is an analogue of the classical lemma in the theory of modularity of
functional TRSs that the rank of a term cannot increase along a reduction cf. e.g. [26, 24].
In the present applicative case, we have to require rules to be non-duplicating in the light
of Counterexample 2.5. The condition entails that rule application can essentially only
‘recombine’ the components of a term, which will suffice for modularity of termination
and normalisation of STTRSs, as for these ‘recombination’ will entail a decrease in the
component-type size.

Lemma 6.14. If t → s in the disjoint union of non-duplicating pattern STTRSs, then
|t| ≥ |s|.

Proof. We claim |lφ| ≥ |rφ|, for any rule l→ r with l, r of type τ , and any substitution
φ. Assuming the claim holds, the result follows by weak monotonicity (Lemma 6.9). The
claim itself holds since for b ∈ {0, 1}

|lφ|b = (b⊗ γ) ·#τ +
∑

Z∈l

|φ(Z)|γ ≥ (b⊗ γ) ·#τ +
∑

Z∈r

|φ(Z)|γ ≥ |r
φ|b (6.1)

where the equality holds by Lemma 6.11 using the assumption that l is a pattern and is
non-empty (not a single variable) by the general assumption on applicative TRSs, the first
inequality holds by the assumption that rules are non-duplicating, and the second inequality
holds by Lemma 6.11 again.

Example 6.15. For φ, l and r as in Example 6.12 we have t = lφ → rφ = s by an application
of the rule l = f Z W →ZW = r. As was computed there, indeed |t| = (4, 5) ≥ (1, 0) = |s|;
the component-size type strictly decreases because the rule combines the arguments substi-
tuted for Z and W in its right-hand side ZW .

We show now that if the component-type size does not decrease across a rewrite step,
then the components are not ‘combined’ and hence the step can be viewed as a step on
component symbols. To that end, we define te rewrite relation ⇒ on component terms as

being generated by the, infintely many, rewrite rules C(~Z)→ D(~W) for all components

C,D of the same color, such that C[~Z]→ D[~W].

Lemma 6.16. If t → s and |t| = |s| in the disjoint unnion of non-duplicating pattern
STTRSs, then t⇒ s.

Proof. We claim t ⇒ s if t = lφ and s = rφ, for any rule l→ r with l, r of type τ , and
any substitution φ such that |lφ| = |rφ|. Assuming the claim holds the result follows by

30 C. APPEL, V. VAN OOSTROM, AND J. G. SIMONSEN

induction on the derivation of the →-step as follows. By definition

|t| = (γ ·#τ +#~t, γ ·#τ +#~t) if t = C(~t) and C : τ has color γ

|s| = (δ ·#τ +#~s, δ ·#τ +#~s) if s = D(~s) and D : τ has color δ

hence |t| = |s| and the fact that 0 6= #τ entail γ = δ and #~t = #~s, from which the result
easily follows using Definitions 6.4 and 6.7 and the definition of ⇒.

It remains to prove the claim. Let ψ and χ be obtained by decomposing the substitution
φ into γ and γ-components. Formally, ψ and χ such that φ = ψχ, are obtained from φ by:

ψ(Z) = E[~WZ] χ(WZ,i) = ti if φ(Z) = E(~t) and E has color γ
ψ(Z) = WZ χ(ZZ) = φ(Z) otherwise

Defining l̂ = lψ and r̂ = rψ, we have by construction that l̂ is a non-empty pattern the
symbols of which have color γ, so by the same reasoning as for Equation 6.1, the assumption
|t| = |s| yields:

|t|b = |l̂
χ|b = (b⊗ γ) ·#τ +

∑

W∈l̂

|χ(W)|γ = (b⊗ γ) ·#τ +
∑

W∈r̂

|χ(W)|γ = |r̂χ|b = |s|b

(From this and the assumption that rules are non-duplicating, it follows that in fact each

variable must occur the same number of times in l̂ and r̂.) From this and Lemma 6.11 it
follows that also r̂ is a non-empty pattern with symbols of color γ, since by construction

rψ has color γ and all χ(W) are top-γ. Therefore, to the →-step l̂→ r̂ the ⇒-rule C(~Z)→

D(~W) is associated, for the components C and D and vectors of variables ~Z and ~W , such

that C[~Z] = l̂ and D[~W] = r̂, and the claim follows: t = C(~χ(Z))⇒D(~χ(W)) = s.

Example 6.17. As seen in Examples 6.8 and 6.10 for the step g (f (f g) b) → g (f g b) it
holds |g (f (f g) b)| = (6, 5) = |g (f g b)|. From Example 6.5, the corresponding component
terms are t = C(D(E1,E2)) and s = C(D′(E1,E2)), using the component symbols given
there and D′ = f ��. We indeed have, as per the lemma, t ⇒ s by an application
of the rule D(Z,W)→ D(Z,W) obtained from the white step D[Z,W] = f (f Z)W →
f Z W = D[Z,W].

Summarizing the above, steps either decrease the component-type size or respect com-
ponents, in the sense that they can be lifted to the component algebra. This suffices
for establishing modularity of termination and normalization for non-duplicating pattern
STTRSs.

Theorem 6.18. Termination is modular for non-duplicating pattern STTRSs.

Proof. By Lemma 6.14 from some moment on all the terms along an hypothetical infinite
→-reduction must have the same component-type size. We conclude by Lemma 6.16 and
the observation that if the rewrite relations →γ are terminating, then ⇒ is seen to be
terminating by an application of recursive path orders induced by the precedences induced
by →γ on components.

HIGHER-ORDER (NON-)MODULARITY 31

Theorem 6.19. Normalisation is modular for non-duplicating pattern STTRSs.

Proof. By Lemma 6.14 the component-type size cannot increase along →-reduction, hence
any term can be reduced to a term of minimal component-type size, that is, such that
any further reduction will leave the component-type size unchanged. We conclude by
Lemma 6.16 and the observation that if the rewrite relations →γ are normalising, then
the corresponding ⇒-strategy is seen to be terminating by an application of recursive path
orders induced by the precedences induced by the normalising →γ-strategies on compo-
nents.

Example 6.20. Each applicative TRS in Example 6.1 is a non-duplicating terminat-
ing/normalizing pattern STTRSs. Hence by Theorem 6.18/6.19 so is their disjoint union.

Remark 6.21. Since terms of base type are ‘applicatively intert’ it might be possible
to lift the non-duplicatingness restriction on variables of base type in Theorem 6.19, by
appropriately adapting the component-type size. We leave this to future research.

In view of the theorems and of the fact that termination and normalization are modular for
non-duplicating functional TRSs [22, 14, 16], one may wonder whether normalization and
termination are modular for non-duplicating (or left-and-right-linear) higher-order rewriting
systems (CRSs or PRSs). Leaving the other cases to future research (but cf. [2, Chapter 9]
for some initial and related results), we show modularity of termination fails for left-and-
right-linear PRSs because linear PRS rules (such as the β-rule) can still ‘embed duplication’.

Counterexample 6.22. The following rules constitute a left-and-right-linear orthogonal
PRS:

f(a, b, Z) → g(y.f(y, y, y), Z)
g(y.Z(y),W) → Z(W)

which can be shown terminating by adapting e.g. the proof of FD á la Tait of [18], using
that by confluence there is no term which can be reduced to both a and b. Note that this
non-duplicating PRS can ‘simulate’ the duplicating first TRS of Counterexample 1.2:

f(a, b, x)→ g(y.f(y, y, y), x)→ f(x, x, x)

hence termination is not preserved when taking the disjoint union with its second TRS.

Acknowledgements. We thank the organisers and participants of the Austria–Japan Summer
Workshop on Term Rewriting, 8–13 August 2005, Obergurgl, for the opportunity to present
an early version of this paper, and them, Andrzej Filinski, and the anonymous referees for
feedback.

References

[1] M. Abbott, N. Ghani, and C. Lüth. Abstract modularity. In Proceedings of the 16th International

Conference on Rewriting Techniques and Applications (RTA 2005), volume 3467 of Lecture Notes in

Computer Science, pages 46–60. Springer, 2005.

[2] C. Appel. Modularity in higher-order term rewriting. Master’s thesis, DIKU, University of Copenhagen,

June 2009.

[3] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[4] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in Logic and

the Foundations of Mathematics. Elsevier, 1985.

32 C. APPEL, V. VAN OOSTROM, AND J. G. SIMONSEN

[5] G. Huet. Confluent reductions: Abstract properties and applications to term rewriting systems. Journal

of the ACM, 27(4):797–821, Oct. 1980.

[6] S. Kahrs. Confluence of curried term-rewriting systems. Journal of Symbolic Computation, 19(6):601–

623, June 1995.

[7] R. Kennaway, J. Klop, R. Sleep, and F.-J. d. Vries. Comparing curried and uncurried rewriting. Journal

of Symbolic Computation, 21(1):15–39, Jan. 1996.

[8] J. Klop. Combinatory Reduction Systems. PhD thesis, Utrecht University, 1980.

[9] J. Klop, V. v. Oostrom, and F. v. Raamsdonk. Reduction strategies and acyclicity. In Rewriting, Com-

putation and Proof, Essays Dedicated to Jean-Pierre Jouannaud on the Occasion of His 60th Birthday,

volume 4600 of Lecture Notes in Computer Science, pages 89–112. Springer, 2007.

[10] J. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems: introduction and

survey. Theoretical Computer Science, 121(1-2):279–308, Dec. 1993.

[11] M. Kurihara and I. Kaji. Modular term rewriting systems and the termination. Information Processing

Letters, 34(1):1–4, Feb. 1990.

[12] M. Kurihara and A. Ohuchi. Modularity in noncopying term rewriting. Theoretical Computer Science,

152(1):139–169, Dec. 1995.

[13] R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. Theoretical Computer

Science, 192(1):3–29, Feb. 1998.

[14] A. Middeldorp. Modular aspects of properties of term rewriting systems related to normal forms. In

Proceedings of the 3rd International Conference on Rewriting Techniques and Applications (RTA 1989),

volume 355 of Lecture Notes in Computer Science, pages 263–277. Springer, 1989.

[15] T. Nipkow. Higher-order critical pairs. In Proceedings of the 6th annual IEEE Symposium on Logic in

Computer Science (LICS 1991), pages 342–349, 1991.

[16] E. Ohlebusch. A simple proof of sufficient conditions for the termination of the disjoint union of term

rewriting systems. Bulletin of the European Association for Theoretical Computer Science, 49:178–183,

1993.

[17] V. v. Oostrom. Confluence for Abstract and Higher-Order Rewriting. PhD thesis, VU Amsterdam, 1994.

[18] V. v. Oostrom. Take five. Technical Report IR 406, VU Amsterdam, June 1996.

[19] V. v. Oostrom. Modularity of confluence, constructed. In Proceedings of the 4th International Joint

Conference on Automated Reasoning (IJCAR 2008), volume 5195 of Lecture Notes in Computer Science,

pages 348–363. Springer, 2008.

[20] V. v. Oostrom and F. v. Raamsdonk. Comparing combinatory reduction systems and higher-order

rewrite systems. In Proceedings of the 1st International Workshop on Higher-Order Algebra, Logic

and Term Rewriting (HOA 1993), volume 814 of Lecture Notes in Computer Science, pages 276–304.

Springer, 1994.

[21] V. v. Oostrom and F. v. Raamsdonk. Weak orthogonality implies confluence: the higher-order case. In

Proceedings of the 3rd International Symposium on Logical Foundations of Computer Science (LFCS

1994), volume 813 of Lecture Notes in Computer Science, pages 379–392. Springer, 1994.

[22] M. Rusinowitch. On termination of the direct sum of term-rewriting systems. Information Processing

Letters, 26(2):65–70, Oct. 1987.

[23] M. Schmidt-Schauss, M. Marchiori, and S. Panitz. Modular termination of r -consistent and left-linear

term rewriting systems. Theoretical Computer Science, 149(2):361–374, Oct. 1995.

[24] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science.

Cambridge University Press, 2003.

[25] Y. Toyama. Counterexamples to termination for the direct sum of term rewriting systems. Information

Processing Letters, 25(3):141–143, May 1987.

[26] Y. Toyama. On the Church-Rosser property for the direct sum of term rewriting systems. Journal of

the ACM, 34(1):128–143, Jan. 1987.

[27] Y. Toyama, J. Klop, and H. Barendregt. Termination for the direct sum of left-linear term rewriting

systems. In Proceedings of the 3rd International Conference on Rewriting Techniques and Applications

(RTA 1989), volume 355 of Lecture Notes in Computer Science, pages 477–491. Springer, 1989.

[28] T. Yamada. Confluence and termination of simply typed term rewriting systems. In Proceedings of the

12th International Conference on Rewriting Techniques and Applications (RTA 2001), volume 2051 of

Lecture Notes in Computer Science, pages 338–352. Springer, 2001.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 33-48
http://rewriting.loria.fr/rta/

CLOSING THE GAP BETWEEN RUNTIME COMPLEXITY AND

POLYTIME COMPUTABILITY

MARTIN AVANZINI 1 AND GEORG MOSER 1

1 Institute of Computer Science, University of Innsbruck, Austria

E-mail address: {martin.avanzini,georg.moser}@uibk.ac.at

Abstract. In earlier work, we have shown that for confluent term rewrite systems, in-

nermost polynomial runtime complexity induces polytime computability of the functions

defined. In this paper, we generalise this result to full rewriting. For that, we again exploit

graph rewriting. We give a new proof of the adequacy of graph rewriting for full rewriting

that allows for a precise control of the resources copied. In sum we completely describe an

implementation of rewriting on a Turing machine. We show that the runtime complexity

with respect to rewrite systems is polynomially related to the runtime complexity on a

Turing machine.

Our result strengthens the evidence that the complexity of a rewrite system is truthfully

represented through the length of derivations. Moreover our result allows the classifica-

tion of deterministic as well as nondeterministic polytime-computation based on runtime

complexity analysis of rewrite systems.

1. Introduction

Recently we see increased interest in studies of the maximal derivation length of term
rewrite system, compare for example [9, 10, 15, 11, 14]. We are interested in techniques
to automatically classify the complexity of term rewrite systems (TRS for short) and have
introduced the polynomial path order POP

∗ and extensions of it, cf. [1, 2]. POP
∗ is

a restriction of the multiset path order [18] and whenever compatibility of a TRS R with
POP

∗ can be shown then the (innermost) runtime complexity ofR is polynomially bounded.
Here the runtime complexity of a TRS measures the maximal number of rewrite steps as
a function in the size of the initial term, where the initial terms are restricted argument
normalised terms (aka basic terms).

We have successfully implemented this technique.1 As a consequence we have a fully
automatic (but of course incomplete) procedure that verifies for a given TRS whether it ad-
mits at most polynomial runtime complexity. In this paper, we study the question whether

1998 ACM Subject Classification: F 1.2, F 1.3, F 4.2.

Key words and phrases: term rewriting, graph rewriting, complexity analysis, polytime computability.

This research is supported by FWF (Austrian Science Fund) projects P20133-N15.

1Our implementation forms part of the Tyrolean Complexity Tool (TCT for short). For further information,

see http://cl-informatik.uibk.ac.at/software/tct/.

© M. Avanzini and G. Moser
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.33

34 M. AVANZINI AND G. MOSER

such techniques are restricted to runtime complexity, or whether they can be applied also for
the (automated) classification of the computational complexity of the functions computed
by the given TRS.

For motivation consider the TRS R given in the next example. It is not difficult to
see that R encodes the function problem FSAT associated to the well-known satisfiability
problem SAT. FSAT is complete for the class of function problems over NP (FNP for short),
compare [16].

Example 1.1. Consider the following TRS R:

1 : if(tt, t, e)→ t 11: ε = ε→ tt

2: if(ff, t, e)→ e 12: 1(x) = 1(y)→ x = y

3: choice(x : xs)→ x 13: 1(x) = 0(y)→ ff

4: choice(x : xs)→ choice(xs) 14: 0(x) = 1(y)→ ff

5: guess(nil)→ nil 15: 0(x) = 0(y)→ x = y

6: guess(c : cs)→ choice(c) : guess(cs) 16: verify(nil)→ tt

7: in(x, nil)→ ff 17: verify(l : ls)→ if(in(¬l, ls),ff, verify(ls))

8 : in(x, y : ys)→ if(x = y, tt, in(x, ys)) 18: sat′(a)→ if(verify(a), a, unsat)

9 : ¬1(x)→ 0(x) 19: sat(c)→ sat′(guess(c))

10: ¬0(x)→ 1(x)

These rules are compatible with POP
∗ and as a result we conclude that the innermost

runtime complexity of R is polynomially bounded.2

This leads to the question, whether a characterisation of the runtime complexity of R
suffices to conclude that the functional problem expressed by R belongs to the class FNP.
The purpose of this paper is to provide a positive answer to this question. More precisely,
we establish the following results:

1) We re-consider graph rewriting and provide a new proof of the adequacy of graph
rewriting for full rewriting. This overcomes obvious inefficiencies of rewriting, when
it comes to the duplication of terms.

2) We provide a precise analysis of the resources needed in implementing graph rewriting
on a Turing machine (TM for short).

3) Combining these results we show that for a given TRS and for any term t, there exists
a normal-form of t that is computable in time O(log(ℓ3) ∗ ℓ7) on a deterministic
TM. Moreover any normal-form of t is computable in time O(log(ℓ2) ∗ ℓ5) on a
nondeterministic TM. Here ℓ denotes the maximal length of derivations starting
from t.

4) Based on this our main result on the correspondence between polynomial runtime
complexity and polytime computability follows.

Our result strengthens the evidence that the complexity of a rewrite system is truth-
fully represented through the length of derivations. Furthermore, our result allows the
classification of deterministic as well as nondeterministic polytime-computation based on
runtime complexity analysis of rewrite systems. This extends previous work (see [3]) that

2To our best knowledge TCT is currently the only complexity tool that can provide a complexity certificate

for the TRS R, compare http://termcomp.uibk.ac.at.

CLOSING THE GAP BETWEEN RUNTIME COMPLEXITY AND POLYTIME COMPUTABILITY 35

shows that for confluent TRSs, innermost polynomial runtime complexity induces polytime
computability of the functions defined. Moreover, it extends related work by Dal Lago and
Martini [8, 7] that studies the complexity of orthogonal TRSs, also applying graph rewriting
techniques (c.f. also Section 6).

The paper is structured as follows. In Section 2 we present basic notions, in Section 3
we (briefly) recall the central concepts of our employed notion of graph rewriting. The
adequacy theorem is provided in Section 4 and in Section 5 we show how rewriting can be
implemented efficiently. Finally we obtain our main result in Section 6. Missing proofs are
available in the technical report [4].

2. Preliminaries

We assume familiarity with the basics of term rewriting, see [5, 18]. No familiarity with
graph rewriting (see [18]) is assumed. Let R be a binary relation on a set S. We write R+

for the transitive and R∗ for the transitive and reflexive closure of R. An element a ∈ S
is R-minimal if there exists no b ∈ S such that a R b. We write a R! b if a R∗ b and b is
R-minimal.

Let V denote a countably infinite set of variables and F a signature. The set of terms
over F and V is denoted as T (F ,V) or T for short. The size |t| of a term t is defined as
usual. A term rewrite system R over T is a finite set of rewrite rules l→ r, such that l /∈ V
and Var(l) ⊇ Var(r). We write −→R for the induced rewrite relation. The set of defined
function symbols is denoted as D, while the constructor symbols are collected in C, clearly
F = D ∪ C. We use NF(R) to denote the set of normal-forms of R. We define the set of
values Val := T (C,V), and we define B := {f(v1, . . . , vn) | f ∈ D and vi ∈ Val} as the set
of basic terms. Let 2 be a fresh constant. Terms over F ∪ {2} and V are called contexts.
The empty context is denoted as 2. For a context C with n holes, we write C[t1, . . . , tn] for
the term obtained by replacing the holes from left to right in C with the terms t1, . . . , tn.

A TRS is called confluent if for all s, t1, t2 ∈ T with s −→∗
R t1 and s −→∗

R t2 there exists a
term u such that t1 −→

∗
R u and t2 −→

∗
R u. The derivation height of a terminating term s with

respect to a finitely branching relation → is defined as dl(s,→) := max{n | ∃t. s →n t},
where →n denotes the n-fold application of →. The runtime complexity function rcR with
respect to a TRS R is defined as rcR(n) := max{dl(t,−→R) | t ∈ B and |t| 6 n}.

3. Term Graph Rewriting

In the sequel we introduce the central concepts of term graph rewriting or graph rewrit-

ing for short. We closely follow the presentation of [3], for further motivation of the pre-
sented notions we kindly refer the reader to [3]. Let R be a TRS over a signature F . We
keep R and F fixed for the remaining of this paper.

A directed graph G = (VG, SuccG,LG) over the set L of labels is a structure such that
VG is a finite set, the nodes or vertices, Succ : VG → V∗

G is a mapping that associates
a node u with an (ordered) sequence of nodes, called the successors of u. Note that the
sequence of successors of u may be empty: SuccG(u) = []. Finally LG : VG → L is a
mapping that associates each node u with its label LG(u). Typically the set of labels L is
clear from context and not explicitly mentioned. In the following, nodes are denoted by
u, v, . . . possibly followed by subscripts. We drop the reference to the graph G from VG,

36 M. AVANZINI AND G. MOSER

SuccG, and LG, i.e., we write G = (V, Succ,L) if no confusion can arise from this. Further,
we also write u ∈ G instead of u ∈ V.

Let G = (V, Succ,L) be a graph and let u ∈ G. Consider Succ(u) = [u1, . . . , uk]. We

call ui (1 6 i 6 k) the i-th successor of u (denoted as u
i
⇀ ui). If u

i
⇀ v for some i, then

we simply write u ⇀ v. A node v is called reachable from u if u
∗
⇀ v, where

∗
⇀ denotes the

reflexive and transitive closure of ⇀. We write
+
⇀ for ⇀ ·

∗
⇀. A graph G is acyclic if u

+
⇀ v

implies u 6= v and G is rooted if there exists a unique node u such that every other node in
G is reachable from u. The node u is called the root rt(G) of G. The size of G, i.e., the
number of nodes, is denoted as |G|. The depth of G, i.e., the length of the longest path in
G, is denoted as dp(G). We write G↾u for the subgraph of G reachable from u.

Let G and H be two term graphs, possibly sharing nodes (see below for the formal
definition). We say that G and H are properly sharing if u ∈ G∩H implies LG(u) = LH(u)
and SuccG(u) = SuccH(u). If G and H are properly sharing, we write G∪H for their union.

Definition 3.1. A term graph (with respect to F and V) is an acyclic and rooted graph
S = (V, Succ,L) over labels F ∪ V . Let u ∈ S and suppose L(u) = f ∈ F such that f is
k-ary. Then Succ(u) = [u1, . . . , uk]. On the other hand, if L(u) ∈ V then Succ(u) = []. We
demand that every variable node is shared. That is, for u ∈ S with L(u) ∈ V , if L(u) = L(v)
for some v ∈ V then u = v.

Below S, T, . . . and L,R, possibly extended by subscripts, always denote term graphs.
We write Graph for the set of all term graphs with respect to F and V . Abusing notation
from rewriting we set Var(S) := {u | u ∈ S,L(u) ∈ V}, the set of variable nodes in S. We
define the term term(S) represented by S as follows: term(S) := x if L(rt(S)) = x ∈ V
and term(S) := f(term(S ↾u1), . . . , term(S ↾uk)) for L(rt(S)) = f ∈ F and Succ(rt(S)) =
[u1, . . . , uk]. Clearly, we have |S| 6 |term(S)|, that is, |S| = O(|term(S)|).

We adapt the notion of positions in terms to positions in graphs in the obvious way.
Positions are denoted as p, q, . . . , possibly followed by subscripts. For positions p and q
we write pq for their concatenation. We write p 6 q if p is a prefix of q, i.e., q = pp′

for some position p′. The size |p| of position p is defined as its length. Let u ∈ S be
a node. The set of positions PosS(u) of u is defined as PosS(u) := {ε} if u = rt(S)

and PosS(u) := {i1 · · · ik | rt(S)
i1⇀ · · ·

ik⇀ u} otherwise. The set of all positions in S is
PosS :=

⋃

u∈S PosS(u). Note that PosS coincides with the set of positions of term(S). If
p ∈ PosS(u) we say that u corresponds to p. In this case we also write S ↾p for the subgraph
S ↾ u. This is well defined since exactly one node corresponds to a position p. One easily
verifies term(S ↾p) = term(S)|p for all p ∈ PosS . We say that u is (strictly) above a position
p if u corresponds to a position q with q 6 p (q < p). Conversely, the node u is below p if
u corresponds to q with p 6 q.

By exploiting different degrees of sharing, a term t can often be represented by more
than one term graph. Let S be a term graph and let u ∈ S be a node. We say that u is
shared if the set of positions PosS(u) is not singleton. Note that in this case, the node u
represents more than one subterm of term(S). If PosS(u) is singleton, then u is unshared.

The node u is minimally shared if it is either unshared or a variable node (recall that
variable nodes are always shared). We say u is maximally shared if term(S ↾u) = term(S ↾v)
implies u = v for all nodes v ∈ S. The term graph S is called minimally sharing (maximally

sharing) if all nodes u ∈ S are minimally shared (maximally shared). Let s be a term. We
collect all minimally sharing term graphs representing s in the set △(s). Maximally sharing

CLOSING THE GAP BETWEEN RUNTIME COMPLEXITY AND POLYTIME COMPUTABILITY 37

term graphs representing s are collected in ▽(s). Observe that for S ∈ △(s), we have
|s| = O(|S|).

We now introduce a notion for replacing a subgraph S ↾u of S by a graph H.

Definition 3.2. Let S be a term graph and let u, v ∈ S be two nodes. Then S[u←− v]
denotes the redirection of node u to v: define the mapping r such that r(u) := v and r(w) :=
w for all w ∈ S\{u}. Set V′ := (VS ∪{v})\{u} and for all w ∈ V′, Succ′(w) := r∗(SuccS(w))
where r∗ is the extension of r to sequences. Finally, set S[u←− v] := (V′, Succ′,LS).

Let H be a rooted graph over F ∪V . We define S[H]u := (S[u←− rt(H)] ∪H)↾v where
v = rt(H) if u = rt(S) and v = rt(S) otherwise. Note that S[H]u is again a term graph if
u 6∈ H and H acyclic.

The following notion of term graph morphism plays the role of substitutions.

Definition 3.3. Let L and S be two term graphs. A morphism from L to S (denoted
m : L→ S) is a function m : VL → VS such that m(rt(L)) = rt(S), and for all u ∈ L with
LL(u) ∈ F , (i) LL(u) = LS(m(u)) and (ii) m∗(SuccL(u)) = SuccS(m(u)).

The next lemma follows from Definition 3.3.

Lemma 3.4. If m : L→ S then for any u ∈ L we have m : L↾u→ S ↾m(u).

Let m : L→ S be a morphism from L to S. The induced substitution σm : Var(L)→ T
is defined as σm(x) := term(S ↾m(u)) for any u ∈ L such that L(u) = x ∈ V. As an easy
consequence of Lemma 3.4 we obtain the following.

Lemma 3.5. Let L and S be term graphs, and suppose m : L→ S for some morphism m.

Let σm be the substitution induced by m. Then term(L)σm = term(S).

Proof. The lemma has been shown in [3, Lemma 14].

We write S >m T (or S > T for short) if m : S → T is a morphism such that for
all u ∈ VS , Property (i) and Property (ii) in Definition 3.3 are fulfilled. For this case, S
and T represent the same term. We write S >m T (or S > T for short) when the graph
morphism m is additionally non-injective. If both S > T and T > S holds then S and T
are isomorphic, in notation S ∼= T . Recall that |S| denotes the number of nodes in S.

Lemma 3.6. For all term graph S and T , S >m T implies term(S) = term(T) and

|S| > |T |. If further S >m T holds then |S| > |T |.

Let L and R be two properly sharing term graphs. Suppose rt(L) 6∈ Var(L), Var(R) ⊆
Var(L) and rt(L) 6∈ R. Then the graph L∪R is called a graph rewrite rule (rule for short),
denoted by L → R. The graph L, R denotes the left-hand, right-hand side of L → R
respectively. A graph rewrite system (GRS for short) G is a set of graph rewrite rules.

Let G be a GRS, let S ∈ Graph and let L → R be a rule. A rule L′ → R′ is called a
renaming of L→ R with respect to S if (L′ → R′) ∼= (L→ R) and VS ∩VL′→R′ = ∅. Let
L′ → R′ be a renaming of a rule (L → R) ∈ G for S, and let u ∈ S be a node. We say S
rewrites to T at redex u with rule L → R, denoted as S −→G,u,L→R T , if there exists a

morphism m : L′ → S ↾u and T = S[m(R′)]u. Here m(R′) denotes the structure obtained
by replacing in R′ every node v ∈ dom(m) by m(v) ∈ S, where the labels of m(v) ∈ m(R′)
are the labels of m(v) ∈ S. We also write S −→G,p,L→R T if S −→G,u,L→R T for position
p corresponding to u in S. We set S −→G T if S −→G,u,L→R T for some u ∈ S and

38 M. AVANZINI AND G. MOSER

(L → R) ∈ G. The relation −→G is called the graph rewrite relation induced by G. Again
abusing notation, we denote the set of normal-forms with respect to −→G as NF(G).

4. Adequacy of Graph Rewriting for Term Rewriting

In earlier work [3] we have shown that graph rewriting is adequate for innermost rewrit-
ing without further restrictions on the studied TRS R. In this section we generalise this
result to full rewriting. The adequacy theorem presented here (see Theorem 4.15) is not
essentially new. Related results can be found in the extensive literature, see for example
[18]. In particular, in [17] the adequacy theorem is stated for full rewriting and unrestricted
TRSs. In this work, we take a fresh look from a complexity related point of view.

We give a new proof of the adequacy of graph rewriting for full rewriting that allows for
a precise control of the resources copied. This is essential for the accurate characterisation
of the implementation of graph rewriting given in Section 5.

Definition 4.1. The simulating graph rewrite system G(R) of R contains for each rule
(l→ r) ∈ R some rule L→ R such that L ∈ △(l), R ∈ △(r) and VL ∩VR = Var(R).

The next two lemmas establish soundness in the sense that derivations with respect to
G(R) correspond to R-derivations.

Lemma 4.2. Let S be a term graph and let L→ R be a renaming of a graph rewrite rule for

S, i.e., S∩R = ∅. Suppose m : L→ S for some morphism m and let σm be the substitution

induced by m. Then term(R)σm = term(T) where T := (m(R) ∪ S)↾rt(m(R)).

Proof. The lemma has been shown in [3, Lemma 15].

In Section 2 we introduced 2 as designation of the empty context. Below we write 2

for the unique (up-to isomorphism) graph representing the constant 2.

Lemma 4.3. Let S and T be two properly sharing term graphs, let u ∈ S \ T and C =
term(S[2]u). Then term(S[T]u) = C[term(T), . . . , term(T)].

Proof. The lemma has been shown in [3, Lemma 16]. Note that the set of positions of 2 in
C corresponds to PosS(u).

For non-left-linear TRSs R, −→G(R) does not suffice to mimic −→R. This is clarified in

the following example.

Example 4.4. Consider the TRS R := {f(x)→ eq(x, a); eq(x, x)→ ⊤}. Then R admits
the derivation

f(a) −→R eq(a, a) −→R ⊤

but G(R) cannot completely simulate the above sequence:

f

a

eq

a a

−→G(R) ∈ NF(G(R))

Let L→ R be the rule in G(R) corresponding to eq(x, x)→ ⊤, and let S, term(S) = eq(a, a),
be the second graph in the above sequence. Then L → R is inapplicable as we cannot
simultaneously map the unique variable node in L to both leaves in S via a graph morphism.
Note that the situation can be repaired by sharing the two arguments in S.

CLOSING THE GAP BETWEEN RUNTIME COMPLEXITY AND POLYTIME COMPUTABILITY 39

For maximally sharing graphs S we can prove that redexes of R and (positions corre-
sponding to) redexes of G(R) coincide. This is a consequence of the following lemma.

Lemma 4.5. Let l be a term and s = lσ for some substitution σ. If L ∈ △(l) and S ∈ ▽(s),
then there exists a morphism m : L→ S. Further, σ(x) = σm(x) for the induced substitution

σm and all variables x ∈ Var(l).

Proof. We prove the lemma by induction on l. It suffices to consider the induction step.
Let l = f(l1, . . . , lk) and s = f(l1σ, . . . , lkσ). Suppose SuccL(rt(L)) = [u1, . . . , uk] and
SuccS(rt(S)) = [v1, . . . , vk]. By induction hypothesis there exist morphisms mi : L↾ui → S ↾
vi (1 6 i 6 k) of the required form. Define m : VL → VS as follows. Set m(rt(L)) = rt(S)
and for w 6= rt(L) define m(w) = mi(w) if w ∈ dom(mi). We claim w ∈ (dom(mi) ∩
dom(mj)) implies mi(w) = mj(w). For this, suppose w ∈ (dom(mi) ∩ dom(mj)). Since
L ∈ △(l), only variable nodes are shared, hence w needs to be a variable node, say LL(w) =
x ∈ V . Then

term(S ↾mi(w)) = σmi
(x) = σ(x) = σmj

(x) = term(S ↾mj(w))

by definition and induction hypothesis. As S ∈ ▽(s) is maximally shared, mi(w) = mj(w)
follows. We conclude m is a well-defined morphism, further m : L→ S.

A second problem is introduced by non-eager evaluation. Consider the following.

Example 4.6. Let R := {dup(x)→ c(x, x); a→ b}. Then R admits the derivation

dup(a) −→R c(a, a) −→R c(b, a)

but applying the corresponding rules in G(R) yields:

dup

a

c

a

c

b

−→G(R) −→G(R)

Application of the first rule produces a shared redex. Consequently the second step amounts
to a parallel step in R.

To prove adequacy of graph rewriting for term rewriting and unrestricted TRSs, we
follow the standard approach [18, 17] where folding (also called collapsing) and unfolding

(also referred to as copying) is directly incorporated in the graph rewrite relation. Unlike
in the cited literature, we employ a very restrictive form of folding and unfolding. To
this extend, we define for positions p relations ◮p and ⊳p on term graphs. Both relations
preserve term structure. However, when S ◮p T holds then the subgraph T ↾ p admits
strictly more sharing than S ↾p. Conversely, when S ⊳p T holds, nodes above p in T admit
less sharing than nodes above p in S. Extending the graph rewrite relation −→G(R),p by ◮p

and ⊳p addresses both problems highlighted in Example 4.4 and Example 4.6.
The relations ◮p and ⊳p are based on single step approximations =u

v of >m.

Definition 4.7. Let ≻ denote some total quasi-order on nodes, let < denote the reflexive
closure of ≻. Let S be a term graph, and let u, v ∈ S be nodes satisfying u < v. We define
S ⊒u

v T for term graph T if S >m T for the morphism m identifying u and v, more precisely,
m(u) = v and m(w) = w for all w ∈ S \ {u}. We define S =

u
v T if S ⊒u

v T and u 6= v.

We write S ⊒v T (S =v T) if there exists u ∈ S such that S ⊒u
v T (S =

u
v T) holds.

Similar S ⊒ T (S = T) if there exist nodes u, v ∈ S such that S ⊒u
v T (S =

u
v T) holds.

40 M. AVANZINI AND G. MOSER

Example 4.8. Consider the term t = (0 + 0) × (0 + 0). Then t is represented by the
following three graphs that are related by <

2

3
and =

4

5
respectively.

➀×

➂+

➃ 0 ➄ 0

T1

<
2

3

➀×

➁+ ➂+

➃ 0 ➄ 0

T2

=
4

5

➀×

➁+ ➂+

➄ 0

T3

That is, the term graph T2 is obtained from T1 by copying node 3, introducing the fresh
node 2. The graph T3 is obtained from T2 by collapsing node 4 onto node 5.

Suppose S =
u
v T . Then the morphism underlying =

u
v amounts to the identity on

VS \{u}. In particular, it defines the identity on successors of u, v ∈ S. Thus the following
is immediate.

Lemma 4.9. Let S be a term graph, and let u, v ∈ S be two distinct nodes. Then there exists

a term graph T such that S =
u
v T if and only if LS(u) = LS(v) and SuccS(u) = SuccS(v).

The restriction u < v was put onto⊒u
v so that⊒v enjoys the following diamond property.

Otherwise, the peak <
u
v · =

v
u ⊆
∼= cannot be joined.

Lemma 4.10. ⊑u · ⊒v ⊆ ⊒w1
· ⊑w2

where w1, w2 ∈ {u, v}.

Proof. Assume T1 ⊑
u′

u S ⊒v′

v T2 for some term graphs S, T1 and T2. The only non-trivial

case is T1 <
u′

u S =
v′

v T2 for u′ 6= v′ and u 6= v. We prove T1 =w1
· <w2

T2 for w1, w2 ∈ {u, v}
by case analysis. We highlight two interesting cases. The remaining cases follow by similar
reasoning, c.f. [4].

- Case T1 <
u′

w S =
v′

w T2 for v
′ 6= u′. We claim T1 =

v′

w · <
u′

w T2. Letm1 be the morphism

underlying <
u′

w and let m2 be the morphism underlying =
v′

w (c.f. Definition 4.7). We

first show LT1
(v′) = LT1

(w) and SuccT1
(v′) = SuccT1

(w). Using Lemma 4.9, S =
v′

w T2

yields LS(v
′) = LS(w). Employing v′ 6= u′ and w 6= u′ we see

LT1
(v′) = LT1

(m1(v
′)) = LS(v

′)
= LS(w) = LT1

(m1(w)) = LT1
(w) .

where we employ m1(v
′) = v′ and m1(w) = w. Again by Lemma 4.9, we see

SuccS(u
′) = SuccS(w) and SuccS(v

′) = SuccS(w) by the assumption T1 <
u′

w S =
v′

w T2.
We conclude SuccS(v

′) = SuccS(w) and thus

SuccT1
(v′) = SuccT1

(m1(v
′)) = m∗

1(SuccS(v
′))

= m∗
1(SuccS(w)) = SuccT1

(m1(w)) = SuccT1
(w) .

By Lemma 4.9 we obtain term graph U1 such that T1 =
v′

w U1. Symmetrically, we can

prove T2 =
u′

w U2 for some term graph U2. Hence T1 =
v′

w · <
u′

w T2 holds if U1 = U2.
To prove the latter, one shows m2 ·m1 = m1 ·m2 by a straightforward case analysis.

- Case T1 <
u′

u S =
v′

v T2 for pairwise distinct u′, u, v′ and v. We show T1 =
v′

v · <
u′

u T2.

Let m be the morphism underlying =
u′

u . Observe m(v) = v and m(v′) = v′ by our
assumption. Hence LT1

(v′) = LS(v
′) = LS(v) = LT1

(v) and LT1
(v′) = m∗(LS(v

′)) =

m∗(LS(v)) = LT1
(v). We obtain T1 =

v′

v U1 and symmetrically T2 =
u′

u U2 for some
term graphs U1 and U2. Finally, one verifies U1 = U2 by case analysis as above.

CLOSING THE GAP BETWEEN RUNTIME COMPLEXITY AND POLYTIME COMPUTABILITY 41

The above lemma implies confluence of ⊒. Since =
∗ = ⊒∗, = is also confluent.

Definition 4.11. Let S be a term graph and let p be a position in S. We say that S folds

strictly below p to the term graph T , in notation S ◮p T , if S =
u
v T for nodes u, v ∈ S

strictly below p in S. The graph S unfolds above p to the term graph T , in notation S ⊳p T ,
if S <

u
v T for some unshared node u ∈ T above p, i.e., PosT (u) = {q} for q 6 p.

Example 4.12. Reconsider the term graphs T1, T2 and T3 with T1 <
2

3
T2 =

4

5
T3 from

Example 4.8. Then T1 ⊳2 T2 since node 3 is an unshared node above position 2 in T2.
Further T2 ◮2 T3 since both nodes 4 and 5 are strictly below position 2 in T2.

Note that for S =
u
v T the sets of positions PosS and PosT coincide, thus the n-fold

composition ⊳n
p of ⊳p (and the n-fold composition ◮n

p of ◮p) is well-defined for p ∈ PosS .
In the next two lemmas we prove that relations ⊳p and ◮p fulfil their intended purpose.

Lemma 4.13. Let S be a term graph and p a position in S. If S is ⊳p-minimal then the

node corresponding to p is unshared.

Proof. By way of contradiction, suppose S is ⊳p-minimal but the node w corresponding to
p is shared. We construct T such that S ⊳p T . We pick an unshared node v ∈ S, and
shared node vi ∈ S, above p such that v ⇀ vi. By a straightforward induction on p we see
that v and vi exist as w is shared. For this, note that at least the root of S is unshared.

Define T := (VT ,LT , SuccT) as follows: let u be a fresh node such that u ≻ vi. set
VT := VS ∪{u}; set LT (u) := LS(vi) and SuccT (u) := SuccS(vi); further replace the edge

v
i
⇀ vi by v

i
⇀ u, that is, set LT (v) := [v1, . . . , u, . . . , vl] for LS(v) = [v1, . . . , vi, . . . , vl]. For

the remaining cases, define LT (w) := LS(u) and SuccT (w) := SuccS(w). One easily verifies
T =

u
vi
S. Since by way of construction u is an unshared node above p, S ⊳p T holds.

Lemma 4.14. Let S be a term graph, let p be a position in S. If S is ◮p-minimal then the

subgraph S ↾p is maximally shared.

Proof. Suppose S ↾p is not maximally shared. We show that S is not ◮p-minimal. Pick some
node u ∈ S ↾p such that there exists a distinct node v ∈ S ↾p with term(S ↾u) = term(S ↾v).

For that we assume that u is ⇀-minimal in the sense that there is no node u′ with u
+
⇀ u′

such that u′ would fulfil the above property. Clearly LS(u) = LS(v) follows from term(S ↾

u) = term(S ↾ v). Next, suppose u
i
⇀ ui and v

i
⇀ vi for some nodes ui 6= vi. But then ui

contradicts minimality of u, and so we conclude ui = vi. Consequently SuccS(u) = SuccS(v)
follows as desired. Without loss of generality, suppose u ≻ v. By Lemma 4.9 there exists a
term graph T such that S =

u
v T . Since u, v ∈ S ↾p, S ◮p T follows.

Theorem 4.15 (Adequacy). Let s be a term and let S be a term graph such that term(S) =
s. Then

s −→R,p t if and only if S ⊳!
p · ◮

!
p · −→G(R),p T

for some term graph T with term(T) = t.

Proof. First, we consider the direction from right to left. Suppose S ⊳!
p U ◮!

p V −→G(R),p T .

Note that ◮p preserves ⊳p-minimality. We conclude V is ⊳p-minimal as U is. Let v ∈ V
be the node corresponding to p. By Lemma 4.13 we see PosU (v) = {p}. Now consider
the step V −→G(R),p T . There exists a renaming L′ → R′ of (L→ R) ∈ G(R) such that

m : L′ → V ↾v is a morphism and T = V [m(R′)]v. Set l := term(L′) and r := term(R′), by

42 M. AVANZINI AND G. MOSER

definition (l→ r) ∈ R. By Lemma 3.5 we obtain lσm = term(V ↾v) for the substitution σm
induced by the morphism m. Define the context C := term(V [2]v). As v is unshared, C
admits exactly one occurrence of 2, moreover the position of 2 in C is p. By Lemma 4.3,

term(V) = term(V [V ↾v]v) = C[term(V ↾v)] = C[lσm] .

Set Tv := (m(R′) ∪ V)↾rt(m(R′)), and observe T = V [m(R′)]v = V [Tv]v. Using Lemma 4.3
and Lemma 4.2 we see

term(T) = term(V [Tv]v) = C[term(Tv)] = C[rσm] .

As term(S) = term(V) by Lemma 3.6, term(S) = C[lσm] −→R,p C[rσm] = term(T) follows.

Finally, consider the direction from left to right. For this suppose s = C[lσ] −→R,p

C[rσ] = t where the position of the hole in C is p. Suppose S ⊳!
p U ◮!

p V for term(S) = s.
We prove that there exists T such that V −→G(R),p T and term(T) = t. Note that V

is ◮p-minimal and, as observed above, it is also ⊳p-minimal. Let v ∈ V be the node
corresponding to p, by Lemma 4.13 the node v is unshared. Next, observe lσ = s|p =
term(S ↾ p) = term(V ↾ v) since term(S) = term(V) (c.f. Lemma 3.6). Additionally,
Lemma 4.14 reveals V ↾v ∈ ▽(lσ). Further, by Lemma 4.3 we see

s = C[lσ] = term(V) = term(V [V ↾v]v) = term(V [2]v)[lσ] .

Since the position of the hole in C and term(V [2]v) coincides, we conclude C = term(V [2]v).
Let L→ R ∈ G(R) be the rule corresponding to (l→ r) ∈ R, let (L′ → R′) ∼= (L→ R)

be a renaming for V . As L′ ∈ △(l) and V ↾v ∈ ▽(lσ), by Lemma 4.5 there exists a morphism
m : L′ → V ↾ v and hence V −→G(R),p T for T = V [m(R′)]v. Note that for the induced

substitution σm and x ∈ Var(l), σm(x) = σ(x). Set Tv := (m(R′) ∪ V) ↾ rt(m(R′)), hence
T = V [Tv]v and moreover rσ = rσm = term(Tv) follows as in the first half of the proof.
Employing Lemma 4.3 we obtain

t = C[rσ] = term(V [2]v)[rσ] = term(V [Tv]v) = term(T) .

We define S ⊳◮−→G(R),p T if and only if S ⊳!
p · ◮

!
p U −→G(R),p T . Employing this

notion we can rephrase the conclusion of the Adequacy Theorem as: s −→R,p t if and only

if S ⊳◮−→G(R),p T for term(S) = s and term(T) = t.

5. Implementing Term Rewriting Efficiently

Opposed to term rewriting, graph rewriting induces linear size growth in the length of
derivations. The latter holds as a single step −→G admits constant size growth:

Lemma 5.1. If S −→G T then |T | 6 |S|+∆ for some ∆ ∈ N depending only on G.

Proof. Set ∆ := max{|R| | (L→ R) ∈ G} and the lemma follows by definition.

CLOSING THE GAP BETWEEN RUNTIME COMPLEXITY AND POLYTIME COMPUTABILITY 43

It is easy to see that a graph rewrite step S −→G T can be performed in time polynomial
in the size of the term graph S. By the above lemma we obtain that S can be normalised
in time polynomial in |S| and the length of derivations. In the following, we prove a result
similar to Lemma 5.1 for the relation ⊳◮−→G , where (restricted) folding and unfolding is
incorporated. The main obstacle is that due to unfolding, size growth of ⊳◮−→G is not bound
by a constant in general. We now investigate the relation ⊳p and ◮p.

Lemma 5.2. Let S be a term graph and let p be a position in S.

1) If S ⊳ℓ
p T then ℓ 6 |p| and |T | 6 |S|+ |p|.

2) If S ◮ℓ
p T then ℓ 6 |S ↾p| and |T | 6 |S|.

Proof. We consider the first assertion. For term graphs U , let PU = {w | PosU (w) =
{q} and q 6 p} be the set of unshared nodes above p. Consider U ⊳p V . Observe that
PU ⊂ PV holds: By definition U <

u
v V where PosV (u) = {q} with q 6 p. Clearly, PU ⊆ PV ,

but moreover u ∈ PV whereas u 6∈ PU . Hence for (S ⊳ℓ
p T) = S = S0 ⊳p . . . ⊳p Sℓ = T ,

we observe PS = PS0
⊂ . . . PSℓ

= PT . Note that |PS | > 1 since rt(S) ∈ Ps. Moreover,
|PT | = |p|+ 1 since the node corresponding to p in T is unshared (c.f. Lemma 4.13). Thus
from PSi

⊂ PSi+1
(0 6 i < ℓ) we conclude ℓ 6 |p|. Next, we see |T | 6 |S|+|p| as |T | = |S|+ℓ

by definition of ⊳p.
Finally, the second assertion can be proved as above, where we employ that U ⊳p V

implies |V | = |U | − 1, c.f. the technical report [4].

By combining the above two lemmas we derive the following:

Lemma 5.3. If S ⊳◮−→G T then |T | 6 |S| + dp(S) + ∆ and dp(T) 6 dp(S) + ∆ for some

∆ ∈ N depending only on G.

Proof. Consider S ⊳◮−→G T , i.e., S ⊳!
p U ◮!

p V −→G T for some position p and term
graphs U and V . Lemma 5.2 reveals |U | 6 |S| + |p| and further |V | 6 |U | for ∆ :=
max{|R| | (L→ R) ∈ G}. As |p| 6 dp(S) we see |V | 6 |S| + dp(S). Since V −→G T
implies |T | 6 |V | + ∆ (c.f. Lemma 5.1) we establish |T | 6 |S| + dp(S) + ∆. Finally,
dp(T) 6 dp(S)+∆ follows from the easy observation that both U ⊳p V and U ◮p V imply
dp(U) = dp(V), likewise V −→G T implies dp(T) 6 V +∆.

Lemma 5.4. If S ⊳◮−→ℓ
G T then |T | 6 (ℓ+ 1)|S|+ ℓ2∆ for ∆ ∈ N depending only on G.

Proof. We prove the lemma by induction on ℓ. The base case follows trivially, so suppose the
lemma holds for ℓ, we establish the lemma for ℓ+1. Consider a derivation S ⊳◮−→ℓ

G T ⊳◮−→G U .

By induction hypothesis, |T | 6 (ℓ+1)|S|+ ℓ2∆. Iterative application of Lemma 5.3 reveals
dp(T) 6 dp(S) + ℓ∆. Thus

|U | 6 |T |+ dp(T) + ∆

6
(

(ℓ+ 1)|S|+ ℓ2∆
)

+
(

dp(S) + ℓ∆
)

+∆ 6 (ℓ+ 2)|S|+ (ℓ+ 1)2∆ .

In the sequel, we prove that an arbitrary graph rewrite step S ⊳◮−→ T can be performed
in time cubic in the size of S. Lemma 5.4 then allows us to lift the bound on steps to a
polynomial bound on derivations in the size of S and the length of derivations. We closely
follow the notions of [12]. As model of computation we use k-tape Turing Machines (TM
for short) with dedicated input- and output-tape. If not explicitly mentioned otherwise,
we will use deterministic TMs. We say that a (possibly nondeterministic) TM computes a

44 M. AVANZINI AND G. MOSER

relation R ⊆ Σ∗ × Σ∗ if for all (x, y) ∈ R, on input x there exists an accepting run such
that y is written on the output tape.

We fix a standard encoding for term graphs S. We assume that for each function symbol
f ∈ F a corresponding tape-symbols is present. Nodes and variables are represented by
natural numbers, encoded in binary notation and possibly padded by zeros. We fix the
invariant that natural numbers {1, . . . , |S|} are used for nodes and variables in the encoding
of S. Thus variables (nodes) of S are representable in space O(log(|S|)). Finally, term
graphs S are encoded as a list of node specifications, i.e., triples of the form 〈v,L(v), Succ(v)〉
for all v ∈ S (see [18, Section 13.3]). For a suitable encoding of tuples and lists, a term
graph S is representable in size O(log(|S|) ∗ |S|). For this, observe that the length of
Succ(v) is bound by the maximal arity of the fixed signature F . In this spirit, we define
the representation size of a term graph S as ‖S‖ := O(log(|S|) ∗ |S|).

We investigate into the computational complexity of ⊳p and ◮p first.

Lemma 5.5. Let S be a term graph and let p a position in S. A term graph T such that

S ⊳!
p T is computable in time O(‖S‖2).

Proof. Suppose S = S0 ⊳p S1 ⊳p · · · ⊳p Sℓ = T . By Lemma 5.2, ℓ 6 |p| 6 |S| 6 ‖S‖. One
verifies that Si+1 is computable from Si (0 6 i < ℓ) in time linear in Si, and thus linear in
S (compare Lemma 5.2). From this it is easy to see that there exists a deterministic TM
operating in time quadratic in ‖S‖ (c.f. the technical report [4]).

Lemma 5.6. Let S be a term graph and p a position in S. The term graph T such that

S ◮!
p T is computable in time O(‖S‖2).

Proof. Define the height htU (u) of a node u in a term graph U inductively as usual:
htU (u) := 0 if Succ(u) = [] and htU (v) := 1 + maxv∈Succ(u) htU (v) otherwise. We drop

the reference to the graph U in htU (u) in the analysis of the normalising sequence S ◮!
p T

below. This is justified as the height of nodes remain stable under =-reductions.
Recall the definition of ◮p: U ◮p V if there exist nodes u, v strictly below p with

U =
u
v V . Clearly, for u, v given, the graph V is constructable from U in time linear in |U |.

However, finding arbitrary nodes u and v such that U =
u
v V takes time quadratic in |U |

worst case. Since up to linearly many =-steps in |S| need to be performed, a straightforward
implementation admits cubic runtime complexity. To achieve a quadratic bound in the size
of the starting graph S, we construct a TM that implements a bottom up reduction-strategy.
More precisely, the machine implements the maximal sequence

S = S1 =
!
u1

S2 =
!
u2
· · · =!

uℓ−1
Sℓ (a)

satisfying, for all 1 6 i < ℓ − 1, (i) either ht(ui) = ht(ui+1) and ui ≺ ui+1 or ht(ui) <
ht(ui+1), and (ii) for Si =

vi,1
ui . . . =

vi,k
ui Si+1, ui and vi,j (1 6 j 6 k) are strictly below p.

By definition S ◮∗
p Sℓ, it remains to show that the sequence (a) is normalising, i.e., Sℓ

is ◮p-minimal. Set d := dp(S ↾p) and define, for 0 6 h 6 d,

=
(h)

:=
⋃

u,v∈S↾p∧ht(v)=h

=
u
v .

Observe that each =ui
-step in the sequence (a) corresponds to a step =

(h)
for some 0 6 h 6

d. Moreover, it is not difficult to see that

S = Si0 =
!
(0)

Si1 =
!
(1)
· · · =!

(d)
Sid+1

= Sℓ (b)

CLOSING THE GAP BETWEEN RUNTIME COMPLEXITY AND POLYTIME COMPUTABILITY 45

for {Si0 , . . . , Sid+1} ⊆ {S1, . . . , Sℓ−1}.
Next observe Si =(h1)

Si+1 =(h2)
Si+2 and h1 > h2 implies Si =(h2)

· =
(h1)

Si+2: suppose

Si =
u′

u Si+1 =
v′

v Si+2 where ht(u) > ht(v) and u′, u, v, v′ ∈ S ↾p, we show Si =
v′

v · =
u′

u Si+2.

Inspecting the proof of Lemma 4.10 we see <u′

u · =
v′

v ⊆ =
v′

v · <
u′

u for the particular case that
u′, u, v and v′ pairwise distinct. The latter holds as ht(u′) = ht(u) 6= ht(v) = ht(v′). Hence

it remains to show Si =
v′

v S′
i+1 for some term graph S′

i+1, or equivalently LSi
(v) = LSi

(v′)
and SuccSi

(v) = SuccSi
(v′) by Lemma 4.9. The former equality is trivial, for the latter

observe ht(u′) = ht(u) > ht(v) = ht(v′) and thus neither u′ 6∈ SuccSi
(v′) nor u′ 6∈ SuccSi

(v).
We see SuccSi

(v) = SuccSi+1
(v) = SuccSi+1

(v′) = SuccSi
(v′).

Now suppose that Sℓ is not ◮p-minimal, i.e, Sℓ =(h)
U for some 0 6 h 6 d and term

graph U . But then we can permute steps in the reduction (b) such that Sih+1
=

(h)
V for

some term graph V . This contradicts =
!
(h)

-minimality of Sih+1
. We conclude that Sℓ is

◮p-minimal. Thus sequence (a) is ◮p-normalising.
Finally, using the derivation (a) it is not difficult to show that there exists a TM

operating in time O(‖S‖2) that, on input S and p, computes T such that S ◮p T . For the
construction we kindly refer the reader to the technical report [4].

Lemma 5.7. Let S be a term graph, let p be a position of S and let L→ R be a rewrite rule

of the simulating graph rewrite system. It is decidable in time O(‖S‖2 ∗ 2‖L→R‖) whether

S −→p,L→R T for some term graph T . Moreover, the term graph T is computable from S,

p and L→ R in time O(‖S‖2 ∗ 2‖L→R‖).

Proof. For the first assertion we can use the matching-algorithm as described in [3, Lemma
24]. Based on the morphism returned by this procedure, it is easy to construct a TM that
computes the graph T under the stated bound, c.f. the technical report [4].

Lemma 5.8. Let S be a term graph and let G(R) be the simulating graph rewrite system of

R. If S is not a normal-form of G(R) then there exists a position p and rule (L→ R) ∈ G(R)
such that a term graph T with S ⊳◮−→G(R),p,L→R T is computable in time O(‖S‖3).

Proof. The TM searches for a rule (L→ R) ∈ G and position p such that S ⊳◮−→G(R),p,L→R T
for some term graph T . For this, it enumerates the rules (L→ R) ∈ G on a separate working
tape. For each rule L→ R, each node u ∈ S and some p ∈ PosS it computes S1 such that
S ◮!

p S1 in time quadratic in ‖S‖ (c.f. Lemma 5.6). Using the machine of Lemma 5.7, it

decides in time 2O(‖L‖) ∗ O(‖S1‖
2) whether rule L → R applies to S1 at position p. Since

R is fixed, 2O(‖L‖) is constant, thus the TM decides whether rule L → R applies in time
O(‖S1‖

2) = O(‖S‖2). Note that the choice of p ∈ PosS(u) is irrelevant, since S ◮!
pi

S1 and

S ◮!
pj

S2 for pi, pj ∈ PosS(u) implies S1
∼= S2. Hence the node corresponding to pi in S1 is

a redex with respect to L→ R if and only if the node corresponding to pj is. Suppose rule

L→ R applies at S1 ↾p. One verifies S1 ↾p ∼= S2 ↾p for term graph S2 such that S ⊳!
p · ◮

!
p S2.

We conclude S ⊳◮−→G(R),p,L→R T for some position p and rule (L→ R) ∈ G(R) if and only if
the above procedure succeeds. From u one can extract some position p ∈ PosS(u) in time
quadratic in ‖S‖. This can be done for instance by implementing the function pos(u) = ε

if u = rt(S) and pos(u) = pi for some node v ∈ S with v
i
⇀ u and pos(v) = p. Overall, the

position p ∈ PosS and rule (L → R) ∈ G is found if and only if S ⊳◮−→p,L→R T for some
term graph T . Since |S| 6 ‖S‖, and only a constant number of rules have to be checked,
the overall runtime is O(‖S‖3).

46 M. AVANZINI AND G. MOSER

To obtain T from S, p, and L → R, the machine now combines the machines from
Lemma 5.5, Lemma 5.6 and Lemma 5.7. These steps can even be performed in time
O(‖S‖2), employing that the size of intermediate graphs is bound linear in the size of S
(compare Lemma 5.2) and that sizes of (L→ R) ∈ G(R) are constant.

Lemma 5.9. Let S be a term graph and let ℓ := dl(S, ⊳◮−→G(R)). Suppose ℓ = Ω(|S|).

1) Some normal-form of S is computable in deterministic time O(log(ℓ)3 ∗ ℓ7).
2) Any normal-form of S is computable in nondeterministic time O(log(ℓ)2 ∗ ℓ5).

Proof. We prove the first assertion. Consider the normalising derivation

S = T0 ⊳◮−→G(R) . . . ⊳◮−→G(R) Tl = T (†)

where, for 0 6 i < l, Ti is obtained from Ti+1 as given by Lemma 5.8. By Lemma 5.4,
we see |Ti| 6 (ℓ+ 1)|S|+ ℓ2∆ = O(ℓ2). Here the latter equality follows by the assumption
ℓ = Ω(|S|). Recall ‖Ti‖ = O(log(|Ti|) ∗ |Ti|) (0 6 i < l) and hence ‖Ti‖ = O(log(ℓ2) ∗ ℓ2) =
O(log(ℓ)∗ℓ2). From this, and Lemma 5.8, we obtain that Ti+1 is computable from Ti in time
O(‖Ti‖

3) = O(log(ℓ)3 ∗ ℓ6). Since l 6 dl(S, ⊳◮−→G(R)) = ℓ we conclude the first assertion.
We now consider the second assertion. Reconsider the proof of Lemma 5.8. For a given

rewrite-position p, a step S ⊳◮−→G(R) T can be performed in time O(‖S‖2). A nondetermin-
istic TM can guess some position p, and verify whether the node corresponding to p is a
redex in time O(‖S‖2). In total, the reduct T can be obtained in nondeterministic time
O(‖S‖2). Hence, following the proof of the first assertion, one easily verifies the second
assertion.

6. Closing the Gap

In this section we state a classification of deterministic as well as nondeterministic
polytime-computation based on runtime complexity analysis of rewrite systems. We define
semantics of TRSs as follows.

Definition 6.1. Let N ⊆ Val be a finite set of non-accepting patterns. We call a term t
accepting (with respect to N) if there exists no p ∈ N such that pσ = t for some substitution
σ. We say that R computes the relation R ⊆ Val×Val with respect to N if there exists
f ∈ D such that for all s, t ∈ Val,

s R t :⇐⇒ f(s) −→!
R t and t is accepting .

On the other hand, we say that a relation R is computed by R if R is defined by the above
equations with respect to some set N of non-accepting patterns.

For the case that R is confluent we also say that R computes the (partial) function

induced by the relation R. Note that the restriction to binary relations is a non-essential
simplification. The assertion that for normal-forms t, t is accepting amounts to our notion
of accepting run of a TRS R. The restriction that N is finite is essential for the simulation
results below: If we implement the computation of R on a TM, then we also have to be
able to effectively test whether t is accepting.

We contrast Definition 6.1 to the way how semantics is given to TRSs in [6]. Basically,
in [6] the result of a computation is defined as the maximal normal-form with respect to
some order on terms. So even non-confluent TRSs compute functions. This definition serves
the purpose of characterising optimisation problems. In particular, restricted polynomial

CLOSING THE GAP BETWEEN RUNTIME COMPLEXITY AND POLYTIME COMPUTABILITY 47

interpretations are used to characterise the class of functions OptP as introduced in [13].
Intuitively, an OptP function is computed by a TM with an NP oracle that outputs the
maximal result of all accepting computation branches. It is not our intention to capture
optimisation problems. Instead, we show below a tight correspondence between polynomial
runtime-complexity and the class of functional problems (FNP for short) associated with NP

(see below for a definition). (Note that FNP ⊆ OptP and it is expected that the inclusion
is strict, see [13, 16].)

First, we show that polynomial runtime-complexity implies polytime computability of
the relations defined in the sense of Definition 6.1. For this, we encode terms as graphs and
perform rewriting on graphs instead.

Theorem 6.2. Let R be a terminating TRS, moreover suppose rcR(n) = O(nk) for all n ∈
N and some k ∈ N, k > 1. The relations computed by R are computable in nondeterministic

time O(n5k+2). Further, if R is confluent then the functions computed by R are computable

in deterministic time O(n7k+3).

Proof. We investigate the complexity of a relation R computed by R. For that, single out
the corresponding defined function symbol f and fix some argument s ∈ Val. Suppose the
underlying set of non-accepting patterns is N . By definition, s R t if and only if f(s) −→!

R t
and t ∈ Val is accepting with respect to N . Let S be a term graph such that term(S) = f(s).
Note that |S| 6 |f(s)| and set ℓ := dl(S, ⊳◮−→G(R)). By Theorem 4.15, we obtain S ⊳◮−→!

G(R) T

where term(T) = t, and moreover, ℓ 6 rcR(|f(s)|) = O(nk). By Lemma 5.9 we see that T is
computable from S in nondeterministic time O(log(ℓ)2∗ℓ5) = O(log(nk)2∗n5k) = O(n5k+2).
Clearly, we can decide in time linear in ‖T‖ = O(ℓ2) = O(n2k) (c.f. Lemma 5.4) whether
term(T) ∈ Val, further in time quadratic in ‖T‖ whether term(T) is accepting. For the
latter, we use the matching algorithm of Lemma 5.7 on the fixed set of non-accepting
patterns, where we employ pσ = term(T) if and only if there exists a morphism m : P → T
for P ∈ △(p) (c.f. Lemma 4.5 and Lemma 3.5). Hence overall, the accepting condition
can be checked in (even deterministic) time O(n4k). If the accepting condition fails, the
TM rejects, otherwise it accepts a term graph T representing t. The machine does so in
nondeterministic time O(n5k+2) in total. As s was chosen arbitrarily, we conclude the first
half of the theorem.

Finally, the second half follows by identical reasoning, where we use the deterministic
TM as given by Lemma 5.9 instead of the nondeterministic one.

Let R be a binary relation that is decidable by some nondeterministic TM N . That is,
the pair (x, y) is accepted by N if and only if x R y holds. Furthermore, suppose N operates
in time polynomial in the size of x. The function problems RF associated with R is: given
x, find some y such that x R y holds. The class FNP is the class of all functional problems
defined in the above way, compare [16]. FP is the subclass resulting if we only consider
function problems in FNP that can be solved in polynomial time by some deterministic
TM. As corollary of Theorem 6.2 we obtain:

Corollary 6.3. Let R be a terminating TRS with polynomially bounded runtime complexity.

Suppose R computes the relation R. Then RF ∈ FNP for the function problem RF associated

with R. Moreover, if R is confluent then RF ∈ FP.

Proof. The nondeterministic TM N as given by Theorem 6.2 (the deterministic TM N ,
respectively) can be used to decide whether s R t holds. By the assumptions on R, the
runtime of N is bounded polynomially in the size of s. To conclude the corollary it suffices

48 M. AVANZINI AND G. MOSER

to observe that the term graph S representing s in proof of Theorem 6.2 can be chosen so
that |S| = O(|s|).

In the terminology of [7], we have shown that the number of rewrite steps is an invariant

cost model for term rewriting. Not only does it reflect the complexity of a TRS in a very
natural way, but in fact it truthfully reflects the complexity of rewriting on the standard
computational model in complexity theory, the Turing machine. In [7] our result is proved
for orthogonal TRSs and innermost or respectively outermost rewriting. Hence our work can
be seen as a direct extension of [7], establishing that neither the restriction to orthogonality
nor the use of particular reduction-strategies is essential. Based on [7], Dal Lago and Martini
establish in [8] that the number of β-steps constitutes an invariant cost model for the weak

λ-calculus (here reduction below λ-abstractions are disallowed), when reducing under a
call-by-value or call-by-need reduction strategy. Their approach works by embedding β-
steps into the rewrite relation as induced by specific orthogonal TRSs, and analysing the
complexity of the latter relation. This raises the question whether our result can be used to
extend the work by Dal Lago and Martini on λ-calculus. This is subject to further research.

References

[1] M. Avanzini and G. Moser. Complexity Analysis by Rewriting. In Proc. of 9th FLOPS, volume 4989 of

LNCS, pages 130–146. Springer Verlag, 2008.

[2] M. Avanzini and G. Moser. Dependency Pairs and Polynomial Path Orders. In Proc. of 20th RTA,

volume 5595 of LNCS, pages 48–62. Springer Verlag, 2009.

[3] M. Avanzini and G. Moser. Complexity Analysis by Graph Rewriting. In Proc. of 11th FLOPS, LNCS.

Springer Verlag, 2010. To appear.

[4] M. Avanzini and G. Moser. Technical report: Complexity Analysis by Graph Rewriting Revisited.

CoRR, cs/CC/1001.5404, 2010. Available at http://www.arxiv.org/.

[5] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[6] G. Bonfante, A. Cichon, J. Marion, and H. Touzet. Algorithms with Polynomial Interpretation Termi-

nation Proof. JFP, 11(1):33–53, 2001.

[7] U. Dal Lago and S. Martini. Derivational Complexity is an Invariant Cost Model. In Proc. of 1st

FOPARA, 2009.

[8] U. Dal Lago and S. Martini. On Constructor Rewrite Systems and the Lambda-Calculus. In Proc. of

36th ICALP, volume 5556 of LNCS, pages 163–174. Springer Verlag, 2009.

[9] J. Endrullis, J. Waldmann, and H. Zantema. Matrix Interpretations for Proving Termination of Term

Rewriting. JAR, 40(3):195–220, 2008.

[10] A. Koprowski and J. Waldmann. Arctic Termination . . . Below Zero. In Proc. of 19th RTA, volume 5117

of LNCS, pages 202–216. Springer Verlag, 2008.

[11] M. Korp and A. Middeldorp. Match-bounds revisited. IC, 207(11):1259–1283, 2009.

[12] D. C. Kozen. Theory of Computation. Springer Verlag, first edition, 2006.

[13] M. W. Krentel. The Complexity of Optimization Problems. In Proc. of 18th STOC, pages 69–76. ACM,

1986.

[14] G. Moser and A. Schnabl. The Derivational Complexity Induced by the Dependency Pair Method. In

Proc. of 20th RTA, volume 5595 of LNCS, pages 255–260. Springer Verlag, 2009.

[15] G. Moser, A. Schnabl, and J. Waldmann. Complexity Analysis of Term Rewriting Based on Matrix

and Context Dependent Interpretations. In Proc. of 28th FSTTCS, pages 304–315. Schloss Dagstuhl -

Leibniz-Zentrum fuer Informatik, Germany, 2008.

[16] C. H. Papadimitriou. Computational Complexity. Addison Wesley Longman, second edition, 1995.

[17] D. Plump. Essentials of Term Graph Rewriting. ENTCS, 51:277–289, 2001.

[18] TeReSe. Term Rewriting Systems, volume 55 of Cambridge Tracks in Theoretical Computer Science.

Cambridge University Press, 2003.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 49-66
http://rewriting.loria.fr/rta/

ABSTRACT MODELS OF TRANSFINITE REDUCTIONS

PATRICK BAHR

Department of Computer Science, University of Copenhagen
Universitetsparken 1, 2100 Copenhagen, Denmark
URL: http://www.diku.dk/˜paba
E-mail address: paba@diku.dk

Abstract. We investigate transfinite reductions in abstract reduction systems. To this
end, we study two abstract models for transfinite reductions: a metric model generalising
the usual metric approach to infinitary term rewriting and a novel partial order model.
For both models we distinguish between a weak and a strong variant of convergence as
known from infinitary term rewriting. Furthermore, we introduce an axiomatic model of
reductions that is general enough to cover all of these models of transfinite reductions as
well as the ordinary model of finite reductions. It is shown that, in this unifying axiomatic
model, many basic relations between termination and confluence properties known from
finite reductions still hold. The introduced models are applied to term rewriting but also to
term graph rewriting. We can show that for both term rewriting as well as for term graph
rewriting the partial order model forms a conservative extension to the metric model.

1. Introduction

The study of infinitary term rewriting, introduced by Dershowitz et al. [Der91], is con-
cerned with reductions of possibly infinite length. To formalise the concept of transfinite
reductions, a variety of different models were investigated in the last 20 years. The most
thoroughly studied model is the metric model, both its weak [Der91] and its strong [Ken95]
variant. Other models, using for example general topological spaces [Rod98] or partial orders
[Cor93, Blo04], were mostly considered to pursue specific purposes. Within these models
many fundamental properties do not depend on the particular structure of terms, e.g. the
property that strongly converging reductions in the metric model have countable length.
Moreover, when studying these different approaches to transfinite reductions, one realises
that they often share many basic properties, e.g. in how reductions can be composed and
decomposed.

The purpose of this paper is to study transfinite reductions on an abstract level using
several different models. This includes a metric model (Section 5) as well as a novel partial
order model (Section 6), each of which induces a weak and a strong variant of convergence.
Moreover, we introduce an axiomatic model of transfinite abstract reduction systems (Sec-
tion 4) which captures the fundamental properties of transfinite reductions. This model

1998 ACM Subject Classification: F.4.2, F.1.1.
Key words and phrases: infinitary rewriting, metric, partial order, abstract reduction system, axiomatic,

term rewriting, graph rewriting.

© Patrick Bahr
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.49

50 PATRICK BAHR

subsumes both variants of the metric and the partial order model, respectively, as well as
ordinary finite reductions. In fact, we formulate these more concrete models in terms of
the axiomatic model, which simplifies their presentation and their analysis substantially.
To illustrate this, we reformulate well-known termination and confluence properties in the
unifying axiomatic model and show that this then yields the corresponding standard ter-
mination and confluence properties for standard finite term rewriting resp. infinitary term
rewriting. Additionally, we also prove that basic relations between these properties known
from the finite setting also hold in this more general setting.

Lastly, we briefly mention that our models can be applied to term graph rewriting
[Bar87] (Section 7) which yields the first formalisation of infinitary term graph rewriting.
Moreover, we show that the partial order model is in fact superior to the metric model, at
least for interesting cases like terms and term graphs: It can model convergence as in the
metric model but additionally allows to distinguish between different levels of divergence.

Related Work. The idea of investigating transfinite reductions on an abstract level was first
pursued by Kennaway [Ken92] by studying strongly convergent reductions in an abstract
metric framework similar to ours. In this paper we will show that almost all of Kennaway’s
positive results (except countability of strong convergence) already hold in our more general
axiomatic framework, and that countability already holds for strongly continuous reductions.

Kahrs [Kah07] investigated a more concrete model in which he considered weakly con-
vergent reductions in term rewriting systems parametrised by the metric on terms. Although
being parametric in the metric space, the results of Kahrs are tied to term rewriting and are
for example not applicable to term graph rewriting [Bah09].

The use of partial orders and their notion of limit inferior for transfinite reductions
is inspired by Blom [Blo04] who studied strongly convergent reductions in lambda calculus
using a partial order and compared this to the ordinary metric model of strongly convergent
reductions.

2. Preliminaries

We assume familiarity with the basic theory of ordinal numbers, orders and topological
spaces [Kel55], as well as term rewriting [Ter03]. In the following, we briefly recall the most
important notions.

Transfinite Sequences. We use α, β, γ, λ, ι to denote ordinal numbers. A transfinite sequence
(or simply called sequence) S of length α in a set A, written (aι)ι<α, is a function from α
to A with ι 7→ aι for all ι ∈ α. We use |S| to denote the length α of S. If α is a limit
ordinal, then S is called open. Otherwise, it is called closed. If α is a finite ordinal, then S
is called finite. Otherwise, it is called infinite. For a finite sequence (aι)ι<n, we also write
〈a0, a1, . . . , an−1〉.

The concatenation (aι)ι<α · (bι)ι<β of two sequences is the sequence (cι)ι<α+β with
cι = aι for ι < α and cα+ι = bι for ι < β. A sequence S is a prefix of a sequence T , denoted
S ≤ T if there is a sequence S′ with S · S′ = T . The prefix of T of length β is denoted T |β .
The relation ≤ forms a complete semilattice.

ABSTRACT MODELS OF TRANSFINITE REDUCTIONS 51

Metric Spaces. A pair (M,d) is called a metric space if d : M × M → R
+

0
is a function

satisfying d(x, y) = 0 iff x = y (identity), d(x, y) = d(y, x) (symmetry), and d(x, z) ≤
d(x, y) + d(y, z) (triangle inequality), for all x, y, z ∈ M . If d instead of the triangle
inequality, satisfies the stronger property d(x, z) ≤ max {d(x, y),d(y, z)} (strong triangle),
(M,d) is called an ultrametric space. If a sequence (aι)ι<α in a metric space converges to
an element a, we write limι→α aι to denote a. A sequence (aι)ι<α in a metric space is called
Cauchy if, for any ε ∈ R

+, there is a β < α such that, for all β < ι < ι′ < α, we have that
d(mι,mι′) < ε. A metric space is called complete if each of its non-empty Cauchy sequences
converges.

Partial Orders. A partial order ≤ on a class A is a binary relation on A that is transitive,
reflexive, and antisymmetric. A partial order ≤ on A is called a complete semilattice if it
has a least element, every directed subset D of A has a least upper bound (lub)

⊔

D in A,
and every subset of A having an upper bound in A also has a least upper bound in A.
Hence, complete semilattices also admit a greatest lower bound (glb)

d
B for every non-

empty subset B of A. In particular, this means that for any non-empty sequence (aι)ι<α

in a complete semilattice, its limit inferior, defined by lim infι→α aι =
⊔

β<α

(d
β≤ι<α aι

)

,

always exists. A partial order is called a linear order if a ≤ b or b ≤ a holds for each pair of
elements a, b. A linearly ordered subclass of a partially ordered class is also called a chain.

Term Rewriting Systems. Instead of finite terms, we consider the set T ∞(Σ,V) of infinitary
terms over some signature Σ and a countably infinite set V of variables. We consider
T ∞(Σ,V) as a superset of the set T (Σ,V) of finite terms. For a term t ∈ T ∞(Σ,V) we
use the notation P(t) to denote the set of positions in t. For terms s, t ∈ T ∞(Σ,V) and a
position π ∈ P(t), we write t|π for the subterm of t at π, and t[s]π for the term t with the
subterm at π replaced by s.

On T ∞(Σ,V) a distance function d can be defined by d(s, t) = 0 if s = t and d(s, t) =
2−k if s 6= t, where k is the minimal depth at witch s and t differ. The pair (T ∞(Σ,V),d) is
known to form a complete ultrametric space [Arn80]. Partial terms, i.e. terms over signature
Σ⊥ = Σ⊎ {⊥}, can be endowed with a relation ≤⊥ by defining s ≤⊥ t iff s can be obtained
from t by replacing some subterm occurrences in t by ⊥. The pair (T ∞(Σ⊥,V),≤⊥) is
known to form a complete semilattice [Kah93].

A term rewriting system (TRS) R is a pair (Σ, R) consisting of a signature Σ and a set
R of term rewrite rules of the form l → r with l ∈ T (Σ,V) \ V and r ∈ T ∞(Σ,V) such
that all variables in r are contained in l. Note that this notion of a TRS is standard in
infinitary rewriting [Ken03], but deviates from standard TRSs as it allows infinitary terms
on the right-hand side of rules.

As in the finitary case, every TRS R defines a rewrite relation →R:

s →R t ⇐⇒ ∃π ∈ P(s), l → r ∈ R, σ : s|π = lσ, t = s[rσ]π

We write s →π,ρ t in order to indicate the applied rule ρ and the position π.

52 PATRICK BAHR

3. Abstract Reduction Systems

In order to analyse transfinite reductions on an abstract level, we consider abstract
reduction systems (ARS). In ARSs, the principal items of interest are the reduction steps
of the system. Therefore, the structure of the individual objects on which the reductions
are performed is neglected. This abstraction is usually modelled by a pair (A,R) consisting
of a set A of objects and a binary relation R on A describing the possible reductions on
the objects. The ARS induced by a TRS R is then simply the pair (T ∞(Σ,V), R) with
(s, t) ∈ R iff s →R t.

In the setting of infinitary rewriting, however, this model is not appropriate. Instead, we
need a model which reifies the reduction steps of the system since the semantics of transfinite
reductions does not only depend on the objects involved in the reduction but also on how
each reduction step is performed – at least when we consider strong convergence. However, it
is not always possible to reconstruct how a reduction was performed given only the starting
and end object of it due to so-called syntactic accidents [Lév78]: Consider the term rewrite
rule ρ : f(x) → x and the term f(f(x)). The rule ρ can be applied both at root position 〈〉
and at position 〈0〉 of f(f(x)). In both cases the resulting term is f(x).

Therefore, we rather choose a model in which reduction steps are “first-class citizens”
[Ter03] similarly to morphisms in a category:

Definition 3.1 (abstract reduction system). An abstract reduction system (ARS) A is a
quadruple (A,Φ, src, tgt) consisting of a set of objects A, a set of reduction steps Φ, and
source and target functions src : Φ → A and tgt : Φ → A, respectively. We write ϕ : a →A b
whenever there are ϕ ∈ Φ, a, b ∈ A such that src(ϕ) = a and tgt(ϕ) = b.

In order to define the semantics of a TRS in terms of an ARS we only need to define an
appropriate notion of a reduction step:

Definition 3.2 (operational semantics of TRSs). Let R = (Σ, R) be a TRS. The ARS in-
duced by R, denoted AR, is given by (T ∞(Σ,V),Φ, src, tgt), where Φ = {(s, π, ρ, t) | s →π,ρ t},
src(ϕ) = s and tgt(ϕ) = t, for each ϕ = (s, π, ρ, t) ∈ Φ.

A reduction in this setting is simply a sequence of reduction steps in an ARS such that
consecutive steps are “compatible”:

Definition 3.3 (reduction). A sequence S = (ϕι)ι<α of reduction steps in an ARS A is
called a reduction if there is a sequence of objects (aι)ι<α̂ in the underlying set A, where
α̂ = α if S is open, and α̂ = α+ 1 if S is closed, such that ϕι : aι → aι+1 for all ι < α. For
such a sequence, we also write (ϕ : aι → aι+1)ι<α or simply (aι → aι+1)ι<α. The reduction
S is said to start in a0, and if S is closed, it is said to end in aα. If S is finite, we write
S : a0 →

∗
A aα. We use the notation Red(A) to refer to the class of all non-empty reductions

in A.

Observe that the empty sequence 〈〉 is always a reduction, and that 〈〉 starts and ends
in a for every object a of the ARS. Also note that this notion of reductions alone does only
make sense for sequences of length at most ω. For longer reductions, the ω-th step is not
related to the preceding steps of the reduction:

Example 3.4. In the TRS consisting of the rules a → f(a) and b → g(b) the following
constitutes a valid reduction of length ω · 2:

S : a → f(a) → f(f(a)) → f(f(f(a))) → . . . b → g(b) → g(g(b)) → g(g(g(b))) → . . .

ABSTRACT MODELS OF TRANSFINITE REDUCTIONS 53

The second half of the reduction is completely unrelated to the first half. The reason for
this issue is that the ω-th reduction step b → g(b) has no immediate predecessor.

The above problem can occur for all reduction steps indexed by a limit ordinal. For
successor ordinals, this is not a problem as by Definition 3.3 the (ι + 1)-st step is required
to start in the object that the ι-th step ends in. Meaningful definitions for reductions of
length beyond ω have to include an appropriate notion of continuity which bridges the gaps
caused by limit ordinals. Exploring different variants of such a notion of continuity is the
topic of the subsequent sections.

4. Transfinite Abstract Reduction Systems

In the last section we have seen that we need a notion of continuity in order to obtain
a meaningful model of transfinite reductions. In this section we introduce an axiomatic
framework for convergence in which we can derive a corresponding notion of continuity.

The resulting notion of continuity is quite natural and resembles the definition of conti-
nuity of real-valued functions: A reduction is continuous if every proper prefix converges to
the object the subsequent suffix is starting in. In order to use this idea, we need to endow
an ARS with a notion of convergence:

Definition 4.1 (transfinite abstract reduction system). A transfinite abstract reduction
system (TARS) T is a tuple (A,Φ, src, tgt, conv), such that

(i) A = (A,Φ, src, tgt) is an ARS, called the underlying ARS of T , and
(ii) conv : Red(A) ⇀ A is a partial function, called notion of convergence, which satisfies

the following two axioms:

conv(〈ϕ〉) = tgt(ϕ) for all ϕ ∈ Φ (step)

conv(S) = a and conv(T) = b ⇐⇒ conv(S · T) = b

for all a, b ∈ A, S, T ∈ Red(A) with T starting in a.
(concatenation)

That is, we require convergence to include single reduction steps and to be preserved
by both composition and decomposition.

Axiom (concatenation) is, in fact, quite comprehensive. But we can split it up into
two axioms whose conjunction is equivalent to it:

conv(S) = a =⇒ conv(S · T) = conv(T) (composition)

conv(S · T) defined =⇒ conv(S) = a (continuity)

where S and T range over reductions in Red(A) with T starting in a ∈ A.
Axiom (composition) states that the composition of reductions preserves the conver-

gence behaviour whereas (continuity) ensures that every notion of convergence already
includes continuity. To see the latter we need to define convergence and continuity in TARSs:

Definition 4.2 (convergence, continuity). Let T = (A,Φ, src, tgt, conv) be a TARS and
S ∈ Red(T) a non-empty reduction starting in a ∈ A. S is said to converge to b ∈ A,
written S : a ։T b, if conv(S) = b. S is said to be continuous, written S : a ։T . . . , if for
every two S1, S2 ∈ Red(T) with S = S1 · S2, we have that S1 converges to the object S2 is
starting in. If S is continuous but not converging, then S is called divergent. For the empty
reduction 〈〉, we define to have 〈〉 : a ։T a and 〈〉 : a ։T . . . for all a ∈ A, i.e. 〈〉 is always

54 PATRICK BAHR

convergent and continuous. To indicate the length α of a reduction we use the notation
։α

T . For some object a ∈ A, we write Cont(T , a) and Conv(T , a) to denote the class of all
continuous resp. convergent reductions in T starting in a.

Axiom (continuity) is equivalent to the statement that every converging reduction is
also continuous. That is, only meaningful – i.e. continuous – reductions can be convergent.
This is a natural model which is in particular also adopted in the theory of infinitary term
rewriting [Ken03].

Returning to Example 3.4, we can see that for S to be continuous the prefix S|ω has to
converge to b. However, as one might expect, all notions of convergence for TRSs we will
introduce in this paper agree on that S|ω converges to fω.

Since for closed reductions not only does convergence imply continuity, but also the
converse holds true, we have the following proposition:

Proposition 4.3 (convergence of closed reductions). Let T be a TARS and S a closed
reduction in T . Then S is continuous iff S is converging.

Proof. The “if” direction follows from (continuity). The “only if” direction is trivial if S
is empty and follows from (step) if S has length one. Otherwise, S is of the form T · ϕ.
Since ϕ is converging by (step) and T is converging by (continuity), S is converging due
to (composition).

It is obvious from the definition that a well-defined notion of convergence has to include
at least all finite (non-empty) reductions. In fact, the trivial notion of convergence which
consists of precisely the finite reductions is the least notion of convergence w.r.t. set inclusion
of its domain:

Definition 4.4 (finite convergence). Let A = (A,Φ, src, tgt) be an ARS. Then the finite
convergence of A is the TARS Af = (A,Φ, src, tgt, conv), where conv is defined by conv(S) =
b iff S : a →∗

A b. That is, conv(S) is undefined iff S is infinite.

The TARS given above can be easily checked to be well-defined, i.e. conv satisfies the
axioms given in Definition 4.1. We then obtain for every reduction S that S : a →∗

A b iff
S : a ։Af b. This shows that TARSs merely provide a generalisation of what is considered
to be a well-formed reduction.

Defining conv for the finite convergence was simple. In general, however, it is quite
cumbersome to define, as a notion of convergence has to already comprise the corresponding
notion of continuity, i.e. satisfy (continuity). We can avoid this by defining for each partial
function conv : Red(A) ⇀ A its continuous core conv : Red(A) ⇀ A. For each non-empty
reduction S = (aι → aι+1)ι<α in A we define

conv(S) =

{

conv(S) if ∀0 < β < α conv(S|β) = aβ

undefined otherwise

We then have the following lemma:

Lemma 4.5 (continuous core). Let A = (A,Φ, src, tgt) be an ARS and conv : Red(A) ⇀ A
a partial function satisfying (step) and (composition). Then conv satisfies (step) and
(concatenation), i.e. A = (A,Φ, src, tgt, conv) is a TARS.

Proof. Straightforward.

ABSTRACT MODELS OF TRANSFINITE REDUCTIONS 55

Next we have a look at transfinite versions of well-known termination and confluence
properties. The basic idea for lifting these properties to the setting of transfinite reductions
is to replace finite reductions, i.e. →∗, with transfinite reductions, i.e. ։.

Applied to the properties confluence (CR), normalisation (WN), and the unique normal
form property w.r.t. reduction (UN→) we obtain the following transfinite properties:

• CR∞: If b և a ։ c, then b ։ d և c.
• WN∞: For each a, there is a normal form b with a ։ b.
• UN∞

→: If b և a ։ c and b, c are normal forms, then b = c.

For properties involving convertibility, i.e. ↔∗, one has to be more careful. The seem-
ingly straightforward formalisation using transfinite reductions in the symmetric closure of
the underlying ARS does not work since we do not have a notion of convergence for the sym-
metric closure. Even if we had one, as in the more concrete models that use a metric space
or a partial order, the resulting transfinite convertibility relation would not be symmetric
[Bah09].

We therefore follow the approach of Kennaway [Ken92]:

Definition 4.6 (transfinite convertibility). Let T be a TARS, and a, b objects in T . The
objects a and b are called transfinitely convertible, written a և։T b, whenever there is a
finite sequence of objects a0, . . . , an, n ≥ 0, in T such that a0 = a, an = b, and, for each
0 ≤ i < n, we have ai ։T ai+1 or ai ևT ai+1. The minimal n of such a sequence is called
the length of a և։T b.

This definition of transfinite convertibility is in some sense not “fully transfinite”: For two
objects to be transfinitely convertible, there has to be a transfinite “reduction” which may
only finitely often changes its direction. However, with this definition, transfinite convertibil-
ity is an equivalence relation as desired, and we can establish an alternative characterisation
of CR∞ analogously to the original finite version:

Proposition 4.7 (alternative characterisation of CR∞). Let T be a TARS.

T is CR∞ ⇐⇒ Whenever a և։ b, then a ։ c և b.

Proof. The argument is the same as for finite reductions: The “if” direction is trivial, and
the “only if” direction can be proved by an induction on the length of a և։ b.

With the definition of transfinite convertibility in place, we can define the transfinite
versions of the normal form property (NF) and the unique normal form property (UN):

• NF∞: For each object a and normal form b with a և։ b, we have a ։ b.
• UN∞: All normal forms a, b with a և։ b are identical.

The above definition of NF∞ differs from that of Kennaway et al. [Ken95] who, instead
of a և։ b, use a և c ։ b as the precondition. One can, however, easily show that both
definitions are equivalent.

Having these transfinite properties, we can establish some relations between them anal-
ogously to the setting of finite reductions:

Proposition 4.8 (confluence properties). For every TARS, the following implications hold:

(i) CR∞ =⇒ NF∞ =⇒ UN∞ =⇒ UN∞
→

(ii) WN∞ & UN∞
→ =⇒ CR∞

Proof. The arguments are the same as for their finite variants.

56 PATRICK BAHR

Also when formulating a transfinite version of the termination property, we have to be
careful. In fact, several different formalisations of transfinite termination can be found in
the literature [Ken92, Rod98, Klo05].

We suggest a notion of transfinite termination which we belief is a direct generalisation
of finite termination. Recall that an object a in an ARS is terminating iff there is no infinite
reduction starting in a. From this we can see that for finite reductions, we can make use of
infinite reductions as a meta-concept for defining finite termination. A corresponding meta-
concept for transfinite reductions is provided by the class Conv(T , a) of converging reductions
starting in a ordered by the prefix order ≤. The analogue of an infinite reduction, which
witnesses finite non-termination, is an unbounded chain in Conv(T , a), which witnesses
transfinite non-termination:

Definition 4.9 (transfinite termination). Let T be a TARS. An object a in T is said
to be transfinitely terminating (SN∞) if each chain in Conv(T , a) has an upper bound in
Conv(T , a). The TARS T itself is called transfinitely terminating (SN∞) if every object in
T is.

The following alternative characterisation of SN∞ will be useful for comparing our def-
inition to other formalisations of SN∞ in the literature:

Proposition 4.10 (transfinite termination). An object a in a TARS T is SN∞ iff

(a) Cont(T , a) ⊆ Conv(T , a), and
(b) every chain in Conv(T , a) is a set.

Proof. Note that (b) is equivalent to the statement that, for every chain C in Conv(T , a),
there is an upper bound on the length of the reductions in C.

We show the “only if” direction by proving its contraposition: If (a) is violated, then
there is a divergent reduction S : a ։ Hence, the set of all proper prefixes of S forms
a chain in Conv(T , a) which has no upper bound. Consequently, a is not SN∞. If (b) is
violated, transfinite non-termination of a follows immediately.

For the “if” direction, consider an arbitrary chain C in Conv(T , a). Because of (b), C
has a lub S. For each proper prefix S′ < S, there has to be an extension S′′ ≥ S in C. Since
S′′ is converging, so is S′. Consequently, S is continuous and, therefore, also convergent,
due to (a). Hence, S is an upper bound for C in Conv(T , a).

The above characterisation shows that there are two different reasons for transfinite non-
termination: Diverging reductions and reductions that can be extended indefinitely. This
characterisation of termination closely resembles that of Rodenburg [Rod98] which, however,
additionally to (a) and instead of (b) requires an upper bound on the length of reductions.
This is too restrictive, since an object, in which for each ordinal α a reduction of length α to
a normal form starts, is not transfinitely terminating according to Rodenburg’s definition.1

An example witnessing this difference to our definition can be devised straightforwardly.
In order to verify that our formalisation of SN∞ is appropriate, we have to make sure

that it implies WN∞:

Proposition 4.11 (SN∞ is stronger than WN∞). For every TARS T , it holds that SN∞

implies WN∞ for every object in T .

1In fact, in an earlier draft of this paper we adopted Rodenburg’s definition. We thank the anonymous
referee who pointed out the mentioned issue.

ABSTRACT MODELS OF TRANSFINITE REDUCTIONS 57

Proof. We prove the contraposition of the implication using Proposition 4.10. For this
purpose, let T be an TARS and a some object in T that is not WN∞. We show that
then (a) or (b) of Proposition 4.10 is violated. For this purpose, we assume (a) and show
that then (b) does not hold. To this end we define a function f on the class On of ordinal
numbers such that, for each α ∈ On, (1) f(α) is a converging reduction of length α starting
in a and (2) f(α) is a proper extension of f(ι) for all ι < α, i.e. f(α) > f(ι). Hence, the
class {f(α) |α ∈ On} is a chain in Conv(T , a) which is not a set since f is a bijection from
the proper class On to {f(α) |α ∈ On}. The construction of f is justified by the principle of
transfinite recursion, and the properties (1) and (2) are established by transfinite induction.

For α = 0, both (1) and (2) are trivial. Let α be a successor ordinal β + 1. By
induction hypothesis, we have f(β) : a ։β b for some b. Since a is not WN∞, b cannot
be a normal form. Hence, there is a step ϕ : b → b′ in M. Define f(α) = f(β) · 〈ϕ〉.
That is, f(α) : a ։α b′ which shows (1). (2) follows from the induction hypothesis since
f(β) < f(α).

Let α be a limit ordinal. Since, by the induction hypothesis, (2) holds for all f(β),
we have that F = {f(β) |β < α} is a directed set. Hence, f(α) =

⊔

F is well-defined.
Consequently, all elements in F are proper prefixes of f(α). This shows (2) and, additionally,
it shows that f(α) is a reduction of length α starting in a. Since, by the induction hypothesis
f(β) is converging for each β < α, we have that f(α) is continuous. Due to (a), f(α) is also
convergent, which shows (1).

Note that the transfinite properties we have introduced are equivalent to their finite
counterpart if we consider the finite convergence of an ARS. This shows that the transfinite
properties that we have given here are in fact generalisations of their original finite versions
to the setting of TARS. Moreover, all counterexamples known from the finite setting carry
over to the setting of transfinite reductions. This means, for example, that the implications
shown in Proposition 4.11 and Proposition 4.8 are in fact strict as they are in the setting of
finite reductions.

There are also many interrelations between finite properties which do not hold in the
transfinite setting. Notable examples are Newman’s Lemma and the implication from sub-
commutativity to confluence. Counterexamples for these and other interrelations are given
by Kennaway [Ken92].

5. Metric Model of Transfinite Reductions

The most common model of infinitary term rewriting is based on the complete ultra-
metric space of T ∞(Σ,V). One usually distinguishes between two different variants in this
context: A weak variant [Der91], which only takes into account the metric space, and a strong
variant [Ken95], which stipulates additional restrictions on the applications of rewrite rules
in order to obtain a more well-behaved notion of convergence.

At first we introduce the abstract theory of metric reduction systems. Afterwards, we
describe how this can be applied to term rewriting.

Definition 5.1 (metric reduction system). A metric reduction system (MRS) M is a tuple
(A,Φ, src, tgt,d, hgt), such that

(i) A = (A,Φ, src, tgt) is an ARS, called the underlying ARS of M,
(ii) d : A×A → R

+

0
is a function such that (A,d) is a metric space,

(iii) hgt : Φ → R
+ is a function, called the height function, and

58 PATRICK BAHR

(iv) if ϕ : a →A b, then d(a, b) ≤ hgt(ϕ).

If the metric of an MRS M is an ultrametric, then M is called an ultrametric reduction
system (URS). Furthermore, an MRS is referred to as complete if the underlying metric
space is complete. We use the notation ϕ : a →h b to indicate that hgt(ϕ) = h.

The definition of metric reduction systems follows the idea of metric abstract reduction
systems investigated by Kennaway [Ken92]. The essential difference between our approach
and that of Kennaway is the use of abstract reduction systems with reified reduction steps
instead of a family of binary relations. Moreover, unlike Kennaway, we do not restrict
ourselves to complete ultrametric spaces. This will allow us to distinguish in which circum-
stances completeness or an ultrametric is necessary and in which not.

Before continuing the discussion of the abstract model, let us have a look at how TRSs
fit into it:

Definition 5.2 (MRS semantics of TRSs). Let R = (Σ, R) be a TRS. The MRS induced
by R, denoted MR, is given by (T ∞(Σ,V),Φ, src, tgt,d, hgt), where (T ∞(Σ,V),Φ, src, tgt)
is the ARS AR induced by R, d is the metric on T ∞(Σ,V), and hgt is defined as

hgt(ϕ) = 2−|π|, where ϕ : t →π,ρ t′.

One can easily check that MR indeed forms an MRS for each TRS R. In fact, since
the metric on T ∞(Σ,V) is a complete ultrametric [Arn80], MR is a complete URS.

Next we define for each MRS two notions of convergence:

Definition 5.3 (convergence in MRSs). Let M = (A,Φ, src, tgt,d, hgt) be an MRS. The
weak convergence of M, denoted Mw, is the TARS given by the tuple (A,Φ, src, tgt, convw),
where convw(S) = limι→α̂ aι for a reduction S = (aι → aι+1)ι<α. The strong convergence
of M, denoted Ms, is the TARS given by the tuple (A,Φ, src, tgt, convs), where convs(S) =
limι→α̂ aι for a reduction S = (aι →hι

aι+1)ι<α if S is closed or limι→α hι = 0; otherwise it
is undefined.

The notions of convergence defined above yield precisely the weakly converging [Der91]
resp. the strongly converging [Ken95] reductions typically considered in the literature on
infinitary term rewriting [Ken03].

From the definition we can immediately derive that strong convergence implies weak
convergence. Hence, also strong continuity implies weak continuity.

Note that the height function hgt provides an overapproximation hgt(ϕ) of the real dis-
tance d(a, b) between the objects a, b involved in a reduction step ϕ : a → b. Intuitively,
speaking, the difference between weak and strong convergence is that, in the latter vari-
ant, the underlying sequence of objects (aι)ι<α̂ has to converge for the overapproximation
provided by hgt as well. In fact, if it is a precise approximation, then weak and strong
convergence coincide:

Fact 5.4 (equivalence of weak and strong convergence). Let M = (A,Φ, src, tgt,d, hgt) be
an MRS with hgt(ϕ) = d(a, b) for every reduction step ϕ : a → b ∈ Φ. Then for each
reduction S in M we have

(i) S : a ։Mw . . . iff S : a ։Ms . . . , and (ii) S : a ։Mw b iff S : a ։Ms b.

Proof. We only need to show that convs and convw coincide for M. For closed reductions
this is trivial. Let S = (aι →hι

aι+1)ι<α be an open reduction. If convw(S) is undefined,
then so is convs(S). If convw(S) is defined, then the sequence (aι)ι<α converges and is

ABSTRACT MODELS OF TRANSFINITE REDUCTIONS 59

therefore Cauchy. Consequently, the sequence (d(aι, aι+1))ι<α tends to 0 which implies that
also (hι)ι<α tends to 0 as hι = d(aι, aι+1) for each ι < α. Thus, convs(S) = convw(S).

It is instructive to see how hgt provides an overapproximation of the distance function for
the example of terms: It assumes that the metric distance between redex and contractum
is maximal. That is, the height function only provides a precise approximation if every
redex has a root symbol different from the one of its contractum as it is the case for the
rule ρ1 : c → g(c): The reduction f(c) →ρ1 f(g(c)) →ρ1 f(g(g(c))) →ρ1 . . . converges both
weakly and strongly to f(gω). For the rule ρ2 : f(x) → f(g(x)) this is not the case; both
redex and contractum have the same root symbol f . The reduction f(c) →ρ2 f(g(c)) →ρ2

f(g(g(c))) →ρ2 . . . now converges weakly to f(gω) but is not strongly converging.
Note that this also shows the need for reifying reduction steps since in a system con-

taining both ρ1 and ρ2 a reduction of the shape f(c) → f(g(c)) → f(g(g(c))) → . . . can
be strongly convergent or not, depending on which rules are applied. Similarly, with only a
single rule ρ3 : g(x) → g(g(x)) a reduction of the shape g(c) → g(g(c)) → g(g(g(c))) → . . .
can be strongly converging or not, depending on where ρ3 is applied.

The reason for considering strong convergence is that it is considerably more well-
behaved [Ken95] than weak convergence [Sim04]. However, weak convergence in the systems
characterised in Fact 5.4 inherit the nice properties of strong convergence. For TRSs these
systems are precisely those for which the root-symbol of each right-hand side is a function
symbol different from the root symbol of the corresponding left-hand side.

When dealing with complete URSs, strong convergence can be characterised by the
height only:

Proposition 5.5 (strong convergence in complete URSs). Let M be a complete URS. Every
open strongly continuous reduction (aι →hι

aι+1)ι<α in M is strongly convergent iff (hι)ι<α

tends to 0.

Proof. The “only if” direction is immediate from the definition of strong convergence. For
the “if” direction, assume a strongly continuous reduction S = (aι →hι

aι+1)ι<α with
limι→α hι = 0. Then limι→α d(aι, aι+1) = 0 which in turn implies that (aι)ι<α is Cauchy
as d is an ultrametric. Since we have a complete metric space, this means that (aι)ι<α

converges. From this and limι→α hι = 0 we can conclude that S is strongly converging.

Having a complete URS is crucial for the “if” direction of Proposition 5.5. If M it is
not a URS, the underlying sequence (aι)ι<α might not be Cauchy:

Example 5.6. Consider the MRS M in the complete metric (but not ultrametric) space
(R,d) with reduction steps of the form a →b (a+ b), for each a ∈ R, b ∈ R

+. More formally,
M is defined by M = (R,R × R

+, src, tgt,d, hgt) with src((a, b)) = a, tgt((a, b)) = a + b,
and hgt((a, b)) = b for all (a, b) ∈ R× R

+. We then have the following reduction in M:

0 →1 1 → 1

2

(

1 +
1

2

)

→ 1

3

(

1 +
1

2
+

1

3

)

→ 1

4

. . .

This reduction is trivially strongly continuous but not strongly convergent even though the
sequence (1

1+i
)i<ω of heights tends to 0. It is not even weakly converging since the series

∑∞
k=1

1

k
is known to be diverging.

On the other hand, if M is not complete (aι)ι<α might not converge:

60 PATRICK BAHR

Example 5.7. Consider the TRS R with the single rule a → f(a) and the MRS M which
can be obtained from the induced MRS MR by taking T (Σ,V) as the set of objects instead
of T ∞(Σ,V). Then we have the following reduction in M:

a →1 f(a) → 1

2

f(f(a)) → 1

4

f(f(f(a))) → 1

8

. . .

This reduction is trivially strongly continuous but not strongly convergent, even though the
sequence (2−i)i<ω of heights tends to 0. The reduction is not even weakly convergent as the
sequence (f i(a))i<ω does converge to fω in the complete ultrametric space (T ∞(Σ,V),d)
but does not converge in the incomplete ultrametric space (T (Σ,V),d)

From the above characterisation of strong convergence, we can derive the following more
general characterisation:

Proposition 5.8 (strong convergence). Let S be a reduction in an MRS M.

(i) If S is strongly convergent, then, for any h ∈ R
+, there are at most finitely many steps

in S whose height is greater than h.
(ii) If S is weakly continuous and, for any h ∈ R

+, there are at most finitely many steps
in S whose height is greater than h, then S is strongly continuous. If, additionally, M
is a complete URS, then S is even strongly convergent.

Proof. (i) The proof of Kennaway [Ken92] also works for MRSs.
(ii) Let S = (aι →hι

aι+1)ι<α be a reduction in M. Suppose that S is weakly continuous,
and that the set {ι |hι > h} is finite for each h ∈ R

+. We have to show that limι→λ hι = 0 for
each limit ordinal λ < α. To this end, let ε > 0. Then choose some h such that 0 < h < ε.
Since, by hypothesis, the set {ι |hι > h} is finite, there is some ordinal β < λ such that
hι ≤ h < ε for all β < ι < λ. Hence, limι→λ hι = 0.

The second part of (ii) is follows from Proposition 4.3 if S is closed. Otherwise it follows
from Proposition 5.5.

The restriction to complete URSs in the second part of (ii) is essential as Example 5.6
and Example 5.7 illustrate.

From this proposition, the following corollary follows as shown by Kennaway [Ken92]:

Corollary 5.9 (countable length of strongly convergent reductions). In an MRS every
strongly convergent reduction has countable length.

As a result of the above corollary, part (b) of Proposition 4.10 is always satisfied for
strong convergence. This makes our definition of SN∞ equivalent to that of Klop and de
Vrijer [Klo05], who considered strong convergence only.

By employing an argument similar to the one used by Klop and de Vrijer [Klo05] for
the particular case of infinitary term rewriting, we can generalise Corollary 5.9 to strongly
continuous reductions, provided we have a complete URS.

Proposition 5.10 (countable length of strongly continuous reductions). Every strongly
continuous reduction in a complete URS has countable length.

This generalises corresponding results of Kennaway [Ken92] and Klop and de Vrijer
[Klo05]. The above proposition is not true for weakly continuous (or convergent) reductions
as pointed out by Kennaway [Ken92].

ABSTRACT MODELS OF TRANSFINITE REDUCTIONS 61

6. Partial Order Model of Transfinite Reductions

The metric model of transfinite reductions has rather restrictive notions of convergence.
For example, suppose that we have a TRS consisting of the rules

f(x, a) → f(s(x), b), f(x, b) → f(s(x), a).

Then we can construct the reduction

f(0, a) → f(s(0), b) → f(s(s(0)), a) → f(s(s(s(0))), b) → . . .

which is neither strongly nor weakly convergent in terms of its MRS semantics. The culprit
is the second argument of the f symbol which constantly changes between a and b. However,
excluding this “flickering”, the reduction seems to converge somehow. The investigation of
partial reduction systems is aimed at formalising this relaxation of the notion of convergence.
With this tool we will be able to identify f(sω,⊥) as the limit of the reduction above.

To this end, a partially ordered set is employed rather than a metric space, and the
limit construction is replaced by the limit inferior.

Definition 6.1 (partial reduction system). A partial reduction system (PRS) P is a tuple
(A,Φ, src, tgt,≤, cxt) such that

(i) A = (A,Φ, src, tgt) is an ARS, called the underlying ARS of P ,
(ii) (A,≤) is a partially ordered set,
(iii) cxt : Φ → A is a function, called the context function, and
(iv) if ϕ : a →A b, then cxt(ϕ) ≤ a, b.

If the partial order ≤ is a complete semilattice, then P is called complete. We use the
notation ϕ : a →c b to indicate that cxt(ϕ) = c.

Also this model can be applied to TRSs. Note, however, that we have to add a fresh
constant symbol ⊥ to the signature in order to use the partial order ≤⊥:

Definition 6.2 (PRS semantics of TRSs). Let R = (Σ, R) be a TRS. The PRS induced by
R, denoted PR, is given by (T ∞(Σ⊥,V),Φ, src, tgt,≤⊥, cxt), with (T ∞(Σ⊥,V),Φ, src, tgt)
the ARS AR′ induced by the TRS R′ = (Σ⊥, R), ≤⊥ the usual partial order on T ∞(Σ⊥,V),
and cxt defined by

cxt(ϕ) = t[⊥]π, where ϕ : t →π,ρ t′.

One can easily verify that the context function defined for TRSs satisfies the condition
cxt(ϕ : a → b) ≤ a, b. Since the partial order on terms forms a complete semilattice, this
means that the PRS PR induced by a TRS R is always a complete PRS.

Definition 6.3 (convergence of PRSs). Let P = (A,Φ, src, tgt,≤, cxt) be a PRS. The weak
convergence of P , denoted Pw, is the TARS given by the tuple (A,Φ, src, tgt, convw), where
convw(S) = lim infι→α̂ aι for a reduction S = (aι → aι+1)ι<α. The strong convergence of
P , denoted Ps, is the TARS given by the tuple (A,Φ, src, tgt, convs), where, for a reduction
S = (aι →cι aι+1)ι<α, convs(S) = aα if α is a successor ordinal, and convs(S) = lim infι→α cι
if α is a limit ordinal.

Since the limit inferior is always defined for complete semilattices, we immediately obtain
that for complete PRSs, continuity and convergence coincide. That is, a reduction is weakly
(resp. strongly) continuous iff it is weakly (resp. strongly) convergent. This fact is the main
motivation for considering the partial order model as an alternative to the metric model.
As a consequence, part (a) of Proposition 4.10 is always satisfied for complete PRSs.

62 PATRICK BAHR

Returning to the initial example of this section we can now observe that the given
reduction sequence weakly converges to f(sω,⊥) and strongly converges to ⊥.

This example also illustrates a major difference compared to the metric model: In
MRSs strong convergence is defined by restricting weak convergence. Hence, if a reduction
is both weakly and strongly converging, the final result is the same and strong convergence
implies weak convergence. For PRSs, however, strong convergence and weak convergence
are defined differently. As a result, unlike for MRSs, strong convergence does not imply
weak convergence. In order to obtain this behaviour we have to consider total reductions :

Definition 6.4 (total reduction). Let P be a PRS and S = (aι → aι+1)ι<α a reduction
in P . We say that S is total if each element aι is maximal w.r.t. the partial order of P .
If we write S as S : a0 ։Pw aα or S : a0 ։Ps aα, i.e. the convergence of the reduction is
explicitly stated, we additionally require aα to be maximal for S to be total.

Proposition 6.5 (strong convergence implies weak convergence). For every total reduction
S in a PRS P, it holds that

(i) S : a ։Ps . . . implies S : a ։Pw . . . , and that
(ii) S : a ։Ps b implies S : a ։Pw b.

Proof. Let S = (aι →cι aι+1)ι<α. We only need to show that convs(S) = convw(S) whenever
convs(S) is a maximal object in P . If S is closed, this is trivial. If S is open we have
convs(S) = lim infι→α cι ≤ lim infι→α aι = convw(S) since, by definition, cι ≤ aι for each
ι < α. Because convs(S) is maximal, we can conclude that convs(S) = convw(S).

Despite this difference to MRSs, the intuition of the distinction between weak and
strong convergence remains the same: Like the height in an MRS, the context cxt(ϕ) in a
PRS overapproximates the difference between the objects a, b involved in a reduction step
ϕ : a → b. More precisely, it underapproximates the shared structure a⊓ b of a and b, where
a ⊓ b denotes the glb of {a, b} w.r.t. the partial order of the PRS. This follows from the
condition cxt(ϕ) ≤ a, b which implies cxt(ϕ) ≤ a⊓ b. Likewise, weak and strong convergence
coincide if the approximation provided by cxt is precise:

Fact 6.6 (equivalence of weak and strong convergence). Let P = (A,Φ, src, tgt,≤, cxt) be a
complete PRS with cxt(ϕ) = a ⊓ b for every reduction step ϕ : a → b ∈ Φ. Then for each
reduction S in P we have

(i) S : a ։Pw . . . iff S : a ։Ps . . . , and (ii) S : a ։Pw b iff S : a ։Ps b.

Proof. Analogously to the proof of Fact 5.4 using the observation that lim infι→λ aι =
lim infι→λ(aι ⊓ aι+1) for all open sequences (aι)ι<λ in a complete semilattice.

Again this fact allows us to transfer results for strong convergence [Bah09] to the setting
of weak convergence. And as for Fact 5.4 we can derive from Fact 6.6 that weak and strong
convergence coincide for TRSs for which the root symbol of each right-hand side is a function
symbol different from the root symbol of the corresponding left-hand side.

7. Metric vs. Partial Order Model

The main motivation for the partial order model is to have a more fine-grained notion
of convergence. That is, instead of only being able to distinguish converging and diverging
reductions, we have intermediate levels between full convergence and full divergence. Since,

ABSTRACT MODELS OF TRANSFINITE REDUCTIONS 63

in complete PRSs, continuous reductions are always convergent, the final object of a reduc-
tion S indicates the “level of convergence” according to the partial order on objects. If it is
⊥, the least element of the partial order, then S can be considered fully diverging. If it is a
maximal element, e.g. in T ∞(Σ⊥,V) a term not containing ⊥, then S is fully converging.

Using this intuition, the partial order model also gives rise to a notion of meaning-
lessness: We can consider an object a of a complete PRS meaningless if there is an open
reduction from a converging to ⊥. In fact, for strong convergence in orthogonal TRSs, this
concept of meaninglessness coincides with so-called root-active terms [Bah10].

Under certain quite natural conditions [Bah09], metric convergence can be considered as
the fragment of partial order convergence that only considers full convergence. Vice versa,
partial order convergence is a conservative extension to metric convergence which also allows
partial convergence. This is, in fact, the case for TRSs:

Theorem 7.1 (PRS semantics of TRSs extends MRS semantics). For each TRS R, the
following holds for each c ∈ {w, s}:

(i) S : a ։Pc
R
. . . is total iff S : a ։Mc

R
. . .

(ii) S : a ։Pc
R
b is total iff S : a ։Mc

R
b.

It has been shown [Bah09] that also on so-called term graphs, a generalisation of terms,
an appropriate complete ultrametric and complete semilattice can be defined. These con-
cepts generalise the metric and the partial order on terms and allow to define infinitary term
graph rewriting in our models of transfinite reductions. Following the framework of term
graph rewriting systems (TGRSs) of Barendregt et al. [Bar87] one can show that, at least
for weak convergence, the same relation between the partial order and the metric model can
be observed:

Theorem 7.2 (PRS semantics of TGRSs extends MRS semantics). For each TGRS R, the
following holds:

(i) S : a ։Pw
R
. . . is total iff S : a ։Mw

R
. . .

(ii) S : a ։Pw
R
b is total iff S : a ։Mw

R
b.

8. Conclusions

The axiomatic model of transfinite reductions provides a simple framework to formulate
and analyse the more concrete models presented here and is yet powerful enough to establish
many of their fundamental properties. Moreover, the equivalence of transfinite properties
for finite convergence and their respective finite counterparts provides additional evidence
for the appropriateness of the definition of these transfinite properties.

Fact 5.4 and Fact 6.6 suggest that the metric and the partial order model have a consid-
erable similarity in their discrimination between weak and strong convergence. This raises
the question whether there is an appropriate abstraction of these two models that, in contrast
to the axiomatic model, is also able to distinguish between weak and strong convergence.

Theorems 7.1 and 7.2 indicate that the partial order model is superior to the metric
model as it is able to express convergence as the metric model but additionally allows to
explore different levels of divergence in the metric model. Moreover, these results allow to
make use of well-known properties of metric infinitary term rewriting in order to study partial
order infinitary term rewriting. This was used in [Bah10] to establish several properties of
partial order infinitary orthogonal term rewriting such as compression and convergence.

64 PATRICK BAHR

The models that we presented here can be, of course, easily applied to higher-order
rewriting systems [Ket05]. However, in the metric approach to infinitary lambda-calculus
[Ken97] one usually considers various different metrics and it is not clear what the corre-
sponding partial orders are which then admit a higher-order version of Theorem 7.1.

Acknowledgements

I would like to thank Jakob Grue Simonsen and the alert anonymous referees for carefully
reading earlier drafts of this paper and providing valuable feedback. Especially, I want to
thank Bernhard Gramlich for his support and his challenging questions during my work on
my master’s thesis which made this work possible.

References

[Arn80] A. Arnold and M. Nivat. The metric space of infinite trees. Algebraic and topological properties.
Fundam. Inf., 3(4):445–476, 1980.

[Bah09] P. Bahr. Infinitary Rewriting - Theory and Applications. Master’s thesis, Vienna University of
Technology, 2009.
URL http://www.pa-ba.info/?q=pub/master

[Bah10] P. Bahr. Partial order infinitary term rewriting and böhm trees. In RTA 2010. 2010. cf. this pro-
ceedings volume.

[Bar87] H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, Ri. Kennaway, M.J. Plasmeijer, and M.R.
Sleep. Term graph rewriting. In Philip C. Treleaven Jaco de Bakker, A. J. Nijman (ed.), PARLE

1987, LNCS, vol. 259, pp. 141–158. Springer Berlin / Heidelberg, 1987. doi:10.1007/3-540-17945-3_
8.
URL http://www.springerlink.com/content/pw65n058434q1k65/

[Blo04] S. Blom. An approximation based approach to infinitary lambda calculi. In Vincent van Oostrom
(ed.), RTA 2004, LNCS, vol. 3091, pp. 221–232. Springer Berlin / Heidelberg, 2004. doi:10.1007/
b98160.
URL http://www.springerlink.com/content/4n3gqw43d1bpnldy/

[Cor93] A. Corradini. Term rewriting in CTΣ. In Marie-Claude Gaudel and Jean-Pierre Jouannaud (eds.),
TAPSOFT 1993, LNCS, vol. 668, pp. 468–484. Springer Berlin / Heidelberg, 1993. doi:10.1007/
3-540-56610-4_83.
URL http://www.springerlink.com/content/f73r5p2v370220m4/

[Der91] N. Dershowitz, S. Kaplan, and D.A. Plaisted. Rewrite, rewrite, rewrite, rewrite, rewrite, ... Theor.

Comput. Sci., 83(1):71–96, 1991. doi:DOI:10.1016/0304-3975(91)90040-9.
URL http://www.sciencedirect.com/science/article/B6V1G-45DHJRB-H/2/

767b35171dafdfa511dd0463ea25dbdd

[Kah93] G. Kahn and G.D. Plotkin. Concrete domains. Theor. Comput. Sci., 121(1-2):187–277, 1993.
doi:DOI:10.1016/0304-3975(93)90090-G.
URL http://www.sciencedirect.com/science/article/B6V1G-45FC431-2K/2/

6c30777ef97aea14c529418b4d5c5d4a

[Kah07] S. Kahrs. Infinitary rewriting: meta-theory and convergence. Acta Inform., 44(2):91–121, 2007.
doi:10.1007/s00236-007-0043-2.
URL http://www.springerlink.com/content/gk52386u20857666/

[Kel55] J.L. Kelley. General Topology, Graduate Texts in Mathematics, vol. 27. Springer-Verlag, 1955.
[Ken92] R. Kennaway. On transfinite abstract reduction systems. Tech. rep., CWI (Centre for Mathematics

and Computer Science), Amsterdam, 1992.
[Ken95] R. Kennaway, J.W. Klop, M.R. Sleep, and F.-J. de Vries. Transfinite reductions in orthogonal term

rewriting systems. Inf. Comput., 119(1):18–38, 1995. doi:DOI:10.1006/inco.1995.1075.
URL http://www.sciencedirect.com/science/article/B6WGK-45NJJYB-4W/2/

7d48d04a2fe97d6e9e1fc5179f31a488

ABSTRACT MODELS OF TRANSFINITE REDUCTIONS 65

[Ken97] R. Kennaway, J.W. Klop, M.R. Sleep, and F.-J. de Vries. Infinitary lambda calculus. Theor.

Comput. Sci., 175(1):93–125, 1997. doi:DOI:10.1016/S0304-3975(96)00171-5.
URL http://www.sciencedirect.com/science/article/B6V1G-3SNTKND-25/2/

febf61177fc25aa984b58ee4bb574143

[Ken03] R. Kennaway and F.-J. de Vries. Infinitary rewriting. In Terese [Ter03], chap. 12, pp. 668–711.
URL http://amazon.com/o/ASIN/0521391156/

[Ket05] J. Ketema and J. G. Simonsen. Infinitary combinatory reduction systems. In Jürgen Giesl (ed.),
RTA 2005, Lecture Notes in Computer Science, vol. 3467, pp. 438–452. Springer Berlin / Heidelberg,
2005. doi:10.1007/b135673.
URL http://www.springerlink.com/content/h96d6qlmuhbad903/

[Klo05] J.W. Klop and R.C. de Vrijer. Infinitary normalization. In Sergei N. Artëmov, Howard Barringer,
Artur S. d’Avila Garcez, Luís C. Lamb, and John Woods (eds.), We Will Show Them! Essays in

Honour of Dov Gabbay, vol. 2, pp. 169–192. College Publications, 2005.
[Lév78] J.-J. Lévy. Reductions Correctes et Optimales dans le Lambda-Calcul. Ph.D. thesis, Université Paris,

1978.
[Rod98] P.H. Rodenburg. Termination and confluence in infinitary term rewriting. J. Symbolic Logic,

63(4):1286–1296, 1998.
URL http://www.jstor.org/stable/2586651

[Sim04] J.G. Simonsen. On confluence and residuals in Cauchy convergent transfinite rewriting. Inf.

Process. Lett., 91(3):141–146, 2004. doi:DOI:10.1016/j.ipl.2004.03.018.
URL http://www.sciencedirect.com/science/article/B6V0F-4CBVNG4-1/2/

d5d0f374f89fd62e07d023512a5b3dfe

[Ter03] Terese. Term Rewriting Systems. Cambridge University Press, 1st edn., 2003.
URL http://amazon.com/o/ASIN/0521391156/

66 PATRICK BAHR

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 67-84
http://rewriting.loria.fr/rta/

PARTIAL ORDER INFINITARY TERM REWRITING AND BÖHM

TREES

PATRICK BAHR

Department of Computer Science, University of Copenhagen
Universitetsparken 1, 2100 Copenhagen, Denmark
URL: http://www.diku.dk/˜paba
E-mail address: paba@diku.dk

Abstract. We investigate an alternative model of infinitary term rewriting. Instead of
a metric, a partial order on terms is employed to formalise (strong) convergence. We
compare this partial order convergence of orthogonal term rewriting systems to the usual
metric convergence of the corresponding Böhm extensions. The Böhm extension of a term
rewriting system contains additional rules to equate so-called root-active terms. The core
result we present is that reachability w.r.t. partial order convergence coincides with reach-
ability w.r.t. metric convergence in the Böhm extension. This result is used to show that,
unlike in the metric model, orthogonal systems are infinitarily confluent and infinitarily
normalising in the partial order model. Moreover, we obtain, as in the metric model, a
compression lemma. A corollary of this lemma is that reachability w.r.t. partial order
convergence is a conservative extension of reachability w.r.t. metric convergence.

1. Introduction

The study of infinitary term rewriting as a discipline to investigate infinitely long reduc-
tions on terms is mostly based on a metric model [Der91]. Other models, using for example
general topological spaces [Rod98] or partial orders [Cor93, Blo04], were mainly considered
to pursue quite specific purposes. Since in the metric model, even for orthogonal systems,
infinitary rewriting lacks a number of important properties such as compression and in-
finitary confluence [Sim04], a stricter variant of convergence, so-called strong convergence
[Ken95] was considered.

However, even strong convergence does not provide infinitary confluence for all orthog-
onal term rewriting systems and does not admit complete developments for arbitrary sets
of redexes. This has been resolved by introducing a notion of meaningless terms [Ken99].
Having this notion, a term rewriting system can be augmented with rules which essentially
allow rewriting meaningless terms to a fresh constant ⊥. When starting with an orthogonal
system, the resulting system, called Böhm extension, is both infinitarily normalising and
infinitarily confluent w.r.t. strong convergence.

1998 ACM Subject Classification: F.4.2.
Key words and phrases: infinitary term rewriting, Böhm trees, partial order, confluence, normalisation.

© Patrick Bahr
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.67

68 PATRICK BAHR

In this paper we present a partial order model of strongly convergent reductions. We
show that for orthogonal systems, reachability with this notion of convergence is equivalent
to reachability according to metric strong convergence of the corresponding Böhm extensions
w.r.t. the least set of meaningless terms, the root-active terms. As corollaries we thus obtain
infinitary confluence and infinitary normalisation of partial order convergence. Moreover,
we can show that this model also enjoys the compression property and admits arbitrary
complete developments.

Related Work. This study of strong partial order convergence is inspired by Blom [Blo04]
who investigated strong partial order convergence in lambda calculus and compared it to
strong metric convergence. Similarly to our findings for orthogonal term rewriting systems,
Blom has shown for lambda calculus that reachability in the metric model coincides with
reachability in the partial order model modulo equating so-called 0-undefined terms.

Also Corradini [Cor93] studied a partial order model. However, he uses it to develop
a theory of parallel reductions which allows simultaneous contraction of a set of mutually
independent redexes of left-linear rules. To this end, Corradini defines the semantics of redex
contraction in a non-standard way by allowing a partial matching of left-hand sides. Our
definition of complete developments also provides, at least for orthogonal systems, a notion
of parallel reductions but does so using the standard semantics.

2. Preliminaries

We assume the reader to be familiar with the basic theory of ordinal numbers, orders
and topological spaces [Kel55], as well as term rewriting [Ter03]. In the following, we briefly
recall the most important notions.

Transfinite Sequences. We use α, β, γ, λ, ι to denote ordinal numbers. A transfinite sequence
(or simply called sequence) S of length α in a set A, written (aι)ι<α, is a function from α to
A with ι 7→ aι for all ι ∈ α. We use |S| to denote the length α of S. If α is a limit ordinal,
then S is called open. Otherwise, it is called closed. If α is a finite ordinal, then S is called
finite. Otherwise, it is called infinite.

The concatenation (aι)ι<α · (bι)ι<β of two sequences is the sequence (cι)ι<α+β with
cι = aι for ι < α and cα+ι = bι for ι < β. A sequence S is a (proper) prefix of a sequence
T , denoted S ≤ T (resp. S < T), if there is a (non-empty) sequence S′ with S ·S′ = T . The
prefix of T of length β is denoted T |β . The relation ≤ forms a complete semilattice.

Let S = (aι)ι<α be a sequence. A sequence T = (bι)ι<β is called a subsequence of S if
there is a monotone function f : β → α such that bι = af(ι) for all ι < β. To indicate this,
we write S/f for the subsequence T . If f(ι) = f(0) + ι for all ι < β, then S/f is called
a segment of S. That is, T is a segment of S iff there are two sequences T1, T2 such that
S = T1 · T · T2. We write S|[β,γ) for the segment S/f , where f : α′ → α is the mapping
defined by f(ι) = β+ ι for all ι < α′, with α′ the unique ordinal with γ = β+α′. Note that
in particular S|α = S|[0,α) for each sequence S and ordinal α ≤ |S|.

PARTIAL ORDER INFINITARY TERM REWRITING AND BÖHM TREES 69

Partial Orders. A partial order ≤ on a set A is a binary relation on A that is transitive,
reflexive, and antisymmetric. A partial order ≤ on A is called a complete semilattice if it
has a least element, every directed subset D of A has a least upper bound (lub)

⊔

D, and
every subset of A having an upper bound also has a least upper bound. Hence, complete
semilattices also admit a greatest lower bound (glb)

d
B for every non-empty subset B of A.

In particular, this means that for any non-empty sequence (aι)ι<α in a complete semilattice,

its limit inferior, defined by lim infι→α aι =
⊔

β<α

(d
β≤ι<α aι

)

, always exists.

With the prefix order ≤ on sequences we can generalise concatenation to arbitrary
sequences of sequences: Let (Sι)ι<α be a sequence of sequences in a common set. The
concatenation of (Sι)ι<α, written

∏

ι<α Sι, is recursively defined as the empty sequence ε if

α = 0,
(
∏

ι<α′ Sι

)

· Sα′ if α = α′ + 1, and
⊔

γ<α

∏

ι<γ Sι if α is a limit ordinal.

Term Rewriting Systems. Unlike in the traditional framework of term rewriting, we consider
the set T ∞(Σ,V) of infinitary terms (or simply terms) over some signature Σ and a countably
infinite set V of variables. The set T ∞(Σ,V) is defined as the greatest set T such that, for

each element t ∈ T , we either have t ∈ V or t = f(t1, . . . , tk), where k ≥ 0, f ∈ Σ(k), and
t1, . . . , tk ∈ T . We consider T ∞(Σ,V) as a superset of the set T (Σ,V) of finite terms. For a
term t ∈ T ∞(Σ,V) we use the notation P(t) to denote the set of positions in t. For terms
s, t ∈ T ∞(Σ,V) and a position π ∈ P(t), we write t|π for the subterm of t at π, t(π) for
the symbol in t at π, and t[s]π for the term t with the subterm at π replaced by s. Two
terms s and t are said to coincide in a set of positions P ⊆ P(s) ∩ P(t) if s(π) = t(π) for
all π ∈ P . A position is also called an occurrence if the focus lies on the subterm at that
position rather than the position itself. Two positions π1, π2 are called disjoint if neither
π1 ≤ π2 nor π2 ≤ π1.

On T ∞(Σ,V) a distance function d can be defined by d(s, t) = 0 if s = t and d(s, t) =
2−k if s 6= t, where k is the minimal depth at witch s and t differ. The pair (T ∞(Σ,V),d) is
known to form a complete ultrametric space [Arn80]. Partial terms, i.e. terms over signature
Σ⊥ = Σ⊎ {⊥}, can be endowed with a relation ≤⊥ by defining s ≤⊥ t iff s can be obtained
from t by replacing some subterm occurrences in t by ⊥. The pair (T ∞(Σ⊥,V),≤⊥) is
known to form a complete semilattice [Kah93]. For a partial term t ∈ T ∞(Σ⊥,V) we use
the notation P\⊥(t) and PΣ(t) for the set {π ∈ P(t) | t(π) 6= ⊥} of non-⊥ positions resp. the
set {π ∈ P(t) | t(π) ∈ Σ} of positions of function symbols. To explicitly distinguish them
from partial terms, we call terms in T ∞(Σ,V) total.

A term rewriting system (TRS) R is a pair (Σ, R) consisting of a signature Σ and a set
R of term rewrite rules of the form l → r with l ∈ T ∞(Σ,V) \ V and r ∈ T ∞(Σ,V) such
that all variables in r are contained in l. Note that this notion of a TRS deviates slightly
from the standard notion of TRSs in the literature on infinitary rewriting [Ken03] in that
it allows infinite terms on the left-hand side of rewrite rules! This generalisation will be
necessary to accommodate Böhm extensions. TRSs having only finite left-hand sides are
called left-finite.

A term t is called linear if each variable occurs at most once in t. A TRS R is called
left-linear if the left-hand side of every rule in R is linear. A TRS R is called orthogonal if
it is left-linear and has no critical pairs.

As in the finitary case, every TRS R defines a rewrite relation →R:

s →R t ⇐⇒ ∃π ∈ P(s), l → r ∈ R, σ : s|π = lσ, t = s[rσ]π

70 PATRICK BAHR

We write s →π,ρ t in order to indicate the applied rule ρ and the position π. The subterm
s|π is called a ρ-redex or simply redex, rσ its contractum, and s|π is said to be contracted to
rσ.

3. Metric Infinitary Term Rewriting

In this section we briefly recall the metric model of infinitary term rewriting [Ken95]
and some of its properties. We will use the metric model in two ways: Firstly, it will serve
as a yardstick to compare the partial order model to. But most importantly, we will use
known results for metric infinitary rewriting and transfer them to the partial order model.
In order to accomplish the latter, we will make use of Theorem 5.6 which we shall present
at the end of Section 5.

At first we have to make clear what a reduction in our setting of infinitary rewriting is:

Definition 3.1 (reduction (step)). Let R be a TRS. A reduction step ϕ in R is a tuple
(s, π, ρ, t) such that s →π,ρ t; we also write ϕ : s →π,ρ t. A reduction S in R is a sequence
(ϕι)ι<α of reduction steps such that there is a sequence (tι)ι<α̂ of terms, with α̂ = α if S is
open, α̂ = α+ 1 if S is closed, such that ϕι : tι → tι+1. If S is finite, we write S : t0 →

∗ tα.

Note that this notion of reductions does only make sense for sequences of length at most
ω. For longer reductions, the ω-th step is not related to the preceding steps of the reduction.
This holds in general for all reductions steps indexed by a limit ordinal. An appropriate
definition of a reduction of length beyond ω requires a notion of continuity to bridge the
gaps that arise at limit ordinals. In this section we look at the notion of strong continuity
modelled by the metric on terms. Since we are not interested in weak continuity [Der91]
here, we refer to this notion simply as continuity, or m-continuity to distinguish it from
continuity in the partial order model that we will present in Section 5.

It is important to understand that a reduction is a sequence of reduction steps rather
than just a sequence of terms. This is crucial for a proper definition of strong continuity,
which also depends on where contractions take place:

Definition 3.2 (m-continuity/-convergence). Let R be a TRS and S = (ϕι : tι →πι
tι+1)ι<α

a non-empty reduction in R. The reduction S is called m-continuous if limι→λ tι = tλ, and
the sequence (|πι|)ι<λ of contraction depths tends to infinity for each limit ordinal λ < α.
Provided it is m-continuous, S is said to m-converge to t, written S : t0 ։m t, if S is closed
and t = tα or if (|πι|)ι<α tends to infinity and t = limι→α tι. In this case we also say that
t is m-reachable from t0. In order to indicate the length of S and the TRS R, we write
S : t0 ։m α

R t. The empty reduction ε is considered m-continuous and m-convergent for any
start and end term, i.e. ε : t ։m . . . and ε : t ։m t for all t ∈ T (Σ,V).

For a reduction to be m-continuous, each open proper prefix of the underlying sequence
of terms must converge to the term following next in the sequence. Additionally, the depth
at where contractions take place has to tend to infinity for each of the reduction’s open
proper prefixes. In contrast, m-convergence requires the above conditions to hold for all
open prefixes, i.e. including the whole reduction itself provided it is open. For example,
considering the rule a → f(a), the reduction g(a) → g(f(a)) → g(f(f(a))) → . . . m-
converges to the infinite term g(fω). Note that m-convergence implies m-continuity. Hence,
only meaningful, i.e. m-continuous, reductions can be m-convergent. On the other hand
not every m-continuous reduction is also m-convergent. Having the rule g(x) → g(f(x))

PARTIAL ORDER INFINITARY TERM REWRITING AND BÖHM TREES 71

instead, the reduction g(a) → g(f(a)) → g(f(f(a))) → . . . is trivially m-continuous but is
now not m-convergent.

If we only want to express that there is some reduction S with, say, S : s ։m t, then we
simply write s ։m t. An example for this notation can be seen in the following phrasing of
the Compression Lemma [Ken95]:

Theorem 3.3 (Compression Lemma). For each left-linear, left-finite TRS, s ։m t implies
s ։m ≤ω t.

As an easy corollary we obtain that the final term of an m-converging reduction can be
approximated arbitrarily accurately by a finite reduction:

Corollary 3.4 (finite approximation). Let R be a left-linear, left-finite TRS and s ։m t.
Then, for each depth d ∈ N, there is a finite reduction s →∗ t′ such that t and t′ coincide up
to depth d, i.e. d(t, t′) < 2−d.

Proof. Assume s ։m t. By Theorem 3.3, there is a reduction S : s ։m ≤ω t. If S is of finite
length, then we are done. If S : s ։m ω t, then, by m-convergence, there is some n < ω
such that all reductions steps in S after n take place at a depth greater than d. Consider
S|n : s →∗ t′. It is clear that t and t′ coincide up to depth d.

An important difference of m-converging reductions and finite reductions is the conflu-
ence of orthogonal systems. In contrast to finite reachability, m-reachability of orthogonal
TRSs does not necessarily have the diamond property, i.e. orthogonal systems are confluent
but not infinitarily confluent [Ken95]:

Example 3.5 (failure of infinitary confluence). Consider the orthogonal TRS consist-
ing of the collapsing rules ρ1 : f(x) → x and ρ2 : g(x) → x and the infinite term t =
g(f(g(f(. . .)))). We then obtain the reductions S : t ։m gω and T : t ։m fω by successively
contracting all ρ1- resp. ρ2-redexes. However, there is no term s such that gω ։m s ևm fω as
both gω and fω can only be rewritten to themselves, respectively.

In the following sections we discuss two different methods for obtaining an appropriate
notion of transfinite reachability which actually has the diamond property.

4. Meaningless Terms and Böhm Trees

Meaningless terms, as formalised by Kennaway et al. [Ken99], are terms which can be
considered meaningless because, from a term rewriting perspective, they cannot be distin-
guished from one another and they do not contribute any information to any computation.
For orthogonal TRSs, one such set of terms, in fact the least such set, is the set of root-active
terms [Ken99]:

Definition 4.1 (root-activeness). Let R be a TRS and t ∈ T ∞(Σ,V). Then t is called
root-active if for each reduction t →∗ t′, there is a reduction t′ →∗ s to a redex s. The set
of all root-active terms of R is denoted RAR or simply RA if R is clear from the context.

Intuitively speaking, as the name already suggests, root-active terms are terms that can
be contracted at the root arbitrarily often, e.g. the terms fω and gω from Example 3.5.

In this paper we are only interested in this particular set of meaningless terms. So for
the sake of brevity we restrict our discussion in this section to RA instead of the original
more general axiomatic treatment by Kennaway et al. [Ken99].

72 PATRICK BAHR

Since, operationally, root-active terms cannot be distinguished from each other it is
appropriate to equate them [Ken99]. This can be done by introducing a new constant
symbol ⊥ and making each root-active term equal to ⊥. By adding rules which enable
rewriting root-active terms to ⊥, this can be encoded into an existing TRS [Ken99]:

Definition 4.2 (Böhm extension). Let R be a TRS over Σ, and U ⊆ T ∞(Σ,V).

(i) A term t ∈ T ∞(Σ,V) is called a ⊥,U-instance of a term s ∈ T ∞(Σ⊥,V) if t can be
obtained from s by replacing each occurrence of ⊥ in s with some term in U .

(ii) U⊥ is the set of terms in T ∞(Σ⊥,V) that have a ⊥,U -instance in U .
(iii) The Böhm extension of R w.r.t. U is the TRS BR,U = (Σ⊥, R ∪B), where

B = {t → ⊥| t ∈ U⊥ \ {⊥}}

We write s →U ,⊥ t for a reduction step using a rule in B. If R and U are clear from
the context, we simply write B and →⊥ instead of BR,U and →U ,⊥, respectively.

A reduction that is m-converging in the Böhm extension B is called Böhm-converging. A
term t is called Böhm-reachable from s if there is a Böhm-converging reduction from s to t.

Note that, for orthogonal TRSs, RA is closed under substitutions and, hence, so is RA⊥

[Ken99]. Therefore, whenever C[t] →RA,⊥ C[⊥], we can assume that t ∈ RA⊥.
It it at this point where we, in fact, need the generality of allowing infinite terms on

the left-hand side of rewrite rules: The additional rules of a Böhm extension allow possibly
infinite terms t ∈ U⊥ \ {⊥} on the left-hand side.

Theorem 4.3 (infinitary confluence of Böhm-converging reductions, [Ken99]). Let R be
an orthogonal, left-finite TRS. Then the Böhm extension B of R w.r.t. RA is infinitarily
confluent, i.e. s1 և

m
B t ։m B s2 implies s1 ։

m
B t′ ևmB s2.

The lack of confluence for m-converging reductions is resolved in Böhm extensions by
allowing (sub-)terms, which where previously not joinable, to be contracted to ⊥. Returning
to Example 3.5, gω and fω can be rewritten to ⊥ as both terms are root-active.

Theorem 4.4 (infinitary normalisation of Böhm-converging reductions, [Ken99]). Let R be
an orthogonal, left-finite TRS. Then the Böhm extension B of R w.r.t. RA is infinitarily
normalising, i.e. for each term t there is a B-normal form Böhm-reachable from t.

This means that each term t of an orthogonal, left-finite TRS R has a unique normal
form in BR,RA. This normal form is called the Böhm tree of t (w.r.t. RA) [Ken99].

5. Partial Order Infinitary Rewriting

In this section we define an alternative model of infinitary term rewriting which uses
the partial order on terms to formalise (strong) convergence of transfinite reductions. To
this end we will turn to partial terms which, like in the setting of Böhm extensions, have an
additional special symbol ⊥. The result will be a more fine-grained notion of convergence
in which, intuitively speaking, a reduction can be diverging in some positions but at the
same time converging in other positions. The “diverging parts” are then indicated by a
⊥-occurrence in the final term of the reduction:

Example 5.1. Consider the TRS consisting of the rules h(x) → h(g(x)), c → g(c) and the
term t = f(a, c). In this system, we have the reduction

S : f(h(a), b) → f(h(g(a)), b) → f(h(g(a)), g(b)) → f(h(g(g(a))), g(b)) → . . .

PARTIAL ORDER INFINITARY TERM REWRITING AND BÖHM TREES 73

which alternately contracts the redex in the left and in the right argument of f .

Reduction S does not m-converge as the depth at which contractions are performed
does not tend to infinity. However, this does only happen in the left argument of f , not in
the other one. With the notion of p-convergence, we will discover S to be p-converging to
the term f(⊥, gω):

Definition 5.2 (p-continuity/-convergence). Let R = (Σ, R) be a TRS and S = (ϕι : tι →πι

tι+1)ι<α a non-empty reduction in R′ = (Σ⊥, R). The reduction S is called p-continuous
if lim infι→λ cι = tλ for each limit ordinal λ < α, where cι = tι[⊥]πι

. Each cι is called the
context of the reduction step ϕι. Provided it is p-continuous, S is said to p-converge to t,
written S : t0 ։

p t if S is closed and t = tα+1 or if t = lim infι→α cι. In this case we also say
that t is p-reachable from t0. In order to indicate the length of S, we write S : t0 ։

p α t. The
empty reduction ε is considered p-continuous and p-convergent for any start and end term.

What makes this notion of p-convergence strong, similar to the notion of m-convergence
we are considering here, is the choice of taking the contexts tι[⊥]πι

for defining the limit
behaviour of reductions instead of the whole terms tι. The context tι[⊥]πι

provides a con-
servative underapproximation of the shared structure tι ⊓ tι+1 of two consecutive terms tι
and tι+1. In fact, tι[⊥]πι

≤⊥ tι ⊓ tι+1. Returning to Example 5.1, we can observe that with
the weaker notion of p-convergence, i.e. using tι instead of tι[⊥]πι

for the limit behaviour,
reduction S would p-converge to f(h(gω), gω) instead of f(⊥, gω).

This approach is analogous to the metric notion of strong convergence which requires
|πι| to tend to infinity, i.e. 2−|πι| to tend to 0. However, 2−|πι| is an overapproximation of

the actual difference d(tι, tι+1) of two consecutive terms tι and tι+1, i.e. 2−|πι| ≥ d(tι, tι+1).
Note that we have to consider reductions over the extended signature Σ⊥, i.e. reductions

containing partial terms. Thus, from now on, we assume reductions in a TRS over Σ to be
implicitly over Σ⊥. When we want to make it explicit that a reduction S contains only total
terms, we say that S is total. When we say that S : s ։p t is total, we mean that both the
reduction S and the final term t are total.1

Due to the partial order ≤⊥ on partial terms being a complete semilattice, the limit
inferior is defined for any sequence of partial terms. Hence, any p-continuous reduction
is also p-convergent. This is one of the major differences to m-convergence/-continuity.
Nevertheless, p-convergence is a meaningful notion of convergence. The final term of a p-
convergent reduction contains a ⊥ subterm at each position at which the reduction is “locally
diverging” as we have seen in Example 5.1. We will call these positions volatile:

Definition 5.3 (volatility). Let R be a TRS and S = (tι →πι
tι+1)ι<λ an open p-converging

reduction in R. A position π is said to be volatile in S if, for each ordinal β < λ, there is
some β ≤ γ < λ such that πγ = π. If π is volatile in S and no proper prefix of π is volatile
in S, then π is called outermost-volatile.

In Example 5.1 the position 0 is outermost-volatile in the reduction S. One can show
that ⊥ subterms are indeed created precisely at outermost-volatile positions [Bah09]:

Lemma 5.4 (⊥ subterms in open reductions). Let R be a TRS and S = (tι →πι
tι+1)ι<λ an

open reduction in R p-converging to tλ. Then, for every position π, we have the following:

(i) If π is volatile in S, then π 6∈ P\⊥(tλ).

1Note that if S is open, the final term t is not explicitly contained in S. Hence, the totality of S does not
necessarily imply the totality of t.

74 PATRICK BAHR

(ii) tλ(π) = ⊥ iff
(a) π is outermost-volatile in S, or
(b) there is some β < λ such that tβ(π) = ⊥ and πι 6≤ π for all β ≤ ι < λ.

(iii) Let tι be total for all ι < λ. Then tλ(π) = ⊥ iff π is outermost-volatile in S.

From this we can deduce that the absence of volatile positions is equivalent to the
totality of a p-converging reduction:

Lemma 5.5 (total reductions). Let R be a TRS, s a total term in R, and S : s ։p R t.
S : s ։p t is total iff no prefix of S has a volatile position.

Proof. The “only if” direction follows straightforwardly from Lemma 5.4.
We prove the “if” direction by induction on the length of S. If |S| = 0, then the totality

of S follows from the assumption of s being total. If |S| is a successor ordinal, then the
totality of S follows from the induction hypothesis since single reduction steps preserve
totality. If |S| is a limit ordinal, then the totality of S follows from the induction hypothesis
using Lemma 5.4.

The following theorem is the central tool for transferring results for m-convergent re-
ductions to the realm of p-convergence:

Theorem 5.6 (total p-convergence = m-convergence). For every reduction S in a TRS,
S : s ։p t is total iff S : s ։m t.

We won’t go into the details of the proof of Theorem 5.6 here but instead refer to [Bah09].
The key for the proof are the following two observations: At first, the limit inferior and the
limit of a sequence of total terms coincide whenever the limit exists or the limit inferior is
a total term. Secondly, for each open m-converging reduction S = (ϕ : tι →πι

tι+1)ι<λ the
limit inferior of the sequence of terms (tι)ι<λ coincides with the limit inferior of the sequence
of contexts (tι[⊥]πι

)ι<λ since the ⊥’s in (tι[⊥]πι
)ι<λ are “pushed down” deeper and deeper

due to the m-convergence of S.

6. Complete Developments

There are several methods to show (finitary) confluence of orthogonal systems. A quite
instructive technique uses notions of residuals and complete developments [Ter03]. Intu-
itively speaking, the residuals of a set of redexes are the remains of this set of redexes after a
reduction, and a complete development of a set of redexes is a reduction which only contracts
residuals of these redexes and ends in a term with no residuals. Kennaway et al. [Ken95]
have lifted these notions to (metric) infinitary term rewriting. However, in contrast to the
finitary setting, complete developments do not always exists in infinitary orthogonal term
rewriting, e.g. for the term fω from Example 3.5 and the set of all redex occurrences in it.

In this section we define residuals and complete developments in the setting of partial
order infinitary term rewriting and show that complete developments do always exist for
orthogonal TRSs and converge to a unique term. Having this, we can show the Infinitary
Strip Lemma which is a crucial tool for proving our main result. However, since the proofs
of these results are rather technical and tedious we will not provide the full proofs here but
rather refer the interested reader to the author’s thesis [Bah09] where detailed proofs for all
results in this section can be found.

At first we need to formalise the notion of residuals. It is virtually equivalent to the
definition for m-convergence by Kennaway et al. [Ken95]:

PARTIAL ORDER INFINITARY TERM REWRITING AND BÖHM TREES 75

Definition 6.1 (descendants, residuals). Let R be a TRS, S : t0 ։
p α

R tα, and U ⊆ P\⊥(t0).
The descendants of U by S, denoted U//S, is the set of positions in tα inductively defined
as follows:

(a) If α = 0, then U//S = U .
(b) If α = 1, i.e. S : t0 →π,ρ t1 for some ρ : l → r, take any u ∈ U and define the set Ru as

follows: If π 6≤ u, then Ru = {u}. If u is in the pattern of the ρ-redex, i.e. u = π · π′

with π′ ∈ PΣ(l), then Ru = ∅. Otherwise, i.e. if u = π · w · x, with l|w ∈ V , then
Ru = {π · w′ · x | r|w′ = l|w }. Define U//S =

⋃

u∈U Ru.
(c) If α = α′ + 1, then U//S = (U//S|α′)//ϕα′ , where S = (ϕι)ι<α.
(d) If α is a limit ordinal, then U//S = P\⊥(tα) ∩ lim infι→α U//S|ι

That is, u ∈ U//S iff u ∈ P\⊥(tα) and ∃β < α∀β ≤ ι < α : u ∈ U//S|ι

If, in particular, U is a set of redex occurrences, then U//S is also called the set of residuals
of U by S. Moreover, by abuse of notation, we write u//S instead of {u} //S.

Clauses (a), (b) and (c) are as in the finitary setting. Clause (d) lifts the definition to
the infinitary setting. However, the only difference to the definition of Kennaway et al. is,
that we consider partial terms here. Yet, for technical reasons, the notion of descendants has
to be restricted to non-⊥ occurrences. Since ⊥ cannot be a redex, this is not a restriction
for residuals, though.

As for finitary rewriting and metric infinitary rewriting, we have that residuals are
always redexes and are pairwise disjoint if the original redexes are:

Proposition 6.2 ((disjoint) residuals). Let R be an orthogonal TRS, S : s ։p R t and U a
set of redex occurrences in s. Then the following holds:

(i) U//S is a set of redex occurrences in t.
(ii) If the occurrences in U are pairwise disjoint, then so are the occurrences in U//S.

The property of residuals being redexes is, in fact, crucial for the concept of complete
developments as it requires all residuals to be eventually contracted:

Definition 6.3 ((complete) development). Let R be an orthogonal TRS, s a partial term
in R, and U a set of redex occurrences in s.

(i) A development of U in s is a p-converging reduction S : s ։p α t in which each reduction
step ϕι : tι →πι

tι+1 contracts a redex at πι ∈ U//S|ι for ι < α.
(ii) A development S : s ։p t of U in s is called complete, denoted S : s ։p U t, if U//S = ∅.

This is a straightforward generalisation of complete developments known from the fini-
tary setting and coincides with the corresponding formalisation for metric infinitary rewrit-
ing [Ken95] if restricted to total terms. However, unlike in the metric setting, partial order
infinitary rewriting admits complete developments for any orthogonal system:

Proposition 6.4 (complete developments). Let R be an orthogonal TRS, t a partial term
in R, and U a set of redex occurrences in t. Then U has a complete development in t.

This result follows from the fact that every p-continuous reduction is also p-converging.
Proving the above proposition simply amounts to devising a reduction strategy which even-
tually contracts all redexes. A parallel-outermost strategy achieves this.

Next we need to show that the final term of a complete development is uniquely defined
by the initial set of redex occurrences U . Using a technique of paths and jumps similar to
the one described by Kennaway and de Vries [Ken03], we can define for each partial term t,

76 PATRICK BAHR

t0 t1 tβ tβ+1 tα

s0 s1 sβ sβ+1 sα

v0

U0 U1

vβ

Uβ Uβ+1 Uα

v0//U0 vβ//Uβ

Figure 1: The Infinitary Strip Lemma.

set of redex occurrences U in t, and orthogonal TRS R, a term F(t, U,R) that is the final
term of a complete development of U in t:

Proposition 6.5 (unique p-convergence of complete developments). Let R be an orthogonal
TRS, t a partial term in R, and U a set of redex occurrences in t. Then each complete
development of U in t p-converges to F(t, U,R).

We can use the above result in order to show that descendants by complete developments
are uniquely defined. To achieve this, one can use the well-known labelling technique that
keeps track of descendants by means of syntactic methods (e.g. see [Ter03]):

Proposition 6.6 (unique descendants of complete developments). Let R be an orthogonal
TRS, t a partial term in R, and U a set of redex occurrences in t. Then, for each set
V ⊆ P\⊥(t) and two complete developments S and T of U in t, respectively, it holds that
V//S = V//T .

As a corollary we obtain that complete developments enjoy the diamond property:

Corollary 6.7 (diamond property of complete developments). Let R be an orthogonal TRS
and t ։p U t1 and t ։p V t2 be two complete developments of U respectively V in t. Then t1
and t2 are joinable by complete developments t1 ։

p
V//U t′ and t2 ։

p
U//V t′.

The result of this effort of analysing complete developments is the Infinitary Strip
Lemma for p-convergence:

Proposition 6.8 (Infinitary Strip Lemma). Let R be an orthogonal TRS, S : t0 ։
p α tα, and

T : t0 ։
p

U s0 a complete development of a set U of disjoint redex occurrences in t0. Then tα
and s0 are joinable by S/T : s0 ։

p sα and a complete development T/S : tα ։p U//S sα.

The idea of the construction of S/T and T/S is illustrated in Figure 1. Each Uι is the
set of residuals of U by the reduction S|ι. Each arrow in the diagram represents a complete
development of the indicated set of redex occurrences. In particular, each vι indicates the
redex occurrence contracted in the ι-th step of S. The construction uses an induction on
the length α of the horizontal reduction S. The case α = 0 is trivial. For α a successor
ordinal, the statement follows from the induction hypothesis using Corollary 6.7. For α a
limit ordinal we can make use of the fact that, by Proposition 6.2 each Uι is a set of pairwise
disjoint redex occurrences. The constructed reduction S/T is called the projection of S by
T . Likewise, T/S is called the projection of T by S.

PARTIAL ORDER INFINITARY TERM REWRITING AND BÖHM TREES 77

7. p-convergence and Böhm-convergence

In this section we shall show the core result of this paper: For orthogonal, left-finite
TRSs, p-reachability and Böhm-reachability w.r.t. RA coincide. As corollaries of that,
leveraging the properties of Böhm-convergence, we obtain both infinitary normalisation and
infinitary confluence of orthogonal systems in the partial order model. Moreover, we will
show that p-convergence also satisfies the compression property.

The central step of the proof of the equivalence of both models of infinitary rewriting
is an alternative characterisation of root-active terms which is captured by the following
definition:

Definition 7.1 (destructiveness, fragility). Let R be a TRS.

(i) A reduction S : t ։p s is called destructive if ε is a volatile position in S.
(ii) A partial term t in R is called fragile if a destructive reduction starts in t.

Looking at the definition, fragility seems to be a more general concept than root-
activeness: A term is fragile iff it admits a reduction in which infinitely often a redex at the
root is contracted. For orthogonal TRSs, root-active terms are characterised in almost the
same way. The difference is that only total terms are considered and that the stipulated
reduction contracting infinitely many root redexes has to be of length ω. However, we shall
show the set of total fragile terms to be equal to the set of root-active terms by establishing
a compression lemma for destructive reductions.

Using Lemma 5.4 we can immediately derive the following alternative characterisations:

Fact 7.2 (destructiveness, fragility). Let R be a TRS.

(i) A reduction S : s ։p t is destructive iff S is open and t = ⊥
(ii) A partial term t in R is fragile iff there is an open p-convergent reduction t ։p ⊥.

Using this, we can establish that any p-convergent reduction can be simulated by a
Böhm-convergent reduction w.r.t. total, fragile terms:

Proposition 7.3 (p-reachability implies Böhm-reachability). Let R be a TRS, U the set
of fragile terms in T ∞(Σ,V), and B the Böhm extension of R w.r.t. U . Then, for each
p-convergent reduction s ։p R t, there is a Böhm-convergent reduction s ։m B t.

Proof. Assume that there is a reduction S = (tι →πι
tι+1)ι<α in R that p-converges to tα.

We will construct an m-convergent reduction T : t0 ։
m

B tα in B by removing reduction steps
in S that take place at or below outermost-volatile positions of some prefix of S and replace
them by →⊥-steps.

Let π be an outermost-volatile position of some prefix S|λ. Then there is some ordinal
β < λ such that no reduction step between β and λ in S takes place strictly above π,
i.e. πι 6< π for all β ≤ ι < λ. Such an ordinal β must exist since otherwise π would not
be an outermost-volatile position in S|λ. Hence, we can construct a destructive reduction
S′ : tβ |π ։p ⊥ by taking the subsequence of the segment S|[β,λ) that contains the reduction
steps at π or below. Note that tβ|π might still contain the symbol ⊥. Since ⊥ is not relevant
for the applicability of rules in R, each of the ⊥ symbols in tβ |π can be safely replaced
by arbitrary total terms, in particular by terms in U . Let r be a term that is obtained in
this way. Then there is a destructive reduction S′′ : r ։p ⊥ that applies the same rules at
the same positions as in S′. Hence, r ∈ U . By construction, r is a ⊥,U -instance of tβ |π
which means that tβ|π ∈ U⊥. Additionally, tβ |π 6= ⊥ since there is a non-empty reduction

78 PATRICK BAHR

S′ : tβ|π ։p ⊥ starting in tβ |π. Consequently, there is a rule tβ |π → ⊥ in B. Let T ′ be the
reduction that is obtained from S|λ by replacing the β-th step, which we can assume w.l.o.g.
to take place at π, by a step with the rule tβ |π → ⊥ at the same position π and removing
all reduction steps ϕι taking place at π or below for all β < ι < λ. Let t′ be the term that
the reduction T ′ p-converges to. tλ and t′ can only differ at position π or below. However,
by construction, we have t′(π) = ⊥ and, by Lemma 5.4, tλ(π) = ⊥. Consequently, t′ = tλ.

This construction can be performed for all prefixes of S and their respective outermost-
volatile positions. Thereby, we obtain a p-converging reduction T : t0 ։p B tα for which no
prefix has a volatile position. By Lemma 5.5, T is a total reduction. Note that B is a TRS
over the extended signature Σ′ = Σ ⊎ {⊥}, i.e. terms containing ⊥ are considered total.
Hence, by Theorem 5.6, T : t0 ։

m
B tα.

This already provides one direction of the equivalence we want to establish. Before we
make the next step, we need the following lemma shown by Kennaway et al. [Ken99]:

Lemma 7.4 (postponement of →⊥-steps). Let R be a left-linear, left-finite TRS and B
some Böhm extension of R. Then s ։m B t implies s ։m R s′ ։m ⊥ t for some term s′.2

In the next proposition we show that, excluding ⊥ subterms, the final term of a p-
converging reduction can be approximated arbitrarily well by a finite reduction. This corre-
sponds to Corollary 3.4 which establishes finite approximations for m-convergent reductions.

Proposition 7.5 (finite approximation). Let R be a left-linear, left-finite TRS and s ։p t.
Then, for each finite set P ⊆ P\⊥(t), there is a reduction s →∗ t′ such that t and t′ coincide
in P .

Proof. Assume that s ։p R t. Then, by Proposition 7.3, there is a reduction s ։m B t, where B
is the Böhm extension of R w.r.t. the set of total, fragile terms of R. By Lemma 7.4, there is
a reduction s ։m R s′ ։m ⊥ t. Clearly, s′ and t coincide in P\⊥(t). Let d = max {|π| |π ∈ P }.
Since P is finite, d is well-defined. By Corollary 3.4, there is a reduction s →∗

R t′ such that
t′ and s′ coincide up to depth d and, thus, in particular they coincide in P . Consequently,
since s′ and t coincide in P\⊥(t) ⊇ P , t and t′ coincide in P , too.

In order to establish a compression lemma for destructive reductions we need that
fragile terms are preserved by finite reductions. We can obtain this from the following more
general lemma showing that destructive reductions are preserved by forming projections as
constructed in the Infinitary Strip Lemma:

Lemma 7.6 (preservation of destructive reductions by projections). Let R be an orthogonal
TRS, S : t0 ։

p tα a destructive reduction, and T : t0 ։
p

U s0 a complete development of a set
U of disjoint redex occurrences. Then the projection S/T : s0 ։

p sα is also destructive.

Proof. We consider the situation depicted in Figure 1. Since S : t0 ։p tα is destructive, we
have, for each β < α, some β ≤ γ < α such that vγ = ε. If vγ = ε, then also ε ∈ vγ//Uγ

unless ε ∈ Uγ . As by Proposition 6.2, Uγ is a set of pairwise disjoint positions, ε ∈ Uγ

implies Uγ = {ε}. This means that if vγ = ε and ε ∈ Uγ , then Uι = ∅ for all γ < ι < α.
Thus, there is only at most one γ < α with ε ∈ Uγ . Therefore, we have, for each β < α,
some β ≤ γ < α such that ε ∈ vγ//Uγ . Hence, T is destructive.

2Strictly speaking, if s is not a total term, i.e. it contains ⊥, then we have to consider the system that is
obtained from R by extending its signature to Σ⊥.

PARTIAL ORDER INFINITARY TERM REWRITING AND BÖHM TREES 79

As a consequence of this preservation of destructiveness by forming projections, we
obtain that the set of fragile terms is closed under finite reductions:

Lemma 7.7 (closure of fragile terms under finite reductions). In each orthogonal TRS, the
set of fragile terms is closed under finite reductions.

Proof. Let t be a fragile term and T : t →∗ t′ a finite reduction. Hence, there is a destruc-
tive reduction starting in t. A straightforward induction proof on the length of T , using
Lemma 7.6, shows that there is a destructive reduction starting in t′. Thus, t′ is fragile.

Now we can show that destructiveness does not need more that ω steps in orthogonal,
left-finite TRSs. This property will be useful for proving the equivalence of root-activeness
and fragility of total terms as well the Compression Lemma for p-convergent reductions.

Proposition 7.8 (Compression Lemma for destructive reductions). Let R be an orthogonal,
left-finite TRS and t a partial term in R. If there is a destructive reduction starting in t,
then there is a destructive reduction of length ω starting in t.

Proof. Let S : t0 ։
p λ ⊥ be a destructive reduction starting in t0. Hence, there is some α < λ

such that S|α : t0 ։p s1, where s1 is a ρ-redex for some ρ : l → r ∈ R. Let P be the set
of pattern positions of the ρ-redex s1, i.e. P = PΣ(l). Due to the left-finiteness of R, P
is finite. Hence, by Proposition 7.5, there is a finite reduction t0 →∗ s′1 such that s1 and
s′1 coincide in P . Hence, because R is left-linear, also s′1 is a ρ-redex. Now consider the
reduction T0 : t0 →∗ s′1 →ρ,ε t1 ending with a contraction at the root. T0 is of finite length
and, according to Lemma 7.7, t1 is fragile.

Since t1 is again fragile, the above argument can be iterated arbitrarily often which
yields for each i < ω a finite reduction Ti : ti →

∗ ti+1 whose last step is a contraction at the
root. Then the concatenation T =

∏

i<ω Ti of these reductions is a destructive reduction of
length ω starting in t0.

The above proposition bridges the gap between fragility and root-activeness. Whereas
the former concept is defined in terms of transfinite reductions, the latter is defined in terms
of finite reductions. By Proposition 7.8, however, a fragile term is always finitely reducible
to a redex. This is the key to the observation that fragility is not only quite similar to
root-activeness but is, in fact, essentially the same concept.

Proposition 7.9 (root-activeness = fragility). Let R be an orthogonal, left-finite TRS and
t a total term in R. Then t is root-active iff t is fragile.

Proof. The “only if” direction is easy: If t is root-active, then there is a reduction S of length
ω starting in t with infinitely many steps taking place at the root. Hence, S : t ։p ω ⊥ is a
destructive reduction, which makes t a fragile term.

For the converse direction we assume that t is fragile and show that, for each reduction
t →∗ s, there is a reduction s →∗ t′ to a redex t′. By Lemma 7.7, also s is fragile. Hence,
there is a destructive reduction S : s ։p ⊥ starting in s. According to Proposition 7.8, we
can assume that S has length ω. Therefore, there is some n < ω such that S|n : s →∗ t′ for
a redex t′.

Before we prove the missing direction of the equality of p-reachability and Böhm-
reachability we need the property that m-convergent reductions consisting only of →⊥-steps
can be compressed to length at most ω as well:

80 PATRICK BAHR

Lemma 7.10 (compression of →⊥-steps). Consider the Böhm extension of an orthogonal
TRS w.r.t. its root-active terms and S : s ։m ⊥ t with s ∈ T ∞(Σ,V), t ∈ T ∞(Σ⊥,V).
Then there is an m-converging reduction T : s ։m ⊥ t of length at most ω that is a complete
development of a set of disjoint occurrences of root-active terms in s.

Proof. The proof is essentially the same as that of Lemma 7.2.4 from Ketema [Ket06].

The important part of the above lemma is the statement that only terms in RA are
contracted instead of the general case where a →⊥ -step contracts a term in RA⊥ ⊃ RA.

Finally, we have gathered all tools necessary in order to prove the converse direction of
the equivalence of p-reachability and Böhm-reachability w.r.t. root-active terms.

Theorem 7.11 (p-reachability = Böhm-reachability w.r.t. RA). Let R be an orthogonal,
left-finite TRS and B the Böhm extension of R w.r.t. its root-active terms. Then s ։p R t iff
s ։m B t.

Proof. The “only if” direction follows immediately from Proposition 7.9 and Proposition 7.3.
Now consider the converse direction: Let s ։m B t be an m-convergent reduction in B.

W.l.o.g. we assume s to be total. Due to Lemma 7.4, there is a term s′ ∈ T ∞(Σ,V) such
that there are m-convergent reductions S : s ։m R s′ and T : s′ ։m ⊥ t. By Lemma 7.10,
we can assume that in s′ ։m ⊥ t only pairwise disjoint occurrences of root-active terms
are contracted. By Proposition 7.9, each root-active term r ∈ RA is fragile, i.e. we have a
destructive reduction r ։p R ⊥ starting in r. Thus, we can construct a p-converging reduction
T ′ : s′ ։p R t by replacing each step C[r] →⊥ C[⊥] in T with the corresponding reduction
C[r] ։p R C[⊥]. By combining T ′ with the m-converging reduction S, which, according to
Theorem 5.6, is also p-converging, we obtain the p-converging reduction S · T ′ : s ։p R t.

With this equivalence, p-convergent reductions inherit a number of important properties
that are enjoyed by Böhm-convergent reductions:

Theorem 7.12 (infinitary confluence). Every orthogonal, left-finite TRS is infinitarily con-
fluent. That is, for each orthogonal, left-finite TRS, s1 և

p t ։p s2 implies s1 ։
p t′ ևp s2.

Proof. Leveraging Theorem 7.11, this theorem follows from Theorem 4.3.

Returning to Example 3.5 again, we can see that the terms gω and fω can now be joined
by repeatedly contracting the redex at the root which yields destructive reductions gω ։p ⊥
and fω ։p ⊥, respectively.

Theorem 7.13 (infinitary normalisation). Every orthogonal, left-finite TRS is infinitarily
normalising. That is, for each orthogonal, left-finite TRS R and a partial term t in R, there
is an R-normal form p-reachable from t.

Proof. This follows immediately from Theorem 7.11 and Theorem 4.4.

Combining Theorem 7.12 and Theorem 7.13, we obtain that each term in an orthogonal
TRS has a unique normal form w.r.t. p-convergence. Due to Theorem 7.11, this unique
normal form is the Böhm tree w.r.t. root-active terms.

Since p-converging reductions in orthogonal TRS can always be transformed such that
they consist of a prefix which is an m-convergent reduction and a suffix consisting of nested
destructive reductions, we can employ the Compression Lemma for m-convergent reductions
(Theorem 3.3) and the Compression Lemma for destructive reductions (Proposition 7.8) to
obtain the Compression Lemma for p-convergent reductions:

PARTIAL ORDER INFINITARY TERM REWRITING AND BÖHM TREES 81

Theorem 7.14 (Compression Lemma for p-convergent reductions). For each orthogonal,
left-finite TRS, s ։p t implies s ։p ≤ω t.

Proof. Let s ։p R t. According to Theorem 7.11, we have s ։m B t for the Böhm extension B of
R w.r.t. RA and, therefore, by Lemma 7.4, we have reductions S : s ։m R s′ and T : s′ ։m ⊥ t.
Due to Theorem 3.3, we can assume S to be of length at most ω and, due to Theorem 5.6,
to be p-convergent, i.e S : s ։p ≤ω

R s′. If T is the empty reduction, then we are done. If
not, then T is a complete development of pairwise disjoint occurrences of root-active terms
according to Lemma 7.10. Hence, each step is of the form C[r] →⊥ C[⊥] for some root-active
term r. By Proposition 7.9, for each such term r, there is a destructive reduction r ։p R ⊥
which we can assume, in accordance with Proposition 7.8, to be of length ω. Hence, each
step C[r] →⊥ C[⊥] can be replaced by the reduction C[r] ։p ω

R C[⊥]. Concatenating these

reductions results in a reduction T ′ : s′ ։p R t of length at most ω · ω. If S : s ։p ≤ω
R s′ is of

finite length, we can interleave the reduction steps in T ′ such that we obtain a reduction
T ′′ : s′ ։p ω

R t of length ω. Then we have S · T ′′ : s ։p ω
R t. If S : s ։p ≤ω

R s′ has length ω,
we construct a reduction s ։p R t as follows: As illustrated above, T ′ consists of destructive
reductions taking place at some pairwise disjoint positions. These steps can be interleaved
into the reduction S resulting into a reduction s ։p R t of length ω. The argument for that
is similar to that employed in the successor case of the induction proof of the Compression
Lemma of Kennaway et al. [Ken95].

We can use the Compression Lemma for p-convergent reductions to obtain a stronger
variant of Theorem 5.6 for orthogonal TRSs:

Corollary 7.15 (m-reachability = p-reachability of total terms). Let R be an orthogonal,
left-finite TRS and s, t ∈ T ∞(Σ,V). Then s ։m t iff s ։p t.

Proof. The “only if” direction follows immediately from Theorem 5.6. For the “if” direction
assume a reduction S : s ։p t. According to Theorem 7.14, there is a reduction T : s ։p ≤ω t.
Hence, since s is total and totality is preserved by single reduction steps, T : s ։p ≤ω t is
total. Applying Theorem 5.6, yields that T : s ։m ≤ω t.

8. Conclusions

Infinitary term rewriting in the partial order model provides a more fine-grained notion
of convergence. Formally, every meaningful, i.e. p-continuous, reduction is also p-converging.
Practically, p-converging reductions can end in a term containing ⊥’s indicating positions
of “local divergence”. Theorem 5.6 and Corollary 7.15 indicate that the partial model co-
incides with the metric model but additionally allows a more detailed inspection of non-
m-converging reductions. Instead of the coarse discrimination between convergence and
divergence provided by the metric model, the partial order model allows different levels be-
tween full convergence (a total term as result) and full divergence (⊥ as result). Moreover,
due to the equivalence to Böhm-reachability, we additionally obtain infinitary normalisa-
tion and infinitary confluence for orthogonal systems, which we do not have in the metric
model, while still maintaining the compression property. While achieving the same goals as
Böhm-extensions, the partial order approach provides an intuitive and more elegant model.

We have only studied strong convergence in this paper. It would be interesting to find
out whether the shift to the partial order model has similar benefits for weak convergence,
which is known to be rather unruly [Sim04].

82 PATRICK BAHR

Another interesting direction to follow is the ability to finitely simulate transfinite re-
ductions by term graph rewriting. For m-convergence this is possible, at least to some
extent [Ken94]. However, we think that a different approach to term graph rewriting, viz.
the double-pushout approach [Ehr73] or the equational approach [Ari96], is more appropriate
for p-convergence [Cor97, Bah09].

Acknowledgements

I want to thank Bernhard Gramlich for his constant support during the work on my
master’s thesis which made this work possible. I am also grateful for the valuable comments
of the anonymous referees.

References

[Ari96] Zena M. Ariola and Jan Willem Klop. Equational term graph rewriting. Fundam. Inf., 26(3-4):207–
240, 1996.

[Arn80] André Arnold and Maurice Nivat. The metric space of infinite trees. Algebraic and topological
properties. Fundam. Inf., 3(4):445–476, 1980.

[Bah09] Patrick Bahr. Infinitary Rewriting - Theory and Applications. Master’s thesis, Vienna University of
Technology, Vienna, 2009.
URL http://www.pa-ba.info/?q=pub/master

[Blo04] Stefan Blom. An approximation based approach to infinitary lambda calculi. In Vincent van Oost-
rom (ed.), RTA ’04, Lecture Notes in Computer Science, vol. 3091, pp. 221–232. Springer Berlin /
Heidelberg, 2004. doi:10.1007/b98160.
URL http://www.springerlink.com/content/4n3gqw43d1bpnldy/

[Cor93] Andrea Corradini. Term rewriting in CTΣ. In Marie-Claude Gaudel and Jean-Pierre Jouannaud
(eds.), TAPSOFT ’93, Lecture Notes in Computer Science, vol. 668, pp. 468–484. Springer Berlin
/ Heidelberg, 1993. doi:10.1007/3-540-56610-4_83.
URL http://www.springerlink.com/content/f73r5p2v370220m4/

[Cor97] Andrea Corradini and Frank Drewes. (Cyclic) term graph rewriting is adequate for rational parallel
term rewriting. Tech. Rep. TR-14-97, Universita di Pisa, Dipartimento di Informatica, 1997.

[Der91] Nachum Dershowitz, Stéphane Kaplan, and David A. Plaisted. Rewrite, rewrite, rewrite, rewrite,
rewrite, ... Theor. Comput. Sci., 83(1):71–96, 1991. doi:DOI:10.1016/0304-3975(91)90040-9.
URL http://www.sciencedirect.com/science/article/B6V1G-45DHJRB-H/2/

767b35171dafdfa511dd0463ea25dbdd

[Ehr73] Hartmut Ehrig, Michael Pfender, and Hans Jürgen Schneider. Graph-grammars: An algebraic
approach. In SWAT ’73, pp. 167–180. IEEE Computer Society, Washington, DC, USA, 1973. doi:
http://dx.doi.org/10.1109/SWAT.1973.11.

[Kah93] Gilles Kahn and Gordon D. Plotkin. Concrete domains. Theor. Comput. Sci., 121(1-2):187–277,
1993. doi:DOI:10.1016/0304-3975(93)90090-G.
URL http://www.sciencedirect.com/science/article/B6V1G-45FC431-2K/2/

6c30777ef97aea14c529418b4d5c5d4a

[Kel55] John L. Kelley. General Topology, Graduate Texts in Mathematics, vol. 27. Springer-Verlag, 1955.
[Ken94] Richard Kennaway, Jan Willem Klop, M. Ronan Sleep, and Fer-Jan de Vries. On the adequacy of

graph rewriting for simulating term rewriting. ACM Trans. Program. Lang. Syst., 16(3):493–523,
1994. doi:http://doi.acm.org/10.1145/177492.177577.

[Ken95] Richard Kennaway, Jan Willem Klop, M. Ronan Sleep, and Fer-Jan de Vries. Transfinite
reductions in orthogonal term rewriting systems. Inform. and Comput., 119(1):18–38, 1995.
doi:DOI:10.1006/inco.1995.1075.
URL http://www.sciencedirect.com/science/article/B6WGK-45NJJYB-4W/2/

7d48d04a2fe97d6e9e1fc5179f31a488

[Ken99] Richard Kennaway, Vincent van Oostrom, and Fer-Jan de Vries. Meaningless terms in rewriting. J.

Funct. Logic Programming, 1999(1):1–35, 1999.

PARTIAL ORDER INFINITARY TERM REWRITING AND BÖHM TREES 83

[Ken03] Richard Kennaway and Fer-Jan de Vries. Infinitary rewriting. In Terese [Ter03], chap. 12, pp. 668–
711.
URL http://amazon.com/o/ASIN/0521391156/

[Ket06] Jeroen Ketema. Böhm-Like Trees for Rewriting. Ph.D. thesis, Vrije Universiteit Amsterdam, 2006.
URL http://dare.ubvu.vu.nl/handle/1871/9203

[Rod98] Pieter Hendrik Rodenburg. Termination and confluence in infinitary term rewriting. J. Symbolic

Logic, 63(4):1286–1296, 1998.
URL http://www.jstor.org/stable/2586651

[Sim04] Jakob Grue Simonsen. On confluence and residuals in Cauchy convergent transfinite rewriting. Inf.

Process. Lett., 91(3):141–146, 2004. doi:DOI:10.1016/j.ipl.2004.03.018.
URL http://www.sciencedirect.com/science/article/B6V0F-4CBVNG4-1/2/

d5d0f374f89fd62e07d023512a5b3dfe

[Ter03] Terese. Term Rewriting Systems. Cambridge University Press, 1st edn., 2003.
URL http://amazon.com/o/ASIN/0521391156/

84 PATRICK BAHR

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 85-102
http://rewriting.loria.fr/rta/

UNIQUE NORMAL FORMS IN

INFINITARY WEAKLY ORTHOGONAL TERM REWRITING

JÖRG ENDRULLIS 1 AND CLEMENS GRABMAYER 2 AND DIMITRI HENDRIKS 1 AND

JAN WILLEM KLOP 1 AND VINCENT VAN OOSTROM 2

1 VU University Amsterdam, Dept. of Computer Science, de Boelelaan 1081a, 1081 HV Amsterdam

2 Universiteit Utrecht, Department of Philosophy, Heidelberglaan 6, 3854 CS Utrecht

E-mail address, J. Endrullis: joerg@few.vu.nl

E-mail address, C. Grabmayer: clemens@phil.uu.nl

E-mail address, D. Hendriks: diem@cs.vu.nl

E-mail address, V. van Oostrom: Vincent.vanOostrom@phil.uu.nl

Abstract. We present some contributions to the theory of infinitary rewriting for weakly

orthogonal term rewrite systems, in which critical pairs may occur provided they are trivial.

We show that the infinitary unique normal form property (UN∞) fails by a simple ex-

ample of a weakly orthogonal TRS with two collapsing rules. By translating this example,

we show that UN∞ also fails for the infinitary λβη-calculus.

As positive results we obtain the following: Infinitary confluence, and hence UN∞, holds

for weakly orthogonal TRSs that do not contain collapsing rules. To this end we refine

the compression lemma. Furthermore, we consider the triangle and diamond properties

for infinitary multi-steps (complete developments) in weakly orthogonal TRSs, by refining

an earlier cluster-analysis for the finite case.

1. Introduction

While the theory of infinitary term rewriting is well-developed for orthogonal rewrite
systems, much less is known about infinitary rewriting in non-orthogonal systems, in which
critical pairs between rules may occur. In this paper we consider the simplest such systems,
namely weakly orthogonal ones, in which all critical pairs are trivial. Conceptually, weakly
orthogonal systems deviate little from orthogonal systems. But for the development of their
rewrite theory specific notions and techniques had to be developed [5].

We show that the infinitary rewrite theory known for orthogonal systems fails dramati-
cally in the case of weakly orthogonal systems. In Section 2, we give a simple counterexample

1998 ACM Subject Classification: D.1.1, D.3.1, F.4.1, F.4.2, I.1.1, I.1.3.

Key words and phrases: weakly orthogonal term rewrite systems, unique normal form property, infinitary

rewriting, infinitary λβη-calculus, collapsing rules, compression lemma.

c© J. Endrullis, C. Grabmayer, D. Hendriks, J.W. Klop, and V. van Oostrom
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.85

86 J. ENDRULLIS, C. GRABMAYER, D. HENDRIKS, J.W. KLOP, AND V. VAN OOSTROM

to the infinitary unique normal form property UN∞. Moreover, by a straightforward trans-
lation we obtain a counterexample to UN∞ in the infinitary λβη-calculus (Section 3), the
paradigmatic example of a weakly orthogonal higher-order rewrite system.

In the remaining sections we show that, under simple restrictions, much of the theory
of infinitary rewriting in orthogonal systems can be regained: we establish the diamond
property, and consider the triangle property (Section 6) for weakly orthogonal TRSs without
collapsing rules. An important ingredient in their proofs is a refinement of the compression
lemma (Section 4).

For a general introduction to infinitary rewriting, as well as for notations used in this
paper, we refer to [9, Ch.12], [6, 3].

2. A Counterexample to UN∞ for Weakly Orthogonal Systems

In [3] it is shown that every orthogonal TRS exhibits the infinitary unique normal
forms (UN∞) property, see also [6]. In strong contrast, we will now give a counterexample
showing that the UN∞ property does not generalize to weakly orthogonal TRSs. The
counterexample is very simple: its signature consists of the unary symbols P and S with
the reduction rules: P(S(x))→ x and S(P(x))→ x. Clearly this TRS is weakly orthogonal.
In the sequel we consider the corresponding string rewrite system (SRS):

PS→ ε SP→ ε

where ε is the empty word. If w is a finite word, we write wω for the infinite word www
Using S and P we have infinite words such as ζ = (PS)ω. Note that Sω and Pω are the only
infinite normal forms, and that ζ only reduces to itself.

Given an infinite PS-word w we can plot in a graph the surplus number of S’s of w when
stepping through the word w from left to right, see e.g. Figure 1. The graph is obtained by
counting S for +1 and P for −1. We define sum(w, n) as the result of this counting up to
depth n in the word w (if w is finite we define sum(w) = sum(w, |w|)):

sum(w, 0) = 0 sum(Sw, n+ 1) = sum(w, n) + 1 sum(Pw, n+ 1) = sum(w, n)− 1

For w = (SP)ω the graph takes values, consecutively, 1, 0, 1, 0, . . ., for w = Sω it takes
1, 2, 3, . . ., and for w = Pω we have −1,−2,−3,

We define the S-norm ‖w‖S and P-norm ‖w‖P of w:

‖w‖S = sup
n∈N

sum(w, n) ‖w‖P = sup
n∈N

(−sum(w, n)) (2.1)

So the S-norm (P-norm) of (SP)ω is 1 (0), of Sω it is ∞ (0), and of Pω it is 0 (∞).

Lemma 2.1. Let w be a finite PS-word, and let n = sum(w). If n ≥ 0 then w ։ Sn, and
w ։ P−n, otherwise.

Proof. For finite words u, v we have that u→ v implies sum(u) = sum(v). Moreover, → is
normalising, and the only normal forms are of the form Sk and Pk for k ≥ 0.

Proposition 2.2.

(i) w ։։ Sω if and only if ‖w‖S =∞,
(ii) w ։։ Pω if and only if ‖w‖P =∞.

Proof. We consider only (i) as case (ii) can be treated analogously. From ‖w‖S = ∞ it
follows that w = w1w2 . . . with finite words w1, w2, . . . such that sum(wi) = 1 for all i ∈ N.
Then wi ։ S for all i ∈ N by Lemma 2.1 and hence w ։։ Sω.

UNIQUE NORMAL FORMS IN INFINITARY WEAKLY ORTHOGONAL REWRITING 87

0

sum(w, n) +∞

−∞

•
•
•
•
•
•
•

n

Figure 1: Graph for the oscillating PS-word ψ = P1 S2 P3

Note that in Proposition 2.2 w ։։ Sω can always be achieved using the rule PS → ε
only. And likewise the rule SP→ ε for w ։։ Pω.

Now let us take a term ψ with ‖ψ‖S = ∞ and ‖ψ‖P = ∞ ! Then by the previous
proposition ψ reduces to both Sω and Pω, both normal forms. Hence UN∞ fails. Indeed,
such a term ψ can be found:

ψ = PSSPPPSSSSPPPPPSSSSSS . . .

The graph for this term is displayed in Figure 1. If we only apply rule PS→ ε the P-blocks
are absorbed by the larger S-blocks to their right, leaving the normal form Sω. Likewise,
applying only SP→ ε yields Pω.

We find that ψ ։։ w for every infinite PS-word w, and more generally:

Proposition 2.3. Every PS-word that reduces to both Sω and Pω reduces to any infinite
PS-word.

Proof. Let w be a PS-word such that Pω ևև w ։։ Sω. And let u be the infinite PS-word
we want to obtain. Then, by Proposition 2.2 we have that ‖w‖P = ‖w‖S = ∞. From this
it follows that w = w1w2 . . . with wi finite PS-words such that sum(wi) = 1 if u(i) = S and
sum(wi) = −1 if u(i) = P. By Lemma 2.1, we get that wi ։ u(i), and hence w ։։ u.

Hence, not only is ψ a counterexample to UN∞ for weakly orthogonal rewrite systems.
But also, ψ rewrites to (PS)ω, a word which has no normal form. Thus, in contrast to
orthogonal systems, weak normalisation is not preserved under infinite rewriting.

Figure 2 shows a more detailed analysis of various classes of PS-words. By Proposi-
tion 2.2 an infinite word w reduces to Sω iff ‖w‖S = ∞, and to Pω iff ‖w‖P = ∞. The
shaded non-empty intersection (‖w‖S = ‖w‖P = ∞) contains the counterexample term ψ
mentioned above. All terms in this intersection are root-active (RA), that is, every։-reduct
can be reduced to a redex (at the root). However, there are also other root-active terms.
For example ξ = SPS2 P2 S3 P3 . . . is a root-active term which reduces to Sω but not to Pω

(i.e., ‖ξ‖P = 0 <∞ and ‖ξ‖S =∞). The term ξ′ = S ξ (a reduct of ξ) is not root-active but
still not SN∞, yet it reduces to Sω. An example of a root-active term which reduces only
to itself (implying that ‖ξ‖S and ‖ξ‖P are finite) is ζ = (PS)ω. The dotted part consists of

88 J. ENDRULLIS, C. GRABMAYER, D. HENDRIKS, J.W. KLOP, AND V. VAN OOSTROM

RA

•
Sω

•
Pω

SN∞

‖w‖S =∞ ‖w‖P =∞
•ξ

•ζ
•ψ

•ξ′

Figure 2: Venn diagram of infinite PS-words.

terms with the property of infinitary strong normalization (SN∞,[6]), normalizing to Sω, or
Pω, respectively. For instance (S SP)ω is in the left dotted triangle.

The root-active terms can be characterized as follows.

Proposition 2.4. A PS-word w is root-active if and only if w is the concatenation of
infinitely many finite ‘zero-words’ w1, w2, w3, . . ., that is, words wi with sum(wi) = 0.

As a consequence of this proposition, an infinite PS-word w is root-active if and only if
sum(w, n) = 0 for infinitely many n, and hence, if ((lim inf)n→∞|sum(w, n)|) = 0.

Corollary 2.5. For an infinite PS-word w we have SN∞(w) if and only if each value
sum(w, n) for n = 0, 1 . . . occurs only finitely often.

It follows that SN∞(w) holds if and only if ((lim inf)n→∞|sum(w, n)|) =∞, and hence,
if limn→∞ sum(w, n) ∈ {∞,−∞}.

3. A Counterexample to UN∞ of the Infinitary λβη-Calculus

We give a straightforward translation of the word ψ = P1 S2 P3 . . . from the previous
section into an infinite λ-term which then forms a counterexample to the infinitary unique
normal form property UN∞ for λ∞βη, the infinitary λβη-calculus. The infinitary λβη-
calculus [7, 8] is a well-known example of a weakly orthogonal higher-order term rewrite
system.

The set Ter∞(λ) of (potentially) infinite λ-terms is coinductively defined by:

M ::= x |MM | λx.M (Ter∞(λ))

The rewrite rules of λ∞βη are:

λx.MN →M [x:=N] (β)

λx.Mx→M if x is not free in M (η)

UNIQUE NORMAL FORMS IN INFINITARY WEAKLY ORTHOGONAL REWRITING 89

whereM [x:=N] denotes the result of substituting N for all free occurrences of x inM . The
λ∞βη-calculus allows for two critical pairs1:

Mx
β
← (λx.Mx)x

η
→Mx λx.M [y:=x]

β
← λx.(λy.M)x

η
→ λy.M

As we have that λx.M [y:=x] and λy.M are equal modulo renaming of bound variables,
both of these critical pairs are trivial. Hence λ∞βη is weakly orthogonal.

We translate infinite PS-words to λ-terms.

1We use the notation of infinitary λ-calculus, but we view the rule schemes (β) and (η) as rules of a

second-order HRS, thereby obtaining a formal notion of critical pairs ([9, Def. 11.6.10]). Likewise, CRSs can

be viewed as second-order HRSs.

90 J. ENDRULLIS, C. GRABMAYER, D. HENDRIKS, J.W. KLOP, AND V. VAN OOSTROM

Definition 3.1. We define L M : {P, S}ω → Ter∞(λ) by LwM = LwM0, for all w ∈ {P, S}ω,
where LwMi is defined coinductively, for all i ∈ Z, as follows:

LPwMi = LwMi−1 xi LSwMi = λxi+1.LwMi+1

The translation of ψ is the λ-term LψM, displayed in the middle of Figure 3. This term has

·
λx0

λx1

·
·

·
λx−1

λx0

λx1

λx2

·
·

·
·

·
...

x−2

x−1

x0
x1
x2

x−1

x0
x1

x0

λx1

λx2

...

·
·

·
...

x−2

x−1

x0

β η

Figure 3: Counterexample to unique normal forms in λ∞βη.

two normal forms (corresponding to Sω and Pω), as indicated in the figure.
While LψM cannot be generated from a finite λ-term (it has infinitely many free vari-

ables), the finite term WWI where W = λwf.f(ww(λabc.f(abc))x0) and I = λa.a exhibits
a similar behaviour, reducing both to A = λx.A and B = Bx0. This can be seen as fol-
lows: Let Vn = λv1 . . . vn.(v1 . . . vn). First note that WWI →2

β I(WW (λabc.I(abc))x0)→
2
β

WWV3x0. Then we get:

WWV3x0 →
2
β V3(WW (λabc.V3(abc))x0)x0 →

3
β λv3.WWV5x0x0v3

→6
β λv3v5.WWV7x0x0x0v3v5 ։։β λv3v5v7 =α A

WWV3x0 →
2
η (WWI)x0 ։։βη B

Note that the number of bound variables needed along the reduction from WW (λa.a) to
A is unbounded, but that A can be written using only a single one. We conjecture that
it holds for every counterexample to UN∞ in the infinitary λβη-calculus that during the
rewrite process to one of the normal forms unboundedly many variables are needed.

The translation given in Definition 3.1 lifts PS→ ε to β, and SP→ ε to η.

Lemma 3.2. An application of the rule PS → ε at depth k in an infinite PS-word w
corresponds to a β-step in λ∞βη at depth k in LwMi. Similarly so for the rule SP→ ε and
the η-rule. These correspondences are indicated in the following diagrams:

UNIQUE NORMAL FORMS IN INFINITARY WEAKLY ORTHOGONAL REWRITING 91

PSw (λxi.LwMi)xi

w LwMi

L Mi

PS

L Mi

β

SPw λxi+1.LwMi xi+1

w LwMi

L Mi

SP

L Mi

η

The counterexample to the infinitary unique normal form property UN∞ for infini-
tary λβη-calculus (λ∞βη) establishes a striking contrast to the situation for infinitary λβ-
calculus (λ∞β). In the latter, infinitary confluence breaks down, but infinitary normal forms
stay unique. Therefore λ∞β clearly is of importance in the model theory of λ-calculus; for
several models the equality is captured by convertibility in λ∞β. E.g. Böhm Trees, Lévy–
Longo trees and Berarducci trees are unique normal forms in this rewrite system, when
suitable ⊥-normalization rules are added. (See [1, 2] and [9, Ch.12]). However, when the
η-rule is added, and the infinitary perspective is maintained, then ‘everything’ breaks down
dramatically: not only infinitary confluence, but also unique infinitary normal forms.

From the perspective of combinatory reduction systems (CRSs, see [9]) the η-rule has
many undesirable properties: (i) it is undecidable whether an infinite term is an η-redex,
since it is undecidable whether an infinite term contains a variable freely; (ii) single-step
η-reduction is not lower semi-continuous: if t η-reduces to u, then for a given ǫ > 0 we
cannot always find a δ > 0 such that anything within δ-distance of t η-reduces to something
within ǫ-distance of u; (iii) the η-rule is not fully-extended, and various existing results for
orthogonal infinite CRSs require fully-extendedness, see [4].

4. A Refinement of the Compression Lemma

As a preparation for Section 5 we will prove the following lemma, which is a refined
version of the Compression Lemma in left-linear TRSs. In its original formulation (e.g. see
Theorem 12.7.1 on page 689 in [9]), it states that strongly convergent rewrite sequences in
left-linear TRSs can be compressed to length less or equal to ω. We recall that a rewrite
sequence of ordinal length α is strongly convergent if for each limit ordinal λ ≤ α the depth
of the contracted redexes tends to infinity.

Lemma 4.1 (Refined Compression Lemma). Let R be a left-linear iTRS. Let κ : s→α
R t be

a rewrite sequence, d the minimal depth of a step in κ, and n the number of steps at depth
d in κ. Then there exists a rewrite sequence κ′ : s →≤ω

R t in which all steps take place at
depth ≥ d, and where precisely n steps contract redexes at depth d.

Proof. We proceed by transfinite induction on the ordinal length α of rewrite sequences
κ : s →α

R t with d the minimal depth of a step in κ, and n the number of steps at depth d
in κ.

In case that α = 0 nothing needs to be shown.
Suppose α is a successor ordinal. Then α = β + 1 for some ordinal β, and κ is of the

form s→β s′ → t. Applying the induction hypothesis to s→β s′ yields a rewrite sequence
s →γ s′ of length γ ≤ ω that contains the same number of steps at depth d, and no steps
at depth less than d.

If γ < ω, then s→γ s′ → t is a rewrite sequence of length γ + 1 < ω, in which all steps
take place at depth ≥ d and precisely n steps at depth d.

If γ = ω, we obtain a rewrite sequence of the form s ≡ s0 → s1 → . . .→ω sω → t. Let
ℓ→ r ∈ R be the rule applied in the final step sω → t, that is, sω ≡ C[ℓσ]→ C[rσ] ≡ t for

92 J. ENDRULLIS, C. GRABMAYER, D. HENDRIKS, J.W. KLOP, AND V. VAN OOSTROM

some context C and substitution σ. Moreover, let dh be the depth of the hole in C, and dp
the depth of the pattern of ℓ. Since the reduction s0 →

ω sω is strongly convergent, there
exists n ∈ N such that all rewrite steps in ξ : sn →

ω sω have depth > dh+dp, and hence are
below the pattern of the redex contracted in the last step sω → t. As a consequence, there
exists a context D and a substitution τ such that sn ≡ D[ℓτ]. Since the rewrite sequence
ξ : sn ≡ D[ℓτ]→ω C[ℓσ] ≡ sω consists only of steps at depth > dh + dp, it follows that:

• there exists a rewrite sequence ϑ : D[2]→≤ω C[2] at depth > dh + dp, and
• there exist rewrite sequences ϑx : τ(x)→≤ω σ(x) for all x ∈ Var(ℓ).

We now prepend the final step sω → t to sn, that is: sn ≡ D[ℓτ]→ D[rτ]. Even if the term
r is infinite, this creates at most ω-many copies of subterms τ(x) with reduction sequences
ϑx : τ(x) →≤ω σ(x) of length ≤ ω. Since the rewrite sequences ϑ and ϑx for x ∈ Var(ℓ)
are in disjoint (parallel) subterms, there exists an interleaving D[rτ] →≤ω C[rσ] of length
at most ω (the idea is similar to establishing countability of ω2 by dovetailing). We obtain
a rewrite sequence κ′ : s→≤ω t, since s→n sn ≡ D[ℓτ]→ D[rτ]→≤ω C[rσ] ≡ t.

It remains to be shown that κ′ contains only steps at depth ≥ d, and that it has the
same number of steps as the original sequence κ at depth d. This follows from the induction
hypothesis and the fact that all steps in sn →

ω sω have depth > dh + dp and thus also all
steps of the interleaving D[rτ] →≤ω C[rσ] have depth > dh + dp − dp = dh ≥ d (the
application of ℓ→ r can lift steps at most by the pattern depth dp of ℓ).

s t
α

last step of depth d
β < α

≤ ω

≥ d > d

last step of depth d
n < ω

≤ ωIH continue
with d+ 1, . . .

Figure 4: Compression Lemma, in case α is a limit ordinal.

Finally, suppose that α is a limit ordinal > ω. We refer to Figure 4 for a sketch of the
proof. Since κ is strongly convergent, only a finite number of steps take place at depth d.
Hence there exists β < α such that sβ is the target of the last step at depth d in κ. We

have s →β sβ →
≤α t and all rewrite steps in sβ →

≤α t are at depth > d. By induction
hypothesis there exists a rewrite sequence ξ : s →≤ω sβ containing an equal amount of

steps at depth d as s→β sβ . Consider the last step of depth d in ξ . This step has a finite
index n < ω. Thus we have s →∗ sn →

≤α t, and all steps in sn →
≤α t are at depth > d.

By successively applying this argument to sn →
≤α t we construct finite initial segments

s→∗ sn with strictly increasing minimal rewrite depth d. Concatenating these finite initial
segments yields a reduction s →≤ω t containing as many steps at depth d as the original
sequence.

With this refined compression lemma we now prove that also divergent rewrite sequences
can be compressed to length less or equal to ω.

Theorem 4.2. Let R be a left-linear iTRS. For every divergent rewrite sequence κ : s→α
R

of length α there exists a divergent rewrite sequence κ′ : s→≤ω
R of length less or equal to ω.

UNIQUE NORMAL FORMS IN INFINITARY WEAKLY ORTHOGONAL REWRITING 93

Proof. Let κ : s →α
R be a divergent rewrite sequence. Then there exist k ∈ N such that

infinitely many steps in κ take place at depth k. Let d be the minimum of all numbers k
with that property. Let β be the index of the last step above depth d in κ, κ : s→β sβ →

≤α.

Then by Lemma 4.1 the rewrite sequence s→β sβ can be compressed to a rewrite sequence
s →≤ω sβ such that sβ →

≤α consists only of steps at depth ≥ d, among which infinitely
many steps are at depth d. Let n be the index of the last step of depth ≤ d in the rewrite
sequence s→≤ω sβ . Then s→

∗ sn →
≤ω sβ →

≤α, and sn →
≤ω sβ →

≤α contains only steps
at depth ≥ d. Thus all steps with depth less than d occur in the finite prefix s→∗ sn.

Now consider the rewrite sequence κ1 : sn →
≤ω · →≤α, say κ1 : sn →

γ for short,
containing infinitely many steps at depth d. Let γ′ be the index of the first step at depth
d in κ1. Then κ1 : sn →

γ′ u →≤γ for some term u and sn →
γ′ u can be compressed to

sn →
≤ω u containing exactly one step at depth d. Now let m be the index of this step, then

sn →
m u′ →≤ω u→≤γ where sn →

m u′ contains one step at depth d. Repeatedly applying
this construction to u′ →≤ω u →≤γ we obtain a rewrite sequence κ′ : s →∗ sn →

∗ u′ →∗

u′′ → . . . that contains infinitely many steps at depth d, and hence is divergent.

5. Infinitary Confluence

In Section 2 we have seen that the property UN∞ fails for weakly orthogonal TRSs when
collapsing rules are present, and hence also CR∞. Now we show that weakly orthogonal
TRSs without collapsing rules are infinitary confluent (CR∞), and as a consequence also
have the property UN∞.

We adapt the projection of parallel steps in weakly orthogonal TRSs from [9, Sec-
tion 8.8.4.] to infinite terms. The basic idea is to orthogonalize the parallel steps, and then
project the orthogonalized steps. The orthogonalization uses that overlapping redexes have
the same effect and hence can be replaced by each other. In case of overlaps we replace the
outermost redex by the innermost one. This is possible since the maximal nesting depth
of the union of two infinite parallel steps is at most 2, that is, there can not be infinite
chains of overlapping nested redexes in such a union (see Example 6.3). For a treatment
of infinitary multi-steps where such chains can occur, we refer to Section 6. See further [9,
Proposition 8.8.23] for orthogonalization in the finitary case.

Definition 5.1. Let R be a TRS, and t ∈ Ter∞(Σ) a term.
A redex in t is a pair consisting of a position p and a rule ℓ→ r, such that t|p = ℓσ for

some substitution σ. We call p and ℓ→ r the root and rule of the redex, respectively. The
pattern of a redex 〈p, ℓ→ r〉 is the set of all positions pq such that ℓ(q) is a function symbol.

Two sets of positions are overlapping if they have a non-empty intersection. For redexes
u and v in t we say that u and v overlap, denoted by u ! v, if the patterns of u and v
overlap. A set U of redexes is called non-overlapping if, for all u, v ∈ U with u 6= v, u does
not overlap with v.

For a study of developments we refer to [9, Sec. 4.5.2] and [10]. Here, we briefly introduce
developments and multi-steps via labelling (underlining).

Definition 5.2. Let R be a weakly orthogonal TRS over Σ. For symbols f ∈ Σ and ρ ∈ R
we write fρ for f labelled with ρ. For labelled terms t, we write ⌊t⌋ to denote the term
obtained from t by dropping all labels.

We define the TRS R⊲ to consist of all rules ℓρ → r for ρ : ℓ → r ∈ R where ℓρ is the

94 J. ENDRULLIS, C. GRABMAYER, D. HENDRIKS, J.W. KLOP, AND V. VAN OOSTROM

term obtained from ℓ by labelling the root-symbol of ℓ with ρ.
Let t, t′ ∈ Ter∞(Σ) be terms, and U a set of non-overlapping redexes in t. Let tU be

the term obtained from t by labelling for each redex 〈p, ρ〉 ∈ U the symbol at position p in
t with ρ. A development of U in t is a rewrite sequence t ։։R t′ (in R) that can be lifted
to a reduction tU ։։R⊲ t′′ (in R⊲) such that t′′ arises from t′ by adding some labels; the
development is called complete if t′ ≡ t′′. A multi-step with respect to U is a step t ◦−→U t

′

such that there exists a reduction tU ։։R⊲ t′.

In non-collapsing, weakly orthogonal TRSs, every set U of non-overlapping redexes has
a complete development, and every complete development of U ends in the same term [9].
Multi-steps arise from complete developments, and are uniquely determined by their starting
term and redex set.

Definition 5.3. Let R be a TRS, t ∈ Ter∞(Σ) a term, and let U and V be sets of redexes
in t. We call U and V orthogonal (to each other) if U∪V is a non-overlapping set of redexes.

Definition 5.4. Let R be a non-collapsing, weakly orthogonal TRS, and let U and V be
orthogonal sets of redexes in a term t. For multi-steps φ : t ◦−→U t

′ and ψ : t ◦−→V t′′ with
respect to U and V we define the projection φ/ψ as the multi-step t′′ ◦−→U ′ s with respect
to the set of residuals U ′ = U/ψ as defined in [9].1 In the sequel we frequently write ◦−→ for
the multi-step relation, suppressing the set of redexes U that induces the multi-step ◦−→U .

Definition 5.5. An orthogonalization of a pair 〈φ, ψ〉 of multi-steps φ : s ◦−→U t1 and
ψ : s ◦−→V t2 with respect to sets U and V of redexes in s is a pair 〈φ′, ψ′〉 of multi-steps
φ′ : s ◦−→U ′ t1 and ψ′ : s ◦−→V ′ t2 with respect to orthogonal sets U ′ and V ′ of redexes in s.

A parallel step φ : s −→ t is a multi-step φ : s ◦−→U t with respect to a set U of parallel
redexes, that is, redexes at pairwise disjoint positions.

Proposition 5.6. Let φ : s −→ t1 and ψ : s −→ t2 be parallel steps in a weakly orthogonal
TRS. Then there exists an orthogonalization 〈φ′, ψ′〉 of φ and ψ with the special property
that φ′ : s −→ t1 and ψ′ : s −→ t2.

Proof. In case of overlaps between U and V , then for every overlap we replace the outermost
redex by the innermost one (if there are multiple inner redexes overlapping, then we choose
the left-most among the top-most redexes). If there are two redexes at the same position
but with respect to different rules, then we replace the redex in V with the one in U . See
also Figure 5.

Figure 5: Orthogonalization of parallel steps; the arrow indicates replacement.

Definition 5.7. Let φ : s −→ t1, ψ : s −→ t2 be parallel steps in a weakly orthogonal TRS.
The weakly orthogonal projection φ/ψ of φ over ψ is defined as the orthogonal projection

1We refer to Def. 12.5.3 in [9], and note that the definition not only applies in orthogonal TRSs, but also

to every non-overlapping set U of redexes versus a multistep φ w.r.t. a redex set V that is orthogonal to U .

UNIQUE NORMAL FORMS IN INFINITARY WEAKLY ORTHOGONAL REWRITING 95

φ′/ψ′ where 〈φ′, ψ′〉 is the orthogonalization of φ and ψ given in the proof of Proposition 5.6.

Remark 5.8. The weakly orthogonal projection does not give rise to a residual system in
the sense of [9]. The projection fulfils the three identities φ/φ ≈ 1, φ/1 ≈ φ, and 1/φ ≈ 1,
but not the cube identity (φ/ψ)/(χ/ψ) ≈ (φ/χ)/(ψ/χ).

Lemma 5.9. Let φ : s −→ t1, ψ : s −→ t2 be parallel steps in a weakly orthogonal TRS R.
Let dφ and dψ be the minimal depth of a step in φ and ψ, respectively. Then the minimal
depth of the weakly orthogonal projections φ/ψ and ψ/φ is greater or equal min(dφ, dψ). If
R contains no collapsing rules then the minimal depth of φ/ψ and ψ/φ is greater or equal
min(dφ, dψ + 1) and min(dψ, dφ + 1), respectively.

Proof. Immediate from the definition of the orthogonalization (for overlaps the innermost
redex is chosen) and the fact that in the orthogonal projection a non-collapsing rule applied
at depth d can lift nested redexes at most to depth d+ 1 (but not above).

Lemma 5.10 (Parallel Moves Lemma). Let R be a weakly orthogonal TRS, κ : s →α t1
a rewrite sequence, and φ : s −→ t2 a parallel rewrite step. Let dκ and dφ be the minimal
depth of a step in κ and φ, respectively. Then there exist a term u, a rewrite sequence
ξ : t2 →

≤ω u and a parallel step ψ : t1 −→ u such that the minimal depth of the rewrite
steps in ξ and ψ is min(dκ, dξ); see Figure 6 (left).

If additionally R contains no collapsing rules, then the minimal depth of a step in ξ
and ψ is min(dκ, dξ + 1) and min(dξ, dκ + 1), respectively. See also Figure 6 (right).

s t1

t2 u

≥ dκ

≥ dξ

≥ min(dκ, dξ)

≥ min(dκ, dξ)

s t1

t2 u

≥ dκ

≥ dξ

≥ min(dκ, dξ + 1)

≥ min(dξ, dκ + 1)

Figure 6: Parallel Moves Lemma; with (left) and without (right) collapsing rules.

Proof. By compression we may assume α ≤ ω in κ : s →≤ω t1 (note that, the minimal
depth d is preserved by compression). Let κ : s ≡ s0 → s1 → s2 → . . ., and define ψ0 = ψ.
Furthermore, let κ≤n denote the prefix of κ of length n, that is, s0 → . . . → sn and let
κ≥n denote the suffix sn → sn+1 → . . . of κ. We employ the projection of parallel steps
to close the elementary diagrams with top sn → sn+1 and left ψn : sn −→ s′n, that is, we
construct the projections ψi+1 = ψi/(si → si+1) (right) and (si → si+1)/ψi (bottom). Then
by induction on n using Lemma 5.9 there exists for every 1 ≤ n ≤ α a term s′n, and parallel
steps φn : sn −→ s′n and s′n−1 −→ s′n. See Figure 7 for an overview.

We show that the rewrite sequence constructed at the bottom s′0 −→ s′1 −→ . . . of
Figure 7 is strongly convergent, and that the parallel steps φi have a limit for i → ∞
(parallel steps are always strongly convergent).

Let d ∈ N be arbitrary. By strong convergence of κ there exists n0 ∈ N such that all
steps in κ≥n0

are at depth ≥ d. Since φn0
is a parallel step there are only finitely many

redexes φn0,<d ⊆ φn0
in φn0

rooted above depth d. By projection of φn0
along κ≥n0

no fresh
redexes above depth d can be created. The steps in φn0,<d may be cancelled out due to
overlaps, nevertheless, for all m ≥ n0 the set of steps above depth d in φm is a subset of
φn0,<d.

Let p be the maximal depth of a left-hand side of a rule applied in φn0,<d. By strong

96 J. ENDRULLIS, C. GRABMAYER, D. HENDRIKS, J.W. KLOP, AND V. VAN OOSTROM

s ≡ s0 s1 . . . sn0
sm0 t1

t2 ≡ s
′
0 s′1 . . . s′n0

s′m0
u

s′′n0
s′′m0

t′′1

≥ d ≥ d+ p

φ = φ0 φ1

φn0,<d

φn0,≥d

ψ ⊆ φn0,<d

φm0,≥d

ψ

≥ d

≥ d

≥ d

Figure 7: Parallel Moves Lemma, proof overview.

convergence of κ there exists m0 ≥ n0 ∈ N such that all steps in κ≥n0
are at depth ≥ d+ p.

As a consequence the steps ψ in φm0
rooted above depth d will stay fixed throughout the

remainder of the projection. Then for all m ≥ m0 the parallel step φm can be split into
φm = sm −→ψ s

′′
m −→φm,≥d

s′m where φm,≥d consists of the steps of φm at depth ≥ d. Since
d was arbitrary, it follows that projection of φ over κ has a limit. Moreover the steps of the
projection of κ≥m0

over φm0
are at depth ≥ d+p−p = d since rules with pattern depth ≤ p

can lift steps by at most by p. Again, since d was arbitrary, it follows that the projection
of κ over φ is strongly convergent.

Finally, both constructed rewrite sequences (bottom and right) converge towards the
same limit u since all terms {s′m, s

′′
m | m ≥ m0} coincide up to depth d − 1 (the terms

{sm | m ≥ m0} coincide up to depth d+p−1 and the lifting effect of the steps φm is limited
by p).

Theorem 5.11. Every weakly orthogonal TRS without collapsing rules is infinitary conflu-
ent.

s s1 t1

s2

t2

s′ t′1

t′2 u

≥ d

≥ d

> d

> d

≥ d
≥ d

> d

> d

≥ d

≥ dfinitary diagram PML (Lemma 5.10)

PML (Lemma 5.10)
repeat construction

with d+ 1

Figure 8: Infinitary confluence.

Proof. An overview of the proof is given in Figure 8. Let κ : s→α t1 and ξ : s→β t2 be two
rewrite sequences. By compression we may assume α ≤ ω and β ≤ ω. Let d be the minimal
depth of any rewrite step in κ and ξ. Then κ and ξ are of the form κ : s→∗ s1 →

≤ω t1 and
ξ : s→∗ s2 →

≤ω t2 such that all steps in s1 →
≤ω t1 and s2 →

≤ω t2 at depth > d.
Then s →∗ s1 and s →∗ s2 can be joined by finitary diagram completion employing

the diamond property for parallel steps. If follows that there exists a term s′ and finite
sequences of (possibly infinite) parallel steps s1 −→

∗ s′ and s2 −→
∗ s′ all steps of which are

at depth ≥ d (Lemma 5.9). We project s1 →
≤ω t1 over s1 −→

∗ s′, s2 →
≤ω t2 over s2 −→

∗ s′

by repeated application of the Lemma 5.10, obtaining rewrite sequences t1 ։։ t′1, s
′ ։։ t′1,

t2 ։։ t′2, and s
′ ։։ t′2 with depth ≥ d, > d, ≥ d, and > d, respectively. As a consequence we

UNIQUE NORMAL FORMS IN INFINITARY WEAKLY ORTHOGONAL REWRITING 97

have t′1, s
′ and t′2 coincide up to (including) depth d. Recursively applying the construction

to the rewrite sequences s′ ։։ t′1 and s′ ։։ t′2 yields strongly convergent rewrite sequences

t2 ։։ t′2 ։։ t′′2 ։։ . . . and t1 ։։ t′1 ։։ t′′1 ։։ . . . where the terms t
(n)
1 and t

(n)
2 coincide up to

depth d+ n− 1. Thus these rewrite sequences converge towards the same limit u.

We consider an example to illustrate that the absence of collapsing rules is a necessary
condition for Theorem 5.11.

Example 5.12. Let R be a TRS over the signature {f, a, b} consisting of the collapsing
rule: f(x, y)→ x Then, using a self-explaining recursive notation, the term s = f(f(s, b), a)
rewrites in ω many steps to t1 = f(t1, a) as well as t2 = f(t2, b) which have no common
reduct. The TRS R is weakly orthogonal (even orthogonal) but not confluent. The same
phenomenon occurs in the infinitary version of combinatory logic, due to the rule Kxy → x.

6. The Diamond and Triangle Property for Multi-Steps

We prove that infinitary multi-steps in weakly orthogonal TRSs without collapsing
rules have the diamond property. For all TRSs in this section we assume that are weakly
orthogonal and do not contain collapsing rules.

Definition 6.1. A binary relation → on A is said to have:

• the diamond property if ← · → ⊆ → · ←, and
• the triangle property if ∀a ∈ A. ∃a′ ∈ A. a→ a′ ∧ (∀b ∈ A. a→ b⇒ b→ a′).

We develop an orthogonalization algorithm that, given two co-initial multisteps, makes
them orthogonal to each other by eliminating overlaps. Since overlapping steps in weakly
orthogonal TRSs have the same targets, we can replace one by the other. The challenge is
to do this in such a way that no new overlaps are created.

1
2 ∪

3

5

4

=

Figure 9: Orthogonalization in a weakly orthogonal TRS.

Consider for example Figure 9, where the redexes 2 and 3 overlap with each other.
When trying to solve this overlap, we have to be careful since replacing the redex 2 by 3 as
well as 3 by 2 creates new conflicts.

The case of finitary weakly orthogonal rewriting is treated in [9, Theorem 8.8.23]. There
an inside-out algorithm is employed, consisting of inductively extending an orthogonaliza-
tion of the subtrees to the whole tree. The basic observation is that one overcomes the
difficulties pointed out above by starting at the bottom of the tree and solving overlaps by
choosing the deeper (innermost) redex.

Example 6.2. We consider Figure 9 and apply the orthogonalization algorithm from [9,
Theorem 8.8.23]. We start at the bottom of the tree. The first overlap we find is between
the redexes 2 and 5; this is removed by replacing 2 with 5. Then the overlap between 2 and
3 has also disappeared. The only remaining overlap is between the redexes 3 and 1. Hence

98 J. ENDRULLIS, C. GRABMAYER, D. HENDRIKS, J.W. KLOP, AND V. VAN OOSTROM

we replace 3 by 1. As result we obtain two orthogonal multi-steps {1, 5} and {1, 4, 5}.

Note that the above algorithm does not carry over to the case of infinitary
multi-steps since we may have infinite chains of overlapping redexes and thus
have no bottom to start at. This is illustrated on the right.

Example 6.3. As an example where such an infinite chain of overlaps arises
we consider the TRS R consisting of the rule:

A(A(A(x)))→ A(x)

together with two multi-steps of blue and green redexes in the term Aω:

A(A(A(A(A(A(A(A(A(A(A(A(A(A(A(. . .) . . .)

The blue redexes are marked by overlining, the green redexes by underlining.

Definition 6.4. A cluster is a non-empty set of redexes which forms a connected compo-
nent with respect to !. The pattern of a cluster is the union of the patterns of its redexes.
A cluster is a Y-cluster if it contains a pair of redexes at parallel positions (Figure 10, cases
(ii) and (iv)); otherwise it is an I-cluster (Figure 10, cases (i) and (iii)). A Y-redex is a
redex in a Y-cluster.

At first sight one might expect that Y-redexes are due to trivial rules of the form ℓ→ r
with ℓ ≡ r. However, the following example illustrates that, in general, this is not the case.

Example 6.5. Let R consist of the following (non-trivial) rules:

f(g(x, y), z, g(a, a))→ f(g(y, x), z, g(a, a)) (ρ1)

f(g(a, a), z, g(x, y))→ f(g(a, a), z, g(y, x)) (ρ2)

g(x, y)→ g(y, x) (ρ3)

We consider the term f(g(a, a), t, g(a, a)) which contains both a ρ1-redex and a ρ2-redex at
the root, a ρ3-redex at disjoint positions 1 and 3. These redexes form a Y-cluster.

Notwithstanding the above example, it is always safe to drop Y-redexes from multi-steps
without changing the outcome of the multi-step. This result is implicit in [5]. In partic-
ular in [5, Remark 4.38] it is mentioned that Y-clusters are a generalisation of Takahashi-
configurations.

Lemma 6.6. Let Y be a term in which the non-variable positions form the pattern of a
Y-cluster, σ a substitution, and Y σ → s a step in Y . Then s ≡ Y σ and subterms outside of
Y have not been affected. (Note that subterms fully contained in the pattern of a Y-cluster
can be affected.)

Proof. By weak orthogonality redexes in a cluster have the same effect. Since Y-clusters have
redexes at disjoint positions, it follows that contraction of any redex in a Y-cluster results in
the same term. By applying this argument for the result of replacing the subterms outside
of the Y-cluster by fresh variables, we conclude that none of these subterms can be affected
(moved, copied, deleted) by contracting a redex from the Y-cluster.

Lemma 6.7. Let R be a weakly orthogonal TRS, t ∈ Ter∞(Σ) a term. Let U be a set
of non-overlapping redexes in t. Furthermore, let V ⊆ U be such that every redex in V is
contained in a Y-cluster of t. Then the multi-step with respect to U\V results in the same
term as the multi-step with respect to U .

UNIQUE NORMAL FORMS IN INFINITARY WEAKLY ORTHOGONAL REWRITING 99

Proof. We reduce in the complete development first all Y-redexes: by Lemma 6.6 this leaves
the term as well as all redexes outside of Y-clusters untouched. As a consequence, the result
of the complete development (multi-step) depends only on the redexes outside of Y-clusters.

Definition 6.8. Let σ : s ◦−→U t1 and δ : s ◦−→V t2 be multi-steps. An orthogonalization
witness for the pair 〈σ, δ〉 of multi-steps is a pair 〈fU , fV 〉 of injective partial functions
fU : U ⇀ U ∪ V and fV : V ⇀ U ∪ V such that it holds: (i) ran(fU) and ran(fV) are
orthogonal sets of redexes in t ; (ii) for all u ∈ dom(fU), fU (u) ! u, as well as, for all
v ∈ dom(fV), fV (v) ! v ; and (iii) (U\dom(fU))∪ (V \dom(fV)) ⊆ {v : v is Y-redex in t}.

Informally, an orthogonalization witness of multi-steps w.r.t. redex sets U and V defines
(as stated in the proposition below) an orthogonalization consisting of multi-steps w.r.t.
redex sets U ′ and V ′ that arise from U and V by exchanging redexes with equivalent,
overlapping ones, and by possibly dropping some Y-redexes which have no effect.

Proposition 6.9. Let σ : s ◦−→U t1 and δ : s ◦−→V t2 be multi-steps, and let 〈fU , fV 〉 be an
orthogonalization witness for 〈σ, δ〉. Then U ′ = ran(fU) and V ′ = ran(fV) are orthogonal
sets of redexes in s, and there exist multi-steps σ′ : s ◦−→U ′ t1 and δ′ : s ◦−→V ′ t2, and hence
an orthogonalization 〈σ′, δ′〉 of 〈σ, δ〉.

We now define a top–down orthogonalization algorithm. Roughly speaking, we start at
the top of the term and replace overlapping redexes with the outermost one. However, care
has to be taken in situations as depicted in Figure 9.

Theorem 6.10. Let R be a weakly orthogonal TRS, t ∈ Ter∞(Σ) a (possibly infinite) term.
Every pair 〈σ, δ〉 of multi-steps σ : t ◦−→ t′ and δ : t ◦−→ t′′ has an orthogonalization.

Proof. Let σ : s ◦−→U t1 and δ : s ◦−→V t2 be multi-steps with respect to sets U and V of
(non-overlapping) redexes. In view of Proposition 6.9 it suffices to construct an orthogonal-
ization witness 〈fU , fV 〉 for 〈σ, δ〉. Briefly, we will show that it is always possible to solve
outermost conflicts without creating fresh ones. After solving a conflict, the orthogonaliza-
tion continues with the next conflict that is now at a top-most position.

If U and V are orthogonal, then we are finished (then fU and fV are both the identity).
In this proof, by overlap we mean non-identical redexes whose patterns overlap. If there
exist overlaps, let u ∈ U ∪ V be a topmost redex (that is, having minimal depth) among
the redexes which have an overlap. Without loss of generality (by symmetry) we assume
that u ∈ U and let v ∈ V be a topmost redex among the redexes in V overlapping u.

We distinguish the following cases:

u

v

case (i)

u

v
w

case (ii)

u

v

w

case (iii)

u

v

mw

case (iv)

Figure 10: Case distinction for the orthogonalization algorithm.

(i) If v is the only redex in V that overlaps with u, case (i) of Figure 10, then we can safely

100 J. ENDRULLIS, C. GRABMAYER, D. HENDRIKS, J.W. KLOP, AND V. VAN OOSTROM

replace v by u. More precisely, we define fU (u) = u and fV (v) = u and continue the
orthogonalization with 〈U \ {u}, V \ {v}〉, that is, the remaining redexes. Note that,
since (U \ {u}) ∪ (V \ {v}) contains no redexes overlapping u, the orthogonalization
of the remainder cannot create overlaps with u.

Otherwise we pick a redex w ∈ V , w 6= v and w overlaps u.

(ii) Assume that v and w are at disjoint positions, case (ii) of Figure 10. Then u, v and w
are Y-redexes and can be dropped from U and V by Lemma 6.7. That is, we choose
fU (u), fV (v) and fV (w) to be undefined, and continue the orthogonalization with the
remainder 〈U \ {u}, V \ {v, w}〉.

Otherwise, v and w are not disjoint, and then w must be nested inside v.

(iii) If u is the only redex from U overlapping v, case (iii) of Figure 10, then we can replace u
by v. That is, we define fU (u) = v and fV (v) = v. We continue the orthogonalization
with 〈U \ {u}, V \ {v}〉; that is including w since w may have further overlaps that
need to be resolved.

(iv) In the remaining case there must be a redex m ∈ U , m 6= u and m overlaps with the
redex v, see case (iv) of Figure 10. We pick such anm. Since U and V are developments
u cannot overlap with m, and v cannot overlap with w. We have that w is nested in
v, both overlapping u, but m is below the pattern of u, overlapping v. Hence w and
m must be at disjoint positions (v cannot tunnel through w to touch m); this has also
been shown in [5]. Then u, m, v and w are contained in a Y-cluster, and hence they can
be removed by Lemma 6.7. We choose fU (u), fU (m), fV (v), fV (w) to be undefined,
and continue the orthogonalization with the remainder 〈U \ {u,m}, V \ {v, w}〉.

For all redexes u ∈ U and v ∈ V for which we have not specified fU (u) or fV (v), respectively,
we define fU (u) = u or fV (v) = v (this concerns those u and v that either had no overlaps,
or the conflicts have been solved by rearranging another redex positions).

We obtain the diamond property as a corollary.

Corollary 6.11. For every weakly orthogonal TRS without collapsing rules, (infinite) multi-
steps have the diamond property.

Proof. Let σ, δ be two coinitial complete developments t1
σ
← s

δ
→ t2. Then by Theorem 6.10

there exists an orthogonalization 〈σ′, δ′〉 of σ, δ. The orthogonal projections σ′/δ′ and δ′/σ′

are complete developments (multi-steps) again, which are strongly convergent since the

rules are not collapsing. Hence t1
δ′/σ′

→ s′
σ′/δ′

← t2.

Note that in Corollary 6.11 the non-collapsingness is a necessary condition. To see this,
reconsider Example 5.12 and observe that the non-confluent derivations are developments.

In a similar vein, we can prove the triangle property for infinitary weakly orthogonal
multi-steps without collapsing rules:

Theorem 6.12. For every weakly orthogonal TRS without collapsing rules, (infinite) multi-
steps have the triangle property.

7. Conclusions

We have shown the failure of UN∞ for weakly orthogonal TRSs in the presence of two
collapsing rules. For weakly orthogonal TRSs without collapsing rules we established that

UNIQUE NORMAL FORMS IN INFINITARY WEAKLY ORTHOGONAL REWRITING 101

CR∞ (and hence UN∞) holds, and that this result is optimal in the sense that allowing
only one collapsing rule is able to invalidate CR∞.

However, the failure of UN∞ for two collapsing rules raises the following question:

Question 7.1. Does UN∞ hold for weakly orthogonal TRSs with one collapsing rule?

Furthermore, we have shown that infinitary developments in weakly orthogonal TRSs
without collapsing rules have the diamond property. In general this property fails already
in the presence of only one collapsing rule.

The following table summarizes the results of this paper (coloured green) next to known
results (black).

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes yes

no

no

no

no

no

no

no

no

no

no

no

no

yes no ? ?

yes yes yes yes

yes no no no

yes no yes yes

yes

yes2

yes[4]

PML CR UN NF PML∞ CR∞ UN∞ NF∞

WOCRS1

λβη

fe-OCRS

λβ

1c-WOTRS

nc-WOTRS

WOTRS

OTRS

finitary infinitary

h
ig
h
er
-o
rd
er

fi
rs
t-
o
rd
er

The nc-WOTRSs are weakly orthogonal TRSs without collapsing rules; 1c-WOTRSs like-
wise with one collapsing rule. The fe-OCRSs are fully extended orthogonal CRSs, see [4].

References

[1] H. Barendregt and J.W. Klop. Applications of Infinitary Lambda Calculus. Inf. Comput., 207(5):559–

582, 2009.

[2] I. Bethke, J.W. Klop, and de Vrijer, R.C. Descendants and Origins in Term Rewriting. Inf. Comput.,

159(1–2):59–124, 2000.

[3] R. Kennaway, J.W. Klop, M.R. Sleep, and F.-J. de Vries. Transfinite Reductions in Orthogonal Term

Rewriting Systems. Inf. Comput., 119(1):18–38, 1995.

[4] J. Ketema and J. Grue Simonsen. Infinitary Combinatory Reduction Systems: Confluence. LMCS,

5(4):1–29, 2009.

[5] J. Ketema, J.W. Klop, and V. van Oostrom. Vicious Circles in Rewriting Systems. CKI Preprint 52,

Universiteit Utrecht, 2004. Available at http://www.phil.uu.nl/preprints/aips/.

[6] J.W. Klop and R.C. de Vrijer. Infinitary Normalization. In We Will Show Them: Essays in Honour of

Dov Gabbay, volume 2, pages 169–192. College Publications, 2005.

[7] P. Severi and F.-J. de Vries. An Extensional Böhm Model. In S. Tison, editor, RTA 2002, volume 2378

of LNCS, pages 159–173, 2002.

[8] P. Severi and F.-J. de Vries. Continuity and Discontinuity in Lambda Calculus. In TLCA 2005, volume

3461 of LNCS, pages 369–385, 2005.

[9] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science.

Cambridge University Press, 2003.

[10] Vincent van Oostrom. Finite family developments. In Hubert Comon, editor, Proceedings of RTA 1997,

volume 1232 of Lecture Notes in Computer Science, pages 308–322. Springer, 1997.

2Beware: in [2] a counterexample is given to PML for λβη, but that pertains to the stronger (classical)

version of PML where the ‘parallel move’ has to consist of contractions of ‘residuals’ of the originally

contracted redex.

102 J. ENDRULLIS, C. GRABMAYER, D. HENDRIKS, J.W. KLOP, AND V. VAN OOSTROM

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 103-118
http://rewriting.loria.fr/rta/

THE UNDECIDABILITY OF TYPE RELATED PROBLEMS IN

TYPE-FREE STYLE SYSTEM F

KEN-ETSU FUJITA 1 AND ALEKSY SCHUBERT 2

1 Gunma University, Tenjin-cho 1-5-1, Kiryu 376-8515, Japan

E-mail address: fujita@cs.gunma-u.ac.jp

2 The University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland

E-mail address: alx@mimuw.edu.pl

Abstract. We consider here a number of variations on the System F, that are predicative

second-order systems whose terms are intermediate between the Curry style and Church

style. The terms here contain the information on where the universal quantifier elimination

and introduction in the type inference process must take place, which is similar to Church

forms. However, they omit the information on which types are involved in the rules, which

is similar to Curry forms. In this paper we prove the undecidability of the type-checking,

type inference and typability problems for the system. Moreover, the proof works for the

predicative version of the system with finitely stratified polymorphic types. The result

includes the bounds on the Leivant’s level numbers for types used in the instances leading

to the undecidability.

1. Introduction

The type systems can be viewed as formalisms in which reasonable properties of com-
putational entities can be precisely formulated. The traditional approach distinguishes two
kinds of computational entities considered in connection with type systems, i.e., Church-
style λ-terms and Curry-style ones. The System F (λ2) of Girard-Reynolds, however, allows
of introducing intermediate families of terms between Church-style and Curry-style.

From the functional programming perspective, the Curry-style terms are interesting
since they can serve as a useful notation to define programs with little notational overhead.
However, more typing information can make the process of the program understanding eas-
ier. In order to broaden the scope of different compromise choices between these extremes,
it is useful to study intermediate systems with different amounts of notational burden.

One family of such terms is the family of domain-free terms. It arose in [HS99] as a
good target language for CPS transformations. This style corresponds to removing from the

1998 ACM Subject Classification: F.4.1.

Key words and phrases: Lambda calculus and related systems, type checking, typability, partial type

inference, 2nd order unification, undecidability, Curry style type system, Church style type system, finitely

stratified polymorphic types.
2 This work was partly supported by the Polish government grant no N N206 355836.

c© K. Fujita and A. Schubert
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.103

104 K. FUJITA AND A. SCHUBERT

terms the information on which types were involved in the application of the λ abstraction
rule. Type systems with quantification permit also removing the information on which
types are involved in places where the quantification rules are used, but to leave the trace
of the quantification rule itself. This gives rise to type-free systems which we consider here.

The type-checking, type inference and typability problems were thoroughly studied for
the polymorphic lambda calculus and its various fragments and variations, e.g. [Boe85,
Pfe93, Wel99, Sch98, FS00, KTU90b, Mai90]. These and other studies show that even
a little bit more polymorphism than in ML gives rise to an undecidable system. It is,
however, still unknown if the polymorphic lambda calculus in the predicative formulation
(i.e. a system where types are divided into levels and a variable of a particular level can
be substituted for by types of a lower level), the so called finitely stratified polymorphic
lambda calculus [Lei91], is decidable with this regard.1 The current paper gives a bound
on the undecidable cases of the predicative system. The proof of the undecidability for
the type-free λ2, we present here, works in the system with limited level number (level 1
in case of type-checking and type inference, and level 2 in case of typability). This proof,
however, cannot be adapted easily to the Curry-style λ2 as it is based on a reduction
from second-order unification, while the Curry-style requires a technique which is based on
semiunification [Wel99, KTU90a].

Although this papers gives negative results, it provides an interesting perspective to the
investigation of type systems as it presents a system with light-weight annotation burden,
but which uses second-order unification as the basis for type reconstruction instead of
the semiunification. This has the advantage that the research on higher-order unification
is much more active and gives more opportunities for type systems with decidable type
reconstruction procedures.

This paper is structured as follows. We introduce the type systems to deal with in
Section 2. Section 3 is devoted to the undecidability of the restricted 2nd order unification
problem. The undecidability proof for the type-free λ2 systems is presented in Section 4.

2. Second-order Type Systems

We consider second-order polymorphic systems λ2 of Girard-Reynolds in the type-free
style.

2.1. Polymorphic System λ2 (System F)

The polymorphic system λ2 (System F) employs the connective → and second-order
universal quantification ∀ to form expressions called λ2-types:

A ::= X | (A → A) | ∀X.A

The contexts of the system (written as Γ,Γ′,Γ1 etc.) are as usual finite mappings from term
variables to types. The domain Dom(Γ) of a context Γ is the set of the term variables the
context assigns types to. The terms of λ2 in the type-free style are defined as follows. The

1To be precise, the construction of Wells [Wel99] gives rise to undecidable type-checking in the Leivant’s

level 2, the remaining cases i.e. type inference and typability, in general, and type-checking in level 1 are to

our knowledge open.

THE UNDECIDABILITY OF TYPE RELATED PROBLEMS IN TYPE-FREE STYLE SYSTEM F 105

system is an intermediate system between Church and Curry styles, where the symbols []
and Λ mark applications of the ∀ rules without the type information in terms.

M ::= x | (λx.M) | (MM) | (Λ.M) | (M [])

The inference rules are as follows:

Γ, x :A ⊢λ2tf x : A
(var)

Γ, x :A1 ⊢λ2tf M : A2

Γ ⊢λ2tf λx.M : A1→A2
(→I)

Γ ⊢λ2tf M1 : A1 → A2 Γ ⊢λ2tf M2 : A1

Γ ⊢λ2tf M1M2 : A2
(→E)

Γ ⊢λ2tf M : A

Γ ⊢λ2tf Λ.M : ∀X.A
(∀I)⋆

Γ ⊢λ2tf M : ∀X.A

Γ ⊢λ2tf M [] : A[X := A1]
(∀E)

where (∀I)⋆ denotes the eigenvariable condition X 6∈ FV(Γ).
The predicative version of the system divides the type variables into levels [Lei91].2 We

write X(k) to mark that X is in the level k. Then, the types in the level 0 and k for k > 0
are defined as follows:

A(0) ::= X(0) | (A(0) → A(0))

A(k) ::= X(k) | A(k−1) | (A(k) → A(k)) | ∀X(k−1).A(k)

The minimum level of a type A is denoted as lvl(A). Now, the rules of the predicative
type-free λ2 are as usual except the rules for the quantification:

Γ ⊢pλ2tf M : A

Γ ⊢pλ2tf Λ.M : ∀X(k).A
(∀I)⋆

Γ ⊢pλ2tf M : ∀X(k).A lvl(A1) ≤ k

Γ ⊢pλ2tf M [] : A[X(k) := A1]
(∀E)

where (∀I)⋆ denotes the eigenvariable condition X 6∈ FV(Γ).
We say that a derivation of a judgement is done within level k, if for every judgement

Γ ⊢ M : A in the derivation, we have lvl(A) ≤ k and lvl(B) ≤ k for all types B occurring
in Γ.

On the other hand, λ2 in the Curry style has well-known rules as follows:

Γ ⊢λ2C M : A

Γ ⊢λ2C M : ∀X.A
(∀I)⋆

Γ ⊢λ2C M : ∀X.A

Γ ⊢λ2C M : A[X := A1]
(∀E)

A predicative version of λ2 in the Curry style is also defined for stratified types:

Γ ⊢pλ2C M : A

Γ ⊢pλ2C M : ∀X(k).A
(∀I)⋆

Γ ⊢pλ2C M : ∀X(k).A lvl(A1) ≤ k

Γ ⊢pλ2C M : A[X(k) := A1]
(∀E)

Then a type erasing map from terms in type-free style to those in Curry style is naturally
defined so that |Λ.M | = |M | and |M []| = |M |. A type flatting map from stratified types to

non-stratified ones is also defined so that |X(k)| = X and |∀X(k).A| = ∀|X(k)|.|A|. We have
the following basic properties between Curry and type-free styles; and stratified and flatted
types.

Proposition 2.1 (Erasing, lifting, flatting). Let a pair of systems (X,Y) = (λ2tf, λ2C) or
(pλ2tf, pλ2C). Let (Z,W) = (pλ2tf, λ2tf) or (pλ2C, λ2C).

2Levels should not be confused with type ranks [Lei83, KW94] defined as: rank(A) = 0 when A contains

no quantifier, rank(A1 → A2) = max(rank(A1) + 1, rank(A2)), and rank(∀X.A) = rank(A). For instance,

(∀X.(X → X)) → ∀Y.Y has rank 2, but has level 1 if lvl(X) = lvl(Y) = 0. Note also that the level here is

different from the stratified level in [GR94].

106 K. FUJITA AND A. SCHUBERT

Term\System pλ2tf λ2tf pλ2C λ2C

(λx.xx)(λx.xx) No No No No
(λx.xx)(λx.xyx) No No No Yes
λx.xx No No Yes Yes
λx.x[]x No Yes - -
λx.x[](x[]) Yes Yes - -

Figure 1: Typability for example terms in type-free and Curry style disciplines

(1) If Γ ⊢X M : A then Γ ⊢Y |M | : A.

(2) If Γ ⊢Y M : A then there exists an X-term N such that |N | ≡ M and Γ ⊢X N : A.

(3) If Γ ⊢Z M : A then Γ ⊢W M : |A|.

Notice that the systems λ2tf and pλ2tf, unlike λ2C and pλ2C, are syntax directed in
the sense that the form of a term determines exactly which rule should be the last one in
a derivation of its type. Still, in case of the (∀E), we do not know which types are used in
the particular instance of the rule.

We show simple examples of terms in the systems on Figure 1, where “Yes” means ty-
pable but “No” untypable in the corresponding system (the second term is due to Urzyczyn
[Lei91]).

The type checking problem (TCP) is the problem: given a term M , a type A, and a
context Γ, is Γ ⊢ M : A derivable? The type inference problem (TIP) is the problem: given
a term M and a context Γ, is there a type A such that Γ ⊢ M : A is derivable? Finally, the
typability problem (TP) is the problem: given a term M , are there a context Γ and a type
A such that Γ ⊢ M : A is derivable?

Note that in case of the predicative system we may consider each of the problems above
in two versions: non-bounded ones (TCP, TIP, TP) in which we ask about the derivability
in the predicative system in general and k-bounded ones (TCPk, TIPk, TPk) in which we
are given data that falls within the level k and want an answer if a derivation can be done
within the level k exclusively.

In general, there is no direct relation between the undecidability of TCP (or TIP, or
TP) and the undecidability of TCPk. In particular the instances of TCP have no fixed
level so the identical translation does not give the undecidability. The reduction in the
other direction is not straightforward either as the systems do not enjoy the conservativity
property.

Proposition 2.2. For each k there are context Γ, term M , and a type A such that Γ and

A are in level k, Γ ⊢pλ2tf M : A is derivable, but there is no derivation for Γ ⊢pλ2tf M : A
in level k.

Proof. We adapt the terms proposed by Urzyczyn (see [Lei91]). Let the term M1 ≡
λx.x[](x[]) and Mk+1 ≡ λy.y[]Mk(y[]). The term Mk+1 is typable in level k + 1 but is

not typable in level k. Consider now the judgement ⊢ (λx.λy.y)Mk+1 : X(k) → X(k). This
term is typable in level k + 1 only, but is not typable in level k while the context and the
type X(k) are in level k.

THE UNDECIDABILITY OF TYPE RELATED PROBLEMS IN TYPE-FREE STYLE SYSTEM F 107

However, a slightly weaker version of conservativity indeed holds for the systems. We
say that a type-free λ2 term M is in normal form if it has one of the following shapes:3

(1) xM1 . . .Mn (n ≥ 0) where Mi is either a term in normal form or [], or
(2) λx.M where M is in normal form, or
(3) Λ.M where M is in normal form.

Proposition 2.3. Let M be a term in normal form and Γ, A be in level k. If Γ ⊢pλ2tf M : A
is derivable then it is derivable in level k.

Proof. Induction on the term M in normal form.

2.2. Connections with Partial Type Reconstruction

The problem of partial type reconstruction is a crucial problem for functional program-
ming languages. Consider the following situation. We would like to write a generic function
which transforms an existing polymorphic function so that the resulting function prints
out some textual information. Currently, a definition of such a function could look like as
follows (in the syntax of OCaml)

let addInfo = fun f x -> print "we call polymorphic"; f x;;

However, this is not possible in functional languages such as OCaml as the functional
arguments cannot be polymorphic. Still, extension of the language to make such definitions
possible is apparently useful. One of the drawbacks of the notation above is that it breaks
the current convention that an application of a function is always monomorphic. Therefore,
it is useful to warn a programmer that a particular function is polymorphic, for instance in
the following fashion:

let addInfo = fun f x -> print "we call polymorphic"; (f[]) x ;;

Since the functional programming languages give the programmer a freedom of giving the
typing information wherever it is suitable for readability or comprehensiveness. Therefore,
the functional programming languages require not only the procedures to decide the type
inference, but stronger procedures that tackle the partial type reconstruction problem where
some of the typing information is provided and some is omitted.

Along the lines of Boehm [Boe85], Pfenning [Pfe93] has proved that the partial type
reconstruction problem for the pure polymorphic λ2 is equivalent to the second-order unifi-
cation problem as far as decidability is concerned. This means the problem is undecidable.
He also proved the undecidability result for the predicative system. Our problem TIP for
type-free λ2 can be regarded as a restricted instance of the partial type reconstruction
problem in which the instances cannot contain types in terms, but may contain placehold-
ers where types should be instantiated in type derivations. The question of undecidability
for terms in this form has been mentioned in the paper [Pfe93] and we confirm here that the
problem is undecidable. Note that this strategy is very practical as the additional typing
information in the terms is provided very rarely in real functional programs.

In [FS00], we demonstrated that TIP is undecidable for the predicative domain-free λ2
by a reduction from the second-order unification problem. The problem TIP here for type-
free λ2 is a very restricted form of both problems. In general the proof methods applied
in [Pfe93, FS00] do not work for the problem for the type-free style, since the previous

3The study of appropriate notion of reduction goes beyond the main topic of the paper.

108 K. FUJITA AND A. SCHUBERT

methods essentially refer to type information which is to be erased in the type-free case.
Even the direct application of the unification for flat forms to the construction of Pfenning
does not bring the main result of the current paper.

It is worth pointing out that the results of [Pfe93, Boe85] indicate that it is impossible
to devise an algorithm which allows the authors of functional programs to freely insert and
omit the type annotations in the full polymorphic type discipline. We strengthen the result
in such a way that already the strategy of showing where the second-order polymorphism
is used, but omitting the information on how it is used gives rise to undecidability. Still, we
hope that the existing decidable cases of the second-order unification can bring systems with
decidable type related problems and the resulting systems will have the pragmatic advantage
that the uses of polymorphisms are clearly marked in the source code of programs.

3. Undecidability of Restricted Unification

The proofs of undecidability for type-free system are done as a reduction of a strongly
restricted version of the 2nd order unification problem to the problems. The version of the
unification has been introduced in [FS09, FS]. The proof of the main theorem of the section
is in [FS09].

We define here expressions for unification problems. We assume that a countably infinite
set of type variables with level k is divided into three subsets: The first one contains first-
order variables denoted by X,Y, . . ., the second one constants denoted by C,D, . . ., and the
third one second-order variables denoted by F

n,Gn, . . . where the superscript n indicates
their arity. The expressions we deal with in unification equations have the following form:

A,B ::= X | C | (A → B) | FnA1 · · ·An

Whenever it does not lead to confusion, we drop the superscript with arity. The expressions
which do not contain second-order variables are called first-order expressions.

An instance of the unification problem consists of a set of equations

E = {A1
.
= B1, . . . , An

.
= Bn}.

We say that the instance E is solvable if there exists a substitution S such that S(A1) =
S(B1), . . . , S(An) = S(Bn). We write Dom(S) for the domain of S. A set of free variables
in expressions of unification problems is defined as follows:

FVu(C) = ∅; FVu(X) = {X}; FVu(F) = {F}; FVu(A → B) = FVu(A) ∪ FVu(B).

We have to define a restricted second-order unification problem which can fit into the
form of type constraints that arise in the type-free type system and is still undecidable.
The basic idea here is to exploit the observation that the rules (∀E) work in a way similar
to the application of a second-order expression to an argument. As the type-free systems
omit from terms the information on an expression to which a second-order term is applied,
we have to restrict the arguments of second-order variables so that the arguments can take
up any form (monadic restriction below).

Definition 3.1 (Flat form). An instance E of the unification problem is in flat form when
it complies with all three restrictions below:

(1) Root restriction: Second-order variables occur only at root positions.

THE UNDECIDABILITY OF TYPE RELATED PROBLEMS IN TYPE-FREE STYLE SYSTEM F 109

(2) Monadic restriction: If second-order variable occurs as FA1 · · ·An then either all
Ai are constants or all Ai are first-order variables. Moreover, the symbols Ai occur
only in the equation where FA1 · · ·An occurs.

(3) Constant restriction: Each time a second-order variable F is applied to a vector
X1, . . . , Xn of first-order variables as FX1 · · ·Xn

.
= A, there is a set of pairwise

distinct constants C1, . . . , Cn such that there is exactly one equation FC1 · · ·Cn
.
=

B ∈ E, where C1, . . . , Cn occur, all C1, . . . , Cn occur in B, and the positions where
the constants occur in B exist in A.

The idea similar to the one behind root restriction and monadic restriction can be
found in [Ami90]. The constant restriction is necessary as it provides a clear indication on
which positions correspond to the arguments of second-order variables. The presence of the
constants can be simulated in the process of type inference by means of the (∀I) rules.

Theorem 3.2 (Undecidabiliy of unification with flat form). The problem of deciding if a

given set of equations E in the flat form can be solved is undecidable.

Proof. From a reduction of the unification of simple instances [Sch98, Sch01, LV00] to the
unification of equations in the flat form. See [FS09, FS] for the details of the proof.

The translation in the theorem above applied to the particular simple instances that give
rise to the undecidability results in instances which contain 10 equations with second-order
variables. Six of them involve one second-order variable F, while the other four another
one G. To facilitate the understanding of the proofs below we present here the equations
with second-order variables (omitting the other ones) that arise in the proof of Theorem 3.2:

FX1
1 . . . X

1
n

.
= XFA1...An

→ A1 → · · · → An → o
FC1

1 . . . C
1
n

.
= X ′

FA1...An
→ C1

1 → · · · → C1
n → o

FX2
1 . . . X

2
n

.
= XFA′

1
...A′

n
→ A′

1 → · · · → A′
n → o

FC2
1 . . . C

2
n

.
= X ′

FA′
1
...A′

n
→ C2

1 → · · · → C2
n → o

FX3
1 . . . X

3
n

.
= XFA′′

1
...A′′

n
→ A′′

1 → · · · → A′′
n → o

FC3
1 . . . C

3
n

.
= X ′

FA′′
1
...A′′

n
→ C3

1 → · · · → C3
n → o

GX4
1 . . . X

4
m

.
= YGB1...Bm

→ B1 → · · · → Bm → o
GC4

1 . . . C
4
m

.
= Y ′

GB1...Bm
→ C4

1 → · · · → C4
m → o

GX5
1 . . . X

5
m

.
= YGB′

1
...B′

m
→ B′

1 → · · · → B′
m → o

GC5
1 . . . C

5
m

.
= Y ′

GB′
1
...B′

m
→ C5

1 → · · · → C5
m → o

(3.1)

where F, G are fresh second-order variables of arity n,m, resp.; X with annotations and Y
with annotations are fresh first-order variables; Ci

j with appropriate indices are subject to
the constant restriction; and o is a distinguished type constant. We show here the equations
in pairs (see case (3) in Definition 3.1).

4. Undecidability of Type Related Problems for Type-free System

Now, we embark on the reduction of the unification for the instances in the flat form to
the type related problems. For a set of equations E we provide a λ-term M such that if a
type derivation for M exists then a unifier S for E can be extracted from it. The main idea
of the construction comes from [FS09, FS], and can be traced back to [Pfe93]. However, we

110 K. FUJITA AND A. SCHUBERT

do not follow the latter construction in detail as we want to obtain a tight bound on type
levels and avoid the occurrence of type variables in terms. The general idea of the approach
here is that the shape of a type derived for a variable xA occurring in M , related by the
translation to a subexpression A in the set of equations E, strictly corresponds to the result
of the substitution S(A).

We simply write An → B for A → · · · → A → B with n occurrences of A, and MNn

for MN · · ·N with n applications to N .
Since we have a countably infinite set of term variables of λ-calculus, we can assume

a one-to-one mapping between expressions of unification problems and term variables of λ-
terms. Based on this, we write term variables xA and yA corresponding to an expression A
of a unification problem. For instance, we have term variables xX and yX from a first-order
variable X, and similarly term variables xC and yC from a constant C. In particular, the
distinguished constant o gives rise to the term variable xo.

4.1. Enforcing the Shape of First-order Terms

To achieve the goal sketched above, we have to provide a translation from instances of
the second-order unification to terms which enforce particular forms of solutions. We start
with enforcing of the shape of terms that do not involve second-order variables.

Terms which involve the variables associated with subexpressions of a given unification
instance need to be put together in a single λ-term. To this end we use special variables
that allow to glue terms. They are contained in a context

Γo = {xo :o, yo1 :o → o, . . . , yon :o
n → o}

for a fixed n = 21, where yoi are fresh term variables and o is the distinguished constant.
We often shorten yoi to yo when this does not lead to confusion. The following proposition
holds.

Proposition 4.1. There is a term Mo such that dom(Γo) ⊆ FV(Mo) and for each Γ if

Γ ⊢ Mo : A is derivable and Γ contains xo : o then Γo ⊆ Γ and A = o.
Moreover, if the level of o is k ≥ 0 then the derivation can be done in level k.

Proof. Observe that a term yoxo forces the argument of yo to be of type o then yo(yoxo)
forces also the result of yo to be of type o so yo : o → o. The details of the construction and
proof are left to the reader.

The idea of enforcing employed in the sketch of the proof above can also be used below.

Definition 4.2 (Encoding of first-order expressions). For a first-order expression A, we
define a λ-term MA, as follows:

(1) case A ≡ X (first-order variable): the term MX ≡ yo(yXxX),
(2) case A ≡ C (constant): the term MC ≡ yo(yCxC),
(3) case A ≡ (A1 → A2): the term

MA1→A2
≡ yo (yA2

(xA1→A2
xA1

)) (yA2
xA2

)MA1
MA2

.

Note that FV(MA) ⊆ Dom(Γo) ∪ {xB, yB | B is subexpression of A}.
The encoding in Definition 4.2 is constructed in such a way that the types of vari-

ables xA follow the structure of the corresponding expression A. In addition, the encoding
gives enough freedom to enable the operation of first-order substitutions. This is precisely
expressed by the following lemma.

THE UNDECIDABILITY OF TYPE RELATED PROBLEMS IN TYPE-FREE STYLE SYSTEM F 111

Lemma 4.3. For any substitution S, with Γ ⊇ Γo defined by

• Γ(xB) = S(B),
• Γ(yB) = S(B) → o

for all subexpressions B of A, we have that Γ ⊢ MA : o is derivable.

Moreover, when variables in image of S are assigned level k then the derivation can be

done in level k.

Proof. The proof is immediate by Definition 4.2 since S(A1 → A2) = S(A1) → S(A2).

We can now present the way how the first-order unification is encoded in λ-terms.

Definition 4.4 (Encoding of first-order unification). Let E be a finite set of equations of
first-order unification. In case E = ∅, we define ME ≡ xo. In case E = {A1

.
= B1} ∪E0, we

define ME to be:
ME ≡ yo5 (yA1

xA1
) (yA1

xB1
) MA1

MB1
ME0

.

In the definition above, we use MA1
,MB1

to encode the shape of the expressions A1, B1

respectively. This is done in such a way that xA1
, xB1

have the types S(A1), S(B1) for some
substitution S. We can now force them to be equal by placing xA1

, xB1
as arguments to the

same variable yA1
. The rest of the set of equations can be taken into account in the same

fashion in the subterm ME0
. Note that

FV(ME) ⊆ {xB, yB | B is subexpression of some expression in E} ∪Dom(Γo).

The lemma below relates the solutions of first-order unification with derivations in the
type-free System F.

Lemma 4.5. Let E be a finite set of equations of first-order unification and S a substitution.

The substitution S solves E if and only if there is a context Γ ⊇ Γo such that Γ ⊢ ME : o
is derivable in level k and Γ(xB) = S(B), Γ(yB) = S(B) → o for each subexpression B of

expressions in E.

Proof. The proof is by induction on the size of E. The case E = ∅ holds trivially. Consider
now the case E = {A1

.
= B1} ∪ E0.

(⇒) Suppose that E is solvable under S, i.e., S(A1) = S(B1) and S solves E0. From
Lemma 4.3, we have that ΓS ⊢ MA1

: o in level k and Γ′
S ⊢ MB1

: o are derivable for some
ΓS ,Γ

′
S ⊇ Γo. By induction hypothesis we have in addition that Γ′′

S ⊢ ME0
: o is derivable.

We may assume that domains of ΓS ,Γ
′
S ,Γ

′′
S are minimal, i.e., they contain the domain of

Γo and the free variables in MA1
, MB1

, ME0
respectively. In this case, the intersection of

domains of ΓS , Γ
′
S , Γ

′′
S contains only the domain of Γo and the variables of the form xB, yB.

Therefore, each of the contexts assigns the same type to the variables. In this light we
can let Γ = ΓS ∪ Γ′

S ∪ Γ′′
S and preserve the derivability of Γ ⊢ MA1

: o, Γ ⊢ MB1
: o, and

Γ ⊢ ME0
: o. Since S solves E we have Γ(xA1

) = S(A1) = S(B1) = Γ(xB1
), and therefore

Γ ⊢ yA1
xA1

: o and Γ ⊢ yA1
xB1

: o are derivable. Now, we can easily assemble the derivation
for Γ ⊢ ME : o.

(⇐) Suppose that Γ ⊢ ME : o is derivable (in level k) for some context Γ ⊇ Γo

with Γ(xB) = S(B), Γ(yB) = S(B) → o. This means that Γ ⊢ ME0
: o is derivable. The

induction hypothesis gives immediately that S solves E0. We have also that Γ ⊢ MA1
: o and

Γ ⊢ MB1
: o are derivable. As yA1

is applied to both xA1
and xB1

, we have Γ(xA1
) = Γ(xB1

).
Then we can infer that S(A1) = Γ(xA1

) = Γ(xB1
) = S(B1). Hence all A

.
= B ∈ E are

solvable under S.

112 K. FUJITA AND A. SCHUBERT

4.2. Enforcing the Shape of Terms with Second-order Variables

Now that we know how to translate the equations with no second-order variables, we
have to provide a translation for the equations that contain the variables. In order to make
the presentation more concrete, we provide here a translation for the particular equations
that result from the translation of the simple-instances to the equations in the flat form.
Recall that the translation gives two pairs of equations for each second-order variable and
the undecidable instances of the second-order unification of simple instances contain two
variables F and G. We provide the following encoding for equations with G only, displayed in
(3.1) on page 107. The case with F follows exactly the same pattern. See also Definition 3.1
and Theorem 3.2. We refrain from presentation of a general definition for equations with
second-order variables as such a presentation is involved and obscures the main idea of the
encoding. We believe that it is easier for a reader to understand the idea of the proof when
it is presented in this more concrete fashion.

As a useful shorthand, we define a λ-term M []n+1 ≡ (M [])[]n and M []0 ≡ M , which
means successive application of (∀E). We also define a λ-term Λn+1.M ≡ Λn.(Λ.M) and
Λ0.M ≡ M , which means successive application of (∀I).

Definition 4.6 (Encoding of second-order unification). For a set of equations E such that
the set E\E′ consists of the equations in the flat form containing the second-order variable
G of arity n:

GX1 · · ·Xn
.
= B1, GC1 · · ·Cn

.
= B2, GY1 · · ·Yn

.
= B3, GC ′

1 · · ·C
′
n

.
= B4,

where B1 ≡ (X → A1 → · · · → An → o), B3 ≡ (Y → A′
1 → · · · → A′

n → o),
B2 ≡ (X ′ → C1 → · · · → Cn → o), and B4 ≡ (Y ′ → C ′

1 → · · · → C ′
n → o);

we define a λ-term ME as

yo (yB1
xB1

) (yB1
(xG[]

n)) (yB2
xB2

) (yB2
(xG[]

n))
(yB3

xB3
) (yB3

(xG[]
n)) (yB4

xB4
) (yB4

(xG[]
n))

(yGxG) (yG(Λ
n.λz1 . . . λzn+1.xo)) MB1

MB2
MB3

MB4
ME′

(4.1)

where xo is as in Γo; MB1
, . . . ,MB4

are encodings of the expressions B1, . . . , B4; and ME′

is an encoding of the set E′ of equations. In case E = ∅, ME = xo.

Note that

FV(ME) ⊆ {xB, yB | B is subexpression of some first-order expression in E}∪
{xH, yH | H is a second-order variable in E} ∪Dom(Γo).

Let us discuss a few issues concerning the construction of the term ME . First note that
Γo(yo) = o15 → o and that all the 15 arguments from (yB1

xB1
) through ME′ must have

the same type o. Now, the variables yD for D ∈ {B1, B2, B3, B4,G} are used to enforce
that the left hand sides of the equations are equal to the right hand ones. The type of the
variable xG is supposed to be the result of the solution on the variable G. The monadic
restriction allows us to simulate the work of variables X1, . . . , Xn and Y1, . . . , Yn as well as
the constants C1, . . . , Cn and C ′

1, . . . , C
′
n by means of the type hole application xG[]

n. We
exploit the knowledge of the shape of B2, B4 that we have from (3.1) on page 107 to enforce
that the constants C1, . . . , Cn and C ′

1, . . . , C
′
n are used in the quantifier eliminations when

yD is applied to xG[]
n (where D = B1, B2, B3 or B4). The term to which yG is applied

enforces that the type of xG has exactly n universal quantifiers in its head and (n + 1)

THE UNDECIDABILITY OF TYPE RELATED PROBLEMS IN TYPE-FREE STYLE SYSTEM F 113

arrows inside. Note also that the term M ′
E includes a similar encoding for the variable F.

That encoding requires the use of o21 → o as we have 6 equations with F
4.

For a second-order substitution S we define Γo,S as the smallest with regard to ⊆ context
such that Γo ⊆ Γo,S , Γo,S(xB) = S(B), and Γo,S(yB) = S(B) → o for each subexpression B
of a first-order expression in E, and Γo,S(xG) = ∀X1, . . . , Xn.S(G)X1 · · ·Xn and Γo,S(yG) =
(∀X1, . . . , Xn.S(G)X1 · · ·Xn) → o for each second-order variable G occurring in E. Observe
that it is possible to assign levels to type variables in Γo,S so that the context as well as o
are in level k + 1 for each k ≥ 0. We further work with such a version of the context.

Proposition 4.7. Let E be the equations in the flat form above and S a substitution such

that each type variable has level k. (1) If the substitution S solves E then there is a context

Γ ⊇ Γo,S such that Γ ⊢ ME : o is derivable in level k + 1. (2) If there is a context Γ ⊇ Γo,S

such that Γ ⊢ ME : o is derivable in level k+ 1, then there is a substitution S♯ such that S♯

solves E and that S♯ differs from S only on variables to which the second-order variables

are applied.

Proof. We assume here the notation as in Definition 4.6. The proof is by induction on the
size of E. In case E = ∅ the claim holds trivially.

(1) Suppose that E is solvable under S, where each expression is constructed from type
variables in level k. We show now that Γo,S ⊢ ME : o is derivable in level k + 1. First,
observe that Γo,S and o are in level k+1. Lemma 4.3 gives that MB1

, MB2
, MB3

, and MB4

are typable to o under appropriate contexts and as the contexts coincide with Γo,S on the
variables which occur free in the terms we may assume that the terms are typable to o under
Γo,S . Similar reasoning starting with the use of Lemma 4.5 (in case E′ is first-order) or
the induction hypothesis (in case E′ is second-order) gives that Γo,S ⊢ ME′ : o is derivable.
Now, the derivability of Γo,S ⊢ yDxD : o for D ∈ {B1, B2, B3, B4,G} follows immediately
from the definition of Γo,S . As the lemmas state, the derivations can be done in level k+1.

Now, for the proof of derivability of the terms in the form of yD(xG[]
n) for D ∈

{B1, B2, B3, B4}, we use in the type instantiations in places marked by [] that are indicated
by appropriate equations, i.e. S(X1), . . . , S(Xn); C1, . . . , Cn; S(Y1), . . . , S(Yn); C

′
1, . . . , C

′
n,

respectively. Then the derivability in level k+ 1 follows from the definition of Γo,S and the
fact that S unifies the equations displayed in Definition 4.6.

For the proof of derivability of Γo,S ⊢ yG(Λ
n.λz1 . . . λzn+1.xo) : o, observe that S(G) =

λx1 . . . λxn.U1 → · · · → Un+1 → B for some U1, . . . , Un+1 and B. Otherwise it would be
impossible to unify both the equation GX1 · · ·Xn

.
= B1 and GC1 · · ·Cn

.
= B2 by the constant

restriction. Moreover, B = o as the number of arguments is n and both B1 and B2 end
with o. Therefore, we can assign the types U1, . . . , Un+1 to z1, . . . , zn+1 in λz1 . . . λzn+1.xo.
Now, the derivability in level k+1 follows from the definition of Γo,S and from the fact that
all the steps above are done with help of types from Γo,S , the derivation is in level k + 1.

Since all arguments of yo are typable to o in Γo,S and yo : o
15 → o is in Γo. We obtain

a derivation for Γo,S ⊢ ME : o in level k + 1.
(2) Suppose, now, that Γ ⊢ ME : o is derivable (in level k + 1) for some Γ ⊇ Γo,S . As

FV(ME) = Dom(Γo,S), we can assume that Γo,S ⊢ ME : o. Now, we can prove that S is
indeed a solution of E. Note first that either by induction hypothesis or by Lemma 4.5,
S solves E′. As yG is applied to both xG and Λn.λz1 . . . λzn+1.xo, they have the same
types. The type of Λn.λz1 . . . λzn+1.xo (and at the same time the type of xG) must be of

421 = 12 + 2 + 6 + 1

114 K. FUJITA AND A. SCHUBERT

the form ∀X1 . . . ∀Xn.(U1 → · · · → Un+1 → o) (*) (as the type system is syntax directed).
From the derivability we obtain that S(B1) = S(G)D1 · · ·Dn and S(B2) = S(G)D′

1 · · ·D
′
n

for some D1, . . . , Dn, D
′
1, . . . , D

′
n, because of the way how yB1

, yB2
are used. Note that B2

contains n positions (the positions of C1, . . . , Cn) at which terms differ from the terms
in the corresponding positions in B1. Moreover, all these positions occur in the type
marked as (*). Therefore, the only possible way to ensure that the equalities above hold is
when variables occupy the positions in the type of xG. Then it follows that the sequence
D′

1, . . . , D
′
n is a permutation of C1, . . . , Cn. We can now permute the application of the

type instantiations so that the constants are applied in the order C1, . . . , Cn. Then, the
arguments D1, . . . , Dn must be permuted in the same way. Then, however, Ai must oc-
cur in S(B1) = S(G)Di1 · · ·Din where Ci is used in S(B2) = S(G)C1 · · ·Cn for each fixed
i = 1, . . . , n. This is because Ai occurs in B1 in position where Ci occurs in B2. In the end,
we obtain that S(B1) = S(G)S(A1) · · ·S(An) and S(B2) = S(G)C1 · · ·Cn. As variables
X1, . . . , Xn occur only in GX1 · · ·Xn, we may change S(Xl) to Dil and in this way obtain
S♯,1. A similar reasoning may be used to infer the equalities S(B3) = S(G)Y1 · · ·Yn and
S(B4) = S(G)C ′

1 · · ·C
′
n. In this way, we obtain the required solution S♯ to the whole E.

This ends the technical lemmas which are enough to prove undecidability of TCP and
TIP.

4.3. Enforcing the Content of Contexts for TP

When TCP and TIP are considered, a context is a part of the initial data so we can
provide one which is useful for the purpose of undecidability proof. This is no longer the
case when the goal is the undecidability of TP. In particular, we have to make sure that the
types of different constants used in unification expressions are indeed different. Moreover,
the expressions from the substitution must not occur neither in the context nor in the
resulting type. This can be obtained with the help of the following construction.

The first step is to turn the type variables which correspond to constants in the unifica-
tion expressions into quantified variables. Let ~xC = {xC1

, . . . , xCm
}, where all the constants

in E subject to the constant restriction are collected. Let ~y = (FV(ME)∪FV(Mo))\({xo}∪

~xC) and M̂E be the following term:

M̂E ≡ f(Λm+1.λxC1
. · · ·λxCm

.λxo.K̂(λ~y.yoMEMo))

where Mo is as in Proposition 4.1 and K̂ = λx.g. Note that FV(M̂E) = {f, g}. Let

ΓE = {f : (∀C
(k)
1 . · · · ∀C(k)

m .∀C
(k)
m+1.(Ci1 → · · · → Cim+1

→ W1)) → W2, g :W1}

where W1 and W2 are any types in level k + 1 that do not use C1, . . . , Cm+1, ΓE(f) is in
level k + 1 and i1, . . . , im+1 is a permutation of 1, . . . ,m+ 1.

With help of the term M̂E we reduce the problem of making C1, . . . , Cm different to the
problem to enforce the particular shape of a type for f . This is guaranteed by the following
lemma.

Proposition 4.8. Let E be the equations in the flat form above and k ≥ 0. The problem

E is solvable if and only if ΓE ⊢ M̂E : W2 is derivable.

Moreover, if E is solvable the derivation of ΓE ⊢ M̂E : W2 can be done in level k + 1.

THE UNDECIDABILITY OF TYPE RELATED PROBLEMS IN TYPE-FREE STYLE SYSTEM F 115

Proof. (⇒) If E is solvable by S then we can use the substitution as in Proposition 4.7
to derive Γo,S ⊢ ME : o in level k + 1. As Γo ⊆ Γo,S , we can also derive Γo,S ⊢ Mo : o
by Proposition 4.1. Since ME ,Mo are typable to o and Γo,S contains types of level k + 1
we can derive a type B for M∗ ≡ λ~y.yoMEMo which is in level k + 1. Let us define
ΓC = {xC : C | xC ∈ ~xC} ∪ {xo : o}. We can directly check that M∗ is typable in ΓE ∪ ΓC

and all of the derivation of ΓE ∪ ΓC ⊢ M∗ : B can be done in level k + 1. Now, we can do
the type inference for K̂ = λx.g : B → W1 which allows us to derive ΓE ∪ ΓC ⊢ K̂M∗ : W1.
Then we can abstract all the variables from ΓC and then do the type abstraction for the
type variables that serve as constants i.e. C1, . . . , Cm, o. Observe, that the way we use
Proposition 4.7 means that C1, . . . , Cm, o are in level k. With this in mind we can see that
it is possible to derive in level k + 1 the type W2 for f(Λm+1.λxC1

. · · ·λxCm
.λxo.K̂M∗),

which is the required result.
(⇐) Suppose that ΓE ⊢ M̂E :W2 (in level k + 1). From ΓE(f), we have

ΓE ⊢ Λm+1.λxC1
. · · ·λxCm

.λxo.K̂(λ~y.yoMEMo)

: ∀C
(k)
1 . · · · ∀C

(k)
m .∀C

(k)
m+1.(Ci1 → · · · → Cim → Cim+1

→ W1).

Then we have ΓE ⊢ λxC1
. · · ·λxCm

.λxo.K̂(λ~y.yoMEMo) : Ci1 → · · · → Cim → Cim+1
→ W1,

where C1, . . . , Cm+1 are fresh and pairwise distinct type variables from the variable condition
of (∀I). Further, we obtain

Γ ≡ ΓE ∪ {xC1
:Ci1 , . . . , xCm

:Cim , xo :o} ⊢ K̂(λ~y.yoMEMo) : W1,

and then we have Γ ⊢ λ~y.yoMEMo : B
′ for some type B′. Hence, we can derive Γ ⊢ Mo : o,

which implies that Γo ⊆ Γ by Proposition 4.1. We can now define a substitution S as
S(X) = B for all xX : B ∈ Γ and S(H) = λx1 . . . λxl.B[X1 := x1, . . . , Xl := xl] for each
second-order variable H in E such that xH : ∀X1 . . .∀Xl.B ∈ Γ. Observe now, that Γ ⊇ Γo,S

in the notation of Proposition 4.7 (up to inessential renaming of the constants). Then the
case (2) of the proposition gives a slightly modified substitution S♯ that solves E.

Now, we must enforce a particular form of type for the variable f . We define, therefore,
a term Nf , which forces the required type. For this, let id = λx.x and ID = Λ.λx.x. We
write λn+1x.M for λx.(λnx.M) where λ0x.M ≡ M . Let us define:

Nf ≡ z (z1(fa)) (z2(a[]
m+1 idm+1))

(z2(a[]
m+1 ID (Λ.ID) . . . (Λm.ID))) (z3a) (z3(Λ

m+1.λm+1v.z4))

where z, z1, a, z2, z3, v, z4 are fresh term variables.

Lemma 4.9. (a) If Nf is typable where the derivation contains types only in level (k + 2)
with k ≥ 0, then for all types D1, . . . , D6 in level (k + 2) there is a context Γf such that

Γf (a) = ∀X
(l1)
1 . · · · ∀X

(lm+1)
m+1 .(X1 → · · · → Xm → D1) with
X1, . . . , Xm+1 6∈ FV(D1), l1, . . . , lm+1 ≤ k + 1,

Γf (f) = Γf (a) → D2, Γf (z1) = D2 → D3, Γf (z2) = D1 → D4,
Γf (z3) = Γf (a) → D5,Γf (z4) = D1, and

Γf (z) = D3 → D4 → D4 → D5 → D5 → D6.

(4.2)

(b) Suppose that D1, . . . , D6 are types in level k+2. A judgement Γf ⊢ Nf : D6 is derivable

in level k + 2, where Γf is defined as in (4.2).

116 K. FUJITA AND A. SCHUBERT

Proof. (a) If Nf is typable in level (k + 2) with k ≥ 0, then the subterm (z1(fa)) enforces
an arrow type on type of f . Further the pair of subterms (z3a) and (z3(Λ

m+1.λm+1v.z4))

enforce the shape ∀X
(l1)
1 . · · · ∀X

(lm+1)
m+1 .(A1 → · · · → Am → D1), with l1, . . . , lm+1 ≤ k + 1

and some types Ai, D1, on the type of a (being the argument type of f). Moreover, the
subterms (a[]m+1 idm+1) and (a[]m+1 ID (Λ.ID) . . . (Λm.ID)) enforce the shape

∀X
(l1)
1 . · · · ∀X

(lm+1)
m+1 .(Xi1 → · · · → Xim+1

→ D1)
on type of a for some permutation i1, . . . , im+1 of 1, . . . ,m+ 1. In addition, the typability
of (Λm+1.λm+1v.z4) gives X1, . . . , Xm+1 6∈ FV(D1) from the variable condition on (∀I), so
that we have

Γf (f) = (∀X
(l1)
1 . · · · ∀X

(lm+1)
m+1 .(Xi1 → · · · → Xim+1

→ D1)) → D2.
For types of other free variables, the analysis is straightforward.

(b) A direct check gives us the case of the lemma.

4.4. The Main Theorem

We can now prove the main result of the paper.

Theorem 4.10 (TP, TIP, TCP). TP2, TIP1, and TCP1 together with TP, TIP, and TCP
are undecidable for the type-free system of λ2.

Proof. Consider first TIP1. We can take as an instance of the problem M ≡ λ~y.yoMEMo

and Γ ≡ Γo ∪ {xC : C | C is a constant} where all the type variables in Γ are in level 1 and
~y are all free term variables in ME except those in Γ. If Γ ⊢ M : A is derivable in level 1
then there is Γ′ such that Γ′ ⊢ ME : A′ is derivable in level 1. By Proposition 4.1 applied
to Mo we obtain A′ = o. Now, we can define a substitution S such that S(X) = B for all
xX : B ∈ Γ′ and S(H) = λx1 . . . xl.B[X1 := x1, . . . , Xl := xl] for each second-order variable
H in E such that xH : ∀X1 . . . ∀Xl.B ∈ Γ′. Immediate check verifies that, Γ′ ⊇ Γo,S (in
notation of Proposition 4.7). Now, Proposition 4.7(2) gives that E is solvable.

If E is solved by S then we can impose that nullary symbols are in level 0. Then
Proposition 4.7(1) gives derivation of Γo,S ⊢ ME : o in level 1 and Proposition 4.1 gives
Γo,S ⊢ Mo : o. These two can be immediately combined into a derivation of Γ ⊢ M : A for
some A. In this way we reduced the solvability of equations in flat form to TIP1. The same
proof works for the unbounded version of TIP and for the impredicative system.

The reasoning for TCP1 follows the same lines, but we take as an instance the judgement
Γ ⊢ (λv.xo)(λ~y.yoMEMo) : o, where v is fresh and Γ is the context given for the TIP1 above.

As for the proof that TP(2) is undecidable, we can assume w.l.o.g that FV(Nf) ∩

FV(M̂E) = {f}. We show now that the typability of zNfM̂E in level 2 is equivalent to

solvability of E. Indeed, suppose that the judgement Γ ⊢ zNfM̂E : A is derivable in level 2
for some Γ, A. From Lemma 4.9(a),

Γ(f) = (∀X
(1)
1 . · · · ∀X

(1)
m+1.(X1 → · · · → Xm → D1)) → D2

with X1, . . . , Xm+1 6∈ FV(D1). Hence, the shape of M̂E implies that Γ ⊢ M̂E : D2 is
derivable. By Proposition 4.8, we obtain the solvability of E.

In case E is solvable, we combine Lemma 4.9(b) with Proposition 4.8 in a straightfor-

ward way. Notice that M̂E is typed here in level 2.
We can now conclude that TP is undecidable in level 2. The same proof works for the

unbounded version of TP and for the impredicative system.

THE UNDECIDABILITY OF TYPE RELATED PROBLEMS IN TYPE-FREE STYLE SYSTEM F 117

A careful reader might spot that the solution S obtained from a derivation can contain
occurrences of ∀ which is not used in standard second-order unification expressions. This
can, however, be mitigated by the following proposition.

Proposition 4.11. If a set E of equations does not contain occurrence of the symbol ∀ then

for each solution S of E there is a solution which does not use ∀.

Proof. In order to prove the proposition, you should simply fix a constant (or a variable)
C and each time S(X) or S(H) contains an occurrence of ∀ replace the subterm at that
occurrence with C. In this way we obtain a substitution S′. For each equation A

.
= B we

obtain that S′(A) = S′(B) as each time we have something different in S′(A) than in S(A)
this must be C. This means that S(B) at the same position has ∀. Since ∀ does not occur
in B it must occur in a term which comes from S. Then this occurrence of ∀ is replaced
with C in S′.

5. Concluding Remarks

The current paper shows new paths of investigation on the type-free systems, interesting
type systems for functional programming with moderate type annotation and the relation
to the second-order unification. We have proved the undecidability of the type-checking,
type inference and typability problems for the predicative version of the System F in the
type-free style. The proof method even works for the impredicative version by flatting
stratified types. Namely, TCP, TIP, and TP are all undecidable for the System F in the
type-free style. Then, as in [NTKN08], the technique of CPS-translation can be applied to
show that TCP, TIP, and TP are all undecidable for the existential system λ∃ [FS09] in
the type-free style, consisting of (¬,∧, ∃). In [FS09], we proved that all of the type related
problems are in general undecidable for the type-free system of λ∃ consisting of (→, ∃).
We remark that a detailed analysis on the proof method in [FS09] reveals that TCP and
TIP are still undecidable for the finitely stratified λ∃ of (→, ∃) in level 2 and that TP is
undecidable for the system in level 3 as well. Moreover, the extended version [FS] leads to
stricter borders, such that TCP and TIP are undecidable in level 1 and TP is undecidable
in level 2 for the predicative system λ∃ of (→, ∃).

For the predicative version of the System F in the type-free style, our results provide a
strict undecidability border for TCP and TIP problems as they are undecidable for level 1
types (level 0 types have no quantifiers so they are equivalent to the simply typed lambda
calculus). We also prove undecidability for TP in level 2. We believe that the current con-
struction can be adapted to prove undecidability of TP in level 1. In that case, however, the
constants obtained in the proof of Proposition 4.8 must be simulated by more complicated
(arrow) types which makes the whole construction much more involved.

References

[Ami90] Gilles Amiot. The undecidability of the second order predicate unification problem. Archive for

Mathematical Logic, 30(3):193–199, May 1990.

[Boe85] H.-J. Boehm. Partial polymorphic type inference is undecidable. In 26th Annual Symposium on

Foundations of Computer Science, pages 339–345. IEEE, October 1985.

[FS] K. Fujita and A. Schubert. Existential type systems between Church and Curry style. Submitted.

Available from http://www.mimuw.edu.pl/~alx/papers/existential-chcu.pdf.

118 K. FUJITA AND A. SCHUBERT

[FS00] K. Fujita and A. Schubert. Partially typed terms between Church-style and Curry-style. In J. van

Leeuwen, O. Watanabe, M. Hagiya, P. D. Mosses, and T. Ito, editors, Theoretical Computer

Science, Exploring New Frontiers of Theoretical Informatics, International Conference IFIP TCS

2000, Sendai, Japan, August 17-19, 2000, Proceedings, number 1872 in LNCS, pages 505–520,

2000.

[FS09] K. Fujita and A. Schubert. Existential type systems with no types in terms. In P.-L. Curien, edi-

tor, Typed Lambda Calculi and Applications, 9th International Conference, TLCA 2009, Brasilia,

Brazil, July 1-3, 2009, Proceedings, number 5608 in LNCS, pages 112–126, 2009.

[GR94] Paola Giannini and Simona Ronchi Della Rocca. A type inference algorithm for a stratified

polymorphic type discipline. Information Computation, 109(1–2):115–173, 1994.

[HS99] John Hatcliff and Morten Heine B. Srensen. CPS translations and applications: The cube and

beyond. Higher-Order and Symbolic Computation, 12(2):125–170, September 1999.

[KTU90a] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. The undecidability of the semi-unification problem. In

STOC ’90: Proceedings of the twenty-second annual ACM symposium on Theory of computing,

pages 468–476, New York, NY, USA, 1990. ACM.

[KTU90b] Assaf J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. ML typability is DEXTIME-complete. In

CAAP ’90: Proceedings of the 15th Colloquium on Trees in Algebra and Programming, number

431 in LNCS, pages 206–220, London, UK, 1990. Springer-Verlag.

[KW94] Assaf J. Kfoury and Joeseph B. Wells. A direct algorithm for type inference in the rank-2 fragment

of the second-order λ-calculus. In LFP ’94: Proceedings of the 1994 ACM conference on LISP

and functional programming, pages 196–207, New York, NY, USA, 1994. ACM.

[Lei83] Daniel Leivant. Polymorphic type inference. In POPL ’83: Proceedings of the 10th ACM

SIGACT-SIGPLAN symposium on Principles of programming languages, pages 88–98, New York,

NY, USA, 1983. ACM.

[Lei91] D. Leivant. Finitely stratified polymorphism. Information and Computation, 93(1):93–113, 1991.

[LV00] Jordi Levy and Margus Veanes. On the undecidability of second-order unification. Information

and Computation, 159(1–2):125–150, 2000.

[Mai90] Harry G. Mairson. Deciding ML typability is complete for deterministic exponential time. In

POPL ’90: Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Principles of pro-

gramming languages, pages 382–401, New York, NY, USA, 1990. ACM.

[NTKN08] K. Nakazawa, M. Tatsuta, Y. Kameyama, and H. Nakano. Undecidability of type-checking in

domain-free typed lambda-calculi with existence. In CSL ’08: Proceedings of the 22nd Inter-

national Workshop on Computer Science Logic, number 5213 in LNCS, pages 478–492, Berlin,

Heidelberg, 2008. Springer-Verlag.

[Pfe93] F. Pfenning. On the undecidability of partial polymorphic type reconstruction. Fundamenta

Informaticae, 19(1,2):185–199, September-October 1993.

[Sch98] Aleksy Schubert. Second-order unification and type inference for Church-style polymorphism.

In POPL ’98: Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 279–288, New York, NY, USA, 1998. ACM.

[Sch01] Aleksy Schubert. Zastosowanie unifikacji do problemw wyprowadzania typw. PhD thesis, The

University of Warsaw, 2001. English title: Application of the unification to type inference prob-

lems, Polish text available from http://www.mimuw.edu.pl/~alx/ftp-public/doktorat.pdf.

[Wel99] J. B. Wells. Typability and type checking in system F are equivalent and undecidable. Ann. Pure

Appl. Logic, 98(1–3):111–156, 1999.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 119-134
http://rewriting.loria.fr/rta/

ON (UN)SOUNDNESS OF UNRAVELINGS

KARL GMEINER 1 AND BERNHARD GRAMLICH 1 AND FELIX SCHERNHAMMER 1

1 Faculty of Informatics, TU Wien, Austria

E-mail address: {gmeiner,gramlich,felixs}@logic.at

Abstract. We revisit (un)soundness of transformations of conditional into unconditional

rewrite systems. The focus here is on so-called unravelings, the most simple and natural

kind of such transformations, for the class of normal conditional systems without extra

variables. By a systematic and thorough study of existing counterexamples and of the

potential sources of unsoundness we obtain several new positive and negative results. In

particular, we prove the following new results: Confluence, non-erasingness and weak left-

linearity (of a given conditional system) each guarantee soundness of the unraveled version

w.r.t. the original one. The latter result substantially extends the only known sufficient

criterion for soundness, namely left-linearity. Furthermore, by means of counterexamples

we refute various other tempting conjectures about sufficient conditions for soundness.

1. Introduction

1.1. Background and Motivation

Conditional term rewriting systems (CTRSs) are a very natural, though non-trivial and com-
plex extension of unconditional ones (TRSs). This concerns both the theoretical foundations
as well as applications and implementations of such systems. A well-studied approach to
dealing with conditional rewriting is via transformation to unconditional systems such that
the resulting unconditional system can simulate the original conditional one in an appropri-
ate manner. Various transformations have been developed for that purpose. It is well-known
that completeness of these transformations is easy to achieve and usually holds, whereas
soundness is much harder to obtain and typically does not hold without imposing further
conditions, e.g., restrictions on the rewrite relation in the resulting unconditional system.
Informally, by (simulation) soundness we mean that whenever an original term reduces to
another original term in the transformed system, then such a reduction is also possible in
the original system. (Simulation) completeness is the dual property.

The above unsoundness phenomenon was discovered by Marchiori ([9, 8]) for the case
of so-called unravelings,1 but is also present in virtually all other known transformation

The first author was supported by a grant of the Vienna PhD School of Informatics, the last author by

a grant of the Austrian Academy of Sciences (ÖAW-DOC grant No. 22361).

1The very idea of unravelings is actually much older and appears already e.g. in [4], though in a specialized

form (for function definitions).

c© K. Gmeiner, B. Gramlich, and F. Schernhammer
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.119

120 K. GMEINER, B. GRAMLICH, AND F. SCHERNHAMMER

approaches. Approaches to more faithfully simulating rewriting in a conditional system
via restricted rewriting in a transformed unconditional system include: conditional eager-

ness ([19], [16]), innermost rewriting ([15]), membership conditional and context-sensitive

rewriting ([18], [14, 11, 13], [5], [17])). Yet, in all these approaches the imposed restric-
tions on rewriting in the transformed unconditional rewrite relation are a major source of
complications for reasoning over and deriving properties of the respective transformation
approaches. Hence, a deeper knowledge about the borderline between unsoundness and
soundness would help to identify cases (classes of initial conditional systems) where sound-
ness is guaranteed even for unrestricted rewriting in the transformed unconditional system.
In such cases, one can safely use (unrestricted) rewriting in the transformed system, thus
facilitating the analysis and implementation of the respective transformation. These are
the main goals of the analysis that we are going to present in this paper.

1.2. Overview and Outline

We focus on the most basic class of conditional systems without extra variables, normal
1-CTRSs. This is motivated by the fact that even for these systems the analysis is rather non-
trivial and properly understanding this case appears to be indispensable for later extending
the results to other and more general classes of CTRSs. Furthermore, the focus is also
restricted to unravelings, the most simple and intuitive class of transformations from CTRSs

into TRSs. Again, simplicity and the goal of properly understanding the essential source(s)
of unsoundness is the main motivation for this restriction. We expect that a substantial
part of the analysis can also be reused for other transformation approaches for CTRSs.

The main contributions of the paper are as follows. Starting from an analysis of existing
counterexamples to the unsoundness of unravelings we prove that each of the following
conditions on a given normal 1-CTRS is sufficient for soundness of its unraveled version:

• confluence (Theorem 3.12)
• non-erasingness (Theorem 3.16)
• groundness of all conditions (Theorem 3.17)
• weak left-linearity (Theorem 3.33).

Especially interesting and practically relevant are the first criterion and the last one which
substantially extends the only known criterion for soundness, left-linearity (cf. [8, 9]). In
essence, weak left-linearity (cf. Definition 3.22) weakens left-linearity by allowing uncondi-
tional non-left-linear rules provided that variables that appear non-linear in the left-hand
side do not appear at all in the right-hand side.

On the negative side, we disprove various other tempting conjectures about the suffi-
ciency of conditions for soundness, regarding e.g. non-overlappingness, non-collapsingness
and right-linearity.

The rest of the paper is structured as follows. After the preliminaries in Section 2,
where we introduce unravelings and basic projection functions used later on, we develop the
analysis in the main Section 3. Before concluding, the results obtained, potential extensions,
open problems and related work are finally discussed in Section 4. Due to lack of space,
some proofs are only sketched or omitted.2

2Missing and completed proofs can be found in the full technical report version of this paper, cf.

http://www.logic.at/staff/{gmeiner,gramlich,schernhammer}/.

ON (UN)SOUNDNESS OF UNRAVELINGS 121

2. Preliminaries

We assume familiarity with the basic concepts and notations of abstract reductions
systems (ARSs) and (conditional) term rewriting systems (CTRSs) (cf. e.g. [1], [3]). For the
sake of readability we recall some notions and notations here. Moreover, we use the typical
abbreviations for properties of rewrite systems, such as CR, NF, UN, UN→,

The set of (non-variable, variable) positions of a term s is denoted as Pos(s) (FPos(s),
VPos(s)). By root(s) we denote the root symbol of the term s. Throughout the paper V
denotes a countably infinite set of variables and x, y, z denote variables from V . By Var(s)

we denote the set of variables of a term s. Moreover
−−−−→
Var(s) denotes the sequence of variables

obtained by arranging the variables of Var(s) in an arbitrary but fixed order.
A term rewriting system R is a pair (F , R) of a signature and a set of rewrite rules

over this signature. Slightly abusing notation we also write R instead of R (leaving the
signature implicit).

We denote a rewrite step from a term s to a term t at position p with respect to a
rewrite system R and with a rule δ from R as s→p,R,δ t. We also write s→ t (s→p t resp.
s →p,R t) if the position, rewrite system and applied rule (the rewrite system and applied
rule resp. the applied rule) are clear from the context or of no relevance. Parallel reduction
is denoted by ‖→ and →≤1 means reduction with one or zero steps.

The set of one-step descendants of a (subterm) position p of a term t w.r.t. a (one-step)
reduction t = C[s]p →q t

′ is the set of subterm positions in t′ given by

• {p}, if q ≥ p or q || p,
• {q.o′.p′ | t|q = lσ, l|o ∈ Var(l), q.o.p′ = p, l|o = r|o′}, if q < p and (a superterm of) s
is bound to a variable in the matching of t|q with the left-hand side of the applied
rule, and
• ∅, otherwise.

Slightly abusing terminology, when t = C[s]p →q t′ with set {p1, . . . , pk} of one-step de-
scendants in t′, we also say that t|p has the one-step descendants t′|pi in t′. The descendant

relation (w.r.t. given derivations) is obtained as the (reflexive-)transitive closure of the one-
step descendant relation. The relation of (one-step) ancestors of a subterm position (w.r.t.
a given reduction sequence) is the inverse relation of the (one-step) descendant relation.

A conditional term rewriting system R (over some signature F) consists of rules l →
r ⇐ c where c is a conjunction of equations si = ti . Equality in the conditions may
be interpreted (recursively) e.g. as ↔∗ (semi-equational case), as ↓ (join case), or as →∗

(oriented case). In the latter case, if all right-hand sides of conditions are ground terms
that are irreducible w.r.t. the unconditional version Ru = {l → r | l → r ⇐ c ∈ R} of R,
the system is said to be a normal one.

According to the distribution of variables, a conditional rule l → r ⇐ c may satisfy
(1) Var(r)∪Var(c) ⊆ Var(l), (2) Var(r) ⊆ Var(l), (3) Var(r) ⊆ Var(l)∪Var(c), or (4) no
variable constraints. If all rules of a CTRS R are of type (i), 1 ≤ i ≤ 4, we say that R is an
i-CTRS. Given a conditional rewrite rule l → r ⇐ c and a variable x such that x ∈ Var(r)
but x 6∈ Var(l), we say that x is an extra variable.

There exists abundant literature on transforming CTRSs into unconditional systems
such that the original system can be appropriately simulated via reduction in the uncondi-
tional transformed one. For a unified parametrized approach to such transformations and
the relevant terminology we refer to [6]. Unravelings as introduced and investigated in [8, 9]
are the most simple and intuitive ones.

122 K. GMEINER, B. GRAMLICH, AND F. SCHERNHAMMER

Definition 2.1 ((simultaneous) unraveling for normal 1-CTRSs ([9, 8], cf. also [15])). Given
a normal 1-CTRS R = (F , R), every conditional rule

δ : l→ r ⇐ s1 →
∗ t1, . . . , sn →

∗ tn
of R is transformed into3

l → U δ(s1, . . . , sn,
−−−−→
Var(l)) (introduction rule)

U δ(t1, . . . , tn,
−−−−→
Var(l)) → r (elimination rule)

Unconditional rules remain invariant. The resulting (unraveled) TRS is denoted as U(R) or
R′ (over the signature F ′ = F ∪ {U δ | δ : l→ r ⇐ s1 →

∗ t1, . . . , sn →
∗ tn ∈ R}). Instead of

the new symbols U δ (corresponding to rule δ) we sometimes use other ones if appropriate.

Symbols from F ′ \ F are also called U -symbols. Terms rooted by such symbols are
called U -terms or U -rooted terms. Every U -symbol corresponds to a particular conditional
rewrite rule of the original CTRS according to Definition 2.1. Hence, we write U δ to indicate
that U δ corresponds to the rewrite rule δ. Moreover, if there is only one conditional rule
defining a function symbol f we may also write Uf to identify this rule. Henceforth, R
denotes a normal 1-CTRS unless stated otherwise.

The signature of an unraveled CTRS R′ is a superset of the signature of the CTRS R.
Hence, terms in R′-reductions are terms over this extended signature in general (we also
call them mixed terms). Throughout the paper, when dealing with CTRSs R = (F , R)
we denote by R′ the corresponding unraveled TRS, by F ′ the extended signature of the
TRS, by T the terms over the signature F and by T ′ the terms over the extended signature
F ′. For proof-theoretical reasons, in particular to show that unraveled systems are not too
general and do not enable “too many” reductions, we introduce functions that map mixed
terms to terms over the original signature of the CTRS in question.

We define two basic approaches of projecting mixed terms in the transformed system
back into corresponding original terms. The crucial idea is that when we consider a U -
(sub)term U δ(s1, . . . , sn) in a given R′-reduction we know that the root-symbol U δ indicates
that previously the introduction rule for U δ : l → r ⇐= u1 →

∗ v1, . . . , un →
∗ vn must have

been applied. Now, in order to get rid of U δ, there are two natural ways of doing so: We
can go back to the corresponding instance of the lhs l, or we anticipate the result by taking
the corresponding instance of the rhs r. In both cases, the projection needs to recursively
translate also U -subterms of the given term.

Definition 2.2 (translate backwards (tb)). Let R = (F , R) be a normal 1-CTRS. Then
the translate backward function tb : T → T ′ is defined by

tb(t) =

x if t = x ∈ V
f(tb(t1), . . . , tb(tm)) if t = f(t1, . . . , tm) and f ∈ F
lσ if t = U δ(v1, v2, . . . , vn, w1, . . . , wk)

and δ : l→ r ⇐ s1 →
∗ t1, . . . , sn →

∗ tn

where
−−−−→
Var(l) = x1, . . . , xk and σ is (recursively) defined as xiσ = tb(wi) for 1 ≤ i ≤ k.

3Using
−−−−→

Var(t) as sequence of the set of variables in t goes back to [15], whereas in [9, 8] the sequence

is constructed from the multiset of variables in t. The former version appears to be generally preferable,

because it is more abstract and avoids additional complications due to “non-synchronization effects”.

ON (UN)SOUNDNESS OF UNRAVELINGS 123

Definition 2.3 (translate forward (tf)). Let R = (F , R) be an normal 1-CTRS. Then the
translate forward function tf : T → T ′ is defined by

tf(t) =

x if t = x ∈ V
f(tf(t1), . . . , tf(tm)) if t = f(t1, . . . , tm) and f ∈ F
rσ if t = U δ(v1, v2, . . . , vn, w1, . . . , wk)

and δ : l→ r ⇐ s1 →
∗ t1, . . . , sn →

∗ tn

where
−−−−→
Var(l) = x1, . . . , xk and σ is (recursively) defined as xiσ = tf(wi) for 1 ≤ i ≤ k.

In this paper we focus on the property of soundness of unravelings which is dual to
the (easier to obtain) property of completeness. An unraveling is said to be complete (for
reductions) (or simulation-complete) if for all CTRSs R, s→∗

R t for s, t ∈ T implies s→∗
R′ t.

Furthermore, an unraveling is sound for reductions (or simulation-sound) if s→∗
R′ t implies

s →∗
R t. Subsequently, we sometimes use a slightly more general notion of soundness by

demanding that s →∗
R′ t (for t ∈ T ′) implies s →∗

R tb(t) resp. tf(t). This notion is indeed
more general since tb(t) = tf(t) = t whenever t ∈ T (i.e. t is an original term). Given a
particular CTRS R, we also say that the unraveling is complete (sound) for R or, slightly
abusing terminology, that R′ is complete (sound) w.r.t. R. For a more thorough discussion
of the terminology used for (preservation properties of) transformations we refer to [6].

3. (Un)Soundness for Normal 1-CTRSs

By carefully analyzing known counterexamples to soundness (of unravelings for normal
1-CTRSs) from the literature we first collect a couple of (mainly syntactic) properties whose
absence may be viewed as tempting candidates for guaranteeing soundness (Subsection 3.1).
We then show that some of them are not really essential for the unsoundness phenomenon.

3.1. Known and New Counterexamples

First of all, as observed in [6], there is a simple source of unsoundness in unravelings (as
well as in most other transformations) which is due to an “optimized” version of unraveling
as it is used in several papers. The underlying idea for this “optimization” is that when
starting a conditional rule application via an introduction step, not all variable bindings
of the lhs (instance) are stored in the corresponding U -term introduced, but only those
that are needed to eventually produce the final rhs (instance), provided all conditions are
satisfied. This motivates the definition of Uopt as follows: Transform

δ : l→ r ⇐ s1 →
∗ t1, . . . , sn →

∗ tn
into

l → U δ(s1, . . . , sn,
−−−−→
Var(r)) (introduction rule)

U δ(t1, . . . , tn,
−−−−→
Var(r)) → r (elimination rule)

Given R, let us denote the resulting system as R′
opt. Then it is easy to see that

simulatingR (on T) is indeed possible viaR′
opt, i.e.,R

′
opt is (simulation) complete (w.r.t.R).

However, concerning soundness (and consequently also e.g. completeness w.r.t. termination)
there is a problem (due to non-left-linear rules in R).

124 K. GMEINER, B. GRAMLICH, AND F. SCHERNHAMMER

Example 3.1. When we unravel

R =

{

f(x)→ a ⇐= b→∗ c
g(x, x)→ d

}

with Uopt into

R′
opt =

f(x)→ U(b)
U(c)→ a

g(x, x)→ d

we get g(f(a), f(b)) →∗
Ropt

g(U(b), U(b)) →Ropt
d, but obviously g(f(a), f(b)) 6→∗

R d, be-

cause f(t) is R-irreducible for every R-irreducible t ∈ T .
If we now add the rule d→ g(f(a), f(b)) to R, the resulting system is still terminating,

but its unraveled version becomes non-terminating.

This subtle flaw of “optimized” transformations (caused by omitting certain seemingly
unnecessary variable bindings) as for Uopt above has been overlooked in various papers on
transformations (cf. e.g. [2], [8]).4 But even if we exclude such “optimizations” and insist
on keeping all variable bindings in introduction steps (as in U), unraveled systems are in
general not sound, as discovered by Marchiori in his pioneering paper [9].5 This is a striking
fact that — at least at first glance – is rather counterintuitive!

The following is a slightly simplified version of the basic ingenious counterexample of
Marchiori [8, Example 4.3], similar to [6, Example 1].

Example 3.2. Unraveling of R = R1 ∪R2 with

a c e

b d k

h(x, x)→ g(x, x, f(k))

g(d, x, x)→ A
︸ ︷︷ ︸

R1

f(x)→ x⇐= x→∗ e
︸ ︷︷ ︸

R2

yields R′ = R1 ∪R
′
2 with

f(x)→ U(x, x) U(e, x)→ x
︸ ︷︷ ︸

R′
2In R′ we get

h(f(a), f(b)) →+ h(U(c, d), U(c, d)) → g(U(c, d), U(c, d), f(k))
→+ g(d, U(c, d), f(k)) →+ g(d, U(k, k), U(k, k)) → A

However, in R we do not have h(f(a), f(b))→∗ A, since otherwise this would imply

h(f(a), f(b))→∗ h(s, s)→ g(s, s, f(k))→∗ g(d, t, t)→∗ A

for some s, t satisfying (1) f(a)→∗ s, f(b)→∗ s, (2) s→∗ d, and (3) s→∗ t, f(k)→∗ t.
But (1) and (2) imply s = d, hence t = d or t = k. However, by (3), f(k) →∗ t is

neither possible for t = d nor for t = k.

4Also in [12] a similar optimized transformation is used. Although the results presented in [12] do not

contradict examples like Example 3.1 above, the general problem with such “optimized” transformations

remains hidden, cf. [12, counterex. R4,p. 9].
5More precisely, the details are only included in the extended technical report version [8] of [9].

ON (UN)SOUNDNESS OF UNRAVELINGS 125

Inspection of Example 3.2 reveals that it has numerous properties that one might be
tempted to conjecture to be essential for the counterexample property.

Observation 3.3. The system R of Example 3.2 enjoys the following (mostly syntactical)
properties: It is non-left-linear (¬LL), non-confluent (¬CR), erasing, i.e. not non-erasing
(¬NE), non-right-linear (¬RL), not a constructor system (¬CS), not an overlay system
(¬OS), overlapping, i.e. not non-overlapping (¬NO) and collapsing, i.e. not non-collapsing
(¬NCOL).

We will now investigate whether each of these properties is essential for unsoundness
or not.

Proposition 3.4. None of the properties of being

• not a constructor system (¬CS)
• not an overlay system (¬OS)
• collapsing (¬NCOL)
• non-right-linear (¬RL)

is essential for unsoundness of unravelings.

Proof. Cf. Example 3.5

Example 3.5. Unraveling of R = R1 ∪R2 with

a c e

k

b d l

g(x, x)→ A

︸ ︷︷ ︸

R1

f(x)→ m(x) ⇐= x→∗ e

h(x, x)→ g(x, f(k)) ⇐= x→∗ m(l)
︸ ︷︷ ︸

R2

yields R′ = R1 ∪R
′
2 with

f(x)→ Uf (x, x) h(x, x)→ Uh(x, x)

Uf (e, x)→ m(x) Uh(m(l), x)→ g(x, f(k)) .
︸ ︷︷ ︸

R′
2

In R′ we have

h(f(a), f(b)) →+ h(Uf (c, d), Uf (c, d)) → Uh(Uf (c, d), Uf (c, d))
→+ Uh(m(l), Uf (c, d)) → g(Uf (c, d), f(k)) →+ g(Uf (k, k), Uf (k, k)) → A

However, in R we do not have h(f(a), f(b))→∗ A, analogously to the reasoning in Example
3.2.

Proposition 3.6. The property of being overlapping is not essential for unsoundness of

unravelings.

Proof. The non-confluent overlapping part of the Examples 3.2 and 3.5 can easily be changed
into a non-overlapping (but still non-confluent) sub-system such that the counterexample
property is preserved by using rules of the shape a(x, x) → c(p, p) and a(x, i(x)) → d(p, p)
to simulate a divergence c← a→ d. Additionally, a rule p→ i(p) is added.

126 K. GMEINER, B. GRAMLICH, AND F. SCHERNHAMMER

3.2. Sufficient Criteria for Soundness

In this section we will prove that each of the remaining properties of the CTRS of
Example 3.2, namely being non-left-linear, non-confluent and erasing (i.e. not non-erasing)
is indeed crucial for the counterexample, thus yielding corresponding soundness criteria.

For the case of left-linearity this has already been proved by Marchiori in [8].

Theorem 3.7 (left-linearity is sufficient ([8], cf. also [15])). Left-linearity of R is sufficient

for soundness of R′.

In the following we establish that confluence and non-erasingness of a CTRS R are
sufficient to deduce that the unraveling of Definition 2.1 is sound w.r.t. R. Moreover, we
generalize the soundness result for left-linear systems by demanding only weak left-linearity
(see Definition 3.22 below) instead of left-linearity.

3.2.1. Confluence.

An important property of unravelings is that variables may be duplicated when U -
symbols are introduced. For instance in Example 3.2 such a duplication occurs in the
rule f(x) → U(x, x). Thus, in an R′-reduction after this rule is applied, the instantiated
variables could be reduced to different terms. In Example 3.2 this happens when U(a, a) is
reduced to U(c, d).

However, when transforming a term like U(c, d) into a term from T for instance using
tb either c or d is selected as instantiation of the single variable of the left-hand side of
the corresponding conditional rewrite rule. In case of tb we would get tb(U(c, d)) = f(d).
Regarding soundness this is problematic in general, since U(c, d) →+

R′ d but tb(U(c, d)) =
f(d) 6→R d = tb(d). The particular problem here is that d 6→∗

R e and thus the conditional
rule is not applicable to f(d). Non-confluence, i.e. d ←+

R a →+
R e but d and e are not

joinable, is crucial for this problem.
If R is confluent and U(u, v) (with u, v ∈ T) appears as redex w.r.t. a U -elimination

rule in a R′-reduction sequence starting from an original term (provided that U has been
introduced by a rule l → U(x, x)), we can prove that v →∗

R u holds. This is achieved by
showing that u and v have a common ancestor in T and since u is a ground normal form,
confluence of R implies v →∗

R u.
First we prove an auxiliary lemma basically stating a kind of monotony under T ′-

contexts of →R when tb is applied.

Lemma 3.8 (monotony property of tb). Let R = (F , R) be a 1-CTRS. If u →p,R′ v for

terms u, v ∈ T ′ and tb(u|p) →
≤1
R tb(v|p), then tb(u|q) ‖→R tb(v|q′) for all q ∈ Pos(u) and

all descendants q′ of q in v.

Proof (sketch). For the interesting case where q ≤ p we use induction on the size of p′

determined by q.p′ = p.

The next lemma is the technical key result for the proof of Theorem 3.12 below. It
states that in an R′-reduction sequence D starting from an original term, for every redex u
and its (one-step) reductum v appearing in D we have tb(u)→≤1

R tb(v).

ON (UN)SOUNDNESS OF UNRAVELINGS 127

Lemma 3.9 (technical key result for confluent systems). Let R = (F , R) be a confluent
normal 1-CTRS and let D : u1 →p1,R′ u2 →p2,R′ . . . →pn−1,R′ un be a reduction sequence

where u1 ∈ T and ui ∈ T
′ for 1 < i ≤ n. Then, tb(ui|pi)→

≤1
R tb(ui+1|pi) for all 1 ≤ i < n.

Proof (sketch). Proof by induction on the length of D and case distinction on the rule
applied in the last step of D. The interesting case is where this last step is a U -elimination
step. There, we get for every condition si →

∗ ti of the corresponding conditional rule α that
tb(siσ) →

∗
R tb(ti) and tb(siσ) →

∗
R tb(siτ) holds, where τ is the matcher used in the last

step of D and σ the matcher used in the corresponding U -introduction step of α, according
to the induction hypothesis. Then, confluence of R yields tb(siτ) →

∗
R ti since tb(ti) = ti

and ti is a (ground Ru-) normal form. Hence, α is applicable to tb(un−1|pn−1
) and we get

tb(un−1|pn−1
)→R tb(un|pn−1

).

In Lemma 3.9 the confluence assumption cannot be dropped.

Example 3.10. Consider the following normal 1-CTRS R.

a → b a → c f(x) → x⇐ x→∗ b

R is not confluent since b and c are not joinable. Consider the R′-reduction sequence
f(a) →R′ U(a, a) →+

R′ U(b, c) →R′ c and the term U(b, c). In the proof of Lemma 3.9 we
showed that b and c must have a common ancestor. However, while in the proof we used this
fact to deduce that they also have a common descendant and further that this descendant
must be b, in the example this conclusion is wrong because of non-confluence of R. Indeed,
Lemma 3.9 does not hold for this example, since tb(U(b, c)) = f(c) 6→R c = tb(c).

Lemma 3.11 (projecting reductions issuing from original terms). Let R be confluent. Then

for every R′-reduction u1 →p1,R′ u2 →p2,R′ . . . →pn−1,R′ un with u1 ∈ T we have u1 =
tb(u1) ‖→R tb(u2) ‖→R . . . ‖→R tb(un).

Proof. For every redex uj |pj and corresponding reductum uj+1|pj (1 ≤ j < n) we have

tb(uj |pj)→
≤1
R tb(uj+1|pj) because of Lemma 3.9. This implies tb(uj) ‖→R tb(uj+1) accord-

ing to Lemma 3.8 (with q = q′ = ǫ).

As corollary we obtain the following result.

Theorem 3.12 (confluence is sufficient). Confluence of R is sufficient for soundness of

R′.

Proof. Straightforward using Lemma 3.11.

3.2.2. Non-Erasingness.

In Example 3.2 the R′-reduction that is a witness for unsoundness contains U -(sub)-terms
that are not reducible to original terms, since the U -symbol cannot be eliminated (e.g. the
term U(k, k)). Hence, since the final term A of the reduction is an original term, these
terms must be erased.

When considering a non-erasing CTRSR (and thus a non-erasingR′), every U -symbol in
every (finite)R′ reduction sequenceD ending in a term from T must be properly eliminated.
This fact motivates and justifies the use of tf when simulating R′-reductions in R, as
whenever some U -term is encountered in D it will eventually be eliminated in D and this
elimination is anticipated when applying tf.

128 K. GMEINER, B. GRAMLICH, AND F. SCHERNHAMMER

The following lemma is dual to Lemma 3.8 in that tf instead of tb is used for trans-
forming terms from T ′ into terms from T .

Lemma 3.13 (monotony property of tf). Let R = (F , R) be a 1-CTRS. If u →p,R′ v

for u, v ∈ T ′ and tf(u|p) →
≤1
R tf(v|p), then tf(u|q) ‖→R tf(v|q′) for all q ∈ Pos(u) and all

descendants q′ of q in v.

Proof (sketch). The proof is analogous to the one of Lemma 3.8. For the interesting case
where q ≤ p we use induction on the size of p′ determined by q.p′ = p.

The next lemma is the technical key result for the proof of Theorem 3.16 below. It is
dual to Lemma 3.9 in that tf is used instead of tb.

Lemma 3.14 (technical key result for non-erasing systems). Let R = (F , R) be a non-
erasing normal 1-CTRS and let D : u1 →p1,R′ u2 →p2,R′ . . . →pn−1,R′ sn be a reduction

sequence where un ∈ T and ui ∈ T
′ for 1 ≤ i < n. Then, tf(ui|pi) →

≤1
R tf(ui+1|pi) for

1 ≤ i < n.

Proof (sketch). Proof by induction on the length of D and case distinction on the rule
applied in the first step of D. The interesting case is where this first step is a U -introduction
step. Since R′ is non-erasing, the introduced U -symbol is eventually eliminated in D and
hence by the induction hypothesis and Lemma 3.13 we get tf(siσ)→

∗
R ti for all conditions

of the conditional rule corresponding to the introduced U -symbol. Hence tf(u1|p1) →R

tf(u2|p1).

Finally, we can prove soundness of unravelings for non-erasing normal 1-CTRSs.

Lemma 3.15 (projecting reductions issuing from original term). Let R be non-erasing.

Then for every R′-reduction u1 →p1,R′ u2 →p2,R′ . . . →pn−1,R′ un with un ∈ T we have

tf(u1) ‖→R tf(u2) ‖→R . . . ‖→R tf(un−1) ‖→R tf(un) = un.

Proof. For every redex uj |pj and corresponding reductum uj+1|pj (1 ≤ j < n) we have

tf(uj |pj)→
≤1
R tf(uj+1|pj) because of Lemma 3.14. This implies tf(uj) ‖→R tf(uj+1) according

to Lemma 3.13 (with q = q′ = ǫ).

Theorem 3.16 (non-erasingness is sufficient). Non-erasingness of R is sufficient for sound-

ness of R′.

Proof. Straightforward using Lemma 3.15.

3.2.3. Right-Linearity Revisited.

Next we reconsider right-linearity. In Example 3.5 we have shown that non-right-linearity
of R is not essential for unsoundness. However, in this example the unraveled system R′

becomes non-right-linear. This property of R′ is crucial for Example 3.5 (as we will see).
Yet, demanding that R′ is right-linear is a severe restriction, since right-linearity of R′

implies that R contains only ground conditions. To see this consider some conditional rule
l → r ⇐ s → t, such that x ∈ Var(s). Since we consider 1-CTRSs this implies x ∈ Var(l)
and hence the unraveled system contains a non-right-linear rule l→ U(s, x).

It turns out that for CTRSs R having only ground conditions (GC), R′ is sound even if
R is not right-linear.

ON (UN)SOUNDNESS OF UNRAVELINGS 129

Theorem 3.17 (GC is sufficient for soundness). If R has only ground conditions, then R′

is sound (w.r.t. R).

Proof (sketch). The proof is basically analogous to the proof of soundness for confluent
CTRSs. There, confluence was (exclusively) needed to show that ti ←

∗
R tb(siσ)→

∗
R tb(siτ)

implies tb(siτ) →
∗
R ti for conditions si →

∗ ti of some conditional rule and certain substi-
tutions τ and σ (cf. the proof of Lemma 3.9). However, for CTRSs with ground conditions
this is trivial since siσ = siτ for all substitutions σ and τ and thus tb(siσ) = tb(siτ).

Of course, systems with only ground conditions are of limited practical use (and could
in principle, though not necessarily effectively, be replaced by equivalent unconditional
systems).

3.2.4. Normal Form Property.

Reconsidering the sufficiency of confluence of R for soundness (Theorem 3.12), we can get
another slightly more general criterion.

Regarding confluence properties, the following proper implications (for TRSs and also
for ARSs) are well-known (cf. e.g. [15]):

(∗) CR =⇒ NF =⇒ UN =⇒ UN
→ .

In the proof of Theorem 3.12, what is actually needed, is not full confluence, but only
the property

(+) t ∗←R s→∗ u ∈ NF(R) =⇒ t→∗ u .

Proposition 3.18. Property (+) is equivalent to NF.

Proof. Straightforward.

Consequently we can generalize Theorem 3.12 slightly as follows.

Theorem 3.19 (NF is sufficient). The normal form property (NF) of R is sufficient for

soundness of R′.

Regarding the above proper implications (*) and Theorem 3.19, an obvious question is
whether UN or UN→, respectively, is sufficient for soundness.

Proposition 3.20 (UN and UN
→ are not sufficient for soundness). UN and UN

→ are not

sufficient for soundness.

Proof. Cf. Example 3.21.

Example 3.21 (Example 3.2 continued). Consider the system ̂R obtained from R as in
Example 3.2 by adding the additional unconditional rule k → k. Then it is easy to verify

that ̂R is not NF, but UN and UN
→. Moreover, ̂R′ is still unsound w.r.t. ̂R.

130 K. GMEINER, B. GRAMLICH, AND F. SCHERNHAMMER

3.2.5. Left-Linearity Revisited.

It is well-known that left-linear join (1-)CTRSs can be simulated by left-linear normal
(1-)CTRSs extended by an additional rule like eq(x, x) → tt (yielding Req), via encod-
ing join conditions ui ↓R vi as eq(ui, vi) →

∗
Req

tt. Hence, it would be interesting to know

whether – regarding left-linearity of R as sufficient criterion for soundness (Theorem 3.7)
– this class could be extended slightly so as to cover also left-linear systems extended by
(non-left-linear) “eq-like” rules. This is indeed the case as we will show next.

Definition 3.22 (weak left-linearity). A normal 1-CTRS is said to be weakly left-linear if
every rule l→ r ⇐ s1 →

∗ t1, . . . , sn →
∗ tn ofR is either left-linear or, if not, is unconditional

and every non-linear variable in l does not occur at all in r.6

In particular, extending (not necessarily disjointly concerning the signature) a left-linear
normal 1-CTRS by eq(x, x)→ tt yields a weakly left-linear system.

Before proving that weak-left-linearity of R′ is indeed sufficient for soundness of un-
ravelings, we state two observations regarding the preservation of weak left-linearity under
unravelings and the existence and uniqueness of one-step ancestors of U -terms in reductions
w.r.t. weakly left-linear systems R′.

Observation 3.23. R is weakly left-linear iff R′ is so.

Observation 3.24. Let R be a weakly left-linear normal 1-CTRS. If u→p,R′ v, then every
U -rooted subterm position of v has exactly one one-step ancestor in u.

Proof. For all normal 1-CTRSs every U -(sub)-term has at least one one-step ancestor (in an
R′-reduction), because U -symbols do not occur strictly below the root of rhs’s of rules in
R′. Weak left-linearity of R implies weak left-linearity of R′ and thus in every R′-reduction
every term has at most one one-step ancestor.

Observation 3.24 motivates the definition of a function tbD w.r.t. to a R′-reduction
sequence D, starting from an original term, which basically transforms terms from T ′ into
terms from T . Since we can trace a U -(sub)term uniquely backwards in D (uniqueness is
due to Observation 3.24), the idea is that we can find the first (when traced backwards)
non-U -rooted ancestor of the U -term (i.e., the one appearing in the term of D with the
highest index) and thus replace the U -(sub)term by this ancestor.

Definition 3.25 (tbD). Let R be a weakly left-linear normal 1-CTRS and let D : u1 →R′

u2 →R′ . . . ,→R′ un be a reduction sequence with u1 ∈ T and ui ∈ T
′ for 1 < i ≤ n. We

define the (partial) function tbD : {1, . . . , n} × N
∗
+ → T , i.e. from pairs (i, p), where i is an

index and p is a position, as

tbD(i, p) =

undefined if p 6∈ Pos(ui)
x if ui|p = x ∈ V
f(tbD(i, p.1), . . . , tbD(i, p.l)) if ui|p = f(t1, . . . , tl) and f ∈ F
tbD(i− 1, p′) if root(ui|p) ∈ F

′ \ F , i > 1 and ui−1|p′ is the
unique one-step ancestor of ui|p .

Note that pairs (i, p) are supposed to determine a subterm occurrence at position p in
the ith term of D. Hence, tbD is undefined if the pair does not determine such a term, i.e.
if p 6∈ Pos(ui).

6Note that this definition also covers the case of TRSs.

ON (UN)SOUNDNESS OF UNRAVELINGS 131

Example 3.26. Let R be as in Example 3.2 and consider the R′-derivation D : u1 =
f(a) →R′ U(a, a) →R′ U(a, d) →R′ U(c, d) = u4. Then we have tb(U(c, d)) = f(d), but
tbD(4, ǫ) = f(a) (here, u4 = U(c, d)|ǫ = U(c, d)). Note that the backtranslation tbD goes
back further than tb. For instance, we have tbD(U(c, d)→∗

R′ d, but tb(U(c, d) 6→∗
R′ d.

The following lemma roughly states that whether the tbD-version of some (sub)term is
reachable in R by the tbD-version of its ancestor depends only on whether the tbD-version
of the reductum is reachable by the tbD-version of the redex in the corresponding step.

Lemma 3.27 (monotony property of tbD). Let R be a weakly left-linear normal 1-CTRS

and let D : u1 →p1,R′ u2 →p2,R′ . . . →pn−1,R′ un be an R′-reduction sequence with u1 ∈ T
and ui ∈ T

′ for 1 < i ≤ n. If tbD(i, pi) →
∗
R tbD(i + 1, pi) for every 1 ≤ i ≤ n − 1, then

tbD(i, p)→
∗
R tbD(i+1, p′) for every 1 ≤ i ≤ n− 1, every p ∈ Pos(ui) and every descendant

ui+1|p′ of ui|p.

Proof (sketch). For the interesting case where p ≤ pi we use induction on the size of p
determined by p.p = pi.

In Lemma 3.28 below we prove a restricted monotony property of tbD.

Lemma 3.28 (extraction of tbD in U -rooted terms). Let R be a weakly left-linear normal

1-CTRS and D : u1 →p1,R′ u2 →p2,R′ . . . →pn−1,R′ un be an R′-reduction sequence with

u1 ∈ T and ui ∈ T
′ for 1 < i ≤ n. If tbD(i, pi) →

∗
R tbD(i + 1, pi) for every 1 ≤ i ≤

n − 1, uk|p = Uα(v1, . . . , vm1
, x1, . . . , xm2)τ , α = l → r ⇐ s1 →

∗ t1, . . . , sm1
→ tm1

and

tbD(k, p) = lσ, then siσ →
∗
R tbD(k, p.i) for all 1 ≤ i ≤ m1 and xiσ →

∗
R tbD(k, p.(m1 + i))

for all 1 ≤ i ≤ m2.

Proof (sketch). Proof by induction on k and using Lemma 3.27.

The next lemma shows that the backtranslation of tb is intuitively not “as far back” as
the one of tbD by stating that tbD(i, p)→

∗
R tb(ui|p) for certain R

′-reductions D.

Lemma 3.29 (tbD to tb). Let R be a weakly left-linear normal 1-CTRS and let D : u1 →p1,R′

u2 →p2,R′ . . .→pn−1,R′ un be a R′-reduction sequence with u1 ∈ T and ui ∈ T
′ for 1 < i ≤ n.

If tbD(i, pi) →
∗
R tbD(i + 1, pi) for every 1 ≤ i ≤ n − 1, then tbD(j, p) →

∗
R tb(uj |p) for all

1 ≤ j ≤ n and all p ∈ Pos(uj).

Proof (sketch). Proof by induction on the term depth of uj |p and using Lemma 3.28.

The following lemma is the technical key result for soundness in the weakly left-linear
case. It states that in every R′-reduction D we have tbD(i, p) →

∗
R tbD(i + 1, p), if ui|p is

the redex contracted in D.

Lemma 3.30 (technical key result for weakly left-linear systems). Let R be a weakly left-

linear normal 1-CTRS and let D : u1 →p1,R′ u2 →p2,R′ . . . →pn−1,R′ un be a R′-reduction

sequence with u1 ∈ T and ui ∈ T
′ for 1 < i ≤ n, then tbD(i, pi) →

∗
R tbD(i + 1, pi) for all

1 ≤ i < n.

Proof (sketch). Proof by induction on the length of D and case distinction over the applied
rule in the last reduction step of D. There are two interesting cases. First, if the rule is an
unconditional non-left-linear rule l→ r, this rule might not be applicable to tbD(n−1, pn−1)
since un−1|q = un−1|q′ 6⇒ tbD(n − 1, q) = tbD(n − 1, q′). However, by Lemma 3.29 we get
tbD(n−1, q)→

∗
R tb(un−1|q) and tbD(n−1, q

′)→∗
R tb(un−1|q′). Hence, tbD(n−1, pn−1.q) ↓R

132 K. GMEINER, B. GRAMLICH, AND F. SCHERNHAMMER

tbD(n−1, pn−1.q
′) for all positions q, q′ where l|q = l|q′ = x ∈ V . Moreover, these reductions

do not effect the reductum after the rule is applied, since all non-linear variables are erased
due to weak left-linearity of R.

For the second interesting case where the last applied rule is a U -elimination rule we get
siσ →

∗
R ti according to Lemma 3.28 for every condition si →

∗ ti of the conditional rewrite
rule corresponding to the eliminated U -symbol, where σ is given by tbD(n− 1, pn−1) = lσ.
Hence, this implies tbD(n− 1, pn−1)→

∗
R tbD(n, pn−1) by again applying Lemma 3.28.

Weak left-linearity is crucial in Lemma 3.30 to ensure that non-left-linear rules are
applicable in the tbD-versions of redexes.

Example 3.31. Consider the weakly left-linear normal 1-CTRS R given by

eq(x, x) → tt f(x)→ b⇐ x→∗ b
a → b

and the R′-derivation

D : eq(f(a), f(b))→+
R′ eq(U(a, a), U(b, b))→+

R′ eq(b, b)→R′ tt .

Let un−1 = eq(b, b), then tbD(n− 1, ǫ) = u1 = eq(f(a), f(b)) and eq(f(a), f(b)) 6→R tt (i.e.,
with one single R-step). However, f(a) and f(b) are joinable (in general this is justified by
Lemma 3.29) and reducing them is not problematic as the non-linear variable x is erased
whenever the eq-rule is applied (this must in general be the case because of weak left-linearity
of R). Hence, we have tbD(n− 1, ǫ)→∗

R tt = tbD(n, ǫ).

The following lemma and theorem state the main soundness result for weakly left-linear
normal 1-CTRSs.

Lemma 3.32. Let R be a weakly left-linear normal 1-CTRS and let D : u1 →p1,R′ u2 →p2,R′

. . .→pn−1,R′ un be an R′-reduction sequence with u1 ∈ T and ui ∈ T
′ for 1 ≤ i ≤ n. Then,

u1 = tbD(1, ǫ)→
∗
R tb(un).

Proof. Lemma 3.30 yields that tbD(i, pi)→
∗
R tbD(i+1, pi) for all 1 ≤ i < n. Hence, Lemma

3.27 is applicable and its repeated application yields tbD(1, ǫ)→
∗
R tbD(n, ǫ). Finally, Lemma

3.29 yields tbD(n, ǫ)→
∗
R tb(un).

Theorem 3.33. Weak left-linearity of R is sufficient for soundness of R′.

Proof. Straightforward using Lemma 3.32.

Obviously, Theorem 3.33 properly generalizes Theorem 3.7. Intuitively, the former
result and its proof show that non-left-linearity due to “eq-like” rules is not problematic,
since the effects of applying such a non-left-linear rule are only local (and do not cause
complex sharing of equal subterms along longer derivations).

A nice consequence of Theorem 3.33 is that left-linear join 1-CTRSs Rj can be soundly
unraveled (via the unraveling U for the case of normal 1-CTRSs) by first encoding Rj into a
normal 1-CTRS Rn (in a many-sorted setting, by adding the rule eq(x, x)→ tt to Rj where
eq : s × s → bool is a fresh binary function symbol of sort bool and tt a fresh constant of
sort bool, and all terms s ∈ T are considered as s-sorted, with s 6= bool, and by representing
conditions ui ↓ vi as eq(ui, vi)→

∗ tt) and a subsequent unraveling of Rn into R′
n.

ON (UN)SOUNDNESS OF UNRAVELINGS 133

4. Discussion, Perspectives and Related Work

First let us summarize the results obtained. The table in Figure 1 lists the properties
(of R) investigated in the first row, indicates whether they are sufficient for soundness (of
R′) in the second row (+ means “Yes”, − “No”), and gives references for the results in the
last row.

LL CS OS RL NO CR NE NF GC UN UN
→

WLL

+ − − − − + + + + − − +
3.7 ([8, TH. 6.12]) 3.4 3.4 3.4 3.6 3.12 3.16 3.16 3.17 3.20 3.20 3.33

Figure 1: Sufficiency of conditions for soundness of unravelings (of normal 1-CTRSs)

Due to the carefully designed modular proof structure of the obtained positive re-
sults and to the conceptually clear underlying ideas and the corresponding projection ap-
proaches (via tb, tf and tbD) we expect that at least some of the results can be extended
to other classes of CTRSs and to other transformations from CTRSs to TRSs. One case,
for which this is indeed possible, concerns an alternative sequential version of unraveling
normal 1-CTRSs. Here, the idea is that the conditions of a conditional rule are not pro-
cessed simultaneously (by the unraveling), but sequentially, one at a time. This means,
given the rule δ : l → r ⇐= s1 →

∗ t1, . . . , sn → tn, instead of one introduction rule

l → U δ(s1, . . . , sn,
−−−−→
Var(l)) and one elimination rule U δ(t1, . . . , tn,

−−−−→
Var(l)) → r we have

one first introduction rule l → U δ
1 (s1,

−−−−→
Var(l)), n − 2 further intermediate “switch”-rules

U δ
i (ti,

−−−−→
Var(l)) → U δ

i+1(si+1,
−−−−→
Var(l)), 1 ≤ i ≤ n − 1 (which act as elimination rules for U δ

i

and as introduction rules for U δ
i+1) and a final elimination rule U δ

n−1(tn,
−−−−→
Var(l)) → r. All

results (for U) presented in the paper actually also hold for this sequential unraveling Useq

as can be shown by a careful inspection and adaptation of the proofs.
The corresponding analysis of Useq for normal 1-CTRSs provides the appropriate ba-

sis for dealing with the more general class of deterministic (oriented) 3-CTRSs where
bindings for extra variables in the conditions and in right-hand side r of l → r ⇐=
s1 →

∗ t1, . . . , sn →
∗ tn are “determined” by sequentially processing the conditions, i.e.,

Var(si) ⊆ Var(l) ∪
⋃

1≤j≤i−1Var(tj). But the details of this extension still need to be
carefully worked out.

There are various open questions in the area. For instance, it remains unclear whether
an even better (more precise) characterization of unsoundness exists, in the form of a general
characterization result for unsoundness, similar to the one for non-modularity of termination
(cf. e.g. [7, Theorem 7]), from which (most) known sufficient criteria for soundness follow.

Regarding related work, as far as we know left-linearity (of R) was the only established
sufficient criterion for soundness (of R′), cf. [8, 9], [15, Chapter 7]. Compared to the proofs
in these papers, we think that our proof of the more general Theorem 3.33 is in a sense
more modular and less operational than these previous ones, and is also better suited for
potential extensions.

Regarding more general classes of CTRSs (as compared to normal 1-CTRSs), the only
works that we aware of, are [10] and [12]. However, in [10] there is only a claim ([10,
Theorem 5.2], without any proof or proof sketch) stating soundness of (sequential) unrav-
elings for semilinear DCTRSs, and in [12] the basic unraveling transformation used is a
kind of optimized version analogous to Uopt, cf. Section 3.1 and Example 3.1, for which we

134 K. GMEINER, B. GRAMLICH, AND F. SCHERNHAMMER

have argued that such an optimization is generally problematic from the point of view of
soundness.

Acknowledgments

The authors are grateful to the anonymous referees for various useful hints and suggestions.

References

[1] F. Baader and T. Nipkow. Term rewriting and All That. Cambridge University Press, 1998.

[2] J. Bergstra and J. Klop. Conditional rewrite rules: Confluence and termination. Journal of Computer
and System Sciences, 32(3):323–362, 1986.

[3] M. Bezem, J. Klop, and R. Vrijer, editors. Term Rewriting Systems. Cambridge Tracts in Theoretical

Computer Science 55. Cambridge University Press, Mar. 2003.

[4] N. Dershowitz and D. Plaisted. Logic programming cum applicative programming. In Proc. 1985 Sym-
posium on Logic Programming, Boston, Massachusetts, July 15-18, 1985, pp. 54–66. IEEE, 1985.

[5] F. Durán, S. Lucas, J. Meseguer, C. Marché, and X. Urbain. Proving operational termination of mem-

bership equational programs. Higher-Order and Symbolic Computation, 21(10):59–88, 2008.
[6] K. Gmeiner and B. Gramlich. Transformations of conditional rewrite systems revisited. In A. Corradini

and U. Montanari, eds., Recent Trends in Algebraic Development Techniques (WADT 2008) – Selected
Papers, LNCS 5486, pp. 166–186. Springer, 2009.

[7] B. Gramlich. Generalized sufficient conditions for modular termination of rewriting. Applicable Algebra
in Engineering, Communication and Computing, 5:131–158, 1994.

[8] M. Marchiori. Unravelings and ultra-properties. Technical Report 8 (37 pages, long version of [9]),

University of Padova, Italy, 1995.

[9] M. Marchiori. Unravelings and ultra-properties. In M. Hanus and M. Rodŕıguez-Artalejo, eds., Proc. 5th
Int. Conf. on Algebraic and Logic Programming, LNCS 1139, pp. 107–121. Springer, 1996.

[10] M. Marchiori. On deterministic conditional rewriting. Technical Report MIT LCS CSG Memo n. 405,

MIT, Cambridge, MA, USA, Oct. 1997.

[11] N. Nishida, T. Mizutani, and M. Sakai. Transformation for refining unraveled conditional term rewriting

systems. In S. Antoy, ed., Final Proc. 6th International Workshop on Reduction Strategies in Rewriting
and Programming (WRS 2006). Electr. Notes Theor. Comput. Sci. (ENTCS), 174(10), 2007.

[12] N. Nishida, M. Sakai, and T. Sakabe. On simulation-completeness of unraveling for conditional term

rewriting systems. IEICE Tech. Rep. SS2004-18, 104(243):25–30, 2004. Revised version, 15 p., Dec. 2005.

[13] N. Nishida and M. Sakai. Completion after program inversion of injective functions. In A. MIddeldorp,

ed., Proc. 8th International Workshop on Reduction Strategies in Rewriting and Programming (WRS
2008), Castle of Hagenberg, Austria, 14 July 2008. Electr. Notes Theor. Comput. Sci., 237:39–56, 2009.

[14] N. Nishida, M. Sakai, and T. Sakabe. Partial inversion of constructor term rewriting systems. In J. Giesl,

ed., Proc. 16th International Conference on Rewriting Techniques and Applications (RTA 2005), LNCS

346, pp. 264–278. Springer, Apr. 2005.

[15] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002.
[16] G. Rosu. From conditional to unconditional rewriting. In J. L. Fiadeiro, P. D. Mosses, and F. Orejas,

eds., Recent Trends in Algebraic Development Techniques, 17th International Workshop (WADT 2004),
Revised selected papers, LNCS 3423, pp. 218–233. Springer, 2004.

[17] F. Schernhammer and B. Gramlich. Characterizing and proving operational termination of deterministic

conditional term rewriting systems. Journal of Logic and Algebraic Programming, 2009. Revised selected

papers of NWPT 2008, T. Uustalu and J. Vain, eds., to appear.

[18] Y. Toyama. Confluent term rewriting systems with membership conditions. In S. Kaplan and J.-P.

Jouannaud, eds., Proc. 1st Int. Workshop on Conditional Term Rewriting Systems, Orsay, France, July
8-10, 198, LNCS 308, pp. 228–241. Springer, 1988.

[19] P. Viry. Elimination of conditions. J. Symb. Comput., 28(3):381–401, 1999.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 135-150
http://rewriting.loria.fr/rta/

A PROOF CALCULUS

WHICH REDUCES SYNTACTIC BUREAUCRACY

ALESSIO GUGLIELMI 1 AND TOM GUNDERSEN 2 AND MICHEL PARIGOT 3

1 University of Bath and LORIA & INRIA Nancy–Grand Est

2 LIX & INRIA Saclay–Île-de-France

3 Laboratoire PPS, UMR 7126, CNRS & Université Paris 7

E-mail address: parigot@pps.jussieu.fr

Abstract. In usual proof systems, like the sequent calculus, only a very limited way of

combining proofs is available through the tree structure. We present in this paper a logic-

independent proof calculus, where proofs can be freely composed by connectives, and prove

its basic properties. The main advantage of this proof calculus is that it allows to avoid

certain types of syntactic bureaucracy inherent to all usual proof systems, in particular the

sequent calculus. Proofs in this system closely reflect their atomic flow, which traces the

behaviour of atoms through structural rules. The general definition is illustrated by the

standard deep-inference system for propositional logic, for which there are known rewriting

techniques that achieve cut elimination based only on the information in atomic flows.

1. Introduction

One of the biggest challenges we are facing in structural proof theory, especially when
looking at computational interpretations of proof systems, is syntactic dependency: for-
malisms impose irrelevant constraints, typically an arbitrary order between operations that
are in principle independent from each other. The first explicit attempts to lower this
syntactic dependency, called ‘bureaucracy’, date back to the eighties, with the concept of
proof net for linear logic: proof nets are geometric traces of sequent-calculus proofs, which
eliminate some syntactic constraints. Proof nets have been widely studied in the past two
decades. Despite being powerful tools, they have two obvious limitations: 1) they apply
directly only to specific logics, 2) they are not ‘deductive’ and rely on the sequent calculus
for the deducing task.

1998 ACM Subject Classification: F.4.2.

Key words and phrases: Logic, Proof theory, Deep Inference, Flow graphs, Proof Systems, Open Deduc-

tion, Rewriting, Confluence, Termination.

c© A. Guglielmi, T. Gundersen, and M. Parigot
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.135

136 A. GUGLIELMI, T. GUNDERSEN, AND M. PARIGOT

A typical example of two proofs in the sequent calculus that are ‘morally’ the same but
syntactically different, only because rules are applied in a different order, is the following:

⊢ a, ā ⊢ b, b̄
−−−−−−−−−−−−−−− ∧
⊢ a ∧ b, ā, b̄
−−−−−−−−−−−−−− ∨
⊢ a ∧ b, ā ∨ b̄ ⊢ c, c̄
−−−−−−−−−−−−−−−−−−−−−−−−− ∧
⊢ (a ∧ b) ∧ c, ā ∨ b̄, c̄

⊢ a, ā ⊢ b, b̄
−−−−−−−−−−−−−−− ∧
⊢ a ∧ b, ā, b̄ ⊢ c, c̄
−−−−−−−−−−−−−−−−−−−−−−−− ∧
⊢ (a ∧ b) ∧ c, ā, b̄, c̄
−−−−−−−−−−−−−−−−−−−−−− ∨
⊢ (a ∧ b) ∧ c, ā ∨ b̄, c̄

This kind of bureaucracy is present in all the usual deduction formalisms. One could
imagine that there are simple ways to remove it: for instance quotienting proofs by some
equivalence relation. However, this would not work, in particular, because logical rules are,
in general, not linear.

The approach we develop in this paper makes use of the deep-inference methodology.
Deep inference is a deduction framework (see [Gug07, BT01, Brü04]), where deduction
rules apply arbitrarily deep inside formulae, contrary to traditional proof systems like nat-
ural deduction and sequent calculus, where deduction rules only deal with their outermost
structure. The main reason to use deep inference is that it provides more freedom in de-
signing proof systems, while maintaining the proof theoretic properties of interest, first and
foremost cut elimination.

The simple principle of allowing inference to happen inside formulae leads to a natural
change in the underlying structure of proofs, where rules are unary : one premiss and
one conclusion. While proofs in usual deduction systems take the asymmetric form of a
tree, deep inference allows to have a symmetric closure operation along the top-down axis.
While sequent-calculus proofs cannot be dualised by flipping, this is always possible in deep
inference, and it logically corresponds to dualities like the De Morgan one in classical logic.

A general methodology allows to design deep-inference deduction systems having more
symmetries and finer structural properties than the sequent-calculus ones. For instance,
cut and identity become really dual of each other, whereas they are only morally so in
the sequent calculus, and all structural rules can be reduced to their atomic form, whereas
contraction can not in the sequent calculus [Brü03].

All usual logics have deep-inference deduction systems enjoying cut elimination (see
[Gug] for a complete overview). The standard proof system for propositional classical logic
in deep inference is system SKS [BT01, Brü04]. The traditional methods of cut elimination
of the sequent calculus can be adapted to a large extent to deep inference, despite having
to cope with a higher generality [BT01, Brü04]. New methods are also achievable, based on
weak computational traces of proofs called atomic flows. Atomic flows are directed acyclic
graphs extracted from proofs that can be equipped with rewrite rules representing cut-
elimination. Though being very simple (they trace only structural rules and forget logical
rules), they are strong enough to faithfully represent and control cut-elimination procedures
[GG08, Gun09], even a surprising quasipolynomial one [BGGP09].

So far, these developments have taken place inside a specific deep-inference formalism,
dubbed the calculus of structures, where proofs are sequential, i.e., chains of formulae that
are nothing else than terms in a term-rewriting chain generated by applications of unary
rules of a given proof system. This very simple setting is not particularly intuitive and suffers
from some forms of ‘syntactic bureaucracy’, like the one described before, where an irrelevant
order of the rules is imposed by the formalism: this can be immediately appreciated by
looking at the following two different proofs (that we take as logically equivalent, in some

A PROOF CALCULUS 137

unspecified logic):
A ∧B
−−−−−−−
C ∧B
−−−−−−−
C ∧D

and

A ∧B
−−−−−−−
A ∧D
−−−−−−−
C ∧D

;

this is an obvious case of independent rewriting on two terms, but the sequential notion of
proof does not allow for a canonical proof.

This paper shows that we can do better. The situation where the formalism imposes
an irrelevant order of application of two rules to two independent subformulae is called
bureaucracy of type A [Gug04a, Str09]. We define here a new formalism, called open
deduction, that contains the calculus of structures as a special case and that provides a wider
universe of proofs, where it is possible to normalise proofs into proofs where bureaucracy of
type A is absent, using a simple procedure which is confluent and terminating. We call the
proofs in this normal form synchronal. Referring to the example provided before, we have
that open deduction allows the proof

A
−−
C

∧
B
−−
D

.

In fact, the definition of open deduction is based on a very simple, alternative but equivalent
deep-inference notion to the term-rewriting one of the calculus of structures: proofs can be
composed by connectives.

It should be emphasised that open deduction is a logic-independent formalism, which
applies to all usual logics, thanks to its deep-inference foundation. Even if we are working
at a high level of abstraction, we can still prove meaningful properties. In section 2, we
exhibit a simple rewrite procedure that is confluent and terminating and that allows to
transform any derivation into one in synchronal form, which is, moreover, of smaller size.

Of course, a natural question that pops up is: what happens to cut elimination? In
particular, can we generalise the technique of atomic flows, that has been used in the
particular case of the SKS system for classical propositional logic, to open deduction? We
provide the basis of a positive answer in section 3. Thanks to deep inference, which allows
us to represent logics with rules that are either atomic or linear, we define a general notion
of atomic flows for open deduction. We show that the bureaucracy-elimination procedure
of section 2, which transforms any open-deduction derivation into a synchronal one, has an
important property: atomic flows are invariant under it.

In section 4, we restrict to system SKS for classical propositional logic and show that
the rewrite rules of atomic flows, which are known to be sound with respect to sequential
and synchronal derivations, are also sound with respect to open deductions in general. This
means, in particular, that open-deduction cut elimination can be controlled by atomic flows
the same way calculus-of-structures cut elimination is.

2. The Open Deduction Formalism

In this section, we present the open deduction formalism in a logic-independent way
and illustrate it with the standard formalisation of propositional classical logic in deep
inference. We define a canonical form of open deductions, called synchronal, which is free
of the bureaucracy of type A described in the introduction. We prove that there is a

138 A. GUGLIELMI, T. GUNDERSEN, AND M. PARIGOT

simple confluent and terminating rewriting procedure which transforms an arbitrary open
deduction into a synchronal one.

Definition 2.1. We have the following mutually disjoint, countable sets:

• the set of atoms A, whose elements are denoted by a, b, c and d (possibly with
subscripts);

• for each m < ω and n < ω, the set Rm,n of logical relations of positive arity m and
negative arity n; we denote by R, the set

⋃

m,n≥0Rm,n of all logical relations; the

elements of R are denoted by r (possibly with subscripts) and dedicated symbols
for usual logical relations; the logical relations of positive and negative arity 0 are
called logical constants.

Comment 1. The intended meaning of the positive and negative arities is that the fol-
lowing holds in the deduction system under consideration: if r is a logical relation of
Rm,n and for each i ≤ n + m, the formula Bi is deducible from the formula Ai then
r(B1, . . . , Bn, An+1, . . . , An+m) is deducible from r(A1, . . . , An, Bn+1, . . . , Bn+m) . The def-
inition of derivation we will take in this paper ensures this property.
The connectives ∧ and ∨ of classical logic are in R2,0, → is in R1,1 and ¬ is in R0,1.
It should be noted that there are also connectives of classical logic that do not satisfy the
required property, for instance ↔, but they can always be defined from connectives that do.

Definition 2.2. Let a set of logical relations R =
⋃

m,n≥0Rm,n, where Rm,n ⊆ Rm,n, be
given.

(1) The set FR of formulae, denoted by A, B, C and D (possibly with subscripts), is
defined inductively by:
(a) A ⊆ FR;
(b) FR is closed by logical relation composition: if r ∈ Rm,n and A1, . . . , Am+n ∈

FR, then r(A1, . . . , Am+n) ∈ FR.
(2) The set DR of prederivations, denoted by Φ and Ψ (possibly with subscripts), is

defined inductively by :
(a) A ⊆ DR;
(b) DR is closed by logical relation composition: if r ∈ Rm,n and Φ1, . . . ,Φm+n ∈

DR, then r(Φ1, . . . ,Φm+n) ∈ DR; and

(c) DR is closed by inference composition: if Φ1,Φ2 ∈ DR then
Φ1
−−−
Φ2

∈ DR.

Inference composition is supposed to be associative.
(3) The premiss and conclusion functions pr, cn : DR → FR are defined inductively as

follows:
(a) if Ψ ∈ A, then prΨ = cnΨ = Ψ;
(b) if r ∈ R and Ψ = r(Φ1, . . . ,Φm,Φ

′
1, . . . ,Φ

′
n), then

prΨ = r(prΦ1, . . . , prΦm, cnΦ
′
1, . . . , cnΦ

′
n) and

cnΨ = r(cnΦ1, . . . , cnΦm, prΦ
′
1, . . . , prΦ

′
n) ; and

(c) if Ψ =
Φ1
−−−
Φ2

, then prΨ = prΦ1 and cnΨ = cnΦ2.

(4) The sets of positive contexts and negative contexts are defined inductively as follows:
(a) { } is a positive context;

A PROOF CALCULUS 139

(b) if r ∈ Rm,n, k ≤ m, Ak is a positive (resp. negative) context and for each i 6= k,
Ai is a formula, then r(A1, . . . , Am+n) is a positive (resp. negative) context;

(c) if r ∈ Rm,n, m < k ≤ m+ n, Ak is a positive (resp. negative) context and for
each i 6= k, Ai is a formula, then r(A1, . . . , Am+n) is a negative (resp. positive)
context.

Contexts are denoted K{ }. We use K+{ } and K−{ } when we need to specify the
polarity of the context.

The size |Ψ| of a prederivation (or formula or context) Ψ is the number of occurrences of
atoms and logical relations in it.

Comment 2. Prederivations in open deduction have a natural planar representation where
the inference composition is represented vertically and the logical relation composition is
represented horizontally (see example 2.4)

Notation 1. For typographic convenience, inference composition of two prederivations Φ1

and Φ2 is also denoted by Φ1|Φ2. A prederivation Φ with prΦ = A and cnΦ = B is denoted
Φ : A→ B and represented in figures by

A
Φ
∥
∥∥

B
.

Example 2.3. Classical propositional logic.

• The logical relations are:
– disjunction ∨ and conjunction ∧ which are in R2,0;
– negation ¬ is which is in R0,1;
– logical constants, f (false) and t (true), which are in R0,0.

• In the usual presentation of classical propositional logic, the SKS system, negation
is not taken as a primitive connective, but defined by duality from its atomic case.
The negation of an atom a is denoted ā. The disjunction and conjunction of two
formulae A and B are denoted respectively [A ∨B] and (A ∧B): the different brack-
ets have the only purpose of improving legibility. We usually omit external brackets
of formulae and sometimes we omit superfluous brackets under associativity. Ex-
ample of formulae are b ∧ [a ∨ c] and ¬ [a ∨ b] ∧ [a ∨ c]. An example of context K{ }
is b ∧ [{ } ∨ c]; in this case K{a} is b ∧ [a ∨ c], K{b} is b ∧ [b ∨ c] and K{a ∧ d} is
b ∧ [(a ∧ d) ∨ c].

Example 2.4. The prederivation

a1
−−
a2
−−
a3

∧ a4

∨ ¬

(

a6
−−
a5

∧ a7

)

−−−−−−−−−−−−
a8

∨ a9

.

has (a1 ∧ a4) ∨ ¬ [a8 ∨ a9] as premiss and (a3 ∧ a4) ∨ ¬ [(a6 ∧ a7) ∨ a9] as conclusion.

Notation 2. If K{ } is a context and Φ a prederivation, we denote by K{Φ} the pred-
erivation obtained by putting Φ in place of the hole in K{ }. For example,

if K{ } is b ∧ [{ } ∨ c] and Φ is

(

a6
−−
a5

∧ a7

)

, then K{Φ} is b ∧

[(

a6
−−
a5

∧ a7

)

∨ c

]

.

140 A. GUGLIELMI, T. GUNDERSEN, AND M. PARIGOT

Definition 2.5. Given two prederivations Φ1 : A → B and Φ2 : B → C, the composition
of Φ1 and Φ2 , denoted Φ1; Φ2 : A→ C, is a prederivation defined inductively as follows:

• if Φ1 ∈ A then Φ1; Φ2 = Φ2,

• if Φ1 =
Φ′
1

−−−
Φ′′
1

then Φ1; Φ2 =
Φ′
1

−−−−−−−
Φ′′
1; Φ2

• if Φ1 = r(Φ1
1, . . . ,Φ

1
n,Φ

1
m+1, . . .Φ

1
m+n) with r ∈ Rn,m, then

– if Φ2 =
Φ′
2

−−−
Φ′′
2

then Φ1; Φ2 =
Φ1; Φ

′
2

−−−−−−−
Φ′′
2

– if Φ2 = r(Φ2
1, . . . ,Φ

2
n,Φ

2
n+1, . . .Φ

2
n+m) then

Φ1; Φ2 = r(Φ1
1; Φ

2
1, . . . ,Φ

1
n; Φ

2
n,Φ

2
n+1; Φ

1
n+1, . . . ,Φ

2
n+m; Φ1

n+m)

Lemma 2.6. The composition of two prederivations is well defined: the definition is com-
patible with associativity of inference composition. Moreover, though being given by an
asymmetric double induction, the composition of two prederivations Φ1 and Φ2 is symmet-
ric in the sense that:

• Φ; a = a; Φ = Φ (and more generally Φ;A = A; Φ = Φ); and
• (Φ1|Φ2); Ψ = Φ1|(Φ2; Ψ) and Φ; (Ψ1|Ψ2) = (Φ;Ψ1)|Ψ2.

Notation 3. For typographic convenience, composition of two prederivations Φ1 : A → B
and Φ2 : B → C is represented in figures by

Φ1.....
Φ2

.

Lemma 2.7. |Φ1; Φ2| = |Φ1|+ |Φ2| − | cnΦ1|.

Lemma 2.8. Composition of prederivations is associative.

Proposition 2.9. Given any two prederivations Φ and Ψ, we have: Φ|Ψ = Φ; (cnΦ| prΨ);Ψ.

Proof. By the previous lemmas, we have:
Φ|Ψ = (Φ; cnΦ)|(prΨ;Ψ) = Φ; (cnΦ|(prΨ;Ψ)) = Φ; ((cnΦ| prΨ);Ψ) = Φ; (cnΦ| prΨ);Ψ.

Comment 3. The previous proposition states an important property: any prederivation
can be ‘decomposed’ in such a way that inference composition only applies to formulae.

Definition 2.10. An basic inference step ρ is an inference composition
A
−−
B
, where A and

B are formulae called premiss and conclusion, respectively: it is denoted
A

ρ −−
B

or A|ρB. In

concrete deduction systems, the set of basic inference steps is generated by a (finite) set
of inference rules (with names for arbitrary atoms and formulae) from which the inference
steps are instances.

If ρ is a basic inference step
A
−−
B
, then the flipped basic inference step

B
−−
A

is denoted ρ⊥,

where ·⊥ is an involution on the set of inference steps, i.e. (ρ⊥)⊥ = ρ. If S is a set of basic
inference steps, then S⊥ is the set of basic inference steps (ρ⊥) for ρ ∈ S.

A PROOF CALCULUS 141

If K{ } is a positive (resp. negative) context and ρ is the basic inference step
A
−−
B
, then

we denote by K{ρ} the inference step
K{A}
−−−−−−−
K{B}

(resp.
K{B}
−−−−−−−
K{A}

).

The concept of derivation is obtained from the one of prederivation by restricting the
inference composition to given inference steps.

Definition 2.11. Let a set of relations R and a set of basic inference steps S be given. The
set DR,S of S-derivations is defined inductively by

(1) A ⊆ DR;
(2) if r ∈ Rm,n and Φ1, . . . ,Φm+n ∈ DR, then Ψ = r(Φ1, . . . ,Φm+n) ∈ DR;

(3) if Φ1,Φ2 ∈ DR,S then
Φ1
−−−
Φ2

∈ DR,S if there exists a context K{ } and a basic inference

step ρ from S such that
cnΦ1
−−−−−−
prΦ2

is the inference step K{ρ}.

Notation 4. An inference composition of Φ1 and Φ2 is denoted
Φ1

K{ρ} −−−
Φ2

or Φ1|K{ρ}Φ2,

where K{ρ} is the inference step
cnΦ1
−−−−−−
prΦ2

. A S-derivation Φ : A→ B is denoted
A

Φ
∥
∥∥S

B
.

When it is clear from the context, we use the term derivations instead of S-derivations and
omit S from the notation.

Definition 2.12. We define two canonical forms of S-derivations:

(1) the set of sequential S-derivations is the set of S-derivations where, in case (2) of
Definition 2.11, Φ1, . . . ,Φn+m are formulae.

(2) the set of synchronal S-derivations is the set of S-derivations where, in case (3) of
Definition 2.11, K{ } = { }, i.e. inference composition is restricted to basic inference
steps.

Comment 4. Sequential derivations are the usual derivation of the calculus of structures.
Synchronal derivations are derivations which are free of the type A bureaucracy described
in the introduction (see example 2.15).

Lemma 2.13. If Φ1 and Φ2 are S-derivations (resp. sequential S-derivations, synchronal
S-derivations), then Φ1; Φ2 is a S-derivation (resp. sequential S-derivation, synchronal
S-derivation).

Example 2.14. The system SKS for classical propositional logic.
The set S of basic inference steps is the set of instances of the inference rules given below.
The (usual) deep inference derivations of SKS are the sequential S-derivations.

142 A. GUGLIELMI, T. GUNDERSEN, AND M. PARIGOT

Structural inference rules:

t
ai↓ −−−−−
a ∨ ā

f
aw↓ −−

a

a ∨ a
ac↓ −−−−−

a

identity (interaction) weakening contraction

a ∧ ā
ai↑ −−−−−

f

a
aw↑ −−

t

a
ac↑ −−−−−

a ∧ a

cut (cointeraction) coweakening cocontraction

,

Logical inference rules:

A ∧ [B ∨ C]
s −−−−−−−−−−−−−
(A ∧B) ∨ C

(A ∧B) ∨ (C ∧D)
m −−−−−−−−−−−−−−−−−−−−

[A ∨ C] ∧ [B ∨D]

switch medial

.

In addition to these two rules, there are equality rules
C

= −−
D
, for C and D in opposite sides

in one of the following equations:

A ∨B = B ∨A A ∨ f = A

A ∧B = B ∧A A ∧ t = A

[A ∨B] ∨ C = A ∨ [B ∨ C] t ∨ t = t

(A ∧B) ∧ C = A ∧ (B ∧ C) f ∧ f = f

. (2.1)

Comment 5. The SKS system shows an important property of deep inference formalism
that we will use in the next section. The rules are of one of the two following kinds:

• atomic rules: only one atom name appears and no formula name appears.
• linear rules: each atom or formula name which appears in the premiss (resp. con-
clusion) appears exactly once in the conclusion (resp. premiss)

Example 2.15. We give here an example of a sequential derivation in SKS and its corre-
sponding synchronal form.

(a ∧ b ∧ c) ∨ (a ∧ b ∧ c)
m −−−−−−−−−−−−−−−−−−−−−−−−−−−−
[(a ∧ b) ∨ (a ∧ b)] ∧ [c ∨ c]

ac↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−
[(a ∧ b) ∨ (a ∧ b)] ∧ c

m −−−−−−−−−−−−−−−−−−−−−−
[a ∨ a] ∧ [b ∨ b] ∧ c

ac↓ −−−−−−−−−−−−−−−−−−−−
a ∧ [b ∨ b] ∧ c

ac↓ −−−−−−−−−−−−−−
a ∧ b ∧ c

(a ∧ b ∧ c) ∨ (a ∧ b ∧ c)
m −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(a ∧ b) ∨ (a ∧ b)
m −−−−−−−−−−−−−−−−−

a ∨ a
−−−−−
a

∧
b ∨ b
−−−−−
b

∧
c ∨ c
−−−−−
c

One can see on this example that the size of the synchronal derivation is smaller than the
size of the sequential one.

Definition 2.16. (1) A synchronisation redex is an inference composition
Φ1

K{ρ} −−−
Φ2

where

K{ } 6= { }. Note that thanks to proposition 2.9, a synchronisation redex can always be
written Φ1; (cnΦ1|K{ρ}

prΦ2); Φ2.

(2) The contractum of a synchronisation redex Φ1; (cnΦ1|K{ρ}
prΦ2); Φ2 is Φ1;K{C|ρD}; Φ2,

where C and D are the premiss and conclusion of the inference step ρ.

A PROOF CALCULUS 143

(3) The synchronisation reduction
sync
→ on DR,S is defined by: Φ

sync
→ Ψ iff Ψ is obtained

from Φ by replacing a synchronisation redex by its contractum.

Lemma 2.17. If Φ is a redex and Ψ its contractum, then |Ψ| < |Φ|.

Proof. Let Φ = Φ1; (cnΦ1|K{ρ}
prΦ2); Φ2 be a redex and Ψ = Φ1;K{C|ρD}; Φ2 its contrac-

tum. We have |K{C|ρD}| = |K{ }|+ |C|+ |D|. By Lemma 2.7 we then have

|Ψ| = |Φ1|+ |K{ }|+ |C|+ |D|+ |Φ2| − |K{C}| − |K{D}| = |Φ1|+ |Φ2| − |K{ }| < |Φ|

Theorem 2.18. The synchronisation reduction is confluent and terminating. Moreover,
each derivation reduces in a number of steps less than its size to its normal form which is
a synchronal derivation.

Proof.
sync
→ is terminating because of Lemma 2.17. We show that

sync
→ is locally confluent.

Consider a derivation Ψ with two synchronisation redexes r1 and r2. Let Φ the smallest
subderivation of Ψ which contains r1 and r2. There are two cases:
(1) Φ = r(Φ1, . . . ,Φi, . . . ,Φj , . . . ,Φ1) with r1 in Φi, r2 in Φj and i 6= j. Then the order of
reduction of the two redexes obviously doesn’t matter.
(2) Φ = Φ1|ρΦ2. Then one of the following holds:

• One redex is in Φ1 and the other in Φ2. Then the order of reduction of the two
redexes obviously doesn’t matter.

• Φ is one of the redexes and the other one is in Φ1 or Φ2. Suppose for exam-
ple that Φ = r1 and r2 is in Φ1. Thanks to proposition 2.9, we can write Φ as
Φ1; (cnΦ1|K{ρ}

prΦ2); Φ2. If the result of reducing r2 in Φ1 is Φ′
1, then the result of

reducing both redexes in any order is Φ′
1;K{C|ρD}; Φ2.

The fact that a normal form is a synchronal derivation directly follows from definition 2.12.

Comment 6. The reduction of a redex doesn’t create any new redex. As a consequence,
one can obtain the synchronal form by reducing all the redexes in parallel.

Example 2.19. We show here how the sequential derivation in Example 2.15 can be rewrit-

ten to the synchronal derivation in the same example by several applications of the
sync
→

rewriting. The sequential derivation is written as a composition of inference steps, which is

possible by 2.9, before the
sync
→ rewriting is applied in parallel.

144 A. GUGLIELMI, T. GUNDERSEN, AND M. PARIGOT

(a ∧ b ∧ c) ∨ (a ∧ b ∧ c)
m −−−−−−−−−−−−−−−−−−−−−−−−−−−−
[(a ∧ b) ∨ (a ∧ b)] ∧ [c ∨ c]
...
[(a ∧ b) ∨ (a ∧ b)] ∧ [c ∨ c]

ac↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−
[(a ∧ b) ∨ (a ∧ b)] ∧ c
......................................
[(a ∧ b) ∨ (a ∧ b)] ∧ c

m −−−−−−−−−−−−−−−−−−−−−−
[a ∨ a] ∧ [b ∨ b] ∧ c
..................................
[a ∨ a] ∧ [b ∨ b] ∧ c

ac↓ −−−−−−−−−−−−−−−−−−−−
a ∧ [b ∨ b] ∧ c
........................
a ∧ [b ∨ b] ∧ c

ac↓ −−−−−−−−−−−−−−
a ∧ b ∧ c

sync
→

⋆

(a ∧ b ∧ c) ∨ (a ∧ b ∧ c)
m −−−−−−−−−−−−−−−−−−−−−−−−−−−−
[(a ∧ b) ∨ (a ∧ b)] ∧ [c ∨ c]
...

[(a ∧ b) ∨ (a ∧ b)] ∧
c ∨ c
−−−−−
c

...
(a ∧ b) ∨ (a ∧ b)

m −−−−−−−−−−−−−−−−−
[a ∨ a] ∧ [b ∨ b]

∧ c

..
a ∨ a
−−−−−
a

∧ [b ∨ b] ∧ c

....................................

a ∧
b ∨ b
−−−−−
b

∧ c

= =

(a ∧ b ∧ c) ∨ (a ∧ b ∧ c)
m −−−−−−−−−−−−−−−−−−−−−−−−−−−−
[(a ∧ b) ∨ (a ∧ b)] ∧ [c ∨ c]

ac↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−
[(a ∧ b) ∨ (a ∧ b)] ∧ c

m −−−−−−−−−−−−−−−−−−−−−−
[a ∨ a] ∧ [b ∨ b] ∧ c

ac↓ −−−−−−−−−−−−−−−−−−−−
a ∧ [b ∨ b] ∧ c

ac↓ −−−−−−−−−−−−−−
a ∧ b ∧ c

(a ∧ b ∧ c) ∨ (a ∧ b ∧ c)
m −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(a ∧ b) ∨ (a ∧ b)
m −−−−−−−−−−−−−−−−−

a ∨ a
−−−−−
a

∧
b ∨ b
−−−−−
b

∧
c ∨ c
−−−−−
c

.

Definition 2.20. Given a derivation Φ, we denote the normal form of Φ with respect to
sync
→ by sync(Φ).

Lemma 2.21. sync(Φ;Ψ) = sync(Φ); sync(Ψ).

Proof. We proceed by structural induction on Φ:

• the base case is trivial;
• sync((Φ1|K{ρ}Φ2); Ψ)
= sync(Φ1|K{ρ}(Φ2; Ψ))
= sync(Φ1); sync(cnΦ1|K{ρ}

prΦ2); sync(Φ2; Ψ)

= sync(Φ1); sync(cnΦ1|K{ρ}
prΦ2); sync(Φ2); sync(Ψ)

= sync(Φ); sync(Ψ);
• when Φ = r(Φ1, . . . ,Φn), we proceed by structural induction on Ψ

– if Ψ = Ψ1|Ψ2 we argue similarly to the previous case;
– if Ψ = r(Ψ1, . . . ,Ψn), we have that

sync(Φ;Ψ) = r(sync(Φ1; Ψ1), . . . , sync(Φn; Ψn)) = sync(Φ); sync(Ψ).

3. Atomic Flows

We now introduce a special kind of directed acyclic graphs, called atomic flows. Atomic
flows associated with classical propositional derivations have been used to describe their
normal forms, to define normalisation procedures on derivations and to prove properties

A PROOF CALCULUS 145

of these procedures. The atomic flow associated with a derivation represents the causal
relationship between the creation and destruction of atoms in the derivation.

In this section we show that atomic flows can be associated with derivations in a logic-
independent way, given certain very mild assumptions about the inference rules we use. We

then show that atomic flows are invariants of the rewriting
sync
→ .

We first define atomic flows independently of derivations and deductive systems.

Definition 3.1. An atomic flow is a directed, acyclic graph (V,E, up, lo), such that

• V is a set of vertices and E a set of edges ;
• up: E → V ∪ {⊤} and lo : E → V ∪ {⊥} are, respectively, the upper and lower
maps, where ⊤,⊥ 6∈ V and ⊤ 6= ⊥.

Atomic flows are denoted by φ and ψ (possibly with subscripts).
For every ν ∈ V ∪ {⊤,⊥}, we define the set Lν = { ǫ | up(ǫ) = ν } of lower edges of ν, the
set Uν = { ǫ | lo(ǫ) = ν } of upper edges of ν, and the set Eν = Lν ∪ Uν of edges of ν.
For an atomic flow φ, we call the set Uφ = L⊤ (resp., Lφ = U⊥) the upper (resp., lower)
edges of φ.

We can compose atomic flows similarly to how we compose derivations, and later we
will see that the two notions work nicely together. We compose atomic flows by pairwise
‘identifying’ lower edges of one with upper edges of the other, according to a given one-to-one
correspondence between the two.

Definition 3.2. Let φ1 = (V1, E1, up1, lo1), φ2 = (V2, E2, up2, lo2) be two atomic flows and
f a bijection from a subset U ′

φ2
of Uφ2

to a subset L′
φ1

of Lφ1
. The composition φ1;f φ2 of

φ1 and φ2 with respect to f is the flow (V,E, up, lo) defined as follows:

• the set of vertices V is the disjoint union of V1 and V2;
• the set of edges E is the disjoint union of E1 and E2, minus Lφ1

;
• the up and lo maps of φ;f ψ are inherited from the correspondind maps of φ1 and
φ2 in the obvious way, except that, for every ǫ ∈ U ′

φ2
, we have up(ǫ) = up1(f(ǫ)).

Atomic flows are top-down symmetric, and in the same way that derivations are ‘flipped’
in a negative context, we might also want to ‘flip’ atomic flows. We now define the flipping
operation.

Definition 3.3. The flipping operator ·⊥ on atomic flows is defined as follows: if φ =
(V,E, up, lo) an atomic flow, then φ⊥ is the atomic flow (V,E, up⊥, lo⊥) where, for every

ǫ ∈ E, if up(ǫ) = ⊤ (resp., lo(ǫ) = ⊥), then up⊥(ǫ) = ⊥ (resp., lo⊥(ǫ) = ⊤), otherwise

up⊥(ǫ) = lo(ǫ) (resp., lo⊥(ǫ) = up(ǫ)).

In deep inference most common logics can be expressed using only atomic and linear
inference rules. In that case, we are able to separate the logical from the structural content
of derivations, and atomic flows represent the structural content.

For the rest of this section we fix a set of logical relations R and a set of of basic
inference steps S = Sa ∪ Sl, where Sa is a set of instances of atomic rules, Sl is a set of
instances of linear rules.

Atomic flow associated to a derivation

Intuitively, every vertex of the atomic flow corresponds to an atomic inference rule or
its converse, and its incident edges to the atom occurrences of this inference rule.

146 A. GUGLIELMI, T. GUNDERSEN, AND M. PARIGOT

If Φ is a derivation, then oc(Φ) is the set of occurrences of atoms in Φ. We de-
fine in the following the enriched atomic flow (fl(Φ), f⊤Φ , f

⊥
Φ) of a derivation Φ ∈ DR,S ,

where fl(Φ) is an atomic flow called the atomic flow of Φ and f⊤Φ : oc(pr(Φ)) → Ufl(Φ) and

f⊥Φ : oc(cn(Φ)) → Lfl(Φ) are bijections relating the upper (resp. lower) edges of the flow to
the atom occurrences of the premiss (resp. conclusion) of the derivation.

(1) The enriched atomic flow (fl(a), f⊤a , f
⊥
a) of an atom a is defined as follows: fl(a) is

the flow consisting of no vertex and one edge, and f⊤a = f⊥a is the bijection mapping
the atom to the edge.

(2) The enriched atomic flow (fl(Φ), f⊤Φ , f
⊥
Φ) of a derivation Φ = r(Φ1, . . . ,Φm,Φ

′
1, . . . ,Φ

′
n)

with r ∈ Rm,n is defined as follows: fl(Φ) is the disjoint union of fl(Φ1), . . . , fl(Φm),

fl(Φ′
1)

⊥, . . . , fl(Φ′
n)

⊥ and f⊤Φ (resp., f⊥Φ) is the disjoint union of f⊤Φ1
, . . . , f⊤Φm

, f⊥Φ′
1

,

. . . , f⊥Φ′
n
(resp., f⊥Φ1

, . . . , f⊥Φm
, f⊤Φ′

1

, . . . , f⊤Φ′
n
)

(3) The enriched atomic flow (fl(ρ), f⊤Φ , f
⊥
Φ) of a basic inference step ρ is defined as

follows:
• If ρ is an instance C|D of a linear rule, then fl(ρ) = fl(C), f⊤ρ = f⊤C and

f⊥ρ = g ◦ f⊥C , where g is the bijection between the occurrences of atoms in D
and the corresponding occurrences in C, which exits thanks to the linearity of
the rule.

• If ρ is an instance C|D of an atomic rule, then fl(ρ) = ({v}, Ufl(C)+Lfl(D), up, lo),
where up and lo are defined as follows:

– up(e) is v, if e ∈ Ufl(C) and ⊤, otherwise.
– lo(e) is v, if e ∈ Lfl(D) and ⊥, otherwise.

The flow φ is enriched by taking f⊤ρ = f⊤C and f⊥ρ = f⊥D .

(4) The enriched atomic flow (fl(Φ), f⊤Φ , f
⊥
Φ) of a derivation Φ = Φ1|K{ρ}Φ2 is defined

as follows. Suppose that ρ is C|D . We write Φ as Φ1;K{C}|K{D}; Φ2 if K{ } is
positive and Φ as Φ1;K{D}|K{C}; Φ2 if K{ } is negative. We then obtain the flow
of Φ by composing the flows of the compound derivations:

• fl(Φ) = fl(Φ1);g fl(K{C|D});h fl(Φ2), where g = f⊥Φ1
◦ (f⊤

fl(K{C|D}))
−1 and h =

f⊥
fl(K{C|D}) ◦ (f

⊤
Φ2
)−1 ;

• f⊤Φ = f⊤Φ1

• f⊥Φ = f⊥Φ2

Examples of atomic flows associated to derivations

We consider atomic flows for classical propositional derivations in SKS [GG08].
We first give the atomic flows associated to the basic inference steps associated to

structural rules of SKS, from which the flows of all the SKS derivations are build. Vertices
corresponding to the structural rules are represented by three different symbols (,
and) and their incident edges (represented by vertical lines) correspond to the atom
occurrences of the rules. The labels of the occurrences of atoms are also indicated on the
edges they correspond to, in order to ease the reading.

A PROOF CALCULUS 147

t
ai↓ −−−−−−−−
a1 ∨ ā2

→ 1 2

f
aw↓ −−

a1
→ 1

a1 ∨ a2
ac↓ −−−−−−−−

a3
→

1 2

3

a1 ∧ ā2
ai↑ −−−−−−−−

f
→ 1 2

a1
aw↑ −−

t
→ 1

a3
ac↑ −−−−−−−−

a1 ∧ a2
→

1 2

3

Here is now the example of a flow associated to a general inference step, which consist of
an application of a basic inference step in a context. The context creates edges not related
to vertices.

a1 ∧
[

b2 ∨
[

a3 ∨ a4
]]

ac↓ −−−−−−−−−−−−−−−−−−−−−−−
a1 ∧

[

b2 ∨ a5
] →

1 2 3 4

5
.

We finally give the example of a flow associated to to a sequential derivation.

(

a1 ∧
[

ā3 ∨ t
])

∧ ā8
ai↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(

a1 ∧
[

ā3 ∨
[

ā4 ∨ a5
]])

∧ ā8
= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(

a1 ∧
[[

ā3 ∨ ā4
]

∨ a5
])

∧ ā8
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−[(

a1 ∧
[

ā3 ∨ ā4
])

∨ a5
]

∧ ā8
ac↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−[(

a1 ∧ ā2
)

∨ a5
]

∧ ā8
ai↑ −−−−−−−−−−−−−−−−−−−−−−−[

f ∨ a5
]

∧ ā8
= −−−−−−−−−−−−−−

a5 ∧ ā8
ac↑ −−−−−−−−−−−−−−−−(

a6 ∧ a7
)

∧ ā8
= −−−−−−−−−−−−−−−−
a6 ∧

(

a7 ∧ ā8
)

ai↑ −−−−−−−−−−−−−−−−
a6 ∧ f

→

31 8

4

2 7

5

6

By design the composition of flows and the composition of derivations work together
as expected:

Lemma 3.4. For any atomic flows Φ: A → B and Ψ: B → C, we have that fl(Φ;Ψ) =
fl(Φ);f⊥

Φ
◦(f⊤

Ψ
)−1 fl(Ψ).

Atomics flows have been defined for sequential derivations in [GG08] and for synchronal
derivations in [Gun09], in the case of classical propositionnal derivations in SKS. We now
show that the two notions coincide in general, and that atomic flows are in fact invariants

of the
sync
→ rewriting.

Theorem 3.5. If Φ
sync
→ Ψ, then fl(Φ) = fl(Ψ).

Sketch of proof. We first remark that fl(K{A′}|K{ρ}K{B′}) = fl(K{A′|ρB
′}). It then fol-

lows by the previous lemma that the flow of a synchronisation redex is the same as the flow
of its contractum. The result is obtained by checking that the flow of a derivation is the
same as the flow of the result of replacing a synchronisation redex by its contractum.

148 A. GUGLIELMI, T. GUNDERSEN, AND M. PARIGOT

Example 3.6. The sequential derivation on the left reduces to the synchronal derivation
on the right, and they both have the atomic flow in the middle, where the correspondence
between atom occurrences and edges is indicated by colours:

(a ∧ [ā ∨ t]) ∧ ā
ai↓ −−−−−−−−−−−−−−−−−−−−−−

(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā
= −−−−−−−−−−−−−−−−−−−−−−
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s −−−−−−−−−−−−−−−−−−−−−−
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓ −−−−−−−−−−−−−−−−−−−−−−
[(a ∧ ā) ∨ a] ∧ ā

ai↑ −−−−−−−−−−−−−−−−−
[f ∨ a] ∧ ā

= −−−−−−−−−−
a ∧ ā

ac↑ −−−−−−−−−−−
(a ∧ a) ∧ ā

= −−−−−−−−−−−
a ∧ (a ∧ ā)

ai↑ −−−−−−−−−−−
a ∧ f

a ∧

[

ā ∨
t

−−−−−
ā ∨ a

]

s −−−−−−−−−−−−−−−−−−−−−−

a ∧
ā ∨ ā
−−−−−
ā

−−−−−−−−−−−
f

∨
a

−−−−−
a ∧ a

∧ ā

= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

a ∧
a ∧ ā
−−−−−
f

.

4. Atomic Flow Rewriting

We now give an example of the use of atomic flows with respect to the system SKS

for propositional classical logic. We define reductions on flows and then we show how they
can be lifted to derivations. This has been done for sequential derivations in [GG08] and
for synchronal derivations in [Gun09]: here we show that the reductions on synchronal

derivations correspond exactly to reductions on sequential derivations modulo
sync
→ .

Definition 4.1. We define graphical expressions of the kind r : φ′ → ψ′, where r is a name
and φ′ and ψ′ are flows:

w↓-i↑ : → i↓-w↑ : →

w↓-c↑ : → c↓-w↑ : →

w↓-w↑ : → c↓-c↑ : →

c↓-i↑ : → i↓-c↑ : →

.

Definition 4.2. For every expression r : φ′ → ψ′ from Definition 4.1, the reduction →r is
defined, such that φ →r ψ if and only if φ′ is a subflow in φ and we obtain ψ by replacing
φ′ with ψ′ in φ, while respecting the correspondence of edges.

Theorem 4.3. For each r ∈ {w↓-i↑, i↓-w↑,w↓-c↑, c↓-w↑,w↓-w↑, c↓-c↑, c↓-i↑, i↓-c↑} and ev-
ery SKS-derivation (resp., synchronal or sequential SKS-derivation) Φ: A → B and every
atomic flow ψ, such that fl(Φ) →r ψ; there exists an SKS-derivation (resp., synchronal or
sequential SKS-derivation) Ψ: A→ B with flow ψ.

A PROOF CALCULUS 149

Proof. We consider the case for c↓-c↑, the other cases can be proven similarly. Assuming
fl(Φ) contains

• ,

let every atom occurrence a in Φ that is mapped to the edge labelled with • be labelled a•.

By Proposition 2.9 Φ must contain the two subderivations Φ′ = Φ′
1;

(

K1 [a ∨ a]
ac↓ −−−−−−−−−−−

K1{a
•}

)

; Φ′
2

and Φ′′ = Φ′′
1;

(

K2{a
•}

ac↑ −−−−−−−−−−−
K2 (a ∧ a)

)

; Φ′′
2.

If Φ is synchronal, we have that K1{ } = K2{ } = { } and we define

Ψ̂′ =

[

a
−−−−−
a ∧ a

∨
a

−−−−−
a ∧ a

]

m −−−−−−−−−−−−−−−−−−
[a ∨ a] ∧ [a ∨ a]

and Ψ̂′′ =

(

a ∨ a
−−−−−
a

∧
a ∨ a
−−−−−
a

)

.

Otherwise, we define

Ψ̂′ =

K1 [a ∨ a]
ac↑ −−−−−−−−−−−−−−−−−

K1 [(a ∧ a) ∨ a]
ac↑ −−−−−−−−−−−−−−−−−−−−−−−

K1 [(a ∧ a) ∨ (a ∧ a)]
m −−−−−−−−−−−−−−−−−−−−−−−
K1 ([a ∨ a] ∧ [a ∨ a])

and Ψ̂′′ =

K2 ([a ∨ a] ∧ [a ∨ a])
ac↓ −−−−−−−−−−−−−−−−−−−−−−

K2 ([a ∨ a] ∧ a)
ac↓ −−−−−−−−−−−−−−−−−

K2 (a ∧ a)

.

Finally, we define

Ψ′ = Φ′
1; Ψ̂

′; Φ′
2{a

•/ ([a ∨ a] ∧ [a ∨ a])} and Ψ′′ = Φ′′
1{a

•/ ([a ∨ a] ∧ [a ∨ a])}; Ψ̂′′; Φ′′
2 .

This allows us to obtain the derivation Ψ: A→ B with the required atomic flow from Φ, by
simultaneously applying the substitution {a•/ ([a ∨ a] ∧ [a ∨ a])}, replacing Φ′ with Ψ′, and
replacing Φ′′ with Ψ′′.

Definition 4.4. Given r ∈ {w↓-i↑, i↓-w↑,w↓-c↑, c↓-w↑,w↓-w↑, c↓-c↑, c↓-i↑, i↓-c↑}, an SKS-
derivation Φ, a flow ψ, such that fl(Φ) →r ψ, and the SKS-derivation Ψ constructed in the
proof of Theorem 4.3, we write Φ →r Ψ.

Theorem 4.5. Given SKS-derivations Φ1 and Φ2, such that sync(Φ1) = sync(Φ2), then if
Φ1 →r Ψ1 and Φ2 →r Ψ1 for some r ∈ {w↓-i↑, i↓-w↑,w↓-c↑, c↓-w↑,w↓-w↑, c↓-c↑, c↓-i↑, i↓-c↑},
we have sync(Ψ1) = sync(Ψ2).

Sketch of proof. We sketch the proof for r = c↓-c↑, the other cases can be proved similarly:
The result follows by Lemma 2.21 and the fact that

K1 [a ∨ a]
−−−−−−−−−−−−−−−−−
K1 [(a ∧ a) ∨ a]

−−−−−−−−−−−−−−−−−−−−−−−
K1 [(a ∧ a) ∨ (a ∧ a)]
−−−−−−−−−−−−−−−−−−−−−−−
K1 ([a ∨ a] ∧ [a ∨ a])

sync
→

⋆
K1

a
−−−−−
a ∧ a

∨
a

−−−−−
a ∧ a

−−−−−−−−−−−−−−−−
[a ∨ a] ∧ [a ∨ a]

and

K2 ([a ∨ a] ∧ [a ∨ a])
−−−−−−−−−−−−−−−−−−−−−−
K2 ([a ∨ a] ∧ a)
−−−−−−−−−−−−−−−−−
K2 (a ∧ a)

sync
→

⋆
K2

(

a ∨ a
−−−−−
a

∧
a ∨ a
−−−−−
a

)

.

150 A. GUGLIELMI, T. GUNDERSEN, AND M. PARIGOT

5. Conclusions

We have seen, in this paper, that we can reduce the syntactic bureaucracy of proof
systems using a logic-independent formalism, without sacrificing the usual proof-theoretic
tools and properties like cut-elimination and complexity. We eliminate ‘type A’ bureaucracy,
i.e., the irrelevant order of application of two rules to two independent subformulae [Gug04a].

The formalism here introduced, called open deduction, generalises the calculus of struc-
tures, which in turn generalises the sequent calculus and natural deduction. This generality
does not claim a price on the naturalness of the formalism: it simply extends to proofs the
structure of formulae, that is only partly used in the sequent calculus.

However, the necessary technology to deal with cut elimination is not trivial, and only
now we are in a position to deal with it, relying on recent developments of the calculus of
structures. This paper shows that if we can normalise a proof in the calculus of structures,
then we can eliminate its bureaucracy in open deduction. Moreover, since the atomic flow
of proofs is invariant under bureaucracy elimination, we can start developing atomic-flow-
based cut elimination directly in open deduction.

In a forthcoming paper, we will define an even more general formalism, containing open
deduction and eliminating a further type of bureaucracy, namely the irrelevant order of ap-
plication of two rules to two nested subformulae. This is dubbed ‘type B’ bureaucracy in
[Gug04b]. The reason to separate, at this stage, open deduction and its further generali-
sation, is that addressing type B bureaucracy requires a level of abstraction that would be
best supported by further developments of atomic flows, to which our efforts are dedicated.

References

[BGGP09] Paola Bruscoli, Alessio Guglielmi, Tom Gundersen, and Michel Parigot. A quasipolynomial cut-

elimination procedure in deep inference via atomic flows and threshold formulae. Submitted.

http://cs.bath.ac.uk/ag/p/QPNDI.pdf, 2009.

[Brü03] Kai Brünnler. Two restrictions on contraction. Logic Journal of the IGPL, 11(5):525–529, 2003.

http://www.iam.unibe.ch/~kai/Papers/RestContr.pdf.

[Brü04] Kai Brünnler. Deep Inference and Symmetry in Classical Proofs. Logos Verlag, Berlin, 2004.

http://www.iam.unibe.ch/~kai/Papers/phd.pdf.

[BT01] Kai Brünnler and Alwen Fernanto Tiu. A local system for classical logic. In R. Nieuwenhuis and

A. Voronkov, editors, LPAR 2001, volume 2250 of Lecture Notes in Computer Science, pages

347–361. Springer-Verlag, 2001. http://www.iam.unibe.ch/~kai/Papers/lcl-lpar.pdf.

[GG08] Alessio Guglielmi and Tom Gundersen. Normalisation control in deep inference via atomic flows.

Logical Methods in Computer Science, 4(1:9):1–36, 2008. http://www.lmcs-online.org/ojs/

viewarticle.php?id=341.

[Gug] Alessio Guglielmi. Deep inference. Web site at http://alessio.guglielmi.name/res/cos.

[Gug04a] Alessio Guglielmi. Formalism A. http://cs.bath.ac.uk/ag/p/AG11.pdf, 2004.

[Gug04b] Alessio Guglielmi. Formalism B. http://cs.bath.ac.uk/ag/p/AG13.pdf, 2004.

[Gug07] Alessio Guglielmi. A system of interaction and structure. ACM Transactions on Computational

Logic, 8(1):1–64, 2007. http://cs.bath.ac.uk/ag/p/SystIntStr.pdf.

[Gun09] Tom Gundersen. A General View of Normalisation Through Atomic Flows. PhD thesis, Univer-

sity of Bath, 2009.

[Str09] Lutz Straßburger. From deep inference to proof nets via cut elimination. Journal of Logic and

Computation, 2009. In press. http://www.lix.polytechnique.fr/~lutz/papers/deepnet.pdf.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 151-160
http://rewriting.loria.fr/rta/

A REWRITING LOGIC SEMANTICS APPROACH TO MODULAR

PROGRAM ANALYSIS

MARK HILLS 1 AND GRIGORE ROŞU 2

1 Centrum Wiskunde & Informatica

Science Park 123, 1098 XG Amsterdam, The Netherlands

E-mail address: Mark.Hills@cwi.nl

URL: http://www.cwi.nl

2 Department of Computer Science, University of Illinois at Urbana-Champaign

201 N. Goodwin Av., Urbana, IL 61801, USA

E-mail address: grosu@cs.uiuc.edu

URL: http://fsl.cs.uiuc.edu

Abstract. The K framework, based on rewriting logic semantics, provides a powerful

logic for defining the semantics of programming languages. While most work in this

area has focused on defining an evaluation semantics for a language, it is also possible

to define an abstract semantics that can be used for program analysis. Using the SILF

language (Hills, Serbanuta and Rosu, 2007), this paper describes one technique for defining

such a semantics: policy frameworks. In policy frameworks, an analysis-generic, modular

framework is first defined for a language. Individual analyses, called policies, are then

defined as extensions of this framework, with each policy defining analysis-specific semantic

rules and an annotation language which, in combination with support in the language front-

end, allows users to annotate program types and functions with information used during

program analysis. Standard term rewriting techniques are used to analyze programs by

evaluating them in the policy semantics.

1. Introduction

Programs compute by manipulating different kinds of explicit data made available by the
language, like integers, objects, lists, functions, or strings. Some of this data may also have
implicit properties, important to the correctness of the program but impossible to represent
directly in the language. For example, many languages have no way to indicate that a
variable has been (or must already be) explicitly initialized, or that a reference or pointer
never contains null. Some languages also leave the types of values and variables implicit,
providing no syntax to indicate that certain types are expected at given points in the

1998 ACM Subject Classification: F.3.2 [Semantics of Programming Languages]: Program Analysis.

Key words and phrases: K, rewriting logic semantics, program analysis.

Supported in part by NSF grants CCF-0448501, CNS-0509321 and CNS-0720512, by NASA contract

NNL08AA23C, by the Microsoft/Intel funded Universal Parallel Computing Research Center at UIUC, and

by several Microsoft gifts.

c© M. Hills and G. Roşu
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.151

152 M. HILLS AND G. ROŞU

program. Domain-specific examples of implicit properties are also common. One compelling
example, commonly used in scientific computing applications, is units of measurement [nis],
where program values and variables are assumed to have specific units (meters, kilograms,
seconds, etc) at specific points in the program or along specific execution paths.

These implicit properties of program data give rise to implicit policies, or rules about
how this information can be manipulated. For instance, one may require that variables be
initialized on all paths before being read, or that only non-null pointers can be assigned to
other non-null pointers. Languages with implicit types generally still place type restrictions
on operations such as arithmetic, where only values representing numbers can be used.
Programs that use units of measurement must adhere to a number of rules, such as requiring
two operands in an addition or comparison operation to have the same unit, or treating the
result of a multiplication operation as having a unit equal to the product of the units of the
operands (e.g., given meter and second, the resulting unit would be meter second).

Because these properties are hard to check by hand, a number of techniques have
been developed to allow implicit properties to be either inferred or stated explicitly in
a program. In this paper we focus on the use of annotations, either given by “decorating”
program constructs with type-like information (type annotations) or by including additional
information in special language constructs or inside comments (code annotations). Many
systems that use annotations are designed with specific analysis domains in mind; those that
are more general often support either type or code annotations, but not both, or provide
limited capabilities to adapt to new domains. In this paper we present a solution designed to
overcome these limitations: policy frameworks. Policy frameworks support the use of type
and code annotations through an augmented language front-end, with each analysis policy
defining its own annotation language, specialized to the domain under analysis. Program
analysis is then based on program evaluation in an abstract rewriting logic semantics of the
programming and annotation languages. Principles developed during work on the rewriting
logic semantics project are used to ensure that the semantics is modular, allowing a large
core of the framework to be reused across policies.

The remainder of this paper is organized as follows. As background, Section 2 provides
an introduction to rewriting logic semantics and K, a rewrite-based formalism for language
semantics. Section 3 then presents a policy framework for the SILF programming language
along with two policies. SILF has been chosen because it is complex enough to show many
common features of programming languages, but simple enough to allow policy frameworks
to be understood in isolation from the language, something that is more difficult for lan-
guages such as C. Finally, Section 4 discusses related work, while Section 5 concludes.

2. Rewriting Logic Semantics and K

Equational logic has long been seen as a viable formalism for defining the semantics
of sequential programming languages [Gog77, Ber89, Gog96]. Rewriting logic extends this
by providing a formalism for defining the semantics of nondeterministic and concurrent
languages, leading to an area of research known as rewriting logic semantics [Mes04, Mes07].
One specific style of rewriting logic semantics is computation-based rewriting logic semantics
[Mes07], hereafter referred to as RLS.

RLS defines the semantics of a programming language as a rewrite theory. Terms
formed over the signature of the theory are used to represent the program configuration,
made up of the current program and auxiliary entities such as environments, stores, etc.

A REWRITING LOGIC SEMANTICS APPROACH TO MODULAR PROGRAM ANALYSIS 153

Rules and equations are then used to transition between configurations, with equations
used to define sequential language features and rules used to define nondeterministic and
concurrent language features. The configuration is defined as a nested multiset: individual
parts of the configuration (configuration items) can be repeated and can also be nested inside
other items, allowing the flexibility to represent language features such as multiple threads
(repetition), each with local state (nesting). Multiset matching is used so that configuration
items do not need to be named in a specific order in equations and rules; matching also
allows unused parts of the configuration around the matched subterm to be elided, allowing
equations and rules to remain unchanged even when the surrounding configuration changes.

One often-used configuration item, k, holds the current computation. Computations in
k are lists; each item in the list is referred to as a computation item, each of which represents
an individual task or piece of information. The head of the list can be seen as the “next”
task, with the tail containing tasks that will be computed later. Instead of using “,” as the
list separator, an arrow, written in text as -> and mathematically as y, is used, hopefully
providing some added intuition: do this (ci1), then that (ci2), then that (ci3), etc, until
finished (no items are left):

ci1 y ci2 y ci3 y ... y cin

The equations and rules used to define the semantics often break up computations into
smaller pieces, which are then put at the head of the computation to indicate that they
need to be computed first before the overall computation can continue. Since computations
in RLS are first-order terms, they can also be manipulated as a whole, such as by saving
the current computation for evaluation later (such as for call/cc or coroutines).

eq stmt(E ;) = exp(E) -> discard .

eq exp(X) = lookup(X) .

eq stmt(X <- E ;) = exp(E) -> assignTo(X) .

eq k(val(V) -> assignTo(X) -> K) env([X,L] Env) mem([L,V’] Mem) =

k(K) env([X,L] Env) mem([L,V] Mem) .

Figure 1: RLS Semantics with Equations

Figure 1 shows
several examples of
equations. The first
provides the seman-
tics for the state-
ment E ;, saying
that this is defined
as the result of evaluating the expression E and then discarding the result. Note that
exp(E) is placed “on top of” discard in the computation, meaning that it will be evalu-
ated first, with the expectation that it will produce a value. The second equation provides
a semantics for names used as expressions: X is looked up to retrieve its current value. The
third equation provides the semantics for assignment: E is evaluated, and the resulting
value is assigned to X using assignTo. Finally, the fourth equation defines the semantics
of assignTo. Env and Mem are both multisets of pairs, defined equationally as maps – Env

from names to locations, Mem from locations to values. The equation states that the result
of assigning value V to name X is a configuration where the value V’ held at location L in
Mem – location L is assigned to X by Env – is replaced with the new value V.

K. K [Ros07], based on RLS, provides additional notation for defining the semantics of a
language. K configurations are defined identically to those in RLS, with each configuration
item called a K cell. The cells are given in K rules using an XML-like notation, with an
opening cell “tag”, like 〈k〉 and a closing tag like 〈/k〉. Rules in K are defined similarly to
rules and equations in RLS, but with a number of notational conveniences. Figure 2 shows
the step-by-step results of a number of individual transformation steps to convert the last
RLS equation in Figure 1 (augmented with support for threads) into a K rule.

154 M. HILLS AND G. ROŞU

〈t〉 〈k〉 X ← V y K 〈/k〉〈env〉 (X,L) Env 〈/env〉 TS 〈/t〉 〈mem〉 (L, V ′
) Mem 〈/mem〉 →

〈t〉 〈k〉 K 〈/k〉〈env〉 (X,L) Env 〈/env〉 TS 〈/t〉 〈mem〉 (L, V) Mem 〈/mem〉 (2.1)

〈k〉 X ← V y K 〈/k〉 〈env〉 (X,L) Env 〈/env〉 〈mem〉 (L, V ′
) Mem 〈/mem〉 →

〈k〉 K 〈/k〉 〈env〉 (X,L) Env 〈/env〉 〈mem〉 (L, V) Mem 〈/mem〉 (2.2)

〈k〉 X ← V y K 〈/k〉 〈env〉 (X,L) Env 〈/env〉 〈mem〉 (L,) Mem 〈/mem〉 →

〈k〉 K 〈/k〉 〈env〉 (X,L) Env 〈/env〉 〈mem〉 (L, V) Mem 〈/mem〉 (2.3)

〈k〉 X ← V ...〈/k〉 〈env〉... (X,L) ...〈/env〉 〈mem〉... (L,) ...〈/mem〉 →

〈k〉 · ...〈/k〉 〈env〉... (X,L) ...〈/env〉 〈mem〉... (L, V) ...〈/mem〉 (2.4)

〈k〉 X ← V

·

...〈/k〉 〈env〉... (X,L) ...〈/env〉 〈mem〉... (L,

V

) ...〈/mem〉 (2.5)

Figure 2: Converting RLS to K

The first step of the transformation is shown in Rule 2.1. The main change in this first
step is the use of the XML-like cell notation and the replacement of val(V) -> assignTo(X)

with X ← V . The second step, shown in Rule 2.2, is the removal of the context needed only
for matching the configuration structure. The removal of this context allows the rule to be
more modular, since it is not then tied to a specific configuration, only to the configuration
pieces used directly by the rule. The third transformation step, shown in Rule 2.3, is the
replacement of variables given on the left-hand side of a rule by underscores if they are not
otherwise used (in conditions or on the right-hand side). This is used to replace V ′ with an
underscore, since it is not used elsewhere in the rule.

Since matching against lists and sets is used quite often, it is also helpful to have special
notation for both lists and sets. In K, this is indicated by using “...”, with a “...” at the
start or end of a cell indicating a list match (“...” at the start indicates that one is matching
the list tail, while “...” at the end indicates that one is matching the head), and “...” at
both ends of the cell indicating a set or multiset match. In the fourth transformation step,
Rule 2.4 shows the transformation of Rule 2.3 to use this notation. Finally, since some of
the information in Rule 2.4 is redundant it can be removed by switching to a special rule
format, where the parts of a term that are changed are underlined, with the changes to the
term then placed below the underlines. The result of applying this fifth transformation to
Rule 2.4 is shown in Rule 2.5. In the k cell, the · is now under X ← V , while V is now
under . Since both the environment and the first element (L) of the pair in mem do not
change, each only needs to be written once.

3. The SILF Policy Framework

SILF, the Simple Imperative Language with Functions, was introduced in earlier work
by the authors [Hil07, Hil09]. Here, we extend the language presented in this earlier work
with a policy framework and with two policies: one for type checking programs in SILF,
using type annotations; and one for checking the unit safety of programs, using type and

A REWRITING LOGIC SEMANTICS APPROACH TO MODULAR PROGRAM ANALYSIS 155

code annotations to indicate the units associated with program variables and values. To give
an idea of the size of the specification, the policy framework is made up of 281 operators
and 284 equations across 49 modules; the type checking policy of 100 equations and 17
operators across 7 modules; and the unit checking policy of 273 equations and 52 operators
across 38 modules 1. The SILF Policy Framework is available for download or online use at
the SILF Policy Framework homepage [Hil].

3.1. Adding a Policy Framework to SILF

Adding a policy framework to SILF requires adding a policy-aware front end, a core
abstract language semantics, generic analysis support, and the individual analysis policies.
Since compatibility with existing SILF code is not an issue, to add a policy framework to
SILF annotation support has been added directly to the language, versus (as was done in
the C Policy Framework [Hil08] to maintain compatibility with existing C compilers) adding
support through source comments. In the extended SILF syntax, type annotations are iden-
tifiers with a leading $, like $int or $meter. Type variables are given with similar syntax:
$$, instead of just $, like $$X. Type identifiers and variables are used in standard type
positions, like on variables and formal parameters. Code annotations are given in syntax
extensions for invariants on loops (for both while and for loops), assume and assert state-
ments, and, in function declarations, function contracts with preconditions, postconditions,
and modifies (which identifies the globals changed by a function). The code annotation, an
arbitrary string, is actually parsed by the policy. Each code annotation includes a policy

tag, identifying the policy associated with the annotation language used in the annotation.
This policy tag is just an identifier, and is given before the annotation, like pre(UNITS).
This allows annotations for multiple policies to be present in the program source at once.

The core semantics includes the original SILF abstract syntax, extended with the new
type and code annotation constructs mentioned above; and the configuration (i.e., K cells).
The original dynamic semantics can be viewed as a special policy which ignores the addi-
tional constructs, with evaluation over a concrete, versus abstract, domain. Extensions to
the semantics to support analysis include modules providing: basic logical connectives for
the annotation language; pretty printing capabilities over the abstract syntax for generating
error messages; support for type annotation variables with limited forms of polymorphism;
additional K cells for analysis information; and operators for working with these extensions.
K’s modularity allows new cells to be added without requiring changes to existing rules,
making it easy to extend the state with new analysis information, such as line numbers (cell
currLn), a copy of the environment current at function entry (cell old), and error messages
generated by the analysis (cell log). Many SILF language features are also given a default
generic semantics, with special computation items used to indicate “hooks” whose behavior
is defined by individual policies. For instance, the result of an addition expression is left
up to the individual policy, since a type checking policy would have different correctness
requirements than a units of measurement checking policy.

Figure 3 provides several examples of policy-generic semantics rules. Rule 3.1 is the
generic rule for assignments. To check an assignment, the semantics first evaluates X and E.
The computation item checkAssign then determines, in a policy-specific manner, whether
the value of E can be assigned to X (based, for instance, on the current assigned value

1This actually defines three progressively more complex policies, with no single policy using all the

operators, equations, or modules defined.

156 M. HILLS AND G. ROŞU

〈k〉 X := E

(X,E) y checkAssign

...〈/k〉 (3.1)

〈k〉 X[E] := E
′

(X,E,E
′) y checkArrayAssign

...〈/k〉 (3.2)

〈k〉 if E then Dt St else Df Sf fi

E y checkIfGuard y if (Dt y St y Env ,Df y Sf y Env)

...〈/k〉 〈env〉Env〈/env〉 (3.3)

Figure 3: SILF Abstract Statement Semantics

or any annotations given on the declaration). Rule 3.2 is similar, but also evaluates the
array index expression, and then uses computation item checkArrayAssign to ensure the
assignment meets all requirements for the policy. The final rule shown, Rule 3.3, shows
the generic semantics for a conditional. The conditional guard, E, is evaluated first; the
computation item checkIfGuard will then check the value in a policy-specific manner. The
computations stored as part of the if computation item will then be used to check both the
then and else branches, with each computation handling the declarations and statements
along that branch and restoring the environment to that active at the start of the conditional,
maintaining block scoping.

The most challenging part of the generic semantics deals with handling function calls
and function call sites. During analysis, each function is executed using the policy semantics.
Any preconditions are first assumed correct, with postconditions verified at each function
return. Since checking is static, call sites are modeled using a computation representing
a summary of the called function’s behavior. Any preconditions of the called function
are first checked, using the actual parameter values in place of the formal parameters in
the preconditions; the modifies clauses of this called function are then evaluated, generally
setting any modified globals to policy-specific unknown or random values. Finally any
postconditions on the called function are evaluated, with the results assumed to hold. Full
details of this process can be found with the definition of the framework [Hil].

3.2. Defining A Type Checking Policy for SILF

To define a type checker for SILF as a policy, the first step is to define the analysis
domain for types. The values in this domain are shown in Figure 4. Since this policy only
uses type annotations, no separate code annotation language needs to be given.

sort BaseType .

subsort BaseType < Type .

ops $int $bool : -> BaseType .

op $array : BaseType -> Type .

op $notype : -> Type .

Figure 4: SILF Types Domain

The second part of defining the policy is defin-
ing the analysis-specific semantics for type checking.
These rules generally follow the dynamic semantics rules
closely, with the addition that error checking logic has
been added to catch errors that, dynamically, led to
stuck states. For instance, Figure 5 shows the original
integer addition rule for the SILF dynamic semantics, Rule 3.4, as well as two typing rules
for addition. The first typing rule, Rule 3.5, indicates the expected scenario: each operand
is of type $int, with the entire operation also of type $int. The second, Rule 3.6, is an
error case; at least one of the types is not $int. To handle this, the policy code generates
an error message (abstracted here as msg) of severity 1 (an error) using issueWarning. It

A REWRITING LOGIC SEMANTICS APPROACH TO MODULAR PROGRAM ANALYSIS 157

i1 + i2 → i, if i is the sum of i1 and i2 (3.4)

($int , $int) y plus → $int (3.5)

〈k〉 (t, t′) y plus

issueWarning(1,msg) y $int

...〈/k〉, if t =/= $int or t′ =/= $int (3.6)

if true then Kt else Kf → Kt (3.7)

$bool y if(Kt ,Kf)→ Kt y Kf (3.8)

Figure 5: SILF Type Checking Policy Rules

also returns $int as the result type to prevent a cascade of additional errors being triggered
by this one type error. function $int f($int x) 1

begin 2

return x + 1; 3

end 4

function $int main(void) 5

begin 6

var $int x; 7

x := 3; 8

x := f(x); 9

x := f(x,x); 10

if x then 11

write 1; 12

fi 13

if (x < 5) then 14

write 1; 15

else 16

write false; 17

fi 18

end 19

Figure 6: Checking Types

Figure 5 also provides a comparison between the
rules for conditionals in the dynamic and the type check-
ing policy semantics. Rule 3.7, part of the dynamic se-
mantics, selects the then (Kt) branch in the case of
a true condition (the similar else branch rule is not
shown). Rule 3.8, part of the policy semantics, makes
sure the condition evaluates to a boolean; after this
check, the then branch and the else branch are both
analyzed. Another rule, not shown, handles the case
where the condition does not evaluate to $bool, using
issueWarning like in Rule 3.6 to issue an error message
and then, like in Rule 3.7, checking both branches of the
conditional. Similar rules are used to define most of the
features of the language.

Figure 6 shows an example of a program with type
errors. Running the type checking policy over the pro-
gram, the following error messages are generated:

ERROR on line 10: Type failure: too many arguments provided in call to function f.

ERROR on line 11: Type failure: expression x should have type $bool, but has type $int.

ERROR on line 17: Type failure: write expression false has type $bool, expected type $int.

In the first error, function f expects one parameter but is given two. In the second, the
conditional expression should be a boolean, but instead an integer is provided, and unlike
in languages such as C no automatic coercion is performed. In the final error message, the
expression given to the write statement should be an integer, but is instead a boolean. The
policy pretty printer, part of the generic analysis support defined for the framework (the
basic pretty printer is actually shared between frameworks, but most of the logic is language
specific), is used to generate the error messages, and is extended by the policy to correctly
print the annotations.

158 M. HILLS AND G. ROŞU

(u, u) y plus → u (3.9)

〈k〉 (u, u′) y plus

issueWarning(1,msg) y $fail

...〈/k〉, if u =/= u
′ and u

′ =/= $cons (3.10)

(u, u
′
) y times → u u

′
(3.11)

V y if(Kt ,Kf)→ Kt y Kf (3.12)

〈k〉(u, u′) y checkAssign

·

...〈/k〉, if u == u
′ or u′ == $cons (3.13)

〈k〉(u, u′) y checkAssign

issueWarning(1,msg)

...〈/k〉, if u =/= u
′ and u

′ =/= $cons (3.14)

Figure 7: SILF UNITS Policy Rules

3.3. Defining a Units Policy for SILF

The UNITS policy for SILF is similar to that defined for C in the C Policy Framework
(CPF) [Hil08], and is only presented at a high level here to show the similarity to the rules
for the type checking policy. The complete policy is available for download on the SILF
Policy Framework site [Hil].

A program is considered unit safe if it properly follows a number of unit rules, such
as only adding values with matching units. Figure 7 shows several UNITS rules. The first,
Rule 3.9, is for addition, where, if both units match, the result is the same unit; Rule 3.10 is
an error case for addition, where the units don’t match and the second unit isn’t a constant
(which can be converted to any unit). Rule 3.11 is a rule for multiplication, where the
resulting unit is the product of the operand units. Rules 3.12, 3.13, and 3.14 are rules for
statements. Rule 3.12 handles conditionals, and is similar to Rule 3.8, except there is no
need to check the value computed by the guard – any errors found in the guard expression
will have already been reported, and the guard is not expected to have a specific unit (a
more stringent requirement would be to enforce that the guard has no unit, but that is not
done here). Rules 3.13 and 3.14 then show the regular and error cases for assignment. In
Rule 3.13, the assignment is safe if the value being assigned either has the same unit or is
a constant; in Rule 3.14, this condition does not hold, so an error message is issued.

4. Related Work

Many different tools and techniques have been developed around the use of annotations
for program analysis. The earliest precursor to the work presented here was developed as
a prototype to check the unit safety of programs written in BC [Che03]. JML [Bur03],
the Java Modeling Language, provides support for code annotations, and has been used in
a number of analysis tools, such as tools for runtime and static analysis. Spec# [Bar05]
extends the C# language with support for code annotations and several type annotations.
Eiffel [Mey88] includes direct language support for code annotations such as preconditions
(require) and postconditions (ensure). None of these systems provide the same extensibility

A REWRITING LOGIC SEMANTICS APPROACH TO MODULAR PROGRAM ANALYSIS 159

of type annotations as seen with both the CPF and the SILF policy framework, while
extensions to the provided code annotation languages (where allowed) are formalized in
first-order logic.

Specifically for C, a number of annotation-based systems have been developed. LCLint
[Eva94], now Splint, uses program annotations to detect potential errors in C programs, and
provides limited abilities to add new annotations by allowing attributes and constraints to be
defined for various C language objects. C-UNITS [Ros03], another conceptual precursor to
the CPF, uses annotations to check unit safety for a limited subset of C, but is not extensible,
offering no clear way to either support other analysis domains or cover unsupported features
of C. Caduceus [Fil04, Fil07] provides an annotation language similar to JML; programs are
verified by transforming them into a simpler language, called Why, which is then further
processed to generate proof tasks for various theorem provers. Frama-C [fra] provides an
extensible analysis framework, with various analyses built in OCaml as “plugins” to the
core Frama-C tool. Frama-C uses the ACSL annotation language [Bau08], which is based
on the annotation language used in Caduceus. To support new concepts they must be
formalized in first-order logic using “logic specifications”, and type annotations are not
supported. Systems targeted at specific domains include VCC [Coh08], for verification of
concurrent C programs, and HAVOC [Cha07], aimed at programs, such as device drivers,
that perform low-level memory manipulation. CQUAL [Fos99] provides support for user-
defined type annotations, referred to as type qualifiers, but cannot natively support some
complex domains like units. It also does not support code annotations, such as function
contracts. The current version of CPF includes new functionality over that discussed in
earlier work [Hil08], including support for type annotations and modifies clauses and more
complete support for heap-allocated values in C.

5. Conclusions

In this paper we introduced policy frameworks, a flexible, modular technique for adding
new analysis policies and annotation languages. We presented an implemented policy frame-
work for SILF, a simple imperative language, along with two examples of existing policies
for SILF, one for types and one for units of measurement. These policies illustrate the
reuse within a policy framework of the policy core, while also sharing some framework
functionality with the CPF, showing that reuse across frameworks is possible as well.

In the future, we plan to extend the same concepts used here to other programming
languages, potentially Java or OCaml. Of special interest is to see if it would be possible to
then extend this technique to multi-language analysis (for instance, to calls from OCaml into
C code). We are also working to relate the abstract semantics developed for analysis more
closely with parallel efforts to develop concrete K semantics of various languages. Finally,
we are investigating integrating current work on policy frameworks with work on Rascal
[Kli09b, Kli09a], a language for source code analysis and transformation which should allow
analysis support to be developed for significant real-world languages.

References

[Bar05] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# Programming System: An

Overview. In Proceedings of CASSIS’04, LNCS, vol. 3362, pp. 49–69. Springer, 2005.

160 M. HILLS AND G. ROŞU

[Bau08] Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate, Yannick Moy, and

Virgile Prevosto. ACSL: ANSI/ISO C Specification Language. 2008.

[Ber89] Jan A. Bergstra, Jan Heering, and Paul Klint. Algebraic Specification. ACM Press, 1989.

[Bur03] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph Kiniry, Gary T. Leavens,

K. Rustan M. Leino, and Erik Poll. An overview of JML tools and applications. In Proceedings of

FMICS’03, ENTCS, vol. 80, pp. 75–91. 2003.

[Cha07] Shaunak Chatterjee, Shuvendu K. Lahiri, Shaz Qadeer, and Zvonimir Rakamaric. A Reachability

Predicate for Analyzing Low-Level Software. In Proceedings of TACAS’07, LNCS, vol. 4424, pp.

19–33. Springer, 2007.

[Che03] Feng Chen, Grigore Roşu, and Ram Prasad Venkatesan. Rule-Based Analysis of Dimensional Safety.

In Proceedings of RTA’03, LNCS, vol. 2706, pp. 197–207. Springer, 2003.

[Coh08] Ernie Cohen, Michal Moskal, Wolfram Schulte, and Stephan Tobies. A Practical Verification

Methodology for Concurrent Programs, 2008.

[Eva94] David Evans, John V. Guttag, James J. Horning, and Yang Meng Tan. LCLint: A Tool for Using

Specifications to Check Code. In Proceedings of FSE’94, pp. 87–96. ACM Press, 1994.

[Fil04] Jean-Christophe Filliâtre and Claude Marché. Multi-prover Verification of C Programs. In Proceed-

ings of ICFEM’04, LNCS, vol. 3308, pp. 15–29. Springer, 2004.

[Fil07] Jean-Christophe Filliâtre and Claude Marché. The Why/Krakatoa/Caduceus Platform for Deduc-

tive Program Verification. In Proceedings of CAV’07, LNCS, vol. 4590, pp. 173–177. Springer, 2007.

[Fos99] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. A Theory of Type Qualifiers. In Pro-

ceedings of PLDI’99, pp. 192–203. ACM Press, 1999.

[fra] Frama-C. http://frama-c.cea.fr.

[Gog77] Joseph A. Goguen, James W. Thatcher, Eric G. Wagner, and Jesse Wright. Initial Algebra Seman-

tics and Continuous Algebras. Journal of the ACM, 24(1):68–95, 1977.

[Gog96] Joseph A. Goguen and Grant Malcolm. Algebraic Semantics of Imperative Programs. MIT Press,

1996.

[Hil] Mark Hills and Grigore Roşu. SILF Policy Framework. http://fsl.cs.uiuc.edu/index.php/SILF_

Policy_Framework.

[Hil07] Mark Hills, Traian Florin Şerbănuţă, and Grigore Roşu. A Rewrite Framework for Language Defi-

nitions and for Generation of Efficient Interpreters. In Proceedings of WRLA’06, ENTCS, vol. 176,

pp. 215–231. Elsevier, 2007.

[Hil08] Mark Hills, Feng Chen, and Grigore Roşu. A Rewriting Logic Approach to Static Checking of Units

of Measurement in C. In Proceedings of RULE’08. Elsevier, 2008. To Appear.

[Hil09] Mark Hills. Memory Representations in Rewriting Logic Semantics Definitions. In Proceedings of

WRLA’08, ENTCS, vol. 238(3), pp. 155–172. Elsevier, 2009.

[Kli09a] Paul Klint, Tijs van der Storm, and Jurgen Vinju. EASY Meta-Programming with RASCAL. In

Proceedings of GTTSE’09, pp. 185–238. Universidade do Minho, 2009.

[Kli09b] Paul Klint, Tijs van der Storm, and Jurgen Vinju. RASCAL: A Domain Specific Language for

Source Code Analysis and Manipulation. In Proceedings of SCAM’09, vol. 0, pp. 168–177. IEEE

Computer Society, Los Alamitos, CA, USA, 2009.

[Mes04] J. Meseguer and G. Roşu. Rewriting Logic Semantics: From Language Specifications to Formal

Analysis Tools . In Proceedings of IJCAR’04, LNAI, vol. 3097, pp. 1–44. Springer, 2004.

[Mes07] José Meseguer and Grigore Rosu. The rewriting logic semantics project. Theoretical Computer

Science, 373(3):213–237, 2007.

[Mey88] Bertrand Meyer. Eiffel: A Language and Environment for Software Engineering. Journal of Systems

and Software, 8(3):199–246, 1988.

[nis] The NIST Reference on Constants, Units, and Uncertainty. http://physics.nist.gov/cuu/Units/.
[Ros03] Grigore Rosu and Feng Chen. Certifying Measurement Unit Safety Policy. In Proceedings

of ASE’03, pp. 304 – 309. IEEE, 2003.
[Ros07] Grigore Rosu. K: A Rewriting-Based Framework for Computations – Preliminary version.

Tech. Rep. Department of Computer Science UIUCDCS-R-2007-2926, University of Illinois
at Urbana-Champaign, 2007.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 161-176
http://rewriting.loria.fr/rta/

INFINITARY REWRITING: FOUNDATIONS REVISITED

STEFAN KAHRS

University of Kent at Canterbury, School of Computing

E-mail address: S.M.Kahrs@kent.ac.uk

Abstract. Infinitary Term Rewriting allows to express infinitary terms and infinitary

reductions that converge to them. As their notion of transfinite reduction in general, and

as binary relations in particular two concepts have been studied in the past: strongly and

weakly convergent reductions, and in the last decade research has mostly focused around

the former.

Finitary rewriting has a strong connection to the equational theory of its rule set: if

the rewrite system is confluent this (implies consistency of the theory and) gives rise to a

semi-decision procedure for the theory, and if the rewrite system is in addition terminating

this becomes a decision procedure. This connection is the original reason for the study of

these properties in rewriting.

For infinitary rewriting there is barely an established notion of an equational theory.

The reason this issue is not trivial is that such a theory would need to include some form

of “getting to limits”, and there are different options one can pursue. These options are

being looked at here, as well as several alternatives for the notion of reduction relation

and their relationships to these equational theories.

1. Introduction

Infinitary rewriting deals with infinite terms, which are defined through the metric
completion of finite terms through some metric. In the simplest case (metric d∞) this is
equivalent to a co-inductive definition of terms, i.e. the set of infinitary terms Ter∞(Σ) is
the largest set such that every t in this set has some root symbol F taken from the signature
Σ and n direct subterms ti (1 ≤ i ≤ n) that are all in Ter∞(Σ), where n is the arity of
F as defined by the signature. In other words, infinitary terms are defined co-inductively
through the way they unfold, without a guarantee that this unfolding ever comes to an end.
Infinite terms are indeed those where it does not.

Metric completion is a general-purpose semantic construction on metric spaces which
“adds” to a metric space limits to all its Cauchy-sequences, in the sense that there is
a dense isometric embedding of the orginal space into a complete metric space. Using
metric completion with other metrics on terms than d∞ can restrict the infinite terms
under consideration (but not add others) [6], as Ter∞(Σ) can also be seen as a final co-
algebra. For the purposes of this paper the choice of metric is (largely) immaterial, i.e. as
long it allows for infinite terms at all.

1998 ACM Subject Classification: F.4.2.

Key words and phrases: Infinitary Rewriting, Equivalence Relation, Model.

c© S. Kahrs
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.161

162 S. KAHRS

Reductions that only involve finite terms can still approximate infinite terms “in the
limit” by moving arbitrarily close (in terms of the distance function) to some such infinite
term.

That is the idea behind infinitary rewriting. The problem is then to decide how exactly
the limit is reached. For transfinite reductions we may expect something similar to metric
completion, some kind of closure operation, allowing us to reach limit terms in the limit
of... what? Here we encounter our first problem: what is the structure to which we need to
add limits and what kind of limits?

Traditionally [3], the answer to this is: (i) the structure to which we add limits are
(infinite) reduction sequences. As these are functions with ordinals as their domain, we
can ensure that the limits are connected to “what came before” by demanding that these
functions are (ii) continuous. The result of these choices is the notion of (weakly) convergent
reduction։w. There are alternatives to continuity; we can strengthen the condition further,
or weaken it by aiming for something like adherence rather than convergence. We are also
not forced to stick to reduction sequences as our starting point: in particular, we may just
as well use the reduction relation as a whole.

The initial interest in the subject of (finitary) term rewriting was triggered by a number
of observations that led to the Knuth-Bendix completion procedure [9], deriving (if and when
it succeeds) a decision procedure for a given equational theory. These observations establish
links between the many-step rewrite relation and the equational theory. What happens to
those links in infinitary rewriting?

Before we can even pose this question meaningfully we need a notion of an equational
theory for infinitary rewriting. There is none in the literature, although there are ideas
approximating it. One is the specific equivalence relation ∼hc [8] (the so-called equivalence
“modulo hyper-collapsing terms”). Its construction is not easy to generalise as it relies
upon being used in connection with orthogonal iTRSs: in the presence of overlapping rules
the top of a hyper-collapsing term could form a redex with the context, undermining the
idea that such terms are unsolvable in the sense of the λ-calculus [1]. Another idea comes
from the concept of equational model [2, 3, 10], since a notion of syntactic equivalence can
be derived from that: t =R u iff the equation t = u holds in all equational models of R. As
we shall see, the notion of equational theory derived from such classes of models is quite
strong.

The reason the definition of the equational theory is an issue at all is this: on finite terms
we can define the equivalence relation =R as the smallest equivalence relation that includes
all the rules, is substitutive, and for which F (t1, . . . , tn) =R F (u1, . . . , un) holds whenever
∀i. ti =R ui and F is an n-ary function symbol from the signature. But for infinitary terms
this definition is not suitable, because it does not allow for any form of limit-taking: from
A =R B we could not deduce that the infinite term t = C(A, t) is =R-equivalent to the
infinite term u = C(B, u), since the equivalence closure only permits a finite number of
equation applications. For the same reason, the transfinite reduction relation ։ (in any of
the variations we consider) would not be a subrelation of =R.

Thus some form of limit-taking needs to be incorporated into a suitable notion of
equational theory. There are several ways in which one can allow for limit-taking that lead
to different notions of equivalence:

• the conservative approach: form the equivalence closure of ։, for any given notion
of transfinite reduction relation ։;

FOUNDATIONS REVISITED 163

• defining an equivalence relation: take the blue and equivalence closure of the single-
step rewrite relation →, where “blue” is a placeholder for properties that ensure
that certain limits are included in the relation.

• inducing an equivalence from a class of models

The conservative approach is pragmatic and makes the connection to the reduction relation
straightforward, but it denies rules true equational status. For example, it does not permit
us to form an infinite sequence by applying rules forwards as well as backwards and conclude
that the limit of the sequence is equivalent to its beginning.

2. Preliminaries

We need several notions from Topology and Infinitary Rewriting. This section contains
those definitions, to make the paper self-contained.

A property P on subsets of a set A is said to be closable if the intersection
⋂

i∈I Ai of
any family of subsets Ai ⊆ A, i ∈ I that each satisfy P itself satisfies the property. As I
may be empty, A has to satisfy P too. If P is closable we can form the P -closure of any
subset K ⊂ A, the smallest subset of A that contains K and satisfies P . In particular, this
concept will be used on relations, viewing them as sets of pairs. Clearly, the conjunction of
closable properties is closable.

2.1. Topology

A topological space is a pair (S,O) where S is a set and O a subset of ℘(S) such that
it is closed under finite intersections and arbitrary unions, and ∅, S ∈ O. The elements of
O are called open sets, their complements w.r.t. S are called closed sets. The closure of a
subset A ⊂ S is the intersection of all closed sets that contain A, and is written Cl(A). A
neighbourhood of x ∈ S is a set N ⊆ S for which there is an A ∈ O such that x ∈ A ⊆ N .
A point z ∈ S is called discrete iff {z} is open.

A topological space S is called T0 iff ∀x, y ∈ S. x ∈ Cl({y}) ∧ y ∈ Cl({x}) ⇒ x = y. It
is called T1 iff all singleton sets are closed. It is T2 (or Hausdorff) iff any two distinct points
in S have disjoint neighbourhoods.

A function f : A → B between topological spaces is called continuous iff f−1(X) is
open whenever X is open. A function f : A → B between topological spaces is an open map
iff it preserves open sets; it is a closed map iff it preserves closed sets. A relation R between
topological spaces A and B is called lower semi-continuous (or lsc) if R−1 preserves open
sets, and upper semi-continuous (or usc) if R−1 preserves closed sets.

A subset F of a topological space is called compact iff whenever
⋃

i∈I Ai ⊇ F , where
each Ai is open, then there is a finite subset J ⊆ I such that

⋃

i∈J Ai ⊇ F .
A metric space is a set (M,d) where M is a set and d : M × M → R a distance

function such that for all x, y, z ∈ M : (i) d(x, y) = 0 ⇐⇒ x = y and (ii) d(x, z) ≤
d(x, y)+d(z, y). For an ultra-metric space (ii) is replaced by the stronger condition d(x, z) ≤
max(d(x, y), d(z, y)). The topology of a metric space is defined as follows: A ⊆ M is open
iff ∀x ∈ A. ∃ǫ > 0.∀y ∈ M. d(x, y) < ǫ ⇒ y ∈ A.

The metric completion of (M,d) is the unique (up to isomorphism) metric space (M•, d•),
with a function e : M → M•, such that e preserves distances and Cl(e(M)) = M•.

A function between metric spaces A and B is uniformly continuous iff ∀. ǫ > 0. ∃δ >
0. ∀x, x′ ∈ A. dA(x, x

′) < δ ⇒ dB(f(x), f(x
′)) < ǫ. Uniformly continuous functions have

164 S. KAHRS

unique continuous extensions to the respective metric completions. A special case are non-
expansive functions where δ = ǫ.

2.2. Infinitary Term Rewriting

A signature is a pair Σ = (F ,#) where F is a set (of function symbols) and # : F → N
is the function assigning each symbol its arity. We assume an infinite set Var of variables,
disjoint from F . The set of finite terms over Σ is called Ter(Σ) and it is defined to
the smallest set such that (i) Var ⊂ Ter(Σ) and (ii) F (t1, . . . , tn) ∈ Ter(Σ) whenever
F ∈ F ∧#(F) = n ∧ {t1, . . . , tn} ⊂ Ter(Σ). The root symbol of a term F (t1, . . . , tn) is F ,
the root symbol of a variable x is x.

A Σ-algebra is a set A together with functions FA : An → A for every F ∈ F with
#(F) = n. A valuation into A is a function ρ : Var → A. Any Σ-algebra A determines an
interpretation function [[]]A : Ter(Σ)× (Var → A) → A as follows:

[[x]]ρA = ρ(x), if x ∈ Var

[[F (t1, . . . , tn)]]
ρ
A = FA([[t1]]

ρ
A, . . . , [[tn]]

ρ
A)

Infinitary terms are defined through a metric completion process. For this paper we
focus on the metric d∞ which is defined as follows inductively on finite terms: d∞(t, u) = 1
iff t and u have different roots; d∞(t, t) = 0; otherwise, d∞(F (t1, . . . , tn), F (u1, . . . , un)) =
1/2∗max1≤i≤n d∞(ti, ui). (Ter(Σ), d∞) is an ultra-metric space and we write (Ter∞(Σ), d∞)
for its metric completion, which is also a Σ-algebra [6]. There is a more general notion of
term metric m from which distance functions dm and the corresponding metric completions
Term(Σ) can be derived [6].

A rewrite rule is pair (l, r), usually written l → r, such that l ∈ Ter(Σ) \ Var , r ∈
Ter∞(Σ) and all variables occurring in r also occur in l.

An iTRS is a pair (Σ, R) where Σ is a signature and R a set of rewrite rules for that
signature. The rewrite step relation →R relates C[σ(l)] →R C[σ(r)], where l → r is a
rewrite rule in R, σ a substitution, and C[] a context. Substitution application and context
application are uniquely derived from their respective concepts on finite terms [6], and can
also be defined in terms of the [[]]Ter∞(Σ) interpretation.

3. Transfinite Sequences

In the following we are looking at several notions of transfinite reduction relations X(→R).
These are all functions of the single step reduction relation →R. We call X(→R) infinitarily
transitive if X(→R) = X(X(→R)), i.e. if it is a fixpoint of X. Usually, we take →R to be
clear from the context and write ։x for X(→R) and ։xx for X(X(→R)). We also write
ևx for ։−1

x , ↓x for ։x ; ևx, and ↑x for ևx ; ։x.
The reason the property “infinitarily transitive” is desirable is similar to wanting that

→∗
R is the same as (→∗

R)
∗; the property also features in the proofs of [7].

Transfinite sequences of terms can be defined as functions from an ordinal (the index
domain) to the set of (infinitary) terms, viewing ordinals as von Neumann ordinals, i.e. the
ordinal α is the set of all ordinals strictly smaller than α. Reduction sequences of an iTRS
are those where neighbouring elements are within the single-step reduction relation, i.e. if
f : α → Ter∞(Σ) is our reduction sequence then f(n) →R f(n+ 1), provided n+ 1 < α.

FOUNDATIONS REVISITED 165

This works fine for finite sequences. For infinite sequences this definition fails to put
any constraints whatsoever what happens at f(λ), for limit ordinals λ.

3.1. Standard solution: weak convergence

The traditional choice to fix this is to demand that the function f is continuous w.r.t.
the usual order topology. Effectively, this means that f(λ) must be the (unique) limit of
f(γ), as γ approaches λ from below. To express it in terms of distances:

∀ǫ > 0. ∃γ. ∀γ′. γ ≤ γ′ < λ ⇒ d∞(f(γ′), f(λ)) < ǫ

If the indexing set of a transfinite reduction sequence is a successor ordinal then we
have a closed sequence, because it is a sequence with a last element: if α+ 1 is the domain
of f then the last element of the sequence is f(α).

This also gives us a way of defining the relation ։w: t ։w u iff there is some ordinal α
and some closed reduction sequence f : α+1 → Ter∞(Σ) such that f(0) = t and f(α) = u.

In the infinitary rewriting literature this is often called “weak convergence” [8], where
“strong convergence” requires that the sequences converges solely due to the positioning of
redexes, i.e. if f(γ) = Cγ [σγ(lγ)] →R f(γ + 1) = Cγ [σγ(rγ)] we can build a new sequence
g(γ) = Cγ [x] (i.e. replacing all contracted redexes with the variable x); f is then strongly
converging if g converges too, and to the same limit as f . Expressing strong convergence
as a function of →R (rather than R) would require to recover a minimal rule set from the
relation →R — a slightly delicate issue that goes beyond the scope of this paper.

Example 3.1. Consider the iTRS with rules

F (A, x) → F (B,D(x))

B → A

We have F (A, x) →2
R F (A,D(x)), but we do not have F (A, x) ։w F (A,D∞), because A

would change to B at every other step. If we add the rule F (A, x) → F (A,D(x)) to the
system then →∗

R does not change, but ։w would change and now include F (A, x) ։w

F (A,D∞).

Proposition 3.2. ։w is in general not infinitarily transitive (though it is on converging
iTRSs [7]).

Proof. See example 3.1. Since F (A, x) →2
R F (A,D(x)) we also have F (A, x) ։w F (A,D(x))

and consequently F (A, x) ։ww F (A,D∞).

Incidentally, this contradicts theorem 1(c) in [2].

3.2. Adherence

Instead of asking for convergence we can ask for adherence: t ։a u is defined like t ։w

u, except for one thing: instead of requiring that the witnessing indexing function f is
continuous at limit ordinals λ we require that it is “adherent”: This is in a certain sense
a concept dual to convergence, because instead of demanding that a sequence is eventually
always within a neighbourhood, the definition asks instead that it always eventually goes
there. Formally:

∀ǫ > 0. ∀γ < λ. ∃γ′. γ ≤ γ′ < λ ∧ d∞(f(γ′), f(λ)) < ǫ

166 S. KAHRS

The difference is that adherence merely requires that (any neighbourhood of) an accu-
mulation point is visited by the sequence for index positions arbitrarily close to λ, without
demanding that the sequence stays there. Intuitively, adherence requires that a cofinal
subsequence of a reduction sequence converges to the limit, allowing for other terms in the
sequence as computational noise.

The result of this is that a sequence can adhere to more than one limit. Certainly, any
sequence converging to a limit adheres to it and therefore:

Proposition 3.3. ։w ⊆ ։a

Clearly, ։a is (finitary) transitive, ։a;։a ⊆ ։a, because the adherence condition
never stops adherent sequences from being concatenated. One peculiarity of adherence over
convergence is that the notion is less sensitive to the notion of the single-step relation, in
the sense that if →∗

R = →∗
S then the adherence relations of →R and →S are identical too.

Also:

Proposition 3.4. ։a is infinitarily transitive.

Proof. Let f : α + 1 → Ter∞(Σ) be the sequence witnessing t ։aa u. We need to show
t ։a u. This can be proved by induction on α.

If α = 0 then t = u and the result follows by reflexivity.
If α = β + 1 then there is a t′ such that t ։aa t′ ։a u, where the sequence witnessing

t ։aa t′ has length β. By induction hypothesis t ։a t′, and the result follows by (finitary)
transitivity of ։a.

If α is a limit ordinal then the restriction of f to domain α has a cofinal subsequence
[7] g : β → α such that f ◦ g converges to f(α). Once we expand every ։a step in f to
a new sequence h we have that f = h ◦ g′ for some cofinal subsequence g′ of h and thus
f ◦ g = (h ◦ g′) ◦ g = h ◦ (g′ ◦ g) where g′ ◦ g is a cofinal subsequence of h.

By implication proposition 3.4 also shows that the inclusion ։w ⊂ ։a is (in general)
proper, as witnessed by example 3.1.

Adherence can also be characterised as follows: letW be the function mapping a relation
→R to its weak convergence relation ։w. Then ։a is the least fixpoint of W that contains
the single-step relation.

4. Relations

Instead of completing sequences by adding limits or accumulation points, we can define
։ more directly through closable properties of relations. There are the following notions
of interest:

4.1. Pointwise Closure

We can view relations as set-valued functions, and add limits to their range. This leads
to the following concept:

Definition 4.1. A relation R between topological spaces is called pointwise closed iff the
sets Rx = {y | x R y} are all closed.

Proposition 4.2. Being pointwise closed is a closable property of relations.

Proof. Let A =
⋂

iRi. Then Ax = {y | x A y} = {y | ∀i. x Ri y} =
⋂

iR
x
i . Hence Ax is an

intersection of closed sets and therefore closed.

FOUNDATIONS REVISITED 167

This allows us to use pointwise closure as a relation-constructing property.

Definition 4.3. The relation P (→R) =։p is defined as the smallest reflexive, transitive
and pointwise closed relation containing →R.

That ։p is infinitarily transitive is trivial by construction. We can explain t ։p u as
“t can rewrite to something arbitrarily close to u”, but if we want to get any closer we may
have to start all over again from t.

Proposition 4.4. ։a ⊆ ։p.

Proof. By induction on the indexing ordinals for the sequences witnessing t ։a u. The
interesting case for f : α + 1 → Ter∞(Σ) is when α is a limit ordinal. By induction
hypothesis, f(0) ։p f(γ), for all γ < α. The restriction of f to α has to contain a
subsequence that converges to f(α). But then f(α) has to be in the closure of the f(γ) and
as ։p is pointwise closed the result follows.

However, the relations ։a and ։p are not always the same:

Example 4.5.

A → B(A)

A → C

B(C) → D(C)

B(D(x)) → D(D(x))

In this system we have A →∗
R Dn(C) for any finite n and therefore A ։p D∞. But there

is no single adherent (or convergent) sequence that can build up to that limit; as soon as a
D appears in a reduct of A the reduction sequence is guaranteed to terminate.

Usually we can construct ։p more directly, as the pointwise closure of →∗
R (call it

։p0).

Theorem 4.6. If →R is lsc then ։p=։p0.

Proof. It suffices to show that ։p0 is transitive. Since →R is lsc so is →∗
R [6]. Suppose

A ։p0 B ։p0 C.
We need to show A ։p0 C, which means that for any ǫ > 0 there is a Cǫ such that

A →∗
R Cǫ and d∞(Cǫ, C) < ǫ. Because →∗

R is lsc and B →∗
R C for every ǫ > 0 there is a

δ > 0 such that for all B′ with d∞(B′, B) < δ there is a Cǫ(B
′) with B′ →∗

R Cǫ(B
′) and

d∞(Cǫ(B
′), C) < ǫ. Since A ։p0 B we can find Bδ with d∞(Bδ, B) < δ and A →∗

R Bδ.
Hence A →∗

R Cǫ(Bδ).

In [6] a number of conditions are given under which the relation →R is uniformly lsc,
for a variety of term metrics. For the much weaker condition that →R is lsc it suffices to
require that the rules are left-linear, and in that case this is even independent of the term
metric.

4.2. Topological Closure

The pointwise closure add limits to a relation at the “result side”, and stays in this
respect still very much within the intuition behind infinitary rewriting. Going beyond that
and allowing the input side to change as well leads to fairly unintuitive relations.

168 S. KAHRS

For example, another closable property on relations between topological spaces A and
B is that their set of pairs (their graph) is closed in the product space A×B.

Definition 4.7. The relation C(→R) =։t is the smallest reflexive and transitive relation
containing →R such that its graph is closed.

This means: if tn and un are sequences converging to t and u, respectively, and if for
all i: ti ։t ui, then t ։t u.

Clearly, closed relations are also pointwise closed and therefore ։p ⊆ ։t. Again, the
inclusion is proper:

Example 4.8.

LEQ(0, x) → T

LEQ(S(x), 0) → F

LEQ(S(x), S(y)) → LEQ(x, y)

The infinite term t = LEQ(S∞, S∞) only reduces to itself, in a single step, and thus also
∀u. t ։p u ⇒ t = u. But we also have t ։t T and t ։t F , because the sequences
an = LEQ(Sn(0), Sn(0)) and bn = LEQ(Sn+1(0), Sn(0)) both converge to t, but an ։t T
and bn ։t F .

In contrast to ։p we usually cannot construct ։t as the topological closure of →∗
R

(call it ։t0), because that relation is often not transitive:

Example 4.9. Add the rule INF → S(INF) to example 4.8. Then LEQ(INF, INF) ։t0

LEQ(S∞, S∞) ։t0 T , but we do not have LEQ(INF, INF) ։t0 T .

5. Notions of Equivalence

When using rewrite relations to (semi-)decide an equivalence we want that equivalent terms
have common reducts. Hence:

Definition 5.1. A pre-order ։x is called a semi-decider for an equivalence =E iff (i)
։x ⊆ =E and (ii) =E ⊆ ↓x.

The first condition gives us soundness (if terms have common reducts they are equiva-
lent), the second completeness. If =E is the equivalence closure of ։x then (i) is trivial and
(ii) is equivalent to infinitary confluence, ↑x ⊆ ↓x. However, for infinitary rewriting this is
a big “if”.

In the presence of infinite terms, ordinary congruence relations fail to capture what is
needed for equational reasoning in infinitary rewriting as equivalence closure is an inductive
concept, not a coinductive one. This problem shows up in two separate ways: (i) for
including transfinite reductions in the equivalence, and (ii) for allowing infinitely many
subterm changes in a term of infinite size.

However, any equivalence relation ∼ on a topological space A induces a canonical
topology on the quotient A/∼: a set of equivalence classes is open iff their union is open
in the topology of A. This condition is the finest topology that makes the projection map
[]∼ : A → A/∼ continuous. This also means that if we have any converging sequence f(n)
in A then [f(n)]∼ is converging in A/∼.

FOUNDATIONS REVISITED 169

Example 5.2. Consider the iTRS with the single rule C → S(C). Take as equivalence ≈
the congruence closure of the equation C = S(C). The reduction sequence C → S(C) →
S(S(C)) → ... converges to S∞. By continuity, the sequence [C]≈, [S(C)]≈, [S(S(C))]≈, ...
converges to [S∞]≈. However, [C]≈ = [S(C)]∼ = [S(S(C))]≈, ... and [C]≈ 6= [S∞]≈.

Example 5.2 shows that quotient spaces can have very poor separation properties, e.g.
in the example Ter∞(Σ)/≈ is not T1. These separation properties closely correspond to
properties of equivalence relations, in the sense that they indirectly provide recipes for
adding limits to an equivalence. This leads to the following concepts:

Definition 5.3. An equivalence relation ∼ on a topological space A is called weakly sepa-
rating, iff:

∀x, y ∈ A. x ∈ Cl([y]∼) ∧ y ∈ Cl([x]∼) ⇒ x ∼ y

Proposition 5.4. A/∼ is a T0 space iff ∼ is weakly separating.

Proof. Let ∼ be weakly separating and [x]∼ and [y]∼ be accumulation points of each other.
Then [x]∼ ∈ Cl({[y]∼}) which is equivalent to [x]∼ ⊆ Cl([y]∼), hence x ∈ Cl([y]∼); the same
argument gives y ∈ Cl([x]∼). As ∼ is weakly separating x ∼ y and so [x]∼ = [y]∼.

If ∼ is not weakly separating then any witnessing counterexample is also a counterex-
ample against A/∼ being T0.

Given any relation R, we can form the “weakly separating equivalence closure” due to
the following property:

Proposition 5.5. Being weakly separating is a closable property.

Proof. Clearly, the intersection ∼=
⋂

i ∼i gives another equivalence where each equivalence
class [a]∼ is the intersection of the equivalence classes [a]∼i

. Now assume x ∈ Cl([y]∼) and
y ∈ Cl([x]∼). x ∈ Cl([y]∼) = Cl(

⋂

i[y]∼i
) ⊆

⋂

iCl([y]∼i
). Hence, for all i, x ∈ Cl([y]∼i

), and
by the dual argument y ∈ Cl([x]∼i

). Since each ∼i is weakly separating this implies x ∼i y,
for all i, and so x ∼ y.

T0 is a very weak form of separation and we do not have that ։w would be included
in the weakly separating equivalence closure of its rules. Often, the weakly separating
equivalence closure makes no difference, but there are cases where it does:

Example 5.6. Consider the following specification of equality and logical negation:

E(x, x) = T

E(0, S(x)) = F

E(S(x), 0) = F

E(S(x), S(y)) = E(x, y)

N(T) = F

N(F) = T

Instantiating the first equation we have E(S∞, S∞) = T . We can also deriveE(Sn(0), S∞) =
F , for any finite n. Thus [T]∼ is in the closure of [F]∼, where ∼ is the equivalence closure of
→R. Moreover, for any finite n, N(E(Sn(0), S∞)) = N(F) = T ; hence the closure of [T]∼
will also contain N(E(S∞, S∞)) = N(T) = F . Therefore, the weakly separating closure of
∼ will relate T and F .

170 S. KAHRS

Without the first equation the weakly separating closure would not change the relation:
E(S∞, S∞) would be in an equivalence class of its own; both the closures of [T]∼ and [F]∼
would contain that class, but not vice versa.

Definition 5.7. An equivalence relation ∼ on a topological space A is called separating iff
all its equivalence classes are closed.

Again, we can use this concept as a closure principle:

Proposition 5.8. Being separating is a closable property.

Proof. The equivalence classes of ∼ are closed iff ∼ is pointwise closed, hence this follows
from proposition 4.2.

Example 5.9. If we remove the first equation E(x, x) = T from example 5.6 then T and
F would not be related by the weakly separationg closure of ∼, but they would be by the
separating closure: since E(S∞, S∞) is in the closure of both [T]∼ and [F]∼, T , F and
E(S∞, S∞) would all be equivalent under the separating closure of ∼.

Thus “separating” is a much stronger property than “weakly separating”. If an iTRS
(over metric d∞) contains a collapsing rule C[x, . . . , x] → x then the sequence x0 = x,
xn+1 = C[xn, . . . , xn] converges to a limit C∞. The same is true if we start the sequence
with x0 = y instead. Hence, x ∼ y if ∼ is the separating closure of →R. For other metrics
dm collapsing rules may not cause that problem, as the sequence xn could be diverging
under dm.

In finitary term rewriting, the derivability of x =R y is used as the standard criterion for
inconsistency. For infinitary rewriting (over metric d∞) this becomes trivial for separating
equivalences: the separating closure of→R contains the pair (x, y) iff R contains a collapsing
rule. The reason: if it does contain a collapsing rule then the previous argument applies, if
it does not then each set {x} remains an equivalence class of its own, since x is a discrete
point in Ter∞(Σ): thus {x} is closed and no set not containing x has it in its closure. In
particular, even example 5.6 is consistent despite T ∼ F .

Separating equivalences characterise T1 spaces:

Proposition 5.10. A/∼ is T1 iff ∼ is a separating equivalence.

Proof. Folklore[5, p. 207].

In a T1 space, a sequence that is eventually constant can only converge to that constant,
because all singleton sets in a T1 space are closed. That also means that if all elements of a
converging sequence are equivalent to each other then that also applies to the limit. More
generally:

Theorem 5.11. Let ∼ be the separating equivalence closure of →R. Then ։p ⊆ ∼.

Proof. Immediate, because ∼ is pointwise closed, reflexive, transitive, and contains →R,
and ։p is by definition the smallest such relation.

Theorem 5.12. A pre-order ։x is a semi-decider for the separating closure of ։x iff (i)
↑x ⊆ ↓x and (ii) ↓x is pointwise closed.

Proof. Let =x be the separating closure of ։x. The “only if” part of the theorem is trivial.
For the “if” part, =x can be computed by repeatedly (and alternatingly) applying the

equivalence closure and pointwise closure, starting with ։x. The result can be shown by
induction on the number of closures needed to derive a particular equation t =x u.

FOUNDATIONS REVISITED 171

Suppose t =x u is derived from an equivalence closure with t = t1 =x t2 =x, . . . ,=x tn =
u, where each equation ti =x ti+1 has a shorter derivation. Then by induction hypothesis
ti ↓x ti+1, and by repeatedly applying condition (i) we have t ↓x u.

Alternatively t =x u is derived from the pointwise closure, i.e. u is in the closure of the
set of all ti with t =x ti and where these equations have shorter derivations. Then, for all
i, t ↓x ti by induction hypothesis and t ↓x u by condition (ii).

Although trivial in the proof, the “only if” part of the theorem shows that confluence
alone (condition (i)) is insufficient to make ։x a semi-decider. Confluence properties of
։x aside (for ։a and ։p this is entirely new territory), when is its joinability relation
pointwise closed? A sufficient condition is the following:

Theorem 5.13. If ։x is pointwise closed and usc then ↓x is pointwise closed.

Proof. Let t ։x ai ևx ui with i ∈ I for some index set I. Let u ∈ Cl({ui | i ∈ I}).
Let A = Cl({ai | i ∈ I}) then t ։x a for any a ∈ A since ։x is pointwise closed. The

set ։−1
x (A) clearly contains all the ui and as ։x is usc it must be a closed set, so it does

contain u too. Hence u ։x a′ for some a′ ∈ A and thus t ↓x u.

In the previous examples in this section the separating closure of →R was not just
pointwise closed but also closed. While this is often the case there are exceptions, which
means that we do not have that ։t is always included in the separating closure of →R; for
example, if the original equivalence just contained F (An(x)) ∼ F (Bn(x)) for all n then the
separating closure would not add F (A∞) ∼ F (B∞), so it would not be closed.

Definition 5.14. An equivalence relation ∼ on a topological space A is called strongly
separating iff its graph is closed.

Proposition 5.15. Being strongly separating is a closable property.

Proof. Trivial, as any intersection of closed sets is closed.

Equally trivially, the strongly separating closure of →R contains ։t, by the analogous
argument to theorem 5.11. Strongly separating equivalences (almost) characterise Hausdorff
spaces:

Proposition 5.16. If A/∼ is T2 then ∼ is strongly separating. If ∼ is strongly separating
and []∼ is an open map then A/∼ is T2. Or: if A is compact and ∼ is strongly separating
then A/∼ is T2.

Again, these are well-established results in topology. The first part of Proposition 5.16
can influence our choice for the class of algebraic models: if all our algebraic models are
Hausdorff (e.g. metric spaces) then their induced equational theory is automatically strongly
separating. Regarding the second part, open maps are functions that map open sets to open
sets. For infinitary rewriting, the map []∼ (where ∼ is the strongly separating equivalence
closure of →R) is typically not open though, e.g.:

Example 5.17. Take the iTRS with rule: F (x) → G(x, x). Take as open set an ǫ-ball
around F (S∞). Let ∼ be the strongly separating equivalence closure of →R. The union
of the ∼-equivalence classes of all terms in the ǫ-ball contains G(S∞, S∞); it is not open,
because it does not contain G(S∞, Sn(x)) for any finite n.

However, one can argue that strongly separating equivalence characterise T2 separation
for infinitary rewriting in most cases, because of the third part of Proposition 5.16 and the
following:

172 S. KAHRS

Theorem 5.18. If the signature Σ is finite the set of ground terms of Ter∞(Σ) is compact.

Proof. Let f : ω → Ter∞(Σ) be a sequence of infinitary ground terms. Because Σ is finite at
least one function symbol F occurs infinitely often as root symbol in f . Within the infinite
subsequence of f that always has F as root, infinitely many times at least one function
symbol G will occur infinitely many times in the first argument position. Iterating this
argument leads to an accumulation point of f which is a ground term.

This argument fails for any term metric m such that Term(Σ) is not homeomorphic to
Ter∞(Σ), because sequences of finite ground terms that converge under d∞ but not under
dm have no accumulation point in Term(Σ).

Without the finiteness of Σ the pigeon-hole principle in the proof fails. The restric-
tion to ground terms is necessary as there are infinitely many variables: take the associa-
tive and commutative theory of a binary function symbol G, then the equivalence class of
G(x1, G(x2, . . .)) is not compact.

Theorem 5.19. A pre-order ։x is a semi-decider for the strongly separating closure of
։x iff (i) ↑x ⊆ ↓x and (ii) ↓x is closed.

Proof. Analogous to Theorem 5.12.

Again, this raises the issue under which conditions ↓x is closed.

Theorem 5.20. If ։x is closed and usc then ↓x is closed.

Proof. Let ai ։x ci ևx bi for all i ∈ ω and let a and b limits of the sequences an and bn,
respectively. We need to show a ↓x b.

Let C = Cl({ci | i ∈ ω}) and A = {a′ | a ։x a′}. A is closed because ։x is a closed
relation, and therefore C ′ = C ∩A is closed too. Because ։x is usc the set ։−1

x (C) must
contain a and thus C ′ is non-empty. If C ′ contains ci for infinitely many i then ։−1

x (C ′)
also contains the corresponding bi and (by the usc property) their limit b, hence a ↓x b.
Otherwise, we can w.l.o.g. assume that all elements c ∈ C ′ arise as limits of subsequences
of cn and thus b ։x c for any such c by closedness of ։x, and thus again a ↓x b.

6. Models

The concept of a model allows to reason semantically about term rewriting. The lit-
erature has focussed on algebraic models which are more difficult to get right — several
notions of model in the literature are indeed flawed, see below. The reason they are tricky
is that in order for semantic reasoning through an algebraic model A to be sound there
needs to be a unique and continuous interpretation of Ter∞(Σ) into A, and for that it does
not suffice for A to be a Σ-algebra, since this does not account for infinite terms.

In [2] the issue of interpreting infinite terms was side-stepped: only interpretations of
finite terms were provided a priori (thus rules were not allowed infinite terms in their right-
hand sides). In fact, in the special case of equational models (rather than partially ordered
ones), the construction in [2] specialises exactly to ordinary Σ-algebras satisfying a set of
equations.

A class of algebraic models induces an equivalence relation on Ter∞(Σ), i.e. t and u are
equivalent iff they are the same in any model of that class. When looking at the equivalence
derived from all models satisfying a set of equations we get the congruence closure of this
set — when looking at models of Ter(Σ). This is different for models of Ter∞(Σ), because

FOUNDATIONS REVISITED 173

the extra structure required in this class to guarantee for (unique) interpretations of infinite
terms makes more equations true.

In [10] Zantema interpreted iTRSs in weakly monotone Σ-algebras with some extra
structure. A special case are ordinary Σ-algebras since the ordering can be chosen to be
equality. The extra structure required on a model A comprised there of: (i) a metric dA;
(ii) continuity of fA for every function symbol f , w.r.t. the topology induced by the metric;
(iii) the interpretation of the sequences trunc(t, n) in A converges for every infinite ground
term t. Here, trunc(t, n) replaces all subterms of t at depth n with the fixed constant c.

As a notion of model this is flawed (see [4]) because the interpretation function from
Ter∞(Σ) to A derived from that is in general not continuous. Indeed, even the fix provided
in [4] is insufficient because it is only expressed for ground terms, and any infinite term has
non-ground terms in any neighbourhood; if a ∈ A is arbitrary then the sequence t0 = a,
tn+1 = fA(tn) could converge to a value different from the interpretation of f∞, making the
interpretation function non-continuous at f∞.

This can be fixed by relating the notions of distance in A and Ter∞(Σ): we can require
the following condition for the distance function dA on A:

dA(fA(a1, . . . , an), fA(b1, . . . , bn)) ≤
1

2
· max
1≤i≤n

dA(ai, bi)

This seemingly arbitrary condition derives as a special case from a more general condition
we can set for metric models of other continuous term metrics [6].

Definition 6.1. Given a signature Σ = (F ,#) and continuous term metric m, a metric
model is a Σ-algebra A, equipped with a metric dA : A × A → [0, 1] such that (A, dA) is a
complete metric space and

dA(fA(a1, . . . , an), fA(b1, . . . , bn)) ≤ fm(dA(a1, b1), . . . , dA(an, bn))

for each f ∈ F , n = #(f), ai, bi ∈ A.

Here, fm is the ultra-metric map associated with function symbol f in term metric m
[6]. The condition on the order ensures that each fA is continuous, but more importantly
it leads to the following result:

Lemma 6.2. Let A be a metric model (for Σ and m). Then the (unique) Σ-algebra homo-
morphism [[]]A : Ter(Σ) → A is non-expansive.

Proof. We need to show dA([[t]]A, [[u]]A) ≤ dm(t, u) for all finite terms t and u (note that
Ter(Σ) is the set of finite terms). The argument goes by induction on the size of t. If
t is a constant then either dm(t, u) = 0 which implies t = u and thus [[t]]A = [[u]]A and
dA([[t]]A, [[u]]A) = 0; or dm(t, u) = 1 which is an upper bound for dA.

Otherwise, t = F (t1, . . . , tn). Again, if dm(t, u) = 1 the condition holds because 1 is
an upper bound for dA. If dm(t, u) 6= 1 then u must be of the form u = F (u1, . . . , un)
and dm(t, u) = Fm(dm(t1, u1), . . . , dm(tn, un)). Using the induction hypothesis on the ti,
monotonicity of Fm (all ultra-metric maps are monotonic) and the metric model order

174 S. KAHRS

property we get:

dm(t, u) =dm(F (t1, . . . , tn), F (u1, . . . , un))

=Fm(dm(t1, u1), . . . , dm(tn, un))

≥Fm(dA([[t1]]A, [[u1]]A), . . . , dA([[tn]]A, [[un]]A))

≥dA(FA([[t1]]A, . . . , [[tn]]A), FA([[u1]]A, . . . , [[un]]A))

=dA([[F (t1, . . . , tn)]]A, [[F (u1, . . . , un)]]A)

=dA([[t]]A, [[u]]A)

Lemma 6.2 implies that [[]]A can be uniquely lifted to the respective metric completions
(maintaining continuity), because non-expansive maps are uniformly continuous. Since A is
already complete this lifts [[]]A to type Term(Σ) → A. Therefore we get an interpretation
of infinite terms “for free”.

Definition 6.3. The metric theory of a set of Term(Σ)-equations E is the set of all pairs
(t, u) ∈ Term(Σ)×Term(Σ) such that the equation t = u holds in all metric models (w.r.t.
signature Σ and term metric m) that satisfy the equations in E.

Theorem 6.4. The metric theory of E w.r.t. Σ and m is strongly separating.

Proof. We need to show that the theory is closed under limits of converging sequences.
A sequence of pairs is converging in Term(Σ) × Term(Σ) iff the sequences of its first and
second projections to Term(Σ) are. Suppose p is a sequence of pairs in the metric theory
and that it is converging. Let the sequences ln and rn be their first and second projections,
with limits l and r, respectively. Consider any metric model A of E. Using lemma 6.2 it is
clear that the interpretation preserves convergence, hence [[ln]]A and [[rn]]A converge to [[l]]A
and [[r]]A. Since each pair pi = (li, ri) is in the metric theory we have [[li]]A = [[ri]]A for all
i. Therefore these sequences are identical in A and thus [[l]]A = [[r]]A. As this holds for any
metric model A the pair (l, r) must be in the metric theory too.

In general, we cannot always construct an initial model for E (from its theory), but a
sufficient condition is that Term(Σ) (restricted to ground terms) is compact.

Theorem 6.5. Any set of Ter∞(Σ)-equations E has an initial model, if Σ is finite.

Proof. The proof goes by constructing the model I; most of the argument works any metric
m and signature Σ: we can quotient the ground terms of Term(Σ) by the metric theory
of E and set a distance function dI as the pointwise supremum of all distance functions of
models satisfying E.

Since E is included in its metric theory I clearly satisfies E.
Checking the triangle inequality: ∀A.dA(t, u) ≤ dA(s, t)+dA(s, u) implies ∀A.dA(t, u) ≤

dI(s, t) + dI(s, u) and thus also dI(t, u) = supA(dA(t, u)) ≤ dI(s, t) + dI(s, u).
Checking the zero-axiom: dI(t, u) = 0 if dA(t, u) = 0 for all A, i.e. if t = u in all models.

Hence t = u in I too. If t = u in I then t = u in all A, hence dA(t, u) = 0 in all A and so
dI(t, u) = 0.

FOUNDATIONS REVISITED 175

Checking the metric model inequation:

dI(fI([[a1]]I , . . . , [[an]]I), fI([[b1]]I , . . . , [[bn]]I))

= dI([[f(a1, . . . , an)]]I , [[f(b1, . . . , bn)]]I)

= sup
A

(dA([[f(a1, . . . , an)]]A, [[f(b1, . . . , bn)]]A))

= sup
A

(dA(fA([[a1]]A, . . . , [[an]]A), fA([[b1]]A, . . . , [[bn]]A)))

≤ sup
A

fm(dA([[a1]]A, [[b1]]A), . . . , dA([[an]]A, [[bn]]A))

≤ fm(sup
A

(dA([[a1]]A, [[b1]]A), . . . , sup
A

(dA([[an]]A, [[bn]]A))))

= fm(dI([[a1]]I , [[b1]]I), . . . , dI([[an]]I , [[bn]]I)

We still need to show that the metric space (I, dI) is complete, and for this we need
theorem 5.18, and thus specialise the metric. The semantic interpretation [[]]I is continuous,
and as its domain is compact and codomain T2, it is also a closed map. Hence the limit of
any Cauchy-sequence in (I, dI) is in the image of that interpretation.

7. Conclusion and Remark

We had a look at large number of alternative notions for transfinite reduction relations
and transfinite equivalences. Of particular interest are the relations ։p and ։t, as they are
the ones most tightly coupled with transfinite equivalences, i.e. the separating and strongly
separating equivalence closures of rewrite steps.

Notice that several of the examples show “undesirable” consequences in equational
reasoning. This is due to the equational constraints implicit in Ter∞(Σ), e.g. that all
functions F have unique fixpoints F∞. These problems can be addressed by a different
choice of term metric that disallows certain infinite terms, because F can have multiple (or
no) fixpoints in the absence of F∞.

References

[1] Hendrik P. Barendregt. The Lambda-Calculus, its Syntax and Semantics. North-Holland, 1984.

[2] Nachum Dershowitz and Stéphane Kaplan. Rewrite, Rewrite, Rewrite, Rewrite, Rewrite, ... In Principles

of Programming Languages, pages 250–259. ACM, 1989.

[3] Nachum Dershowitz, Stéphane Kaplan, and David Plaisted. Rewrite, Rewrite, Rewrite, ... Theoretical

Computer Science, 83(1):71–96, 1991.

[4] Jörg Endrullis, Clemens Grabmayer, Dimitri Hendriks, Jan Willem Klop, and Roel Vrijer. Proving

infinitary normalization. pages 64–82, 2009.

[5] Theordore W. Gamelin and Robert Everist Greene. Introduction to Topology. Dover, 1999.

[6] Stefan Kahrs. Infinitary rewriting: Meta-theory and convergence. Acta Informatica, 44(2):91–121, May

2007.

[7] Stefan Kahrs. Modularity of convergence in infinitary rewriting. In Ralf Treinen, editor, Rewriting

Techniques and Applications, volume 5595 of LNCS, pages 179–193. Springer, 2009.

[8] Richard Kennaway, Jan Willem Klop, Ronan Sleep, and Fer-Jan de Vries. Transfinite reductions in

orthogonal term rewriting systems. Information and Computation, 119(1):18–38, 1995.

[9] Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebra. In J. Leech, editor,

Computational Problems in Abstract Algebra, pages 263–297. Pergamon, 1970.

[10] Hans Zantema. Normalisation of infinite terms. In RTA 2008, volume 5117 of LNCS, pages 441–455,

2008.

176 S. KAHRS

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 177-192
http://rewriting.loria.fr/rta/

COMPUTING RELATIVE NORMAL FORMS IN REGULAR TREE LANGUAGES

ALEXANDER KOLLER1 AND STEFAN THATER1

1 Saarland University
Saarbrücken, Germany
E-mail address: koller@mmci.uni-saatland.de
E-mail address: stth@coli.uni-saarland.de

ABSTRACT. We solve the problem of computing, out of a regular languageL of trees and a rewriting
systemR, a regular tree automaton describing the setL′ ⊆ L of trees which cannot beR-rewritten into
a tree inL. We call the elements ofL′ the relative normal forms ofL. We apply our algorithm to the
problem of computing weakest readings of sentences in computational linguistics, by approximating
logical entailment with a rewriting system, and give the first efficient and practically useful algorithm
for this problem. This problem has been open for 25 years in computational linguistics.

1. Introduction

One key task in computational linguistics is to represent the meaning of a natural language
sentence using some formal representation(reading), and to model inference on the level of natural
language [1] as inference on the corresponding meaning representations. The classical approach [2]
uses logical languages, such as first or higher order predicate logic, to represent sentence meanings.
But when the sentence isambiguous, it is often infeasible to explicitly enumerate all the different
readings: The number of readings is worst-case exponential in the length of the sentence, and it is
not uncommon for a sentence to have millions of readings if they contain a number of ambiguous
constituents.

The standard technique to address this issue isunderspecification[3, 4, 5, 6]: all readings of an
ambiguous sentence are represented by a single, compactunderspecified representation (USR), such
as a dominance graph [7]. Individual readings can be enumerated from an USR if necessary, but this
step is postponed for as long as possible. This offers a partial solution to the problem of managing
ambiguity. However, it is much less clear how todisambiguatea sentence, i.e. to determine the
reading that the speaker actually intended in the given context.

In the absence of convincing disambiguation techniques, it has been proposed to work with the
weakest readingsof a sentence in practical applications [8]: If the readings are a set of formulas (say,
of predicate logic), the weakest readings are those readings that are minimal with respect to logical
entailment. From an application perspective, the weakest readings capture the “safe” information
that is common to all possible readings; they are also linguistically interesting [9]. Because there
are so many readings, it is infeasible to compute all readings and test all pairs for entailment using
a theorem prover. However, although the problem has been open for over 25 years [9, 10], the best

Key words and phrases:normal forms,tree automata, incomplete inference, computational linguistics.

c© A. Koller and S. Thater
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.177

178 A. KOLLER AND S. THATER

known algorithm [11] is still quadratic in the number of readings and therefore too slow for practical
use.

In this paper, we solve this problem for a sound but incomplete approximation of entailment
by means of a rewrite system. Technically, we consider the problem of computing, from a regular
tree languageL of trees and a rewrite systemR, a regular tree automaton representing the subset
L′ ⊆ L consisting of all trees that cannot beR-rewritten into a tree inL. We call the elements ofL′

therelative normal formsof L with respect toR. To do this, we first represent the one-step rewriting
relation ofR in terms of a linearcontext tree transducer, which extends ordinary tree transducers
by rewriting an entire context in each derivation step instead of a single symbol. We then compute
the pre-image ofL under this transducer, and intersectL with the complement of the pre-image. We
show that an automaton accepting the pre-image can be computed in linear time ifL is represented
by a deterministic automaton. For a certain special case, which holds in our application, we show
that we can even obtain adeterministicautomaton for the pre-image in linear time. Altogether,
we obtain an algorithm for computing weakest readings that is quadratic in the size of the tree
automaton describingL, instead of quadratic in the size ofL.

Despite the incompleteness, the approximation of entailment as rewriting is sufficient in our
application: For one specific rewrite system, our algorithm computes a mean of 4.5 weakest readings
per sentence in a text corpus, down from about three million readings that the sentences have on
average. It takes 20 ms per sentence on average to do this. Thus, we see our algorithm as a practical
solution to the problem of computing weakest readings in computational linguistics. On the other
hand, our algorithm handles arbitrary linear rewriting systems and is therefore much more generally
applicable. For instance, our earlier work on redundancy elimination [12], which was based on tree
automata intersection as well, falls out as a special case; and we anticipate that further approximative
inference techniques for natural language will be developed based on this paper in the future.

Plan of the paper.In Sect. 2, we define the problem and review dominance graphs and tree
automata. We then define context tree transducers, use them to compute the pre-image ofL under
R, and analyze the complexity of the algorithm in Sect. 3. We go through an example from the
application in Sect. 4, and conclude in Sect. 5.

2. Definitions

We start by reviewing some dominance graph theory and defining the problem we want to
solve.

2.1. Dominance graphs

Semantic ambiguity, which is present when a natural-language sentence can have more than one
possible meaning, is a serious problem in natural language processing with large-scale grammars.
For instance, the mean number of possible meaning representations per sentence in the Rondane
text corpus [13] is about 5· 109. It is obviously impractical to enumerate all of these meaning
representations. Instead, computational linguists typically useunderspecificationapproaches, in
which a single compactdescriptionof the possible meanings is computed instead of all possible
semantic readings.

One formal approach to underspecification, which we use in this paper, is that of usingdom-
inance graphs[7]. Dominance graphs assume that the individual semantic representations of the
sentence – say, formulas of predicate logic – are represented as trees, and then describe sets of trees

RELATIVE NORMAL FORMS 179

Figure 1: A dominance graph that represents the six readings of the sentenceevery student did not
read a book(a) and its six configurations (b – g).

by specifying parent and ancestor relationships between nodes. They are equivalent to leaf-labeled
normal dominance constraints [4].

We assume finite ranked signaturesΣ,Σ′, . . . of tree constructorsf with aritiesar(f). We define
a (finite constructor) tree toverΣ to be a functiont : D → Σ, whereD is a tree domain (i.e., a finite
subset ofN∗ that is closed under prefix and left sibling), such that every nodeu ∈ D hasar(t(u))
many children. Alternatively, we can see each tree as a ground term overΣ. We writeTΣ for the set
of trees overΣ.

Definition 2.1. A (compact) labeled dominance graphover a ranked signatureΣ is a quadruple
G = (V,E⊎D,L,<), where(V,E⊎D) is a directed graph,L : V Σ is a partial(node) labeling
functionand<⊆V ×V a strict linear order onV, such that

(1) the graph(V,E) defines a collection of node disjoint trees of height 0 or 1 (we call the edges
in E tree edges, the treesfragments, the roots of the fragmentsroots and all other nodes
holes);

(2) if (v,v′) ∈ D, thenv is a hole andv′ is a root inG (we call the edges inD dominance edges);
(3) the labeling functionL assigns a nodev a label with arityn iff v is a root withn outgoing

tree edges (we writef |n to indicate thatf has arityn);
(4) every hole has at least one outgoing dominance edge.

We writeWG for the roots andLG for the labeling function ofG, and we will say thatv is a
hole of uif (u,v)∈ E. We will typically just saydominance graphfor “compact labeled dominance
graph”.

Dominance graphs can be seen as descriptions of sets of trees, which can be obtained from the
graph by “plugging” roots into holes so that dominance edges are realized as dominance. We call
these trees theconfigurationsof the graph. An example graph (for the sentence “every student did
not read a book”) and its six configurations are shown in Fig. 1, where we draw tree edges as solid
lines and dominance edges as dotted lines, directed from top to bottom. The signature includes
the symbols¬|1, ∀x|2, and studx|0; we read the trees over this signature as simplified formulas
of predicate logic, taking∀x(P,Q) to abbreviate∀x(P → Q) and∃x(P,Q) for ∃x(P∧Q). Atomic
formulas such asstud(x) are abbreviated by single function symbols such asstudx of arity 0. Now
the six configurations, (b) – (g), are the six trees whose nodes are the (labeled) roots of the graph,
such that all dominance edges in the graph are realized as reachability in the tree.

Formally, we define apluggingof a dominance graphG = (V,E⊎D,L,<) to be an injective
partial functionp : V V mapping each hole to a root. We can apply a plugging to a dominance
graph to obtain a directed graphp(G) = (V ′,E′) such thatV ′ =WG andE′ = {(v, p(v′)) | (v,v′)∈E}.
We call p(G) anunlabeled configurationof G iff (i) p(G) is a tree, and (ii) if(v,v′) ∈ D, thenp(v)
dominatesv′ in p(G), i.e., there is a directed path fromp(v) to v′ in the treep(G). By takingWG as
a ranked signature (withar(u) = ar(LG(u))) and ordering the children of each node according to<,
we can readp(G)as a finite constructor treet ∈ TWG. An unlabeled configurationt can be mapped to

180 A. KOLLER AND S. THATER

a finite constructor treeLG(t) ∈ TΣ – called alabeled configuration– by labeling each nodeu∈V ′

with LG(u). The configurations in Fig. 1 are all labeled. We say that a graph isconfigurableif it has
a (labelled or unlabelled) configuration.

Throughout this paper, we restrict ourselves tohypernormally connecteddominance graphs.
We say thatG is hypernormally connected (hnc)iff each pair of nodes is connected by a simplehy-
pernormal path. A hypernormal path [7] in a dominance graphG is a path in the undirected version
of G that does not use two dominance edges that are incident to the same hole. Hnc graphs have a
number of desirable properties. For instance, the problem of deciding whether a dominance graph
has a configuration is NP-complete in general, but polynomial if the graph is hnc. Furthermore, hnc
dominance graphs can be translated into equivalent tree automata (see below). Note that virtually
all dominance graphs that are used in linguistics applications are hnc [14].

2.2. Weakest readings

In order to perform inferences on the semantic representations for a sentence, it is desirable
to identify the “correct” semantic representation from among all the (many) possibilities. Unfortu-
nately, there are no satisfying models that would allow this. One alternative that has been proposed
as a workaround is to compute theweakest readings– that is, the least informative semantic repre-
sentations [8]. This idea exploits the fact that a set of predicate logic formulas is partially ordered
with respect to logical entailment; the weakest readings are then the (configurations representing
the) minimal elements of this order. In Fig. 1, (f) entails (g), (b) entails (c), and so on; (d) and
(g) are incomparable, and indeed, (d) and (g) are the weakest readings of the dominance graph in
Fig. 1a. The problem that motivates this paper is how to efficiently compute the weakest readings
of a dominance graph.

A brute-force approach to this problem would be to compute all labeled configurations of a
dominance graph, and then to run a theorem prover for each pair of configurations to establish the
entailment order. Although this is clearly impractically slow when real-world sentences have an
average of several billions of readings, the best known algorithm [11] is essentially just an optimiza-
tion of this approach, and in particular is quadratic in the number of configurations.

Here we take a different approach. We will work with a sound but incomplete approximation of
entailment using a rewriting system. Notice that the entailment between (f) and (g) can be explained
by the fact that (f) can be rewritten into (g) by applying the rewrite rule

∃y(P,∀x(Q,R))→∀x(Q,∃y(P,R))1 (2.1)

if x does not occur inP. In positive contexts, the right-hand side of this rule is always entailed by
the left-hand side; in this sense, the rule is sound. Now (g) can be recognized as a weakest reading
because it cannot be rewritten into another tree which is also a configuration of the dominance
graph.

In order to obtain a sound model of first-order entailment, we must make the rewriting system
sensitive to the logical polarity of the subformula at which we apply a rewrite rule: If we were to
apply (2.1) to the configuration (c), we would rewrite it into (b), which is logicallystrongerthan (c).
That is, we must restrict (2.1) such that it can only be used for subformulas that occur in a logically
positive context.

1∀x,∃y ∈ Σ are uninterpreted binary constructors. To ensure finiteness of the rewrite systems we use, we assume there
is only a finite set of variablesx,y, . . . in the language of semantic representations.P,Q,R are ordinary variables of the
rewrite system.

RELATIVE NORMAL FORMS 181

More generally, we assume a finite alphabetAnn of annotations; we want to assign a single
annotation to every node of a tree inTΣ. We assign astarting annotation a0 ∈ Ann to the root of
each tree, and use anannotator functionann : Ann×Σ×N→ Ann to compute the annotations for
the other nodes: If some nodeu is annotated witha and has labelf ∈ Σ, then we annotate thei-th
child of u with ann(a, f , i) for all 1≤ i ≤ ar(f). We then define anannotated rewriting system Ras
a finite set of pairsa : r, wherea∈ Ann andr is a rewrite rule overΣ. A treet ∈ Σ can be rewritten
into a treet ′, t →R t ′, if there is a rulea : r and a nodeu in t with annotationa such thatt rewrites
into t ′ by applyingr at nodeu. We write→∗

R for the reflexive, transitive closure of→R.
Using this terminology, we can capture logical polarities by usingAnn= {+,−}, a0 =+, and

ann such thatann(+,∀x,1) =−, ann(+,∀x,2) = +, and so on. We can then rephrase (2.1) more
precisely as follows:

+ : ∃y(P,∀x(Q,R))→∀x(Q,∃y(P,R)) (2.2)

This rule will still rewrite (f) into (g) because it is applied at the root (with annotation+), but it
will not rewrite (c) into (b), because the redex has annotation−. We will extend (2.2) to a full rewrite
system, which correctly characterizes (d) and (g) as the only two weakest readings, in Section 4.

Now observe that if we have an annotated rewriting system in which every rule makes the
formula logically weaker, then all weakest readings will have the property that it is not possible to
rewrite them into some other configuration. More generally, we will say that all weakest readings
are inrelative normal formwith respect to the set of all configurations.

Definition 2.2. Let L be a set of trees over some signatureΣ, and letR be an (annotated) rewrite
system overΣ. We say that a treet ∈ L is in relative normal formwith respect toR iff there is no
treet ′ ∈ L such thatt →R t ′. We write RNFR(L) for the relative normal forms inL with respect toR.

In the example, (d) and (g) are in relative normal form because they are in normal form, i.e. they
cannot be rewritten at all. However, in general a tree may be in relative normal form without being
in normal form, if all possible results of rewrites are not inL. For example, consider the setL =
{ f (f (g(h(a)))), f (g(f (h(a)))), f (f (h(g(a))))} and a rewrite systemR that consists of the single
rule f (g(x))→ g(f (x)). The treef (f (g(h(a)))) rewrites tof (g(f (h(a))))∈ L, and is therefore not
in relative normal form. However, while we could further rewrite this tree intog(f (f (h(a)))), the
result is no longer inL, so f (g(f (h(a)))) is in relative normal form. The treef (f (h(g(a)))) does
not contain a redex in the first place, and is therefore also in relative normal form.

2.3. Dominance graphs as tree automata

The problem that we solve in this paper is to find an efficient algorithm for computing the rel-
ative normal forms in regular tree languages with respect to an annotated rewriting system. This
solves the problem of computing the weakest readings of a dominance graph because the configu-
ration sets of dominance graphs are regular tree languages, and it is known how to compute tree
automata for accepting them. We will now recall some definitions regarding tree automata and
transducers, and then sketch the translation of dominance graphs as tree automata.

Let Σ be a finite ranked signature as above, and letX be a finite set of (variable) symbols. We
write TΣ(X) for TΣ∪{a|0 | a∈X }. If Xm is a set ofm variables, we write Con(m)(Σ) for thecontexts
with m holes, i.e. those trees inTΣ(Xm) in which each element ofXm occurs exactly once. If
C ∈ Con(m)(Σ), thenC[t1, . . . , tm] =C[t1/x1, . . . , tm/xm], wherex1, . . . ,xm are the variables from left
to right.

Definition 2.3. A top-down tree transducerfrom Σ to ∆ is a 5-tupleM = (Q,Σ,∆,q0,δ), whereQ is
a finite set of states,Σ and∆ are ranked signatures, andq0 ∈Q is the initial state. The rules inδ are of

182 A. KOLLER AND S. THATER

Figure 2: A tree automaton accepting the labeled configurations of the dominance graph in
Fig. 1(a).

the formq(f (x1, . . . ,xn))→C[q1(xi1), . . . ,qm(xim)], where f ∈ Σ, q,q1, . . . ,qm ∈ Q, C ∈ Con(m)(∆),
andxik ∈ {x1, . . . ,xn} for all k.

If t is a tree inTΣ∪∆∪Q, then we say thatM derivest ′ in one step fromt, t →M t ′, if there are
a contextC′, treest1, . . . , tn and a transition ruleq(f (x1, . . . ,xn))→C[q1(xi1), . . . ,qm(xim)] such that
t = C′[q(f (t1, . . . , tn))] andt ′ = C′[C[q1(ti1), . . . ,qm(tim)]]. Thederivation relation→∗ of M is the
reflexive, transitive closure of→. Thetranslation relationτM of M is

τM = {(t, t ′) | t ∈ TΣ andt ′ ∈ T∆ andq0(t)→
∗ t ′}.

A tree transducer is calledlinear if no variable occurs twice, andnon-deletingif every variable
occurs at least once on the right-hand side of each rule. It is calleddeterministicif for every q∈ Q
and f ∈ Σ, there is at most one rule whose left-hand side isq(f (x1, . . . ,xn)).

A top-down tree automatonoverΣ is a top-down transducerA= (Q,Σ,Σ,q0,δ) such that every
rule in δ is of the formq(f (x1, . . . ,xn))→ f (q1(x1), . . . ,qn(xn)). We writeL (A) = {t | (t, t) ∈ τA}
for the languageaccepted byA.

A bottom-up tree automatonis a 4-tupleA= (Q,Σ,QF ,δ) in which QF ⊆ Q is the set offinal
statesand the transition rules inδ are of the formf (q1(x1), . . . ,qn(xn))→ q(f (x1, . . . ,xn)). Deriva-
tions and languages are defined in analogy to the top-down case, see [15] for details. A bottom-up
automaton is called deterministic if for everyf ∈ Σ andq1, . . . ,qn ∈ Q there is at most one rule
whose left-hand side isf (q1(x1), . . . ,qn(xn)).

For every top-down automatonA, there is a bottom-up automatonA′ with L (A) =L (A′). For
every bottom-up automatonA, there is a deterministic bottom-up automatonA′ with L (A) =L (A′).

Now any hnc dominance graphG can be translated into a top-down tree automatonAG that
accepts the language of all labeled configurations, and into a deterministic top-down tree automaton
Au

G that accepts the language of all unlabeled configurations ofG [12]. The states of these automata
correspond to hnc subgraphs ofG, and the transition rules encode decompositions of this subgraph
into smaller subgraphs by removing afreeroot and its holes. A rootu in a configurable graphG is
called free iffG has a configuration whose root isu; it can be tested in linear time whether a root in
a configurable hnc graph is free [16].2

The tree automaton we obtain for the labeled configurations of the graph in Fig. 1 (a) is shown
in Fig. 2. The first rule states that we can choose¬ as the root of a configuration, and obtain
the subgraph{2,3,4,5,6} by removing it. We can then choose∀x as the root in this subgraph,
splitting it into two weakly connected components,{4} and{3,5,6}, and so on. This automaton

2The algorithm in [16] is defined in terms ofsolved forms. Our definition is equivalent for hnc dominance graphs.

RELATIVE NORMAL FORMS 183

accepts exactly the six labeled configurations of the original dominance graph. In practice, the tree
automata computed for dominance graphs remain small; for instance, the graphs obtained for the
sentences in the Rondane treebank [13] contain on average 14 roots and have 5·109 configurations,
whereas the automata have 320 rules and can be computed in 20 ms on average [12].

3. Computing relative normal forms

We will now show how relative normal forms of regular tree languages with respect to a linear
rewriting system can be computed. We will first sketch the basic idea and show an (inefficient)
solution based on pre-images of regular tree languages under regular tree translations. We will then
introducecontext tree transducers, which allow us to use linear transducers and obtain an efficient
algorithm.

Throughout, we limit ourselves to linear rewriting systems, which are sufficient for our appli-
cation.

3.1. Relative normal forms as non-pre-images

As we defined above, a treet in some setL of trees is in relative normal form iff there is no other
treet ′ in L into whicht can be rewritten in one step. This can have two possible reasons: Eithert is
in normal form, i.e. there is no rewrite step that can be applied to it at all; ort can be rewritten, but
no possible result of these rewrite steps is inL.

The key idea in this paper is to model the one-step rewriting relation of a rewriting systemR
with a top-down tree transducerMR, such thatt →R t ′ iff (t, t ′)∈ τR. Given such a transducer, we can
then determine the relative normal forms as those trees that cannot be rewritten with the transducer.

Lemma 3.1. Let L be a set of trees, let R be a rewriting system, and let M be a transducer such that
t →R t ′ iff (t, t ′) ∈ τM. Then

RNFR(L) = L∩ τ−1
M (L).

For the case whereL is a regular language of trees, the intersection can be computed efficiently
using a construction on the tree automata. Complements of regular tree languages can also be
computed on the automata themselves, although this requires computing the determinization of the
tree automataton if it is nondeterministic, which may take exponential time. The question is how
we can encode one-step rewriting in a tree transducer, and how we can compute the pre-image ofL
underτM.

For the first question, we can directly build a top-down transducer to encode the one-step rewrit-
ing relation. The transducer has two states,q andq̄. The stateq indicates that the transducer will
apply a rewrite rule at some node below the current node; it is the start state. The state ¯q indicates
that the transducer will not apply any rewrite rule at the nodes below the current node; we require
that all leaves of the tree are read in this state.

The transducer has two types of transitions. First, when the transducer is in state ¯q, it must copy
the current symbol into the output tree; it may also choose to do this in stateq:

q̄(f (x1, . . . ,xn)) → f (q̄(x1), . . . , q̄(xn)) for all f ∈ Σ
q(f (x1, . . . ,xn)) → f (q̄(x1), . . . ,q(xi), . . . , q̄(xn)) for some 1≤ i ≤ n and all f ∈ Σ (3.1)

184 A. KOLLER AND S. THATER

In addition, in stateq, M may choose to apply a rewrite rule and switch to state ¯q. Let’s say we
have a linear rewrite rulef (g(x1,x2),x3)→ g(x1, f (x2,x3)). We can represent an application of this
rule with the following transition rules:

q(f (x,y)) → g(q̄g,1(x), f (q̄g,2(x), q̄(y)))
q̄g,1(g(x,y)) → q̄(x)
q̄g,2(g(x,y)) → q̄(y),

(3.2)

where crucially there are no other transitions for ¯qg,1 and q̄g,2 than these, i.e. by using these
states we simultaneously enforce the left-hand subtree below thef node to have root labelg, and
copy its two subtrees into thex1 andx2 positions of the rewriting rule.

In other words, it is possible to capture the one-step rewriting relation as the translation relation
of a top-down tree transducer. But now consider how to computeτ−1

M (L) for a regular tree language
L. One possible idea is to consider a top-down tree transducerML such thatτML = {(t, t) | t ∈ L}; it
is clear that such a transducer exists. We can then concatenateM andML; τ−1

M (L) is the domain of
M ◦ML.

For deterministic tree transducers, it is known that the domain of a tree transducer is a regular
tree language, and how to compute it ([17], Theorem 4.1; [18], p. 693). However, these algorithms
are only applicable todeterministictransducers, and the transducers defined above are not determin-
istic (in stateq, they may choose to either copy or rewrite). Furthermore, even if the transducers
could be made deterministic, they compute regular tree automata of exponential size if the trans-
ducer is not linear. Indeed, the transducers shown above are not linear, because the first rule for the
rewriting case duplicatesx. This makes the use of these algorithms unattractive in our case.

3.2. Context tree transducers

However, although the above transducers can have non-linear rules, the extent of the non-
linearity is limited: Every time a non-linear rule is applied, some other rules must be applied which
will delete most of the copied trees, and retain only disjoint parts of them. This means that the
machinery which the domain automaton construction uses to accommodate non-linear transducers
is not necessary in our setting.

Consider the transition rules in (3.2). The only reason why we need to copy theg subtree twice
is that we were not able to specify that the transducer should read the contextf (g(x1,x2),x3) in the
input tree directly. If we had a way to directly use this context on the left-hand side, each ofx1,
x2, andx3 could appear only once on the right-hand side, and thus we could get away with a linear
transducer. We will now extend the definition of top-down transducers in such a way that they can
accept contexts on the left-hand side.

Definition 3.2. A (top-down) context tree transducerfrom Σ to ∆ is a 5-tupleM = (Q,Σ,∆,q0,δ).
δ is a finite set of transition rules of the formq(C[x1, . . . ,xn]) → D[q1(xi1), . . . ,qm(xim)], where
C∈ Con(n)(Σ), D ∈ Con(m)(∆), q,q1, . . . ,qm ∈ Q, andxik ∈ {x1, . . . ,xn} for all k.

If t is a tree inTΣ∪∆∪Q, then we say thatM derivest ′ in one step fromt, t → t ′, if there is
a contextC′, treest1, . . . , tn, and a transition ruleq(C[x1, . . . ,xn]) →M D[q1(xi1), . . . ,qm(xim)] such
that t = C′[q(C[t1, . . . , tn])] and t ′ = C′[D[q1(ti1), . . . ,qm(tim)]]. The derivation relation→∗

M is the
reflexive, transitive closure of→M. Thetranslation relationτM of M is

τM = {(t, t ′) | t ∈ TΣ andt ′ ∈ T∆ andq0(t)→
∗ t ′}.

A context tree transducer is calledlinear if no variable occurs twice, andnon-deletingif every
variable occurs at least once on the right-hand side of each rule.

RELATIVE NORMAL FORMS 185

A context tree automatonis a context tree transducer withΣ= ∆ and transition rules of the form
q(C[x1, . . . ,xn])→C[q1(x1), . . . ,qn(xn)]. We take thelanguageL (A) of a context tree automatonA
to be the domain ofτA.

Every top-down transducer is trivially also a top-down context transducer. Conversely, not
every translation relation of a context transducer can be represented as the translation relation of an
ordinary top-down transducer. For instance, the relation{(f (a,b),b)} is the translation relation of
a context transducer with rulesq(f (a,x))→ q′(x) andq′(b)→ b. However, a top-down transducer
must either outputb when it reads thef or when it reads theb; either way, it must also accept
an input treef (b,b). Every translation relation of a context transducer can also be computed by
the “transformation language” of [19]. More specifically, context tree transducers are equivalent
to extended left-hand side tree transducers (xTs) [20]. It is clear that an xT can encode a context
transducer by specifying all constructors in the context in its tree pattern. Furthermore, an xT can
be simulated in a context transducer by having a transition rule for every contextC that satisfies the
tree pattern on the left-hand side of each xT rule.

On the other hand, contextautomataare equivalent to ordinary tree automata. This can be
shown as for regular tree grammars.

3.3. Rewriting with context tree transducers

Given a linear rewriting systemR, it is now straightforward to produce a context tree transducer
MR whose translation relation is the one-step rewriting relation ofR. First,MR uses the rules in (3.1)
to be able to copy parts of the input tree to the output unchanged. Second, for each rewrite rule
C[x1, . . . ,xn]→C′[xi1, . . . ,xin], MR contains a transition rule as follows:

q(C[x1, . . . ,xn])→C′[q̄(xi1), . . . , q̄(xin)]. (3.3)

Unlike the transducer in Section 3.1, this transducer is now linear. We will exploit this in
Section 3.4 to obtain a more efficient algorithm for computing a pre-image.

But before we do this, let us extend the construction of context tree transducers for rewriting
systems to annotated rewriting systems. Let’s say we have an annotation alphabetAnn, an annotator
functionann, and a linear annotated rewriting systemR overΣ andAnn. We can obtain a context
tree transducerMR for the one-step rewriting relation ofRby keeping track of the current annotation
of nodes in the input tree in the state. In particular, we split the stateq into statesqa1, . . . ,qan where
Ann = {a1, . . . ,an}. We retain a single state ¯q, as no further rewriting can take place in this state,
and the annotation is therefore irrelevant.

The initial state ofMR is qa0, wherea0 is the starting annotation. We then have the following
versions of the transition rules in (3.1); these rules copy symbols to the output tree and keep track
of the current annotation.

q̄(f (x1, . . . ,xn)) → f (q̄(x1), . . . , q̄(xn)) for all f ∈ Σ
qa(f (x1, . . . ,xn)) → f (q̄(x1), . . . ,qann(a, f ,i)(xi), . . . , q̄(xn)) for some 1≤ i ≤ n and all f ∈ Σ

(3.4)
In addition,MR contains the following version of the transition rules in (3.3). It applies the

rewriting rulea : C[x1, . . . ,xn]→C′[xi1, . . . ,xin] if the transducer is at a node in the input tree which
is annotated witha.

qa(C[x1, . . . ,xn])→C′[q̄(xi1), . . . , q̄(xin)]. (3.5)

Lemma 3.3. Let t, t ′ be trees, and let R be a linear annotated rewrite system. Then t→R t ′ iff
(t, t ′) ∈ τMR.

186 A. KOLLER AND S. THATER

3.4. Pre-images under linear context tree translations

Finally, we show how to compute the pre-image of a regular tree language under the translation
relation of a linear context tree transducer.

Proposition 3.4. Let L be a regular tree language, and let M be a linear context tree transducer.
Thenτ−1

M (L) is a regular tree language.

Proof. Let M = (P,Σ,∆, p0,δ), and letB= (Q,∆,q0,γ) be a top-down tree automaton withL (B) =
L. We construct a context tree automatonA= (P×Q,Σ,Σ,〈p0,q0〉,η) with L (A) = τ−1

M (L).
Let p(C[x1, . . . ,xn]) → D[p1(xi1), . . . , pn(xin)] be in δ . Furthermore, letq(D[x1, . . . ,xn]) →

∗
B

D[q1(x1), . . . ,qn(xn)], where we extend→B to a binary relation onTQ∪∆∪{x1,...,xn} by usingxi →B xi

for all i. Then we letA contain the transition rule

〈p,q〉(C[x1, . . . ,xn])→C[〈pk1,qk1〉(x1), . . . ,〈pkn,qkn〉(xn)],

whereki j = j for all j.
Intuitively, A should read a contextC if M can translate this into a context whichB accepts.

We keep track of the states in whichM andB are during this process inA’s state. IfA is in a state
〈p,q〉, M must translateC from statep; it will output a contextD, whichB must accept from stateq.
During its run,M assigns statesp1, . . . , pn to the holes ofC; similarly, B assigns statesq1, . . . ,qn to
the holes ofD. BecauseM is linear, the holes ofC andD correspond to each other bijectively, and
we can build the new states〈pi ,qi〉 in whichA must then read the subtrees below the holes ofC.

3.5. Complexity

In the worst case, the algorithm in the proof of Prop. 3.4 constructs a tree automaton with at
most|P| · |Q| states and at most|δ | · |Q| ·m transition rules, wherem is the maximum number of state
tuples(q1, . . . ,qn) which B can assign to the holes of any contextD on the right-hand side of a rule
in M. If B is deterministic, we havem= 1, i.e. we can construct the pre-image automaton in time
O(|B| · |M|)=O(|B| · |R|). This means that by exploiting the linearity, we avoid the exponential blow-
up in the automaton size from the domain automaton construction in [17]. IfB is nondeterministic,
mmay be exponential in the size ofM, where the exponent is the maximum number of variables on
the right-hand side of a transition rule.

One further complication is that the construction in Lemma 3.1 requires us to compute the
complement of the pre-image automatonA. Even ifB is deterministic,A may not be, and so the
automaton forL (A) may be exponentially larger becauseA must be determinized. However, the
rewriting systems and tree automata that we use in our application have certain properties that make
the deterministic pre-image automata small as well. We first define these special properties, and
then prove the complexity result.

Definition 3.5. The left-hand sizeof a rewriting systemR overΣ is the maximum number of con-
structors fromΣ that is used on the left-hand side of a rule inR.

We call a top-down tree automatonboth way deterministicif it is deterministic and the bottom-
up tree automaton that is obtained by reversing all transition rules is also deterministic.

Now we can prove the key complexity result for our application.

Proposition 3.6. Let B be a both way deterministic top-down tree automaton, and let R be a linear
rewriting system of left-hand size at most 2. Then it is possible to compute a deterministic bottom-up
tree automaton A such thatL (A) = τ−1

MR
(L (B)) in time O(|B| · |R|).

RELATIVE NORMAL FORMS 187

Proof. First, we build the nondeterministic top-down context automatonN with L (N)= τ−1
MR

(L (B))
as in the proof of Prop. 3.4. This automaton has three types of rules, of the following forms:

(1) 〈pa,q〉(f (x1, . . . ,xn))→ f (〈p̄,q1〉(x1), . . . ,〈pa′ ,qi〉(xi), . . . ,〈p̄,qn〉(xn))
(2) 〈p̄,q〉(f (x1, . . . ,xn))→ f (〈p̄,q1〉(x1), . . . ,〈p̄,qn〉(xn))
(3) 〈pa,q〉(C[x1, . . . ,xn])→C[〈p̄,q1〉(x1), . . . ,〈p̄,qn〉(xn)]

Rules of types 1 and 2 encode decisions of the transducer to copy symbols, whereas rules of
type 3 encode a decision to rewriteC into some other context.

In a second step, we build an ordinary nondeterministic bottom-up tree automatonN′ such that
L (N′) = L (N). This can be done by breaking the transition rules for contexts with more than one
constructor up into ordinary transition rules that read single constructors, and reversing the direction
of all arrows. We can do this for the three rule types as follows:

(1) f (〈p̄,q1〉(x1), . . . ,〈pa′ ,qi〉(xi), . . . ,〈p̄,qn〉(xn))→ 〈pa,q〉(f (x1, . . . ,xn))
(2) f (〈p̄,q1〉(x1), . . . ,〈p̄,qn〉(xn))→ 〈p̄,q〉(f (x1, . . . ,xn))
(3) If C is of the form f (x,g(y,z))and there is a type 2 rule inN′ of the form

g(〈p̄,q2〉(x2),〈p̄,q3〉(x3))→ 〈p̄,q′〉(g(x2,x3)), then the rule
〈pa,q〉(f (x1,g(x2,x3)))→ f (〈p̄,q1〉(x1),g(〈p̄,q2〉(x2),〈p̄,q3〉(x3))) gets broken up into the
following two rules:

g(〈p̄,q2〉(x2),〈p̄,q3〉(x3))→ 〈pg,q′〉(g(x2,x3))

f (〈p̄,q1〉(x1),〈p
g,q′〉(y))→ 〈pa,q〉(f (x1,y)).

The form f (g(x,y),z) is analogous. IfC is of the form f (x,y), then we simply reverse the
rule into f (〈p̄,q1〉(x1),〈p̄,q2〉(x2))→ 〈pa,q〉(f (x1,x2)).

Finally, we determinizeN′ into a deterministic bottom-up automatonA such thatL (A) =
L (N′) andA does not contain states that are not reachable in a bottom-up run of the automaton.
According to the standard construction, we haveQA ⊆ P(QN′); but which of these states are actu-
ally reachable? First, for anyq ∈ QA, if 〈p,q〉 ∈ q and〈p′,q′〉 ∈ q, thenq= q′: BecauseB, if read
as a bottom-up transducer, is deterministic, theq on the right-hand sides of type 1 and 2 rules inN′

is uniquely determined byf and theq1, . . . ,qn, and the type 3 rules are constructed to maintain this
invariant too. Furthermore, we know that for everyq ∈ QA, there is aq∈ QB such that〈p̄,q〉 ∈ q,
by induction using the type 2 rules. We also know that there is at most onepf for f ∈ Σ such that
there is aq with 〈pf ,q〉 ∈ q: namely the one for the most recentf that was read with a type 3 rule.
Finally, q may contain an arbitrary number of pairs of the form〈pa,q〉 for annotationsa.

This means that|QA|= O(|QB| · |Σ| ·2|Ann|) whereAnn is the annotation alphabet, i.e. the size
of A’s state alphabet is linear in that ofB. In addition,A has at most as many transition rules asN′.
If B hask rules andm is the maximum arity of symbols inΣ, this amounts tok ·m rules of type 1,k
rules of type 2, and at most 2· |R| · |QB| rules of type 3. That is, the size ofA’s rule set is linear in
k. Because bothN andN′ can be computed fromB in linear time (as we argued above), this means
that we computeA in linear time.

In our application to scope underspecification, the tree automataAu
G for the unlabeled configura-

tions of a hnc dominance graph (e.g., the unlabeled version of the automaton in Fig. 2) are both way
deterministic, and the rewriting rules we use (such as (2.2)) only permute two adjacent constructors,
i.e. they are all of left-hand size two. In other words, for anyAu

G we can compute a deterministic
automaton for the pre-image language in linear time. It is then straightforward to compute the com-
plement automaton̄A and intersect it withAu

G, obtaining an automatonAW as the end result; this last
step can take timeO(|Au

G| · |Ā|) = O(|Au
G|

2) in the worst case. Altogether we obtain an algorithm for

188 A. KOLLER AND S. THATER

Figure 3: Sizes of automata in the Rondane treebank.

computing weakest readings that is quadratic in|Au
G|, which is a huge improvement over the best

previous algorithm, which was quadratic in|L (Au
G)|.

We have implemented a version of this algorithm which is further optimized to exploit certain
properties of dominance graphs, and evaluated it empirically [21]. We ran the algorithm on the
tree automata obtained from the dominance graphs for a subset of 623 sentences in the Rondane
corpus [13]. Each of these dominance graphs describes a set of formulas of a variant of higher-
order predicate logic, for which we chose suitable rewriting rules for approximating entailment. We
find that the mean number of configurations represented by the automata drops from about three
million for the original automata to 4.5 for the resulting automataAW, and we reduce 67% of the
sentences to a single weakest reading. The entire computation can be performed in about 20 ms per
sentence on average. This means that although modeling weakest readings in terms of a rewriting
system is incomplete with respect to true logical entailment, the approximation and our algorithm
are highly useful on practical data.

It is interesting to observe that although the intersection construction can potentially makeAW

larger thanAu
G, this does not actually happen in practice. This is shown in Fig. 3: The black line plots

the sizes of theAu
G, whereas the grey line plots the sizes of theAW. The horizontal axis represents

groups of sentences, where each groupi contains all sentences with⌈ei−1⌉ to ⌊ei⌋ readings; the
vertical axis plots the mean number of transition rules in the automata (note the logarithmic scale).
The grey bars indicate the number of sentences in each group. As the figure shows, theAW tend to
be much smaller than the original automata for each group. Averaged over all automata obtained
from the subcorpus, the original automata have 180 transitions, whereas the result automata have
68; 87% of the automata are smaller after the intersection. It remains an open question to explain
why the intersection decreases the automaton size so consistently.

4. An example

We finish by demonstrating our algorithm on the initial problem of computing the weakest
readings of the dominance graph in Fig. 1(a). We assume the following annotated rewriting system,
in which (2.2) is repeated as (4.1):

+ : ∃y(P,∀x(Q,R))→∀x(Q,∃y(P,R)) (4.1)

− : ∀x(P,∃y(Q,R))→∃y(Q,∀x(P,R)) (4.2)

+ : ¬(∃y(P,Q))→∃y(P,¬(Q)) (4.3)

+ : ∀x(P,¬(Q))→¬(∀x(P,Q)) (4.4)

RELATIVE NORMAL FORMS 189

This rewrite system translates into a top-down context tree transducerMR with the following
transition rules; we show the type 1 and 2 rules only for∃y.

p+(∃y(x1,∀x(x2,x3)))→∀x(p̄(x2),∃y(p̄(x1), p̄(x3)))

p+(∀x(x1,∃y(x2,x3)))→∃y(p̄(x2),∀x(p̄(x1), p̄(x3)))

p+(∀x(x1,¬(x2)))→¬(∀x(p̄(x1), p̄(x2)))

p+(¬(∃y(x1,x2)))→∃y(p̄(x1),¬(p̄(x2)))

p+(∃y(x1,x2))→∃y(p̄(x1), p
+(x2)) p+(∃y(x1,x2))→∃y(p

+(x1), p̄(x2))

p−(∃y(x1,x2))→∃y(p̄(x1), p
−(x2)) p−(∃y(x1,x2))→∃y(p

−(x1), p̄(x2))

p̄(∃y(x1,x2))→∃y(p̄(x1), p̄(x2)) . . .

p̄(studx)→ studx p̄(booky)→ booky p̄(readx,y)→ readx,y

We can now consider an automatonAG representing the configurations of a dominance graph, as
in Fig. 2, and compute a nondeterministic top-down context automatonN with L(N) = τ−1

MR
(L(AG)),

as in the proof of Prop. 3.4. In the example,N looks as follows. Note that we are only showing
transitions between productive states, and we abbreviate the state〈qG′ , pa〉 asqa

G′ . Note also that
the construction in Prop. 3.4 would usually be executed on the unlabeled versionAu

G of AG, but we
show the labeled version here becauseAG is already both ways deterministic in this example, and
easier to read.

q+1,...,6(∃y(x1,∀x(x2,x3)))→∃y(q̄5(x1),∀x(q̄4(x2), q̄1,6(x3)))

q+1,...,6(¬(∃y(x1,x2)))→¬(∃y(q̄5(x1), q̄2,4,6(x2))) q+1,...,6(∀x(x1,x2))→∀x(q̄4(x1),q
+
1,3,5,6(x2))

q+1,...,6(¬(x1))→¬(q−2,...,6(x1)) q̄1,...,6(∃y(x1,x2)))→∃y(q̄5(x1), q̄1,2,4,6(x2))

q̄1,...,6(∀x(x1,x2))→∀x(q̄4(x1), q̄1,3,5,6(x2)) q̄1,...,6(¬(x1))→¬(q̄2,...,6(x1))

q−2,...,6(∀x(x1,∃y(x2,x3)))→∀x(q̄4(x1),∃y(q̄5(x2), q̄6(x3)))

q̄2,...,6(∃y(x1,x2)))→∃y(q̄5(x1), q̄2,4,6(x2)) q̄2,...,6(∀x(x1,x2))→∀x(q̄4(x1), q̄3,5,6(x2))

q+1,3,5,6(¬(∃y(x1,x2)))→¬(∃y(q̄5(x1), q̄6(x2)))

q̄1,3,5,6(∃y(x1,x2)))→∃y(q̄5(x1), q̄1,6(x2)) q̄1,3,5,6(¬(x1))→¬(q̄3,5,6(x1))

q̄1,2,4,6(∀x(x1,x2))→∀x(q̄4(x1), q̄1,6(x2)) q̄1,2,4,6(¬(x1))→¬(q̄2,4,6(x1))

q̄2,4,6(∀x(x1,x2))→∀x(q̄4(x1), q̄6(x2)) q̄3,5,6(∃y(x1,x2)))→∃y(q̄5(x1), q̄6(x2))

q̄1,6(¬(x1))→¬(q̄6(x1)) q̄4(studx)→ studx q̄5(booky)→ booky q̄6(readx,y)→ readx,y

Finally, we compute a deterministic ordinary bottom-up automatonA with L(A) = L(N) as
in the proof of Prop. 3.6. This involves breaking up rules whose left-hand sides are nontrivial
contexts up into ordinary rules, reorienting the transitions into bottom-up rules, and determinizing
the resulting automaton. The states of the determinized automaton are sets that contain states ofN
and statesqf

G that were introduced when breaking up the context rules; we suppress the set brackets
for singleton sets below. Notice that as we claimed in the proof of Prop. 3.6, if any two of ¯qG′ and
q+G′′ or q−G′′ are in the same state set, thenG′ = G′′; and there is at most one stateqf

G′ for any f ∈ Σ in
each such state set.A looks as follows:

190 A. KOLLER AND S. THATER

∃y(q̄5(x1),{q∀x
1,2,4,6, q̄1,2,4,6}(x2))→{q+1,...,6, q̄1,...,6}(∃y(x1,x2))

¬({q∃y
2,...,6, q̄2,...,6}(x1))→{q+1,...,6, q̄1,...,6}(¬(x1))

∀x(q̄4(x1),{q+1,3,5,6, q̄1,3,5,6}(x2))→{q+1,...,6, q̄1,...,6}(∀x(x1,x2))

¬({q−2,...,6, q̄2,...,6}(x1))→{q+1,...,6, q̄1,...,6}(¬(x1))

∃y(q̄5(x1), q̄2,4,6(x2)))→{q∃y
2,...,6, q̄2,...,6}(∃y(x1,x2))

∀x(q̄4(x1),{q∃y
3,5,6, q̄3,5,6}(x2))→{q−2,...,6, q̄2,...,6}(∀x(x1,x2))

∀x(q̄4(x1), q̄1,6(x2)))→{q∀x
1,2,4,6, q̄1,2,4,6}(∀x(x1,x2))

¬(q̄2,4,6(x1))→ q̄1,2,4,6(¬(x1))

¬({q∃y
3,5,6, q̄3,5,6}(x1))→{q+1,3,5,6, q̄1,3,5,6}(¬(x1))

∀x(q̄4(x1), q̄6(x2))→ q̄2,4,6(∀x(x1,x2))

∃y(q̄5(x1), q̄6(x2)))→{q∃y
3,5,6, q̄3,5,6}(∃y(x1,x2))

¬(q̄6(x1))→ q̄1,6(¬(x1)) studx → q̄4(studx) booky → q̄5(booky) readx,y → q̄6(readx,y)

A is a deterministic automaton which accepts four trees, namely the configurations (b), (c), (e),
and (f) in Fig. 1. Therefore we can obtain an automaton which accepts exactly the weakest readings
of the graph in Fig. 1 – i.e., (d) and (g) – by intersectingAG and the complement automaton̄A.

5. Conclusion

In this paper, we have presented an algorithm for computing those members of a regular tree
languageL that are in relative normal form with respect to an annotated rewriting systemR. We
have shown how to compute these elements by computing the pre-image of the tree language under
a transducer encoding the one-step rewriting relation, and then intersecting the language with the
complement of this pre-image. By definingcontexttree transducers, we were able to compute the
pre-image in linear time ifL is given in terms of a deterministic automaton; for the special case
whereR has left-hand sides of size at most two, we could show that even the deterministic automa-
ton for the pre-image is linear in size. This restriction holds in our application to computational
linguistics, where our results provide an approximate, but practically useful solution to the problem
of computing weakest readings.

From the perspective of our application, our results open up a whole new class of rewriting-
based inferences on natural-language meaning representations which can now be processed effi-
ciently. We will explore such inferences in the future. One line of research that seems particularly
intriguing is to deal with cases where multiple trees that are equivalent with respect to the underly-
ing rewrite system are left over in the language of the final tree automaton. Such cases can happen
when the rewrite system is not confluent. It would be interesting to investigate the practical impact
of augmenting the permutation system, e.g. with the Knuth-Bendix completion procedure. This
trades off a reduction in the number of relative normal forms (due to improved confluence) against
an increase in the size of the rewrite system.

Acknowledgments. We would like to thank the reviewers and particularly Joachim Niehren for
their extremely helpful comments, which influenced this paper substantially and improved it a lot.

RELATIVE NORMAL FORMS 191

References

[1] Dagan, I., Glickman, O., Magnini, B.: The PASCAL recognising textual entailment challenge. In Quiñonero-
Candela, J., Dagan, I., Magnini, B., d’Alché Buc, F., eds.: Machine Learning Challenges. Volume 3944 of Lecture
Notes in Computer Science. Springer (2006) 177–190

[2] Montague, R.: The proper treatment of quantification in ordinary English. In Thomason, R., ed.: Formal Philosophy.
Selected Papers of Richard Montague. Yale University Press, New Haven (1974)

[3] van Deemter, K., Peters, S.: Semantic Ambiguity and Underspecification. CSLI (1996)
[4] Egg, M., Koller, A., Niehren, J.: The Constraint Language for Lambda Structures. Logic, Language, and Informa-

tion 10 (2001) 457–485
[5] Copestake, A., Flickinger, D., Pollard, C., Sag, I.: Minimal recursion semantics: An introduction. Journal of Lan-

guage and Computation (2005)
[6] Blackburn, P., Bos, J.: Representation and Inference for Natural Language. A First Course in Computational Se-

mantics. CSLI Publications (2005)
[7] Althaus, E., Duchier, D., Koller, A., Mehlhorn, K., Niehren, J., Thiel, S.: An efficient graph algorithm for dominance

constraints. Journal of Algorithms48 (2003) 194–219
[8] Bos, J.: Let’s not argue about semantics. In: Proceedings of LREC. (2008) 2835–2840
[9] Kempson, R., Cormack, A.: Ambiguity and quantification. Linguistics and Philosophy4 (1981) 259–309

[10] Hobbs, J.: An improper treatment of quantification in ordinary English. In: Proceedings of the 21st ACL. (1983)
[11] Gabsdil, M., Striegnitz, K.: Classifying scope ambiguities. In: Proceedings of the First Intl. Workshop on Inference

in Computational Semantics. (1999)
[12] Koller, A., Regneri, M., Thater, S.: Regular tree grammars as a formalism for scope underspecification. In: Proceed-

ings of the 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies
(ACL-08: HLT), Columbus, Ohio (2008)

[13] Oepen, S., Toutanova, K., Shieber, S., Manning, C., Flickinger, D., Brants, T.: The LinGO Redwoods treebank:
Motivation and preliminary applications. In: Proceedings of the 19th International Conference on Computational
Linguistics (COLING’02). (2002) 1253–1257

[14] Fuchss, R., Koller, A., Niehren, J., Thater, S.: Minimal recursion semantics as dominance constraints: Translation,
evaluation, and analysis. In: Proc. of ACL, Barcelona (2004)

[15] Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree
automata techniques and applications. Available on:http://www.grappa.univ-lille3.fr/tata (2007)

[16] Bodirsky, M., Duchier, D., Niehren, J., Miele, S.: An efficient algorithm for weakly normal dominance constraints.
In: ACM-SIAM Symposium on Discrete Algorithms. (2004)

[17] Engelfriet, J.: Top-down tree transducers with regular look-ahead. Math. Systems Theory10 (1977) 289–303
[18] Engelfriet, J., Maneth, S.: A comparison of pebble tree transducers with macro tree transducers. Acta Informatica

39(9) (2003) 613–698
[19] Maneth, S., Berlea, A., Perst, T., Seidl, H.: Xml type checking with macro tree transducers. In: PODS ’05: Proceed-

ings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, New
York, NY, USA, ACM (2005) 283–294

[20] Graehl, J., Knight, K., May, J.: Training tree transducers. Computational Linguistics34(3) (2008)
[21] Koller, A., Thater, S.: Computing weakest readings. In: Proceedings of the 48th ACL. (2010)

192 A. KOLLER AND S. THATER

This work is licensed under the Creative Commons Attribution Non-Commercial No Derivatives
License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 193-208
http://rewriting.loria.fr/rta/

ORDER-SORTED UNIFICATION

WITH REGULAR EXPRESSION SORTS

TEMUR KUTSIA 1 AND MIRCEA MARIN 2

1 Research Institute for Symbolic Computation

Johannes Kepler University Linz, Austria

E-mail address: kutsia@risc.uni-linz.ac.at

URL: http://www.risc.uni-linz.ac.at/people/tkutsia/

2 Graduate School of Systems and Information Engineering

University of Tsukuba, Japan

E-mail address: mmarin@cs.tsukuba.ac.jp

URL: http://www.score.is.tsukuba.ac.jp/~mmarin/

Abstract. We extend first-order order-sorted unification by permitting regular expres-

sion sorts for variables and in the domains of function symbols. The set of basic sorts is

finite. The obtained signature corresponds to a finite bottom-up hedge automaton. The

unification problem in such a theory generalizes some known unification problems. Its uni-

fication type is infinitary. We give a complete unification procedure and prove decidability.

Introduction

In first-order order-sorted unification [Wal88], the set of basic sorts B is assumed to
be partially ordered, variables are of basic sorts s ∈ B and function symbols have sorts of
the form w → s, where w is a finite word over B and s ∈ B. We extend this framework
by introducing regular expression sorts R over B, allowing variables to be of sorts R and
function symbols to have sorts R → s. Another extension is that overloading function
symbols is allowed. Under some reasonable conditions imposed over the signature [GM92],
terms have the least sort.

Our signature has an interesting relation with automata. It is well-known that an order-
sorted signature is a finite bottom-up tree automaton [Com89]. In our case, an order-sorted
signature with regular expression sorts is exactly a finite bottom-up hedge automaton.

In this paper we study the unification problem for terms over an order-sorted signature
with regular expression sorts. We call this problem regular expression order-sorted unifica-

tion (REOSU) and show that it is infinitary, prove that it is decidable, and give a complete
unification procedure.

1998 ACM Subject Classification: F.4.1 [Theory of Computation]: Mathematical Logic and Formal

Languages—Mathematical Logic, F.2.2 [Theory of Computation]: Analysis of Algorithms and Problem

Complexity—Nonnumerical Algorithms and Problems, F.4.3 [Theory of Computation]: Mathematical Logic

and Formal Languages—Formal Languages.

Key words and phrases: Unification, sorts, regular expressions.

c© T. Kutsia and M. Marin
C Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.193

194 T. KUTSIA AND M. MARIN

REOSU extends some known problems as shown on the diagram below, illustrating
its relations with syntactic unification (SYNU [Rob65]), word unification (WU [Sch90]),
order-sorted unification (OSU [Wal88]), sequence unification (SEQU [Kut07]), and word
unification with regular constraints (WURC [Sch90]):

WUSYNU

WURCSEQUOSU

REOSU

Following the arrows, the problems are related as follows:

• From OSU one can obtain SYNU by restricting the sort hierarchy to be empty.
• SEQU problems without sequence variables (i.e., with individual variables only)
constitute SYNU problems.

• WU is a special case of SEQU with constants, sequence variables, and only one
flexible arity function symbol for concatenation.

• WU is also a special case of WURC where none of the variables are constrained.
• From REOSU we can get OSU (but with finitely many basic sort symbols only, be-
cause this is what REOSU considers) if instead of arbitrary regular sorts in function
domains we allow only words over basic sorts, restrict variables to be of only basic
sorts, and forbid function symbol overloading.

• SEQU can be obtained if we restrict REOSU with only one basic sort, say s, the
variables that correspond to sequence variables in SEQU have the sort s∗, individual
variables are of the sort s, and function symbols have the sort s∗ → s.

• WURC can be obtained from REOSU by the same restriction that gives WU from
SEQU and, in addition, identifying the constants there to the corresponding sorts.

Order-sorted unification described in [SS89, Wei96] extends OSU from [Wal88] in a way
that is not compatible with REOSU.

Regular expressions are presented in types in the programming language XDuce, de-
signed for manipulating XML. These types are regular expressions over trees. They are
ordered by a subtyping relation. Pattern matching for such regular expression types has
been studied in [HP03]. Unlike XDuce types, our sorts are regular expressions over words
and we perform word regular language manipulations rather than working with tree lan-
guages. Moreover, we are dealing with full-scale unification instead of matching.

In this paper we are dealing with REOSU in the empty theory (i.e., the syntactic case).
It would also be interesting to see how one can extend equational OSU [Kir88, MGS89,
Bou92, HM08] with regular expression sorts, but this problem is beyond the scope of this
paper.

The paper is organized as follows. In Section 1 we give basic definitions and recall some
known results. In Section 2 algorithms operating on sorts are given. Section 3 describes a
complete unification procedure and discusses decidability. Section 4 concludes. Proofs can
be found in the appendix.

For unification, we use the notation and terminology of [BS01]. For the notions related
to sorted theories, we follow [GM92].

ORDER-SORTED UNIFICATION WITH REGULAR EXPRESSION SORTS 195

1. Preliminaries

Sorts

We consider a finite set B of basic sorts, partially ordered with the relation �. Its
elements are denoted with lowercase letters in sans serif font. s ≺ r means s � r and
s 6= r. We write R for the set of regular expressions over B, which is built in the standard
way: R ::= s | 1 | R1.R2 | R1+R2 | R∗. We use capital SANS SERIF font letters for them.
The regular language denoted by a regular expression is: [[s]] = {s}, [[1]] = {ǫ}, [[R1.R2]] =
[[R1]].[[R2]], [[R1+R2]] = [[R1]]∪[[R2]], [[R

∗]] = [[R]]∗, where ǫ stands for the empty word, [[R1]].[[R2]]
is the concatenation of the regular languages [[R1]] and [[R2]], and [[R]]∗ is the Kleene star
of [[R]].

A regular expression sort is an element of R, and a functional expression sort is an
expression of the form R → s with R ∈ R and s ∈ B. The relation � on B is extended to
words of basic sorts, sets of words, and regular expression sorts as follows: (1) if w1, w2 ∈ B∗

then w1 � w2 iff w1 = s1 · · · sn, w2 = r1 · · · rn and si � ri for all 1 ≤ i ≤ n; (2) if W1,W2 ⊆ B∗

thenW1 � W2 iff for each w1 ∈ W1 there is w2 ∈ W2 such that w1 � w2; and (3) if R1,R2 ∈ R
then R1 � R2 iff [[R1]] � [[R2]]. Note that � is a quasi-order on the sets B, 2B

∗
, and R. In

particular, we can define the equivalence relation � on R by: R1 ≃ R2 iff R1 � R2 and
R2 � R1. We extend this equivalence relation to functional sorts: R1 → s1 ≃ R2 → s2 iff
R1 ≃ R2 and s1 = s2.

The closure R of R ∈ R is the regular expression defined as follows: s =
∑

r�s r, 1 = 1,

R1.R2 = R1.R2, R1+R2 = R1+R2, R∗ = R
∗
. Closures of regular expressions enable the

decidability of relations � and ≃ on R:

Lemma 1. Let S,R ∈ R. Then S � R iff [[S]] ⊆ [[R]].

Corollary 1. Let S,R ∈ R. Then S ≃ R iff [[S]] = [[R]].

The set of all �-maximal elements of a set of sorts S ⊆ R is denoted max(S). R is a
lower bound of S if R � Q for all Q ∈ S. A lower bound G of S is a greatest lower bound,
denoted glb(S), if R � G for all lower bounds R of S. Note that if glb(S) exists, then it is
unique modulo ≃.

Terms

For each R we assume a countable set of variables VR such that VR1
= VR2

iff R1 ≃ R2

and VR1
∩ VR2

= ∅ if R1 6≃ R2. Also, for each R ∈ R, s ∈ B we assume a set of function
symbols FR→s such that FR1→s1 = FR2→s2 iff R1 → s1 ≃ R2 → s2. Moreover, the following
conditions should be satisfied:

Preregularity: If f ∈ FR1→s1 and R2 � R1, then there is a �-least element in the set
{s | f ∈ FR→s and R2 � R}.

Finite overloading: For each f , the set {FR→s | R ∈ R, s ∈ B, f ∈ FR→s} is finite.

We say that R is a sort of x if x ∈ VR. Similarly, R → s is a sort of f if f ∈ FR→s.
Function symbols from F1→s are called constants. We use the letters a, b, c to denote them.
We will write f : R → s for f ∈ FR→s, a : s for a ∈ F1→s, and x : R for x ∈ VR. Setting
V = ∪R∈RVR and F = ∪R∈R,s∈BFR→s, we define the sets TR(F ,V) of terms of sort R ∈ R
over V and F , and T SR(F ,V) of term sequences of sort R ∈ R over V and F , as the least
sets satisfying the properties:

196 T. KUTSIA AND M. MARIN

• VR ⊆ TR(F ,V).
• TR′(F ,V) ⊆ TR(F ,V) if R′ � R.
• ǫ ∈ T SR(F ,V) if 1 � R.
• (t1, . . . , tn) ∈ T SR(F ,V) if there exist R1, . . . ,Rn ∈ R such that ti ∈ TRi

(F ,V) and
R1. · · · .Rn � R.

• f(t̃) ∈ TR(F ,V), if R = s, f : R′ → s, and t̃ ∈ T SR′(F ,V).

The set of terms over V and F is defined as T (F ,V) = ∪R∈RTR(F ,V). We abbreviate
terms a(ǫ) with a. The depth of a term and a term sequence is defined in the standard way:
depth(x) = 1, depth(f(t̃)) = 1 + depth(t̃), depth(ǫ) = 0, depth(t1, . . . , tn) = max{depth(ti) |
1 ≤ i ≤ n}, n > 0.

Lemma 2. Every term has a �-least sort R that is unique modulo ≃.

The �-least sort of a term t modulo ≃ is called the least sort of t, and is denoted
by lsort(t). In the same way, the �-least sort of a term sequence (t1, . . . , tn), n ≥ 1, is
defined uniquely modulo ≃ as lsort(t1). · · · .lsort(tn) and is denoted by lsort(t1, . . . , tn).
When n = 0, i.e., for the empty sequence, lsort(ǫ) = 1.

The set of variables of a term t is denoted by var(t). A term t is ground if var(t) = ∅.
These notions extend to term sequences, sets of term sequences, etc.

For a basic sort s, its semantics sem(s) is the set Ts(F) of ground terms of sort s. The
semantics of a regular sort is given by the set of ground term sequences of the corresponding
sort: sem(1) = {ǫ}, sem(R1.R2) = {(s̃1, s̃2) | s̃1 ∈ sem(R1), s̃2 ∈ sem(R2)}, sem(R1+R2) =
sem(R1) ∪ sem(R2), sem(R∗) = sem(R)∗. This definition, together with the definition of �
and TR(F ,V), implies that if R � Q, then sem(R) ⊆ sem(Q).

Substitutions and Unification Problems

A substitution is a well-sorted mapping from variables to term sequences, which is iden-
tity almost everywhere. Substitutions are denoted with lowercase Greek letters, where ε
stands for the identity substitution. Well-sortedness of σ means that lsort(σ(x)) � lsort(x)
for all x. The notions of substitution application, term and term sequence instances, sub-
stitution composition, restriction, and subsumption are defined in the standard way. We
use postfix notation for instances, juxtaposition for composition, and write σ ≤X ϑ for
subsumption meaning that σ is more general than ϑ on the set of variables X . The depth

of a substitution is defined as depth(σ) = max{depth(xσ) | x ∈ V}.

Lemma 3. lsort(tσ) � lsort(t) and lsort(t̃σ) � lsort(t̃) hold for any term t, term sequence

t̃ and substitution σ.

An equation is a pair of term sequences, written as s̃
.
= t̃. Its depth is the max-

imum between depth(s̃) and depth(t̃). A regular expression order sorted unification or,
shortly, REOSU problem Γ is a finite set of equations between sorted term sequences
{s̃1

.
= t̃1, . . . , s̃n

.
= t̃n}. A substitution σ is a unifier of Γ if s̃iσ = t̃iσ for all 1 ≤ i ≤ n.

A minimal complete set of unifiers of Γ is a set U of unifiers of Γ satisfying the following
conditions:

Completeness: For any unifier ϑ of Γ there is σ ∈ U such that σ ≤var(Γ) ϑ.
Minimality: If there are σ1, σ2 ∈ U such that σ1 ≤var(Γ) σ2, then σ1 = σ2.

The depth of a REOSU problem Γ is the maximum depth of the equations it contains.

ORDER-SORTED UNIFICATION WITH REGULAR EXPRESSION SORTS 197

Linear Form and Split of a Regular Expression

We recall the notion of linear form for regular expressions from [Ant96] by adapting the
notation to our setting and using the set of basic sorts B for alphabet. This notion, together
with the split of a regular expression, will be needed later, in sort-related algorithms: When
we decompose a hedge in the weakening process, we have to split the corresponding sort
as well. Linear form helps to split a sort into a basic sort and another sort, while the split
operation decomposes it into two (not necessarily basic) sorts.

A pair (s,R) is called a monomial. A linear form of a regular expression R, denoted
lf (R), is a finite set of monomials defined recursively as follows:

lf (1) = ∅ lf (R∗) = lf (R)⊙ R
∗

lf (s) = {(s, 1)} lf (R.Q) = lf (R)⊙ Q if ǫ /∈ [[R]]
lf (s+r) = lf (s) ∪ lf (r) lf (R.Q) = lf (R)⊙ Q ∪ lf (Q) if ǫ ∈ [[R]]

These equations involve an extension of concatenation ⊙ that acts on a linear form
and a regular expression and returns a linear form. It is defined as l ⊙ 1 = l and l ⊙ Q =
{(s, S.Q) | (s, S) ∈ l, S 6= 1} ∪ {(s,Q) | (s, 1) ∈ l} if Q 6= 1.

As an example, lf (R) = {(s,R), (s, s.(s.s+r)∗), (r, (s.s+r)∗)} for R = s
∗.(s.s+r)∗. The set

l̂f (R) is defined as {s.Q | (s,Q) ∈ lf (R)}.

Definition 1 (Split). Let S ∈ R. A split of S is a pair (Q,R) ∈ R2 such that (1) Q.R � S

and (2) if (Q′,R′) ∈ R2, Q � Q
′, R � R

′, and Q
′.R′ � S, then Q ≃ Q

′ and R ≃ R
′.

We recall the definition of 2-factorization from [Con71]: A pair (Q,R) ∈ R2 is a 2-

factorization of S ∈ R if (1) [[Q.R]] ⊆ [[S]] and (2) if (Q′,R′) ∈ R2, [[Q]] ⊆ [[Q′]], [[R]] ⊆ [[R′]],
and [[Q′.R′]] ⊆ [[S]], then [[Q]] = [[Q′]] and [[R]] = [[R′]].

Lemma 4. (Q,R) is a split of S iff (Q,R) is a 2-factorization of S.

In [Con71] it has been shown that the 2-factorizations of a regular expression are finitely
many modulo ≃, and that they can be effectively computed. By the lemma above a regular
expression has finitely many splits modulo ≃ that can be effectively computed. For instance,
the regular expression s

∗.r.r∗ has two splits modulo ≃: (s∗, s∗.r.r∗) and (s∗.r.r∗, r∗).

Relating REOS Signatures and Hedge Automata

Regular expression ordered sorts are related to regular hedge automata in the same
way as ordered sorts are related to tree automata. Namely, a REOS signature is a finite
bottom-up hedge automaton.

To illustrate this relation, we first recall the definition of nondeterministic finite hedge
automaton (NFHA) from [CDG+]: An NFHA over Σ is a tuple (Q,Σ, Qf ,∆) where Q is a
finite set of states, Qf ⊆ Q is a set of final states, and ∆ is a finite set of transition rules of
the following types:

• a(R) → q where a ∈ Σ, q ∈ Q, and R ⊆ Q∗ is a regular language over Q, or
• q′ → q (called ǫ-transitions), where q′, q ∈ Q.

Now, we can take our set of basic sorts B in the role of Q, the set F in the role of Σ,
assume Qf = Q, and define ∆ as follows: For each r ≺ s, the ǫ-transition rule r → s is in
∆. For each f : R → s, the rule f(R) → s is also in ∆. It is easy to see that our ground
terms are exactly the unranked trees recognized by this automaton. A ground term of sort
s is an unranked tree recognized by the automaton at state s.

198 T. KUTSIA AND M. MARIN

2. Sort-Related Algorithms

In this section we identify algorithms to decide � on R, to compute the greatest lower
bounds for regular expression sorts, and to compute sort-weakening substitutions.

Deciding �

Without an ordering on basic sorts, � would be the standard inequality for regular
word expressions which can be decided, for instance, by Antimirov’s algorithm [Ant95]
that employs partial derivatives. The problem is PSPACE-complete, but this rewriting
approach has an advantage over the standard technique of translating regular expressions
into automata: With it, in some cases solving derivations can have polynomial size, while
any algorithm based on translation of regular expressions into DFA’s causes an exponential
blow-up.

In our case, we can rely on the property that S � R iff [[S]] ⊆ [[R]], proved in Lemma 1.
The property [[S]] ⊆ [[R]] can be decided by Antimirov’s original algorithm on S and R.

Computing Greatest Lower Bounds

A greatest lower bound of regular expressions would be their intersection, if we did not
have ordering on the basic sorts. Intersection can be computed either in the standard way, by
translating them into automata, or by Antimirov & Mosses’s rewriting algorithm [AM95] for
regular expressions extended with the intersection operator. Computation requires double
exponential time.

Here we can employ the regular expression intersection algorithm [AM95] to compute
a greatest lower bound, with one modification: To compute the intersection between two
alphabet letters (i.e. between two basic sorts), instead of standard check whether they are
the same, we compute the maximal elements in the set of their lower bounds. There can be
several such maximal elements. This can be easily computed based on the ordering on basic
sorts. Then we can take the sum of these elements and it will be a greatest lower bound.
This construction allows to compute a greatest lower bound of two regular expressions,
which is unique modulo ≃.

An implementation of Antimirov-Mosses algorithm [Sul09] requires only minor modifi-
cations to deal with the ordering on alphabet letters (basic sorts). Hence, for S and R we
compute here glb(S,R) and we know that if Q is a regular expression with [[Q]] = [[S]]∩ [[R]],
then glb(S,R) ≃ Q.1

Computing Weakening Substitutions

Now we describe an algorithm that computes a substitution to weaken the sort of a term
sequence towards a given sort. The necessity of such an algorithm can be demonstrated on
a simple example: Assume we want to unify x and f(y) for x : s, f : R1 → s1, f : R2 → s2,
y : R2, where s1 ≺ s ≺ s2 and R1 ≺ R2. We can not unify x with f(y) directly, because
lsort(f(y)) = s2 6� s = lsort(x). However, if we weaken the least sort of f(y) to s1,
then unification is possible. To weaken the least sort of f(y), we take its instance under

1We say that the computation of glb fails, if the (modification of) Antimirov-Mosses algorithm returns

0, and express it as glb(S,R) = ⊥.

ORDER-SORTED UNIFICATION WITH REGULAR EXPRESSION SORTS 199

substitution {y 7→ z}, where z ∈ VR1
, which gives lsort(f(z)) = s1. Hence, the substitution

{y 7→ z, x 7→ f(z)} is a unifier of x and f(y), leading to the common instance f(z).
A weakening pair is a pair of a term sequence t̃ and a sort Q, written t̃ Q. A

substitution ω is called a weakening substitution of a set W of weakening pairs iff lsort(t̃ω) �
Q for each t̃ Q ∈ W .

Our weakening algorithm is called W, and works by applying exhaustively the following
rules to pairs of the form W ;σ where W is a set of weakening pairs and σ is a substitution:

R-w: Remove a Weakening Pair

{t̃ Q} ∪W ;σ =⇒ W ;σ if lsort(t̃) � Q.

D1-w: Decomposition 1 in Weakening

{(f(t̃), s̃) Q} ∪W ;σ =⇒ {f(t̃) s, s̃ S} ∪W ;σ

if lsort(f(t̃), s̃) 6� Q, var(f(t̃), s̃) 6= ∅, s̃ 6= ǫ and s.S ∈ max(l̂f (Q)).

D2-w: Decomposition 2 in Weakening

{(x, s̃) Q} ∪W ;σ =⇒ {x Q1, s̃ Q2} ∪W ;σ

if lsort(x, s̃) 6� Q, s̃ 6= ǫ and (Q1,Q2) is a split of Q.

AS-w: Argument Sequence Weakening

{f(t̃) Q} ∪W ;σ =⇒ {t̃ R} ∪W ;σ

where lsort(f(t̃)) 6� Q, var(f(t̃)) 6= ∅, R.r is a maximal sort such that f ∈ FR→r and r � Q.

V-w: Variable Weakening

{x Q} ∪W ;σ =⇒ Wσ;σ{x 7→ w}

where glb({lsort(x),Q)}) 6= ⊥ and w is a fresh variable from Vglb({lsort(x),Q)}).

If none of the rules are applicable to W ;σ, then it is transformed into ⊥, indicating
failure. By exhaustive search, transforming each W ;σ in all possible ways, we generate a
complete search tree whose branches form derivations. The branches that end with ⊥ are
called failing branches. The branches that end with ∅;ω are called successful branches and ω
is a substitution computed by W along this branch. The set of all substitutions computed
by W starting from W ; ǫ is denoted by weak(W). It is easy to see that the elements of
weak(W) are variable renaming substitutions.

It is essential that the signature has the finite overloading property, which guarantees
that the rule AS-w does not introduce infinite branching. Since the linear form and split of
a regular expression are both finite, the other rules do not cause infinite branching either.
W is terminating, sound, and complete, as the following theorems show.

Theorem 1. W is terminating.

Theorem 2 (Soundness of the Weakening Algorithm). Each ω∈weak(W) is a weakening

substitution of W .

Theorem 3 (Completeness of the Weakening Algorithm). For every weakening substitution

ω of W there exists ω′ ∈ weak(W) such that ω′ ≤var(W) ω.

Example 1. Let W = {x q, f(x) s} be a weakening problem with x : r, f : s → s,
f : r → r and the sorts r1 ≺ r, r2 ≺ r, r1 ≺ q, r2 ≺ q, s ≺ r1, s ≺ r2. Then the weakening
algorithm first transforms W ; ε into {f(w) s}; {x 7→ w} with w : r1+r2 by the rule V-w.

200 T. KUTSIA AND M. MARIN

The obtained weakening pair is then transformed into ∅; {{x 7→ z, w 7→ z}} with z : s by
AS-w, leading to weak(W) = {{x 7→ z}}.

Example 2. Let W = {(x, y) s
∗.r.r∗} be a weakening problem with x : q∗1.p

∗
1, y : q∗2.p

∗
2,

and the sorts s ≺ q1, s ≺ q2, r ≺ p1, r ≺ p2. Then the weakening algorithm computes
weak(W) = {{x 7→ u1, y 7→ v1}, {x 7→ u2, y 7→ v2}} where u1 : s∗.r.r∗, v1 : r∗, u2 : s∗ and
v2 : s

∗.r.r∗.

Example 3. Let W = {x q
∗} be a weakening problem with x : r

∗ and the sorts
s1 ≺ r, s2 ≺ r, s1 ≺ q, s2 ≺ q, p1 ≺ s1, p2 ≺ s2. Then the weakening algorithm computes
weak(W) = {{x 7→ w}} where w : (s1+s2)

∗.

3. Unification Type, Unification Procedure, Decidability

Unification Type

Let Γre be a REOSU problem and Γseq its version without sorts, i.e. a SEQU problem.
Each unifier of Γre is either a unifier of Γseq or is obtained from a unifier of Γseq by composing
it with a weakening substitution as follows: If σ = {x1 7→ t̃1, . . . , xn 7→ t̃n} is a unifier of
Γseq, then the set of weakening substitutions for σ is Ω(σ) = weak({t̃1 lsort(x1), . . . , t̃n
lsort(xn)}). For each ωσ ∈ Ω(σ), σωσ is a unifier of Γre. Since SEQU is infinitary, the type
of REOSU can be either infinitary or nullary, and we show now that it is not nullary.

Let Sseq be a minimal complete set of unifiers of Γseq and Sre be the set containing the
unifiers of Γre that are either in Sseq or are obtained by weakening unifiers in Sre. Since
{σωσ | ωσ ∈ Ω(σ)} is finite for each σ, we can assume that Sre contains only a minimal
subset of it for each σ. The set Sre is complete. Assume by contradiction that it is not
minimal. Then it contains σ′ and ϑ′ such that σ′ ≤var(Γre) ϑ

′, i.e., there exists ϕ′ such that
σ′ϕ′ =var(Γre) ϑ′. If ϑ′ ∈ Sseq, then we have σ′ϕ′ = σωσϕ

′ =var(Γ) ϑ′ for an ωσ ∈ Ω(σ),
which contradicts minimality of Sseq. If σ′ ∈ Sseq, then σ′ϕ′ =var(Γre) ϑ′ = ϑωϑ where

ωϑ ∈ Ω(ϑ). Since ωϑ is variable renaming, σ′ϕ′ω−1
ϑ =var(Γseq) ϑ, which again contradicts

minimality of Sseq. Both σ′ and ϑ′ can not be from Sseq because Sseq is minimal. If neither
σ′ nor ϑ′ is in Sseq, then we have σωσϕ

′ = σ′ϕ′ =var(Γre) ϑ
′ = ϑωϑ and again a contradiction:

σωσϕ
′ω−1

ϑ =var(Γseq) ϑ.
Hence, for any Γre there is a complete set of unifiers with no two elements comparable

with respect to ≤var(Γre), which implies that Γre has a minimal complete set of unifiers and
REOSU is not nullary.

Unification Procedure

To compute unifiers for a REOSU problem, one way is, first, to ignore the sort informa-
tion, employ the SEQU procedure [Kut02, Kut07] on the unsorted problem, and then weaken
each computed substitution to obtain their order-sorted instances. In fact, such an approach
is not uncommon in order-sorted unification, see, e.g. [SS89, MGS89, SNGM89, HM08]. It
has an advantage of being a modular method that reuses an existing solving procedure.

In our case, this approach can be realized as follows: Assume a SEQU procedure com-
putes a unifier σ = {x1 7→ t̃1, . . . , xn 7→ t̃n}

2 of the unsorted version of an REOSU problem Γ.

2We assume without loss of generality that σ is idempotent.

ORDER-SORTED UNIFICATION WITH REGULAR EXPRESSION SORTS 201

Then we form a set of weakening pairs W = {t̃1 Q1, . . . , t̃n Qn}, where the Q’s are
the sorts of the corresponding x’s, and find the set of weakening substitutions weak(W). If
weak(W) = ∅, then σ can not be weakened further to a solution of Γ. Otherwise, σϑ is a
solution of Γ for each ϑ ∈ weak(W).

A drawback of this approach is that it is so called generate-and-test method. It is
not able to detect early enough derivations that fail because of sort incompatibility. Early
failure detection requires weakening to be tailored in the unification rules. This is what we
consider in more details now.

The following transformation rules act on pairs of the form Γ;σ with Γ a unification
problem and σ a substitution, and are designed to define a sound and complete rule-based
procedure for REOSU problems.

P: Projection

Γ;σ =⇒ Γϑ;σϑ,

for ϑ = {x1 7→ ǫ, . . . , xn 7→ ǫ} with xi ∈ var(Γ) and 1 � lsort(xi) for 1 ≤ i ≤ n.

T: Trivial

{t̃
.
= t̃} ∪ Γ;σ =⇒ Γ;σ.

TP: Trivial Prefix

{(r̃, t̃)
.
= (r̃, s̃)} ∪ Γ;σ =⇒ {t̃

.
= s̃} ∪ Γ;σ, if r̃ 6= ǫ and t̃ 6= s̃.

D: Decomposition

{(f(t̃), t̃′)
.
= (f(s̃), s̃′)} ∪ Γ;σ =⇒ {t̃

.
= s̃, t̃′

.
= s̃′} ∪ Γ;σ,

if glb({lsort(f(t̃)), lsort(f(s̃))}) 6= ⊥ and t̃ 6= s̃.

O: Orient

{(t, t̃)
.
= (x, s̃)} ∪ Γ;σ =⇒ {(x, s̃)

.
= (t, t̃)} ∪ Γ;σ, where t /∈ V .

WkE1: Weakening and Elimination 1

{(x, t̃)
.
= (s, s̃)} ∪ Γ;σ =⇒ {t̃

.
= s̃}ϑ ∪ Γϑ;σϑ,

where s /∈ V , x /∈ var(s), ω ∈ weak({s lsort(x)}), and ϑ = ω ∪ {x 7→ sω}.

WkE2: Weakening and Elimination 2

{(x, t̃)
.
= (y, s̃)} ∪ Γ;σ =⇒ {t̃

.
= s̃}ϑ ∪ Γϑ;σϑ,

where R = glb(lsort(x), lsort(y)) 6≃ 1 and ϑ = {x 7→ w, y 7→ w} for a fresh variable w ∈ VR.

WkWd1: Weakening and Widening 1

{(x, t̃)
.
= (s, s̃)} ∪ Γ;σ =⇒ {(z, t̃)

.
= s̃}ϑ ∪ Γϑ;σϑ,

if s /∈ V , x /∈ var(s), there is (r,R) ∈ lf (lsort(x)) with R 6≃ 1, ω ∈ weak({s r}), z ∈ VR is
a fresh variable and ϑ = ω ∪ {x 7→ (sω, z)}.

WkWd2: Weakening and Widening 2

{(x, t̃)
.
= (y, s̃)} ∪ Γ;σ =⇒ {(z, t̃)

.
= s̃}ϑ ∪ Γϑ;σϑ,

where (S,R) is a split of lsort(x) such that R 6≃ 1, w ∈ VR′ is a fresh variable with R
′ =

glb({S, lsort(y)}) 6≃ 1, z is a fresh variable with lsort(z) = R, and ϑ = {x 7→ (w, z), y 7→ w}.

202 T. KUTSIA AND M. MARIN

WkWd3: Weakening and Widening 3

{(x, t̃)
.
= (y, s̃)} ∪ Γ;σ =⇒ {t̃

.
= (z, s̃)}ϑ ∪ Γϑ;σϑ,

where (S,R) is a split of lsort(y) such that R 6≃ 1, w ∈ VR′ is a fresh variable with R
′ =

glb({S, lsort(x)}) 6≃ 1, z is a fresh variable with lsort(z) = R, and ϑ = {x 7→ w, y 7→ (w, z)}.

Note that R′ 6≃ 1 in WkWd2 and WkWd3 implies that in those rules S 6≃ 1. We denote
this set of transformation rules with T.

Theorem 4 (Soundness of Unification Rules). The rules of T are sound.

To solve a unification problem Γ, we create the initial pair Γ; ε and first apply the
projection rule to it in all possible ways. From each obtained problem we select an equation
and apply the other rules exhaustively to that selected equation, developing the search tree
in a breadth-first way. If no rule applies, the problem is transformed to ⊥. The obtained
procedure is denoted byP(Γ). Branches in the search tree form derivations. The derivations
that end with ⊥ are failing derivations. The derivations that end with ∅;ϕ are successful

derivations. The set of all ϕ’s at the end of successful derivations of P(Γ) is called the
computed substitution set of P(Γ) and is denoted by comp(P(Γ)). From Theorem 4 by
induction on the length of derivations one can prove that every ϕ ∈ comp(P(Γ)) is a unifier
of Γ.

One can observe that under this control, variables are replaced with ǫ only at the pro-
jection phase. In particular, no variable introduced in intermediate stages gets eliminated
with ǫ or replaced by a variable whose sort is 1.

Theorem 5 (Completeness of the Unification Procedure). Let Γ be a REOSU problem with

a unifier ϑ. Then there exists σ ∈ comp(P(Γ)) such that σ ≤var(Γ) ϑ.

Note that the set comp(P(Γ)), in general, is not minimal.3

By restricting sorts or occurrences of variables, various terminating fragments of RE-
OSU can be obtained. We mention only four of them here:

• If sorts of all variables in Γ are star-free, then Γ is finitary. To show this, we first
transform Γ into Γ′, replacing each occurrence of a variable x : R1.R2 in Γ by a
sequence of two fresh variables x1 : R1 and x2 : R2. Then, for each y : R1+R2

in Γ′, we obtain a new problem Γ′
1 by replacing each occurrence of y by a fresh

variable y1 : R1, and a a new problem Γ′
2 replacing each occurrence of y by a fresh

variable y2 : R1. Applying these transformations on each of the obtained problems
iteratively, we reach a finite set of order-sorted unification problems, where each
variable is of a basic sort. Since the set of basic sorts is finite, such problems are
finitary [Wal88]. Γ is solvable if and only if at least one of the obtained problems is
solvable. The transformation establishes a one-to-one correspondence between the
unifiers of obtained problems and the unifiers of Γ, which implies that Γ is finitary.

• If variables whose sort contains the star occur in the last argument position. This is
a pretty useful terminating fragment. One can formulate more optimized transfor-
mation rules for it and show termination based on the ideas of a similar fragment
in sequence unification [Kut07].

3However, if in the rules WkE1 and WkE2 the substitution ω is selected from a minimal subset of the

corresponding weakening set, one can show that comp(P(Γ)) is almost minimal. (Almost minimality is

defined in [Kut07]).

ORDER-SORTED UNIFICATION WITH REGULAR EXPRESSION SORTS 203

• The previous fragment can be extended to another terminating fragment, called
postfix-closed, where each occurrence of the same star-sorted variable is followed
by the same sequence everywhere, like, e.g., in the problem {f(a, f(y, b), x, y, b)

.
=

f(z, x, y, b)}, where the sorts of the variables x and y contain the star.
• If one side of each equation in Γ is ground, then Γ is finitary. These are REOS
matching problems. For them, termination of P(Γ) can be proved based on the
ideas of termination proof for sequence matching in [Kut07]. Note that for REOS
matching there is no need to invoke the weakening algorithm.

Now we demonstrate on an example how the unification procedure P works:

Example 4. Let {f(x, y, z)
.
= f(f(x), g(u), a, b)} be a REOSU problem, where the basic

sorts are s, r, and q, ordered as s ≺ q, r ≺ q, and the symbols have the following sorts:

x, z : s∗ f : q∗ → r

y, u : q g : q → q

a, b : s g : s+ r → s.

That means, g is overloaded. We show a successful derivation for this problem. The first
two steps are decomposition and projection:

{f(x, y, z)
.
= f(f(x), g(u), a, b)}; ε =⇒D

{(x, y, z)
.
= (f(x), g(u), a, b)}; ε =⇒P

{(y, z)
.
= (f(ǫ), g(u), a, b)}; {x 7→ ǫ}

The weakening pair f(ǫ) q has ε as a weakening substitution. Hence, we can make the
next step with the WkE1 rule:

{(y, z)
.
= (f(ǫ), g(u), a, b)}; {x 7→ ǫ} =⇒WkE1

{z
.
= (g(u), a, b)}; {x 7→ ǫ, y 7→ f(ǫ)}

Now, (s, s∗) ∈ lf (lsort(z)). The least sort of g(u) is q 6� s. However, we can weaken g(u)
towards s: The weakening pair g(u) s has a solution {u 7→ v}, where v ∈ Vs+r is a fresh
variable. We perform the WkWd1 step, introducing a fresh variable z1 ∈ Vs∗ :

{z
.
= (g(u), a, b)}; {x 7→ ǫ, y 7→ f(ǫ)} =⇒WkWd1

{z1
.
= (a, b)}; {x 7→ ǫ, y 7→ f(ǫ), u 7→ v, z 7→ (g(v), z1)}

The next step is again WkWd1. To make it, we take a weakening substitution ε for a s
∗,

a fresh variable z2 = Vs∗ and proceed:

{z1
.
= (a, b)}; {x 7→ ǫ, y 7→ f(ǫ), u 7→ v, z 7→ (g(v), z1)} =⇒WkWd1

{z2
.
= b}; {x 7→ ǫ, y 7→ f(ǫ), u 7→ v, z 7→ (g(v), a, z2), z1 7→ (a, z2)}

The last two steps in the derivation are WkE1 and T. WkE1 uses the weakening substitution
ε for b s

∗:

{z2
.
= b}; {x 7→ ǫ, y 7→ f(ǫ), u 7→ v, z 7→ (g(v), a, z2), z1 7→ (a, z2)} =⇒WkE1

{ǫ
.
= ǫ}; {x 7→ ǫ, y 7→ f(ǫ), u 7→ v, z 7→ (g(v), a, b), z1 7→ (a, b), z2 7→ b} =⇒T

∅; {x 7→ ǫ, y 7→ f(ǫ), u 7→ v, z 7→ (g(v), a, b), z1 7→ (a, b), z2 7→ b}.

204 T. KUTSIA AND M. MARIN

Finally, restricting the computed substitution to the variables of the original problem
{f(x, y, z)

.
= f(f(x), g(u), a, b)}, we obtain its unifier {x 7→ ǫ, y 7→ f(ǫ), u 7→ v, z 7→

(g(v), a, b)}.

Decidability

To show decidability, we define a translation from REOSU problems into word equa-
tions with regular constraints. The idea is similar to the one of [LV01], used to translate
context equations into traversal equations, or of [KLV09], used to translate left-hole context
equations into word equations with regular constraints.

For each basic sort we assume at least one constant of that sort and proceed as follows:

• First, we show that each solvable REOSU problem Γ has a unifier σ with the prop-
erty depth(σ) ≤ size(Γ), where size(Γ) is the number of alphabet symbols in Γ.

• Next, we transform a REOSU problem Γ into a WU problem with regular constraints
by a transformation that preserves solvability in both directions. The transformation
uses the minimal unifier depth bound when translating sort information. Since
WURC is decidable, we get decidability of REOSU.

We now elaborate on these items. We can assume without loss of generality that we
are looking for the unifiers that do not map any variable to ǫ (nonerasing unifiers).

Unifier depth bound. Let ϑ be a depth-minimal nonerasing unifier of Γ with the domain
dom(ϑ) ⊆ var(Γ) and let ρ be a grounding substitution for Γϑ, mapping each variable in
Γϑ to a sequence of constants of appropriate sort. We denote ϑρ by σ. Then for each
x ∈ var(Γ), xσ consists of terms of the form tσ, where t is either a subterm of Γ, or
a constant, or is obtained from a subterm of Γ by replacing variables with sequences of
constants. Since there are size(Γ) subterms in Γ and we can not repeat application of a
subterm on itself, depth(tσ) ≤ size(Γ). Therefore, depth(xσ) ≤ size(Γ) for all x ∈ dom(σ)
which implies depth(σ) ≤ size(Γ).

Translation into a WURC problem. Let Γ be a REOSU problem. For the translation, we
restrict ourselves to the function symbols occurring in Γ and, additionally, one constant for
each basic sort, if Γ does not contain a constant of that sort. This alphabet is finite. We
denote it by FΓ.

First, we ignore the sort information and define a transformation Tr from term se-
quences into words as follows:

Tr(x) = x

Tr(f(t̃)) = fTr(t̃)f

Tr(ǫ) = ǫ

Tr(t1, . . . , tn) = Tr(t1)# · · ·#Tr(tn), n > 1

where # is just a letter that does not occur in FΓ. A mapping σ from variables to term
sequences is translated into a substitution for words Tr(σ) defined as xTr(σ) = Tr(xσ) for
each x. Tr is an injective function. Its inverse is denoted by Tr−1.

Example 5. Let Γ = {f(x, y)
.
= f(f(y, a), b, c)} with s � r, x : s, y : r∗, f : r∗ → s, a : s

and b, c : r. Then Γ has a solution σ = {x 7→ f(b, c, a), y 7→ (b, c)}. On the other hand,
Tr(Γ) = {fx#yf

.
= ffy#aaf#bb#ccf} is a word unification problem with the nonerasing

ORDER-SORTED UNIFICATION WITH REGULAR EXPRESSION SORTS 205

solutions ϕ1 = {x 7→ fbb#cc#aaf, y 7→ bb#cc}, ϕ2 = {x → fcc#aaf#bb, y 7→ cc}, ϕ3 =
{x 7→ faaf#bbf#cc, y 7→ aaf#bbf#cc}. It is easy to see that ϕ1 = Tr(σ), but ϕ2 and
ϕ3 are extra substitutions introduced by the transformation. However, they are of different
nature: Tr−1(ϕ2) exists and it is a mapping {x 7→ (f(c, a), b), y 7→ c}, but it is not a
substitution because it is not well-sorted. Tr−1(ϕ3) does not exist (which indicates that Tr
is not surjective).

Lemma 5. If σ is a substitution and t̃ is a sequence of REOS terms, then Tr(t̃)Tr(σ) =
Tr(t̃σ).

This lemma implies that if a REOSU Γ is solvable, then Tr(Γ) is solvable. The con-
verse, in general, is not true, because the transformation introduces extra solutions. How-
ever, translating sort information and considering word equations with regular constraints
prevents extra solutions to appear and we get solvability preservation in both directions, as
we will see below.

We start with translating sort information: For each x ∈ var(Γ), we transform x : R
into a membership constraint x ∈ Tr(R,Γ), where Tr(R,Γ) is defined as the set

Tr(R,Γ) = {Tr(t̃) | the terms in t̃ are from T (FΓ),

lsort(t̃) � R and depth(t̃) ≤ size(Γ)}.

That is, we translate only those t̃’s whose minimal sort does not exceed R and whose
depth is bounded by size(Γ).

We show now that Tr(R,Γ) is a regular word language. First, we introduce a notation
for regular word languages: We write L1.#L2 for the language {w1#w2 | w1 ∈ L1, w2 ∈ L2}.

L0# = {ǫ}, L1# = L, Ln# = L.#L
(n−1)# and L∗# = ∪∞

n=0L
n# .

For each R, the language Tr(R,Γ) is constructed level by level, first for the term
sequences of depth 1, then for depth 2, and so on, until the depth bound depth(Γ):

• Depth 1:

Tr1(s,Γ) = {aa | a ∈ FΓ, a : s′, s′ � s} (This set is finite.)

Tr1(1,Γ) = {ǫ}

Tr1(R1 + R2,Γ) = Tr1(R1,Γ) ∪ Tr1(R2,Γ)

Tr1(R1.R2,Γ) = Tr1(R1,Γ).#Tr1(R2,Γ)

Tr1(R
∗,Γ) = Tr1(R,Γ)

∗#

• Depth n > 1:

Trn(s,Γ) = Trn−1(s,Γ) ∪ {fwf | f ∈ FΓ, f : R → s
′,

w ∈ Trn−1(R
′,Γ),R′ � R, s′ � s}

Trn(1,Γ) = {ǫ}

Trn(R1 + R2,Γ) = Trn(R1,Γ) ∪ Trn(R2,Γ)

Trn(R1.R2,Γ) = Trn(R1,Γ).#Trn(R2,Γ)

Trn(R
∗,Γ) = Trn(R,Γ)

∗#

It shows that Trn(R,Γ) is regular for each n. From this construction it follows that
Tr(R,Γ) = Tr size(Γ)(R,Γ) and, hence, Tr(R,Γ) is regular.

206 T. KUTSIA AND M. MARIN

Example 6. Consider again Γ and the sort information from Example 5. Now it gets
translated into a WURC problem ∆ = {fx#yf

.
= ffy#aaf#bb#ccf, x ∈ Tr(s,Γ), y ∈

Tr(r∗,Γ)}. Tr(s,Γ) contains (among others) fbb#cc#aaf , but neither fcc#aaf#bb nor
faaf#bbf#cc. Tr(r∗,Γ) contains (among others) bb#cc. Hence, ϕ1 from Example 5 is a
solution of ∆, but ϕ2 and ϕ3 are not.

Finally, we have the theorem:

Theorem 6. Let Γ = {s̃1
.
= t̃1, . . . , s̃n

.
= t̃n} be a REOSU problem with var(Γ) =

{x1, . . . , xm} such that xi : Ri for each 1 ≤ i ≤ m. Let ∆ = {Tr(s̃1)
.
= Tr(t̃1), . . . ,Tr(s̃n)

.
=

Tr(t̃n), x1 ∈ Tr(R1,Γ), . . . , xm ∈ Tr(Rm,Γ)} be a word unification problem with regular

constraints, obtained by translating Γ. Then Γ is solvable iff ∆ is solvable.

Hence, the problem of deciding solvability of REOSU has been (polynomially) reduced
to the problem of deciding solvability of WURC. Since the latter is decidable, we conclude
with the following result:

Theorem 7 (Decidability). Solvability of REOSU is decidable.

4. Conclusion

We studied unification in order-sorted theories with regular expression sorts. We showed
how it generalizes some known unification problems, proved its decidability and gave a
complete unification procedure. A regular expression order-sorted signature can be viewed
as a bottom-up finite hedge automaton. Such automata are considered to be a suitable
framework for manipulating XML data. Since our language can model, to some extent,
DTD and XML Schema, one can see a possible application (perhaps of its fragments) in
the area related to XML processing.

Acknowledgments

This research has been partially supported by the EC FP6 Programme for Integrated In-
frastructures Initiatives under the project SCIEnce—Symbolic Computation Infrastructure
for Europe (Contract No. 026133) and by JSPS Grant-in-Aid no. 20500025 for Scientific
Research (C).

References

[AM95] V. Antimirov and P. D. Mosses. Rewriting extended regular expressions. Theoretical Computer

Science, 143(1):51–72, 1995.

[Ant95] V. Antimirov. Rewriting regular inequalities (extended abstract). In H. Reichel, editor, Funda-

mentals of Computation Theory, 10th International Symposium FCT’95, volume 965 of LNCS,

pages 116–125. Springer, 1995.

[Ant96] V. Antimirov. Partial derivatives of regular expressions and finite automaton constructions. The-

oretical Computer Science, 155(2):291–319, 1996.

[Bou92] A. Boudet. Unification in order-sorted algebras with overloading. In D. Kapur, editor, Proceedings

of the 11th International Conference on Automated Deduction, CADE-11, volume 607 of Lecture

Notes in Computer Science, pages 193–207. Springer, 1992.

[BS01] F. Baader and W. Snyder. Unification theory. In A. Robinson and A. Voronkov, editors, Handbook

of Automated Reasoning, volume I, chapter 8, pages 445–532. Elsevier Science, 2001.

ORDER-SORTED UNIFICATION WITH REGULAR EXPRESSION SORTS 207

[CDG+] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,

and M. Tommasi. Tree automata techniques and applications. Available from:

http://www.grappa.univ-lille3.fr/tata, version from October 12, 2007.

[Com89] H. Comon. Inductive proofs by specification transformation. In N. Dershowitz, editor, Proc.

3rd International Conference on Rewriting Techniques and Applications, RTA’89, volume 355 of

LNCS, pages 76–91. Springer, 1989.

[Con71] J.H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, London, 1971.

[GM92] J. A. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for multiple inheri-

tance, overloading, exceptions and partial operations. Theoretical Computer Science, 105(2):217–

273, 1992.

[HM08] J. Hendrix and J. Meseguer. Order-sorted unification revisited. In G. Kniesel and J. Sousa

Pinto, editors, Pre-proceedings of the 9th International Workshop on Rule-Based Programming,

RULE’08, pages 16–29, 2008.

[HP03] H. Hosoya and B. Pierce. Regular expression pattern matching for XML. J. Functional Program-

ming, 13(6):961–1004, 2003.

[Kir88] C. Kirchner. Order-sorted equational unification. Presented at the fifth International Conference

on Logic Programming (Seattle, USA), 1988. Also as rapport de recherche INRIA 954, December

1988.

[KLV09] T. Kutsia, J. Levy, and M. Villaret. On the relation between context and sequence unification.

J. Symbolic Computation, 45(1):74–95, 2009.

[Kut02] T. Kutsia. Unification with sequence variables and flexible arity symbols and its extension with

pattern-terms. In J. Calmet, B. Benhamou, O. Caprotti, L. Henocque, and V. Sorge, editors, Ar-

tificial Intelligence, Automated Reasoning and Symbolic Computation. Proc. of Joint AISC’2002

– Calculemus’2002 Conference, volume 2385 of LNAI, pages 290–304. Springer, 2002.

[Kut07] T. Kutsia. Solving equations with sequence variables and sequence functions. J. Symbolic Com-

putation, 42(3):352–388, 2007.

[LV01] J. Levy and M. Villaret. Context unification and traversal equations. In A. Middeldorp, editor,

Proc. of the 12th International Conference on Rewriting Techniques and Applications, RTA’01,

volume 2041 of LNCS, pages 169–184. Springer, 2001.

[MGS89] J. Meseguer, J. A. Goguen, and G. Smolka. Order-sorted unification. J. Symbolic Computation,

8(4):383–413, 1989.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM, 12(1):23–41,

1965.

[Sch90] K. U. Schulz. Makanin’s algorithm for word equations – two improvements and a generalization.

In K. Schulz, editor, Word Equations and Related Topics, number 572 in LNCS, pages 85–150.

Springer, 1990.

[SNGM89] G. Smolka, W. Nutt, J. A. Goguen, and J. Meseguer. Order-sorted equational computation. In

M. Nivat and H. Aı̈t-Kaci, editors, Resolution of Equations in Algebraic Structures, volume 2,

pages 297–367. Academic Press, 1989.

[SS89] M. Schmidt-Schauß. Computational Aspects of an Order-sorted Logic with Term Declarations.

Number 395 in Lecture Notes in Computer Science. Springer, 1989.

[Sul09] M. Sulzmann. regexpr-symbolic: Regular expressions via symbolic manipulation.

http://hackage.haskell.org/package/regexpr-symbolic, 2009.

[Wal88] Ch. Walther. Many-sorted unification. J. ACM, 35(1):1–17, 1988.

[Wei96] Ch. Weidenbach. Unification in sort theories and its applications. Annals of Mathematics and

Artificial Intelligence, 18(2):261–293, 1996.

208 T. KUTSIA AND M. MARIN

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 209-226
http://rewriting.loria.fr/rta/

AN EFFICIENT NOMINAL UNIFICATION ALGORITHM

JORDI LEVY 1 AND MATEU VILLARET 2

1 Artificial Intelligence Research Institute (IIIA),

Spanish Council for Scientific Research (CSIC), Barcelona, Spain.

E-mail address: levy@iiia.csic.es

URL: http://www.iiia.csic.es/~levy

2 Departament d’Informàtica i Matemàtica Aplicada (IMA),

Universitat de Girona (UdG), Girona, Spain.

E-mail address: villaret@ima.udg.edu

URL: http://ima.udg.edu/~villaret

Abstract. Nominal Unification is an extension of first-order unification where terms can

contain binders and unification is performed modulo α-equivalence. Here we prove that the

existence of nominal unifiers can be decided in quadratic time. First, we linearly-reduce

nominal unification problems to a sequence of freshness and equalities between atoms,

modulo a permutation, using ideas as Paterson and Wegman for first-order unification.

Second, we prove that solvability of these reduced problems may be checked in quadratic

time. Finally, we point out how using ideas of Brown and Tarjan for unbalanced merging,

we could solve these reduced problems more efficiently.

1. Introduction

Nominal techniques introduce mechanisms for renaming via name-swapping, for name-
binding, and for freshness of names. They were introduced at the beginning of this decade
by Gabbay and Pitts [Pit01, Gab01, Pit03]. These first works have inspired a sequel
of papers where bindings and freshness are introduced in other topics, like nominal al-
gebra [Gab06, Gab07, Gab09], equational logic [Clo07], rewriting [Fer05, Fer07], unifica-
tion [Urb03, Urb04], and Prolog [Che04, Urb05].

In this paper we study the complexity of Nominal Unification [Urb03, Urb04], an exten-
sion of first-order unification where terms can contain binders and unification is performed
modulo α-equivalence. Moreover, (first-order) variables (unknowns) are allowed to “cap-
ture” bound variables (atoms) contrarily to unification in λ-calculus. In [Urb03, Urb04]
it is described a sound and complete, but inefficient (exponential), algorithm for nominal
unification. Later this algorithm was extended to deal with the new-quantifier and locality
in [Fer05]. In [Cal07] there is a description of a direct but exponential implementation in

Key words and phrases: Nominal Logic, Unification.

This research has been partially founded by the CICYT research projects Mulog2 (TIN2007-68005-C04)

and SuRoS (TIN2008-04547).

c© J. Levy and M. Villaret
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.209

210 J. LEVY AND M. VILLARET

Maude, and a polynomial implementation in OCAML based on termgraphs. In [Cal08], it
is described a polynomial algorithm for nominal unification. In [Lev08] it is proved that the
problem can be solved in quadratic time by quadratic reduction to Higher-Order Pattern
Unification, that is claimed to be linear [Qia96]. Therefore, the present algorithm does not
improve the complexity bounds already known. However, it has to be noticed that in this
paper we describe a practical implementation, and that it is really difficult to obtain a prac-
tical algorithm from the proof described in [Qia96]. In [Cal10] there is a quadratic algorithm
for nominal unification, independently found by Calvès, and also based on Paterson and
Wegman’s first-order unification algorithm. Other extensions of nominal unification have
been studied in [Che05, Dow09, Dow10].

This paper proceeds as follows. In Section 2 we describe nominal logic and the nominal
unification algorithm of [Urb03, Urb04]. In Section 3 we prove that freshness equations and
suspensions are mere syntactic sugar. We can translate them in terms of basic nominal
equations, with a linear increasing in the size of the problem. In Section 4 we describe the
Paterson-Wegman linear algorithm for First-Order Unification [Pat78] and some preliminary
ideas of how we plan to adapt this algorithm to nominal unification. In Section 5, we
introduce replacings as L = (a1 ← b1) · · · (an ← bn). We say that t and u are equivalent
modulo L, written t =L u, if an. · · · a1.t ≈ bn. · · · b1.u. In some cases we need to compute
some kind of composition of replacings. This leads us to the introduction of generalized
replacings in Section 6. The adaptation of Paterson-Wegman’s algorithm is described in
Section 7. It allows us to translate a nominal unification problem into a set of replacing
equations in linear time. Section 8 is devoted to the verification of these replacing equations.
There we prove that it can be done in quadratic time. Finally, in Section 9 we discuss on
the possibility of improving this bound and do this verification in quasi-linear time.

2. Preliminaries

Nominal terms contain variables and atoms. Only variables may be instantiated, and
only atoms may be bound. They roughly correspond to the higher-order notions of free and
bound variables, respectively, but are considered as completely different entities. Therefore,
contrarily to the higher-order perspective, in nominal terms it makes no sense the distinction
between free and bound variables depending on the existence of a binder above them.

Nominal terms1 (typically t, u, . . .) are given by the grammar:

t ::= 〈t1, t2〉 | f(t1, . . . , tn) | a | a.t |πX

where f is a function symbol, a is an atom, π is a permutation (finite list of swappings),
and X is a variable.

A swapping (a b) is a pair of atoms of the same sort. The effect of a swapping over an
atom is defined by (a b) a = b and (a b) b = a and (a b) c = c, when c 6= a, b. For the rest
of terms the extension is straightforward, in particular, (a b) (c.t) =

(

(a b) c
)

.
(

(a b) t
)

. A
permutation is a (possibly empty) sequence of swappings. Suspensions are uses of variables
with a permutation of atoms waiting to be applied once the variable is instantiated.

Substitutions are sort-respecting functions and behave like in first-order logic, hence
allowing atom capture, for instance [X 7→ a]a.X = a.a.

1For simplicity, we do not consider the unit value nor the pairing. Instead of them we consider n-ary

function symbols.

AN EFFICIENT NOMINAL UNIFICATION ALGORITHM 211

A freshness environment (typically ∇) is a list of freshness constraints a#X stating
that the instantiation of X cannot contain free occurrences of a.

The notion of nominal term α-equivalence, noted ≈, is defined by means of the following
theory:

∇ ⊢ t1 ≈ u1 · · · ∇ ⊢ tn ≈ un
∇ ⊢ f(t1, . . . , tn) ≈ f (u1, . . . , un)

(≈-function)
∇ ⊢ a ≈ a

(≈-atom)

a 6= a′ ∇ ⊢ t ≈ (a a′) t′ ∇ ⊢ a#t′

∇ ⊢ a.t ≈ a′.t′
(≈-abst-2) ∇ ⊢ t ≈ t′

∇ ⊢ a.t ≈ a.t′
(≈-abst-1)

(a#X) ∈ ∇ for all a such that π a 6= π′ a

∇ ⊢ πX ≈ π′X
(≈-susp.)

where the freshness predicate # is defined by:

∇ ⊢ a#t1 · · · ∇ ⊢ a#tn
∇ ⊢ a#f(t1, . . . , tn)

(#-function)
a 6= a′

∇ ⊢ a#a′
(#-atom)

∇ ⊢ a#a.t
(#-abst-1)

a 6= a′ ∇ ⊢ a#t

∇ ⊢ a#a′.t
(#-abst-2)

(π−1 a#X) ∈ ∇

∇ ⊢ a#πX
(#-susp.)

Their intended meanings are: ∇ ⊢ a# t holds if, for every substitution σ respecting the
freshness environment ∇ (i.e. avoiding the atom captures forbidden by ∇), a is not free in
σ(t); ∇ ⊢ t ≈ u holds if, for every substitution σ respecting the freshness environment ∇, t
and u are α-convertible.

A nominal unification problem (typically P) is a set of equations of the form t
?
≈ u or

a# ?t, equational problems and freshness problems respectively. A solution of a nominal
problem is given by a substitution σ and a freshness environment ∇. Formally, the pair
〈∇, σ〉 solves P if, ∇ ⊢ a#σ(t), for freshness problems a# ?t ∈ P , and ∇ ⊢ σ(t) ≈ σ(u),

for equational problems t
?
≈ u ∈ P .

Example 2.1. The solutions of the equation a.X
?
≈ b.X can not instantiate X with terms

containing free occurrences of the atoms a and b, for instance if we apply the substitution
[X 7→ a] to both sides of the equation we get [X 7→ a]a.X = a.a for the left hand side and
[X 7→ a]b.X = b.a for the right hand side, and obviously a.a 6≈ b.a.

The most general solution of this equation is 〈{a#X, b#X}, []〉.

The first linear First-Order Unification algorithm was described by Paterson and Weg-
man [Pat78]. Here we describe it in terms of transformation rules as it is done by Martelli
and Montanari in [Mar82].

Definition 2.2. The Paterson-Wegman can be described by the following two transforma-
tion rules.
Simplification:

{X1, X
′
1, . . . } = f(Y1, . . . , Ym)

{X2, X
′
2, . . . } = f(Z1, . . . , Zm)

X1 = X2

=⇒

{X1, X
′
1, . . . , X2, X

′
2, . . . } = f(Y1, . . . , Ym)

Y1 = Z1

. . .
Ym = Zm

212 J. LEVY AND M. VILLARET

Variable:
{X1, X

′
1, . . . } = t

{X2, X
′
2, . . . } = ∅

X1 = X2

=⇒ {X1, X
′
1, . . . , X2, X

′
2, . . . } = t

At every transformation, the selected equation X1 = X2 has to be maximal in the sense
that there is no other equation Xm

1 = Xm
2 and a set of equations of the form

{Xm
i , . . . } = fm−1(. . . , X

m−1
i , . . .), . . . , {X1

i , . . . } = f1(. . . , Xi, . . .) for i = 1 or i = 2.

3. Three Initial Simplifications

In this section we show how we can simplify nominal unification problems getting rid of
freshness equations, of suspensions, and flattening all applications and abstractions. We will
show that these simplifications only increase the size of the problem linearly. Lemma 3.1
shows us how to encode a freshness equation as an equality equation, and Lemma 3.2,
how to encode a suspension also as an equality. Therefore, we can conclude that freshness
equations and suspensions are mere syntactic sugar in nominal unification.

Lemma 3.1. Let b 6= a. Then, P ∪ {a#t} and P ∪ {a.b.t
?
≈ b.b.t} have the same solutions.

Proof. We first prove that 〈a#t, Id〉 is a solution of {a.b.t
?
≈ b.b.t} when b 6= a

....
t ≈ t

a#t.... (lemma 2.7)

b#(a b) t

b.t ≈ a.(a b) t
(≈-abst-2)

a#t

a#b.t
(#-abst-2)

a.b.t ≈ b.b.t
(≈-abst-2)

In this proof we prove t ≈ t from an empty set of assumptions. We can prove that this
is always possible, for any term t, by structural induction on t. We also prove b#(a b) t from
a#t, using Lemma 2.7 of [Urb04].

Now, since ∇′ ⊢ σ(∇) and ∇ ⊢ t ≈ t′ implies ∇′ ⊢ σ(t) ≈ σ(t′) (see Lemma 2.14 of

[Urb04]), we have that, if 〈∇, σ〉 solves a#?t, then 〈∇, σ〉 solves a.b.t
?
≈ b.b.t.

Second, analyzing the previous proof, we see that the inference rules applied in each

situation were the only applicable rules. Therefore, any solution 〈∇, σ〉 solving a.b.t
?
≈ b.b.t,

also solves a#?t, because any proof of σ(a.b.t) ≈ σ(b.b.t) contains a proof of a#σ(t) as a
sub-proof.

From, these two fact we conclude that a# ?t and a.b.t
?
≈ b.b.t have the same set of

solutions, for any b 6= a. Therefore, {a# ?t} ∪ P and {a.b.t
?
≈ b.b.t} ∪ P , also have the

same set of solutions, for any nominal unification problem P . From this we conclude that

P ∪ {a#t} and P ∪ {a.b.t
?
≈ b.b.t} have the same set of solutions.

Lemma 3.2. P ∪ {t
?
≈ (a b)u} and P ∪ {a.b.t

?
≈ b.a.u} have the same solutions.

Proof. If a = b the proof is obvious. If a 6= b, then the proof is similar to proof of Lemma 3.1.

In this case, the proof of a.b.t
?
≈ b.a.u from t

?
≈ (a b)u is as follows:

t ≈ (a b)u

b.t ≈ b.(a b)u
(≈-abst-1)

a#a.u
(#-abst-1)

a.b.t ≈ b.a.u
(≈-abst-2)

AN EFFICIENT NOMINAL UNIFICATION ALGORITHM 213

Lemma 3.3. Let X be a fresh variable not occurring elsewhere. Then,

P ∪ {a.t
?
≈ u} and P ∪ {a.X

?
≈ u,X

?
≈ t} are equivalent

P ∪ {f(t1, . . . , tn)
?
≈ u} and P ∪ {f(t1, . . . , ti−1, X, ti+1, tn)

?
≈ u,X

?
≈ ti} are equivalent,

P ∪ {(a b) t
?
≈ u} and P ∪ {(a b)X

?
≈ u,X

?
≈ t} are equivalent,

P ∪ {t1
?
≈ t2} and P ∪ {X

?
≈ t1, X

?
≈ t2} are equivalent, and

P ∪ {Y1
?
≈ Y2} and [Y1 7→ Y2]P are equivalent.

Proof. Let us consider the first statement. If 〈∇, σ〉 solves P ∪ {a.t
?
≈ u}, then it is enough

to extend σ with X 7→ σ(t) to get a solution of P ∪ {a.X
?
≈ u,X

?
≈ t}. In the opposite

direction, any solution of P ∪ {a.X
?
≈ u,X

?
≈ t} is a solution of P ∪ {a.t

?
≈ u}, because, for

any three terms t1, t2 and t3, if a.t2 ≈ t1 and t2 ≈ t3, then a.t3 ≈ t1.

Notice that the previous lemma does not hold for unification in λ-calculus. For instance,
{λa.f(a) =? λb.f(b)} is trivially solvable. However, {λa.X =? λb.b,X =? a} is unsolvable
because, in λ-calculus, we have to avoid variable-capture in substitutions. This fact pre-
vented Qian [Qia96] to apply this simplification in his linear-time algorithm for higher-order
pattern unification.

Theorem 3.4. There exists a linear reduction from Nominal Unification to a simplified ver-

sion of Nominal Unification where all equations are of the form X
?
≈ a, X

?
≈ f(Y1, . . . , Yn)

or X
?
≈ a.Y .

Proof. We apply four reductions. First, applying Lemma 3.1, we can remove all freshness
equations. Second, applying the transformations of Lemma 3.3 widely, replacing the first
set of equations by the second whenever t is not a variable (in the first and third rules), or
ti is not a variable (in the second rule), or t1 and t2 are not variables (in the forth rule),
we can flat all equations. Now, all equations have a variable in one side and a term of
the form a, a.X, f(X1, . . . , Xn), or (a b)X in the other side. In particular, all suspensions

will occur in equations of the form X
?
≈ (a b)Y . Applying Lemma 3.2, we can remove all

them, translating them into a.b.X
?
≈ b.a.Y . Forth, all these equations can be translated

into Z3
?
≈ a.Z1, Z3

?
≈ b.Z2, Z1

?
≈ b.X, Z2

?
≈ a.Y , where Z1, Z2 and Z3 are fresh.

A simple analysis shows that all these transformations are linear.

4. A First (Naive) Idea

Considering the similarities between Nominal Unification and FO Unification, a nat-
ural way to address the implementation of an efficient nominal unification algorithm is to
postpone as much as possible the test of freshness predicates and equality between atoms.
We can adapt algorithm of Definition 4.1 as follows. Instead of equations between variables,
we use equations between variables affected by a permutation: X1 = πX2. Moreover, these
equations are coupled with a set of freshness restrictions with the form of an implication:
a 6= π1b1 ∧ · · · ∧ a 6= πnbn ⇒ a#π0X2. The application rule is quite similar to the one used
in algorithm 4.1, but the abstraction rule involves the extension of the permutation, the
addition of a new associated freshness restriction and of additional conditions to the rest of
freshness restrictions.

214 J. LEVY AND M. VILLARET

Definition 4.1. Consider the following (sound but incomplete) nominal unification algo-
rithm. Given a set of simplified equations, transform them into a set of multi-equations
as follows. First, transform any equation X ?= t into a multi-equation {X} = t, and sec-
ond, transform any pair of multi-equations {X} = t1, {X} = t2 into {X} = t1, {X

′} = t2,
X = X ′, and add a multi-equation {X} = ∅ for any variable not occurring in the left of
any multi-equation, until all variables occur in the left of a multi-equation exactly once.
Then, apply the following transformation rules wisely.
Application:

{X1, S1} = f(Y1, . . . , Ym)
{X2, S2} = f(Z1, . . . , Zm)
X1 = πX2

P1 ⇒ c1#π1X2

· · ·
Pn ⇒ cn#πnX2

=⇒

{X1, S1, πX2, πS2} = f(Y1, . . . , Ym)

Y1 = πZ1, · · · , Ym = πZm

P1 ⇒ c1#π1Z1, . . . , P1 ⇒ c1#π1Zm

· · ·
Pn ⇒ cn#πnZ1, . . . , Pn ⇒ cn#πnZm

Abstraction:

{X1, S1} = a.Y
{X2, S2} = b.Z
X1 = πX2

P1 ⇒ c1#π1X2

· · ·
Pn ⇒ cn#πnX2

=⇒

{X1, S1, πX2, πS2} = a.Y

Y = (a πb)πZ
P1 ∧ c1 6= π1 b⇒ c1#π1Z
· · ·
Pn ∧ cn 6= π1 b⇒ cn#πnZ
a 6= πb⇒ a#πZ

Atom:
{X1, S1} = a
{X2, S2} = b
X1 = πX2

P1 ⇒ c1#π1X2

· · ·
Pn ⇒ cn#πnX2

=⇒

{X1, S1, πX2, πS2} = a

a = πb
P1 ⇒ c1 6= π1b
· · ·
Pn ⇒ cn 6= πnb

Notice that the algorithm previously described is incomplete. For instance, the variable
X1 in {X1, S1} = f(Y1, . . . , Ym) could be already affected by a permutation, which makes
the rule inapplicable. However, these rules allow us to solve the following example:

Example 4.2. The Nominal unification problem a3.a2.a1.f(c1, c2)
?
≈ b3.b2.b1.f(d1, d2) is

transformed by the naive algorithm into the following set of conditional equalities and
inequalities.

c1 = (a1 (a2 (a3b3)b2)(a3 b3)b1)(a2 (a3b3)b2)(a3 b3)d1
c2 = (a1 (a2 (a3b3)b2)(a3 b3)b1)(a2 (a3b3)b2)(a3 b3)d2
a3 6= b3 ∧ a3 6= b2 ∧ a3 6= b1 ⇒ a3 6= d1
a3 6= b3 ∧ a3 6= b2 ∧ a3 6= b1 ⇒ a3 6= d2
a2 6= (a3 b3)b2 ∧ a2 6= (a3 b3)b1 ⇒ a2 6= (a3 b3)d1
a2 6= (a3 b3)b2 ∧ a2 6= (a3 b3)b1 ⇒ a2 6= (a3 b3)d2
a1 6= (a2 (a3b3)b2)(a3 b3)b1 ⇒ a1 6= (a2 (a3b3)b2)(a3 b3)d1
a1 6= (a2 (a3b3)b2)(a3 b3)b1 ⇒ a1 6= (a2 (a3b3)b2)(a3 b3)d2

AN EFFICIENT NOMINAL UNIFICATION ALGORITHM 215

It is easy to see that a generalization of this simple problem to

an.a1.f(c1, . . . , cm)
?
≈ bn.b1.f(d1, . . . , dm)

would result in a set of inequalities of size O(nm). The number of comparisons of atoms
that have to be checked in order to compute the result of applying the permutation and
check the equalities is also O(nm).

5. Simple Replacings

In this section we introduce a new concept, similar to the idea of substitution and of
swapping, but with some differences. Thus, we have preferred to call it with the new name
replacings.

Definition 5.1. A replacing is a (possibly empty) list of pairs of atoms L = (a1 ← b1) · · · (an
← bn).

Given two terms t and u and a replacing L = (a1 ← b1) · · · (an ← bn), we say that t
and u are equivalent modulo L, noted t =L u, if an. · · · a1.t ≈ bn. · · · b1.u.

Any replacing may be associated with a permutation of atoms, defined as follows.
This definition and the following lemma, helps us to see replacings as permutations, plus
a set of associated freshness equations. The example bellow also shows that the associated
permutation is not enough to characterize a replacing.

Definition 5.2. Given a replacing L, we define its associated permutation ΠL inductively
as follows

(1) Π[] = [], being [] the empty list, and empty sequence of swappings.
(2) Π(a←b)L = (a ΠLb)ΠL

Lemma 5.3. Given a replacing L = (a1 ← b1) · · · (an ← bn) and two terms t and u, t =L u
holds, iff

(1) t ≈ ΠLu, and
(2) for any i = 1, . . . , n, if ai 6= Π(ai+1←bi+1)...(an←bn)bj for all j = i, . . . , 1, then

ai#Π(ai+1←bi+1)...(an←bn)u.

Example 5.4. Notice that the permutation ΠL does not characterize the replacing L. For
instance, we have

Π(a←b) = Π(b←a) = Π(b←a)(a←b) = Π(a←b)(b←a) = Π(a←b)(a←b) = (a b) = (b a)

However, assuming a 6= b, we have

t =(a←b) u ⇔ t =(a←b)(a←b) u ⇔ t = (a b)u ∧ a#u
t =(b←a) u ⇔ t =(b←a)(b←a) u ⇔ t = (a b)u ∧ b#u

t =(b←a)(a←b) u ⇔ t =(a←b)(b←a) u ⇔ t = (a b)u

If for any pair of term we have t =L u ⇔ t =L′ u, then this will be also true for any
pair of atoms, and we will have ΠL = ΠL′ . This motivates the following definition.

Definition 5.5. We say that two replacings L and L′ are equivalent if, for any pair of terms
t and u, we have t =L u iff t =L′ u

Lemma 5.6. t =(a1←b1)···(an←bn) u iff u =(b1←a1)···(bn←an) t.

216 J. LEVY AND M. VILLARET

The following lemma describes a method to check if c =L d in time O(|L|).

Lemma 5.7. Given two atoms c and d and a replacing (a← b)L:

c =(a←b)L d iff c = a and b = d, or
c 6= a, b 6= d and c =L d.

Next, we will describe a normalization procedure of replacings. We say that a replacing
(a1 ← b1) · · · (an ← bn) is normalized if a1, . . . , an is a list of pairwise distinct atoms, and
b1, . . . , bn too. Lemma 5.8 states that, any normalized replacing may be characterized by a
set, instead of a list), of pairs of atoms. Lemma 5.9 shows how we can remove duplicated
pairs and normalized replacings, on the expenses of adding freshness equations.

When atoms are not repeated in a replacing, then they are basically2 a permutation,
as the following lemma states.

Lemma 5.8. If L = (a1 ← b1) · · · (an ← bn) is a normalized replacing, i.e. a replacing
where a1, . . . , an is a list of pairwise distinct atoms, and b1, . . . , bn too, then

(1) ΠL is a permutation satisfying ΠL(bi) = ai, for i = 1, . . . , n,
(2) (a1 ← b1) · · · (an ← bn) and (aπ(1) ← bπ(1)) · · · (aπ(n) ← bπ(n)) are equivalent, for

any permutation π.
(3) For any a, b ∈ A, a =L b iff ΠL(a) = b.

Proof. By induction on n. For any i = 1, . . . , n, we have

Π(a1←b1)···(an←bn)
bi = (a1 Π(a2←b2)···(an←bn)

b1) · · · (ai Π(ai+1←bi+1)···(an←bn)
bi)

=Π(ai+1←bi+1)···(an←bn)

︷ ︸︸ ︷

. . . (anbn) bi
︸ ︷︷ ︸

=ai

Hence, the i-th swapping changes Π(ai+1←bi+1)···(an←bn)bi by ai. Now we are going to prove
that ai is not affected by the swappings (aj Π(aj+1←bj+1)···(an←bn)bj) where j > i. On one
hand, by assumption, aj 6= ai when j > i. On the other hand, Π(aj+1←bj+1)···(an←bn)bj 6= ai
because (aj+1 ← bj+1) · · · (an ← bn) is a strictly shorter replacing, and i ∈ {j + 1, . . . , n},
therefore by induction hypothesis (Π(aj+1←bj+1)···(an←bn))

−1(ai) = bi 6= bj .

Lemma 5.9. The replacing L(a ← b)L′ where a occurs on the left in L, and b occurs on
the right in L, is equivalent to LL′. In other words, L1(a← c)L2(d← b)L3(a← b)L4 and
L1(a← c)L2(d← b)L3 L4 are equivalent.

If a occurs on the left in L, but b does not occur in the right in L, then, for any pair of
terms t and u, t =L(a←b)L′ u iff b#u and t =LL′ u.

Similarly, if a does not occur on the left in L, but b occurs in the right in L, then, for
any pair of terms t and u, t =L(a←b)L′ u iff a#t and t =LL′ u.

Proof. In nominal logic, and in λ-calculus we have the following implications:

If a#t and a.t ≈ b.u, then b#u and t ≈ u (5.1)

If t ≈ u, a#t and b#u, then a.t ≈ b.u (5.2)

By definition of replacing, t =(a1←b1)...(an←bn) u is equivalent to an. · · · .a1.t ≈ bn. · · · .b1.u.
For the first statement: For a given i, if ai ∈ {ai−1, . . . , a1}, then ai#ai−1. · · · .a1.t and

t =(a1←b1)...(an←bn) u (using 5.1) imply ai−1. · · · .a1.t ≈ bi−1. · · · .b1.u, hence
t =(a1←b1)...(ai−1←bi−1)(ai+1←bi+1)...(an←bn) u.

2Notice that we still have to ensure the freshness conditions

AN EFFICIENT NOMINAL UNIFICATION ALGORITHM 217

Lemmas 5.8 and 5.9 describe a characterization of replacings in terms of a set of pairs
of atoms (normalized replacing), and a set of freshness equations. In the following we make
explicit this characterization in terms of a set of pairs, called rewriting set, and a set of
forbidden atoms.

Definition 5.10. Given a replacing L, we define the sets of rewriting pairs and forbidden
atoms, noted Rew(L) and For(L), as follows

Rew(L) = {(a← b) ∈ A× A | a 6= b ∧ a =L b}

For(L) = {a ∈ A | ¬(a =L a)}

Lemma 5.11. Replacings L and L′ are equivalent iff Rew(L) = Rew(L′) and For(L) =
For(L′).

Lemma 5.12. For any replacing L we have

Rew([]) = ∅

Rew(L(a← b)) =

{

Rew(L) ∪ {a← b} if a 6= b and ∀c.a← c 6∈ Rew(L) and ∀c.c← b 6∈ Rew(L)

Rew(L) otherwise
For([]) = ∅

For(L(a← b)) =

For(L) ∪ {b} if ∃c.a← c ∈ Rew(L) and ∀d.d← b 6∈ Rew(L)
For(L) ∪ {a} if ∃d.d← b ∈ Rew(L) and ∀c.a← c 6∈ Rew(L)
For(L) otherwise

Proof. Given a replacing, we can use Lemma 5.9 to remove pairs with a duplicated com-
ponent wisely until we obtain a normalized replacing. By Lemma 5.8, this normalized
replacing is the rewriting set, whereas the set of freshness equations define the set of for-
bidden atoms. Then we can check that the previous recursions hold.

6. Generalized Replacings

Sometimes, simple replacings are not enough to represent the equations between atoms
that we have to check. In some cases, we have to use a kind of composition of replacings. In
this section we show how the notion of simple replacing may be generalized for this purpose,
and how we can extend the definition of set of rewritings and set of forbidden atoms.

Definition 6.1. A generalized replacing is an expression generated by the grammar

L ::= Id | (a← b) :: L | L1 ◦ L2 | L
−1

with the following semantics
t =Id u, if t ≈ u,
t =(a←b)::L u, if a.t =L b.u,
t =L1◦L2

u, if there exists a term v such that t =L1
v and v =L2

u, and
t =L−1 u, if u =L t.
The sets Rew(L) and For(L) are defined for generalized replacings as for simple re-

placings.

Lemma 6.2. Any generalized replacing is equivalent to a composition of simple replacings
accordingly to the following equivalences between replacings

(L1 ◦ L2) ◦ L3 = L1 ◦ (L2 ◦ L3)
(a← b) ::

(

L1 ◦ L2

)

=
(

(a← b) :: L1

)

◦
(

(a← b) :: L2

)

(a1 ← b1) :: · · · :: (an ← bn) :: Id = (a1 ← b1) · · · (an ← bn)

218 J. LEVY AND M. VILLARET

The following lemma shows us how we can recursively compute the set of rewritings
and of forbidden atoms of a generalized replacing.

Lemma 6.3.

Rew(Id) = For(Id) = ∅

Rew
(

(a← b) :: L
)

= Rew(L) \ {a← c | ∀c ∈ A} \ {c← b | ∀c ∈ A} ∪

{

{a← b} if a 6= b
∅ if a = b

For
(

(a← b) :: L
)

= For(L) ∪ {c | a← c ∈ Rew(L) ∨ c← b ∈ Rew(L)}

Rew(L1 ◦ L2) = {a← c | ∃b ∈ A a← b ∈ Rew(L1) ∧ b← c ∈ Rew(L2)}
∪{a← b | a← b ∈ Rew(L1) ∧ b 6∈ For(L2)}
∪{a← b | a← b ∈ Rew(L2) ∧ a 6∈ For(L1)}

For(L1 ◦ L2) = For(L1) ∪ For(L2)

Rew(L−1) = {(b← a) | (a← b) ∈ Rew(L)}

For(L−1) = For(L)

7. A Paterson-Wegman Style Algorithm

In this section we describe our nominal unification algorithm in the style of Paterson
and Wegman [Pat78], or, to be precise, in the style of the description that Martelli and
Montanari [Mar82] makes of this algorithm.

First, w.l.o.g. we consider that we have a single nominal equation (we get rid of freshness

equations, by Lemma 3.1, and reduce {t1
?
≈ u1, . . . , tn

?
≈ un} to f(t1, . . . f(tn−1, tn) . . .)

?
≈

f(u1, . . . f(un−1, un) . . .), provided that there exists a binary constant f). Then, we flatten

this equation, obtaining a set of equations of the form X
?
≈ f(Y1, . . . , Yn), X

?
≈ a.Y , X

?
≈ a

or X
?
≈ (a b)Y , and a single equation X1

?
≈ X2, where X1 and X2 do not occur elsewhere

bellow any other symbol. Finally, by Lemma 3.2, we can get rid of equations of the form

X
?
≈ (a b)Y . By Theorem 3.4, the resulting nominal unification problem has size O(|P |) on

the size of the original problem.

Following the notation of [Mar82], equations of the form X
?
≈ f(Y1, . . . , Yn), X

?
≈ a.Y ,

and X
?
≈ a are written in the form {X} = f(Y1, . . . , Yn), {X} = a.Y , and {X} = a,

respectively. The equation X1
?
≈ X2 is written as X1 =Id X2, using the replacing Id. Then,

we apply the following transformation rules wisely, where the equation X1 =L X2 is in all
cases a maximal equation, in the sense of Definition 2.2. Like in the classical Paterson-
Wegman algorithm, there always exists an equation satisfying this condition, and we can
find this equation intelligently, such that the total time consumed by this search is linearly
bounded on the size of the original problem (see [Pat78] for more details).

Definition 7.1. Consider the following set of transformation rules:
Application:

{ΠL1
X1,ΠL′

1
X

′
1, . . . } = f(Y1, . . . , Ym)

{ΠL2
X2,ΠL′

2
X

′
2, . . . } = f(Z1, . . . , Zm)

X1 =L X2

=⇒

{

ΠL1
X1,ΠL′

1
X

′
1, . . . ,

ΠL1◦LX2,ΠL1◦L◦L
−1

2
◦L′

2

X
′
2, . . .

}

= f(Y1, . . . , Ym)

Y1 =
L1◦L◦L

−1

2

Z1

· · ·
Ym =

L1◦L◦L
−1

2

Zm

AN EFFICIENT NOMINAL UNIFICATION ALGORITHM 219

Abstraction:

{ΠL1
X1,ΠL′

1
X ′1, . . . } = a.Y

{ΠL2
X2,ΠL′

2
X ′2, . . . } = b.Z

X1 =L X2

=⇒

{

ΠL1
X1,ΠL′

1
X ′1, . . . ,

ΠL1◦LX2,ΠL1◦L◦L
−1
2 ◦L

′
2
X ′2, . . .

}

= a.Y

Y =(a←b)::(L1◦L◦L
−1
2) Z

Atom:

{ΠL1
X1,ΠL′

1
X ′1, . . . } = a

{ΠL2
X2,ΠL′

2
X ′2, . . . } = b

X1 =L X2

=⇒

{

ΠL1
X1,ΠL′

1
X ′1, . . . ,

ΠL1◦LX2,ΠL1◦L◦L
−1
2 ◦L

′
2
X ′2, . . .

}

= a

a =
L1◦L◦L

−1
2

b

Variable:

{ΠL1
X1,ΠL′

1
X ′1, . . . } = t

{ΠL2
X2,ΠL′

2
X ′2, . . . } = ∅

X1 =L X2

=⇒

{

ΠL1
X1,ΠL′

1
X ′1, . . .

ΠL1◦LX2,ΠL1◦L◦L
−1
2 ◦L

′
2
X ′2, . . .

}

= t

{ΠL1
X1,ΠL′

1
X ′1, . . . } = ∅

{ΠL2
X2,ΠL′

2
X ′2, . . . } = t

X1 =L X2

=⇒

{

ΠL2◦L−1X1,ΠL2◦L−1◦L−1
1 ◦L

′
1
X ′1, . . .

ΠL2
X2,ΠL′

2
X ′2, . . .

}

= t

Theorem 7.2. Given a simplified nominal unification problem P , P is solvable if, and only
if, the rules of Definition 7.1 transform the problem into a set of equations of the form

{ΠL1
1
X1

1 , . . . ,ΠL
r1
1
Xr1

1 } = t1
· · ·

{ΠL1
m
X1

m, . . . ,ΠL
rm
m

Xrm
m } = tm

a1 =L1
b1

· · ·
an =Ln

bn

where {a1 =L1
b1, . . . , an =Ln

bn} holds, and the equations ti =L
j

i

Xj
i , for i = 1, . . . ,m and

j = 1, . . . , ri, are solvable.

When P is solvable, then set of equations ti =L
j

i

Xj
i encode a solution.

Moreover, the size of the DAG representing the new set of equations is O(|P |), and it
can be obtained in time O(|P |).

Proof. Soundness and completeness results from the rules ≈-abst-1, ≈-abst-2, and ≈-fun
and ≈-atom of [Urb04], conveniently written in terms of replacings. The transformations
resemble Paterson-Wegman transformations (Definition 2.2), and the termination proof is
based on the same ideas. Notice that some transformations duplicate some L’s. Therefore,
the linear bound only applies representing equations as DAGs.

Example 7.3. The equation a.b.X
?
≈ b.b.X can be simplified as:

{

{X} = ∅, {Y1} = a.Y3, {Y2} = b.Y4, {Y3} = b.X, {Y4} = b.X, Y1 =Id Y2
}

Applying twice the abstraction rule we obtain:
{

{X} = ∅, {Y1, Y2} = a.Y3, {Y3,Π(a←b)::IdY4} = b.X, X =(b←b)::(a←b)::Id X
}

One application of the variable rule gives us the simplified equations
{

{Y1, Y2} = a.Y3, {Y3,Π(a←b)::IdY4} = b.X, {X,Π(b←b)::(a←b)::IdX} = ∅
}

220 J. LEVY AND M. VILLARET

Example 7.4. From a. b. a
︸︷︷︸

Y4
︸ ︷︷ ︸

Y3
︸ ︷︷ ︸

Y1

?
≈ b. b.X

︸︷︷︸

Y5
︸ ︷︷ ︸

Y2

, we obtain {Y1, Y2} = a.Y3
{Y3,Π(a←b)::IdY5} = b.Y4
{Y4,Π(b←b)::(a←b)::IdX} = a

.

8. Efficient Checking of Replacings

Using the algorithm described in Definition 7.1, we obtain a set of replacing equations
of the form a =L b, a set of equations of the form {ΠL1X1, . . . ,ΠLrXr} = t that codify the
solution, and a DAG that represents the generalized replacings L’s. Now, we will describe
how we can check the solvability of these equations in quadratic time.

The main idea is to compute, for every node of the DAG, the two sets Rew(L) and
For(L), where L is the replacing represented by this node. We will use the values of these
sets already computed for the descendants of the node. Therefore, we proceed from the
leaves of the DAG to the roots. We assume that we have a total ordering on the atoms A.
For efficiency, we compute three lists for every node L: a list RL that contains the elements
of Rew(L) ordered by the first component, RR with the elements of Rew(L) ordered by the
second component, and an ordered list F with the elements of For(L). Moreover, the lists
RL and RR are doubly linked, such that knowing the position of an element (a← b) in RL,
we can know its position in RR and vice versa. Lemma 6.3 describes how to compute these
list. Just as an example, Figure 1 shows how to compute RL, RR and F for L = L1 ◦ L2,
being RLi, RRi and Fi, for i = 1, 2, the respective lists for Li.

To check if a set of equations P of the form {ΠL1
X1, . . . ,ΠLr

Xr} = t has solution, and
what is this solution, we compute the set of atoms that cannot occur free in the instance
of X, written For(X). This computation aborts (using rule 5) if P is unsolvable.

Definition 8.1. Given a set of equations P , for every variable X, we compute For(X) as
the minimal set of atoms that satisfy all the following rules, or we abort.

(1) If P contains {ΠL1
X1, . . . ,ΠLr

Xr} = t,
then Π

L−1
j

(

ΠLi

(

For(Xi)
)

∪ For(Li)
)

⊆ For(Xj), for i 6= j = 1, . . . , r.

(2) If P contains {ΠL1
X1, . . . ,ΠLr

Xr} = f(Y1, . . . , Ym),
then ΠLi

(For(Xi)) ∪ For(Li) ⊆ For(Yj), for i = 1, . . . , r, and j = 1, . . . ,m.
(3) If P contains {ΠL1

X1, . . . ,ΠLr
Xr} = a.Y ,

then ΠLi
(For(Xi)) ∪ For(Li) \ {a} ⊆ For(Y), for i = 1, . . . , r.

(4) If P contains {ΠLX,ΠL′X, . . . } = t and ΠL(a) 6= ΠL′(a), for some a ∈ A, then
a ∈ For(X).

(5) If P contains {ΠL1
X1, . . . ,ΠLr

Xr} = a and a ∈ ΠLi
(For(Xi)) ∪ For(Li), for some

i = 1, . . . , r, then P is unsolvable and abort.

Lemma 8.2. Given a set of equations of the form {ΠL1
X1, . . . ,ΠLr

Xr} = t, we can com-
pute For(X), for every variable X, or abort, in quadratic time on the size of the DAG-
representation of the equations.

Moreover, the solution encoded by the equations is {a#X | a ∈ For(X)}.

Proof. At every node of the DAG representing a generalized replacing L, we compute
Rew(L) and For(L), using the values Rew(Li) and For(Li) previously computed for

AN EFFICIENT NOMINAL UNIFICATION ALGORITHM 221

Input: RL1, RR1, F1, RL2, RR2, F2

Output: RL,RR,F

i1 := 1 ; i2 := 1 ; j1 := 1 ; j2 := 1
while i1 ≤ RR1.size() and i2 ≤ RL2.size() do

let (a← b) = RR1[i1] and (b′ ← c) = RL1[i2]
if b = b′ then

following the double links, change (a← b) in RL1 by (a← c)
following the double links, change (b← c) in RR2 by (a← c)
remove (a← b) from RR1 and (b← c) from RL2

i1 := i1 + 1
i2 := i2 + 1

else if b < b′ then
while j2 ≤ F2.size() and F2[j2] < b do j2 := j2 + 1
if j2 ≤ F2.size() and F2[j2] = b then

remove (a← b) from RR1 and RL1

i1 := i1 + 1
else while j1 ≤ F1.size() and F1[j1] < b do j1 := j1 + 1

if j1 ≤ F1.size() and F1[j1] = b′ then
remove (b′ ← c) from RR2 and RL2

i2 := i2 + 1
if i1 = RR1.size() then

while i2 ≤ RL2.size() do
while j1 ≤ F1.size() and F1[j1] < b′ do j1 := j1 + 1
if j1 ≤ F1.size() and F1[j1] = b′ then

remove (b′ ← c) from RR2 and RL2

i2 := i2 + 1
else while i1 ≤ RR1.size() do

while j2 ≤ F2.size() and F2[j2] < b do j2 := j2 + 1
if j2 ≤ F2.size() and F2[j2] = b then

remove (a← b) from RR1 and RL1

i1 := i1 + 1
RL := merge(RL1, RL2)
RR := merge(RR1, RR2)
F := merge(F1, F2)
return RR,RL, F

Figure 1: Computation of Rew(L1◦L2) and For(L1◦L2) in timeO(|Rew(L1)|+|Rew(L2)|+
|For(L1)|+ |For(L2)|).

the descendants Li of the node. This computation takes at worst linear time for ev-
ery node, being the worst case the composition of replacings L = L1 ◦ L2 with time
O(|Rew(L1)| + |Rew(L2)| + |For(L1)| + |For(L2)|), described in Figure 1. Therefore, the
overall computation takes quadratic time. Then, using the rules of Definition 8.1, in qua-
dratic time we can check if all equations are solvable.

Theorem 8.3. Nominal Unification can be decided in quadratic time.

Proof. By Theorem 3.4 we can assume that nominal equations are simplified. Then, by
Theorem 7.2, we can transform these equations into an equivalent set of equations of the
form a =L b or {ΠL1

X1, . . . ,ΠLr
Xr} = t represented as a DAG, in linear time on the

222 J. LEVY AND M. VILLARET

size of the original equations. Equations a =L b are solvable if (a ← b) ∈ Rew(L). By
Lemma 8.2, we can compute For(X) for every variable, checking the solvability of equations
{ΠL1

X1, . . . ,ΠLr
Xr} = t.

Example 8.4. Consider example 7.3, where we obtain
{

{Y1, Y2} = a.Y3, {Y3,Π(a←b)::IdY4} = b.X, {X,Π(b←b)::(a←b)::IdX} = ∅
}

.
The DAG representation with Rew(L) and For(L) of every node representing a gener-

alized replacing is as follows.

{Y1, Y2} = a.Y3 {Y3,Π•Y4} = b.X {X,Π•X} = ∅

(b← b) :: •

(a← b) :: •

Id

Rew = {} For = {a}

Rew = {a← b} For = {}

Rew = {} For = {}

Definition 8.1 computes For(Y3) = For(X) = {a}, For(Y4) = {b}, For(Y1) = For(Y2) =
∅. Now, considering only original variables, i.e. X, we obtain the solution a#X.

In example 7.4, the equation {Y4,Π(b←b)::(a←b)::IdX} = a, using rule 5 of Definition 8.1,
allows us to deduce that the problem is unsolvable.

9. Conclusions, can we do it better?

We have presented an efficient algorithm that computes nominal unifiers in quadratic
time. This result does not improve the bound found by ourself by reduction to the problem
of Higher-Order Pattern Unification [Lev08]. The natural question now is: can we still
improve this bound?

A careful analysis of the algorithm of Figure 1 shows us that it is basically a merge
function, and that the complete check of the whole DAG of replacings is not very distinct
from a merge-sort algorithm. In fact, if we could ensure that, when L = L1 ◦ L2, we have
|Rew(L)| + |For(L)| ≥ |Rew(L1)| + |For(L1)| + |Rew(L2)| + |For(L2)| and |Rew(L1)| +
|For(L1)| ≈ |Rew(L2)| + |For(L2)|, then the cost of the algorithm would be dominated
by T (n) = 2T (n/2) + O(n) that has solution O(n logn). If we could ensure |Rew(L)| +
|For(L)| ≥ |Rew(L1)|+ |For(L1)|+ |Rew(L2)|+ |For(L2)|, but not the balance between the
data structures of L1 and L2, then we could implement the sorted lists using AVL, and apply
the ideas of Brown and Tarjan [Bro79] for merging of unbalanced sorted lists. This unbalance
merge of two lists of sizes n1 and n2 can be done in time O(n1 log n2

n1
). Therefore, the time

of the complete checking would be dominated by T (n) = T (n1) + T (n2) + O(n1 log n2

n1
),

where n = n1+n2. In this case, the solution is also O(n logn). Therefore, we can conclude
that we can check a set of replacings in time O(n log n) on the size of the tree (not the
DAG) representing the replacing. This means that, when the DAG is a tree, for instance
in example 4.2, we can check the replacings in quasi-linear time.

To conclude, consider the following example, that shows that the quadratic bound seems
difficult to improve in the general case.

AN EFFICIENT NOMINAL UNIFICATION ALGORITHM 223

Example 9.1. Given a permutation π of m = |π| elements, an a value n, we can construct
the following two equation of size O(n+m)

aπ1
. · · · .aπm

.f(f(. . . f(Y,Xn) . . . , X2), X1) ≈
a1. · · · .am.f(X1, f(X2, . . . f(Xn, Y) . . .))

Y ≈ f(a1, f(a2, . . . f(am−1, am) . . .))

From these equations we get the following DAG. This problem is solvable, if we have π2n =
Id. It seems difficult to answer this question in time faster than O(nm).

a1 =• a1 a2 =• a2 am =• am

• ◦ •

• ◦ •

• ◦ •

(aπm
← am) :: •

(aπ1
← a1) :: •

Id

· · ·

· · ·

· · ·

n

m

224 J. LEVY AND M. VILLARET

Appendix

Example 9.2 (Cont. of Example 4.2). In fact, we would obtain the same result from
the lazy application of the transformation rules of the nominal unification algorithm from
[Urb04]. Those rules basically encode the inference rules presented in Section 2, namely
we use here the ones for ≈-abst-1 and ≈-abst-2. What we do is to delay the check for
equality or difference between atoms of two abstractions because one of them can have a
permutation applied on it, and we don’t want to compute permutations until the end. By
default we apply the rule for ≈-abst-2 constraining the freshness predicate to the proviso
of difference between abstractions.

a2.a1.f(c1, c2)
?
≈ (a3b3)b2.b1.f(d1, d2)

a3 6= b3 =⇒ a3#b2.b1.f(d1, d2)

a1.f(c1, c2)
?
≈ (a2(a3b3)b2)(a3b3)b1.f(d1, d2)

a3 6= b3 =⇒ a3#b2.b1.f(d1, d2)
a2 6= (a3b3)b2 =⇒ a2#(a3b3)b1.f(d1, d2)

f(c1, c2)
?
≈ (a1(a2(a3b3)b2)(a3b3)b1)(a2(a3b3)b2)(a3b3)f(d1, d2)

a3 6= b3 =⇒ a3#b2.b1.f(d1, d2)
a2 6= (a3b3)b2 =⇒ a2#(a3b3)b1.f(d1, d2)
a1 6= (a2(a3b3)b2)(a3b3)b1 =⇒ a1#(a2(a3b3)b2)(a3b3)f(d1, d2)

c1
?
≈ (a1(a2(a3b3)b2)(a3b3)b1)(a2(a3b3)b2)(a3b3)d1

c2
?
≈ (a1(a2(a3b3)b2)(a3b3)b1)(a2(a3b3)b2)(a3b3)d2

a3 6= b3 =⇒ a3#b2.b1.f(d1, d2)
a2 6= (a3b3)b2 =⇒ a2#(a3b3)b1.f(d1, d2)
a1 6= (a2(a3b3)b2)(a3b3)b1 =⇒ a1#(a2(a3b3)b2)(a3b3)f(d1, d2)

Now, we get rid of the freshness constraints, translating them into disequalities by means
of rules of the nominal unification algorithm from [Urb04] for the freshness predicates of
Section 2.

c1
?
≈ (a1(a2(a3b3)b2)(a3b3)b1)(a2(a3b3)b2)(a3b3)d1

c2
?
≈ (a1(a2(a3b3)b2)(a3b3)b1)(a2(a3b3)b2)(a3b3)d2

a3 6= b3 ∧ a3 6= b2 ∧ a3 6= b1 =⇒ (a3 6= d1 ∧ a3 6= d2)
a2 6= (a3b3)b2 ∧ a2 6= (a3b3)b1 =⇒ (a2 6= (a3b3)d1 ∧ a2 6= (a3b3)d2)
a1 6= (a2(a3b3)b2)(a3b3)b1 =⇒ (a1 6= (a2(a3b3)b2)(a3b3)d1 ∧ a1 6= (a2(a3b3)b2)(a3b3)d2)

References

[Bro79] Mark R. Brown and Robert Endre Tarjan. A fast merging algorithm. J. of the ACM, 26(2):211–226,

1979.

[Cal07] Christophe Calvès and Maribel Fernández. Implementing nominal unification. ENTCS, 176(1):25–

37, 2007.

[Cal08] Christophe Calvès and Maribel Fernández. A polynomial nominal unification algorithm. Theoretical

Computer Science, 403(2-3):285–306, 2008.

AN EFFICIENT NOMINAL UNIFICATION ALGORITHM 225

[Cal10] Christophe Calvès. Complexity and Implementation of Nominal Algorithms. Ph.D. thesis, King’s

College London, 2010.

[Che04] James Cheney and Christian Urban. α-prolog: A logic programming language with names, binding

and α-equivalence. In Proc. of the 20th Int. Conf. on Logic Programming, ICLP’04, LNCS, vol.

3132, pp. 269–283. 2004.

[Che05] James Cheney. Equivariant unification. In Proc. of the 16th Int. Conf. on Term Rewriting and

Applications, RTA’05, LNCS, vol. 3467, pp. 74–89. 2005.

[Clo07] R. Clouston and A. Pitts. Nominal equational logic. ENTCS, 1496:223–257, 2007.

[Dow09] Gilles Dowek, Murdoch Gabbay, and Dominic Mulligan. Permissive nominal terms and their unifi-

cation. In Proc. of the 24th Convegno Italiano di Logica Computazionale, CILC’09. 2009.

[Dow10] Gilles Dowek, Murdoch Gabbay, and Dominic Mulligan. Permissive nominal terms and their unifi-

cation. Logic Journal of the IGPL, 2010.

[Fer05] Maribel Fernández and Murdoch Gabbay. Nominal rewriting with name generation: abstraction

vs. locality. In Proc. of the 7th Int. Conf. on Principles and Practice of Declarative Programming,

PPDP’05, pp. 47–58. 2005.

[Fer07] Maribel Fernández and Murdoch Gabbay. Nominal rewriting. Information and Computation,

205(6):917–965, 2007.

[Gab01] Murdoch Gabbay and A. Pitts. A new approach to abstract syntax with variable binding. Formal

Aspects of Computing, 13(3–5):341–363, 2001.

[Gab06] Murdoch Gabbay and Aad Mathijssen. Nominal algebra. In Proc. of the 18th Nordic Workshop on

Programming Theory, NWPT’06. 2006.

[Gab07] Murdoch Gabbay and Aad Mathijssen. A formal calculus for informal equality with binding. In

Logic, Language, Information and Computation, LNCS, vol. 4576, pp. 162–176. Springer, 2007.

[Gab09] Murdoch Gabbay and Aad Mathijssen. Nominal (universal) algebra: equational logic with names

and binding. Journal of Logic and Computation, 19(6):1455–1508, 2009.

[Lev08] Jordi Levy and Mateu Villaret. Nominal unification from a higher-order perspective. In Proc. of the

19th Int. Conf on Rewriting Techniques and Applications, RTA’08, LNCS, vol. 5117, pp. 246–260.

2008.

[Mar82] Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM Trans. Program.

Lang. Syst., 4(2):258–282, 1982.

[Pat78] Mike Paterson and Mark N. Wegman. Linear unification. J. Comput. Syst. Sci., 16(2):158–167,

1978.

[Pit01] Andrew Pitts. Nominal logic: A first order theory of names and binding. In Proc. of the 4th

Int. Symp. on Theoretical Aspects of Computer Software, TACS’01, LNCS, vol. 2215, pp. 219–242.

2001.

[Pit03] A. Pitts. Nominal logic, a first order theory of names and binding. Information and Computation,

186:165–193, 2003.

[Qia96] Zhenyu Qian. Unification of higher-order patterns in linear time and space. J. of Logic and Com-

putation, 6(3):315–341, 1996.

[Urb03] C. Urban, A. Pitts, and M. Gabbay. Nominal unification. In Proc. of the 17th Int. Work. on

Computer Science Logic, CSL’03, LNCS, vol. 2803, pp. 513–527. 2003.

[Urb04] C. Urban, A. Pitts, and M. Gabbay. Nominal unification. Theoretical Computer Science, 323:473–

497, 2004.

[Urb05] Christian Urban and James Cheney. Avoiding equivariance in alpha-prolog. In Proc. of the

Int. Conf. on Typed Lambda Calculus and Applications, TLCA’05, LNCS, vol. 3461, pp. 401–416.

2005.

226 J. LEVY AND M. VILLARET

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 227-242
http://rewriting.loria.fr/rta/

COMPUTING CRITICAL PAIRS

IN 2-DIMENSIONAL REWRITING SYSTEMS

SAMUEL MIMRAM

CEA, LIST, Point Courrier 94, 91191 Gif-sur-Yvette, France.

E-mail address: samuel.mimram@cea.fr

Abstract. Rewriting systems on words are very useful in the study of monoids. In good

cases, they give finite presentations of the monoids, allowing their manipulation by a com-

puter. Even better, when the presentation is confluent and terminating, they provide

one with a notion of canonical representative for the elements of the presented monoid.

Polygraphs are a higher-dimensional generalization of this notion of presentation, from

the setting of monoids to the much more general setting of n-categories. Here, we are

interested in proving confluence for polygraphs presenting 2-categories, which can be seen

as a generalization of term rewriting systems. For this purpose, we propose an adapta-

tion of the usual algorithm for computing critical pairs. Interestingly, this framework is

much richer than term rewriting systems and requires the elaboration of a new theoretical

framework for representing critical pairs, based on contexts in compact 2-categories.

Term rewriting systems have proven very useful to reason about terms modulo equa-
tions. In some cases, the equations can be oriented and completed in a way giving rise to
a converging (i.e. confluent and terminating) rewriting system, thus providing a notion of
canonical representative of equivalence classes of terms. Usually, terms are freely generated
by a signature (Σn)n∈N, which consists of a family of sets Σn of generators of arity n, and
one considers equational theories on such a signature, which are formalized by sets of pairs
of terms called equations. For example, the equational theory of monoids contains two
generators m and e, whose arities are respectively 2 and 0, and three equations

m(m(x, y), z) = m(x,m(y, z)) m(e, x) = x and m(x, e) = x

These equations, when oriented from left to right, form a rewriting system which is con-
verging. The termination of this system can be shown by giving an interpretation of the
terms in a well-founded poset, such that the rewriting rules are strictly decreasing. Since
the system is terminating, the confluence can be deduced from the local confluence, which
can itself be shown by verifying that the five critical pairs

m(m(m(x, y), z), t) m(m(e, x), y) m(m(x, e), y) m(m(x, y), e) m(e, e)

are joinable and these critical pairs can be computed using a unification algorithm. A more
detailed presentation of term rewriting systems along with the classic techniques to prove
their convergence can be found in [Baa99].

This work was started while I was in the PPS team (CNRS – Univ. Paris Diderot) and has been supported

by the CHOCO (“Curry Howard pour la Concurrence”, ANR-07-BLAN-0324) French ANR project.

c© S. Mimram
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.227

228 S. MIMRAM

As a particular case, when the generators of an equational theory are of arity one, the
category of terms modulo the congruence generated by the equations is a monoid, with
addition given by composition and neutral element being the identity. A presentation of
a monoid (M,×, 1) is such an equational theory, which is generating a monoid isomorphic
to M . For example the monoid N/2N is presented by the equational theory with only one
generator a, of arity one, and the equation a(a(x)) = x. Presentations of monoids are
particularly useful since they can provide finite description of monoids which may be infi-
nite, thus allowing their manipulation with a computer. More generally, with generators of
any arity, equational theories give rise to presentations of Lawvere theories [Law63], which
are cartesian categories whose objects are the natural integers and such that product is
given on objects by addition: a signature namely generates such a category, whose mor-
phisms f : m → n are n-uples of terms with m free variables, composition being given by
substitution.

Term rewriting systems have been generalized by polygraphs, in order to provide a formal
framework in which one can give presentations of any (strict) n-category. We are interested
here in adapting the classical technique to study confluence of 3-polygraphs, which give rise
to presentations of 2-categories, by computing their critical pairs. These polygraphs can be
seen as term rewriting systems improved on the following points:

– the variables of terms are simply typed (this can be thought as generalizing from a
Lawvere theory of terms to any cartesian category of terms),

– variables in terms cannot necessarily be duplicated, erased or swapped (the catego-
ries of terms are not necessarily cartesian but only monoidal),

– and the terms can have multiple outputs as well as multiple inputs.

Many examples of presentations of monoidal categories where studied by Lafont [Laf03],
Guiraud [Gui06b, Gui06a] and the author [Mim08, Mim09b]. A fundamental example is
the 3-polygraph S, presenting the monoidal category Bij (the category of finite ordinals and
bijections). This polygraph has one generator for objects 1, one generator for morphisms
γ : 2 → 2 (where 2 is a notation for 1⊗ 1) and two equations

(γ ⊗ 1) ◦ (1⊗ γ) ◦ (γ ⊗ 1) = (1⊗ γ) ◦ (γ ⊗ 1) ◦ (1⊗ γ) and γ ◦ γ = 1⊗ 1 (0.1)

where the morphism 1 is a short notation for id1. That this polygraph is a presentation
of the category Bij means that this category is isomorphic to the free monoidal category
containing an object 1 and a generator γ, quotiented by the smallest congruence generated
by the equations (0.1). This result can be seen as a generalization of the presentation of
the symmetric groups by transpositions. These equations can be better understood with
the graphical notation provided by string diagrams, which is a diagrammatic notation for
morphisms in monoidal categories, introduced formally in [Joy91]. The morphism γ should
be thought as a device with two inputs and two outputs of type 1, and the two equations (0.1)
can thus be represented graphically by

= and = (0.2)

COMPUTING CRITICAL PAIRS IN 2-DIMENSIONAL REWRITING SYSTEMS 229

In this notation, wires represent identities (on the object 1), horizontal juxtaposition of dia-
grams corresponds to tensoring, and vertical linking of diagrams corresponds to composition
of morphisms. Moreover, these diagrams should be considered modulo planar continuous
deformations, so that the axioms of monoidal categories are verified. These diagrams are
conceptually important because they allow us to see morphisms in monoidal categories ei-
ther as algebraic objects or as geometric objects (some sort of planar graphs). If we orient
both equations from left to right, we get a rewriting system which can be shown to be
convergent. It has the three following critical pairs [Laf03]:

(0.3)

Moreover, for every morphism φ : 1⊗m → 1⊗ n, the morphism on the left of (0.4)

(0.4)

can be rewritten in two different ways, thus giving rise to an infinite number of critical pairs
for the rewriting system. This phenomenon was first observed by Lafont [Laf03] and later
on studied by Guiraud and Malbos [Gui09]. Interestingly, we can nevertheless consider that
there is a finite number of critical pairs if we allow ourselves to consider the “diagram” on
the center of (0.4) as a critical pair. Of course, this diagram does not make sense at first.
However, we can give a precise meaning to it if we embed our terms in a larger category,
which is compact: in such a category every object has a dual, which corresponds graphically
to having the ability to bend wires (see the figure on the right). This observation was the
starting point of this paper which is devoted to formalizing these intuitions in order to
propose an algorithm for computing critical pairs in polygraphs.

We believe that this is a major area of higher-dimensional algebra where computer
scientists should step in: typical presentations of categories can give rise to a very large
number of critical pairs and having automated tools to compute them seems to be necessary
in order to push further the study of those systems. The present paper constitutes a first
step in this direction, by defining the structures necessary to manipulate algorithmically the
morphisms in categories generated by polygraphs and by proposing an algorithm to compute
the critical pairs in polygraphic rewriting systems. Conversely, algebra provides strong
indications about technical choices that should be made in order to generalize rewriting
theory in higher dimensions. We have done our possible to provide an overview of the

230 S. MIMRAM

theoretical tools used here, as well as intuitions about them. A preliminary detailed version
of this work is available in [Mim09a].

We begin by recalling the definition of polygraphs, describe the categories they generate,
and formulate the unification problem in this framework using the notion of context in a
2-category. Then, we show that 2-categories can be fully and faithfully embedded into the
free compact 2-category they generate, which allows us to describe a unification algorithm
for polygraphic rewriting systems.

1. Presentations of 2-categories

Because of space limitations, we have to omit the basic definitions in category theory
and refer the reader to MacLane’s reference book [Mac71]. We only recall that a 2-category

is a generalization in dimension 2 of the concept of category. It consists essentially of a class
of 0-cells A, a class of 1-cells f : A → B (with 0-cells A and B as source and target) and a
class of 2-cells α : f ⇒ g : A → B (with parallel 1-cells f : A → B and g : A → B as source
and target), together with a vertical composition, which to every pair of 2-cells α : f ⇒ g
and β : g ⇒ h associates a 2-cell β ◦ α : f ⇒ h, and a horizontal composition, which to
every pair of 2-cells α : f ⇒ g and β : h ⇒ i associates a 2-cell α ⊗ β : (f ⊗ h) ⇒ (g ⊗ i),
such that vertical and horizontal composition are associative, admit neutral elements (the
identities) and the exchange law is satisfied: for every four 2-cells

α : f ⇒ f ′ : A → B, α′ : f ′ ⇒ f ′′ : A → B, β : g ⇒ g′ : B → C, β′ : g′ ⇒ g′′ : B → C

the following equality holds

(α′ ◦ α)⊗ (β′ ◦ β) = (α′ ⊗ β′) ◦ (α⊗ β) (1.1)

as well as a nullary version of this law: idA⊗B = idA ⊗ idB for every objects A and B. In a
2-category, two n-cells are parallel when they have the same source and the same target. We
also recall that two 0-cells A and B of a 2-category C, induce a category C(A,B), called hom-

category, whose objects are the 1-cells f : A → B of C and whose morphisms α : f ⇒ g are
2-cells of C, composition being given by vertical composition. A (strict) monoidal category

is a 2-category with exactly one 0-cell.
Polygraphs are algebraic structures which were introduced in their 2-dimensional ver-

sion by Street [Str76] under the name computads, later on generalized to higher dimensions
by Power [Pow90], and independently rediscovered by Burroni [Bur93]. We are specifically
interested in 3-polygraphs, which give rise to presentations of 2-categories, and briefly recall
their definition here. This definition is a bit technical but conceptually clear: it consists
of sets of 0-, 1-, 2-generators for “terms”, each 2-generator having a list of 1-generators as
source and as target, each 1-generator having itself a 0-generator as source and as target,
together with a set of equations which are pairs of terms (generated by the 2-generators).

Suppose that we are given a set E0 of 0-generators, such a set will be called a 0-poly-

graph. We write E∗
0 = E0 and i0 : E0 → E∗

0 the identity function. A 1-polygraph on

these generators is a graph, that is a diagram E∗
0 E1

s0oo

t0

oo in Set, with E∗
0 as vertices, the

elements of E1 being called 1-generators. We can construct a free category on this graph:
its set E∗

1 of morphisms is the set of paths in the graph (identities are the empty paths),
the source s∗0(f) (resp. target t

∗
0(f)) of a morphism f ∈ E∗

1 being the source (resp. target)
of the path. If we write i1 : E1 → E∗

1 for the injection of the 1-generators into morphisms of

COMPUTING CRITICAL PAIRS IN 2-DIMENSIONAL REWRITING SYSTEMS 231

this category, which to every 1-generator associates the corresponding path of length one,
we thus get a diagram E0

i0
��

E1
s0

~~||
|
|
|
|
|
|

t0~~||
|
|
|
|
|
|

i1
��

E∗
0 E∗

1

s∗
0oo

t∗
0

oo

(1.2)

in Set, which is commutative in the sense that s∗0 ◦ i1 = s0 and t∗0 ◦ i1 = t0. A 2-polygraph

on this 1-polygraph consists of a diagram

E0

i0
��

E1
s0

~~||
|
|
|
|
|
|

t0~~||
|
|
|
|
|
|

i1
��

E2
s1

~~}}
}
}
}
}
}
}

t1~~}}
}
}
}
}
}
}

E∗
0 E∗

1

s∗
0oo

t∗
0

oo

(1.3)

in Set, such that s∗0 ◦ s1 = s∗0 ◦ t1 and t∗0 ◦ s1 = t∗0 ◦ t1. The elements of E2 are called
2-generators. Again we can generate a free 2-category on this data, whose underlying
category is the category generated in (1.2) and which has the 2-generators as morphisms. If
we write E∗

2 for its set of morphisms and i2 : E2 → E∗
2 for the injection of the 2-generators

into morphisms, we thus get a diagram

E0

i0
��

E1
s0

~~||
|
|
|
|
|
|

t0~~||
|
|
|
|
|
|

i1
��

E2
s1

~~||
|
|
|
|
|
|

t1~~||
|
|
|
|
|
|

i2
��

E∗
0 E∗

1

s∗
0oo

t∗
0

oo E∗
2

s∗
1oo

t∗
1

oo

(1.4)

We can now formulate the definition of 3-polygraphs as follows.

Definition 1.1. A 3-polygraph consists of a diagram

E0

i0
��

E1
s0

~~||
|
|
|
|
|
|

t0~~||
|
|
|
|
|
|

i1
��

E2
s1

~~||
|
|
|
|
|
|

t1~~||
|
|
|
|
|
|

i2
��

E3
s2

~~}}
}
}
}
}
}
}

t2~~}}
}
}
}
}
}
}

E∗
0 E∗

1

s∗
0oo

t∗
0

oo E∗
2

s∗
1oo

t∗
1

oo

(1.5)

(where E∗
i , s

∗
i and t∗i are freely generated as previously explained), such that

s∗i ◦ si+1 = s∗i ◦ ti+1 and t∗i ◦ si+1 = t∗i ◦ ti+1

for i = 0 and i = 1, together with a structure of 2-category on the 2-graph

E∗
0 E∗

1

s∗
0oo

t∗
0

oo E∗
2

s∗
1oo

t∗
1

oo

Again, a 3-polygraph freely generates a 3-category C whose underlying 2-category is the
underlying 2-category of the polygraph and whose 3-cells are generated by the 3-generators
of the polygraph. A quotient 2-category C̃ can be constructed from this 2-category: it
is defined as the underlying 2-category of C quotiented by the congruence identifying two
2-cells whenever there exists a 3-cell between them in C. A 3-polygraph P presents a
2-category D when D is isomorphic to the 2-category C̃ induced by the polygraph P . In this
sense, the underlying 2-polygraph of a 3-polygraph is a signature generating terms which are

232 S. MIMRAM

to be considered modulo the equations described by the 3-generators; these equations r ∈ E3

being oriented, they will be called rewriting rules, the source s2(r) (resp. the target t2(r))
being the left member (resp. right member) of the rule. A polygraph is finite when all the
sets Ei are; in the following, we only consider such polygraphs.

A morphism of polygraphs F between two 3-polygraphs P and Q consists of a 4-uple

(F0, F1, F2, F3) of functions Fi : E
P
i → EQ

i , such that the obvious diagrams commute (for

example, for every i, sQi ◦ Fi+1 = F ∗
i ◦ sPi , where F ∗

i : EP
i

∗
→ EQ

i

∗
is the monoid morphism

induced by Fi). We write n-Pol for the category of n-polygraphs (this construction can
be carried on to any dimension n ∈ N but we will only consider cases with n 6 3). These
categories have many nice properties, amongst which being cocomplete. The free n-cate-
gory generated by an n-polygraph P is denoted Cn(P). Given an integer k 6 n, we write
Uk : n-Pol → k-Pol for the forgetful functor which simply forgets about the sets of gener-
ators of dimension higher than k. This functor admits a left adjoint Fn : k-Pol → n-Pol

which adds empty sets of generators of dimension higher than k. We sometimes leave
implicit the inclusion of k-Pol into n-Pol induced by Fn.

Example 1.2. The theory of symmetries mentioned in the introduction is the polygraph S
whose generators are

E0 = {∗} E1 = {1 : ∗ → ∗} E2 = {γ : 1⊗ 1 ⇒ 1⊗ 1}
E3 = {y : (γ ⊗ 1) ◦ (1⊗ γ) ◦ (γ ⊗ 1) ⇛ (1⊗ γ) ◦ (γ ⊗ 1) ◦ (1⊗ γ), s : γ ◦ γ ⇛ 1⊗ 1}

Example 1.3. The theory of monoids is the polygraph M defined by

E0 = {∗} E1 = {1 : ∗ → ∗} E2 = {µ : 1⊗ 1 ⇒ 1, η : ∗ ⇒ 1}
E3 = {a : µ ◦ (µ⊗ 1) ⇛ µ ◦ (1⊗ µ), l : µ ◦ (η ⊗ 1) ⇛ 1, r : (1⊗ η) → 1}

This polygraph presents the augmented simplicial category (the category of finite ordinals
and non-decreasing functions).

2. Formal representation of free 2-categories

The definition of 3-polygraphs involves the construction of free categories and free
2-categories, which are abstractly defined in category theory by universal constructions.
Here, we need a more concrete representation of these mathematical objects. As already
mentioned, the free category (1.2) on a graph is easy to describe: its objects are the vertices
of the graph and morphisms are paths of the graph with composition given by concatenation.
However, describing the free 2-category on a 2-polygraph in an effective way (which can
be implemented) is much less straightforward. Of course, following the definition given in
Section 1, one could describe the 2-cells of this 2-category as formal vertical and horizontal
compositions of 2-generators up to a congruence imposing associativity and absorption of
units for both compositions and the exchange law (1.1). However, given an object A in a
2-category C and two 2-cells α, β : idA ⇒ idA : A → A of this category, the equality α⊗β =
β ⊗ α can be deduced from the following sequence of equalities:

α⊗β = (idA◦α)⊗(β◦idA) = (idA⊗β)◦(α⊗idA) = (β⊗idA)◦(idA⊗α) = (β◦idA)⊗(idA◦α) = β⊗α

It requires inserting and removing identities, and using the exchange law in both directions.
So, it seems to be very hard to find a generic way to handle formal composites of generators
modulo the congruence described above. We will therefore define an alternative construction
of these morphisms which doesn’t require such a quotienting.

COMPUTING CRITICAL PAIRS IN 2-DIMENSIONAL REWRITING SYSTEMS 233

Consider the morphism γ ◦ γ : (1⊗ 1) ⇒ (1⊗ 1) : ∗ → ∗ in the theory S of symmetries
(Example 1.2), depicted on the left of (2.1):

(2.1)

Graphically, in this morphism, the two 2-cells are γ, wires are typed by the 1-cell 1
and regions of the plane are typed by the 0-cell ∗. Now, if we give a different name
to each instance of a generator used in this morphism, for example by numbering them
as in the right of (2.1), the morphism itself can be described as the 2-polygraph P de-
fined by E0 = {∗0, . . . , ∗4}, E1 = {10 : ∗1 → ∗0, 11 : ∗0 → ∗2, . . . , 15 : ∗4 → ∗2} and
E2 = {γ0 : 10 ⊗ 11 ⇒ 12 ⊗ 13, γ1 : 12 ⊗ 13 ⇒ 14 ⊗ 15}, together with a function ℓ
which to every i-generator of this polygraph associates a label, which is an i-generator
of S, so that ℓ : P → S is a morphism of polygraphs (ℓ is defined by ℓ(∗i) = ∗, ℓ(1i) = 1
and ℓ(γi) = γ). Formulated in categorical terms, (P, ℓ) is an object in the slice cate-
gory 2-Pol ↓U2(S). Of course, the naming of the instances of the generators occurring in
nets is arbitrary, so we have to consider these labeled polygraphs up to bijections, which
correspond to injective renaming of instances. Notice that not every such labeled polygraph
is the representation of a morphism: we need an inductive construction of those (it seems
to be difficult to give a direct characterization of the suitable polygraphs).

Based on these ideas, we describe the category generated by a polygraph S as a category
whose cells are polygraphs labeled by S. We suppose fixed a signature 2-polygraph S and
write Si for Ui(S). This is a generalization of the constructions of labeled transition systems,
and is reminiscent of pasting schemes [Pow90] and of proof-nets, which is why we call them
polygraphic nets (or nets for short).

The category of 0-nets 0-NetS0
on the 0-polygraph S0 is the full subcategory of

0-Pol↓S0 whose objects are 0-polygraphs with exactly one 0-cell, labeled by S0. Con-
cretely, its objects are pairs (n,A), often written An, where n is the name of the instance

(an integer for example) and A an element of ES0

0 , called its label, and there is a morphism
between two objects whenever they have the same label (all those morphisms are invertible).
The category of 1-nets 1-NetS1

is the smallest category whose objects are the 0-nets Ai,
whose morphisms (sf , f, tf) : Ai → Bj are triples consisting of a 1-polygraph f labeled

by S1 (i.e. an object in 1-Pol ↓S1) and two morphisms of labeled polygraphs sf : Ai → f
and tf : Bj → f , called source and target, which are either a 1-polygraph f such that

Ef
0 = {Ai, Bj} and Ef

1 contains only one 1-cell n ∈ N with Ai as source and Bj as target

(and the obvious injections for sf and tf), or Ai = Bj , f = Ai and sf = tf = idAi
(this

is the identity on Ai), or a composite f ⊗ g : Ai → Bj of two morphisms f : Ai → Ck

and g : Ck → Bj . Here, the composite of two such morphisms is defined as the pushout

of the diagram f Ck
tfoo sg // g , that is the disjoint union of the polygraphs f and g

quotiented by a relation identifying the 0-cell in Ck in the two components of the union.

Example 2.1. If S is the polygraph of symmetries, the composite of the two morphisms
f : ∗0 → ∗1 and g : ∗1 → ∗2 defined by

Ef
0 = {∗0, ∗1} Ef

1 = {10 : ∗0 → ∗1} Eg
0 = {∗0, ∗1, ∗2} Eg

1 = {11 : ∗1 → ∗0, 10 : ∗0 → ∗2}

234 S. MIMRAM

is the morphism h = f ⊗ g such that

Eh
0 = {∗0, . . . , ∗3} and Eh

1 = {10 : ∗0 → ∗1, 11 : ∗1 → ∗3, 12 : ∗3 → ∗2}

Graphically,

∗0
10 // ∗1 ⊗ ∗1

11 // ∗0
10 // ∗2 = ∗0

10 // ∗1
11 // ∗3

12 // ∗2

Since composition is defined by a pushout construction, it involves a renaming of some in-
stances (it is the case in the example above) and this renaming is arbitrary. So, composition
is not strictly associative but only associative up to isomorphism of polygraphs. Therefore,
what we have built is not precisely a category but only a bicategory: this is a well-known
fact, this construction being a particular instance of the general construction of cospan bicat-
egories. We can iterate this construction one step further and define the tricategory (that is
a 2-category whose compositions are associative up to isomorphism) of 2-nets 2-NetS as the
smallest tricategory whose 0-cells are 0-nets Ai, whose 1-cells f : Ai → Bj contain 1-nets,
and whose 2-cells α : f ⇒ g are triples (sα, α, tα), consisting of a 2-polygraph α labeled
by S and two morphisms of labeled polygraphs sα : f → α and tα : g → α, containing all
the 2-polygraphs with one 2-generator n ∈ N whose source f = sα1 (n) and target g = tα1 (n)
are 1-nets which are “disjoint” in the sense they only have their own source and target
as common generators, with the obvious injections for sα and tα. Moreover, we requires
this tricategory to contain identities and to be closed under both vertical and horizontal
compositions, which are defined by pushout constructions in a way similar to 1-nets. If we
quotient this tricategory and identify cells which are isomorphic labeled polygraphs, we get
a proper 2-category, that we still write 2-NetS .

Proposition 2.2. The 2-category 2-NetS described above is equivalent to the free category

generated by the 2-polygraph S.

This construction has the advantage to be simple to implement and manipulate: we
have for example given the data needed to describe the morphism (2.1).

3. Critical pairs in polygraphs

In order to formalize the notion of critical pair for a polygraph, we need to formalize first
the notion of context of a morphism in the 2-category C2(S) generated by a 2-polygraph S,
which may be thought as a 2-cell with multiple typed “holes”. These contexts have multiples
“inputs” (one for each hole) and will therefore organize into a multicategory, which is a
notion generalizing categories in the sense that morphisms f : (A1, . . . , An) → A have one
output of type A, and a list of inputs of type Ai instead of only one input. Composition
is also generalized in the sense that we compose such a morphism f with n morphisms fi
with Ai as target, what we write f ◦ (f1, . . . , fn). Multicategories should moreover have
identities IdA : (A) → A and satisfy coherence axioms [Lei04].

Suppose that we are given a signature 2-polygraph S. Suppose moreover
that we are given a list of n pairs of parallel 1-cells (fi, gi) in the category genera-
ted by the 1-polygraph U1(S). We write S[X1 : f1 ⇒ g1, . . . , Xn : fn ⇒ gn], for
the polygraph obtained from S by adding X1, . . . , Xn as 2-generators, with fi as
the source and gi as the target of Xi (we suppose that the Xi were not already

present in the 2-generators of S). The Xi should be thought as typed variables for 2-cells
and we can easily define a notion of substitution of a variable Xi : fi ⇒ gi by a 2-cell
α : fi ⇒ gi in a 2-cell of the 2-category generated by S[X1 : f1 ⇒ g1, . . . , Xn : fn ⇒ gn].

COMPUTING CRITICAL PAIRS IN 2-DIMENSIONAL REWRITING SYSTEMS 235

Given a signature S, we build a multicategory K(S) whose objects are pairs (f, g) of
parallel 1-cells in the 2-category generated by S and whose morphisms, called contexts,
K : ((f1, g1), . . . , (fn, gn)) → (f, g) are the 2-cells α : f ⇒ g in the 2-category generated by
the polygraph S[X1 : f1 ⇒ g1, . . . , Xn : fn ⇒ gn], which are linear in the sense that each of
the variablesXi appears exactly once in the morphism α. Composition in this multicategory
is induced by the substitution operation. This multicategory can be canonically equipped
with a structure of symmetric multicategory, which essentially means that, for every per-
mutation σ on n elements, the sets of morphisms of type ((f1, g1), . . . , (fn, gn)) → (f, g) is
isomorphic to the set of morphisms of type ((fσ(1), gσ(1)), . . . , (fσ(n), gσ(n))) → (f, g) in a co-
herent way. Any 2-cell α : f ⇒ g in the 2-category generated by S, can be seen as a nullary
context of type () → (f, g) that we still write α. A concrete and implementable definition
of the multicategory K(S) of contexts of S can be given by adapting the construction of
polygraphic nets given in the previous section.

This construction enables us to reformulate usual notions of rewriting theory in our
framework as follows. We suppose fixed a rewriting system given by a 3-polygraph R. We
write S = U2(R) for the underlying signature of R and C for the 2-category it generates.

Definition 3.1. A unifier of two 2-cells

α1 : f1 ⇒ g1 and α2 : f2 ⇒ g2

in C is a pair of cofinal unary contexts

K1 : ((f1, g1)) → (f, g) and K2 : ((f2, g2)) → (f, g)

such that K1 ◦ (α1) = K2 ◦ (α2). A unifier is a most general unifier when it is

– non-trivial : there exists no binary context K : ((f1, g1), (f2, g2)) → (f, g) such that
K1 = K ◦ (Id(f1,g1), α2) and K2 = K ◦ (α1, Id(f2,g2)). Informally, the morphisms α1

and α2 should not appear in disjoint positions in the morphism K1◦(α1) = K2◦(α2).
– minimal : for every unifier K ′

1,K
′
2 of α1 and α2, such that K1 = K ′′

1 ◦ K ′
1 and

K2 = K ′′
2 ◦K ′

2, for some contexts K ′′
1 and K ′′

2 , the contexts K ′′
1 and K ′′

2 should be
invertible.

Remark 3.2. If we write α = K1 ◦ (α1) = K2 ◦ (α2) and represent the 2-cells α1, α2 and α
by 2-nets, the fact that α is a unifier of the morphisms means that there exist two injective
morphisms of labeled polygraphs i1 : α1 → α and i2 : α2 → α, and the non-triviality
condition means that there exists at least one 2-generator which is both in the image of i1
and i2.

For example, the last two morphisms of (0.3) are both unifiers of the left members of the
rules (0.2). By extension, a unifier of two 3-generators r1 : α1 ⇛ β1 and r2 : α2 ⇛ β2 of R
is a unifier of their sources α1 and α2. A critical pair (K1, r1,K2, r2) consists of a pair of
3-generators r1, r2 and a most general unifier K1,K2 of those.

Remark 3.3. In Definition 3.1, the 2-cell α1, can be seen as a context α1 : () → (f1, g1)
in K(C), and similarly for α2. In fact, the notion of unifier can be generalized to any pair
of morphisms in the multicategory K(C).

A 2-cell α : f ⇒ g rewrites to a 2-cell β : f ⇒ g, by a 3-generator r : α′ ⇛ β′ : f ′ ⇒ g′,
when there exists a context K : ((f ′, g′)) → (f, g) such that α = K ◦ α′ and β = K ◦ β′.
In this case, we write α ⇛K,r β. The rewriting system R is terminating when there
is no infinite sequence α1 ⇛K1,r1 α2 ⇛K2,r2 A peak is a triple (α1, r1, α, r2, α2),

236 S. MIMRAM

where α, α1 and α2 are 2-cells and r1 and r2 are 3-generators, such that α ⇛K1,r1 and
α ⇛K2,r2 α2. In particular, with the notations of Definition 3.1, every critical pair induces
a peak (K1 ◦ (β1), r1,K1 ◦ (α1), r2,K2 ◦ (β2)). A peak is joinable when there exist a 2-cell β
and 3-cells ρ1 : α2 ⇛ β and ρ2 : α2 ⇛ β. A rewriting system is locally confluent if every
peak is joinable. Newman’s Lemma is valid for 3-polygraphs [Gui09]:

Proposition 3.4. A terminating rewriting system is confluent if it is locally confluent.

Moreover, local confluence can be tested using critical pairs:

Proposition 3.5. A rewriting system is locally confluent if all its critical pairs are joinable.

So, in order to test whether a terminating polygraphic rewriting system is confluent, it
would be tempting to compute all its critical pairs and test whether they are joinable, as in
term rewriting systems. However, as explained in the introduction, even a finite polygraphic
rewriting system might admit an infinite number of critical pairs. In the next section, we
introduce a theoretical setting which allows us to compute a finite number of generating
families of critical pairs.

4. An embedding in compact 2-categories

The notion of adjunction in the 2-category Cat of categories, functors and natural
transformations can be generalized to any 2-category as follows. Suppose that we are given
a 2-category C. A 1-cell f : A → B is left adjoint to a 1-cell g : B → A (or g is right adjoint
to f) when there exist two 2-cells η : idA ⇒ f ⊗ g and ε : g ⊗ f ⇒ idB, called respectively
the unit and the counit of the adjunction and depicted respectively on the left of (4.1),
such that (f ⊗ ε) ◦ (η⊗ f) = idf and (ε⊗ g) ◦ (g⊗ η) = idg. These equations are called the
zig-zag laws because of their graphical representation, given on the right of (4.1):

= = (4.1)

A 2-category is compact (sometimes also called autonomous or rigid) when every 1-cell
admits both a left and a right adjoint. Given a 2-category C, we write C for the free
compact 2-category on C. An explicit description of this 2-category can be given [Kel80]:

– its 0-cells are the 0-cells of C,
– its 1-cells are pairs fn : A → B consisting of an integer n ∈ Z, called winding

number, and a 1-cell f : A → B (resp. f : B → A) of C if n is even (resp. odd),
– a 2-cell is either α0 : f0 ⇒ g0, where α : f ⇒ g is a 2-cell of C, or ηnf : idB ⇒ fn⊗fn+1

or εnf : fn+1 ⊗ fn ⇒ idA, where fn : A → B is a 1-cell, or a formal vertical or
horizontal composite of those,

– 1- and 2-cells are quotiented by a suitable congruence imposing the axioms of 2-ca-
tegories, compatibility of vertical and horizontal compositions in C with those of C
(for example (β ◦ α)0 = β0 ◦ α0 and (idf)

0 = idf0) and the zig-zag laws (4.1).

Given a 1-cell f in this category, we often write fm for the 1-cell defined inductively by
(f ⊗ g)m = fm ⊗ gm and (fn)m = fn+m (notice that f−1 does not denote the inverse of f
in this context). This algebraic construction is important in order to formally define the
2-category C but this construction might be better grasped graphically, with the help of
string diagrams: the compact structure adds to C the possibility to bend wires, without

COMPUTING CRITICAL PAIRS IN 2-DIMENSIONAL REWRITING SYSTEMS 237

creating loops. For example, consider a 2-cell α : f ⊗ g ⇒ h ⊗ i in a 2-category C. This
2-cell can be seen as a 2-cell α0 : f0 ⊗ g0 ⇒ h0 ⊗ i0 of C, as pictured in the center of (4.2).

(4.2)

From this morphism, we can deduce a 2-cell ρf0,g0,h0⊗i0(α) : f
0 ⇒ h0 ⊗ i0 ⊗ g1, pictured on

the right of (4.2), defined by ρf0,g0,h0⊗i0(α) = (α⊗ idg1)◦(idf0⊗η0g): the wire corresponding

to g0 can be bent on the right and the winding number is increased by one (the output is
of type g1) to “remember” that we have bent the wire once on the right. Similarly, one
can define from α the morphism ρ′

f0⊗g0,i0,h0(α) : f
0 ⊗ g0 ⊗ i−1 ⇒ h0, which corresponds to

bending the wire of type i0 on the left, so its winding number is decreased by 1 (similar
transformations can be defined for bending the wires of type f0 and h0 in α). Interes-
tingly, by the definition of adjunctions, these two transformations provide mutual inverses:
ρ−1
f,g,h = ρ′f,g,h. We call rotations these bijections between the hom-categories of C.

Remark 4.1. The notions of source and target of a 2-cell in a compact 2-category is really
artificial since, given a pair of parallel 1-cells f, g : A → B, the rotations induce a bijection
between the hom-categories C(f, g) and C(idB, f

−1 ⊗ g).

It can be shown that the winding numbers on the 1-cells provide enough information
about the bending of wires, so that

Proposition 4.2. Given a 2-category C, the embedding functor E : C → C defined as the

identity on 0-cells, as f 7→ f0 on 1-cells and as α 7→ α0 on 2-cells is full and faithful.

This means that given two 0-cells A and B of C, the hom-categories C(A,B) and C(A,B)
are isomorphic in a coherent way. The 2-category C thus provides a “larger world” in which
we can embed the 2-category C without losing information.

The interest of this embedding is that there are “extra morphisms” in C that can be used
to represent “partial compositions” in C. For example, consider two 2-cells α : f ⇒ f1⊗g⊗f2
and β : h1 ⊗ g⊗ h2 ⇒ h in C. These can be seen as the morphisms of C depicted on the left
of (4.3) by the previous embedding.

(4.3)

From these two morphisms, the morphism α⊗g β : f0 ⇒ f0
1 ⊗ h−1

1 ⊗ h0 ⊗ h12 ⊗ f0
2 , depicted

in the center right of (4.3), can be constructed. This morphism represents the partial

composition of the 2-cells α and β on the 1-cell g: up to rotations, this 2-cell is fundamentally
a way to give a precise meaning to the diagram depicted on the right of (4.3).

The notion of 2-polygraph can easily be adapted to generate compact 2-categories in-
stead of 2-categories. Instead of generating a free category from the underlying 1-polygraph,

238 S. MIMRAM

we generate a free category with winding numbers: with the notations of Section 1, its ob-
jects are the elements of E0 and its morphisms fn1

1 · fn2

2 · · · fnk

k : A → B are the paths
e(fn1

1) ·e(fn2

2) · · · e(fnk

k) : A → B in the graph described by the 1-polygraph, the edge e(fn)
being f is n ∈ Z is even or f taken backwards if f is odd. Similarly, instead of generating
a 2-category from the polygraph, we generate a free compact 2-category on the previously
generated category with winding numbers with the 2-generators given by the 2-polygraph.
Such “polygraphs” are called compact polygraphs and we write 2-CPol for the category of
compact 2-polygraphs. The embedding given in Proposition 4.2 can be extended into an
embedding of 2-Pol into 2-CPol: every 2-polygraph can be seen as a compact 2-polygraph.
Given a compact 2-polygraph S, the definition given in Section 3 can be adapted in order
to define the multicategory of compact contexts K(S) of S. Finally, the construction of
nets given in Section 2 can also be adapted in order to give a concrete and implementable
description of the multicategory K(S) – this essentially amounts to suitably adding winding
numbers to 1-cells in the polygraphs involved.

Interestingly, the setting of compact contexts provides a generalization of
partial composition by allowing a “partial composition of a morphism with
itself”. Namely, from a context α : (. . . , (fi, gi), . . .) → (f, g1 ⊗ h⊗ g0) with
f : A → A and h : B → B one can build the context depicted on the

left ε0g ◦ (g1 ⊗ X ⊗ g0) ◦ α : (. . . , (fi, gi), . . . , (h, idB)) → (f, idA), where X : h → idB is

a fresh variable. This operation amounts to merging the outputs of type g1 and g0 of α.

5. The unification algorithm

Now that the theoretical setting has been established, we can describe our unification
algorithm. Suppose that we are given a polygraphic rewriting system R ∈ 3-Pol whose
underlying signature is S = U2(R). By the previous remarks, S can be seen as a compact
2-polygraph S. Now, suppose that r1 and r2 are two rewriting rules (i.e. 3-generators) in R
whose left member are respectively 2-cells α : f ⇒ g and β : h ⇒ i. The 2-cell α : f ⇒ g
in the 2-category generated by S can be seen as a 2-cell α0 : f0 ⇒ g0 in the compact
2-category C generated by S, and therefore as a nullary context α : () → (f0, g0) in the
multicategory of contexts K(C). Similarly, β can be seen as a context β : () → (h0, i0). In
the multicategory K(C), we can compute a most general unifier of α and β (see Remark 3.3)
from which we will be able to generate critical pairs of the rules r1 and r2. Because of space
limitations, we don’t provide here a fully detailed and formal presentation of the algorithm:
the purpose of this paper was to introduce the formal framework necessary to define the
algorithm, whose in-depth description will be given in subsequent works.

We first introduce some terminology and notations on nets. Given a 2-net α, an instance
of a 2-generator y is the father (resp. son) of an instance of a 1-generator x if x occurs in
the target (resp. source) of y. For example, in (2.1), γ0 is a son of 10 and 11 and a father
of 12 and 13. It is easy to show that a given instance of a 1-generator admits at most one
father and one son. An instance of 1-generator is dangling when it has no father or no son.
An instance of a generator is in the border of a net if it is in its source or its target.

The algorithm proceeds as follows. We suppose that we have represented the 2-cells α
and β as polygraphic 2-nets. Our goal is to construct a 2-net ω together with two injective
morphisms of labeled polygraphs i1 : α → ω and i2 : β → ω satisfying the properties
required for unifiers as reformulated in Remark 3.3. The algorithm is quite similar to
the rule-based formulation of the unification algorithm for terms [Baa99]. It begins by

COMPUTING CRITICAL PAIRS IN 2-DIMENSIONAL REWRITING SYSTEMS 239

setting ω = α and i1 = idα, and then iterates a procedure that will progressively propagate
the unification and make ω grow, by adding cells to it, until it is big enough so that there
exists an injection i2 : β → ω. The procedure which is iterated is non-deterministic and the
critical pairs will be obtained as the collection of the results of the non-failed branches of
computation. During the iteration two sets are maintained, T and U , which both contains
pairs (x, x′) consisting of an n-cell x of β and an n-cell x′ of ω for some integer n ∈ {0, 1, 2}.
The set U (for Unified) contains the injection i2 which is being constructed: if (x, x′) ∈ U
and the branch succeeds then the resulting map i2 : β → ω will be such that i2(x) = x′.
The set T (as in Todo) contains the pairs (x, x′) such that x is a cell of β which is to be
unified with the cell x′ of ω.

Initially, ω = α, U = ∅ and T = {(x, x′)}, where x and x′ are instances of 2-generators
in β and in ω respectively, both chosen non-deterministically. Then the algorithm iterates
over the following rules, updating the values of ω, U and T by executing the first rule which
applies (updating a value is denoted with the symbol :=).

– Duplicate. If T = {(x, x′)} ⊎ T ′ with (x, x′) ∈ U then T :=T ′.
– Clash. If (x, x′) ∈ T and (x, x′′) ∈ U and x′ 6= x′′ then fail.
– Typecheck. If (x, x′) ∈ T with ℓ(x) 6= ℓ(x′) then fail.
– Propagate-0. If T = {(x, x′)} ⊎ T ′, where x and x′ are 0-cells then

T :=T ′ and U :={(x, x′)} ∪ U .
– Propagate-1. If T = {(x, x′)} ⊎ T ′, where x and x′ are 1-cells, then

T :=T ′ and
if x has a father y then

if x′ has a father y′ then
T :={(y, y′)} ∪ T and U :={(x, x′)} ∪ U

else either
add a fresh generator y′ of type ℓ(y) in ω,
T :={(y, y′)} ∪ T and U :={(x, x′)} ∪ U

or
merge x′ with some other 1-cell x′′ in the border of ω in ω,
T :={(x, x′)} ∪ T

if x has a son y then
similar to the previous case.

– Propagate-2. If T = {(x, x′)} ⊎ T ′, where x and x′ are 2-cells, then
T :=T ′, U :={(x, x′)} ∪U , we add in T that the 0- and 1-cells in the source of x
should be matched with the corresponding cells in the source of x′, and the 0-
and 1-cells of the target of x should be matched with those in the target of x′.

The “either. . . or” construction above denotes a non-deterministic choice and the “merge”
refers to the merging operation introduced in Section 4 (this operation might fail if the
labels or the winding numbers of x′ and x′′ are not suitable).

The way this algorithm works is maybe best understood with an example. Consider
the signature S with one 0-cell ∗, one 1-cell 1 : ∗ → ∗ and three 2-cells δ : 1 → 4, µ : 4 → 1
and σ : 1 → 1 (where 4 denotes 1⊗ 1⊗ 1⊗ 1). We write ς = σ ⊗ σ ⊗ σ ⊗ σ. Now, consider
a rewriting system on this signature containing two rules r1 and r2 whose left members are

240 S. MIMRAM

respectively α = ς ◦ δ and β = µ ◦ ς, that we represent respectively as the compact nets

(5.1)

(for simplicity, we omitted the instances of 0-cells). We describe here a few possible
non-deterministic branches of the execution of the algorithm. For example, if we begin
with T = {(σ4, δ0)}, the algorithm will immediately fail by Typecheck because the la-
bel σ of σ4 differs from the label δ of δ0. Consider another execution beginning with
T = {(σ4, σ0)}, this time the label matches so Propagate-2 will propagate the unification
by setting T = {(19, 11), (113, 15)} and U = {(σ4, σ0)}. Since 19 is dangling, Propagate-1 will
move the pair (19, 11) from T to U . Then the pair (113, 15) will be handled by Propagate-1.
Since 15 is dangling but 113 is not, a new generator µ1 will be added to ω (now pictured
on the left of (5.2)) and after a few propagations (113, 15) will be moved from T to U ,
(µ0, µ1) will be added to U and T will contain (111, 119). By Propagate-1, this unification
pair can lead to multiple non-deterministic executions: a new generator σ5 can be added
(in the middle of (5.2)), or the 1-generator 119 can be merged with another 1-generator (17
for example as pictured in the right of (5.2)). Notice that in this last case, the morphism
contains a “hole” of type 16 ⇒ 118, which is handled by a context variable.

(5.2)

By executing fully the algorithm, the three morphisms of (5.3) will be obtained as unifiers
(as well as many others).

(5.3)

It can be shown that the algorithm terminates and generates all the critical pairs
in compact contexts, and these are in finite number. It is important to notice that the
algorithm generates the critical pairs of a rewriting system R in the “bigger world” of
compact contexts, from which we can generate the critical pairs in the 2-category generated
by R (which are not necessarily in finite number as explained in the introduction). If
joinability of the critical pairs in compact contexts implies that the rewriting system is
confluent, the converse is unfortunately not true: a similar situation is well known in the

COMPUTING CRITICAL PAIRS IN 2-DIMENSIONAL REWRITING SYSTEMS 241

study of λ-calculus with explicit substitution, where a rewriting system might be confluent
without being confluent on terms with metavariables.

We have realized a toy implementation of the algorithm in less than 2000 lines of OCaml,
with which we have been able to successfully recover the critical pairs of rewriting systems
in [Laf03]. Even though we did not particularly focus on efficiency, the execution times are
good, typically less than a second, because the morphisms involved in polygraphic rewriting
systems are usually small (but they can generate a large number of critical pairs)

Future works. This paper lays the theoretical foundations for unification in polygraphic
2-dimensional rewriting systems and leaves many research tracks open for future works. We
plan to study the precise links between our algorithm and the usual unification for terms
(every term rewriting system can be seen as a polygraphic rewriting system [Bur93]) as well
as algorithms for (planar) graph rewriting. Concerning concrete applications, since these
rewriting systems essentially transform circuits made of operators (the 2-generators) linked
by a bunch of wires (the 1-generators), it would be interesting to see if these methods can
be used to optimize electronic circuits. Finally, we plan investigating the generalization of
these methods in dimension higher than 2, which seems to be very challenging.

Acknowledgements. The author is much indebted to John Baez, Albert Burroni, Jonas
Frey, Emmanuel Haucourt, Martin Hyland, Yves Lafont, Paul-André Melliès and François
Métayer.

References

[Baa99] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1999.

[Bur93] A. Burroni. Higher-dimensional word problems with applications to equational logic. Theor. Com-
put. Sci., 115(1):43–62, 1993.

[Gui06a] Y. Guiraud. The three dimensions of proofs. Ann. pure appl. logic, 141(1-2):266–295, 2006.
[Gui06b] Y. Guiraud. Two polygraphic presentations of Petri nets. TCS, 360(1-3):124–146, 2006.
[Gui09] Y. Guiraud and P. Malbos. Higher-dimensional categories with finite derivation type. Theor. Appl.

Cat., 22(18):420–478, 2009.
[Joy91] A. Joyal and R. Street. The Geometry of Tensor Calculus, I. Adv. Math., 88:55–113, 1991.
[Kel80] G.M. Kelly and M.L. Laplaza. Coherence for compact closed categories. Journal of Pure and

Applied Algebra, 19:193–213, 1980.
[Laf03] Y. Lafont. Towards an algebraic theory of Boolean circuits. J. Pure Appl. Alg., 184:257–310, 2003.
[Law63] F. W. Lawvere. Functorial Semantics of Algebraic Theories and Some Algebraic Problems in the

context of Functorial Semantics of Algebraic Theories. Ph.D. thesis, Columbia University, 1963.

[Lei04] T. Leinster. Higher Operads, Higher Categories. Cambridge University Press, 2004.

[Mac71] S. MacLane. Categories for the Working Mathematician. Springer Verlag, 1971.
[Mim08] S. Mimram. Sémantique des jeux asynchrones et réécriture 2-dimensionnelle. Ph.D. thesis, 2008.

[Mim09a] S. Mimram. Computing Critical Pairs in Polygraphs, 2009. Preprint.

[Mim09b] S. Mimram. The Structure of First-Order Causality. In LICS’09, pp. 212–221. 2009.
[Pow90] J. Power. An n-categorical pasting theorem. Proc. Int. Conf. Como, pp. 326–358, 1990.
[Str76] R. Street. Limits indexed by category-valued 2-functors. J. Pure Appl. Alg., 8(2):149–181, 1976.

242 S. MIMRAM

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 243-258
http://rewriting.loria.fr/rta/

POLYNOMIAL INTERPRETATIONS OVER THE REALS DO NOT

SUBSUME POLYNOMIAL INTERPRETATIONS OVER THE INTEGERS

FRIEDRICH NEURAUTER AND AART MIDDELDORP

Institute of Computer Science

University of Innsbruck, Austria

E-mail address: {friedrich.neurauter,aart.middeldorp}@uibk.ac.at

Abstract. Polynomial interpretations are a useful technique for proving termination of

term rewrite systems. They come in various flavors: polynomial interpretations with real,

rational and integer coefficients. In 2006, Lucas proved that there are rewrite systems

that can be shown polynomially terminating by polynomial interpretations with real (al-

gebraic) coefficients, but cannot be shown polynomially terminating using polynomials

with rational coefficients only. He also proved a similar theorem with respect to the use

of rational coefficients versus integer coefficients. In this paper we show that polynomial

interpretations with real or rational coefficients do not subsume polynomial interpretations

with integer coefficients, contrary to what is commonly believed. We further show that

polynomial interpretations with real coefficients subsume polynomial interpretations with

rational coefficients.

1. Introduction

Polynomial interpretations are a simple yet useful technique for proving termination of
term rewrite systems (TRSs, for short). While originally conceived in the late seventies by
Lankford [Lan79] as a means for establishing direct termination proofs, polynomial inter-
pretations are nowadays often used in the context of the dependency pair (DP) framework
[Art00, Gie05, Hir05]. In the classical approach of Lankford, one considers polynomials with
integer coefficients inducing polynomial algebras over the well-founded domain of the nat-
ural numbers. To be precise, every n-ary function symbol f is interpreted by a polynomial
Pf in n indeterminates with integer coefficients, which induces a mapping or interpretation
from terms to integer numbers in the obvious way. In order to conclude termination of a
given TRS, three conditions have to be satisfied. First, every polynomial must be well-

defined, i.e., it must induce a well-defined polynomial function fN : N
n → N over the natural

numbers. In addition, the interpretation functions fN are required to be strictly monotone

in all arguments. Finally, one has to show compatibility of the interpretation with the given
TRS. More precisely, for every rewrite rule l → r the polynomial Pl associated with the
left-hand side must be greater than Pr, the corresponding polynomial of the right-hand
side, i.e., Pl > Pr for all values of the indeterminates.

1998 ACM Subject Classification: F.4.2 Grammars and Other Rewriting Systems, F.4.1 Mathematical

Logic: Computational logic.

Key words and phrases: term rewriting, termination, polynomial interpretations.

c© F. Neurauter and A. Middeldorp
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.243

244 F. NEURAUTER AND A. MIDDELDORP

Already back in the seventies, an alternative approach using polynomials with real co-
efficients instead of integers was proposed by Dershowitz [Der79]. However, as the real
numbers R equipped with the standard order >R are not well-founded, a subterm property
is explicitly required to ensure well-foundedness. And it was not until 2005 that this lim-
itation was overcome, when Lucas [Luc05] presented a framework for proving polynomial
termination over the real numbers, where well-foundedness is basically achieved by replacing
>R with a new ordering >R,δ requiring comparisons between terms to not be below a given
positive real number δ. Moreover, this framework also facilitates polynomial interpretations
over the rational numbers.

Thus, one can distinguish three variants of polynomial interpretations, polynomial in-
terpretations with real, rational and integer coefficients, and the obvious question is: what
is their relationship with regard to termination proving power? For Knuth-Bendix orders it
is known [Kor03, Lep01] that extending the range of the underlying weight function from
natural numbers to non-negative reals does not result in an increase in termination proving
power. In 2006, a partial answer to this question was given by Lucas [Luc06], who man-
aged to show that there are rewrite systems that can be shown polynomially terminating
by polynomial interpretations with rational coefficients, but cannot be shown polynomi-
ally terminating using polynomials with integer coefficients only. Likewise, he proved that
there are systems that can be handled by polynomial interpretations with real (algebraic)
coefficients, but cannot be handled by polynomial interpretations with rational coefficients.
Based on these results and the fact that we have the strict inclusions Z ⊂ Q ⊂ R, there is
the common yet unproven belief in the term rewriting community that polynomial inter-
pretations with real coefficients properly subsume polynomial interpretations with rational
coefficients, which in turn properly subsume polynomial interpretations with integer coef-
ficients.1 However, in this paper we show that it is not true by (constructively) proving
that polynomial interpretations with real or rational coefficients do not properly subsume
polynomial interpretations with integer coefficients. Besides, we also prove that polyno-
mial interpretations with real coefficients subsume polynomial interpretations with rational
coefficients.

The remainder of this paper is organized as follows. In Section 2, we introduce some
preliminary definitions and terminology concerning polynomials and polynomial interpre-
tations. In Section 3, we show that polynomial interpretations with real coefficients sub-
sume polynomial interpretations with rational coefficients. Section 4 is dedicated to our
main result showing that polynomial interpretations with real or rational coefficients do
not properly subsume polynomial interpretations with integer coefficients. We conclude in
Section 5.

2. Preliminaries

As usual, we denote by N, Z, Q and R the sets of natural, integer, rational and real
numbers, respectively. An irrational number is a real number, which is not in Q. Given
some N ∈ {N,Z,Q,R} and m ∈ N , >N denotes the standard order of the respective domain
and Nm := {x ∈ N | x ≥ m}. A sequence of real numbers (xn)n∈N converges to the limit

x if for every real number ε > 0 there exists a natural number N such that the absolute
distance |xn − x| is less than ε for all n > N ; we denote this by limn→∞ xn = x. As

1E.g., [Luc07] states that “polynomial interpretations over the reals are strictly better for proving poly-

nomial termination of rewriting than those which only use integer coefficients”.

POLYNOMIAL INTERPRETATIONS 245

convergence in R
k is equivalent to componentwise convergence, we use the same notation

also for limits of converging sequences of vectors of real numbers (~xn ∈ R
k)n∈N. A real

function f : Rk → R is continuous in R
k if for every converging sequence (~xn ∈ R

k)n∈N it
holds that limn→∞ f(~xn) = f(limn→∞ ~xn). Finally, as Q is dense in R, every real number
is a rational number or the limit of a converging sequence of rational numbers.

Polynomials

For any ring R (e.g., Z, Q, R), we denote the associated polynomial ring in n inde-

terminates x1, . . . , xn by R[x1, . . . , xn], the elements of which are finite sums of monomials

of the form c · xi11 x
i2
2 · · ·xinn , where the coefficient c is an element of R and the exponents

i1, . . . , in are natural numbers. An element P ∈ R[x1, . . . , xn] is called an (n-variate) poly-

nomial with coefficients in R. For example, the polynomial 2x2−x+1 is an element of Z[x],
the ring of all univariate polynomials with integer coefficients. The degree of a monomial
c · xi11 x

i2
2 . . . xinn is just the sum of its exponents.

In the special case n = 1, a polynomial P ∈ R[x] can be written as follows: P (x) =
∑d

k=0 akx
k (d ≥ 0). For the largest k such that ak 6= 0, we call akx

k the leading monomial of
P , ak its leading coefficient and k its degree, which is denoted by deg(P) = k. A polynomial
P ∈ R[x] is said to be linear if deg(P) = 1, and quadratic if deg(P) = 2.

Polynomial Interpretations

We assume familiarity with the basics of term rewriting and polynomial interpretations
(e.g. [Baa98, Ter03]). The key concept for establishing (direct) termination of TRSs via
polynomial interpretations is the notion of well-founded monotone algebras as they induce
reduction orders on terms.

Definition 2.1. Let F be a signature, i.e., a set of function symbols equipped with
fixed arities. A (well-founded) monotone F-algebra (A, >A) is a non-empty algebra A =
(A, {fA}f∈F) together with a (well-founded) order >A on the carrier A of A such that every
algebra operation fA is strictly monotone in all arguments, i.e., if f ∈ F has arity n ≥ 1 then
fA(a1, . . . , ai, . . . , an) >A fA(a1, . . . , b, . . . , an) for all a1, . . . , an, b ∈ A and i ∈ {1, . . . , n}
with ai >A b. Moreover, every function symbol f ∈ F is said to be interpreted by its
associated interpretation function fA.

Given some monotone algebra (A, >A), we define the relations �A and ≻A on terms as
follows: s �A t if [α]A(s) ≥A [α]A(t) and s ≻A t if [α]A(s) >A [α]A(t), for all assignments
α of elements of A to the variables in s and t ([α]A(·) denotes the usual evaluation function
associated with the algebra A). Now if (A, >A) is a well-founded monotone algebra, then
≻A is a reduction order that can be used to prove termination of TRSs via the following
theorem.

Theorem 2.2. A TRS is terminating if and only if it is compatible with a well-founded

monotone algebra.

Here, a TRS R is compatible with a well-founded monotone algebra (A, >A) if l ≻A r
for every rewrite rule l → r ∈ R.

246 F. NEURAUTER AND A. MIDDELDORP

Definition 2.3. A polynomial interpretation over N for a signature F consists of a poly-
nomial fN ∈ Z[x1, . . . , xn] for every n-ary function symbol f ∈ F , such that for all f ∈ F
the following two properties are satisfied:

(1) well-definedness : fN(x1, . . . , xn) ∈ N for all x1, . . . , xn ∈ N,
(2) strict monotonicity of fN in all arguments with respect to >N, the standard order

on N.

Now (N, {fN}f∈F , >N) constitutes a well-founded monotone algebra, and we say that a
polynomial interpretation over N is compatible with a TRS R if the well-founded monotone
algebra (N, {fN}f∈F , >N) is compatible with R. Finally, a TRS is polynomially terminating

over N if it admits a compatible polynomial interpretation over N.

Remark 2.4. In principle, one could take any set Nm (or even Zm) instead of N as the
carrier for polynomial interpretations. However, it is well-known [Ter03, Con05] that all
these sets are order-isomorphic to N and hence do not change the class of polynomially
terminating TRSs. In other words, a TRS R is polynomially terminating over N if and only
if it is polynomially terminating over Nm. Thus, we can restrict to N as carrier without loss
of generality.

Now if one wants to extend the notion of polynomial interpretations to the rational or
real numbers, the main problem one is confronted with is the non-well-foundedness of these
domains with respect to the standard orders >Q and >R. In [Hof01, Luc05], this problem
is overcome by replacing these orders with new non-total orders >R,δ and >Q,δ, the first of
which is defined as follows: given some fixed positive real number δ,

x >R,δ y : ⇐⇒ x− y ≥R δ for all x, y ∈ R.

Analogously, one defines >Q,δ on Q. Thus, >R,δ (>Q,δ) is well-founded on subsets of R (Q)
that are bounded from below. Therefore, any set Rm (Qm) could be used as carrier for
polynomial interpretations over R (Q). However, without loss of generality we may restrict
to R0 (Q0) because the main argument of Remark 2.4 also applies to polynomials over R

(Q), as is already mentioned in [Luc05].

Definition 2.5. A polynomial interpretation over R for a signature F consists of a poly-
nomial fR ∈ R[x1, . . . , xn] for every n-ary function symbol f ∈ F and some positive real
number δ >R 0, such that for all f ∈ F :

(a) well-definedness : fR(x1, . . . , xn) ∈ R0 for all x1, . . . , xn ∈ R0

(b) strict monotonicity of fR in all arguments with respect to >R0,δ, the restriction of
>R,δ to R0.

Analogously, one defines polynomial interpretations over Q by the obvious adaptation
of the definition above. Again, (R0, {fR}f∈F , >R0,δ) and (Q0, {fQ}f∈F , >Q0,δ) constitute
well-founded monotone algebras, and we say that a TRS is polynomially terminating over

R (Q) if it is compatible with such an algebra.
We conclude this section with a more useful characterization of monotonicity with

respect to the orders >R0,δ and >Q0,δ than the one obtained by specializing Definition 2.1.
To this end, we note that a function f : Rn

0 → R0 is strictly monotone in its i-th argument
with respect to >R0,δ if and only if f(x1, . . . , xi+h, . . . , xn)− f(x1, . . . , xi, . . . , xn) ≥R δ for
all x1, . . . , xn, h ∈ R0 with h ≥R δ. From this and from the analogous characterization of
>Q0,δ-monotonicity, it is easy to derive the following lemmata.

POLYNOMIAL INTERPRETATIONS 247

Lemma 2.6. A linear polynomial fR(x1, . . . , xn) =
∑n

i=1 aixi+a0 in R[x1, . . . , xn] is strictly
monotone in all arguments with respect to >R0,δ if and only if ai ≥R 1 for all i ∈ {1, . . . , n}.

Lemma 2.7. A linear polynomial fQ(x1, . . . , xn) =
∑n

i=1 aixi+a0 in Q[x1, . . . , xn] is strictly
monotone in all arguments with respect to >Q0,δ if and only if ai ≥Q 1 for all i ∈ {1, . . . , n}.

In the remainder of this paper we will sometimes use the term “polynomial inter-
pretations with integer coefficients” as a synonym for polynomial interpretations over N.
Likewise, the term “polynomial interpretations with real (rational) coefficients” refers to
polynomial interpretations over R (Q).

3. Polynomial Termination over the Reals and Rationals

In this section we show that polynomial termination over Q implies polynomial ter-
mination over R. The proof is based upon the fact that polynomials induce continuous
functions, whose behavior at irrational points is completely defined by the values they take
at rational points.

Lemma 3.1. Let f : Rk → R be continuous in R
k. If f(x1, . . . , xk) ≥ 0 for all x1, . . . , xk ∈

Q0 then f(x1, . . . , xk) ≥ 0 for all x1, . . . , xk ∈ R0.

Proof. Let ~x := (x1, . . . , xk) ∈ R
k
0 and let (~xn)n∈N be a sequence of vectors of non-negative

rational numbers ~xn ∈ Q
k
0 whose limit is ~x. Such a sequence exists because Q

k is dense in
R
k. Then

f(~x) = f(lim
n→∞

~xn) = lim
n→∞

f(~xn)

by continuity of f . Thus f(~x) is the limit of (f(~xn))n∈N, which is a sequence of non-negative
real numbers by assumption. Hence, f(~x) is non-negative, too.

Theorem 3.2. If a TRS is polynomially terminating over Q, then it is also polynomially

terminating over R.

Proof. Let R be a TRS over the signature F that is polynomially terminating over Q.
So there exists some polynomial interpretation I over Q consisting of a positive rational
number δ and a polynomial fQ ∈ Q[x1, . . . , xn] for every n-ary function symbol f ∈ F such
that:

(a) for all n-ary f ∈ F , fQ(x1, . . . , xn) ≥ 0 for all x1, . . . , xn ∈ Q0,
(b) for all f ∈ F , fQ is strictly monotone with respect to >Q0,δ in all arguments,
(c) for every rewrite rule l → r ∈ R, Pl >Q0,δ Pr for all x1, . . . , xm ∈ Q0.

Here Pl (Pr) denotes the polynomial associated with l (r) and the variables x1, . . . , xm are
those occurring in l → r. Next we note that all three conditions are quantified polynomial
inequalities of the shape “P (x1, . . . , xk) ≥ 0 for all x1, . . . , xk ∈ Q0” for some polynomial
P with rational coefficients. This is easy to see for the first and third condition. As
to the second condition, the function fQ is strictly monotone in its i-th argument with
respect to >Q0,δ if and only if fQ(x1, . . . , xi + h, . . . , xn)− fQ(x1, . . . , xi, . . . , xn) ≥ δ for all
x1, . . . , xn, h ∈ Q0 with h ≥ δ, which is equivalent to

fQ(x1, . . . , xi + δ + h, . . . , xn)− fQ(x1, . . . , xi, . . . , xn)− δ ≥ 0

for all x1, . . . , xn, h ∈ Q0. From Lemma 3.1 and the fact that polynomials induce continuous
functions we infer that all these polynomial inequalities do not only hold in Q0 but also in
R0. Hence, the polynomial interpretation I proves termination over R.

248 F. NEURAUTER AND A. MIDDELDORP

We conclude this section with the following remark that emphasizes the essence of the
proof of Theorem 3.2.

Remark 3.3. Not only does the result established in this section show that polynomial
termination over Q implies polynomial termination over R, but it even reveals that the
same interpretation applies.

4. Polynomial Termination over the Reals and Integers

As far as the relationship of polynomial interpretations with real, rational and integer
coefficients with regard to termination proving power is concerned, the only results published
to date are due to Lucas [Luc06], who managed to prove the following two theorems.

Theorem 4.1 (Lucas, 2006). There are TRSs that are polynomially terminating over Q

but not over N.

Theorem 4.2 (Lucas, 2006). There are TRSs that are polynomially terminating over R

but not over Q.

Hence, the extension of the coefficient domain from the integers to the rational numbers
entails the possibility to prove some rewrite systems polynomially terminating, which could
not be proved polynomially terminating otherwise. Moreover, a similar statement holds for
the extension of the coefficient domain from the rational numbers to the real numbers. Based
on these results and the fact that we have the strict inclusions Z ⊂ Q ⊂ R, it is tempting
to believe that polynomial interpretations with real coefficients properly subsume polyno-
mial interpretations with rational coefficients, which in turn properly subsume polynomial
interpretations with integer coefficients. Indeed, the former proposition holds according
to Theorem 3.2. However, the latter proposition does not hold, as will be shown in this
section. In particular, we present a TRS that can be proved terminating by a polynomial
interpretation with integer coefficients, but cannot be proved terminating by a polynomial
interpretation with real or rational coefficients.

4.1. Motivation

In order to motivate the construction of this particular rewrite system, let us first
observe that from the viewpoint of number theory there is a fundamental difference between
the integers and the real or rational numbers. More precisely, the integers are an example of
a discrete domain, whereas both the real and rational numbers are dense2 domains. In the
context of polynomial interpretations, the consequences of this major distinction are best
explained by an example. To this end, we consider the polynomial function x 7→ 2x2 − x
depicted in Figure 1 and assume that we want to use it as the interpretation of some
unary function symbol. Now the point is that this function is permissible in a polynomial
interpretation over N as it is both non-negative and strictly monotone over the natural
numbers. However, viewing it as a function over a real (rational) variable, we observe that
non-negativity is violated in the open interval (0, 12) (and monotonicity requires a properly

chosen value for δ). Hence, the polynomial function x 7→ 2x2 − x is not permissible in any
polynomial interpretation over R (Q).

2Given two distinct real (rational) numbers a and b, there exists a real (rational) number c in between.

POLYNOMIAL INTERPRETATIONS 249

x

1

2

3

4

5

6

7

0 1 2

2x2 − x

Figure 1: The polynomial function x 7→ 2x2 − x.

Thus, the idea is to design a rewrite system that enforces an interpretation of this shape
for some unary function symbol, and the tool that can be used to achieve this is polynomial
interpolation. To this end, let us consider the following scenario, which is fundamentally
based on the assumption that some unary function symbol f is interpreted by a quadratic
polynomial f(x) = ax2+bx+c with (unknown) coefficients a, b and c. Then, by polynomial
interpolation, these coefficients are uniquely determined by the image of f at three pairwise
different locations; in this way the interpolation constraints f(0) = 0, f(1) = 1 and f(2) = 6
enforce the interpretation f(x) = 2x2 − x. Next we encode these constraints in terms of the
TRS R consisting of the following rewrite rules, where sn(x) abbreviates s(s(· · · s

︸ ︷︷ ︸

n-times

(x) · · ·)),

s(0) → f(0)

s2(0) → f(s(0)) f(s(0)) → 0

s7(0) → f(s2(0)) f(s2(0)) → s5(0)

and consider the following two cases: polynomial interpretations over N on the one hand
and polynomial interpretations over R on the other hand.

In the context of polynomial interpretations over N, we observe that if we equip the
function symbols s and 0 with the (natural) interpretations sN(x) = x + 1 and 0N = 0,
then the TRS R indeed implements the above interpolation constraints.3 For example, the
constraint fN(1) = 1 is expressed by f(s(0)) → 0 and s2(0) → f(s(0)). The former encodes
fN(1) > 0, whereas the latter encodes fN(1) < 2. Moreover, the rule s(0) → f(0) encodes
fN(0) < 1, which is equivalent to fN(0) = 0 in the domain of the natural numbers. Thus,
this interpolation constraint can be expressed by a single rewrite rule, whereas the other
two constraints require two rules each. Summing up, by virtue of the method of polynomial
interpolation, we have reduced the problem of enforcing a specific interpretation for some
unary function symbol to the problem of enforcing natural semantics for the symbols s and
0.

3In fact, one can even show that sN(x) = x+ 1 is sufficient for this purpose.

250 F. NEURAUTER AND A. MIDDELDORP

Next we elaborate on the ramifications of considering the TRS R in the context of
polynomial interpretations over R. To this end, let us assume that the symbols s and 0 are
interpreted by sR(x) = x + s0 and 0R = 0, so that s has some kind of successor function
semantics. Then the TRS R translates to the following constraints:

s0 − δ ≥R fR(0)

2s0 − δ ≥R fR(s0) fR(s0) ≥R 0 + δ

7s0 − δ ≥R fR(2s0) fR(2s0) ≥R 5s0 + δ

Hence, fR(0) is confined to the closed interval [0, s0 − δ], whereas fR(s0) is confined to [0 +
δ, 2s0−δ] and fR(2s0) to [5s0+δ, 7s0−δ]. Basically, this means that these constraints do not
uniquely determine the function fR. In other words, the method of polynomial interpolation
does not readily apply to the case of polynomial interpretations over R. However, we can
make it work. To this end, we observe that if s0 = δ, then the above system of inequalities
actually turns into the following system of equations, which can be viewed as a set of
interpolation constraints (parameterized by s0) that uniquely determine fR:

fR(0) = 0 fR(s0) = s0 fR(2s0) = 6s0

Clearly, if s0 = δ = 1, then the symbol f is fixed to the interpretation 2x2 − x, as was
the case in the context of polynomial interpretations over N (note that in the latter case
δ = 1 is implicit because of the equivalence x >N y ⇐⇒ x ≥N y + 1). Hence, we conclude
that once we can manage to design a TRS that enforces s0 = δ, we can again leverage
the method of polynomial interpolation to enforce a specific interpretation for some unary
function symbol. Moreover, we remark that the actual value of s0 is irrelevant for achieving
our goal. That is to say that s0 only serves as a scale factor in the interpolation constraints
determining fR. Clearly, if s0 6= 1, then fR is not fixed to the interpretation 2x2−x, however,
it is still fixed to an interpretation of the same (desired) shape. But more on this later.

4.2. Main Theorem

In the previous subsection we have presented the basic method that we use in order
to show that polynomial interpretations with real or rational coefficients do not properly
subsume polynomial interpretations with integer coefficients. The construction presented
there was based on several assumptions, the essential ones of which are:

(a) The symbol s had to be interpreted by a linear polynomial of the shape x+ s0.
(b) The condition s0 = δ was required to hold.
(c) The function symbol f had to be interpreted by a quadratic polynomial.

Now the point is that one can get rid of all these assumptions by adding suitable rewrite
rules to the TRS R. The resulting TRS will be referred to as S, and it consists of the
following rewrite rules:

POLYNOMIAL INTERPRETATIONS 251

s(0) → f(0) (1)

s2(0) → f(s(0)) (2)

s7(0) → f(s2(0)) (3)

f(s(0)) → 0 (4)

f(s2(0)) → s5(0) (5)

f(s2(x)) → h(f(x), g(h(x, x))) (6)

f(g(x)) → g(g(f(x))) (7)

g(s(x)) → s(s(g(x))) (8)

g(x) → h(x, x) (9)

s(x) → h(0, x) (10)

s(x) → h(x, 0) (11)

h(f(x), g(x)) → f(s(x)) (12)

In this system the rewrite rules (7) and (8) serve the purpose of ensuring the first of the above
items. Informally, (8) constrains the interpretation of the symbol s to a linear polynomial
by simple reasoning about the degrees of the left- and right-hand side polynomials, and (7)
does the same thing with respect to g. Because both interpretations are linear, compatibility
with (8) can only be achieved if the leading coefficient of the interpretation of s is one.

Concerning item (c) above, we remark that the tricky part is to enforce the upper bound
of two on the degree of the polynomial fR that interprets the symbol f. To this end, we make
the following observation. If fR is at most quadratic, then the function fR(x+ s0)− fR(x) is
at most linear; that is, there is a linear function gR(x) such that gR(x) > fR(x+ s0)− fR(x),
or equivalently, fR(x)+gR(x) > fR(x+s0), for all values of x. This can be encoded in terms
of rule (12) as soon as the interpretation of h corresponds to addition of two numbers. And
this is exactly the purpose of rules (9), (10) and (11). More precisely, by linearity of the
interpretation of g, we infer from (9) that the interpretation of h must have the linear shape
h2x+ h1y + h0. Furthermore, compatibility with (10) and (11) implies h2 = h1 = 1 due to
item (a) above. Hence, the interpretation of h is x + y + h0, and it really models addition
of two numbers (modulo adding a constant).

Next we comment on how to enforce the second of the above assumptions. To this end,
we remark that the hard part is to enforce the condition s0 ≤ δ. The idea is as follows. First,
we consider rule (2), observing that if f is interpreted by a quadratic polynomial fR and s by
the linear polynomial x+ s0, then (the interpretation of) its right-hand side will eventually
become larger than its left-hand side with growing s0, thus violating compatibility. In
this way, s0 is bounded from above, and the faster the growth of fR, the lower the bound.
The problem with this statement, however, is that it is only true if fR is fixed (which is a
priori not the case); otherwise, for any given value of s0, one can always find a quadratic
polynomial fR such that compatibility with (2) is satisfied. The parabolic curve associated
with fR only has to be flat enough. So, in order to prevent this, we have to somehow control
the growth of fR. Now that is where rule (6) comes into play, which basically expresses
that if you increase the argument of fR by a certain amount (i.e., 2s0), then the value of
the function is guaranteed to increase by a certain minimum amount, too. Thus, this rule
establishes a lower bound on the growth of fR. And it turns out that if fR has just the right
amount of growth, then we can readily establish the desired upper bound δ for s0.

Finally, having presented all the relevant details of our construction, it remains to
formally prove our main claim that the TRS S is polynomially terminating over N, but not
over R or Q.

Lemma 4.3. The TRS S is polynomially terminating over N.

Proof. We consider the following interpretation:

0N = 0 sN(x) = x+ 1 fN(x) = 2x2 − x gN(x) = 4x+ 4 hN(x, y) = x+ y

252 F. NEURAUTER AND A. MIDDELDORP

Note that the polynomial 2x2 − x is a permissible interpretation function as it is both non-
negative and strictly monotone over the natural numbers (cf. Figure 1). The rewrite rules
of S are compatible with this interpretation because the resulting inequalities

1 >N 0 32x2 + 60x+ 28 >N 32x2 − 16x+ 20

2 >N 1 4x+ 8 >N 4x+ 6

7 >N 6 4x+ 4 >N 2x

1 >N 0 x+ 1 >N x

6 >N 5 x+ 1 >N x

2x2 + 7x+ 6 >N 2x2 + 7x+ 4 2x2 + 3x+ 4 >N 2x2 + 3x+ 1

are clearly satisfied for all natural numbers x.

Lemma 4.4. The TRS S is not polynomially terminating over R.

Proof. Let us assume that S is polynomially terminating over R and derive a contradiction.
Compatibility with rule (8) implies

deg(gR(x)) · deg(sR(x)) ≥ deg(sR(x)) · deg(sR(x)) · deg(gR(x))

As a consequence, deg(sR(x)) ≤ 1, and because sR and gR must be strictly monotone, we
conclude deg(sR(x)) = 1. The same reasoning applied to rule (7) yields deg(gR(x)) = 1.
Hence, the symbols s and g must be interpreted by linear polynomials. So sR(x) = s1x+ s0
and gR(x) = g1x+ g0 with s0, g0 ∈ R0 and, due to Lemma 2.6, s1 ≥R 1 and g1 ≥R 1. Then
the compatibility constraint imposed by rule (8) gives rise to the inequality

g1s1x+ g1s0 + g0 >R0,δ s
2
1g1x+ s21g0 + s1s0 + s0 (13)

which must hold for all non-negative real numbers x. This implies the following condition
on the respective leading coefficients: g1s1 ≥R s21g1. Because of s1 ≥R 1 and g1 ≥R 1, this
can only hold if s1 = 1. Hence, sR(x) = x+ s0. This result simplifies (13) to g1s0 >R0,δ 2s0,
which implies g1s0 >R 2s0. From this, we conclude that s0 >R 0 and g1 >R 2.

Now suppose that the function symbol f were also interpreted by a linear polynomial
fR. Then we could apply the same reasoning to rule (7) because it is structurally equivalent
to (8), thus inferring g1 = 1. However, this would contradict g1 >R 2; therefore, fR cannot
be linear.

Next we turn our attention to the rewrite rules (9), (10) and (11). Because gR is linear,
compatibility with (9) constrains the function h : R0 → R0, x 7→ hR(x, x) to be at most
linear. This can only be the case if hR contains no monomials of degree two or higher.
In other words, hR(x, y) = h1 · x + h2 · y + h0, where h0 ∈ R0, h1 ≥R 1 and h2 ≥R 1
(cf. Lemma 2.6). Because of sR(x) = x + s0, compatibility with (11) implies h1 = 1, and
compatibility with (10) implies h2 = 1; thus, hR(x, y) = x+ y + h0.

Using the obtained information in the compatibility constraint associated with rule
(12), we get

gR(x) + h0 >R0,δ fR(x+ s0)− fR(x) for all x ∈ R0

This implies that deg(gR(x) + h0) ≥ deg(fR(x + s0) − fR(x)), which simplifies to 1 ≥
deg(fR(x))− 1 because s0 6= 0. Consequently, fR must be a quadratic polynomial. Without
loss of generality, let fR(x) = ax2 + bx + c, subject to the constraints: a >R 0 and c ≥R 0
because of non-negativity (for all x ∈ R0), and aδ + b ≥R 1 because fR(δ) >R0,δ fR(0) due
to strict monotonicity of fR.

POLYNOMIAL INTERPRETATIONS 253

Next we consider the compatibility constraint associated with rule (6), from which we
deduce an important auxiliary result. After unraveling the definitions of >R0,δ and the
interpretation functions, this constraint simplifies to

4as0x+ 4as20 + 2bs0 ≥R 2g1x+ g1h0 + g0 + h0 + δ for all x ∈ R0,

which implies the following condition on the respective leading coefficients: 4as0 ≥R 2g1;
from this and g1 >R 2, we conclude

as0 >R 1 (14)

and note that as0 = f ′
R
(s0/2)− f ′

R
(0). Hence, as0 expresses the change of the slopes of the

tangents to fR at the points (0, fR(0)) and (s0/2, fR(s0/2)), and thus (14) actually sets a
lower bound on the growth of fR.

Now let us consider the combined compatibility constraint imposed by rule (2) and
rule (4), namely 0R + 2s0 >R0,δ fR(sR(0R)) >R0,δ 0R, which implies 0R + 2s0 ≥R 0R + 2δ
by definition of >R0,δ. Thus, we conclude s0 ≥R δ. In fact, we even have s0 = δ, which
can be derived from the compatibility constraint of rule (2) using the conditions s0 ≥R δ,
aδ + b ≥R 1 and as0 + b ≥R 1, the combination of the former two conditions:

0R + 2s0 >R0,δ fR(sR(0R))

0R + 2s0 − δ ≥R fR(sR(0R))

= a(0R + s0)
2 + b(0R + s0) + c

= a02R + 0R(2as0 + b) + as20 + bs0 + c

≥R a02R + 0R + as20 + bs0 + c

≥R 0R + as20 + bs0

≥R 0R + as20 + (1− aδ)s0

= 0R + as0(s0 − δ) + s0

Hence, 0R + 2s0 − δ ≥R 0R + as0(s0 − δ) + s0, or equivalently, s0 − δ ≥R as0(s0 − δ). But
because of (14) and s0 ≥R δ, this inequality can only be satisfied if:

s0 = δ (15)

This result has immediate consequences concerning the interpretation of the constant 0. To
this end, we consider the compatibility constraint of rule (10), which simplifies to s0 ≥R

0R+h0+δ. Because of (15) and the fact that 0R and h0 must be non-negative, we conclude
0R = h0 = 0.

Moreover, condition (15) is the key to the proof of this lemma. To this end, we consider
the compatibility constraints associated with the five rewrite rules (1)–(5):

s0 >R0,s0 fR(0)

2s0 >R0,s0 fR(s0) fR(s0) >R0,s0 0

7s0 >R0,s0 fR(2s0) fR(2s0) >R0,s0 5s0

By definition of >R0,s0 , these inequalities give rise to the following system of equations:

fR(0) = 0 fR(s0) = s0 fR(2s0) = 6s0

After unraveling the definition of fR and substituting z := as0, we get a system of linear
equations in the unknowns z, b and c

c = 0 z + b = 1 4z + 2b = 6

254 F. NEURAUTER AND A. MIDDELDORP

which has the unique solution z = 2, b = −1 and c = 0. Hence, fR must have the shape
fR(x) = ax2−x = ax(x− 1

a
) in every compatible polynomial interpretation over R. However,

this function is not a permissible interpretation for the function symbol f because it is not
non-negative for all x ∈ R0. In particular, it is negative in the open interval (0, 1

a
); e.g.,

fR(
1
2a) = − 1

4a . Hence, S is not compatible with any polynomial interpretation over R.

Remark 4.5. In this proof the interpretation of f is fixed to fR(x) = ax2 − x, which
violates well-definedness in R0. However, this function is obviously well-defined in Rm for
a properly chosen negative real number m. So, what happens if we take this Rm instead
of R0 as carrier of a polynomial interpretation? To this end, we observe that fR(0) = 0
and fR(δ) = δ(aδ − 1) = δ(as0 − 1) = δ. Now let us consider some negative real number
x0 ∈ Rm. Then fR(x0) >R 0 such that fR(δ) − fR(x0) <R δ, which means that fR violates
monotonicity with respect to the order >Rm,δ.

The previous lemma, together with Theorem 3.2, yields the following corollary.

Corollary 4.6. The TRS S is not polynomially terminating over Q.

Finally, combining the results presented in this section, we establish the main theorem
of this paper.

Theorem 4.7. There are TRSs that can be proved polynomially terminating over N, but

cannot be proved polynomially terminating over R or Q.

5. Conclusion and Future Work

In this paper, we investigated the relationship of polynomial interpretations with real,
rational and integer coefficients with respect to termination proving power. In particular,
we presented two new results, the first of which shows that polynomial interpretations with
real coefficients subsume polynomial interpretations with rational coefficients, and the sec-
ond of which shows that polynomial interpretations with real or rational coefficients do not
properly subsume polynomial interpretations with integer coefficients, a result that comes
somewhat unexpected. Together with the results of Lucas [Luc06], our results imply that
polynomial interpretations with real or rational coefficients are incomparable to polyno-
mial interpretations with integer coefficients with respect to termination proving power.
Notwithstanding all these facts, the overall picture is not quite complete yet, there is still
an open question: Are there TRSs that are polynomially terminating over N and R, but
not over Q? Graphically, this question amounts to the inhabitation of the area depicted in
red in Figure 2, which summarizes our results and the results of Lucas [Luc06].

We conclude this paper with two additional observations. First, we show that for
polynomial interpretations over R it suffices to consider real algebraic4 numbers as interpre-
tation domain. Second, we present an alternative proof of Theorem 4.1, which shows the
inhabitation of the area with the symbol Q in Figure 2.

Concerning the use of real algebraic numbers in polynomial interpretations, in [Luc07,
Section 6] it is shown that it suffices to consider polynomials with real algebraic coefficients
as interpretations of function symbols. Now the obvious question is whether it is also
sufficient to consider only the (non-negative) real algebraic numbers Ralg instead of the

4A real number is said to be algebraic if it is a root of a non-zero polynomial in one variable with rational

coefficients.

POLYNOMIAL INTERPRETATIONS 255

terminating TRSs

R Q

N

Figure 2: Comparison.

entire set R of real numbers as interpretation domain. We give an affirmative answer to
this question by extending the result of [Luc07]. To this end, let us assume that R is a
TRS that is polynomially terminating over R. So, using the result of [Luc07], there exist
a positive real number δ and a polynomial fR ∈ Ralg[x1, . . . , xn] for every n-ary function
symbol f ∈ F such that:

(a) for all n-ary f ∈ F , fR(x1, . . . , xn) ≥ 0 for all x1, . . . , xn ∈ R0,
(b) for all f ∈ F , fR is strictly monotone with respect to >R0,δ in all arguments,
(c) for every rewrite rule l → r ∈ R, Pl >R0,δ Pr for all x1, . . . , xm ∈ R0.

Treating δ as a variable (which we will later quantify existentially), we note that, similarly
to the proof of Theorem 3.2, all three conditions can be phrased as quantified polynomial
inequalities of the shape “P (x1, . . . , xk, δ) ≥ 0 for all x1, . . . , xk ∈ R0” for some polynomial
P with real algebraic coefficients. Moreover, we note that there are finitely many of them
if we assume R to be a finite TRS over a finite signature. Next we observe that any of
these quantified inequalities can readily be expressed as a formula in the first order theory of
ordered fields (where the atoms are polynomial (in)equalities, cf. [Bas06]) with δ as only free
variable. Taking the conjunction of all these formulas and existentially quantifying δ and
adding the conjunct δ > 0, we obtain a sentence S in the first order theory of ordered fields,
where all coefficients are real algebraic numbers. By assumption, this sentence holds in R,
and since both R and Ralg are real closed fields with Ralg ⊂ R and all coefficients in S are
from Ralg, we may apply the Tarski-Seidenberg transfer principle ([Bas06, Theorem 2.80]),
from which we infer that S holds in R if and only if it holds in Ralg. Hence S also holds in
Ralg and therefore the TRS R is polynomially terminating over Ralg (whose formal definition
is the obvious specialization of Definition 2.5). This shows that polynomial termination over
R implies polynomial termination over Ralg. As the reverse implication can be shown to
hold by the same technique, we conclude that polynomial termination over R is equivalent
to polynomial termination over Ralg.

Finally, we present our proof of Theorem 4.1, which is both shorter and simpler than
the original proof in [Luc06, pp. 62–67]. Moreover, it shows that the strict inclusion holds
even for ground TRSs.

Proof of Theorem 4.1. Consider the TRS T comprising the two rewrite rules

f(a) → f(b) g(b) → g(a)

We claim that T is polynomially terminating over Q, but not over N. We start with the
latter. In every compatible polynomial interpretation over N, we have aN > bN or aN ≤ bN.

256 F. NEURAUTER AND A. MIDDELDORP

Strict monotonicity of fN and gN yields gN(aN) > gN(bN) or fN(aN) ≤ fN(bN). In both cases
compatibility is violated. It remains to show that T is polynomially terminating over Q.
The following interpretation applies:

δ := 1 aQ := 0 bQ := 1
2 gQ(x) := 2x fQ(x) := 6x2 − 5x+ 2

First, we show compatibility of this interpretation with the rules of T . To this end, we
observe that the inequalities

fQ(aQ) >Q0,δ fQ(bQ) gQ(bQ) >Q0,δ gQ(aQ)

which simplify to 2 >Q0,1 1 and 1 >Q0,1 0, do indeed hold by definition of >Q0,1. Next we
show well-definedness (non-negativity) and monotonicity of fQ and gQ.

For well-definedness we have to show fQ(x) ≥ 0 and gQ(x) ≥ 0 for all non-negative
rational numbers x. While gQ obviously satisfies this condition, fQ requires further reason-
ing. To this end, it suffices to observe that fQ has a global minimum at x0 = 5

12 , namely

fQ(x0) =
23
24 , which is positive.

The strict monotonicity of gQ follows from Lemma 2.7. The function fQ is strictly
monotone with respect to >Q0,δ if and only if fQ(x + h) − fQ(x) ≥ δ for all non-negative
rational numbers x and h ≥ δ. Thus, we have to show that h(6h − 5 + 12x) ≥ 1 for all
non-negative rational numbers x and h ≥ 1. As x is non-negative and occurs only with a
positive sign, this is equivalent to showing that h(6h− 5) ≥ 1 for all non-negative rational
numbers h ≥ 1, which is easy. Note that fQ is not strictly monotone with respect to the
standard order >Q on Q.

References

[Art00] T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical Computer

Science, 236(1-2):133–178, 2000.

[Baa98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[Bas06] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry. Springer, 2nd edn.,

2006.

[Con05] E. Contejean, C. Marché, A.-P. Tomás, and X. Urbain. Mechanically proving termination using

polynomial interpretations. Journal of Automated Reasoning, 34(4):325–363, 2005.

[Der79] N. Dershowitz. A note on simplification orderings. Information Processing Letters, 9(5):212–215,

1979.

[Gie05] J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework: Combining tech-

niques for automated termination proofs. In Proc. 11th International Conference on Logic for Pro-

gramming, Artificial Intelligence, and Reasoning (LPAR 2004), Lecture Notes in Artificial Intelli-

gence, vol. 3452, pp. 301–331. 2005.

[Hir05] N. Hirokawa and A. Middeldorp. Automating the dependency pair method. Information and Com-

putation, 199(1-2):172–199, 2005.

[Hof01] D. Hofbauer. Termination proofs by context-dependent interpretations. In Proc. 12th International

Conference on Rewriting Techniques and Applications (RTA 2001), Lecture Notes in Computer

Science, vol. 2051, pp. 108–121. 2001.

[Kor03] K. Korovin and A. Voronkov. Orienting rewrite rules with the Knuth-Bendix order. Information

and Computation, 183:165–186, 2003.

[Lan79] D. Lankford. On proving term rewrite systems are noetherian. Tech. Rep. MTP-3, Louisiana Tech-

nical University, Ruston, 1979.

[Lep01] I. Lepper. Derivation lengths and order types of Knuth-Bendix orders. Theoretical Computer Sci-

ence, 269(1-2):433–450, 2001.

[Luc05] S. Lucas. Polynomials over the reals in proofs of termination: From theory to practice. Theoretical

Informatics and Applications, 39(3):547–586, 2005.

POLYNOMIAL INTERPRETATIONS 257

[Luc06] S. Lucas. On the relative power of polynomials with real, rational, and integer coefficients in proofs

of termination of rewriting. Applicable Algebra in Engineering, Communication and Computing,

17(1):49–73, 2006.

[Luc07] S. Lucas. Practical use of polynomials over the reals in proofs of termination. In Proc. 9th Interna-

tional Conference on Principles and Practice of Declarative Programming (PPDP 2007), pp. 39–50.

Association of the Computing Machinery, 2007.

[Ter03] Terese. Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Science, vol. 55. Cam-

bridge University Press, 2003.

258 F. NEURAUTER AND A. MIDDELDORP

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 259-276
http://rewriting.loria.fr/rta/

AUTOMATED TERMINATION ANALYSIS OF JAVA BYTECODE

BY TERM REWRITING

CARSTEN OTTO AND MARC BROCKSCHMIDT AND CHRISTIAN VON ESSEN AND JÜRGEN

GIESL

LuFG Informatik 2, RWTH Aachen University, Germany

E-mail address: giesl@informatik.rwth-aachen.de

Abstract. We present an automated approach to prove termination of Java Bytecode
(JBC) programs by automatically transforming them to term rewrite systems (TRSs). In

this way, the numerous techniques and tools developed for TRS termination can now be

used for imperative object-oriented languages like Java, which can be compiled into JBC.

1. Introduction

Termination of TRSs and logic programs has been studied for decades. But as impera-
tive programs dominate in practice, recently many results on termination of imperative
programs were developed as well (e.g., [2, 3, 4, 5, 12]). Our goal is to re-use the wealth
of techniques and tools from TRS termination when tackling imperative object-oriented
programs. Similar TRS-based approaches have already proved successful for termination
analysis of Prolog and Haskell [10, 17]. A first approach to prove termination of imperative
programs by transforming them to TRSs was presented in [7]. However, [7] only analyzes a
toy programming language without heap, whereas our goal is to analyze JBC programs.

JBC [14] is an assembly-like object-oriented language designed as intermediate format
for the execution of Java [11] programs by a Java Virtual Machine (JVM). Moreover, JBC is a
common compilation target for many other languages besides Java. While there exist several
static analysis techniques for JBC, we are only aware of two other automated methods to
analyze termination of JBC, implemented in the tools COSTA [1] and Julia [19]. They
transform JBC into a constraint logic program by abstracting every object of a dynamic
data type to an integer denoting its path-length (i.e., the maximal length of the path of
pointers that can be obtained by following the fields of objects). For example, consider a
data structure IntList with the field value for the first list element and the field next

which points to the next list element. Now an object of type IntList representing the
list [0, 1, 2] would be abstracted to its length 3, but one would disregard the values of
the list elements. While this fixed mapping from data objects to integers leads to a very
efficient analysis, it also restricts the power of these methods. In contrast, in our approach

Key words and phrases: Java Bytecode, termination, term rewriting.

Supported by the DFG grant GI 274/5-2 and by the G.I.F. grant 966-116.6.

c© C. Otto, M. Brockschmidt, C. von Essen, and J. Giesl
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.259

260 C. OTTO, M. BROCKSCHMIDT, C. VON ESSEN, AND J. GIESL

we represent data objects not by integers, but by terms. To this end, we introduce a
function symbol for every class. So the IntList object above is represented by a term like
IntList(0, IntList(1, IntList(2, null))), which keeps the whole information of the data object.

So compared to [1, 19] and to direct termination analysis of imperative programs,
rewrite techniques1 have the advantage that they are very powerful for algorithms on user-
defined data structures, since they can automatically generate suitable well-founded orders
comparing arbitrary forms of terms. Moreover, by using TRSs with built-in integers [8],
rewrite techniques are also powerful for algorithms on pre-defined data types like integers.

Inspired by our approach for termination of Haskell [10], in this paper we present a
method to translate JBC programs to TRSs. More precisely, in Sect. 2 we show how to
automatically construct a termination graph representing all execution paths of the JBC
program. Similar graphs are also used in program optimization techniques, e.g. [18]. While
we perform considerably less abstraction than [1, 19], we also apply a suitable abstract
interpretation [6] in order to obtain finite representations for all possible forms of the heap
at a certain state. In contrast to control flow graphs, the nodes of the termination graph
contain not just the current program position, but also detailed information on the values
of the variables and on the content of the heap. Thus, the termination graph usually
has several nodes which represent the same program position, but where the values of the
variables and the heap are different. This is caused by different runs through the program
code. The termination graph takes care of all aliasing, sharing, and cyclicity effects in the
JBC program. This is needed in order to express these effects in a TRS afterwards. Then,
a TRS is generated from the termination graph such that termination of the TRS implies
termination of the original JBC program (Sect. 3). The resulting TRSs can be handled by
existing TRS termination techniques and tools.

As described in Sect. 4, we implemented the transformation in our tool AProVE [9]. In
the first International Termination Competition on automated termination analysis of JBC,
AProVE achieved competitive results compared to Julia and COSTA. So this paper shows
for the first time that rewriting techniques can indeed be successfully used for termination
of imperative object-oriented languages like Java.

2. From JBC to Termination Graphs

To obtain a finite representation of all execution paths, we evaluate the JBC program
symbolically, resulting in a termination graph. Afterwards, this graph is used to generate
a TRS suitable for termination analysis. Sect. 2.1 introduces the abstract states used in
termination graphs. Then Sect. 2.2 illustrates the construction of termination graphs for
simple programs and Sect. 2.3 extends it to programs with complex forms of sharing.

1Of course, one could also use a transformation similar to ours where JBC is transformed to (constraint)

logic programs, but where data objects are also represented by terms instead of integers. In principle, such

an approach would be as powerful as ours, provided that one uses sufficiently powerful underlying techniques

for automated termination analysis of logic programs. However, since some of the most powerful current

termination analyzers for logic programs are based on term rewriting [15, 17], it seems more natural to

transform JBC to term rewriting directly.

AUTOMATED TERMINATION ANALYSIS OF JAVA BYTECODE BY TERM REWRITING 261

2.1. Representing States of the JVM

We define abstract states which represent sets of concrete JVM states, using a formalization
which is especially suitable for a translation into TRSs (see e.g. [13] for related formaliza-
tions). Our approach is restricted to verified sequential JBC programs without recursion.
To simplify the presentation in the paper, we only consider program runs involving a single
method, and exclude floating point arithmetic, arrays, exceptions, and static class fields.
However, our approach can easily be extended to such constructs and to arbitrary many
non-recursive methods. For the latter, we represent the frames of the call stack individually
and simply “inline” the code of invoked methods. Indeed, our implementation also handles
programs with several methods including floats, arrays, exceptions, and static fields.

Definition 2.1. The set of abstract states is States = ProgPos×LocVar×OpStack×Heap.

The first component of a state corresponds to the program counter. We represent it by
the next program instruction to be executed (e.g., by a JBC instruction like “ifnull 8”).

The second component is an array of the local variables which have a defined value at the
current program position, represented by a partial function LocVar = N → References.
Here, References are addresses in the heap. So in our representation, we do not store
primitive values directly, but indirectly using references to the heap. This enables us to re-
tain equality information for two otherwise unknown primitive values. Moreover, we require
null ∈ References to represent the null reference. To ease readability, in examples we
usually denote local variables by names instead of numbers. Thus, “o : o1, l : o2” denotes
an array where the 0-th local variable o references the address o1 in the heap and the 1-st
local variable l references the address o2 in the heap. Of course, different local variables
can point to the same address (e.g., in “o :o1, l :o2, c :o1”, o and c refer to the same object).

The third component is the operand stack that JBC instructions operate on. It will be
filled with intermediate values such as operands of arithmetic operations when evaluating
the bytecode. We represent it by a partial function OpStack = N → References. The
empty operand stack is denoted by “ε” and “i1, i2” denotes a stack with top element i2.

ifnull 8 | o :o1, l :o2 | o1
o1 = Int(val = i1) i1 = (−∞,∞)

o2 = Int(?)

Figure 1: An abstract JVM state

To depict abstract states in examples, we write the
first three components in the first line and separate
them by “|”. The fourth Heap component is written
in the lines below, cf. Fig. 1. It describes the values
of References. We represent the Heap by a partial

function Heap : References → Integers ∪ Instances ∪ Unknown.
The values in Unknown = Classnames×{?} represent tree-shaped (and thus acyclic)

objects for which we have no information except their type. Classnames contains the
names of all classes and interfaces of the program. So for a class Int, “o2 = Int(?)” means
that the object at address o2 is null or an instance of type Int (or a subtype of Int).

We represent integers as possibly unbounded intervals, i.e. Integers = {{x ∈ Z | a ≤
x ≤ b} | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {∞}, a ≤ b}. So i1 = (−∞,∞) means that any integer
can be at the address i1. Since current TRS termination tools cannot handle 32-bit int-
numbers as in JBC, we treat int as the infinite set of all integers, i.e., we cannot handle
problems related to overflows. Note that in JBC, int is also used for Boolean values.

To represent Instances (i.e., objects) of some class, we describe the values of their
fields, i.e., Instances = Classnames×(FieldIdentifiers → References). To prevent
ambiguities, in general the FieldIdentifiers also contain the respective class names. So
if the class Int has the field val of type int, then “o1 = Int(val = i1)” means that at the

262 C. OTTO, M. BROCKSCHMIDT, C. VON ESSEN, AND J. GIESL

00: aload_0 // load orig to opstack

01: ifnull 8 // jump to line 8 if top

// of opstack is null

04: aload_1 // load limit

05: ifnonnull 9 // jump if not null

08: return

09: aload_0 // load orig

10: astore_2 // store into copy

11: aload_0 // load orig

12: getfield val // load field val

15: aload_1 // load limit

16: getfield val // load field val

19: if_icmpge 35 // jump if

// orig.val >= limit.val

22: aload_2 // load copy

23: aload_2 // load copy

24: getfield val // load field val

27: iconst_1 // load constant 1

28: iadd // add copy.val and 1

29: putfield val // store into copy.val

32: goto 11

35: return

(a) Java Bytecode

public class Int {

// only wrap a pr imi t i ve in t

private int va l ;

// count up to the value

// in ” l im i t ”

public stat ic void count (

Int or ig , Int l im i t) {

i f (o r i g == null

| | l im i t == null) {

return ;

}

// introduce sharing

Int copy = o r i g ;

while (o r i g . va l < l im i t . va l) {

copy . va l++;

}

}

}

(b) Java Source Code

Figure 2: Example using aliasing and an integer counting upwards

address o1, there is an instance of class Int and its field val references the address i1 in
the heap. Note that all sharing and aliasing must be explicitly represented in the abstract
state. So since the state in Fig. 1 contains no sharing information for o1 and o2, o1 and the
references reachable from o1 are disjoint from o2 and from the references reachable from o2.

2.2. Termination Graphs for Simple Programs

We now introduce the termination graph using a simple example. In Fig. 2(a) we present
the analyzed JBC program and Fig. 2(b) shows the corresponding Java source code.

We create the termination graph using the states of a run of our abstract virtual machine
as nodes, starting in a suitable general state. In our example, we want to know if all calls of
the method count with two distinct arbitrary Int objects (or null) as arguments terminate.
Here it is important to handle the aliasing of the variables copy and orig.

In Fig. 3, node A contains the start state. For the local variables orig and limit

(abbreviated o and l), we only know their type and we know that they do not share any
part of the heap. The first JBC instruction aload 0 loads the value of the 0-th local variable
(the argument orig) on the operand stack. The variable orig references some address o1
in the heap, but we do not need concrete information about o1 for this instruction. The
resulting new state B is connected to A by an evaluation edge.

To evaluate the ifnull instruction, we need to know if the reference on top of the
operand stack is null. This is not yet known for o1. We refine the information and create
successor nodes C and D for all possible cases (i.e., for o1 == null, and for Int and all
its non-abstract subclasses). In C, o1 is null, and in D it is an instance of Int (Int has
no proper subtypes). In D, the field values are new references in the heap. So instead of
“o1 = Int(?)”, we now have “o1 = Int(val = i1)”. Note that while “o1 = Int(?)” in node B
means that if o1 is not null, then it has type Int or a subtype of it, “o1 = Int(val = i1)”
in node D means that o1’s type is exactly Int and not a proper subtype. We have no
information about the value at i1. Therefore, i1 gets the most general value for Integers,
i.e., i1 = (−∞,∞). C and D are connected to B by refinement edges.

AUTOMATED TERMINATION ANALYSIS OF JAVA BYTECODE BY TERM REWRITING 263

aload 0 | o :o1, l :o2 | ε
o1 = Int(?) o2 = Int(?)

A

ifnull 8 | o :o1, l :o2 | o1
o1 = Int(?) o2 = Int(?)

B
ifnull 8 | o :null, l :o2 | null
o2 = Int(?)

C

return | o :null, l :o2 | ε
o2 = Int(?)

E

ifnull 8 | o :o1, l :o2 | o1
o1 = Int(val = i1) i1 = (−∞,∞)

o2 = Int(?)

D aload 1 | o :o1, l :o2 | ε
o1 = Int(val = i1) i1 = (−∞,∞)

o2 = Int(?)

F

if icmpge 35 | o :o1, l :o2, c :o1 | i1, i2
o1 = Int(val = i1) i1 = (−∞,∞)

o2 = Int(val = i2) i2 = (−∞,∞)

G
T:if icmpge 35 | o :o1, l :o2, c :o1 | i1, i2
o1 = Int(val = i1) i1 = (−∞,∞)

o2 = Int(val = i2) i2 = (−∞,∞)

H

return | o :o1, l :o2, c :o1 | ε
o1 = Int(val=i1) i1 = (−∞,∞)

o2 = Int(val=i2) i2 = (−∞,∞)

J

F:if icmpge 35 | o :o1, l :o2, c :o1 | i1, i2
o1 = Int(val = i1) i1 = (−∞,∞)

o2 = Int(val = i2) i2 = (−∞,∞)

I

iadd | o :o1, l :o2, c :o1 | o1, i1, iconst1
o1 = Int(val=i1) i1 = (−∞,∞)

o2 = Int(val=i2) i2 = (−∞,∞)

iconst1 = [1, 1]

K

putfield val | o :o1, l :o2, c :o1 | o1, i3
o1 = Int(val=i1) i1 = (−∞,∞)

o2 = Int(val=i2) i2 = (−∞,∞)

i3 = (−∞,∞)

L

if icmpge 35 | o :o1, l :o2, c :o1 | i3, i2
o1 = Int(val=i3) i3 = (−∞,∞)

o2 = Int(val=i2) i2 = (−∞,∞)

M

i1 ≥ i2

i1 < i2

i3 = i1 + iconst1

Figure 3: Termination graph for count

Now we can evaluate the instruction both for C and D, leading to E and F . Evaluation
stops in E, while for F , the same procedure is repeated for the argument limit, leading to
node G (among others) after several steps, indicated by a dotted arrow. Note the aliasing
between copy and orig, since both reference the same object at the address o1.

In G, we have already evaluated the two “getfield val” instructions and have pushed
the two integer values on the operand stack. Now if icmpge requires us to compare the
unknown integers at i1 and i2. If we had to compare i1 with a fixed number like 0, we could
refine the information about i1 and i2 and create two successor nodes with i1 = (−∞,−1]
and i1 = [0,∞). But “i1 ≥ i2” is not expressible in our abstract states. Here, we split
according to both possible values of the condition (depicted using the labels “T” and “F”,
respectively). This leads to the nodes H and I which are connected to G by split edges.

We can evaluate the condition in H to true and label the resulting evaluation edge to
J by this condition. We will use these labels when constructing a TRS from the termination
graph. J marks the program end and thus, it remains a leaf of the graph.

In I, we can evaluate the condition to false and label the next edge by the converse
of the condition. After evaluating the next four instructions we reach node K. On the top
positions of the operand stack, there are two integer variables (where the topmost variable
has the value 1). The instruction iadd adds these two variables resulting in a new integer
variable i3. The relation between i3, i1, and iconst1 is added as a label on the evaluation
edge to the new node L. This label will again be used in the TRS construction.

264 C. OTTO, M. BROCKSCHMIDT, C. VON ESSEN, AND J. GIESL

From L on, we evaluate instructions until we again arrive at the instruction if icmpge

in node M . It turns out that M is an instance of the previous node G. Hence, we can
connect M with G by an instantiation edge. The reason is that every concrete state which
would be described by the abstract state M could also be described by the state G.

One has to expand termination graphs until all leaves correspond to program ends.
Hence, our graph is now completed. By using appropriate generalization steps (which
transform nodes into more general ones), one can always obtain a finite termination graph.
To this end, one essentially executes the program symbolically until one reaches some posi-
tion in the program for the second time. Then, a new state is created that is a generalization
of both original states and one introduces instantiation edges from the two original states
to the new generalized state. Of course, in our implementation we apply suitable heuristics
to ensure that one only performs finitely many such generalization steps and to guarantee
that the construction always terminates with a finite termination graph.

To define “instance” formally, we first define all positions π of references in a state s,
where s|π denotes the reference at position π. A position π is a sequence starting with lvn

or osn for some n ∈ N (indicating the n-th reference in the local variable array or in the
operand stack), followed by zero or more FieldIdentifiers.

Definition 2.2 (position, SPos). Let s = (pp, l, op, h) ∈ States. Then SPos(s) is the
smallest set such that one of the following holds for all π ∈ SPos(s):

• π = lvn for some n ∈ N where l(n) is defined. Then s|π is l(n).
• π = osn for some n ∈ N where op(n) is defined. Then s|π is op(n).
• π = π′ v for some v ∈ FieldIdentifiers and some π′ ∈ SPos(s) where h(s|π′) =
(c, f) ∈ Instances and where f(v) is defined. Then s|π is f(v).

As an example, consider the state s depicted in node G of Fig. 3. Here we have
three local variables and two elements on the operand stack. Thus, SPos(s) contains
lv0, lv1, lv2,os0,os1, where s|lv0

= s|lv2
= o1, s|lv1

= o2, s|os0 = i1, and s|os1 = i2.
If h is the heap of that state, then h(o1) = (Int, f1) ∈ Instances, where f1(val) = i1.
Hence, “lv0 val” is also a position in SPos(s) and s|lv0 val = i1. The remaining elements
of SPos(s) are “lv2 val” and “lv1 val”, where s|lv2 val = i1 and s|lv1 val = i2.

Intuitively, a state s′ is an instance of a state s if they correspond to the same program
position and whenever there is a reference s′|π, then either the values represented by s′|π in
the heap of s′ are a subset of the values represented by s|π in the heap of s or else, π is no
position in s. Moreover, shared parts of the heap in s′ must also be shared in s. Note that
since s and s′ correspond to the same position in a verified JBC program, s and s′ have the
same number of local variables and their operand stacks have the same size.

Definition 2.3 (Instance). We say that s′ = (pp′, l′, op′, h′) is an instance of state s =
(pp, l, op, h) (denoted s′ ⊑ s) iff pp = pp′, and for all π, π′ ∈ SPos(s′):

(a) if s′|π = s′|π′ and h′(s′|π) ∈ Instances∪Unknown, then π, π′ ∈ SPos(s) and s|π = s|π′

(b) if s′|π 6= s′|π′ and π, π′ ∈ SPos(s), then s|π 6= s|π′

(c) if h′(s′|π) ∈ Integers and π ∈ SPos(s), then h(s|π) ∈ Integers and h′(s′|π) ⊆ h(s|π)
(d) if s′|π = null and π ∈ SPos(s), then s|π = null or h(s|π) = (c, ?) ∈ Unknown

(e) if h′(s′|π) = (c′, ?) and π ∈ SPos(s), then h(s|π) = (c, ?) where c′ is c or a subtype of c
(f) if h′(s′|π) = (c′, f ′) ∈ Instances and π ∈ SPos(s), then h(s|π) = (c′, f) ∈ Instances

or h(s|π) = (c, ?), where c′ must be c or a subtype of c.

AUTOMATED TERMINATION ANALYSIS OF JAVA BYTECODE BY TERM REWRITING 265

The state s′ in node M of Fig. 3 is an instance of the state s in node G. Clearly, they
both refer to the same program position. It remains to examine the references reachable
in s′. We have SPos(s′) = SPos(s) = {lv0, lv1, lv2,os0,os1, lv0 val, lv1 val, lv2 val}. It
is easy to check that the conditions of Def. 2.3 are satisfied for all these positions π. We
illustrate this for π = lv0 val. Here, s′|π = i3 and if h′ is the heap of s′, then h′(i3) =
(−∞,∞). Similarly, s|π = i1 and if h is the heap of s, then h(i1) = (−∞,∞). Here, s′ and
s are in fact equivalent, since M is an instance of G and G is an instance of M .

if icmpge35 | o :o1, l :o2, c :o1 | i1, i2
o1 = Int(val=i1) i1 = [1, 1]

o2 = Int(val=i2) i2 = [10000, 10000]

Figure 4: A concrete state

As remarked before, abstract states describe sets
of concrete states like the one in Fig. 4, which is an
instance of G and M . Here, the values for i1 and i2
are proper integers instead of intervals.

Definition 2.4 (Concrete state). A state s = (pp, l, op, h) is concrete if for all π ∈ SPos(s):

• h(s|π) /∈ Unknown and
• if h(s|π) ∈ Integers, then h(s|π) is just a singleton interval [i, i] for some i ∈ Z

A concrete state has no proper instances (i.e., if s is concrete and s′ ⊑ s, then s ⊑ s′).
Concrete states that are not a program end can always be evaluated and have exactly one
(concrete) successor state. For Fig. 4, since i1’s value is not greater or equal than i2’s, the
successor state corresponds to the instruction “aload 2”, with the same local variables and
empty operand stack. Such a sequence of concrete states, obtained by JBC evaluation, is
called a computation sequence. Our construction of termination graphs ensures that

if s is an abstract state in the termination graph and there is a con-
crete state t ⊑ s where t evaluates to the concrete state t′, then the
termination graph contains a path from s to a state s′ with t′ ⊑ s′.

(2.1)

To see why (2.1) holds, note that in the termination graph, s is first refined to a state s with
t ⊑ s. So there is a path from s to s, and in the state s, all concrete information needed for an
actual evaluation according to the JBC specification [14] is available. Note that “evaluation
edges” in the termination graph are defined by exactly following the specification of JBC
in [14]. Thus, there is an evaluation edge from s to s′, where t′ ⊑ s′.

The computation sequence from Fig. 4 to its concrete successor corresponds to the path
from node M or G to I’s successor. Paths in the graph that correspond to computation
sequences are called computation paths. Our goal is to show that all these paths are finite.

Definition 2.5 (Graph termination). A finite or infinite path s11, . . . , s
n1

1 , s12, . . . , s
n2

2 , . . .
through the termination graph is called a computation path iff there is a computation
sequence t1, t2, . . . of concrete states where ti ⊑ s1i for all i. A termination graph is called
terminating iff it has no infinite computation path. Note that due to (2.1), if the termination
graph is terminating, then the original JBC program is also terminating for all concrete
states t where t ⊑ s for some abstract state s in the termination graph.

2.3. Termination Graphs for Complex Programs

Now we discuss sharing problems in complex programs with recursive data types. In Fig. 5,
flatten takes a list of binary trees whose nodes are labeled by integers. It performs a depth-
first run through all trees and returns the list of all numbers in these trees. It terminates
because each loop iteration decreases the total number of all nodes in the trees of list,
even though list’s length may increase. Note that list and cur share part of the heap.

266 C. OTTO, M. BROCKSCHMIDT, C. VON ESSEN, AND J. GIESL

public class Flatten {

public stat ic I n tL i s t f l a t t e n (TreeLi s t l i s t) {

TreeLi s t cur = l i s t ;

I n tL i s t r e s u l t = null ;

while (cur != null) {

Tree t r e e = cur . va lue ;

i f (t r e e != null) {

I n tL i s t o l d I n tL i s t = r e s u l t ;

r e s u l t = new I n tL i s t () ;

r e s u l t . va lue = t r e e . va lue ;

r e s u l t . next = o l d I n tL i s t ;

TreeLi s t oldCur = cur ;

cur = new TreeLi s t () ;

cur . va lue = t r e e . l e f t ;

cur . next = oldCur ;

oldCur . va lue = t r e e . r i g h t ;

} else cur = cur . next ;

}

return r e s u l t ;

}

}

public class Tree {

int value ;

Tree l e f t ;

Tree r i gh t ;

}

public class TreeLi s t {

Tree value ;

TreeLi s t next ;

}

public class I n tL i s t {

int value ;

I n tL i s t next ;

}

Figure 5: Example converting a list of binary trees to a list of integers

Consider the three states A, B, and C in Fig. 6. A is the state of our abstract JVM
when it first reaches the loop condition “cur != null” (where list, cur, and result are
abbreviated by l, c, and r). After one execution of the loop body, one obtains the state B
if tree is null and C otherwise. Note that local variables declared in the loop body are no
longer defined at the loop condition, and hence, they do not occur in A, B, or C.

aload 1 | l :o1, c :o1, r :null | ε
o1 = TreeList(?)

A

aload 1 | l :o1, c :o3, r :null | ε
o1 = TreeList(value=null, next=o3)

o3 = TreeList(?)

B

aload 1 | l :o1, c :o7, r :o6 | ε
o1 = TreeList(value=o5, next=o3)

o3 = TreeList(?) o5 = Tree(?)

o6 = IntList(value=i1, next=null)

o7 = TreeList(value=o4, next=o1)

i1 = (−∞,∞) o4 = Tree(?)

C

Figure 6: Three states of the termination graph of flatten

If one continued the evaluation like this, one would obtain an infinite tree, since one
never reaches any state which is an instance of a previous state. (In particular, B and C
are no instances of A.) Hence, to obtain finite graphs, one sometimes has to generalize

states. Thus, we want to create a new general state S such that A, B, and C are instances
of S. Note that in S, l and c cannot point to different references with Unknown values,
since then S would only represent states where l and c are tree-shaped and not sharing.
However, l and c point to the same object in A, one can reach c :o3 from l :o1 in B (i.e., l
joins c, since a field value of o1 is o3), and one can reach l :o1 from c :o7 in C. To express
such sharing information in general states, we extend states by annotations.

o o
′

o1 =? o2

o o
′

o1

o o
′

o1 o2

Figure 7: “=?” annotation

In Fig. 7, the leftmost picture depicts a heap
where an instance referenced by o has a field value
o1 and o′ has a field value o2. The annotation
“o1 =? o2” means that o1 and o2 could be equal.
Here the value of at least one of o1 and o2 must be
Unknown. So both the second and the third shape

AUTOMATED TERMINATION ANALYSIS OF JAVA BYTECODE BY TERM REWRITING 267

in Fig. 7 are instances of the first. In the second shape, o1 and o2 are equal and all occur-
rences of o2 can be replaced by o1 (or vice versa). In the third shape, o1 and o2 are not the
same and thus, the annotation has been removed.

o1 %$ o2

o1 o2

o1 o2

o1 o2

o3 o4

Figure 8: “%$” annotation

So the =? annotation covers both the equality
of l and c in stateA and their non-equality in states
B and C. To represent states where l and c may

join, we use the annotation “%$”. We say that a
reference o′ is a direct successor of a reference o (denoted o → o′) iff the object at address
o has a field whose value is o′. As an example, consider state B in Fig. 6, where o1 → o3
holds. Then the annotation “o1 %$ o2” means that if o1 is Unknown, then there could be
an object o with o1 →+ o and o2 →∗ o, i.e., o is a proper successor of o1 and a (possibly
non-proper) successor of o2. Note that %$ is symmetric,2 so o1 %$ o2 also means that if o2
is Unknown, then there could be an object o′ with o1 →

∗ o′ and o2 →
+ o′. The shapes 2-4

in Fig. 8 visualize three possible instances of the state with annotation “o1 %$ o2”. Note
that a state in which o1 and o2 do not share is also an instance.

We can now create a state S (see Fig. 9) such that A,B,C ⊑ S. The annotations state
that l and c may be equal (as in A), that l may join c (as in B), or c may join l (as in C).

So to obtain a finite termination graph, after reaching A, we generalize it to a new node
S connected by an instantiation edge. As seen in D, we introduce new forms of refinement
edges to refine a state with the annotation “o1 =

? o7” into the two instances where o1 = o7
and where o1 6= o7. For o1 = o7, we reach B′ and C ′ which are like B and C but now r

points to a list ending with o6 instead of null. The nodes B′ and C ′ are connected back to
S with instantiation edges. For o1 6= o7, due to c != null, we first refine the information
about o7, and obtain o7 = TreeList(value = o8, next = o9). Note that “%$” annotations
have to be updated during refinements. If we have the annotation “o1 %$ o7” and if one
refines o7 by introducing references like o8, o9 for its non-primitive fields, then we have to
add corresponding annotations such as “o1 =

? o9” for all field references like o9 whose types
correspond to the type of o1. Moreover, we add “%$” annotations for all non-primitive field
references (i.e., “o1 %$ o8” and “o1 %$ o9”). If after this refinement neither o1 nor o7 were
Unknown, we would delete the annotation o1 %$ o7 since it has no effect anymore.

Now we use a refinement that corresponds to the case analysis whether tree is null.
For tree == null, after one loop iteration we reach node E which is again an instance of
S. Here, the local variable tree is no longer visible.

For tree != null, the graph shows nodes F and G. In F we need to evaluate a
putfield instruction (corresponding to “oldCur.value = tree.right”), i.e., we have to
put the object at address o11 to the field value of the object at address o7. The effect of
this operation can be seen in the box in state G, where the value of the object at o7 was
changed from o8 to o11. In G (which again corresponds to the loop condition), we removed
the reference o8 since it is no longer accessible from the local variables or the operand stack.

In contrast to other evaluation steps, such putfield instructions can give rise to addi-
tional annotations, since objects that already shared parts of the heap with o7 now may also
share parts of the heap with o11. We say that a reference o reaches a reference o′ iff there
is a successor r of o (i.e., o →∗ r) such that r = o′ or r =? o′ or r %$ o′. So in our example,
o11 reaches just o11 and o1. Now if we write o11 to a field of o7, then for all references o
with o %$ o7, we have to add the annotation o %$ o′ for all o′ where o11 reaches o′. Hence,

2Since both “=?” and “%$” are symmetric, we do not distinguish between “o1 =?
o2” and “o2 =?

o1”

and we also do not distinguish between “o1 %$ o2” and “o2 %$ o1”.

268 C. OTTO, M. BROCKSCHMIDT, C. VON ESSEN, AND J. GIESL

A

aload 1 | l :o1, c :o7, r :o6 | ε
o1 = TreeList(?) o6 = IntList(?)

o7 = TreeList(?)

o1 =?
o7 o1 %$ o7

S

D

B
′

C
′

putfield value | l :o1, c :o13, r :o12, t :o8, oIL :o6, oC :o7 | o7, o11
o1 = TreeList(?) o9 = TreeList(?) o6 = IntList(?)

o7 = TreeList(value=o8, next=o9) o10 = Tree(?)

o8 = Tree(value=i1, left=o10, right=o11) o11 = Tree(?)

o12 = IntList(value=i1, next=o6) i1 = (−∞,∞)

o13 = TreeList(value=o10, next=o7) o1 =
?
o9

o1 %$ o7 o1 %$ o8 o1 %$ o9 o1 %$ o10 o1 %$ o11

F

aload 1 | l :o1, c :o13, r :o12 | ε
o1 = TreeList(?) o6 = IntList(?) o9 = TreeList(?)

o7 = TreeList(value=o11 , next=o9) o10 = Tree(?)

o12 = IntList(value=i1, next=o6) o11 = Tree(?)

o13 = TreeList(value=o10, next=o7) i1 = (−∞,∞)

o1 =?
o9 o1 %$ o7 o1 %$ o9 o1 %$ o10 o1 %$ o11

G

aload 1 | l :o1, c :o9, r :o6 | ε
o1 = TreeList(?) o6 = IntList(?)

o9 = TreeList(?)

o1 =?
o9 o1 %$ o9

E

o1 = o7
o1 6= o7

Figure 9: Termination graph for flatten

in our example, we would have to add o1 %$ o11 (which is already present in the state) and
o1 %$ o1. However, the annotation o1 %$ o1 has no effect, since by “o1 = TreeList(?)”,
we know that o1 only represents tree-shaped objects. Therefore, we can immediately drop
o1 %$ o1 from the state. Concrete non-tree-shaped objects can of course be represented
easily (e.g., “o = TreeList(value = o′, next = o)”). But to represent an arbitrary possibly
non-tree-shaped object o, we use a special annotation (depicted “o!”).3

Definition 2.6 (Instance & annotations). We extend Def. 2.3 to s, s′ = (pp′, l′, op′, h′) ∈
States possibly containing annotations. Now s′ ⊑ s holds iff for all π, π′ ∈ SPos(s′), the
following conditions are satisfied in addition to Def. 2.3 (b)-(f). Here, let τ resp. τ ′ be the
maximal prefix of π resp. π′ such that both τ, τ ′ ∈ SPos(s).

(a) if s′|π = s′|π′ where h′(s′|π) ∈ Instances∪Unknown, and if π, π′ ∈ SPos(s),4

then s|π = s|π′ or s|π =? s|π′

(b) if s′|π =? s′|π′ and π, π′ ∈ SPos(s), then s|π =? s|π′

(c) if
(

s′|π = s′|π′ where h′(s′|π) ∈ Instances∪Unknown , or s′|π =? s′|π′

)

and π or π′ 6∈ SPos(s) with π 6= π′, then s|τ %$ s|τ ′
(d) if s′|π %$ s′|π′ , then s|τ %$ s|τ ′
(e) if s′|π! holds, then s|τ !
(f) if there exist (possibly empty) sequences ρ 6= ρ′ of FieldIdentifiers without common

prefix, where s′|πρ=s′|πρ′ , h′(s′|πρ) ∈ Instances∪Unknown,
and (πρ or πρ′ 6∈ SPos(s) or s|πρ=

? s|πρ′), then s|τ !

3. From Termination Graphs to TRSs

Now we transform termination graphs into integer term rewrite systems (ITRSs). These
are TRSs where the Booleans B, the integers Z, and their built-in operations ArithOp =

3Such annotations can also result from putfield operations which write a reference o2 to a field f of o1.

If o1 already reached o2 before through some field g 6= f, then we add “o1!”, since o1 is no longer a tree.

Even worse, if o2 reached o1 before, then putfield creates a cyclic object and we add “o1!” and “o2!”.
4In contrast to Def. 2.3(a), here one may allow that π or π′

/∈ SPos(s). This case is handled in (c).

AUTOMATED TERMINATION ANALYSIS OF JAVA BYTECODE BY TERM REWRITING 269

{+,−, ∗, /,%,≪,≫,≫, ̂ ,&, | } and RelOp = {>,≥, <,≤,==, 6=} are pre-defined by an
infinite set of variable-free rules PD. For example, PD contains 1+2 → 3 and 5 < 4 → false.
As shown in [8], TRS termination techniques can easily be adapted to ITRSs as well.

Definition 3.1 (ITRS [8]). An ITRS is a finite conditional TRS with rules “ℓ → r | b”.
Here ℓ, r, b are terms, where ℓ /∈ B ∪ Z and ℓ contains no symbol from ArithOp ∪ RelOp.
However, b and r may contain extra variables not occurring in ℓ. We often omit the condition
b if b is true. The rewrite relation →֒R of an ITRS R is the smallest relation where t1 →֒R t2
iff there is a rule ℓ → r | b from R∪PD such that t1|p = ℓσ, bσ →֒∗

R true, and t2 = t1[rσ]p.
Here, ℓσ must not have instances of left-hand sides of rules as proper subterms, and σ must
be normal (i.e., σ(y) is in normal form also for variables y occurring only in b or r). Thus,
the rewrite relation →֒R corresponds to an innermost evaluation strategy.

So if R contains the rule “f(x) → g(x, y) | x > 2”, then f(1+ 2) →֒R f(3) →֒R g(3, 27).
Hence, extra variables in conditions or right-hand sides of rules stand for arbitrary values.

We first show how to transform a reference o in a state s into a term tr(s, o). References
pointing to concrete integers like iconst1 = [1, 1] in state K of Fig. 3 are transformed into
the corresponding integer constant 1. The reference null is transformed into the constant
null. References pointing to instances will be transformed by a refined transformation ti(s, o)
in a more subtle way in order to take their types and the values of their fields into account.
Finally, any other reference o is transformed into a variable (which we also call o). So
i1 = (−∞,∞) in state K of Fig. 3 is transformed to the variable i1.

Definition 3.2 (Transforming references). Let s = (pp, l, op, h) ∈ States, o ∈ References.

tr(s, o) =

i if h(o) = [i, i], where i ∈ Z

null if o = null

ti(s, o) if h(o) ∈ Instances

o otherwise

The main advantage of our approach becomes obvious when transforming instances
(i.e., data objects) into terms. The reason is that data objects essentially are terms and we
simply keep their structure when transforming them. So for any object, we use the name
of its class as a function symbol. The arguments of the function symbol correspond to the
fields of the class. As an example, consider o13 in state F of Fig. 9. This data object is
transformed to the term TreeList(o10,TreeList(Tree(i1, o10, o11), o9)).

However, we also have to take the class hierarchy into account. Therefore, for any class
c with n fields, let the corresponding function symbol now have arity n+1. The arguments
2, . . . , n + 1 correspond to the values of the fields declared in class c. The first argument
represents the part of the object that corresponds to subclasses of c. As an example, consider
a class A with a field a of type int and a class B which extends A and has a field b of type
int. If x is a data object of type A where x.a is 1, then we now represent it by the term
A(eoc, 1). Here, the first argument of A is a constant eoc (for “end of class”) which indicates
that the type of x is really A and not a subtype of A. If y is a data object of type B where y.a
is 2 and y.b is 3, then we represent it by the term A(B(eoc, 3), 2). So the class hierarchy is
represented by nesting the function symbols corresponding to the respective classes.

More precisely, since every class extends java.lang.Object (which has no fields), each
such term now has the form java.lang.Object(. . .). Hence, if we abbreviate the function
symbol java.lang.Object by jlO, then for the TreeList object above, now the corresponding
term is jlO(TreeList(eoc, o10, jlO(TreeList(eoc, jlO(Tree(eoc, i1, o10, o11), o9))))).

270 C. OTTO, M. BROCKSCHMIDT, C. VON ESSEN, AND J. GIESL

Of course, we can only transform tree-shaped objects to terms. If π ∈ SPos(s) and
if there is a non-empty sequence ρ of FieldIdentifiers such that s|π = s|πρ, then s|π is
called cyclic in s. If s|π is cyclic or marked by “!”, then s|π is called special. Every special
reference o is transformed into a variable o in order to represent an “arbitrary unknown”
object. To define the transformation ti(s, o) formally, we use an auxiliary transformation
ti(s, o, c) which only considers the part of the class hierarchy starting with c.

Definition 3.3 (Transforming instances). We start the construction at the root of the class
hierarchy (i.e., with java.lang.Object) and define ti(s, o) = ti(s, o, java.lang.Object).

Let s = (pp, l, op, h) ∈ States and let h(o) = (co, f) ∈ Instances. Let (c1 =
java.lang.Object, c2, . . . , cn = co) be ordered according to the class hierarchy, i.e., ci is
the direct superclass of ci+1. We define the term ti(s, o, ci) as follows:

ti(s, o, ci) =

o if o is special

co(eoc, tr(s, v1), . . . , tr(s, vm)) if ci = co, fv(co, f) = v1, . . . , vm

ci(ti(s, o, ci+1), tr(s, v1), . . . , tr(s, vm)) if ci 6= co, fv(ci, f) = v1, . . . , vm

For c ∈ Classnames, let f1, . . . , fm be the fields declared in c in some fixed order. Then
for f : FieldIdentifiers → References, fv(c, f) gives the values f(f1), . . . , f(fm).

So for class A and B above, if h(o) = (B, f) where f(a) = [2, 2] and f(b) = [3, 3], then
fv(A, f) = [2, 2], fv(B, f) = [3, 3] and thus, ti(s, o, java.lang.Object) = jlO(A(B(eoc, 3), 2)).

To transform a whole state, we create the tuple of the terms that correspond to the
references in the local variables and the operand stack. For example, state J in Fig. 3 is
transformed to the tuple of the terms jlO(Int(eoc, i1)), jlO(Int(eoc, i2)), and jlO(Int(eoc, i1)).

Definition 3.4 (Transforming states). Let s = (pp, l, op, h) ∈ States, let lv0, . . . , lvn and
os0, . . . , osm be the references in l and op, respectively (i.e., h(lvi) = lvi and h(osi) = osi).
We define the following mapping: ts(s) = (tr(s, lv0), . . . , tr(s, lvn), tr(s, os0), . . . , tr(s, osm)).

There is a connection between the instance relation on states and the matching relation
on the corresponding terms. If s′ is an instance of state s, then the terms in the transforma-
tion of s match the terms in the transformation of s′. Hence, if one generates rules matching
the term representation of s, then these rules also match the term representation of s′.

Lemma 3.5. Let s′ ⊑ s. Then there exists a substitution σ such that ts(s)σ = ts(s′).5

Now we show how to build an ITRS from a termination graph such that termination
of the ITRS implies termination of the graph, i.e., that there is no infinite computation
path s11, . . . , s

n1

1 , s12, . . . , s
n2

2 , In other words, there should be no infinite computation
sequence t1, t2, . . . of concrete states where ti ⊑ s1i for all i.

For any abstract state s of the graph, we introduce a new function symbol fs. The arity
of fs is the number of components in the tuple ts(s). Our goal is to generate an ITRS R
such that fs1i

(ts(ti)) →֒+
R fs1i+1

(ts(ti+1)) for all i. In other words, every computation path in

the graph must be transformable into a rewrite sequence. Then each infinite computation
path corresponds to an infinite rewrite sequence with R.

To this end, we transform each edge in the termination graph into a rewrite rule. Let
s, s′ be two states connected by an edge e. If e is a split edge or an evaluation edge, then
the corresponding rule should rewrite any instance of s to the corresponding instance of s′.

5For all proofs, we refer to [16].

AUTOMATED TERMINATION ANALYSIS OF JAVA BYTECODE BY TERM REWRITING 271

Hence, we generate the rule fs(ts(s)) → fs′(ts(s
′)). For example, the edge from D to F in

Fig. 3 results in the rule fD(jlO(Int(eoc, i1)), o2, jlO(Int(eoc, i1))) → fF (jlO(Int(eoc, i1)), o2).
If the evaluation involves checking some integer condition, we create a corresponding con-
ditional rule. For example, the edge from H to J in Fig. 3 yields the rule

fH(jlO(Int(eoc, i1)), jlO(Int(eoc, i2)), jlO(Int(eoc, i1)), i1, i2) →
fJ(jlO(Int(eoc, i1)), jlO(Int(eoc, i2)), jlO(Int(eoc, i1)) | i1 ≥ i2

The only evaluation edges which do not result in the rule fs(ts(s)) → fs′(ts(s
′)) are

evaluations of putfield instructions. If putfield writes to the field of an object at reference
o, then this could modify all objects at references o′ with o %$ o′.6 Therefore, in the right-
hand side of the rule corresponding to putfield, we do not transform the reference o′ to
the variable o′, but to a fresh variable o′. As an example consider state F in Fig. 9, where
we write to a field of o7, and we have the annotation o1 %$ o7. In the resulting rule, we
therefore have the variable o1 on the left-hand side, but a fresh variable o1 on the right-hand
side. The terms corresponding to o7 on the left- and right-hand side of the resulting rule
describe the update of its field precisely (i.e., jlO(Tree(eoc, i1, o10, o11)) is replaced by o11).

Now let e be an instance edge from s to s′. Here we keep the information that we already
have for the specialized state s (i.e., we keep ts(s)) and continue rewriting with the rules we
already created for s′. So instead of fs(ts(s)) → fs′(ts(s

′)) we generate fs(ts(s)) → fs′(ts(s)).
Finally, let e be a refinement edge from s to s′. So some abstract information in s is

refined to more concrete information in s′ (e.g., by refining (c, ?) to null). These edges
represent a case analysis and hence, some instances of s are also instances of s′, but others
are no instances of s′. Note that by Lemma 3.5, if a state t is an instance of s′, then the term
representation of s′ matches t’s term representation. Hence, we can use pattern matching
to perform the necessary case analysis. So instead of the rule fs(ts(s)) → fs′(ts(s

′)), we
create a rule whose left-hand side only matches instances of s′, i.e., fs(ts(s

′)) → fs′(ts(s
′)).

Consider for example the edge from B to C in Fig. 3. Any concrete state whose evaluation
corresponds to this edge must have null at positions lv0 and os0. Thus, we create the rule
fB(null, o2, null) → fC(null, o2, null) which is only applicable to such states.

Recall that possibly cyclic data objects are translated to variables in Def. 3.3. Although
variables are only instantiated by finite (non-cyclic) terms in term rewriting, our approach
remains sound because states with possibly cyclic objects result in rules with extra variables
on right-hand sides. For example, consider a simple list traversal algorithm. Here, we would
have a state s where the local variable points to a reference o1 with o1 = Intlist(value =
i1, next = o2) and in the successor state s′, the local variable would point to o2. Then,
after refinement to o2 = IntList(value = i2, next = o3), there would be an instantiation
edge back to s. For acyclic lists, this results in the rules fs(jlO(IntList(eoc, i1, o2))) → fs′(o2),
fs′(jlO(IntList(eoc, i2, o3))) → fs′′(jlO(IntList(eoc, i2, o3))) and fs′′(jlO(IntList(eoc, i2, o3))) →
fs(jlO(IntList(eoc, i2, o3))) whose termination is easy to show. But if we had the annotations
o1! and o2! in s, o2! in s′, and o2! and o3! in s′′, then we would obtain the rules fs(o1) →
fs′(o2), fs′(o2) → fs′′(o2) and fs′′(o2) → fs(o2). So in the first rule, o2 would be an extra
variable representing an arbitrary list, and the resulting rules would not be terminating.

Definition 3.6 (Rewrite rules from termination graphs). Let there be an edge e from the
state s = (pp, l, op, h) to the state s′ in a termination graph. Then we generate rule(e):

• if e is an instance edge, then rule(e) = fs(ts(s)) → fs′(ts(s))

6Note that this is only possible if o′ is Unknown.

272 C. OTTO, M. BROCKSCHMIDT, C. VON ESSEN, AND J. GIESL

• if e is a refinement edge, then rule(e) = fs(ts(s
′)) → fs′(ts(s

′))
• if e is an evaluation or split edge, we perform the following case analysis:
– if e is labeled by a statement of the form o1 = o2 ⊕ o3 where ⊕ ∈ ArithOp, then
rule(e) = fs(ts(s)) → fs′(ts(s

′))σ, where σ substitutes o1 by tr(s, o2)⊕ tr(s, o3)
– if e is labeled by a condition o1 ⊕ o2 where ⊕ ∈ RelOp, then rule(e) = fs(ts(s)) →
fs′(ts(s

′)) | tr(s, o1)⊕ tr(s, o2)
– if pp is the instruction putfield writing to a field of reference o, then rule(e) =
fs(ts(s)) → fs′(tso(s

′)), where tso(s
′) is defined like ts(s′), but each reference o′ with

o %$ o′ is transformed into a new fresh variable.
– for all other instructions, rule(e) = fs(ts(s)) → fs′(ts(s

′))

Our main theorem states that every computation path of the termination graph can be
simulated by a rewrite sequence using the corresponding ITRS. Of course, the converse does
not hold, i.e., our approach cannot be used to prove non-termination of JBC programs.

Theorem 3.7 (Proving termination of JBC by ITRSs). If the ITRS corresponding to a

termination graph is terminating, then the termination graph is terminating as well. Hence,

then the original JBC program is also terminating for all concrete states t where t ⊑ s for

some abstract state s in the termination graph.

The resulting ITRSs are usually large, since they contain one rule for each edge of the
termination graph. But since our ITRSs have a special form where the roots of all left-
and right-hand sides are defined, where defined symbols do not occur below the roots, and
where we only consider rewriting with normal substitutions, one can simplify the ITRSs
substantially by merging their rules: Let R1 (resp. R2) be those rules in R where the root
of the right- (resp. left-)hand side is f . Then one can replace the rules R1 ∪ R2 by the
rules “ℓσ → r′σ | bσ && b′σ” for all ℓ → r | b ∈ R1 and all ℓ′ → r′ | b′ ∈ R2, where
σ = mgu(r, ℓ′). Of course, we also have to add rules for the Boolean conjunction “&&”.
Clearly, this process does not modify the termination behavior of R. Moreover, it suffices
to create rules only for those edges that occur in cycles of the termination graph.

With this simplification, we automatically obtain the following 1-rule ITRS for the
count program. It increases the value i1 of fG’s first and third argument (corresponding to
the value-field of orig and copy) as long as i1 < i2 (where i2 is the value-field of limit).

fG(jlO(Int(eoc, i1)), jlO(Int(eoc, i2)), jlO(Int(eoc, i1)), i1, i2) →
fG(jlO(Int(eoc, i1 + 1)), jlO(Int(eoc, i2)), jlO(Int(eoc, i1 + 1)), i1 + 1, i2) | i1 < i2

For the flatten program we automatically obtain the following ITRS. To ease read-
ability, we replaced every subterm “jlO(t)” by just t, and we replaced “TreeList(eoc, v, n)”
by “TL(v, n)”, “Tree(eoc, v, l, r)” by “T(v, l, r)”, and “IntList(eoc, v, n)” by “IL(v, n)”.

fS(TL(null, o9),TL(null, o9), o6) → fS(TL(null, o9), o9, o6) (3.1)

fS(TL(T(i1, o10, o11), o9),TL(T(i1, o10, o11), o9), o6) → fS(TL(o11, o9),TL(o10,TL(o11, o9)), IL(i1, o6)) (3.2)

fS(o1,TL(null, o9), o6) → fS(o1, o9, o6) (3.3)

fS(o1,TL(T(i1, o10, o11), o9), o6) → fS(o1,TL(o10,TL(o11, o9)), IL(i1, o6)) (3.4)

Rules (3.1) and (3.3) correspond to the cycles from S over B′ and over E. Their difference
is whether l and c point to the same object in S (i.e., whether the first two arguments of
fS in the left-hand side are identical). But both handle the case where the first tree in the
list c (i.e., in fS ’s second argument) is null. Then this null-tree is simply removed from the
list and the result r (i.e., the third argument of fs) does not change. The rules (3.2) and

AUTOMATED TERMINATION ANALYSIS OF JAVA BYTECODE BY TERM REWRITING 273

(3.4) correspond to the cycles from S over C ′ and over G. Here, the list c has the form
TL(T(i1, o10, o11), o9). Hence, the value i1 of the first tree in the list is stored in the result
list (which is modified from o6 to IL(i1, o6)) and the list c is modified to TL(o10,TL(o11, o9)).
So the length of the list increases, but the number of nodes in the list decreases.

These examples illustrate that the ITRSs resulting from our automatic transformation
of JBC are often very readable and constitute a natural representation of the original
algorithm as a rewrite system. Not surprisingly, existing TRS techniques can easily prove
termination of the resulting rules. For example, termination of the above ITRS for flatten
is easily proved using a straightforward polynomial interpretation and dependency pairs.
In contrast, abstraction-based tools like Julia and COSTA fail on examples like flatten.
In fact, Julia and COSTA also fail on the count example from Sect. 2.2.

4. Experiments and Conclusion

We introduced an approach to prove termination of JBC programs automatically by first
transforming them to termination graphs. Then an integer TRS is generated from the
termination graph and existing TRS tools can be used to show its termination.

We implemented our approach in the termination prover AProVE [9] and evaluated it
on the 106 non-recursive JBC examples from the termination problem data base (TPDB)

used in the International Termination Competition.7 In our experiments, we removed one
controversial example (“overflow”) from the TPDB whose termination depends on the
treatment of integer overflows and we added the two examples count and flatten from this
paper. Of these 106 examples, 10 are known to be non-terminating. See http://aprove.

informatik.rwth-aachen.de/eval/JBC for the origins of the individual examples. As in
the competition, we ran AProVE and the tools Julia [19] and COSTA [1] with a time limit
of 60 seconds on each example. “Success” gives the number of examples where termination
was proved, “Failure” means that the proof failed in less than 60 seconds, “Timeout” gives
the number of examples where the tool took longer than 60 seconds, and “Runtime” is the
average time (in s) needed per example. Note that for those examples from this collection
where AProVE resulted in a timeout, the tool would also fail when using a longer timeout.

all 106 non-recursive examples
Success Failure Timeout Runtime

AProVE 89 5 12 14.3
Julia 74 32 0 2.6
COSTA 60 46 0 3.4

Our experiments show that for the problems in the current example collection, our
rewriting-based approach in AProVE currently yields the most precise results. The main
reason is that we do not use a fixed abstraction from data objects to integers, but represent
objects as terms. On the other hand, this also explains the larger runtimes of AProVE
compared to Julia and COSTA. Still, our approach is efficient enough to solve most examples
in reasonable time. Our method benefits substantially from the representation of objects
as terms, since afterwards arbitrary TRS termination techniques can be used to prove
termination of the algorithms. Of course, while the examples in the TPDB are challenging,
they are still quite small. Future work will be concerned with the application and adaption
of our approach in order to use it also for large examples and Java libraries.

7See http://www.termination-portal.org/wiki/Termination_Competition.

274 C. OTTO, M. BROCKSCHMIDT, C. VON ESSEN, AND J. GIESL

In the current paper, we restricted ourselves to JBC programs without recursion,
whereas the approaches of Julia and COSTA also work on recursive programs. Of course,
an extension of our method to recursive programs is another main point for future work.
Our experiments also confirm the results at the International Termination Competition in
December 2009, where the first competition on termination of JBC programs took place.
Here, the three tools above were run on a random selection of the examples from the TPDB
with similar results. To experiment with our implementation via a web interface and for de-
tails about the above experiments, we refer to http://aprove.informatik.rwth-aachen.

de/eval/JBC.

Acknowledgement

We are indebted to the Julia- and the COSTA-team for their help with the experiments.
We thank the anonymous reviewers for their valuable comments.

References

[1] E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanardini. Termination analysis of

Java Bytecode. In Proc. FMOODS ’08, LNCS 5051, pages 2–18, 2008.

[2] J. Berdine, B. Cook, D. Distefano, and P. O’Hearn. Automatic termination proofs for programs with

shape-shifting heaps. In Proc. CAV ’06, LNCS 4144, pages 386–400, 2006.

[3] A. R. Bradley, Z. Manna, and H. B. Sipma. Termination of polynomial programs. In Proc. VMCAI ’05,

LNCS 3385, pages 113–129, 2005.

[4] M. Colón and H. Sipma. Practical methods for proving program termination. In Proc. CAV ’02, LNCS

2404, pages 442–454, 2002.

[5] B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code. In Proc. PLDI ’06,

pages 415–426. ACM Press, 2006.

[6] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs

by construction or approximation of fixpoints. In Proc. POPL ’77, pages 238–252. ACM Press, 1977.

[7] S. Falke and D. Kapur. A term rewriting approach to the automated termination analysis of imperative

programs. In Proc. CADE ’09, LNAI 5663, pages 277–293, 2009.

[8] C. Fuhs, J. Giesl, M. Plücker, P. Schneider-Kamp, and S. Falke. Proving termination of integer term

rewriting. In Proc. RTA ’09, LNCS 5595, pages 32–47, 2009.

[9] J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termination proofs in the

dependency pair framework. In Proc. IJCAR ’06, LNAI 4130, pages 281–286, 2006.

[10] J. Giesl, S. Swiderski, P. Schneider-Kamp, and R. Thiemann. Automated termination analysis for

Haskell: From term rewriting to programming languages. In RTA ’06, LNCS 4098, pp. 297–312, 2006.

[11] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification. Addison Wesley, 2005.

[12] S. Gulwani, K. Mehra, and T. Chilimbi. SPEED: Precise and efficient static estimation of program

computational complexity. In Proc. POPL ’09, pages 127–139. ACM Press, 2009.

[13] G. Klein and T. Nipkow. A machine-checked model for a Java-like language, virtual machine, and

compiler. ACM Transactions on Programming Languages and Systems, 28(4):619–695, 2006.

[14] T. Lindholm and F. Yellin. Java Virtual Machine Specification. Prentice Hall, 1999.

[15] M. T. Nguyen, D. De Schreye, J. Giesl, and P. Schneider-Kamp. Polytool: Polynomial interpretations

as a basis for termination analysis of logic programs. Theory and Practice of Logic Programming, 2010.

To appear. Available from http://arxiv.org/pdf/0912.4360.

[16] C. Otto, M. Brockschmidt, C. von Essen, and J. Giesl. Automated termination analysis of Java Bytecode
by term rewriting. Technical Report AIB-2010-08, RWTH Aachen, 2010. http://aib.informatik.

rwth-aachen.de.

[17] P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thiemann. Automated termination proofs for logic

programs by term rewriting. ACM Transactions on Computational Logic, 11(1), Article 2, 2009.

AUTOMATED TERMINATION ANALYSIS OF JAVA BYTECODE BY TERM REWRITING 275

[18] M. H. Sørensen and R. Glück. An algorithm of generalization in positive supercompilation. In Proc.

ILPS ’95, pages 465–479. MIT Press, 1995.

[19] F. Spoto, F. Mesnard, and É. Payet. A termination analyser for Java Bytecode based on path-length.

ACM Transactions on Programming Languages and Systems, 32(3), Article 8, 2010.

276 C. OTTO, M. BROCKSCHMIDT, C. VON ESSEN, AND J. GIESL

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 277-294
http://rewriting.loria.fr/rta/

DECLARATIVE DEBUGGING OF MISSING ANSWERS FOR MAUDE

SPECIFICATIONS

ADRIÁN RIESCO 1 AND ALBERTO VERDEJO 1 AND NARCISO MARTÍ-OLIET 1

1 Facultad de Informática, Universidad Complutense de Madrid, Spain

E-mail address: ariesco@fdi.ucm.es,{alberto,narciso}@sip.ucm.es

Abstract. Declarative debugging is a semi-automatic technique that starts from an in-

correct computation and locates a program fragment responsible for the error by building

a tree representing this computation and guiding the user through it to find the error.

Membership equational logic (MEL) is an equational logic that in addition to equations

allows to state of membership axioms characterizing the elements of a sort. Rewriting

logic is a logic of change that extends MEL by adding rewrite rules, that correspond to

transitions between states and can be nondeterministic. In this paper we propose a cal-

culus to infer normal forms and least sorts with the equational part, and sets of reachable

terms through rules. We use an abbreviation of the proof trees computed with this cal-

culus to build appropriate debugging trees for missing answers (results that are erroneous

because they are incomplete), whose adequacy for debugging is proved. Using these trees

we have implemented a declarative debugger for Maude, a high-performance system based

on rewriting logic, whose use is illustrated with an example.

1. Introduction

Declarative debugging [20], also known as declarative diagnosis or algorithmic debugging, is
a debugging technique that abstracts the execution details, which may be difficult to follow in
declarative languages, and focus on the results. We can distinguish between two different kinds of
declarative debugging: debugging of wrong answers, that is applied when a wrong result is obtained
from an initial value and has been widely employed in the logic [12, 22], functional [14, 15], multi-
paradigm [3, 9], and object-oriented [4] programming languages; and debugging of missing answers
[5, 1], applied when a result is incomplete, which has been less studied because the calculus involved
is more complex than in the case of wrong answers. Declarative debugging starts from an incorrect
computation, the error symptom, and locates the code (or the absence of code) responsible for the
error. To find this error the debugger represents the computation as a debugging tree [13], where
each node stands for a computation step and must follow from the results of its child nodes by some
logical inference. This tree is traversed by asking questions to an external oracle (generally the user)

1998 ACM Subject Classification: D.2.5 [Software Engineering]: Testing and Debugging – Debugging

aids, D.3.2 [PROGRAMMING LANGUAGES]: Language Classifications – Nondeterministic languages.

Key words and phrases: Declarative debugging, Maude, Missing answers, Rewriting Logic.

Research supported by MICINN Spanish project DESAFIOS10 (TIN2009-14599-C03-01) and Comunidad

de Madrid program PROMETIDOS (S2009/TIC-1465).

c© A. Riesco, A. Verdejo, and N. Martı́-Oliet
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.277

278 A. RIESCO, A. VERDEJO, AND N. MARTÍ-OLIET

until a buggy node—a node containing an erroneous result, but whose children are all correct—is
found. Hence, we distinguish two phases in this scheme: the debugging tree generation and its
navigation following some suitable strategy [21].

In this paper we present a declarative debugger of missing answers for Maude specifications.
Maude [6] is a high-level language and high-performance system supporting both equational and
rewriting logic computation. The Maude system supports several approaches for debugging: trac-
ing, term coloring, and using an internal debugger [6, Chap. 22]. However, these tools have the
disadvantages that they are supposed to be used only when a wrong result is found ; and both the
trace and the Maude debugger (that is based on the trace) show the statements applied in the order
in which they are executed and thus the user can lose the general view of the proof of the incorrect
computation that produced the wrong result.

Declarative debugging of wrong answers in Maude specifications was already studied in [17],
where we presented how to debug wrong results due to errors in the statements of the specification. In
[18] we extended the concept of missing answers, usually attached to incomplete sets of results, to deal
with erroneous normal forms and least sorts in equational theories. However, in a nondeterministic
context such as that of Maude modules other problems can arise. We show in this paper how to
debug missing answers in rewriting specifications, that is, expected results that the specification is
not able to compute. This kind of problems appears in Maude when using its breadth-first search,
that finds all the reachable terms from an initial one given a pattern, a condition, and a bound in
the number of steps. To debug this kind of errors we have extended our calculus to deduce sets
of reachable terms given an initial term, a bound in the number of rewrites, and a condition to
be fulfilled. Unlike other proposals like [5], our debugging framework combines the treatment of
wrong and missing answers and, moreover, is able to detect missing answers due to both missing
rules and wrong statements. The state of the art can be found in [21], where different algorithmic
debuggers are compared and that will include our debugger in its next version. Roughly speaking,
our debugger has the pros of building different kinds of debugging trees (one-step and many-steps)
and applying the missing answers technique to debug normal forms and least sorts1 (the different
trees are a novelty in the declarative debugging world), and only it and DDT [3] implement the
Hirunkitti’s divide and query navigation strategy, provide a graphical interface, and debug missing
answers; as cons, we do not provide answers like “maybe yes,” “maybe not,” and “inadmissible,”
and do not perform tree compression. However, these features have recently been introduced in
specific debuggers, and we expect to implement them in our debugger soon. Finally, some of the
features shared by most of the debuggers are: the trees are abbreviated in order to shorten and ease
the debugging process (in our case, since we obtain the trees from a formal calculus, we are able
to prove the correctness and completeness of the technique), which mitigates the main problem of
declarative debugging, the complexity of the questions asked to the user; trusting of statements;
undo and don’t know commands; and different strategies to traverse the tree. We refer to [21, 16]
for the meaning of these concepts. With respect to other approaches, such as the Maude sufficient
completeness checker [6, Chap. 21] or the sets of descendants [8], our tool provides a wider approach,
since we handle conditional statements and our equations are not required to be left-linear.

The rest of the paper is structured as follows. Section 2 provides a summary of the main
concepts of rewriting logic and Maude specifications. Section 3 describes our calculus and Section 4
shows the debugging trees obtained from it. Finally, Section 5 concludes and mentions some future
work.

Detailed proofs of the results can be found in [19], while additional examples, the source code
of the tool, and other papers on the subject, including the user guide [16], where a graphical user
interface for the debugger is presented, are all available from the webpage http://maude.sip.ucm.
es/debugging.

1Although the least sort error can be seen as a Maude-directed problem, normal forms are a common

feature in several programming languages.

DECLARATIVE DEBUGGING OF MISSING ANSWERS FOR MAUDE SPECIFICATIONS 279

2. Rewriting Logic and Maude

Maude modules are executable rewriting logic specifications. Rewriting logic [10] is a logic
of change very suitable for the specification of concurrent systems that is parameterized by an
underlying equational logic, for which Maude uses membership equational logic (MEL) [2], which,
in addition to equations, allows to state of membership axioms characterizing the elements of a sort.
Rewriting logic extends MEL by adding rewrite rules.

For our purposes in this paper, we are interested in a subclass of rewriting logic models [10]
that we call term models, where the syntactic structure of terms is kept and associated notions such
as variables, substitutions, and term rewriting make sense. These models will be used in Section 4
to represent the intended interpretation that the user had in mind while writing a specification.
Since we want to find the discrepancies between the intended model and the initial model of the
specification as written, we need to consider the relationship between a specification defined by a set
of equations E and a set of rules R, and a model defined by possibly different sets of equations E′

and of rules R′; in particular, when E′ = E and R′ = R, the term model coincides with the initial
model built in [10].

Given a rewrite theory R = (Σ, E,R), with Σ a signature, E a set of equations, and R a set
of rules, a Σ-term model has an underlying (Σ, E′)-algebra whose elements are equivalence classes
[t]E′ of ground Σ-terms modulo some set of equations and memberships E′ (which may be different
from E), and there is a transition from [t]E′ to [t′]E′ when [t]E′ →∗

R′/E′ [t′]E′ , where rewriting is

considered on equivalence classes [10, 7]. The set of rules R′ may also be different from R, that
is, the term model is TΣ/E′,R′ for some E′ and R′. In such term models, the notion of valuation
coincides with that of (ground) substitution. A term model TΣ/E′,R′ satisfies, under a substitution
θ, an equation u = v, denoted TΣ/E′,R′ , θ |= u = v, when θ(u) =E′ θ(v), or equivalently, when
[θ(u)]E′ = [θ(v)]E′ ; a membership u : s, denoted TΣ/E′,R′ , θ |= u : s, when the Σ-term θ(u) has sort
s according to the information in the signature Σ and the equations and memberships E′; a rewrite
u ⇒ v, denoted TΣ/E′,R′ , θ |= u ⇒ v, when there is a transition in TΣ/E′,R′ from [θ(u)]E′ to [θ(v)]E′ ,
that is, when [θ(u)]E′ →∗

R′/E′ [θ(v)]E′ . Satisfaction is extended to conditional sentences as usual. A

Σ-term model TΣ/E′,R′ satisfies a rewrite theory R = (Σ, E,R) when TΣ/E′,R′ satisfies the equations
and memberships in E and the rewrite rules in R in this sense. For example, this is obviously the
case when E ⊆ E′ and R ⊆ R′; as mentioned above, when E′ = E and R′ = R the term model
coincides with the initial model for R.

Maude functional modules [6, Chap. 4], introduced with syntax fmod ... endfm, are exe-
cutable membership equational specifications that allow the definition of sorts (by means of key-
word sort(s)); subsort relations between sorts (subsort); operators (op) for building values of these
sorts, giving the sorts of their arguments and result, and which may have attributes such as being
associative (assoc) or commutative (comm), for example; memberships (mb) asserting that a term
has a sort; and equations (eq) identifying terms. Both memberships and equations can be condi-
tional (cmb and ceq). Maude system modules [6, Chap. 6], introduced with syntax mod ... endm,
are executable rewrite theories. A system module can contain all the declarations of a functional
module and, in addition, declarations for rules (rl) and conditional rules (crl).

We present how to use this syntax by means of an example. Given a maze, we want to obtain
all the possible paths to the exit. First, we define the sorts Pos, List, and State that stand for
positions in the labyrinth, lists of positions, and the path traversed so far respectively:

(mod MAZE is

pr NAT . sorts Pos List State .

Terms of sort Pos have the form [X,Y], where X and Y are natural numbers, and lists are built
with nil and the juxtaposition operator _ _:

subsort Pos < List . op [_,_] : Nat Nat -> Pos [ctor] .

op nil : -> List [ctor] . op _ _ : List List -> List [ctor assoc id: nil] .

280 A. RIESCO, A. VERDEJO, AND N. MARTÍ-OLIET

Terms of sort State are lists enclosed by curly brackets, that is, {_} is an “encapsulation
operator” that ensures that the whole state is used:

op {_} : List -> State [ctor] .

The predicate isSol checks whether a list is a solution in a 5× 5 labyrinth:

vars X Y : Nat . var P Q : Pos . var L : List .

op isSol : List -> Bool .

eq [is1] : isSol(L [5,5]) = true .

eq [is2] : isSol(L) = false [owise] .

The next position is computed with rule expand, that extends the solution with a new position
by rewriting next(L) to obtain a new position and then checking whether this list is correct with
isOk. Note that the choice of the next position, that could be initially wrong, produces an implicit
backtracking:

crl [expand] : { L } => { L P } if next(L) => P /\ isOk(L P) .

The function next is defined in a nondeterministic way, where sd denotes the symmetric differ-
ence:

op next : List -> Pos .

rl [n1] : next(L [X,Y]) => [X, Y + 1] .

rl [n2] : next(L [X,Y]) => [sd(X, 1), Y] .

rl [n3] : next(L [X,Y]) => [X, sd(Y, 1)] .

isOk(L P) checks that the position P is within the limits of the labyrinth, not repeated in L,
and not part of the wall by using an auxiliary function contains:

op isOk : List -> Bool .

eq isOk(L [X,Y]) = X >= 1 and Y >= 1 and X <= 5 and Y <= 5

and not(contains(L, [X,Y])) and not(contains(wall, [X,Y])) .

op contains : List Pos -> Bool .

eq [c1] : contains(nil, P) = false .

eq [c2] : contains(Q L, P) = if P == Q then true else contains(L, P) fi .

Finally, we define the wall of the labyrinth as a list of positions:

op wall : -> List .

eq wall = [2,1] [2,2] [3,2] [2,3] [4,3] [5,3] [1,5] [2,5] [3,5] [4,5] .

endm)

Now, we can use the module to search the labyrinth’s exit from the position [1,1] with the
Maude command search, but it cannot find any path to escape. We will see in Section 4.1 how to
debug it.

3. A Calculus for Missing Answers

We describe in this section a calculus to infer, given a term and some constraints, the complete
set of reachable terms from this term that fulfill the requirements. The proof trees built with this
calculus have nodes that justify why the terms are included in the corresponding sets (positive infor-
mation) but also nodes that justify why there are no more terms (negative information). These latter
nodes are then used in the debugging trees to localize as much as possible the reasons responsible
for missing answers. This calculus integrates the calculus to deduce substitutions, normal forms,
and least sorts that was presented in [18], and that we reproduce here to give the reader an overall
view of debugging of missing answers in Maude specifications. Moreover, these calculi extend the
calculus in [17], used to deduce judgments corresponding to oriented equations t → t′, memberships
t : s, and rewrites t ⇒ t′, and to debug wrong answers. All the results in this paper refer to the

DECLARATIVE DEBUGGING OF MISSING ANSWERS FOR MAUDE SPECIFICATIONS 281

complete calculus comprising these three calculi, and thus we consider this work as the final step in
the development of foundations for a complete declarative debugger for Maude.

From now on, we assume a rewrite theory R = (Σ, E,R) satisfying the Maude executability
requirements, i.e., E is confluent, terminating, maybe modulo some equational axioms such as
associativity and commutativity, and sort-decreasing, while R is coherent with respect to E; see [6]
for details. Equations corresponding to the axioms form the set A and the equations in E − A can
be oriented from left to right.

We introduce the inference rules used to obtain the set of reachable terms given an initial one,
a pattern [6], a condition, and a bound in the number of rewrites. First, the pattern P and the
condition C (that can use variables bound by the pattern) are put together by creating the condition
C′ ≡ P := ⊛ ∧ C, where ⊛ is a “hole” that will be filled by the concrete terms to check if they
fulfill both the pattern and the condition. Throughout this paper we only consider a special kind
of conditions and substitutions that operate over them, called admissible. They correspond to the
ones used in Maude modules and are defined as follows:

Definition 3.1. A condition C1 ∧ · · · ∧ Cn is admissible if, for 1 ≤ i ≤ n, Ci is

• an equation ui = u′

i or a membership ui : s and vars(Ci) ⊆
⋃i−1

j=1
vars(Cj), or

• a matching condition ui := u′

i, ui is a pattern and vars(u′

i) ⊆
⋃i−1

j=1
vars(Cj), or

• a rewrite condition ui ⇒ u′

i, u
′

i is a pattern and vars(ui) ⊆
⋃i−1

j=1
vars(Cj).

Note that the lefthand side of matching conditions and the righthand side of rewrite conditions
can contain extra variables that will be instantiated once the condition is solved.

Definition 3.2. A condition C ≡ P := ⊛ ∧ C1 ∧ · · · ∧ Cn is admissible if P := t ∧ C1 ∧ · · · ∧ Cn is
admissible for t any ground term.

Definition 3.3. A kind-substitution, denoted by κ, is a mapping between variables and terms of
the form v1 7→ t1; . . . ; vn 7→ tn such that ∀1≤i≤n . kind(vi) = kind(ti), that is, each variable has the
same kind as the term it binds.

Definition 3.4. A substitution, denoted by θ, is a mapping between variables and terms of the form
v1 7→ t1; . . . ; vn 7→ tn such that ∀1≤i≤n . sort(vi) ≥ ls(ti), that is, the sort of each variable is greater
than or equal to the least sort of the term it binds. Note that a substitution is a special type of
kind-substitution where each term has the sort appropriate to its variable.

Definition 3.5. Given an atomic condition C, we say that a substitution θ is admissible for C if

• C is an equation u = u′ or a membership u : s and vars(C) ⊆ dom(θ), or
• C is a matching condition u := u′ and vars(u′) ⊆ dom(θ), or
• C is a rewrite condition u ⇒ u′ and vars(u) ⊆ dom(θ).

The calculus presented in this section (in Figures 1–4) will be used to deduce the following
judgments, that we introduce together with their meaning for a Σ-term model T ′ = TΣ/E′,R′ defined
by equations and memberships E′ and by rules R′:

• Given a term t and a kind-substitution κ, T ′ |= adequateSorts(κ) Θ when either Θ =
{κ} ∧ ∀v ∈ dom(κ).T ′ |= κ[v] : sort(v) or Θ = ∅ ∧ ∃v ∈ dom(κ).T ′ 6|= κ[v] : sort(v),
where κ[v] denotes the term bound by v in κ. That is, when all the terms bound in the
kind-substitution κ have the appropriate sort, then κ is a substitution and it is returned;
otherwise (at least one of the terms has an incorrect sort), the kind-substitution is not a
substitution and the empty set is returned.

• Given an admissible substitution θ for an atomic condition C, T ′ |= [C, θ] Θ when
Θ = {θ′ | T ′, θ′ |= C and θ′ ↾dom(θ)= θ}, that is, Θ is the set of substitutions that fulfill the
atomic condition C and extend θ by binding the new variables appearing in C.

282 A. RIESCO, A. VERDEJO, AND N. MARTÍ-OLIET

• Given a set of admissible substitutions Θ for an atomic condition C, T ′ |= 〈C,Θ〉 Θ′

when Θ′ = {θ′ | T ′, θ′ |= C and θ′ ↾dom(θ)= θ for some θ ∈ Θ}, that is, Θ′ is the set of
substitutions that fulfill the condition C and extend any of the admissible substitutions in
Θ.

• T ′ |= disabled(a, t) when the equation or membership a cannot be applied to t at the top.
• T ′ |= t →red t′ when either T ′ |= t →1

E′ t′ or T ′ |= ti →
!

E′ t′i, with ti 6= t′i, for some subterm
ti of t such that t′ = t[ti 7→ t′i], that is, the term t is either reduced one step at the top or
reduced by substituting a subterm by its normal form.

• T ′ |= t →norm t′ when T ′ |= t →!

E′ t′, that is, t′ is in normal form with respect to the
equations E′.

• Given an admissible condition C ≡ P := ⊛ ∧ C1 ∧ · · · ∧ Cn, T
′ |= fulfilled(C, t) when there

exists a substitution θ such that T ′, θ |= P := t ∧ C1 ∧ · · · ∧ Cn, that is, C holds when ⊛ is
substituted by t.

• Given an admissible condition C as before, T ′ |= fails(C, t) when there exists no substitution
θ such that T ′, θ |= P := t ∧ C1 ∧ · · · ∧ Cn, that is, C does not hold when ⊛ is substituted
by t.

• T ′ |= t :ls s when T ′ |= t : s and moreover s is the least sort with this property (with respect
to the ordering on sorts obtained from the signature Σ and the equations and memberships
E′ defining the Σ-term model T ′).

• T ′ |= t ⇒top S when S = {t′ | t →top
R′ t′}, that is, the set S is formed by all the reachable

terms from t by exactly one rewrite at the top with the rules R′ defining T ′. Moreover,
equality in S is modulo E′, i.e., we are implicitly working with equivalence classes of ground
terms modulo E′.

• T ′ |= t ⇒q S when S = {t′ | t →top
{q} t′}, that is, the set S is the complete set of reachable

terms (modulo E′) obtained from t with one application of the rule q ∈ R′ at the top.
• T ′ |= t ⇒1 S when S = {t′ | t →1

R′ t′}, that is, the set S is constituted by all the reachable
terms (modulo E′) from t in exactly one step, where the rewrite step can take place anywhere
in t.

• T ′ |= t C

n S when S = {t′ | t →≤n
R′ t′ and T ′ |= fulfilled(C, t′)}, that is, S is the set of all

the terms (modulo E′) that satisfy the admissible condition C and are reachable from t in
at most n steps.

We first introduce in Figure 1 the inference rules defining the relations [C, θ] Θ, 〈C,Θ〉 Θ′,
and adequateSorts(κ) Θ. Intuitively, these judgments will provide positive information when
they lead to nonempty sets (indicating that the condition holds in the first two judgments or that
the kind-substitution is a substitution in the third one) and negative information when they lead
to the empty set (indicating respectively that the condition fails or the kind-substitution is not a
substitution):

• Rule PatC computes all the possible substitutions that extend θ and satisfy the matching of
the term t2 with the pattern t1 by first computing the normal form t′ of t2, obtaining then all
the possible kind-substitutions κ that make t′ and θ(t1) equal modulo axioms (indicated by
≡A), and finally checking that the terms assigned to each variable in the kind-substitutions
have the appropriate sort with adequateSorts(κ). The union of the set of substitutions thus
obtained constitutes the set of substitutions that satisfy the matching.

• Rule AS1 checks whether the terms of the kind-substitution have the appropriate sort to
match the variables. In this case the kind-substitution is a substitution and it is returned.

• Rule AS2 indicates that, if any of the terms in the kind-substitution has a sort bigger than
the required one, then it is not a substitution and thus the empty set of substitutions is
returned.

• Rule MbC1 returns the current substitution if a membership condition holds.

DECLARATIVE DEBUGGING OF MISSING ANSWERS FOR MAUDE SPECIFICATIONS 283

θ(t2) →norm t′ adequateSorts(κ1) Θ1 . . . adequateSorts(κn) Θn

[t1 := t2, θ]
⋃n

i=1
Θi

PatC

if {κ1, . . . , κn} = {κθ | κ(θ(t1)) ≡A t′}

t1 : sort(v1) . . . tn : sort(vn)

adequateSorts(v1 7→ t1; . . . ; vn 7→ tn) {v1 7→ t1; . . . ; vn 7→ tn}
AS1

ti :ls si
adequateSorts(v1 7→ t1; . . . ; vn 7→ tn) ∅

AS2 if si 6≤ sort(vi)

θ(t) : s

[t : s, θ] {θ}
MbC1

θ(t) :ls s
′

[t : s, θ] ∅
MbC2 if s′ 6≤ s

θ(t1) ↓ θ(t2)

[t1 = t2, θ] {θ}
EqC1

θ(t1) →norm t′
1

θ(t2) →norm t′
2

[t1 = t2, θ] ∅
EqC2 if t′

1
6≡A t′

2

θ(t1)
t2 :=⊛

n+1
S

[t1 ⇒ t2, θ] {θ′θ | θ′(θ(t2)) ∈ S}
RlC

if n = min(x ∈ N : ∀i ≥ 0 (θ(t1)
t2 :=⊛

x+i S))

[C, θ1] Θ1 · · · [C, θm] Θm

〈C, {θ1, . . . , θm}〉

m
⋃

i=1

Θi

SubsCond

Figure 1: Calculus for substitutions

• Rule MbC2 is used when the membership condition is not satisfied. It checks that the least
sort of the term is not less than or equal to the required one, and thus the substitution does
not satisfy the condition and the empty set is returned.

• Rule EqC1 returns the current substitution when an equality condition holds, that is, when
the two terms can be joined with equations, abbreviated as t1 ↓ t2.

• Rule EqC2 checks that an equality condition fails by obtaining the normal forms of both
terms and then examining that they are different.

• Rewrite conditions are handled by rule RlC. This rule extends the set of substitutions
by computing all the reachable terms that satisfy the pattern (using the relation t C

n S
explained below) and then using these terms to obtain the new substitutions.

• Finally, rule SubsCond computes the extensions of a set of admissible substitutions {θ1, . . . , θn}
by using the rules above with each of them.

We use these judgments to define the inference rules of Figure 2, that describe how the normal
form and the least sort of a term are computed:

• Rule Dsb indicates when an equation or membership a cannot be applied to a term t. It
checks that there are no substitutions that satisfy the matching of the term with the lefthand
side of the statement and that fulfill its condition. Note that we check the conditions from
left to right, following the same order as Maude and making all the substitutions admissible.

• Rule Rdc1 reduces a term by applying one equation when it checks that the conditions can
be satisfied, where the matching conditions are included in the equality conditions. While
in the previous rule we made explicit the evaluation from left to right of the condition to
show that finally the set of substitutions fulfilling it was empty, in this case we only need
one substitution to fulfill the condition and the order is unimportant.

• Rule Rdc2 reduces a term by reducing a subterm to normal form (checking in the side
condition that it is not already in normal form).

284 A. RIESCO, A. VERDEJO, AND N. MARTÍ-OLIET

[l := t, ∅] Θ0 〈C1,Θ0〉 Θ1 . . . 〈Cn,Θn−1〉 ∅

disabled(a, t)
Dsb

if a ≡ l → r ⇐ C1 ∧ . . . ∧ Cn ∈ E or
a ≡ l : s ⇐ C1 ∧ . . . ∧ Cn ∈ E

{θ(ui) ↓ θ(u′

i)}
n
i=1

{θ(vj) : sj}
m
j=1

θ(l) →red θ(r)
Rdc1 if l → r ⇐

∧n
i=1

ui = u′

i ∧
∧m

j=1
vj : sj ∈ E

t →norm t′

f(t1, . . . , t, . . . , tn) →red f(t1, . . . , t
′, . . . , tn)

Rdc2 if t 6≡A t′

disabled(e1, f(t1, . . . , tn)) . . . disabled(el, f(t1, . . . , tn)) t1 →norm t1 . . . tn →norm tn

f(t1, . . . , tn) →norm f(t1, . . . , tn)
Norm

if {e1, . . . , el} = {e ∈ E | e ≪top
K f(t1, . . . , tn)}

t →red t1 t1 →norm t′

t →norm t′
NTr

t →norm t′ t′ : s disabled(m1, t
′) . . . disabled(ml, t

′)

t :ls s
Ls

if {m1, . . . ,ml} = {m ∈ E | m ≪top
K t′ ∧ sort(m) < s}

Figure 2: Calculus for normal forms and least sorts

fulfilled(C, t)

t C

0
{t}

Rf1
fails(C, t)

t C

0
∅

Rf2

θ(P) ↓ t {θ(ui) ↓ θ(u′

i)}
n
i=1

{θ(vj) : sj}
m
j=1

{θ(wk) ⇒ θ(w′

k)}
l
k=1

fulfilled(C, t)
Fulfill

if C ≡ P := ⊛ ∧
∧n

i=1
ui = u′

i ∧
∧m

j=1
vj : sj ∧

∧l
k=1

wk ⇒ w′

k

[P := t, ∅] Θ0 〈C1,Θ0〉 Θ1 · · · 〈Ck,Θk−1〉 ∅

fails(C, t)
Fail if C ≡ P := ⊛ ∧ C1 ∧ . . . ∧ Ck

Figure 3: Calculus for solutions

• Rule Norm states that the term is in normal form by checking that no equations can be
applied at the top considering the variables at the kind level (which is indicated by ≪top

K)
and that all its subterms are already in normal form.

• Rule NTr describes the transitivity for the reduction to normal form. It reduces the term
with the relation →red and the term thus obtained then is reduced to normal form by using
again →norm .

• Rule Ls computes the least sort of the term t. It computes a sort for its normal form (that
has the least sort of the terms in the equivalence class) and then checks that memberships
deducing lesser sorts, applicable at the top with the variables considered at the kind level,
cannot be applied.

In these rules Dsb provides the negative information, proving why the statements (either equa-
tions or membership axioms) cannot be applied, while the remaining rules provide the positive
information indicating why the normal form and the least sort are obtained.

Once these rules have been introduced, we can use them in the rules defining the relation
t C

n S. First, we present in Figure 3 the rules related to n = 0 steps:

DECLARATIVE DEBUGGING OF MISSING ANSWERS FOR MAUDE SPECIFICATIONS 285

fulfilled(C, t) t ⇒1 {t1, . . . , tk} t1
C

n S1 . . . tk
C

n Sk

t C

n+1

k
⋃

i=1

Si ∪ {t}

Tr1

fails(C, t) t ⇒1 {t1, . . . , tk} t1
C

n S1 . . . tk
C

n Sk

t C

n+1

k
⋃

i=1

Si

Tr2

f(t1, . . . , tm) ⇒top St t1 ⇒1 S1 · · · tm ⇒1 Sm

f(t1, . . . , tm) ⇒1 St ∪
⋃m

i=1
{f(t1, . . . , ui, . . . , tm) | ui ∈ Si}

Stp

t ⇒q1 Sq1 · · · t ⇒ql Sql

t ⇒top

l
⋃

i=1

Sqi

Top if {q1, . . . , ql} = {q ∈ R | q ≪top
K t}

[l := t, ∅] Θ0 〈C1,Θ0〉 Θ1 · · · 〈Ck,Θk−1〉 Θk

t ⇒q
⋃

∀ θ∈Θk

{θ(r)}
Rl if q : l ⇒ r ⇐ C1 ∧ . . . ∧ Ck ∈ R

t →norm t1 t1
C

n {t2} ∪ S t2 →norm t′

t C

n {t′} ∪ S
Red

Figure 4: Calculus for missing answers

• Rule Rf1 indicates that when only zero steps are used and the current term fulfills the
condition, the set of reachable terms consists only of this term.

• Rule Rf2 complements Rf1 by defining the empty set as result when the condition does not
hold.

• Rule Fulfill checks whether a term satisfies a condition. The premises of this rule check
that all the atomic conditions hold, taking into account that it starts with a matching
condition with a hole that must be filled with the current term and thus proved with the
premise θ(P) ↓ t. Note that when the condition is satisfied we do not need to check all the
substitutions, but only to verify that there exists one substitution that makes the condition
true.

• To check that a term does not satisfy a condition, it is not enough to check that there exists
a substitution that makes it to fail; we must make sure that there is no substitution that
makes it true. We use the rules shown in Figure 1 to prove that the set of substitutions that
satisfy the condition (where the first set of substitutions is obtained from the first matching
condition filling the hole with the current term) is empty. Note that, while rule Fulfill
provides the positive information indicating that a condition is fulfilled, this one provides
negative information, proving that the condition fails.

Now we introduce in Figure 4 the rules defining the relation t C

n S when the bound n is greater
than 0, which can be understood as searches in zero or more steps:

• Rules Tr1 and Tr2 show the behavior of the calculus when at least one step can be used.
First, we check whether the condition holds (rule Tr1) or not (rule Tr2) for the current term,
in order to introduce it in the result set. Then, we obtain all the terms reachable in one
step with the relation ⇒1, and finally we compute the reachable solutions from these terms

286 A. RIESCO, A. VERDEJO, AND N. MARTÍ-OLIET

constrained by the same condition and the bound decreased in one step. The union of the
sets obtained in this way and the initial term, if needed, corresponds to the final result set.

• Rule Stp shows how the set for one step is computed. The result set is the union of the
terms obtained by applying each rule at the top (calculated with t ⇒top S) and the terms
obtained by rewriting one step the arguments of the term. This rule can be straightforwardly
adapted to the more general case in which the operator f has some frozen arguments (i.e.,
that cannot be rewritten); the implementation of the debugger makes use of this more
general rule.

• How to obtain the terms by rewriting at the top is explained by rule Top, that specifies
that the result set is the union of the sets obtained with all the possible applications of each
rule of the program. We restrict these rules to those whose lefthand side, with the variables
considered at the kind level, matches the term.

• Rule Rl uses the rules in Figure 1 to compute the set of terms obtained with the application
of a single rule. First, the set of substitutions obtained from matching with the lefthand
side of the rule is computed, and then it is used to find the set of substitutions that satisfy
the condition. This final set is used to instantiate the righthand side of the rule to obtain
the set of reachable terms. The kind of information provided by this rule corresponds to
the information provided by the substitutions; if the empty set of substitutions is obtained
(negative information) then the rule computes the empty set of terms, which also corre-
sponds with negative information proving that no terms can be obtained with this program
rule; analogously when the set of substitutions is nonempty (positive information). This
information is propagated through the rest of inference rules justifying why some terms are
reachable while others are not.

• Finally, rule Red reduces the reachable terms in order to obtain their normal forms. We
use this rule to reproduce Maude behavior, first the normal form is computed and then the
rules are applied.

Now we state that this calculus is correct in the sense that the derived judgments with respect
to the rewrite theory R = (Σ, E,R) coincide with the ones satisfied by the corresponding initial
model TΣ/E,R, i.e., for any judgment ϕ, ϕ is derivable in the calculus if and only if TΣ/E,R |= ϕ.
This is well known for the judgments corresponding to equations t = t′, memberships t : s, and
rewrites t ⇒ t′ [11, 10].

Theorem 3.6. The calculus of Figures 1, 2, 3, and 4 is correct.

Once these rules are defined, we can build the tree corresponding to the search result shown in
Section 2 for the maze example. We recall that we have defined a system to search a path out of a
labyrinth but, given a concrete labyrinth with an exit, the program is unable to find it. First of all,
we have to use a concrete bound to build the tree. It must suffice to compute all the reachable terms,
and in this case the least of these values is 4. We have depicted the tree in Figure 5, where we have
abbreviated the equational condition {L:List} := ⊛ ∧ isSol(L:List) = true by C and isSol(L)

= true by isSol(L). The leftmost tree justifies that the search condition does not hold for the
initial term (this is the reason why Tr2 has been used instead of Tr1) and thus it is not a solution.
Note that first the substitutions from the matching with the pattern are obtained (L 7→ [1,1] in
this case), and then these substitutions are used to instantiate the rest of the condition, that for
this term does not hold, which is proved by ∗1. The next tree shows the set of reachable terms in
one step (the tree ∗2, explained below, computes the terms obtained by rewrites at the top, while
the tree on its right shows that the subterms cannot be further rewritten) and finally the rightmost
tree, that has a similar structure to this one and will not be studied in depth, continues the search
with a decreased bound.

The tree ∗1 shows why the current list is not a solution (i.e., the tree provides the negative
information proving that this fragment of the condition does not hold). The reason is that the term
isSol(L) is reduced to false, when we needed it to be reduced to true.

DECLARATIVE DEBUGGING OF MISSING ANSWERS FOR MAUDE SPECIFICATIONS 287

1 →norm 1
Norm

[1,1] →norm [1,1]
Norm

{[1,1]} →norm {[1,1]}
Norm

[{L:List} := {[1,1]}, ∅] L 7→ [1,1]}
PatC

∗1
〈isSol(L), {L 7→ [1,1]}〉 ∅

SubsCond

fails(C, {[1,1]})
Fail

∗2

[1,1] ⇒top ∅
Top 1 ⇒top ∅

Top

1 ⇒1 ∅
Stp

[1,1] ⇒1 ∅
Stp

{[1,1]} ⇒1 {[1,1][1,2]}
Stp

∗3

{[1,1][1,2]} C

3
∅

Tr2

{[1,1]} C

4
∅

Tr2

Figure 5: Tree for the maze example

isSol([1,1]) →red false
Rdc1

false →norm false
Norm

isSol([1,1]) →norm false
NTr

true →norm true
Norm

[isSol(L) = true, L 7→ [1,1]] ∅
EqC2

Figure 6: Tree ∗1 for the search condition

The tree labeled with ∗2 is sketched in Figure 7. In this tree the applications of all the rules
whose lefthand side matches the current term ({[1,1]}) are tried. In this case only the rule expand
(abbreviated by e) can be used, and it generates a list with the new position [1,2]; the tree ∗4 is used
to justify that the first condition of expand holds and extends the set of substitutions that fulfill the
condition thus far to the set {θ1, θ2, θ3}, where θ1 ≡ L 7→ [1,1]; P 7→ [1,2], θ2 ≡ L 7→ [1,1]; P 7→
[1,0], and θ3 ≡ L 7→ [1,1]; P 7→ [0,1]. The substitution θ1 also fulfills the next condition,
isOk(L P), which is proved with the rule EqC

1
in ♣ (where the big triangle is a computation in the

calculus of [17] proving that the conditions of the equations hold), while the substitutions θ2 and θ3
fail; the trees ▽ proving it are analogous to the one shown in Figure 6. This substitution θ1 is thus
the only one inferred in the root of the tree, where the node ♣ provides the positive information
proving why the substitution is obtained and its siblings (▽) the negative information proving why
the other substitutions are not in the set.

1 →norm 1
Norm

{[1,1]} →norm {[1,1]}
Norm

[{L} := {[1,1]}, ∅] {L 7→ [1,1]}
PatC

∗4

�
�
�

A
A
A

isOk([1,1][1,2]) → true
Rep

→
true → true

Rf
→

(♣) [isOk(L P), θ1] {θ1}
EqC1

▽ ▽

〈isOk(L P), {θ1, θ2, θ3}〉 {θ1}
SubsCond

{[1,1]} ⇒e {[1,1][1,2]}
Rl

{[1,1]} ⇒top {[1,1][1,2]}
Top

Figure 7: Tree ∗2 for the applications at the top

The tree ∗4, shown in Figure 8, is in charge of inferring the set of substitutions obtained when
checking the first condition of the rule expand, namely next(L) => P. The condition is instantiated
with the substitution obtained from matching the term with the lefthand side of the rule (in this
case L 7→ [1,1]) and, since it is a rewrite condition, the set of reachable terms—computed with ∗5,
which will not be further discussed here—is used to extend this substitution, obtaining a set with
three different substitutions (that we previously abbreviated as θ1, θ2, and θ3).

4. Debugging Trees

We describe in this section how to obtain appropriate debugging trees from the proof trees in-
troduced in the previous section. Following the approach shown in [17], we assume the existence of
an intended interpretation I of the given rewrite theory R = (Σ, E,R). This intended interpretation
is a Σ-term model corresponding to the model that the user had in mind while writing the specifi-
cation R. Therefore the user expects that I |= ϕ for any judgment ϕ deduced with respect to the

288 A. RIESCO, A. VERDEJO, AND N. MARTÍ-OLIET

∗5

next([1,1]) P:=⊛

2
{[1,2], [1,0], [0,1]}

Tr2

[next(L) ⇒ P, L 7→ [1,1]] {L 7→ [1,1]; P 7→ [1,2], L 7→ [1,1]; P 7→ [1,0], L 7→ [1,1]; P 7→ [0,1]}
RlC

〈next(L) ⇒ P, {L 7→ [1,1]}〉 {L 7→ [1,1]; P 7→ [1,2], L 7→ [1,1]; P 7→ [1,0], L 7→ [1,1]; P 7→ [0,1]}
SubsCond

Figure 8: Tree ∗4 for the first condition of expand

rewrite theory R. We will say that a judgment is valid when it holds in the intended interpretation
I, and invalid otherwise. Our goal is to find a buggy node in any proof tree T rooted by the initial
error symptom detected by the user. This could be done simply by asking questions to the user
about the validity of the nodes in the tree according to the following top-down strategy: If all the
children of N are valid, then finish pointing out at N as buggy; otherwise, select the subtree rooted
by any invalid child and use recursively the same strategy to find the buggy node. Proving that this
strategy is complete is straightforward by using induction on the height of T . By using the proof
trees computed with the calculus of the previous section as debugging trees we are able to locate
wrong statements, missing statements, and wrong search conditions, which are defined as follows:

• Given a statement A ⇐ C1 ∧ · · · ∧ Cn (where A is either an equation l = r, a membership
l : s, or a rule l ⇒ r) and a substitution θ, the statement instance θ(A) ⇐ θ(C1)∧· · ·∧θ(Cn)
is wrong when all the atomic conditions θ(Ci) are valid in I but θ(A) is not.

• Given a rule l ⇒ r ⇐ C1 ∧ · · · ∧ Cn and a term t, the rule has a wrong instance if the
judgments [l := t, ∅] Θ0, [C1,Θ0] Θ1, · · · , [Cn,Θn−1] Θn are valid in I but the
application of Θn to the righthand side does not provide all the results expected for this
rule.

• Given a condition l := ⊛ ∧ C1 ∧ · · · ∧ Cn and a term t, if [l := t, ∅] Θ0, [C1,Θ0] Θ1,
· · · , [Cn,Θn−1] ∅ are valid in I (meaning that the condition does not hold for t) but the
user expected the condition to hold, then we have a wrong search condition instance.

• Given a condition l := ⊛ ∧ C1 ∧ · · · ∧ Cn and a term t, if there exists a substitution θ such
that θ(l) ≡A t and all the atomic conditions θ(Ci) are valid in I, but the condition is not
expected to hold, then we also have a wrong search condition instance.

• A statement or condition is wrong when it admits a wrong instance.
• Given a term t, there is a missing equation for t if the computed normal form of t does
not correspond with the one expected in I. A specification has a missing equation if there
exists a term t such that there is a missing equation for t.

• Given a term t, there is a missing membership for t if the computed least sort for t does not
correspond with the one expected in I. A specification has a missing membership if there
exists a term t such that there is a missing membership for t.

• Given a term t, there is a missing rule for t if all the rules applied to t at the top lead to
judgments t ⇒qi Sqi valid in I but the union

⋃

Sqi does not contain all the reachable terms
from t by using rewrites at the top. A specification has a missing rule if there exists a term
t such that there is a missing rule for t.2

In our debugging framework, when a wrong statement is found, this specific statement is pointed
out; when a missing statement is found, the debugger indicates the operator at the top of the term
in the lefthand side of the statement that is missing; and when a wrong condition is found, the
specific condition is shown. We will see in the next section that some extra information will be kept
in the tree to provide this information. It is important not to confuse missing answers with missing

2Actually, what the debugger reports is that a statement is missing or the conditions in the remaining

statements are not the intended ones (thus they are not applied when expected and another one would be

needed), but the error is not located in the statements used in the conditions, since they are also checked

during the debugging process.

DECLARATIVE DEBUGGING OF MISSING ANSWERS FOR MAUDE SPECIFICATIONS 289

statements; the current calculus detects missing answers due to both wrong and missing statements
and wrong search conditions.

4.1. Abbreviated Proof Trees

We will not use proof trees T directly as debugging trees, but a suitable abbreviation which we
denote by APT (T) (from Abbreviated Proof Tree), or simply APT when T is clear from the context.
The reason for preferring the APT is that it reduces and simplifies the questions that will be asked
to the user while keeping the soundness and completeness of the technique. This transformation
relies on the following proposition:

Proposition 4.1. Let N be a buggy node in some proof tree in the calculus of Figures 1, 2, 3, and
4, w.r.t. an intended interpretation I. Then:

(1) N is the consequence of a Rep
→
, Rep

⇒
, Mb, Rdc1, Norm, Ls, Fulfill, Fail, Top, or Rl

inference rule.
(2) The error associated to N is a wrong statement, a missing statement, or a wrong search

condition.

To indicate the error associated to the buggy node, we assume that the nodes inferred with
these inference rules are decorated with some extra information to identify the error when they are
pointed out as buggy. More specifically, nodes related to wrong statements keep the label of the
statement, nodes related to missing statements keep the operator at the top that requires more
statements to be defined, and nodes related to wrong conditions keep the condition.

The key idea in the APT , whose rules are shown in Figure 9, is to keep the nodes related to the
inference rules indicated in Proposition 4.1, making use of the rest of rules to improve the questions
asked to the user. The abbreviation always starts by applying (APT1). This rule simply duplicates
the root of the tree and applies APT ′, which receives a proof tree and returns a forest (i.e., a set
of trees). Hence without this duplication the result of the abbreviation could be a forest instead of
a single tree. The rest of the APT rules correspond to the function APT ′ and are assumed to be
applied top-down: if several APT rules can be applied at the root of a proof tree, we must choose
the first one, that is, the rule of least number. The following advantages are obtained:

• Questions associated to nodes with reductions are improved (rules (APT2), (APT3),
(APT5), (APT6), and (APT7)) by asking about normal forms instead of asking about
intermediate states. For example, in rule (APT2) the error associated to t → t′ is the one
associated to t → t′′, which is not included in the APT . We have chosen to introduce t → t′

instead of simply t → t′′ in the APT as a pragmatic way of simplifying the structure of the
APT s, since t′ is obtained from t′′ and hence likely simpler.

• The rule (APT4) deletes questions about rewrites at the top (that can be difficult to answer
due to matching modulo) and associates the information of those nodes to questions related
to the set of reachable terms in one step with rewrites in any position, that are in general
easier to answer.

• It creates, with the variants of the rules (APT8) and (APT9), two different kinds of tree,
one that contains judgments of rewrites with several steps and another that only contains
rewrites in one step. The one-step debugging tree follows strictly the idea of keeping only
nodes corresponding to relevant information. However, the many-steps debugging tree also
keeps nodes corresponding to the transitivity inference rules. The user will choose which
debugging tree (one-step or many-steps) will be used for the debugging session, taking into
account that the many-steps debugging tree usually leads to shorter debugging sessions (in
terms of the number of questions) but with likely more complicated questions. The number
of questions is usually reduced because keeping the transitivity nodes for rewrites gives to
some parts of the debugging tree the shape of a balanced binary tree (each transitivity
inference has two premises, i.e., two child subtrees), and this allows the debugger to use

290 A. RIESCO, A. VERDEJO, AND N. MARTÍ-OLIET

(APT1) APT

(

T1 . . . Tn

aj
R1

)

=
APT ′

(

T1 . . . Tn

aj
R1

)

aj

(APT2) APT ′

T1 . . . Tn

t → t′′
Rep

→ T ′

t → t′
Tr→

 =

{

APT ′(T1) . . .APT
′(Tn) APT

′(T ′)
t → t′

Rep
→

}

(APT3) APT ′

T1 . . . Tn

t → t′′
Rdc1 T ′

t → t′
NTr

 =

{

APT ′ (T1) . . . APT ′ (Tn) APT ′ (T ′)
t → t′

Rdc1

}

(APT4) APT ′

T1 . . . Tn

t ⇒top S′
Top T ′

1
. . . T ′

m

t ⇒1 S
Stp

 =

{

APT ′ (T1) . . . APT ′ (Tn) APT ′ (T ′

1
) . . . APT ′ (T ′

m)
t ⇒1 S

Top

}

(APT5) APT ′

 T ′

T1 . . . Tn

t ⇒ t′
Rep

⇒ T ′′

t1 ⇒ t2
EC

 =

{

APT ′(T ′) APT ′(T1) . . .APT
′(Tn) APT

′(T ′′)
t1 ⇒ t2

Rep
⇒

}

(APT6) APT ′

T
T1 . . . Tn

aj ′
R1 T ′

aj
Red

 =

{

APT ′ (T) APT ′ (T1) . . . APT ′ (Tn) APT ′ (T)
aj

R1

}

(APT7) APT ′

(

Tt→norm t′ T1 . . . Tn

t :ls s
Ls

)

=

{

APT ′ (Tt→norm t′) APT ′ (T1) . . . APT ′ (Tn)
t ′ :ls s

Ls

}

(APTo
8
) APT ′

(

T1 T2

t ⇒ t′
Tr⇒

)

= APT ′(T1)
⋃

APT ′(T2)

(APTm
8
) APT ′

(

T1 T2

t ⇒ t′
Tr⇒

)

=

{

APT ′(T1) APT
′(T2)

t ⇒ t′
Tr⇒

}

(APTo
9
) APT ′

(

T1 . . . Tn

aj
Tr

)

= APT ′ (T1)
⋃

. . .
⋃

APT ′ (Tn)

(APTm
9
) APT ′

(

T1 . . . Tn

aj
Tri

)

=

{

APT ′ (T1) . . . APT ′ (Tn)
aj

Tri

}

(APT10) APT ′

(

T1 . . . Tn

aj
R2

)

=

{

APT ′(T1) . . .APT
′(Tn)

aj
R2

}

(APT11) APT ′

(

T1 . . . Tn

aj
R1

)

= APT ′(T1)
⋃

. . .
⋃

APT ′(Tn)

R1 any inference rule R2 either Mb, Rep
→
, Rep

⇒
, Rdc1, Norm, Fulfill, Fail, Ls, Rl, or Top

1 ≤ i ≤ 2 aj , aj ′ any judgment

Figure 9: Transforming rules for obtaining abbreviated proof trees

efficiently the divide and query navigation strategy. On the contrary, removing the tran-
sitivity inferences for rewrites (as rules (APTo

8
) and (APTo

9
) do) produces flattened trees

where this strategy is no longer efficient. On the other hand, in rewrites t ⇒ t′ and searches
t C

n S appearing as conclusion of a transitivity inference rule, the judgment can be more
complicated because it combines several inferences. The user must balance the pros and
cons of each option, and choose the best one for each debugging session.

DECLARATIVE DEBUGGING OF MISSING ANSWERS FOR MAUDE SPECIFICATIONS 291

(♠) 1 →norm 1
Norm

s

(♠) [1,1] →norm [1,1]
Norm

[,]

(♠) {[1,1]} →norm {[1,1]}
Norm

{ }
isSol(P1) → f

Rdc
is2 ⋆1 ▽ . . . ▽ ⋆2

{[1,1]} C

4
∅

Tr2

Figure 10: Abbreviated proof tree for the maze example

• The rule (APT11) removes from the tree all the nodes not associated with relevant infor-
mation, since the rule (APT10) keeps the relevant information and the rules are applied
in order. We remove, for example, nodes related to judgments about sets of substitutions,
disabled statements, and rewrites with a concrete rule, that can be in general difficult to an-
swer. Moreover, it removes from the tree trivial judgments like the ones related to reflexivity
or congruence.

• Since the APT is built without computing the associated proof tree, it reduces the time
and space needed to build the tree.

The following theorem states that we can safely employ the abbreviated proof tree as a basis
for the declarative debugging of Maude system and functional modules: the technique will find a
buggy node starting from any initial symptom. We assume that the information introduced by the
user during the session is correct.

Theorem 4.2. Let T be a finite proof tree representing an inference in the calculus of Figures 1, 2,
3, and 4 w.r.t. some rewrite theory R. Let I be an intended interpretation of R s.t. the root of T is
invalid in I. Then:

• APT (T) contains at least one buggy node (completeness).
• Any buggy node in APT (T) has an associated wrong statement, missing statement, or wrong
condition in R (correctness).

The trees in Figures 10–12 depict the (one-step) abbreviated proof tree for the maze exam-
ple, where C stands for {L:List}:= ⊛ ∧ isSol(L:List), P1 for [1,1], L1 for [1,1][1,2],
L2 for [1,1][1,0], L3 for [1,1][0,1], t for true, f for false, n for next, e for expand, L for
[1,1][1,2][1,3][1,4], and ∗′

5
for the application of APT ′ to ∗5. We have also extended the in-

formation in the labels with the operator or statement associated to the inference. More concretely,
the tree in Figure 10 abbreviates the tree in Figure 5; the first two premises in the abbreviated
tree abbreviate the first premise in the proof tree (which includes the tree in Figure 6), keeping
only the nodes associated with relevant information according to Proposition 4.1: Norm, with the
operator associated to the reduction, and Rdc1, with the label of the associated equation. The tree
⋆1, shown in Figure 11, abbreviates the second premise of the tree in Figure 5 as well as the trees
in Figures 7 and 8; it only keeps the nodes referring to normal forms, searches in one step, that
are now associated to the rule Top, each of them referring to a different operator (the operator s_
is the successor constructor for natural numbers), and the applications of rules (Rl) and equations
(Rep

→
). Note that the equation describing the behavior of isOk has not got any label, which is

indicated with the symbol ⊥; we will show below how the debugger deals with these nodes. The
tree ⋆2, presented in Figure 12, shares these characteristics and only keeps nodes related to one-step
searches and application of rules.

These APT rules are combined with trusting mechanisms that further reduce the proof tree
(note that the correctness of these techniques relies on the decisions made by the user):

• Statements can be trusted in several ways: non labelled statements are always trusted (i.e.,
the nodes marked with (♦) in Figure 11 will be discarded by the debugger), statements and
modules can be trusted before starting the debugging process, and statements can also be
trusted on the fly.

292 A. RIESCO, A. VERDEJO, AND N. MARTÍ-OLIET

(♠) 1 →norm 1
Norm

s

(♠) [1,1] →norm [1,1]
Norm

[,]

∗′
5

(♦) isOk(L1) → t
Rep

⊥ (♦) isOk(L2) → f
Rep

⊥ (♦) isOk(L3) → f
Rep

⊥

{[1,1]} ⇒e {[1,1][1,2]}
Rl

e

(♥) 1 ⇒1 ∅
Top

s

(♥) [1,1] ⇒1 ∅
Top

[,]

{[1,1]} ⇒1 {[1,1][1,2]}
Top

{ }

Figure 11: Abbreviated tree ⋆1

▽ . . . ▽

n(L) ⇒n1 [1,5]
Rl

n1

▽ . . . ▽

n(L) ⇒n2 [0,4]
Rl

n2

▽ . . . ▽

n(L) ⇒n3 [1,3]
Rl

n3

(‡) n(L) ⇒1 {[1,5], [0,4], [1,3]}
Top

n ▽ . . . ▽

(†) {[1,1][1,2][1,3][1,4]} ⇒e ∅
Rl

e

(†) {[1,1][1,2][1,3][1,4]} ⇒1 ∅
Top

{ }

Figure 12: Abbreviated tree ⋆2

• A correct module can be given before starting a debugging session. By checking the cor-
rectness of the judgments against this module, correct nodes can be deleted from the tree.

• We consider that constructed terms (terms built only with constructors, pointed out with
the ctor attribute, and also known as data terms in other contexts) are in normal form and
thus inferences of the form t →norm t with t constructed are removed from the tree. This
would remove from the tree the nodes marked with (♠) in Figures 10 and 11.

• Constructed terms of certain sorts or built with some operators can be considered final,
which indicates that they cannot be further rewritten. For example, we could consider
terms of sorts Nat and List to be final and thus the nodes marked with (♥) in Figure 11
would be removed from the tree.

Once this tree has been built, we can use it to debug the error shown in Section 2. Using the
top-down navigation strategy our tool would show all the children of the root and ask the user to
select an incorrect one. The last one (the root of ⋆2) is incorrect and can be selected, and then the
user has to answer about the validity of the child of this node. Since it is also incorrect the debugger
selects it as current one (the path thus far has been marked with (†) in Figure 12) and the debugger
shows its children. The first child (‡) is erroneous, but this time its children are all correct, so the
tool points it out as buggy and it is associated to an erroneous fragment of code. More concretely,
the rule used to infer this judgment was Top, and it is associated with the operator next (that was
abbreviated as n), i.e., another rule for this operator is needed. Indeed, if we check the module we
notice that the movement to the right has not been specified. We can fix it by adding:
rl [n4] : next(L [X,Y]) => [X + 1, Y] .

A detailed session of this example is available in the webpage maude.sip.ucm.es/debugging.

5. Conclusions and Future Work

We have presented in this paper a debugger of missing answers for Maude specifications. The
trees for this kind of debugging are obtained from an abbreviation of a proper calculus whose
adequacy for debugging has been proved. This work extends our previous work on wrong and
missing answers [17, 18] and provides a powerful and complete debugger for Maude specifications.
Moreover, we also provide a graphical user interface that eases the interaction with the debugger
and improves its traversal. The tree construction, its navigation, and the user interaction (excluding
the GUI) have been all implemented in Maude itself. For more information, see http://maude.

sip.ucm.es/debugging.
We plan to add new navigation strategies like the ones shown in [21] that take into account

the number of different potential errors in the subtrees, instead of their size. Moreover, the current

DECLARATIVE DEBUGGING OF MISSING ANSWERS FOR MAUDE SPECIFICATIONS 293

version of the tool allows the user to introduce a correct but maybe incomplete module in order to
shorten the debugging session. We intend to add a new command to introduce complete modules,
which would greatly reduce the number of questions asked to the user. Finally, we also plan to
create a test generator to test Maude specifications and debug the erroneous test with the debugger.

References

[1] M. Alpuente, M. Comini, S. Escobar, M. Falaschi, and S. Lucas. Abstract diagnosis of functional

programs. In M. Leuschel, editor, Logic Based Program Synthesis and Transformation, volume 2664 of

Lecture Notes in Computer Science, pages 1–16. Springer, 2002.

[2] A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in membership equational

logic. Theoretical Computer Science, 236:35–132, 2000.

[3] R. Caballero. A declarative debugger of incorrect answers for constraint functional-logic programs.

In Proceedings of the 2005 ACM SIGPLAN Workshop on Curry and Functional Logic Programming

(WCFLP’05), Tallinn, Estonia, pages 8–13. ACM Press, 2005.

[4] R. Caballero, C. Hermanns, and H. Kuchen. Algorithmic debugging of Java programs. In F. J. López-

Fraguas, editor, 15th Workshop on Functional and (Constraint) Logic Programming, WFLP 2006,

Madrid, Spain, volume 177 of Electronic Notes in Theoretical Computer Science, pages 75–89. Else-

vier, 2007.

[5] R. Caballero, M. Rodŕıguez-Artalejo, and R. del Vado Vı́rseda. Declarative diagnosis of missing answers

in constraint functional-logic programming. In J. Garrigue and M. V. Hermenegildo, editors, Proceed-

ings of 9th International Symposium on Functional and Logic Programming, FLOPS 2008, Ise, Japan,

volume 4989 of Lecture Notes in Computer Science, pages 305–321. Springer, 2008.

[6] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Talcott. All About Maude:

A High-Performance Logical Framework, volume 4350 of Lecture Notes in Computer Science. Springer,

2007.

[7] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook of Theoretical

Computer Science, Volume B: Formal Models and Semantics, pages 243–320. North-Holland, 1990.

[8] T. Genet. Decidable approximations of sets of descendants and sets of normal forms. In T. Nipkow,

editor, Proceedings of the 9th International Conference on Rewriting Techniques and Applications (RTA

98), volume 1379 of Lecture Notes in Computer Science, pages 151–165. Springer, 1998.

[9] I. MacLarty. Practical declarative debugging of Mercury programs. Master’s thesis, University of Mel-

bourne, 2005.

[10] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer Sci-

ence, 96(1):73–155, 1992.

[11] J. Meseguer. Membership algebra as a logical framework for equational specification. In F. Parisi-

Presicce, editor, Recent Trends in Algebraic Development Techniques, 12th International Workshop,

WADT’97, Tarquinia, Italy, June 3–7, 1997, Selected Papers, volume 1376 of Lecture Notes in Computer

Science, pages 18–61. Springer, 1998.

[12] L. Naish. Declarative diagnosis of missing answers. New Generation Computing, 10(3):255–286, 1992.

[13] L. Naish. A declarative debugging scheme. Journal of Functional and Logic Programming, 1997(3),

1997.

[14] H. Nilsson. How to look busy while being as lazy as ever: the implementation of a lazy functional

debugger. Journal of Functional Programming, 11(6):629–671, 2001.

[15] B. Pope. A Declarative Debugger for Haskell. PhD thesis, The University of Melbourne, Australia, 2006.

[16] A. Riesco, A. Verdejo, R. Caballero, and N. Mart́ı-Oliet. A declarative debugger for Maude specifications

- User guide. Technical Report SIC-7-09, Dpto. Sistemas Informáticos y Computación, Universidad

Complutense de Madrid, 2009. http://maude.sip.ucm.es/debugging.

[17] A. Riesco, A. Verdejo, R. Caballero, and N. Mart́ı-Oliet. Declarative debugging of rewriting logic

specifications. In A. Corradini and U. Montanari, editors, Recent Trends in Algebraic Development

Techniques (WADT 2008), volume 5486 of Lecture Notes in Computer Science, pages 308–325. Springer,

2009.

[18] A. Riesco, A. Verdejo, and N. Mart́ı-Oliet. Enhancing the debugging of Maude specifications. In Pro-

ceedings of the 8th International Workshop on Rewriting Logic and its Applications (WRLA 2010),

Lecture Notes in Computer Science, 2010. To appear.

294 A. RIESCO, A. VERDEJO, AND N. MARTÍ-OLIET

[19] A. Riesco, A. Verdejo, N. Mart́ı-Oliet, and R. Caballero. Declarative debugging of rewriting logic

specifications. Technical Report SIC 02/10, Dpto. Sistemas Informáticos y Computación, Universidad

Complutense de Madrid, 2010. http://maude.sip.ucm.es/debugging.

[20] E. Y. Shapiro. Algorithmic Program Debugging. ACM Distinguished Dissertation. MIT Press, 1983.

[21] J. Silva. A comparative study of algorithmic debugging strategies. In G. Puebla, editor, Logic-Based

Program Synthesis and Transformation, volume 4407 of Lecture Notes in Computer Science, pages

143–159. Springer, 2007.

[22] A. Tessier and G. Ferrand. Declarative diagnosis in the CLP scheme. In P. Deransart, M. V.

Hermenegildo, and J. Maluszynski, editors, Analysis and Visualization Tools for Constraint Program-

ming, Constraint Debugging (DiSCiPl project), volume 1870 of Lecture Notes in Computer Science,

pages 151–174. Springer, 2000.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 295-310
http://rewriting.loria.fr/rta/

SIMULATION IN THE CALL-BY-NEED LAMBDA-CALCULUS WITH

LETREC

MANFRED SCHMIDT-SCHAUSS 1 AND DAVID SABEL 1 AND ELENA MACHKASOVA 2

1 Dept. Informatik und Mathematik, Inst. Informatik, Goethe-University, PoBox 11 19 32, D-60054

Frankfurt, Germany

E-mail address, M. Schmidt-Schauß: schauss@ki.informatik.uni-frankfurt.de

E-mail address, D. Sabel: sabel@ki.informatik.uni-frankfurt.de

2 Division of Science and Mathematics, University of Minnesota, Morris, MN 56267-2134, U.S.A

E-mail address, E. Machkasova: elenam@morris.umn.edu

Abstract. This paper shows the equivalence of applicative similarity and contextual ap-

proximation, and hence also of bisimilarity and contextual equivalence, in the deterministic

call-by-need lambda calculus with letrec. Bisimilarity simplifies equivalence proofs in the

calculus and opens a way for more convenient correctness proofs for program transfor-

mations. Although this property may be a natural one to expect, to the best of our

knowledge, this paper is the first one providing a proof. The proof technique is to transfer

the contextual approximation into Abramsky’s lazy lambda calculus by a fully abstract

and surjective translation. This also shows that the natural embedding of Abramsky’s

lazy lambda calculus into the call-by-need lambda calculus with letrec is an isomorphism

between the respective term-models. We show that the equivalence property proven in

this paper transfers to a call-by-need letrec calculus developed by Ariola and Felleisen.

1. Introduction

Non-strict programming languages such as the core-language of Haskell can be modeled
using call-by-need lambda calculi. Contextual semantics, based on an operational semantics,
describes behavior of expressions in all possible contexts and can model the semantics of
different variants of these calculi. Applicative bisimulation is a restricted form of contextual
equivalence: if two closed expressions behave the same on all arguments, then they are
bisimilar. It allows more convenient proofs of e.g. correctness of program transformations.
Abramsky & Ong showed that applicative bisimulation is the same as contextual equivalence
in a specific simple lazy lambda calculus [Abr90, Abr93], and Howe [How89, How96] proved
that in classes of calculi applicative bisimulation is the same as contextual equivalence. This
leads to the expectation that some form of applicative bisimulation may be used for calculi
with Haskell’s cyclic let(rec). Howe’s method is applicable to calculi with non-recursive let
even in the presence of non-determinism [Man10]. However, in the case of (cyclic) letrec

1998 ACM Subject Classification: F.4.2, F.3.2, F.3.3, F.4.1.

Key words and phrases: semantics, contextual equivalence, bisimulation, lambda calculus, call-by-need,

letrec.

c© M. Schmidt-Schauß, D. Sabel, and E. Machkasova
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.295

296 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

and non-determinism the method fails, as a recent counterexample shows [SS09a]. This
raises a question: which call-by-need calculi with letrec permit applicative bisimilarity as a
tool for proving contextual equality.

We show in this paper that for the minimal extension of Abramsky’s lazy lambda
calculus with letrec which implements sharing and explicit recursion, the equivalence of
contextual equivalence and applicative bisimulation indeed holds. The technique used is
via two translations: W from a call-by-need letrec-calculus into a full call-by-name letrec
calculus using infinite trees as justification for the correctness (i.e. full abstraction), and
N translating the letrec expressions away using a family of fixpoint combinators. Full
abstraction of the translation, an analysis of applicative contexts, and a variant of behavioral
similarity then show that the applicative similarity can be transferred between the calculi
and that the embedding of the lazy lambda calculus into the call-by-need calculus is an
isomorphism of the respective term models.

In [Jef94] there is an investigation into the semantics of a lambda-calculus that permits
cyclic graphs, and where a fully abstract denotational semantics is described. However, the
calculus is different from our calculi in its expressiveness since it permits strictness anno-
tations and a parallel convergence test, where the latter is required for the full abstraction
property of the denotational model. Expressiveness of programming languages was investi-
gated e.g. in [Fel91] and the usage of syntactic methods was formulated as a research pro-
gram there, with non-recursive let as the paradigmatic example. Our isomorphism-theorem
6.9 shows that this approach is extensible to a cyclic let.

Related work on calculi with recursive bindings includes the following foundational
papers. An early paper that proposes cyclic let-bindings (as graphs) is [Ari94], where re-
duction and confluence properties are discussed. [Ari95, Ari97, Mar98] present call-by-need
lambda calculi with non-recursive let and a let-less formulation of call-by-need reduction.
For a calculus with non-recursive let it is shown in [Mar98] that call-by-name and call-by-
need evaluation induce the same observational equivalences. Call-by-need lambda calculi
with a recursive let that closely correspond to our calculus Lneed are also presented in
[Ari95, Ari97, Ari02]. In [Ari02] it is shown that there exist infinite normal forms and that
the calculus satisfies a form of confluence. In this paper we show that the letrec calculus
of [Ari97] is equivalent to Lneed w.r.t. convergence and contextual equivalence (see Theo-
rem 7.1) and that bisimulation for the letrec calculus of [Ari97] is equivalent to contextual
equivalence. This supports our experience and view that contextual equivalence is a more
central notion than a specific standard reduction.

Outline: In Sect. 3 we introduce the two letrec-calculi and recall results for Abramsky’s
lazy lambda calculus. In Sect. 4 and 5 the translations W and N are introduced and the
full-abstraction results are obtained. In Sect. 6 we show that bisimulation and contextual
equivalence are the same in the call-by-need calculus with letrec. In Sect. 7 we show that
our result is transferable to the letrec-calculus of [Ari97]. Finally, we conclude in Sect. 8.

2. Common Notions and Notations for Calculi

Before we explain the specific calculi, some common notions are introduced. A calculus
definition consists of its syntax together with its operational semantics which defines the
evaluation of programs and the implied equivalence of expressions.

Definition 2.1. An untyped deterministic calculus D is a four-tuple (E , C,→,W), where
E are expressions, C : E → E is a set of functions (which usually represents contexts), →

SIMULATION IN THE CALL-BY-NEED LAMBDA-CALCULUS WITH LETREC 297

is a small-step reduction relation (usually the normal-order reduction), which is a partial
function on expressions, and W ⊂ E is a set of values of the calculus.

For C ∈ C and an expression s, the functional application is denoted as C[s]. For
contexts, this is the replacement of the hole of C by s. We also assume that the identity
function Id is contained in C with Id [s] = s for all expressions s.

The transitive closure of → is denoted as
+
−→ and the transitive and reflexive closure of →

is denoted as
∗
−→. Given an expression t, a sequence t → t1 → . . . → tn is called a reduction

sequence; it is called an evaluation if tn is a value, i.e. tn ∈ W . Then we say s converges and
denote this as s↓tn or as s↓ if tn is not important. If there is no tn s.t. s↓tn then s diverges,
denoted as s⇑. When dealing with multiple calculi, we often use the calculus name to mark

its expressions and relations, e.g.
D
−→ denotes a reduction relation in D.

Contextual approximation and equivalence can be defined in a general way:

Definition 2.2. Let D = (E , C,→,W) be a calculus and s, t be D-expressions. Contextual
approximation ≤D and contextual equivalence ∼D are defined as:

s ≤D t iff ∀C ∈ C : C[s]↓D ⇒ C[t]↓D
s ∼D t iff s ≤D t ∧ t ≤D s

Note that ≤D is a precongruence and that ∼D is a congruence.

We are interested in translations between calculi that are faithful w.r.t. the corre-
sponding contextual preorders. Recall that we developed such translations between cal-
culi with contextual equivalences in [SS08b, SS09b]: A translation τ : (E1, C1,→1,W1) →
(E2, C2,→2,W2) is a mapping τE : E1 → E2 and a mapping τC : C1 → C2 such that
τC(Id1) = Id2 . The following notions are defined:

• τ is compositional iff τ(C[e]) = τ(C)[τ(e)] for all C, e.
• τ is convergence equivalent iff e↓1 ⇐⇒ τ(e)↓2 for all e.
• τ is adequate iff for all e, e′ ∈ E1: τ(e) ∼2 τ(e

′) =⇒ e ∼1 e
′.

• τ is fully abstract iff for all e, e′ ∈ E1: e ∼1 e
′ ⇐⇒ τ(e) ∼2 τ(e

′).

From [SS08b, SS09b] it is known that a compositional and convergence equivalent trans-
lation is adequate.

3. Three Calculi

In this section we present the calculi that we use in the paper: the two calculi Lneed and
Lname with letrec, which have the same syntax, but differ in their reduction strategies, and
Abramsky’s “lazy lambda calculus”, which is a pure lambda calculus with a call-by-name
reduction that has abstractions as successful results.

3.1. The Call-by-Need Calculus Lneed

We begin with the call-by-need lambda calculus Lneed which is exactly the call-by-need
calculus of [SS07]. The set E of Lneed -expressions is as follows where x, xi are variables:

si, s, t ∈ E ::= x | (s t) | (λx.s) | (letrec x1 = s1, . . . , xn = sn in t)

We assign the names application, abstraction, or letrec-expression to the expressions (s t),
(λx.s), (letrec x1 = s1, . . . , xn = sn in t), respectively. A group of letrec bindings is
abbreviated as Env.

298 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

(lbeta) C[((λx.s)S r)] → C[(letrec x = r in s)]
(cp-in) (letrec x = sS ,Env in C[xV]) → (letrec x = s,Env in C[s])

where s is an abstraction or a variable
(cp-e) (letrec x = sS ,Env , y = C[xV] in r) → (letrec x = s,Env , y = C[s] in r)

where s is an abstraction or a variable
(llet-in) (letrec Env1 in (letrec Env2 in r)S) → (letrec Env1,Env2 in r)
(llet-e) (letrec Env1, x = (letrec Env2 in sx)

S in r)
→ (letrec Env1,Env2, x = sx in r)

(lapp) C[((letrec Env in t)S s)] → C[(letrec Env in (t s))]

Figure 1: Reduction rules of Lneed

We assume that variables xi in letrec-bindings are all distinct, that letrec-expressions
are identified up to reordering of binding-components, and that, for convenience, there is
at least one binding. letrec-bindings are recursive, i.e., the scope of xj in (letrec x1 =
s1, . . . , xn−1 = sn−1 in sn) are all expressions si with 1 ≤ i ≤ n. Free and bound variables in
expressions and α-renamings are defined as usual. The set of free variables in t is denoted as
FV (t). We use the distinct variable convention, i.e., all bound variables in expressions are
assumed to be distinct, and free variables are distinct from bound variables. The reduction
rules are assumed to implicitly α-rename bound variables in the result if necessary.

A context C is an expression from Lneed extended by a symbol [·], the hole, such that [·]
occurs exactly once (as subexpression) in C. Given a term t and a context C, we write C[t]
for the Lneed -expression constructed from C by plugging t into the hole, i.e, by replacing [·]
in C by t, where this replacement is meant syntactically, i.e., a variable capture is permitted.

Definition 3.1. The reduction rules for the calculus and language Lneed are defined in
Fig. 1, where the labels S, V are used for the exact definition of the normal-order reduction
below. Several reduction rules are denoted by their name prefix, e.g. the union of (llet-in)
and (llet-e) is called (llet). The union of (llet) and (lapp) is called (lll).

For the definition of the normal order reduction strategy of the calculus Lneed we use
the labeling algorithm in Figure 2, which detects the position to which a reduction rule is
applied according to the normal order. It uses the following labels: S (subterm), T (top
term), V (visited). We use ∨ when a rule allows two options for a label, e.g. sS∨T stands
for s labeled with S or T . A labeling rule l → r is applicable to a (labeled) expression s if
s matches l with the labels given by l where s may have more labels than l if not otherwise
stated. The labeling algorithm has as input an expression s and then exhaustively applies
the rules in Fig. 2 to sT , where no other subexpression in s is labeled. The label T is used
to prevent the labeling algorithm from visiting letrec-environments that are not at the
top of the expression. The labeling algorithm either terminates with fail or with success,
where in general the direct superterm of the S-marked subexpression indicates a potential
normal-order redex. The use of such a labeling algorithm corresponds to the search of a
redex in term graphs where it is usually called unwinding.

Example 3.2. For the expression letrec x = x in x the labeling does not fail:

(letrec x = x in x)T →(letrec x = x in xS)V → (letrec x = xS in xV)V

SIMULATION IN THE CALL-BY-NEED LAMBDA-CALCULUS WITH LETREC 299

(letrec Env in t)T → (letrec Env in tS)V

C[(s t)S∨T] → C[(sS t)V]
(letrec x = s,Env in C[xS]) → (letrec x = sS ,Env in C[xV])
(letrec x = s, y = C[xS],Env in t) → (letrec x = sS , y = C[xV],Env in t)

if s was not labeled and if C[x] 6= x
(letrec x = sV , y = C[xS],Env in t) → fail if C[x] 6= x
(letrec x = C[xS]V ,Env in t) → fail if C[x] 6= x

Figure 2: Labeling algorithm for Lneed

But for the expressions letrec x = (y x), y = (x y) in x and letrec x = (x λu.u) in x
the labeling fails.

Definition 3.3 (Normal Order Reduction of Lneed). Let t be an expression. Then a single

normal order reduction step
need
−−−→ is defined as follows: first the labeling algorithm is applied

to t. If the labeling algorithm terminates successfully, then one of the rules in Figure 1 is
applied, if possible, where the labels S, V must match the labels in the expression t (again
t may have more labels). The normal order redex is defined as the left-hand side of the
applied reduction rule. The notation for a normal-order reduction that applies the rule a is
need ,a
−−−−→, e.g.

need ,lapp
−−−−−−→ applies the rule (lapp).

Definition 3.4. A reduction context Rneed is any context, such that its hole is labeled with
S or T by the labeling algorithm.

Note that the normal order redex as well as the normal order reduction is unique.
A weak head normal form in Lneed (Lneed -WHNF) is either an abstraction λx.s, or an
expression (letrec Env in λx.s). The notions of convergence, divergence and contextual
approximation are as defined in Sect. 2. Note that black holes, i.e. expressions with cyclic
dependencies in a normal order reduction context, diverge, e.g. letrec x = x in x. Other
expressions which diverge are open expressions where a free variable appears (perhaps after
several reductions) in reduction position. A specific representative of diverging expressions
is Ω := (λz.(z z)) (λx.(x x)), i.e. Ω⇑need .

Example 3.5. We consider the expression t1 := letrec x = (y λu.u), y = λz.z in x.
The labeling algorithm applied to t1 yields (letrec x = (yV λu.u)V , y = (λz.z)S in xV)V .

The only reduction rule that matches this labeling is the reduction rule (cp-e), i.e. t1
need
−−−→

(letrec x = ((λz′.z′) λu.u), y = (λz.z) in x) = t2. The labeling of t2 is (letrec x =
((λz′.z′)S λu.u)V , y = (λz.z) in xV)V , which makes the reduction (lbeta) applicable, i.e.

t2
need
−−−→ (letrec x = (letrec z′ = λu.u in z′), y = (λz.z) in x) = t3. The labeling

of t3 is (letrec x = (letrec z′ = λu.u in z′)S , y = (λz.z) in xV)V . Thus an (llet-e)-

reduction is applicable to t2, i.e. t3
Lneed−−−→ (letrec x = z′, z′ = λu.u, y = (λz.z) in x) =

t4. Application of the labeling algorithm to t4 yields: (letrec x = z′S , z′ = λu.u, y =

(λz.z) in xV)V . Thus the normal order reduction is a (cp-in)-reduction, i.e. t4
Lneed−−−→

(letrec x = z′, z′ = λu.u, y = (λz.z) in z′) = t5 The labeling of t5 is (letrec x =
z′, z′ = λu.uS , y = (λz.z) in z′V)V . Again a (cp-e) reduction is applicable, i.e. t5 →
(letrec x = z′, z′ = λu.u, y = (λz.z) in λu′.u′) = t6 The labeling algorithm applied to t6

300 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

yields (letrec x = z′, z′ = λu.u, y = (λz.z) in λu′.u′S)V , but no reduction is applicable to
t6, since t6 is a WHNF.

3.2. The Call-by-Name Calculus Lname

Now we define a call-by-name calculus on the Lneed -syntax. The syntax of the calculus
Lname is the same as that of Lneed , but the reduction rules are different. This calculus Lname

has a different call-by-name-reduction than the one in [SS07], since that calculus treats only
beta-redexes as call-by-name, but uses a sharing variant for (cp).

The reduction contexts Rname are contexts of the form L[A] where the context classes
A and L are defined by L ∈ L ::= [·] | letrec Env in L; A ∈ A ::= [·] | (A s) where s is

any expression. Normal order reduction
name
−−−→ is defined by the following three rules:

(lapp) Rname [(letrec Env in t) s] → Rname [letrec Env in (t s)]
(beta) Rname [((λx.s) t)] → Rname [s[t/x]]
(cp) L[letrec Env , x = s in Rname [x]] → L[letrec Env , x = s in Rname [s]]

Note that
name
−−−→ is unique. An Lname -WHNF is defined as an expression of the form

L[λx.s]. We write s↓name iff there is a normal-order reduction to a Lname -WHNF, i.e. iff

s
name,∗
−−−−→ L[λx.s′].

3.3. The Lazy Lambda Calculus

In this subsection we give a short description of the lazy lambda calculus [Abr90],
denoted with Llazy , which is a call-by-name lambda calculus. The set E of Llazy -expressions
is that of the usual (untyped) lambda calculus: s, si, t ∈ E ::= x | (s1 s2) | (λx.s) where e, ei
are expressions, and xmeans a variable. The set W of values are the Llazy -abstractions. The
reduction contexts Rlazy are defined by Rlazy ∈ Rlazy := [·] | (Rlazy s) where s is any Llazy -

expression. A
lazy
−−→-reduction is defined by the rule: (beta) Rlazy [((λx.s) t)] → Rlazy [s[t/x]].

The
lazy
−−→-reduction is unique.
We repeat the definitions and the required properties of Llazy , where proofs can be found

in [How89, How96, Abr90, Abr93]. For basic definitions and confluence see e.g. [Bar84].
Since this calculus is well-studied and some properties are folklore, there are different and
alternative proofs of the properties below. We require these properties in other sections
and as properties of the target of translations, which allows us to lift the properties to the
calculi Lname and Lneed .

Definition 3.6 (Simulation in Llazy). Let η be a binary relation on closed Llazy -expressions.
Then s [η]lazy t holds iff s↓λx.s′ implies

(

t↓λx.t′ and for all closed Llazy -expressions r the

relation s′[r/x] η t′[r/x] holds
)

. The relation ≤b,lazy is defined as the greatest fixpoint of
the operator [·]lazy .

For a relation η on closed expressions, let the open extension ηo be defined as s ηo t iff
for all closing substitutions σ: σ(s) η σ(t). Note that by the theorem below, this can be
shown to be equivalent to: for all closing substitutions σ that replace variables by closed
abstractions or Ω: σ(s) η σ(t). As an example ≤o

b,lazy is the open extension of ≤b,lazy .
There are several variants of behaviorally and contextually defined relations in Llazy ,

that are all equivalent to contextual approximation.

SIMULATION IN THE CALL-BY-NEED LAMBDA-CALCULUS WITH LETREC 301

Theorem 3.7. In Llazy , all the following relations are equivalent to contextual approxima-
tion ≤lazy :

(1) ≤o
b,lazy .

(2) The relation ≤lazy,1 where s ≤lazy,1 t iff for all closing contexts C: C[s]↓ =⇒ C[t]↓.
(3) The relation ≤lazy,2, defined as: s ≤lazy,2 t iff for all closed contexts C and all closing

substitutions: C[σ(s)]↓ =⇒ C[σ(t)]↓.
(4) The relation ≤o

b,lazy,1 where ≤b,lazy,1 is defined using the Kleene-construction:

≤b,lazy,1=
⋂

i≥0 ≤′
b,i, where ≤′

b,0 is the relation E × E, and ≤′
b,i+1 := [≤′

b,i]lazy for
all i.

(5) The relation ≤o
b,lazy,2 where ≤b,lazy,2 is defined as: s ≤b,lazy,2 t iff for all n ≥ 0 and

all closed expressions ri, i = 1, . . . , n: s r1 . . . rn↓ =⇒ t r1 . . . rn↓.
(6) The relation ≤o

b,lazy,3, where ≤b,lazy,3 is defined as: s ≤b,lazy,3 t iff for all n ≥ 0
and all ri, i = 1, . . . , n, where ri may be a closed abstraction or Ω: s r1 . . . rn↓ =⇒
t r1 . . . rn↓.

(7) The relation ≤o
b,lazy,4, where ≤b,lazy,4 is the greatest fixpoint of the operator [·]lazy,aΩ

on closed expressions. By definition s [η]lazy,aΩ t holds iff s↓λx.s′ implies t↓λx.t′

and for all closed Llazy -abstractions r and r = Ω, the relation s′[r/x] η t′[r/x] holds.

Beta-reduction is a correct program transformation in Llazy :

Theorem 3.8. Let s, t be Llazy -expressions. If s
beta
−−→ t, then s ∼lazy t. For all Llazy -

expressions s, t: Ω ≤lazy s. If s, t are closed and s⇑ and t⇑, then s ∼lazy t.

Also the following can easily be derived from Theorem 3.7 and Theorem 3.8.

Proposition 3.9. For open Llazy -expressions s, t, where all free variables of s, t are in
{x1, . . . , xn}: s ≤lazy t ⇐⇒ λx1, . . . xn.s ≤lazy λx1, . . . xn.t

Proposition 3.10. Given any two closed Llazy -expressions s, t: for all closed Llazy -
abstractions r and also for r = Ω s r ≤lazy t r ⇐⇒ s ≤lazy t.

Proof. The if-direction follows from the congruence property. The only-if direction follows
from Theorem 3.7.

4. The Translation W : Lneed → Lname

The translation W : Lneed → Lname is defined as the identity on expressions and
contexts, but the convergence predicates are changed. We will prove that contextual equiv-
alence based on Lneed -evaluation and contextual equivalence based on Lname -evaluation are
equivalent. We will use infinite trees to connect both evaluation strategies. Note that [SS07]
already shows that infinite tree convergence is equivalent to call-by-need convergence. Thus,
we mainly treat call-by-name evaluation in this section.

We recall the definition of an infinite tree from [SS07], and describe the set of trees as
a calculus in the sense of Section 2 called Ltree : The set of infinite trees T is co-inductively
defined using the grammar T ∈ T ::= x | (T1 T2) | λx.T | ⊥ where x is a variable, T, T1, T2

are infinite trees, ⊥ is a (special) constant. Contexts are trees with exactly one occurrence
of a hole (as a subexpression).

302 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

Definition 4.1. Tree reduction contexts R for (infinite) trees are inductively defined by
R ::= [·] | (R T), where T stands for an infinite tree. The only reduction on trees is:

(betaTr) ((λx.s) r) → s[r/x]

If the reduction rule is applied in an R-context, it is a normal order reduction on trees
tree
−−→.

Values are trees of the form λx.T , i.e. abstractions.

Now we define a translation IT from Lname -expressions into Ltree -expressions.
We use Dewey notation, i.e. strings over {1, 2}, as positions of infinite trees, where

numbers are separated by a period. Here 1 refers to the left and 2 to the right subtree
of an application, and 1 to the body of an abstraction. The empty string is denoted as
ε. For an infinite tree T its label at position p (written as T ⇂p) is defined as usual, i.e.
(T1 T2)⇂1.p = T1⇂p, (T1 T2)⇂2.p = T2⇂p, (λx.T)⇂ε = λx, (T1 T2)⇂ε = app, x⇂ε = x, and
⊥⇂ε = ⊥. The subtree of T at position p is T |p.

Definition 4.2. Given an expression t, the infinite tree IT (t) of t is defined by the labels at
valid positions, where the positions and the labels of IT (t) for every position are computed
by the following algorithm, using the notation C[t′⇃p] if the algorithm searches the label at
position p and is currently at the subexpression t′. Given the expression t and a position
p, if and only if the following rules (7→) (where C,Ci are Lname -contexts, s, t are Lname -
expressions) exhaustively applied to t⇃p end with a label l ∈ {λx, app, x,⊥}, then p is a
position of IT (t) and IT (t)⇂p = l .

The final steps in the label computation are as follows:

C[(λx.s)⇃ε] 7→ λx
C[(s t)⇃ε] 7→ app
C[x⇃ε] 7→ x if x is a free or a lambda-bound variable
C[letrec x = C[x⇃ε],Env in s] 7→ ⊥
C[letrec x1 = C1[y1], . . . , xn = Cn[x1⇃ε],Env in s] 7→ ⊥

For the general cases, we proceed as follows:

1. C[(λx.s)⇃1.p] 7→ C[λx.(s⇃p)]
2. C[(s t)⇃1.p] 7→ C[(s⇃p t)]
3. C[(s t)⇃2.p] 7→ C[(s t⇃p)]
4. C[(letrec Env in r)⇃p] 7→ C[(letrec Env in r⇃p)]
5. C1[(letrec x = s,Env in C2[x⇃p])] 7→ C1[(letrec x = s⇃p,Env in C2[x])]
6. C1[letrec x = s, y = C2[x⇃p],Env in r] 7→ C1[letrec x = s⇃p, y = C2[x],Env in r]

In all cases not mentioned above, the result is undefined, and hence the position p is not a
position of the tree.

Lemma 4.3. Let s, t ∈ Lname . Then s
name,cp
−−−−−→ t or s

name,lapp
−−−−−−→ t implies IT (s) = IT (t).

Proof. For (cp) let s = C1[letrec x = s,Env in C2[x]] and t = C1[letrec x =
s,Env in C2[s]]. Then for IT (s) and IT (t) the only change may happen at the posi-
tion that corresponds to x in C2[x], but as the computation of the labels shows, the labels
remain unchanged.

For (lapp) let s = C[(letrec Env in s′) t′] and t = C[letrec Env in (s′ t′)]. Then it
is again easy to observe that every label of every position is identical for IT (s) and IT (t).

SIMULATION IN THE CALL-BY-NEED LAMBDA-CALCULUS WITH LETREC 303

Lemma 4.4. Let s1 := Rname [(λx.s) t]
name,beta
−−−−−−→ Rname [s[t/x]] =: s2. Then IT (s1)

tree
−−→

IT (s2).

Proof. The redex ((λx.s) t) is mapped by IT to a unique tree position within a tree reduction
context in IT (s1). The computation IT transforms ((λx.s) t) into a subtree σ((λx.s) t),
where σ is a substitution replacing variables by infinite trees. The tree reduction replaces
σ((λx.s) t) by σ(s)[σ(t)/x], hence the lemma holds.

Proposition 4.5. Let s be an expression with s↓name . Then IT (s)↓tree .

Proof. This follows by induction on the length of a normal order reduction of s. The base
case holds, since IT (L[(λx .s)]) is always a value tree. For the induction step we consider the
first reduction of s, say s → s′. The induction hypothesis shows IT (s ′)↓tree . If the reduction
s → s′ is a (name,lapp) or (name,cp) reduction, then Lemma 4.3 implies IT (s)↓tree . If

s
name,beta
−−−−−−→ s′, then Lemma 4.4 shows IT (s)

tree
−−→ IT (s ′) and thus IT (s)↓tree .

Now we show the other direction:

Lemma 4.6. Let s be an expression such that IT (s) = R[T], where R is a tree reduction

context and T 6= ⊥. Then there is an expression s′ such that s
name,(lapp)∨(cp),∗
−−−−−−−−−−−−→ s′, IT (s ′) =

IT (s), s′ = R[s′′], IT (L[s ′′]) = T, where R = L[A[·]] is a reduction context for some L-
context L and some A-context A, s′′ is a free variable, an abstraction or an application iff
T is a free variable, an abstraction or an application, respectively, and the position p of the
hole in R is also the position of the hole in A[·].

Proof. The tree T may be an abstraction, an application, or a free variable in R[T]. Let p
be the position of the hole of R. We will show by induction on the label-computation for p

in s that there is a reduction s
name,(lapp)∨(cp),∗
−−−−−−−−−−−−→ s′, where s′ as claimed in the lemma.

We consider the label-computation for p to explain the induction measure, where we use
the rule numbers of Definition 4.2. Let q be such that the label computation for p is of the
form 4∗q and q does not start with 4. The measure for induction is a tuple (a, b), where a
is the length of q, and b ≥ 0 is the maximal number with q = 2bq′. The base case is (a, a):
Then the label computation is of the form 2∗ and indicates that s is of the form L[A[s′′]]
and satisfies the claim of the lemma. For the induction step we have to check several cases:

(1) The label computation is of the form 4∗2+4 Then a normal-order (lapp) can
be applied to s resulting in s1. The label-computation for p w.r.t. s1 is of the
same length, and only applications of 2 and 4 are interchanged, hence the second
component of the measure is strictly decreased.

(2) The label computation is of the form 4∗2∗5 Then a normal-order (cp) can be
applied to s resulting in s1. The length q is strictly decreased by 1, and perhaps
one 6.-step is changed into a 5.-step. Hence the measure is strictly reduced.

Lemma 4.7. Let s be an expression with IT (s)
tree
−−→ T. Then there is some s′ with

s
name,∗
−−−−→ s′ and IT (s ′) = T.

Proof. If IT (s)
tree
−−→ T , then IT (s) = R[(λx .t1) t2] where R is a reduction context and

T = R[t1[t2/x]]. Let p be the position of the hole ofR in IT (s). We first apply Lemma 4.6 to

s and the tree context R[([·] t2)] and thus obtain a reduction s
name,∗
−−−−→ s′, such that IT (s) =

IT (s ′) and s′ = R[r] where R = L[A[·]] is a reduction context and IT (L[r]) = (λx .t1), and

304 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

r is an abstraction. It is obvious that IT (s ′)|p.2 = t2 and that R = L[A′[[·] r2]]. Thus

s′ = L[A′[((λx.r1) r2)]]
name,beta
−−−−−−→ L[A′[r1[r2/x]] = s′′. Now one can verify that IT (s ′′) = T

must hold.

Proposition 4.8. Let s be an expression with IT (s)↓tree . Then s↓name .

Proof. We use induction on the length k of a tree reduction IT (s)
tree,k
−−−→ T , where T is

a value tree. For the base case it is easy to verify that if IT (s) is a value tree, then

s
name,cp,∗
−−−−−−→ L[λx.s′] for some L-context and some s′. I.e. s ↓name . The induction step

follows by Lemma 4.7.

Corollary 4.9. For all Lname-expressions s: s↓name if, and only if IT (s)↓tree .

Theorem 4.10. ≤name = ≤need

Proof. We have shown that Lname -convergence is equivalent to infinite tree convergence.
In [SS07] it was shown that Lneed -convergence is equivalent to infinite tree convergence.
Hence, Lname -convergence and Lneed -convergence are equivalent, which also implies that
both contextual preorders and also the contextual equivalences are identical.

Corollary 4.11. W is convergence equivalent and fully abstract.

5. Translation N : Lname → Llazy

We use multi-fixpoint combinators as defined in [Gol05] to translate letrec-expressions
into equivalent ones without a letrec. The translated expressions belong to Llazy .

Definition 5.1. Given n > 1, a family of n fixpoint combinators Y n
i for i = 1, . . . , n can

be defined as follows:

Y n
i := λf1, . . . , fn.((λx1, . . . , xn.fi (x1 x1 . . . xn) . . . (xn x1 . . . xn))

(λx1, . . . , xn.f1 (x1 x1 . . . xn) . . . (xn x1 . . . xn))
. . .
(λx1, . . . , xn.fn (x1 x1 . . . xn) . . . (xn x1 . . . xn)))

The idea of the translation is to replace (letrec x1 = s1, . . . , xn = sn in r) by
r[S1/x1, . . . , Sn/xn] where Si := Y n

i F1 . . . Fn and Fi := λx1, . . . , xn.si.
In this way the fixpoint combinators implement the generalized fixpoint property:

Y n
i F1 . . . Fn ∼ Fi (Y n

1 F1 . . . Fn) . . . (Y
n
n F1 . . . Fn). However, our translation uses modi-

fied expressions, as shown below.
Consider the expression Y n

i F1 . . . Fn. Expanding the notations,
we get ((λf1, . . . , fn.(Xi X1 . . . Xn)) F1 . . . Fn) where Xi =
λx1 . . . xn.(fi (x1 x1 . . . xn) . . . (xn x1 . . . xn)). Reducing further:

(λf1, . . . , fn.(Xi X1 . . . Xn)) F1 . . . Fn
β,∗
−−→ (X ′

i X
′
1 . . . X ′

n),
where X ′

i = λx1 . . . xn.(Fi (x1 x1 . . . xn) . . . (xn x1 . . . xn))

We take the latter expression as the definition of the multi-fixpoint translation, where
we avoid substitutions and instead generate β-redexes.

Definition 5.2. The translation N :: Lname → Llazy is recursively defined as:

SIMULATION IN THE CALL-BY-NEED LAMBDA-CALCULUS WITH LETREC 305

• N(letrec x1 = s1, . . . , xn = sn in r) = ((λx1. . . . xn.(N(r))) U1 . . . Un)

where Ui = (λx1, . . . , xn.xi x1 . . . xn) X
′
1 . . . X ′

n,
X ′

i = λx1 . . . xn.Fi(x1x1 . . . xn) . . . (xnx1 . . . xn),
Fi = λx1, . . . , xn.N(si).

• N(s1 s2) = (N(s1) N(s2))
• N(λx.s) = λx.N(s)
• N(x) = x.

We extend N to contexts by treating the hole as a constant, i.e. N([·]) = [·].

Convergence equivalence of the translation N follows by inspecting the relation between
Lname - and the translated Llazy -reductions. The full proof can be found in [SS10]

Proposition 5.3. N is convergence equivalent, i.e. ∀t ∈ Lname : t↓name ⇐⇒ N(t)↓lazy .

Lemma 5.4. The translation N is compositional, i.e. for all expressions t and all contexts
C: N(C[t]) = N(C)[N(t)].

Proof. This easily follows by structural induction on the definition.

Proposition 5.5. For all s, t ∈ Lname : N(s) ≤lazy N(t) =⇒ s ≤name t, i.e. N is adequate.

Proof. Since N is convergence equivalent (Proposition 5.3) and compositional by Lemma
5.4, we derive that N is adequate (see [SS08b] and Section 2).

Lemma 5.6. For letrec-free expressions s, t of Lname the following holds: s, t ∈ Llazy and
s ≤name t =⇒ s ≤lazy t.

Proof. Clearly every letrec-free expression of Lname is also an Llazy expression. Let s, t
be letrec-free such that s ≤name t. Let C be an Llazy -context such that C[s]↓lazy , i.e.

C[s]
lazy,k
−−−→ λx.s′. By comparing the reduction strategies in Lname and Llazy , we obtain that

C[s]
name,k
−−−−→ λx.s′ (by the identical reduction sequence), since C[s] is letrec-free. Thus,

C[s]↓name and also C[t]↓name , i.e. there is a normal order reduction in Lname for C[t] to
a WHNF. Since C[t] is letrec-free, we can perform the identical reduction in Llazy and
obtain C[t]↓lazy .

The language Llazy is embedded into Lname (and also Lneed) by the identity embedding
ι(s) = s. In the following proposition we show that every Lneed -WHNF (and also every
Lname -WHNF) is contextually equivalent to an abstraction:

Proposition 5.7. For all s ∈ Lname : s ∼name ι(N(s)). If s is an Lneed -WHNF and
N(s)↓lazyv where v is an abstraction, then s ∼need ι(v).

Proof. We first show that for all expressions s ∈ Lname : s ∼name ι(N(s)). Since N is
the identity mapping on letrec-free expressions of Lname and N(s) is letrec-free, we
have N(ι(N(s))) = N(s). Hence adequacy of N (Proposition 5.5) implies s ∼name ι(N(s)).
Theorem 3.8 shows N(s) ∼lazy v and Proposition 5.5 show that ι(v) ∼name ι(N(s)) ∼name s.
Finally, Theorem 4.10 shows the claim.

Proposition 5.8. For all s, t ∈ Lname : s ≤name t =⇒ N(s) ≤lazy N(t).

Proof. For this proof we treat Llazy expressions as Lname expressions. Let s, t ∈ Lname and
s ≤name t. By Proposition 5.7: N(s) ∼name s ≤name t ∼name N(t) and thus N(s) ≤name

N(t). Since N(s) and N(t) are letrec-free, we can apply Lemma 5.6 and thus have
N(s) ≤lazy N(t).

306 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

Now we put all parts together, where (N ◦W)(s) means N(W (s)):

Theorem 5.9. N and N ◦ W are fully-abstract, i.e. for all Lneed -expressions s, t:
s ≤need t ⇐⇒ N(W (s)) ≤lazy N(W (t)).

6. On Simulation in Lneed

First we show that finite simulation (see [SS08a]) is correct for Lneed :

Proposition 6.1. Let s, t be closed expressions in Lneed . The following holds:
(

For all

closed abstractions r and for r = Ω: s r ≤need t r
)

⇐⇒ s ≤need t.

Proof. The ⇐ direction is trivial. We show the nontrivial part. Assume that for all closed
abstractions r and for r = Ω: s r ≤need t r. Then we transfer the problem to Llazy as follows:
N(s) and N(t) are closed expressions in Llazy . Since the translation N is surjective, every
closed Llazy -expression is in the image of N . Thus for every closed Llazy -expression r′ that
is an abstraction or Ω, there is some Lneed -expression r, such that N(r) = r′. We have
N(s) r′↓ =⇒ N(t) r′↓, since N(s r) = (N(s) N(r)), and since N is fully abstract. We can
apply Proposition 3.10 and obtain N(s) ≤lazy N(t). Now Theorem 5.9 shows s ≤need t.

Now we show that the co-inductive definition of an applicative simulation results in a
relation equivalent to contextual preorder. We show the following helpful lemma:

Lemma 6.2. For all closed expressions s and r and Lneed -WHNFs w: (s r)↓w ⇐⇒ ∃v :
s↓v ∧ (v r)↓w.

Proof. In order to prove “⇒” let (s r)↓w. There are two cases, which can be verified

by induction on the length k of a reduction sequence (s r)
need ,k
−−−−→ w: (s r)

need ,∗
−−−−→

((λx.s′) r)
need ,∗
−−−−→ w, where s

need ,∗
−−−−→ (λx.s′), and the claim holds. The other case is

(s r)
need ,∗
−−−−→ (letrec Env in ((λx.s′) r))

need ,∗
−−−−→ w, where s

need ,∗
−−−−→ (letrec Env in (λx.s′)).

In this case ((letrec Env in (λx.s′)) r)
need ,(lapp)
−−−−−−−→ (letrec Env in ((λx.s′) r))

need ,∗
−−−−→ w,

and thus the claim is proven. The “⇐”-direction can be proven in a similar way using
induction on the length of reduction sequences.

Definition 6.3. We define in Lneed a simulation ≤b,need as follows:
Let s, t be closed expressions and η be a binary relation on closed expressions. Then
s [η]need t holds iff s↓needv implies that t↓needw, and for all closed letrec-free abstractions r
and for r = Ω: (v r) η (w r).

The relation ≤b,need is defined to be the greatest fixpoint of [·]need within binary relations
on closed expressions. Its open extension is denoted with ≤o

b,need .

Proposition 6.4. In Lneed , for closed s, t the statement s ≤b,need t is equivalent to the
following condition for s, t:
∀n ≥ 0, and for all ri, i = 1, . . . , n that may be closed letrec-free abstractions or Ω:
(s r1 . . . rn)↓need =⇒ (t r1 . . . rn)↓need .

Proof. This follows from Lemma 6.2. The complete proof can be found in [SS10].

SIMULATION IN THE CALL-BY-NEED LAMBDA-CALCULUS WITH LETREC 307

Now we can prove that the simulation relation ≤b,need is equivalent to the contextual
preorder on closed expressions:

Theorem 6.5. For closed expressions s, t: s ≤b,need t ⇐⇒ s ≤need t.

Proof. Let ≤need ,0 the restriction of ≤need to closed expressions. It is easy to verify that
≤need ,0 ⊆ [≤need ,0]need and thus for closed expressions s, t: s ≤need t =⇒ s ≤b,need t.
For the other direction let s ≤b,need t. The criterion in Proposition 6.4 then implies
that for all n ≥ 0 : s r1 . . . rn ↓need =⇒ t r1 . . . rn ↓need , where ri are closed
letrec-free abstractions or Ω. Full-abstraction of N ◦ W (see Theorem 5.9) implies that
N(W (s r1 . . . rn)) ↓lazy =⇒ N(W (t r1 . . . rn)) ↓lazy . Since N and W translate applica-
tions into applications, this also shows that N(W (s)) N(W (r1)) . . . N(W (rn)) ↓lazy =⇒
N(W (t)) N(W (r1)) . . . N(W (rn)) ↓lazy . Moreover, since every Llazy -abstractions is an
N ◦W -image of a letrec-free abstraction, we also conclude that N(W (s)) ≤b,lazy,3 N(W (t)).
Now Theorem 3.7 and full abstraction of N ◦W finally show s ≤need t.

Using the characterization in Proposition 6.4, it is possible to prove non-trivial equa-
tions, as shown in the example below.

Example 6.6. We consider two fixpoint combinators Y1 and Y2, where Y1 is
defined non-recursively, while Y2 uses recursion. The definitions are: Y1 :=
λf.((λx.f (x x))(λx.f (x x))), Y2 := letrec fix = λf .f (fix f) in fix .

Using Proposition 6.4 we can easily derive that Y1 K ∼need Y2 K where K := λa.(λb.a).
This follows since (Y1 K r1 . . . rn) converges for all n. The obtained WHNF is equivalent
(some letrec-bindings are garbage collected, and some variable-to-variable chains are elim-
inated) to (letrec w = (x x), k = (λa.(λb.a)), x = (λy.(k(yy))) in λu.w). Normal-order
reduction of (Y2 K r1 . . . rn) also always converges, where the WHNF is equivalent to the
expression (letrec w = (fix k),fix = (λf .(f (fix f))), k = (λa.(λb.a)) in (λu.w)). Thus
Y1 K ∼need Y2 K and both expressions are greatest elements w.r.t. ≤need .

For open expressions, we can lift the properties from Llazy , which also follows from full
abstraction of N ◦W and from Lemma 3.9.

Lemma 6.7. Let s, t be any expressions, and let the free variables of s, t be in {x1, . . . , xn}.
Then s ≤need t ⇐⇒ λx1, . . . , xn.s ≤need λx1, . . . , xn.t

The results above imply the following theorem:

Main Theorem 6.8. ≤need = ≤o
b,need .

The main theorem implies that our embedding of the call-by-need letrec calculus into
Abramsky’s lazy lambda calculus is isomorphic w.r.t. the corresponding term models, i.e.:

Theorem 6.9. The identical embedding ι : Elazy → Eneed leads to an isomorphism between
the term-models: Let the preorder, the quotients modulo ∼lazy and ∼need , and the lifting of

ι be marked with an overbar. Then ι : Elazy → Eneed is a bijection, and for all s1, s2 ∈ Elazy :
s1 ≤lazy s2 ⇐⇒ ι(s1) ≤need ι(s2).

308 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

7. The Call-by-Need Lambda Calculus of Ariola & Felleisen

For the sake of completeness we show that our results are transferable to the call-by-
need lambda calculus with letrec of [Ari97]. The syntax is identical to the calculus Lneed ,
but the standard reduction strategy of [Ari97] differs from our normal order reduction. In
particular [Ari97] do not provide a standard reduction strategy but an equational system
from which we will derive a standard reduction.

We will show that the normal order reduction and the standard reduction corresponding
to the equational system of [Ari97] are interchangeable and thus define the same notion of
contextual equivalence. As a further result we show that bisimilarity can also be based on
the strategy according to [Ari97] and coincides with contextual equivalence.

We recall the standard reduction strategy of [Ari97]. We will denote the notions related
to Ariola & Felleisen’s calculus with a prefix or mark “AF”, if necessary. First we introduce
AF-evaluation contexts RAF that play a role similar to our reduction contexts:

RAF ::= [·] | (RAF s) | letrec Env in RAF | letrec Env , x = RAF in RAF [x]
| letrec x1 = RAF , x2 = RAF [x1], . . . xn = RAF [xn−1],Env in RAF [xn]

In Figure 3 the standard reductions (abbreviated as AF-reduction) of [Ari97, Section 8]
are shown where L is an L-context as introduced in Sect. 3.2 and RAF,i, R

′
AF , R

′′
AF are

RAF -contexts. The calculus of [Ari97] uses the notion of a black hole which represents a
cyclic dependency of the form letrec x1 = RAF [xn], x2 = RAF [x1], . . . xn = RAF [x1]. In
contrast to [Ari97], we do not consider a black hole to be an answer and therefore do not
copy it in (deref) rules. This reflects the authors’ intention, as shown by a similar copy
restriction in [Ari94].

(βneed) RAF [(λx.s) r] → RAF [(letrec x = r in s)]
(lift) RAF [(letrec Env in L[λx.s]) r] → RAF [letrec Env in (L[λx.s] r)]
(deref) RAF,1[letrec Env , x = λy.s in RAF,2[x]]

→ RAF,1[letrec Env , x = λy.s in RAF,2[λy.s]]
(derefenv) R

′
AF [letrec x1 = λy.s, x2 = RAF,2[x1], . . . , xn = RAF,n[xn−1],Env in R′′

AF [xn]]
→ R′

AF [letrec x1 = λy.s,
x2 = RAF,2[λy.s], . . . , xn = RAF,n[xn−1],Env in R′′

AF [xn]]
(assoc) RAF,1[letrec Env1, x = (letrec Env2 in L[λx.s]) in RAF,2[x]]

→ RAF,1[letrec Env1,Env2, x = L[λx.s] in RAF,2[x]]
(assocenv)R

′
AF [letrec x1 = (letrec Env2 in L[λx.s]),

x2 = RAF,2[x1], . . . , xn = RAF,n[xn−1],Env1 in R′′
AF [xn]]

→ R′
AF [letrec Env2, x1 = L[λx.s],

x2 = RAF,2[x1], . . . , xn = RAF,n[xn−1],Env1 in R′′
AF [xn]]

Figure 3: Reduction rules defining
AF
−−→

AF-answers are terms of the form L[λx.s]. We write s
AF
−−→ t, iff s is transformed

into t by one of the rules in Fig. 3. If s
AF,∗
−−−→ v where v an AF-answer, then we write

s ↓AF v or s ↓AF , resp. if the answer v is not of interest. For the corresponding contextual
approximation and equivalence we use ≤AF and ∼AF as symbols.

Compared to the reduction strategy in Lneed , the AF-reduction performs the let-
shiftings (lapp), (llet-in), (llet-e) as late as possible. A difference from Lneed is that

SIMULATION IN THE CALL-BY-NEED LAMBDA-CALCULUS WITH LETREC 309

sometimes reduction steps must be performed in deeply nested lets. For instance, in
letrec x = (letrec y = λz.z in (λu.z)(λuu)) in x the Lneed reduction will apply (llet-e)
immediately, whereas AF will reduce (λu.z)(λuu) first, and only then apply (assoc).

In [SS10] we prove:

Theorem 7.1. ↓need = ↓AF , ≤need = ≤AF and ∼need = ∼AF .

Definition 7.2 (AF-simulation). Let s, t be closed expressions and η be a binary relation
on closed expressions. Then s [η]AF t holds iff s↓AF v implies that t↓AFw, where v and w
are answers, and for all closed letrec-free abstractions r and for r = Ω: (v r) η (w r). The
relation ≤b,AF is defined to be the greatest fixpoint of [·]AF within the binary relations on
closed expressions. Its open extension is denoted with ≤o

b,AF .

It remains to show that ≤o
b,AF = ≤AF . As a first step we derive an alternative charac-

terization of ≤b,AF . The proof can be found in [SS10].

Proposition 7.3. For closed s, t ∈ Lneed the relation s ≤b,AF t is equivalent to: ∀n ≥ 0,
and for all ri, i = 1, . . . , n that may be letrec-free abstractions or Ω: (s r1 . . . rn)↓AF =⇒
(t r1 . . . rn)↓AF .

Proposition 7.4. ≤b,need = ≤b,AF

Proof. Since ↓need = ↓AF the previous proposition and Proposition 6.4 show the claim.

From Theorem 6.5 we already know that ≤b,need is equivalent to ≤need on closed ex-
pressions. Thus ≤b,AF is identical to ≤need on closed expressions. This easily extends to
the open extension of ≤b,AF . Thus we have:

Theorem 7.5. ≤AF = ≤o
b,AF

8. Conclusion

In this paper we show that co-inductive bisimulation, in the style of Howe, is equivalent
to contextual equivalence in a deterministic call-by-need calculus with letrec (i.e. let with
cyclic bindings). As a further work one may extend the proof to a call-by-need letrec cal-
culus with case, constructors, and seq, but not to non-determinism, since counterexamples
exist that show that contextual equivalence cannot be characterized by the usual notion of
bisimulation.

Acknowledgement

The authors thank the anonymous reviewers for their valuable comments.

310 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

References

[Abr90] S. Abramsky. The lazy lambda calculus. In D. A. Turner (ed.), Research Topics in Functional

Programming, pp. 65–116. Addison-Wesley, 1990.

[Abr93] S. Abramsky and C.-H. Luke Ong. Full abstraction in the lazy lambda calculus. Inf. Comput.,

105(2):159–267, 1993.

[Ari94] Z. M. Ariola and J. W. Klop. Cyclic Lambda Graph Rewriting. In Proc. IEEE LICS, pp. 416–425.

IEEE Press, 1994.

[Ari95] Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. A call-by-need lambda calculus.

In POPL’95, pp. 233–246. ACM Press, San Francisco, California, 1995.

[Ari97] Z. M. Ariola and M Felleisen. The call-by-need lambda calculus. J. Funct. Programming, 7(3):265–

301, 1997.

[Ari02] Z. M. Ariola and S. Blom. Skew confluence and the lambda calculus with letrec. Annals of Pure

and Applied Logic, 117:95–168, 2002.

[Bar84] H. P. Barendregt. The Lambda Calculus. Its Syntax and Semantics. North-Holland, Amsterdam,

New York, 1984.

[Fel91] M. Felleisen. On the expressive power of programming languages. Science of Computer Program-

ming, 17(1–3):35–75, 1991.

[Gol05] M. Goldberg. A variadic extension of Curry’s fixed-point combinator. Higher-Order and Symbolic

Computation, 18(3-4):371–388, 2005.

[How89] D. Howe. Equality in lazy computation systems. In Proc. IEEE LICS, pp. 198–203. 1989.

[How96] D. Howe. Proving congruence of bisimulation in functional programming languages. Inform. and

Comput., 124(2):103–112, 1996.

[Jef94] A. Jeffrey. A fully abstract semantics for concurrent graph reduction. In Proc. IEEE LICS, pp.

82–91. 1994.

[Man10] M. Mann and M. Schmidt-Schauß. Similarity implies equivalence in a class of non-deterministic

call-by-need lambda calculi. Information and Computation, 208(3):276 – 291, 2010.

[Mar98] J. Maraist, M. Odersky, and P. Wadler. The call-by-need lambda calculus. J. Funct. Programming,

8:275–317, 1998.

[SS07] M. Schmidt-Schauß. Correctness of copy in calculi with letrec. In Term Rewriting and Applications

(RTA-18), LNCS, vol. 4533, pp. 329–343. Springer, 2007.

[SS08a] M. Schmidt-Schauß and E. Machkasova. A finite simulation method in a non-deterministic call-

by-need calculus with letrec, constructors and case. In Proc. of RTA 2008, no. 5117 in LNCS, pp.

321–335. Springer-Verlag, 2008.

[SS08b] M. Schmidt-Schauß, J. Niehren, J. Schwinghammer, and D. Sabel. Adequacy of compositional

translations for observational semantics. In 5th IFIP TCS 2008, IFIP, vol. 273, pp. 521–535.

Springer, 2008.

[SS09a] M. Schmidt-Schauß, E. Machkasova, and D. Sabel. Counterexamples to simulation in non-

deterministic call-by-need lambda-calculi with letrec. Frank report 38, Inst. f. Informatik, Goethe-

University, Frankfurt, 2009.

[SS09b] M. Schmidt-Schauß, J. Niehren, J. Schwinghammer, and D. Sabel. Adequacy of compositional

translations for observational semantics. Frank report 33, Inst. f. Informatik, Goethe-University,

Frankfurt, 2009.

[SS10] M. Schmidt-Schauß, D. Sabel, and E. Machkasova. Simulation in the call-by-need lambda-calculus

with letrec. Frank report 40, Inst. f. Informatik, Goethe-University, Frankfurt, 2010.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 311-324
http://rewriting.loria.fr/rta/

WEAK CONVERGENCE AND UNIFORM NORMALIZATION IN

INFINITARY REWRITING

JAKOB GRUE SIMONSEN

Department of Computer Science, University of Copenhagen (DIKU)

Universitetsparken 1, DK-2100 Copenhagen Ø, Denmark

E-mail address: simonsen@diku.dk

Abstract. We study infinitary term rewriting systems containing finitely many rules.

For these, we show that if a weakly convergent reduction is not strongly convergent, it

contains a term that reduces to itself in one step (but the step itself need not be part of the

reduction). Using this result, we prove the starkly surprising result that for any orthogonal

system with finitely many rules, the system is weakly normalizing under weak convergence

iff it is strongly normalizing under weak convergence iff it is weakly normalizing under

strong convergence iff it is strongly normalizing under strong convergence.

As further corollaries, we derive a number of new results for weakly convergent rewrit-

ing: Systems with finitely many rules enjoy unique normal forms, and acyclic orthogonal

systems are confluent. Our results suggest that it may be possible to recover some of the

positive results for strongly convergent rewriting in the setting of weak convergence, if sys-

tems with finitely many rules are considered. Finally, we give a number of counterexamples

showing failure of most of the results when infinite sets of rules are allowed.

1. Introduction

In term rewriting, weak normalization is the property that every term has a normal
form (“there exists at least one reduction to normal form”), whereas strong normalization,
also called termination, is the property that every reduction from every term is finite (“all
reductions will eventually lead to a normal form”). For some subclasses of term rewriting
systems (TRSs), it is known that the property of uniform normalization holds: A system is
weakly normalizing iff it is strongly normalizing. This property holds, for example, for the
class of orthogonal, non-erasing systems, that is, every variable occurring in the left-hand
side of a rule must also occur on the right-hand side of that rule [18].

In the elegant paper [19], Klop and de Vrijer argue that when lifting the concepts of
weak and strong normalization to infinitary rewriting, only weak normalization should be
lifted in the obvious way: From every term, there is a, possibly infinite, reduction to normal
form. But strong normalization should be treated differently. In the infinitary setting,
strong normalization should instead be the property that every well-behaved reduction is
convergent : Every possible infinite reduction satisfying some very basic integrity constraints

1998 ACM Subject Classification: F.4.1, F.4.2.

Key words and phrases: Infinitary rewriting, weak convergence, uniform normalization.

c© J.G. Simonsen
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.311

312 J.G. SIMONSEN

should have a well-defined limit to which it converges, regardless of whether that limit is a
normal form.

Klop and de Vrijer prove the following remarkable result:

Theorem 1.1 (Klop, de Vrijer [19]). For any orthogonal iTRS R: All strongly continuous
reductions can be extended to strongly convergent reductions (“R is strongly normalizing”)
iff every term of R reduces to a normal form by a strongly convergent reduction (“R is
weakly normalizing”).

Thus, the theorem states that strong and weak normalization coincide in the setting of
strongly convergent reductions.

Strong convergence means that not only do reductions converge in the complete metric
space of (potentially infinite) trees [1, 3] (called weak convergence), but the number of
rewrite steps occurring at each finite depth is finite along any reduction. While weak
convergence was the first notion of infinitary rewriting studied [4], it has by now been
established that weak convergence in general does not have the desirable properties normally
true for syntactically well-behaved (that is, orthogonal) rewriting systems[25] while strong
convergence does [11, 9].

As a contribution towards showing positive results for weak convergence, we will show
that the equivalence in Theorem 1.1 may be extended to hold in the setting of weakly
convergent rewriting with the proviso that we only consider systems with a finite number of
rules. This should be contrasted with the counterexamples given in [25] that relied crucially
on systems with an infinite number of rules.

The key to our results is a characterization of the difference between weakly and strongly
convergent rewriting: If there exists a weakly convergent reduction s → t1 → t2 → · · · t that
is not also strongly convergent, there will be some—possibly infinite—term t′ occurring in
s → t1 → t2 → · · · t such that t′ → t′. That is, the rewrite system admits a cycle of length
1.

The observation that the existence of cycles of lengths 1 is the crucial difference between
strong and weak convergence is the focal point of the paper and will furnish a small host of
derivative results. The core results of the paper are Theorems 3.16 and 4.1; these contain
the main (and somewhat surprising) equivalence results, in particular the latter contains
the result that strong and weak normalization in weak and strong convergence all coincide
for systems with a finite number of rules.

Another interesting new result derived from the above concerns confluence in weakly
convergent rewriting: If an orthogonal system with a finite number of rules is acyclic, it will
also be confluent. We believe this to be one of the first general and non-trivial confluence
results in weakly convergent rewriting.

A remark on concessions to readability

The author has made a concession to readability in this paper, at the expense of further
generality: All of the results are proven for (first-order) infinitary term rewriting systems
(iTRSs). Bar the explicit counterexamples we give, none of our proofs rely on the first-
order nature of these systems. The results of this paper also hold true for both infinitary
lambda calculus [10] and for infinitary combinatory reduction systems (iCRSs) [14, 15], as
the reasoning employed in our proofs essentially only uses the machinery of metric spaces
and the abstract notion of depth in the distinction between weak and strong convergence.

WEAK CONVERGENCE AND UNIFORM NORMALIZATION 313

The author believes that an abstract account of all our results can be given in the topological
setting of Kahrs’ work on meta-theory for infinitary rewriting [6], but we feel that a very
concrete “syntactical” account such as we give may reach a wider audience.

1.1. Related work

Uniform normalization has been studied in various forms of finitary rewriting, including
first-order term rewriting [23, 17], lambda calculus [26, 22] and higher-order rewriting [16].

The original study on weakly convergent rewriting [4] provided a number of results re-
lated to normalization. Many of these results concern top-termination, a concept equivalent
to strong normalization in the setting of strongly convergent reductions, and most of the
results thus also hold for the latter, but have been subsumed by later work in that setting.
In addition, the definition of “normal form” in [4] concerns infinite terms s with the prop-
erty that the only possible reduct of s is s. This is in contrast to this and most other papers
where infinite normal forms are terms that allow no rewrite steps starting from them.

Klop and de Vrijer were the first to extend the study of uniform normalization to the
infinitary setting [19]; they prove Theorem 1.1 and several other interesting results, but do
not consider weak convergence.

Ketema extends Theorem 1.1 and several other results of [19] to higher-order infinitary
rewriting in the setting of strong convergence [13].

Lucas proves several results related to normalization and confluence in weakly conver-
gent rewriting [21]; all those results concern constructor systems.

Zantema considers strong normalization in a general setting allowing infinite left-hand
sides in rules [27]. He characterizes the property of every reduction being strongly con-
vergent using a novel variation of monotone algebras and shows applicability of a simple
generalization of termination-by-matrix-analysis from the finitary setting to the setting of
strongly convergent infinitary rewriting. It has later been pointed out that Zantema’s results
hold for reductions of length ≤ ω, and that continuous algebras are needed for reductions
of greater ordinal length [5]. Weak convergence is not considered in these papers.

Kahrs has taken the first steps in establishing a working theory of general infinitary
rewriting that in particular tackles the inherent difficulties of weakly convergent rewriting
[6, 7]. He considers modularity of strong normalization in [7], but not the equivalence of
strong and weak convergence.

Rodenburg defines infinite reduction sequences over terms with symbols having infinite
arities, but his terms are built by induction over such function symbols, hence have only
finite depth [24]. It is not hard to see that every infinitary term rewriting system in the
sense of the present paper (finite arities, but a liberal notion of convergence) can be sim-
ulated by one of Rodenburg’s systems if the latter is allowed to have an infinite number
of function symbols and rules. Unfortunately, this is the case even if the original system
has only a finite number of symbols and rules, the most pertinent restriction in the present
paper. Furthermore, even though Rodenburg’s reductions correspond to weakly convergent
reductions, his main results concern termination and a generalization of Newman’s lemma
for systems with a complexity measure satisfying certain properties (socalled weakly and
strongly descending systems). These properties do not seem to be satisfied by a sufficiently
large class of systems, and we hence feel that a technical exposition involving translation
to his systems would not be fruitful in our setting.

314 J.G. SIMONSEN

Finally, the author of the present paper shows that most of the usual methods for
procuring nice-to-have properties of orthogonal systems do not hold in the setting of weak
convergence [25]. In particular, confluence of (even non-collapsing) orthogonal systems does
not hold when an infinite number of rules is allowed.

2. Preliminaries on infinitary term rewriting

Throughout the paper, we presuppose a working knowledge of ordinals [20]; the least
infinite ordinal is denoted by ω, the least uncountable ordinal by Ω. The general theory for
infinitary rewriting is laid out for weak convergence in [4] and for strong convergence in [9].
We give the briefest of definitions below to keep the paper self-contained.

Definition 2.1. Assume a denumerably infinite set V of variables and a first-order signature
Σ of function symbols. The set of (finite) terms over Σ with variable set V , denoted
Ter(Σ, V), is defined inductively as follows: (i) every x ∈ V is a term, (ii) if f ∈ Σ is an n-
ary function symbol and s1, . . . , sn are terms, then f(s1, . . . , sn) are terms. A position is any
finite sequence of positive integers. Given a term s, the set of positions of s is the least set
of positions such that (i) the empty string ǫ is a position, and (ii) if s = f(t1, . . . , ti, . . . , tm)
and p is a position of term ti, then i · p is a position of s and we say that ti is the subterm
of s at position i · p, writing s|i·p = ti. The length of a position is denoted |p|. The depth
of a finite term s is the length of the longest position in s.

Definition 2.2. The term metric is the metric on Ter(Σ, V) defined by d(s, t) = 0 if s = t
and if s 6= t by d(s, t) = 2−k where k is the length of the shortest position at which s and t
differ. The set of finite and infinite terms, denoted Ter∞(Σ, V) is the metric completion of
Ter(Σ, V) with respect to the metric d—that is, the set obtained by augmenting Ter(Σ, V)
by the set of all limits of Cauchy sequences of elements of Ter(Σ, V). An infinitary term
rewriting system (iTRS) (over Ter∞(Σ, V)) is a set R of pairs (l, r), written l → r where
(i) l ∈ Ter(Σ, R) \ V , (ii) r ∈ Ter∞(Σ, V), and (iii) all variables in r occur in l. The pairs
l → r are called rules. A rule is collapsing if r ∈ V .

Thus, if Σ = {f, g} where f and g a binary and unary symbols respectively, then
s = f(g(x), s) = f(g(x), f(g(x), f(g(x), . . .) is an infinite term (it is the limit of the Cauchy
sequence f(g(x), y), f(g(x), f(g(x), y)), f(g(x), f(g(x), f(g(x), y))),

Observe that left-hand sides of rules are finite, but right-hand sides may be infinite. This
is a standard technical convenience that also serves to retain decidability of applicability of
a given rewrite rule at a given position in a term1.

Definition 2.3. A substitution is a map θ : V −→ Ter∞(Σ, V) (where θ is usually specified
only on a finite subset of V). Any substitution can be extended to a map θ : Ter∞(Σ, V) −→
Ter∞(Σ, V) by setting θ(f(s1, . . . , sn)) = f(θ(s1), . . . , θ(sn)) for all n-ary function symbols
f ∈ Σ. A one-hole context is a term over Ter∞(Σ, V ∪ �) with exactly one occurrence of
�. Let t be any term, and σ be the substitution {� 7→ t}; we write s = C[t] if s = σ(C[]) A
rewrite step of rule l → r is a pair C[θ(l)] → C[θ(r)] where θ is a substitution. The rewrite
step occurs at position p (and at depth |p|) if p is the position of � in C[].

Thus, if R = {f(x) → g(x, a)}, then f(f(a)) → f(g(a, a)) is a rewrite step at position
1 (and at depth 1).

1Note that left-linearity is also required for decidability for iTRSs. Both left-linearity and fully-

extendedness are required for decidability in iCRSs.

WEAK CONVERGENCE AND UNIFORM NORMALIZATION 315

Definition 2.4. An iTRS R is said to be left-linear if, for all of its rules l → r, every
variable x occurs at most once in l. R is said to be orthogonal if it is left-linear, and for all
pairs of rules (l1 → r1, l2 → r2), the following holds: If there is a context C[] with the hole
at position p and substitutions σ, θ such that σ(l1) = C[θ(l2)], then either (i) a variable in
l1 is at a prefix position of p, or (ii) p = ǫ and l1 → r1 = l2 → r2.

Example 2.5. The iTRSs R1 = {f(x, x) → x} and R2 = {f(g(x), a) → a, g(a) → a} are
not orthogonal. The iTRS R3 = {f(g(x), a) → a, f(a, x) → g(x)} is orthogonal.

When C[] is a one-hole context, we usually write Cω for the infinite term C[C[C[· · ·]]].

Definition 2.6. Let α be an ordinal. A transfinite reduction with domain α > 0 is a
sequence of (terms,positions,rules) (sβ , pβ, (l → r)β)β<α such that, for each β + 1 < α we
have sβ → sβ+1 by contraction of a redex of rule l → r at position pβ . The reduction is
open if α is a limit ordinal and closed if α is a successor ordinal. The length of an open
reduction is α, and the length of a closed reduction α− 1.

A transfinite reduction is weakly (also known as Cauchy) continuous if for every limit
ordinal γ < α, it holds that sβ converges to sγ in the metric d as β approaches γ from
below. The reduction is weakly convergent if it is weakly continuous and closed. We write
s ։w t if there is a weakly convergent reduction (sβ)β<α′+1 with s0 = s and t = sα′ .

For every rewrite step sβ → sβ+1 , let dβ denote the depth of the contracted redex.
The reduction is strongly continuous if it is weakly continuous and if, for every limit ordinal
γ < α, the depth dβ tends to infinity as β approaches γ from below. The reduction is
strongly convergent if it is strongly continuous and closed. We write s ։s t if there is a
strongly convergent reduction (sβ)β<α′+1 with s = s0 and t = sα′ .

The requirement that the length, α, of a convergent reduction be a successor ordinal is
to ensure that the limit term of a continuous reduction is included. Most of the literature
on infinitary rewriting has focused on strong convergence as it is the more pliable of the
two notions of convergence under technical manipulation, and as the demand that rewrite
steps eventually occur deeper and deeper corresponds to computational intuition about
manipulation of potentially infinite data structures in finite time.

Definition 2.7. An extension of a reduction S : s0 → s1 → · · · of length α is a reduction
T : t0 → t1 → · · · of length ζ ≥ α such that for all 0 ≤ β + 1 < α, sβ = tβ and the steps
sβ → sβ+1 and tβ → tβ+1 are contractions of redexes at identical positions and of identical
rules (informally: S is a prefix of T).

Example 2.8. Consider the orthogonal iTRS {a(x) → a(b(x))}. The reduction

a(x) → a(b(x)) → a(b(b(x))) → · · · a(bω)

is weakly convergent, but not strongly convergent. Observe that there are no strongly
convergent reductions from a(x) to a(bω).

The reduction

aω → a(b(aω)) → a(b(a(b(aω)))) → · · · a(b(a(b(a(b(· · ·))))))

is strongly convergent, hence also weakly convergent.

Strongly convergent reductions are of countable length:

Proposition 2.9. Every strongly convergent reduction is of countable length.

Proof. See for example [11, Lemma 3.5].

316 J.G. SIMONSEN

Weak convergence: Progressively greater prefixes of terms in the reduction coincide (the
coloured top of each term), but steps (black dots) may occur at any depth at any time.

Strong convergence: Progressively greater prefixes of terms in the reduction coincide and
steps occur at progressively greater depths.

Figure 1: Weak and strong convergence

2.1. Preliminaries on weak and strong normalization

The concept of normal form is lifted to infinitary rewriting in the obvious way:

Definition 2.10. A normal form is a term t such that no rewrite step starts from t.
A term s is normalizing under weak convergence, denoted WN∞

w (s), if there is a normal
form t such that s ։w t. The term s is normalizing under strong convergence, denoted
WN∞(s) if there is a normal form t such that s ։s t.

The iTRS R is normalizing under weak convergence, denoted WN∞
w (R), if every s

satisfies WN∞
w (s), and R is normalizing under strong convergence, denoted WN∞(R), if

every term s satisfies WN∞(s).

It is by now well-established [8, 19, 27, 13] that the proper way to sensibly extend the
notion of strong normalization (“termination”) to infinitary rewriting is to require that every
strongly continuous reduction can be extended to a strongly convergent one (informally:
“If the reduction has well-defined prefixes, then it is convergent”). We follow Ketema [13]
in the wording of the definition below, extending it to strong normalization under weak
convergence in the obvious way.

In the setting of weak convergence, we might define strong normalization analogously,
but this would be a poor choice of nomenclature—it could be that no normalization occurs.
For example, using the rule a → a, the weakly continuous reduction a → a → a → · · ·
of length ω can be extended to a weakly convergent reduction by simply adding a at the
end; but a has no normal form. So, certainly, the ability to extend any weakly continuous
reduction to a weakly convergent one does not imply that a has a normal form. We therefore
prefer to use the term extendable for this property of weakly convergent reductions.

One could argue that there is need for a generalization of the concept of termination for
weakly convergent rewriting; by analogue with termination in finitary rewriting, we have
chosen what we believe to be the most obvious generalization: To extend the definition of
EXT∞

w (R) with the demand that there is a “maximal” length of reductions. As we shall
later see the existence of such an ordinal is equivalent to the assumption that every weakly
convergent reduction is also strongly convergent (as always in this paper, when the system
has a finite number of rules).

WEAK CONVERGENCE AND UNIFORM NORMALIZATION 317

(Finitary) term rewriting Infinitary rewriting (strong
convergence)

Infinitary rewriting (weak con-
vergence)

(Weak) normalization (WN):
Every term has a finite reduc-
tion to normal form

WN∞: Every term has a
strongly convergent reduction
to normal form

WN∞

w : Every term has a
weakly convergent reduction to
normal form

Termination (SN): Every re-
duction is finite

SN∞: Every strongly continu-
ous reduction can be extended
to a strongly convergent reduc-
tion

SN∞

w : Every weakly continu-
ous reduction can be extended
to a weakly convergent reduc-
tion and there is an ordinal
upper bound on the length of
weakly convergent reductions

Table 1: Corresponding notions for normalization in ordinary and infinitary rewriting

Definition 2.11. Term s is said to be extendable under weak convergence, denoted EXT∞
w (s)

if, for every ordinal α, any open, weakly continuous reduction of length α starting from s
can be extended to a weakly convergent reduction. A term s is strongly normalizing under
strong convergence, denoted SN∞(s) if, for every ordinal α, any open, strongly continuous
reduction of length α can be extended to a strongly convergent reduction. The iTRS R
is said to be extendable under weak convergence, denoted EXT∞

w (R),if all of its terms s
satisfy EXT∞

w (s), and strongly normalizing under strong convergence, denoted SN∞(R),
if all of its terms s satisfy SN∞(s). Finally, R is said to be strongly normalizing under weak
convergence, denoted SN∞

w (R) if EXT∞
w (R) and there exists an ordinal α such that every

weakly convergent reduction has length < α.

Our definition of SN∞
w is similar to Rodenburg’s [24]: Namely that each term t has an

upper bound on the length of convergent reductions starting from t (note that Rodenburg’s
notion of term and convergence differs from the one in modern infinitary rewriting). For
iTRSs, the two notions are equivalent: If SN∞

w (R), there is trivially an upper bound on
the length of convergent reductions starting from any term. Conversely, let αt be an upper
bound on the length of convergent reductions starting from term t; as the set of all infinite
terms can be indexed by the least uncountable ordinal, γ = supt αt is an ordinal and is an
upper bound on the length of all convergent reductions, whence SN∞

w (R).

Example 2.12 (Ketema [13]). The iTRS R1 = {a → a} satisfies EXT∞
w (R1) as the only

possible reductions are those starting a → a → · · · , all of which are weakly convergent.
The iTRS R2 = {f(x) → g(f(x))} satisfies both EXT∞

w (R2) and SN∞(R2) as (i)
exactly one new redex is created by contraction of a redex and, (ii) for each depth m, every
term has only a finite number of redexes at depth at most m and the depth of the new
redex created by a contraction is exactly one greater than that of the creating redex, (iii)
the rewrite rule strictly increases the depth of its argument x.

The iTRS R3 = {a → b, b → a} satisfies neither EXT∞
w (R3), nor SN∞(R3), as a →

b → a → b → · · · , and the only convergent reductions starting from a (or b) are finite.

We end this section by noting that in systems with a finite number of rules, normaliza-
tion of individual terms does not depend on the notion of convergence used:

Proposition 2.13. Let R be an orthogonal iTRS consisting of a finite number of rules and
s be a term. If s ։w t where t is a normal form, then s ։s t.

Proof. See e.g. [11, Thm. 9.1].

318 J.G. SIMONSEN

3. Weak, but not strong, convergence entails existence of a cycle of length

1

This section is devoted to proving that every weakly convergent reduction s ։w t that
is not strongly convergent can be written as s ։w t′ ։w t where t′ is a term that reduces
to itself in one step: t′ → t′; i.e., there is a cycle of length 1.

Before outlining the proof idea, we introduce the concept of a cofinal map2.

Definition 3.1. If g : β −→ α, then g is cofinal if, for all γ < α, there exists ζ < β such
that γ < g(ζ).

Definition 3.2. Let S : s ։w sα be a weakly convergent reduction of length α, let α′ ≤ α,
and let g : β −→ α′ be strictly monotonic. The g-pick of S is a sequence (sg(γ))γ∈β where
each sg(γ) occurs in S. We say that the g-pick (sg(γ))γ∈β is induced by g. The g-pick is said
to be cofinal if g is cofinal. We shall occasionally suppress the g and speak merely of a pick.

A pick is not a reduction, nor does it necessarily induce a reduction in any meaningful
sense. Picks are simply a way of “picking out” terms from the reduction S. That the
function g is cofinal means that the terms in the pick occur “densely” before the term sα′ .
For example, if α = ω2 and α′ = ω, the pick induced by g : ω → ω where g(γ) = γ · 2 + 1 is
cofinal.

The idea of the proof of the splitting s ։w t′ ։w t is quite simple: There is a
position p such that only a finite number of steps occur above p in s ։w t and such that
an infinite number of steps occur at p; due to the fact that only a finite number of rules
are present, one rule, l → r, must be used an infinite number of times at p. By taking
the least limit ordinal α′ such that an infinite number of such steps occur before α′, we
employ the fact that the prefix, s ։w t′, of s ։w t of length α′ is weakly continuous to
show that the sequence of subterms at position p converges at α′, and that the subterm t′|p
satisfies t′|p = θ(l) = θ(r) for some substitution θ. The result then follows immediately, as
t′ = t′[θ(l)]p → t′[θ(r)]p = t′[θ(l)]p = t′.

Proposition 3.3. Let R be an iTRS consisting of a finite number of rules, and let S :
s ։w t be a weakly convergent reduction of length α that is not strongly convergent. Then
there is a rule l → r ∈ R, a limit ordinal α′ ≤ α, an ordinal γ < α′, a position p and an
infinite pick (sg(ζ))ζ<β induced by a cofinal g : β → α′ such that:

• For all γ < δ < α′, no step sδ → sδ+1 occurs at a position q < p in S.
• For every ζ < β, the rewrite step sg(ζ) → sg(ζ)+1 occurs at position p and employs
rule l → r.

Proof. As any finite reduction is strongly convergent, we have α ≥ ω. By standard results
(see for example [9, Ex. 12.3.6]), there is a position of minimal depth m in S such that
the number of redex contractions at depth m is infinite, as S would otherwise be strongly
convergent. Observe that as m is minimal among such depths, there is an ordinal γ < α
such that for any γ ≤ δ < α, the rewrite step sδ → sδ+1 does not occur at a position of
length < m.

Let α′ ≤ α be the least limit ordinal such that an infinite number of contractions at
depth m occur in the prefix of s ։w t of length α′. By weak convergence of S, this prefix
converges to some term t′.

2Nomenclature taken from [7]. Cofinality is a standard notion in set theory, see e.g. [20, Ch. 1]; a related

concept from [25] is that of an α
′-frequent property.

WEAK CONVERGENCE AND UNIFORM NORMALIZATION 319

Claim: There is an infinite, cofinal pick induced by a g : β → α′ such that the redex
employed in the step sg(ζ) → sg(ζ)+1 occurs at depth m for every ζ < β.

The claim follows by contradiction: If the claim did not hold, there would be a limit
ordinal α′′ < α′ with an infinite number of contractions at a depth ≤ m, contradicting the
above observations.

As t′ has only a finite number of positions at depth m, there must be a position p with
|p| = m and an infinite cofinal pick induced by g′ : β′ → α′ in which every rewrite step
occurs at p.

As R consists of a finite number of rules and the pick induced by g′ is infinite, the
pigeon-hole principle yields that there is a rule l → r and an infinite pick induced by
g′′ : β′′ → α′ with β′′ ≤ β′ in which every rewrite step occurs at p and is a contraction of a
redex of rule l → r. As α′ was the minimal limit ordinal with an infinite number of steps
at depth m = |p|, the pick induced by g must be cofinal, as desired.

Example 3.4. To illustrate the proof of Proposition 3.3, we give a short example.
Let R be the (non-orthogonal) iTRS consisting of the rules {f(x) → f(g(x)), g(x) →

g(f(x))}, and consider the following reduction S where we have underlined the root symbol
of the contracted redex in each step:

g(x) → g(f(x))
→ g(f(g(x)))
→ g(f(g(f(x))))
→ g(f(g(g(f(x)))))
→ g(f(g(g(g(f(x))))))
→ · · ·
· · · g(f(gω))

where we assume that ω steps are performed. The above reduction is weakly convergent,
but not strongly so. Writing the reduction as g(x) = s0 → s1 → s2 → · · · sω = g(f(gω)),
the step s0 → s1 occurs at position ǫ; for k ≥ 1, the step s2k → s2k+1 occurs at position
1, and the step s2k+1 → s2k+2 occurs at position 1 · 1k. Define g : ω → ω by g(k) = 2k.
Then (s2k)k∈ω is a cofinal pick induced by g where each step occurs at position p = 1, and
each step is of the rule f(x) → f(g(x)); note that there are only a finite number of steps
occurring above p in S.

We shall also need the standard concept of a unifier:

Definition 3.5. Let s and t be terms. A unifier of s and t is a substitution θ such that
θ(s) = θ(t).

We refer to [2] for details on unification of infinite terms.

Proposition 3.6. If l → r is a rule and θ is a unifier of l and r, then θ(l) → θ(l)

Proof. By definition of the rewrite relation, we have θ(l) → θ(r). As θ is a unifier of l and
r, we have θ(r) = θ(l), and the result follows.

Lemma 3.7. Let R be a an iTRS with a finite number of rules. With notation as in
Proposition 3.3, let s = s0 → s1 → s2 → · · · sξ → sξ+1 → · · · sα′ = t′ be the closed prefix of
s ։w t of length α′. Then there is a rule l → r ∈ R and a (countable!) sequence (σξ)ξ<ω

of substitutions such that:

320 J.G. SIMONSEN

• For every x occurring in l, the sequence (σξ(x))ξ<ω converges in the tree metric to
some term tx.

• The substitution σω defined by σω(x) = tx is a unifier of l and r.
• t′|p = σω(l) = σω(r).

Proof. As s ։w t is weakly convergent, it converges at α′ to t′. As the g-pick (sg(γ))γ∈β is
cofinal and g : β → α′, the sequence (sg(γ))γ<β converges to t′. For each γ < β, we have
sg(γ)|p = σγ(l) for some substitution σγ .

By weak convergence, there is thus for each natural number m, a substitution σm such
that d(σm(l), σm(r)) < 2−m and d(σm(l), t′|p) < 2−m.

Let pi be the position of any occurrence of variable xi in l. By the above observations,
k ≥ m implies that d(σm(l)|pi , σk(l)|pi) < 2−m+|pi|. But σk(l)|pi = σk(xi), whence the
sequence (σk(xi))k<ω converges in the tree metric to some term ti. To see that σω is a
unifier of l and r, consider d(σω(l), σω(r)). For each natural number m we then have:

d(σω(l), σω(r)) ≤ d(σω(l), σm+2(l)) + d(σm+2(l), σω(r))

≤ 2−(m+2) + d(σm+2(l), σm+2(r)) + d(σm+2(r), σω(r))

≤ 2−(m+2) + 2−(m+2) + 2−(m+2)

< 2−m

As m was arbitrary, we obtain σω(l) = σω(r), and as the sequence (σk(l))k<ω converges to
t′|p in the tree metric, we have t′|p = σω(l) = σω(r).

We have come to the main ancillary result of the paper:

Theorem 3.8. Let R consist of a finite number of rules. If there exists a weakly convergent
reduction s ։w t that is not strongly convergent, then s ։w t may be written as s ։w
t′ ։w t where t′ is a term with t′ → t′.

Proof. Let notation be as in Proposition 3.3 and write s ։w t as s ։w t′ ։w t where by
Lemma 3.7 we have t′|p = σω(l) = σω(r) for some substitution σω. By Proposition 3.6, we
then have t′|p → t′|p and thus t′ → t′.

Theorem 3.8 fails in the presence of an infinite number of rules:

Example 3.9. Let R be the orthogonal iTRS with infinite rule set {gn(c) → gn+1(c) : n ≥
1}. Then there is a weakly convergent reduction g(c) → g(g(c)) → · · · gω where the redex
is contracted at the root in each step, whence the reduction is not strongly convergent.
Observe that no term on the form gn(c) is cyclic (in fact, R is acyclic), and gω is a normal
form; hence, the assumption of finiteness of the set of rules in Theorem 3.8 cannot be
omitted.

Remark 3.10. An anonymous referee has kindly directed the author’s attention to [12]
where Lemma 4.3.2 states (using the terminology of the present paper) that for an orthogo-
nal iTRS, there does not exist a rule l → r where l unifies with r iff iff all weakly convergent
reductions are strongly convergent iff all weakly convergent reductions are top-terminating.
Whereas Lemma 4.3.2 is formulated for arbitrary iTRSs, the authors of [12] almost certainly
meant for their iTRSs to have a finite number of rules: Example 3.9 exhibits an orthogonal
iTRS with an infinite number of rules such that for no rule l → r does l unify with r; this
iTRS contains a weakly convergent reduction that is not strongly convergent.

We now give a number of corollaries showing the usefulness of Theorem 3.8.

WEAK CONVERGENCE AND UNIFORM NORMALIZATION 321

Corollary 3.11. Let R consist of a finite number of rules. If R does not admit a cycle of
length 1, then every weakly convergent reduction is strongly convergent.

Corollary 3.12. Let R consist of a finite number of rules. Then there is a weakly convergent
reduction of uncountable length iff R admits a cycle of length 1.

Proof. If R admits a cycle of length 1, there are weakly convergent reductions of any ordinal
length. If R does not admit a cycle of length 1, then every weakly convergent reduction is
strongly convergent, hence of countable length by Proposition 2.9.

Recall that left-linear systems enjoy the compression property in strongly convergent
rewriting: If s ։s t, then there is a strongly convergent reduction from s to t of length
≤ ω. As a curiosity, we mention the following result showing that failure of compression to
length at most ω entails existence of a cycle of length 1:

Corollary 3.13. Let R be a left-linear iTRS with a finite number of rules. If there is a
reduction s ։w t such that there is no reduction from s to t of length at most ω, then
s ։w t′ ։w t where t′ → t′.

Proof. s ։w t cannot be strongly convergent (as s ։s t would entail a strongly convergent
reduction of length at most ω from s to t by compression). The result then follows from
Theorem 3.8.

We can also reason about the possible lengths of weakly convergent reductions depend-
ing on whether they admit cycles of length 1:

Corollary 3.14. Let R be an iTRS having a finite number of rules. Then for any ordinal
α ≥ Ω, there exists a weakly convergent reduction of length α iff R admits a cycle of length
1.

Proof. If there is a weakly convergent reduction of uncountable length, it cannot be strongly
convergent by Proposition 2.9, and Theorem 3.8 proves existence of a cycle of length 1.
Conversely, if R admits a cycle of length 1, there are weakly convergent reductions of any
ordinal length.

Corollary 3.15. Let R be an iTRS having a finite number of rules. Then R admits a cycle
of length 1 iff there is no ordinal α such that all weakly convergent reductions are of length
< α.

Proof. If R admits a cycle of length 1, there are weakly convergent reductions of any ordinal
length. If R does not admit a cycle of length 1, then by Theorem 3.8, every weakly con-
vergent reduction is strongly convergent, whence Proposition 2.9 yields that every weakly
convergent reduction has length < Ω, concluding the proof.

We summarize the results of this section in the following theorem:

Theorem 3.16. Let R be an iTRS consisting of a finite number of rules. The following
are equivalent:

(1) Every weakly convergent reduction is strongly convergent.
(2) There does not exist a term t with t → t.
(3) Every weakly convergent reduction has countable length.
(4) There exists an ordinal α such that all weakly convergent reductions are of length

< α.

322 J.G. SIMONSEN

Proof. 1 ⇒ 2 follows as existence of a term t → t yields the weakly, but not strongly,
convergent reduction t → t → t → · · · t. 2 ⇒ 1 is Corollary 3.11. 2 ⇔ 4 is Corollary 3.14,
and 2 ⇔ 3 is Corollary 3.15.

4. Uniform convergence and uniform normalization

We now show uniform normalization under both weak and strong convergence for or-
thogonal iTRSs with a finite number of rules; this is the main result of the paper.

Theorem 4.1. The following are equivalent for an orthogonal iTRS R with a finite number
of rules:

(1) EXT∞
w (R) and R admits no cycle of length 1

(2) SN∞
w (R)

(3) WN∞
w (R)

(4) WN∞(R)
(5) SN∞(R)

Proof. We prove (2) ⇔ (1) ⇔ (5) ⇔ (4) ⇔ (3).
(2) ⇔ (1) follows by Theorem 3.16. (1)⇒ (5) follows from Corollary 3.11. For (5)⇒ (1)

reason as follows: SN∞(R) ⇒ EXT∞
w (R) follows by noting that SN∞(R) implies that all

maximal reductions end in a normal form [19], and that there are no divergent reductions,
hence that all weakly continuous reductions are strongly continuous. If R admited a cycle
of length 1, say s → s, then the reduction s → s → s → · · · of length ω constructed by
iterating the step performed in s → s is strongly continuous, but not strongly convergent,
contradicting SN∞(R). (4) ⇔ (5) is the content of Theorem 1.1. (3) ⇒ (4) follows from
Proposition 2.13. (4) ⇒ (3) follows by observing that if every term s reduces to a normal
form by a strongly convergent reduction, that reduction is also weakly convergent.

Note that Example 3.9 shows that the assumption of finiteness of the rule set cannot
be omitted in the implications ((1) ∨ (2) ∨ (3)) ⇒ (4), respectively ((1) ∨ (2) ∨ (3)) ⇒ (5).

An immediate consequence of Theorem 4.1 is the following confluence result in weakly
convergent rewriting:

Corollary 4.2. Let R be an orthogonal iTRS with a finite number of rules such that at
least one of the following holds

(1) WN∞
w (R)

(2) R admits no cycle of length 1

Then CR∞
w (R).

Proof. If WN∞
w (R), Theorem 4.1 implies that R admits no cycle of length 1. Thus, it

suffices to prove that CR∞
w(R) if R admits no cycle of length 1. By Corollary 3.11, every

weakly convergent reduction is also strongly convergent. As R admits no cycle of length 1,
R cannot contain a collapsing rule l → x as it would give rise to a cycle of length 1: Letting
the term s be the fixed point of s = l{x 7→ s}, we obtain s → s. The result now follows as
orthogonal, non-collapsing iTRSs R satisfy CR∞(R) [11].

WEAK CONVERGENCE AND UNIFORM NORMALIZATION 323

As pointed out by a referee, part (1) of the above corollary can also be proved di-
rectly from existing results: If WN∞

w (R) for an orthogonal iTRS R, then by [19], we have
WN∞(R) and hence SN∞(R), and as orthogonal iTRSs have unique normal forms under
strong convergence, we obtain CR∞

w(R).

5. Conclusion and conjectures

We have used acyclicity to study the differences between weak and strong convergence
in iTRSs R with a finite number of rules. In particular, we established a necessary and
sufficient criterion for every weakly convergent reduction to also be strongly convergent:
That R admits no cycle of length 1. This criterion was employed to show equivalence of
(the infinitary analogues of) weak and strong normalization in both weakly and strongly
convergent rewriting. As a further consequence, we have derived new results concerning
normalization and confluence in the setting of weakly convergent rewriting.

The results of the paper strongly suggest the following conjecture:

Conjecture 5.1. Let R be an orthogonal iTRSs such that (i) R has a finite set of rules,
and (ii) R is almost non-collapsing (that is, R has at most one collapsing rule l → x and
the only variable occurring in l is x). Then, CR∞

w(R).
If (ii) does not hold, then CR∞

w(R)/∼h where ∼h is equivalence modulo identification
of hypercollapsing subterms (see for example [11, 9] for definitions).

The assumption of finiteness of the rule set is crucial in the above conjecture, as wit-
nessed by the counterexamples of [25].

A more modest conjecture that could perhaps be proved more easily is:

Conjecture 5.2. Let R be a non-collapsing iTRS having a finite set of rules. Then
CR∞

w(R)/∼c where ∼c is equivalence modulo identification of cyclic subterms.

Acknowledgements

The author wishes to thank Patrick Bahr, Jeroen Ketema, Roel de Vrijer, and the
anonymous referees for numerous style-improving comments and bug-spotting.

References

[1] A. Arnold and M. Nivat. The metric space of infinite trees. Algebraic and topological properties. Fun-

damenta Informaticae, 3(4):445–476, 1980.

[2] A. Berarducci and M. V. Zilli. Generalizations of unification. Journal of Symbolic Computation,

16(5):479–491, 1993.

[3] B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer Science, 25(2):95–169,

1983.

[4] N. Dershowitz, S. Kaplan, and D. Plaisted. Rewrite, rewrite, rewrite, rewrite, rewrite Theoretical

Computer Science, 83(1):71–96, 1991.

[5] J. Endrullis, C. Grabmayer, D. Hendriks, J. W. Klop, and R. C. de Vrijer. Proving infinitary normal-

ization. In S. Berardi, F. Damiani, and U. de’Liguoro, editors, TYPES, volume 5497 of Lecture Notes

in Computer Science, pages 64–82. Springer, 2008.

[6] S. Kahrs. Infinitary rewriting: Meta-theory and convergence. Acta Informatica, 44(2):91–121, 2007.

[7] S. Kahrs. Modularity of convergence in infinitary rewriting. In Proceedings of the 20th International

Conference on Rewriting Techniques and Applications (RTA ’09), volume 5595 of Lecture Notes in

Computer Science, pages 179–193. Springer-Verlag, 2009.

324 J.G. SIMONSEN

[8] R. Kennaway. On transfinite abstract reduction systems. Technical Report CS-R9205, Centrum voor

Wiskunde & Informatica, 1992.

[9] R. Kennaway and F.-J. de Vries. Infinitary rewriting. In Term Rewriting Systems, volume 55 of Cam-

bridge Tracts in Theoretical Computer Science, chapter 12, pages 668–711. Cambridge University Press,

2003.

[10] R. Kennaway, J. Klop, M. Sleep, and F.-J. de Vries. Infinitary lambda calculus. Theoretical Computer

Science, 175:93–125, 1997.

[11] R. Kennaway, J. Klop, R. Sleep, and F.-J. de Vries. Transfinite reductions in orthogonal term rewriting.

Information and Computation, 119(1):18–38, 1995.

[12] R. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries. Transfinite reductions in orthogonal term

rewriting systems (extended abstract). In R. V. Book, editor, RTA, volume 488 of Lecture Notes in

Computer Science, pages 1–12. Springer, 1991.

[13] J. Ketema. On normalization of infinitary combinatory reduction systems. In Proceedings of the 19th

International Conference on Rewriting Techniques and Applications (RTA ’08), volume 5117 of Lecture

Notes in Computer Science, pages 172–186. Springer-Verlag, 2008.

[14] J. Ketema and J. G. Simonsen. Infinitary combinatory reduction systems. In J. Giesl, editor, Proceedings

of the 16th International Conference on Rewriting Techniques and Applications (RTA ’05), volume 3467

of Lecture Notes in Computer Science, pages 438–452. Springer-Verlag, 2005.

[15] J. Ketema and J. G. Simonsen. Infinitary combinatory reduction systems: Confluence. Logical Methods

in Computer Science, 5(4:3):1–29, 2009.

[16] Z. Khasidashvili, M. Ogawa, and V. van Oostrom. Perpetuality and uniform normalization in orthogonal

rewrite systems. Information and Computation, 164:118–151, 2001.

[17] Z. Khasidashvili, M. Ogawa, and V. van Oostrom. Uniform normalisation beyond orthogonality. In Pro-

ceedings of the International Conference on Rewriting Techniques and Applications (RTA ’01), volume

2051 of Lecture Notes in Computer Science, pages 122–136. Springer-Verlag, 2001.

[18] J. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and T. Maibaum, editors, Handbook of

Logic in Computer Science, volume 2, pages 1–116. Oxford University Press, 1992.

[19] J. Klop and R. de Vrijer. Infinitary normalization. In We will show them! Essays in honour of Dov

Gabbay, volume 2, pages 169–192. College Publications, 2005.

[20] K. Kunen. Set Theory: An Introduction to Independence Proofs, volume 102 of Studies in Logic and the

Foundations of Mathematics. Elsevier, 1980.

[21] S. Lucas. Transfinite rewriting semantics for term rewriting systems. In Proceedings of the 12th Inter-

national Conference on Rewriting Techniques and Applications, volume 2051 of LNCS, pages 216–230.

Springer-Verlag, 2001.

[22] P. M. Neergaard and M. H. Sørensen. Conservation and uniform normalization in lambda calculi with

erasing reductions. Information and Computation, 178(1):149 – 179, 2002.

[23] M. J. O’Donnell. Computing in Systems Described by Equations. Springer-Verlag New York, Inc., Se-

caucus, NJ, USA, 1977.

[24] P. Rodenburg. Termination and confluence for infinitary term rewriting. Journal of Symbolic Logic,

63(4):1286–1296, 1998.

[25] J. G. Simonsen. On confluence and residuals in Cauchy convergent transfinite rewriting. Information

Processing Letters, 91(3):141–146, 2004.

[26] H. Xi. Weak and strong beta normalisations in typed λ-calculi. In In: Proc. of the 3rd International

Conference on Typed Lambda Calculus and Applications, TLCA’97, pages 390–404. Springer Verlag,

1997.

[27] H. Zantema. Normalization of infinite terms. In Proceedings of the 19th International Conference on

Rewriting Techniques and Applications (RTA ’08), volume 5117 of Lecture Notes in Computer Science,

pages 441–455. Springer-Verlag, 2008.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 325-340
http://rewriting.loria.fr/rta/

CERTIFIED SUBTERM CRITERION AND CERTIFIED USABLE RULES

CHRISTIAN STERNAGEL 1 AND RENÉ THIEMANN 1

1 Institute of Computer Science, University of Innsbruck, Austria

E-mail address: christian.sternagel@uibk.ac.at

E-mail address: rene.thiemann@uibk.ac.at

URL: http://cl-informatik.uibk.ac.at/software/ceta

Abstract. In this paper we present our formalization of two important termination tech-

niques for term rewrite systems: the subterm criterion and the reduction pair processor

in combination with usable rules. For both techniques we developed executable check

functions using the theorem prover Isabelle/HOL. These functions are able to certify the

correct application of the formalized techniques in a given termination proof. As there are

several variants of usable rules, we designed our check function in such a way that it accepts

all known variants, even those which are not explicitly spelled out in previous papers.

We integrated our formalization in the publicly available IsaFoR-library. This led to

a significant increase in the power of CeTA, a certified termination proof checker that is

extracted from IsaFoR.

1. Introduction

Termination provers for term rewrite systems (TRSs) became more and more powerful
in the last years. One reason is that a proof of termination no longer is just some reduction
order which contains the rewrite relation of the TRS. Currently, most provers construct a
proof in the dependency pair framework (DP framework). This allows to combine basic
termination techniques in a flexible way. Hence, a termination proof is a tree where at
each node a specific technique is applied. So instead of just stating the precedence of some
lexicographic path order or giving some polynomial interpretation, current termination
provers return proof trees consisting of many different techniques and reaching sizes of
several megabytes. Thus, it would be too much work to check by hand whether these trees
really form a valid proof. (Additionally, checking by hand does not provide a very high
degree of confidence.)

It is regularly demonstrated that we cannot blindly trust in the output of termination
provers. Every now and then, some termination prover delivers a faulty proof. Most
often, this is only detected if there is another prover giving a contradicting answer on
the same problem. To solve this problem, three systems have been developed over the
last few years: CiME/Coccinelle [4, 5], Rainbow/CoLoR [3], and CeTA/IsaFoR [23]. These
systems either certify or reject a given termination proof. Here, Coccinelle and CoLoR

This research is supported by FWF (Austrian Science Fund) project P18763.

c© C. Sternagel and R. Thiemann
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.325

326 C. STERNAGEL AND R. THIEMANN

are libraries on rewriting for Coq (http://coq.inria.fr) and IsaFoR is our library on
rewriting for Isabelle [21]. (Throughout this paper we just write Isabelle whenever we refer
to Isabelle/HOL.)

All of these certifiers can automatically certify termination proofs that are performed
within the DP framework. In this framework one tries to simplify so called DP problems
(P,R) by processors until all pairs in P are removed.

The reduction pair processor [12, 14] is the major technique to remove pairs. Conse-
quently, it has been formalized in all three libraries. One of the conditions of the processor
demands that all rules in R must be weakly decreasing. If this and all other conditions are
satisfied then one can remove all strictly decreasing pairs. In this paper, we present the
details about the formalization of two important extensions of the reduction pair processor.

The first extension is the subterm criterion [15]. By restricting the used “reduction pair”
to the subterm relation in combination with simple projections, it is possible to ignore the
R-component of a DP problem. Note that the subterm criterion has independently (and
only recently) been formalized for the Coccinelle-library [4]. Here, we present the first
Isabelle formalization of this important technique.

The other extension is the integration of usable rules [9, 10, 12, 14, 24]. With this
extension not all rules in R have to be weakly decreasing but only the usable rules which
are most often a strict subset of R. However, there are several definitions of usable rules
where the most powerful ones ([10] and [12]) are incomparable.

all rules usable rules ([24]) usable rules ([9, 14])

usable rules ([12])

usable rules ([10])

⊇ ⊇ ⊇
⊇

Although it was often stated that a combination of the definitions of usable rules of
[10] and [12] would be possible there never was a refereed paper which showed such a proof.
(However, there have been unpublished soundness proofs of such a combined definition.)
In this paper we not only present such a combined definition and the first corresponding
formalized soundness proof, but we also simplified and extended the existing proofs. For
example, we never construct filtered terms although we consider usable rules w.r.t. some
argument filter. (An independent formalization of usable rules is present in Coccinelle.
However, this formalization is unpublished and it only uses the variant of [14]: it does not
feature the improvements from [10] and [12].) With these two extensions of the reduc-
tion pair processor we could increase the number of TRSs (from the Termination Problem
Database) where a proof can be certified by our certifier CeTA by over 50%.

Note that all the proofs that are presented (or omitted) in the following, have been
formalized in our Isabelle library IsaFoR. Hence, in the paper we merely give sketches of
our “real” proofs. Our goal is to show the general proof outlines and help to understand
the full proofs. Our library IsaFoR with all formalized proofs, the executable certifier CeTA,
and all details about our experiments are available at CeTA’s website:

http://cl-informatik.uibk.ac.at/software/ceta

The paper is structured as follows: In Sec. 2, we recapitulate the required notions and
notations of term rewriting and the DP framework. In Sec. 3, we describe our formalization
of the subterm criterion. The reduction pair processor with usable rules and its formalization
is presented in Sec. 4. Then, in Sec. 5, we shortly describe how CeTA is obtained from IsaFoR
and give a summary about our experiments. We finally conclude in Sec. 6.

CERTIFIED SUBTERM CRITERION AND USABLE RULES 327

2. Preliminaries

Term Rewriting. We assume familiarity with term rewriting [2]. Still, we recall the most
important notions that are used later on. A (first-order) term t over a set of variables V and
a set of function symbols F is either a variable x ∈ V or an n-ary function symbol f ∈ F
applied to n argument terms f(~tn). A context C is a term containing exactly one occurrence
of the special constant � (that is assumed to be distinct from symbols in F). Replacing �
in a context C by a term t is denoted by C[t]. A term t is a (proper) subterm of a term
s—written (s ⊲ t) s D t—whenever there exists a context C (6= �), such that s = C[t].
We write s ≈ t iff s and t are unifiable. An argument filter π is a mapping from symbols
to integers or lists of integers. It induces a mapping from terms to terms where π(x) = x,
π(f(~tn)) = π(ti) if π(f) = i, and π(f(~tn)) = f(π(ti1), . . . , π(tik)) if π(f) = [i1, . . . , ik].
Argument filters are also used to indicate which positions in a term are regarded. Then π
maps symbols to sets of positions. It will be clear from the context which kind of argument
filters is used.

A rewrite rule is a pair of terms ℓ → r and a TRS R is a set of rewrite rules. The
rewrite relation (induced by R) →R is the closure under substitutions and under contexts
of R, i.e., s →R t iff there is a context C, a rewrite rule ℓ → r ∈ R, and a substitution σ
such that s = C[ℓσ] and t = C[rσ]. Reductions at the root are denoted by →R,ǫ.

We say that an element t is terminating / strongly normalizing (w.r.t. some binary re-
lation S), and write SNS(t), if it cannot start an infinite sequence

t = t1 S t2 S t3 S · · · .

The whole relation is terminating, written SN(S), if all elements are terminating w.r.t. it.
For a TRS R and a term t, we write SN(R) and SNR(t) instead of SN(→R) and SN→R

(t).
We write S+ for the transitive closure of S, and S∗ is the reflexive transitive closure.

Lemma 2.1 (Properties of Subterms).

(a) stability: s ⊲ t =⇒ sσ ⊲ tσ
(b) subterms preserve termination: SNR(s) ∧ s ⊲ t =⇒ SNR(t).

Let →SN(R) denote the restriction of →R to terminating terms, i.e., {(s, t) | s →R

t ∧ SNR(s)}. Let
⊲
→SN(R) denote the same relation extended by the restriction of ⊲ to

terminating terms, i.e., →SN(R) ∪ {(s, t) | s ⊲ t ∧ SNR(s)}.

Lemma 2.2 (Termination Properties). Let S be some binary relation, let R be a TRS.

(a) SN(S) ⇐⇒ SN(S+),
(b) SN(

⊲
→SN(R)),

(c) SNS(s) ∧ (s, t) ∈ S =⇒ SNS(t).

Dependency Pair Framework. The DP framework [12] is a way to modularize termination
proofs. Therefore, we switch from TRSs to so called DP problems, consisting of two TRSs.
The initial DP problem for a TRS R is (DP(R),R) where DP(R) are the dependency pairs
of R. A (P,R)-chain is a possibly infinite derivation of the following form:

s1σ1 →P t1σ1 →
∗
R s2σ2 →P t2σ2 →

∗
R s3σ3 →P · · · (⋆)

where si → ti ∈ P for all i > 0 (this implies that P-steps only occur at the root). If
additionally every tiσi is terminating w.r.t. R, then the chain is minimal. A DP problem

328 C. STERNAGEL AND R. THIEMANN

(P,R) is called finite [12], if there is no minimal (P,R)-chain. Proving finiteness of a
DP problem is done by simplifying (P,R) by so called processors recursively, until the P-
components of all remaining DP problems are empty and therefore trivially finite. For this
to be correct, the applied processors need to be sound. A processor Proc is sound whenever
for all DP problems (P,R) we have that finiteness of (P ′,R′) for all (P ′,R′) ∈ Proc(P,R)
implies finiteness of (P,R). The termination techniques that will be introduced in the
following sections are all such sound processors.1

Example 2.3. In the following TRS R the term set(xs) evaluates to the list [x ∈ xs | 0 < x]
where duplicates are removed:

x < 0 → ⊥, (2.1)

0 < s(y) → ⊤, (2.2)

s(x) < s(y) → x < y, (2.3)

set(nil) → nil,

set(x : z) → if2(0 < x, x, z),

del(x, nil) → nil, (2.4)

del(x, y : z) → if(x < y, y < x, x, y, z), (2.5)

if(⊥,⊥, x, y, z) → del(x, z), (2.6)

if(⊤, b, x, y, z) → y : del(x, z), (2.7)

if(b,⊤, x, y, z) → y : del(x, z), (2.8)

if2(⊤, x, z) → x : set(del(x, z)),

if2(⊥, x, z) → set(z).

After computing the initial DP problem (DP(R),R) we can split it into the three prob-
lems ({(2.9)},R), ({(2.13)–(2.16)},R), and ({(2.10)–(2.12)},R). (This is done by applying
the dependency graph processor [1, 10, 12, 14], a well-known technique to perform separate
termination proofs for each recursive function.)

s(x) <♯ s(y) → x <♯ y, (2.9)

set♯(x : z) → if2♯(0 < x, x, z), (2.10)

if2♯(⊤, x, z) → set♯(del(x, z)), (2.11)

if2♯(⊥, x, z) → set♯(z), (2.12)

del♯(x, y : z) → if♯(x < y, y < x, x, y, z), (2.13)

if♯(⊥,⊥, x, y, z) → del♯(x, z), (2.14)

if♯(⊤, b, x, y, z) → del♯(x, z), (2.15)

if♯(b,⊤, x, y, z) → del♯(x, z). (2.16)

3. The Subterm Criterion

The subterm criterion [15] is a termination technique that can be employed as a pro-
cessor of the DP framework. It may be seen as a variant of the reduction pair processor
with an attached argument filtering [1]. The used orders (⊲ and D) allow to ignore the
R component of a DP problem (P,R). And the argument filtering is restricted to be a so
called simple projection. A simple projection π maps a term to one of its arguments, i.e.,
π(f(~tn)) = ti for some 0 < i 6 n. For convenience we use Rπ to denote the ’composition’
of the binary relation on terms R and π, i.e., (s, t) ∈ Rπ iff (π(s), π(t)) ∈ R.

Theorem 3.1. Finiteness of (P \⊲π,R) implies finiteness of (P,R), provided:

1To be more precise, in IsaFoR it is shown that all these processors are chain identifying

(chain identifying proc) which is a slightly stronger requirement than soundness [22, Chapter 7]. The

reason is that chain identifying processors can easily be combined with semantic labeling [25]. However, we

omit the details here and just refer to theory DpFramework for the interested reader.

CERTIFIED SUBTERM CRITERION AND USABLE RULES 329

(a) all rules of P are oriented by Dπ (i.e., P ⊆ Dπ)
(b) all lhss and rhss of P are non-variable and non-constant terms where the roots of

rhss are not defined in R (i.e., s = f(~sn) with n > 0 and t = g(~tm) with m > 0 and
g /∈ DR for all s → t ∈ P)

Example 3.2. The DP problem ({(2.9)},R) from Ex. 2.3 can be solved using the sim-
ple projection π(<♯) = 1, since π(s(x) <♯ s(y)) = s(x) ⊲ x = π(x <♯ y). Taking

π(del♯) = 2 and π(if♯) = 5 we can remove Pair (2.13) from ({(2.13)–(2.16)},R). The
result ({(2.14)–(2.16)},R) is then solved by the dependency graph processor. Removing a
pair from ({(2.10)–(2.12)},R) is impossible as there is no π such that Pair (2.11) is oriented.

Note that <♯, del♯, if♯, . . . /∈ DR whereas <, del, if, · · · ∈ DR.

Before we can prove Theorem 3.1, we need several lemmas. First, we prove that ter-
mination of some element w.r.t. some binary relation S is equivalent to termination of the
same element w.r.t. S+. Note that this is a more general result than Lem. 2.2(a) and thus
allows termination analysis of a single term, no matter if the whole TRS is terminating.

Lemma 3.3. SNS(t) ⇐⇒ SNS+(t).

Proof. The direction from right to left is trivial. For the other direction assume that t is not
terminating w.r.t. S+. Hence t = t1 S

+ t2 S
+ t3 S

+ · · · . Let S′ denote the restriction of R
to terminating terms, i.e., S′= {(s, t) | s S t ∧ SNS(s)}. By definition we have SN(S′) and
with Lem. 2.2(a) also SN(S′+). Using SNS(t) and Lem. 2.2(c) together with the infinite
sequence from above, we get SNS(ti) for all i > 0, and further t1 S

′+ t2 S
′+ t3 S

′+ · · · . This
contradicts SN(S′+).

Next consider a general result on infinite sequences conducted in the union of two binary
relations N and S where often N is a non-strict relation and S a strongly normalizing
relation. Intuitively it states the following: Assume that there is an infinite sequence of
steps, where each step is an N -step or an S-step. Further assume that whenever there is an
N -step directly followed by an S-step, those two steps can be turned into a single S-step.
Additionally, there is no infinite S-sequence starting at the same point as the sequence we
are reasoning about. Then, from some point in our sequence on, there are no more S-steps,
i.e., it ends in N -steps. This is a versatile fact that is used at several places inside IsaFoR.

Lemma 3.4. Let N and S be two binary relations over some carrier and ~q an infinite
sequence of carrier elements. If

(a) (qi, qi+1) ∈ N ∪ S for all i > 0,
(b) N ◦ S ⊆ S, and
(c) SNS(q1),

then there is some j such that for all i ≥ j we have (qi, qi+1) ∈ N \ S.

Proof. For the sake of a contradiction assume that the lemma does not hold. Then, together
with (a), we obtain ∀i > 0. ∃j ≥ i. (qj , qj+1) ∈ S. Using the Axiom of Choice we get hold
of a choice function f such that

∀i > 0. f(i) ≥ i ∧ (qf(i), qf(i)+1) ∈ S, (†)

i.e., f(i) produces some index of an S-step after position i in ~q. Using f we define a new
sequence [·] of indices inductively

[i] =

{

i if i = 1,

f([i− 1]) + 1 otherwise.

330 C. STERNAGEL AND R. THIEMANN

With (†) we have f(i) ≥ i and (qf(i), qf(i)+1) ∈ S for all i > 0. Since f(i) ≥ i there is an

N ∪ S sequence from every qi to the corresponding qf(i). Thus we obtain (qi, qf(i)+1) ∈S
+

for all i > 0 using (b). This immediately implies (q[i], q[i+1]) ∈S
+ for all i > 0 and thereby

¬SNS+(q[1]) which is equivalent to ¬SNS(q[1]) by Lem. 3.3. But q[1] = q1 and thus ¬SNS(q1).
Together with (c), this provides the desired contradiction.

Lemma 3.5. SNR(t) =⇒ SN(⊲∪→R)(t).

Proof. Assume that t is not terminating w.r.t. (⊲ ∪→R). Hence, we obtain the infinite
sequence t = t1 (⊲ ∪→R) t2 (⊲ ∪→R) t3 (⊲ ∪→R) · · · . From the assumption we have
SNR(t1) and by Lem. 2.1 and Lem. 2.2(c) we obtain SNR(ti) for all i > 0. Thus, ti

⊲
→SN(R)

ti+1 for all i and since SN(
⊲
→SN(R)) by Lem. 2.2(b) we arrive at a contradiction.

Proof of Theorem 3.1. In order to show that finiteness of (P \ ⊲π,R) implies finiteness of
(P,R) we prove its contraposition. Hence, we may assume (in addition to the premises of
Theorem 3.1) that there is a minimal infinite (P,R)-chain and have to transform it into a
minimal infinite (P \⊲π,R)-chain. Thus we may assume that for all i > 0:

(a) si → ti ∈ P,
(b) tiσi →

∗
R si+1σi+1, and

(c) SNR(tiσi).

We start by a case distinction on ∃j > 0. ∀i ≥ j. (si, ti) ∈ (P \ ⊲π). If there is such a j,
we can combine this with (b) and obtain the desired minimal (P \⊲π,R)-chain by shifting
the original chain j positions to the left. Hence, consider the second case and assume
∀i > 0. ∃j ≥ i. (sj , tj) /∈ (P \⊲π). With (a) and the preconditions of the subterm criterion
processor this results in

∀i > 0. ∃j ≥ i. π(sj)σj ⊲ π(tj)σj . (3.1)

From this point on, the proof mainly runs by instantiating the relations N and S of Lem. 3.4
appropriately and showing the assumptions Lem. 3.4(a)–Lem. 3.4(c) in turn. For N we
use the reflexive and transitive closure of the rewrite relation, i.e., →∗

R. For S we use
(⊲ ∪→R)

+. Finally, we use the infinite sequence q defined by qi = π(si+1)σi+1 (the index
shift is needed to establish termination of q1 later on). From (a) and Thm. 3.1(a), together
with Lem. 2.1(a) we get

π(si)σi D π(ti)σi. (3.2)

Furthermore, we obtain
π(ti)σi →

∗
R π(si+1)σi+1, (3.3)

since the roots of ti and si+1 are guaranteed to be non-constant symbols and the root of ti
is not a defined symbol by Thm. 3.1(b). In combination we get π(si)σi D ◦ →∗

R π(si+1)σi+1

and in turn (qi, qi+1) ∈ N ∪S, thereby discharging assumption Lem. 3.4(a). For our specific
relations assumption Lem. 3.4(b) trivially holds. This leaves us with showing termination of
q1 with respect to the relation (⊲∪→R)

+. From the minimality of the initial chain (c) we
know SNR(t1σ1) and by Lem. 2.1 we get SNR(π(s2)σ2) and thus SNR(q1). By Lemmas 3.5
and 3.3 we then achieve SN(⊲∪→R)+(q1). At this point (by Lem. 3.4) we get grip of some
j > 0 such that

∀i ≥ j. (qi, qi+1) ∈ N \ S. (3.4)

Now we proof ∀i ≥ j. π(si+1)σi+1 = π(ti+1)σi+1 as follows. Assume i ≥ j and π(si+1)σi+1 6=
π(ti+1)σi+1. Then with (3.2) we get π(si+1)σi+1 ⊲ π(ti+1)σi+1. By (3.3), this results in

CERTIFIED SUBTERM CRITERION AND USABLE RULES 331

π(si+1)σi+1 ⊲ ◦ →∗
R π(si+2)σi+2 and consequently in (qi, qi+1) ∈ S (contradicting 3.4).

Thus ∀i ≥ j. qi = π(ti+1)σi+1. However, this contradicts (3.1).

4. Usable Rules

One important technique to prove termination within the DP framework is the reduction
pair processor. A reduction pair (≻,%) consists of a well-founded and stable relation ≻ in
combination with a monotone and stable relation %. Further, % has to be compatible with
≻, i.e., % ◦ ≻ ⊆ ≻. Note that it is not required that ≻ and % are partial orders [23].
Examples for reduction pairs are polynomial orders [15, 19, 20], matrix orders [7, 17], and
the lexicographic path order (LPO) [16]. (There are several other classes of reduction pairs.
We listed those which have been formalized in IsaFoR.)

The basic version of the reduction pair processor [12, 14] requires that all rules of R
are weakly decreasing w.r.t. % (then →R ⊆ %) and all pairs of P are weakly or strictly
decreasing. From (⋆) on page 327 it is easy to see that this implies that every reduction in
a (P,R)-chain corresponds to a weak or strict decrease. Thus, the strictly decreasing pairs
cannot occur infinitely often and can be removed from P. This technique is already present
in IsaFoR and its formalization is described in [23].

Theorem 4.1. Finiteness of (P \ ≻,R) implies finiteness of (P,R), provided:

(a) (≻,%) is a reduction pair,
(b) P ⊆ ≻ ∪%,
(c) R ⊆ %.

Starting with [24], there have been several papers [10, 12, 14] on how to improve the
last requirement. Therefore, R in (c) is replaced by the usable rules.

The main idea of the usable rules is easy to explain: since in chains rewriting is only
performed with instances of rhss of P, it should suffice to rewrite with rules of defined
symbols that occur in rhss of P. If these usable rules introduce new defined symbols then
the rules defining them also have to be considered as usable. Hence, in the remaining DP
problem ({(2.10)–(2.12)},R) of Ex. 2.3 only rules (2.1)–(2.3) and (2.4)–(2.8) are usable.
This idea is formally expressed in the following definition.

Definition 4.2 (Usable Rules). The function urClosedU ,R(t) defines whether a term t is
closed under usable rules U w.r.t. some TRS R.

urClosedU ,R(x) = true,

urClosedU ,R(f(~tn)) =
∧

16i6n

urClosedU ,R(ti) ∧
∧

ℓ→r∈R

(root(ℓ) = f =⇒ ℓ → r ∈ U).

A TRS Q is closed under usable rules whenever all rhss are closed under usable rules, i.e.,

urClosedU ,R(Q) =
∧

ℓ→r∈Q

urClosedU ,R(r).

A DP problem (P,R) is closed under usable rules iff P and U are closed under usable rules.

urClosedU (P,R) = urClosedU ,R(P) ∧ urClosedU ,R(U).

Finally, the usable rules of DP problem (P,R) are the least set U satisfying urClosedU (P,R).

332 C. STERNAGEL AND R. THIEMANN

Note that there are several other equivalent definitions of usable rules, e.g., one can find
definitions of usable rules via so called usable symbols (i.e., root symbols of lhss of usable
rules). However, there are also two improvements that yield smaller sets.2

The first improvement is to take the reduction pair into account. If certain positions of
terms are disregarded then their usable rules do not have to be considered. For example,
usually due to the rhs if2♯(0 < x, x, z) of DP (2.10) all <-rules are usable. However, if we

would use a reduction pair based on polynomial orders, where Pol(if2♯(b, x, z)) = z then
the call to < is ignored by the order. This can be exploited by excluding the <-rules from
the set of usable rules. This improvement is called usable rules w.r.t. an argument filter
[12]. Here, argument filters are used to describe which positions in a term are relevant: an
argument filter π with π(f) = {i1, . . . , ik} indicates that in a term f(~tn) only arguments
ti1 , . . . , tik are regarded. This is formalized by the notion of π-compatibility.

Definition 4.3 (π-Compatibility). A relation % is π-compatible iff for all n-ary symbols f ,
all i with 1 6 i 6 n, all t1, . . . , tn, and all s and s′:

i /∈ π(f) =⇒ f(t1, . . . , ti−1, s, ti+1, . . . , tn) % f(t1, . . . , ti−1, s
′, ti+1, . . . , tn).

To formally define the usable rules w.r.t. an argument filter, a minor modification of
Def. 4.2 suffices. Just

replace
∧

16i6n

urClosedU ,R(ti) by
∧

i∈π(f)

urClosedU ,R(ti).

The second improvement to reduce the set of usable rules is performed by taking the
structure of terms into account. Observe that in the rhs if2♯(0 < x, x, z) of DP (2.10), the
first argument of < is 0. Hence, only the rules (2.1) and (2.2) are possibly applicable, but
not the remaining Rule (2.3). This is not captured by Def. 4.2. As there, all f -rules have
to be usable whenever the symbol f occurs. On the contrary, in [10], an improved version
of usable rules is described which can figure out that Rule (2.3) is not applicable. To this
end, the condition root(ℓ) = f in Def. 4.2 is replaced by a condition based on unification.
Demanding ℓ ≈ f(~tn) would be unsound. First f(~tn) has to be preprocessed by the function
tcap of [10]. This function keeps only those parts of the input term which cannot be reduced,
even if the term is instantiated. All other parts are replaced by fresh variables.

Definition 4.4. Let R be a TRS.3

tcap(t) =

{

f(tcap(~tn)) if t = f(~tn) and ℓ 6≈ f(tcap(~tn)) for all lhss ℓ of R,

a fresh variable otherwise.

Here, tcap(~tn) is the list of terms where tcap is applied to all arguments of ~tn.

2There also is another extension of usable rules, the generalized usable rules. It allows a variant of the

reduction pair processor where reduction pairs with non-monotone % may be used, cf. [8, Thm. 10]. However,

that reduction pair processor is incomparable to both Thm. 4.1 and the upcoming Thm. 4.6. It may be

interesting to formalize the soundness of that processor, too, but that would be a different proof.
3Note that in IsaFoR we do not use tcap, but the more efficient and equivalent version etcap which is

based on ground-contexts. Moreover, unification is replaced by ground-context matching [23, Section 4.2].

But as the notions of tcap and unification are more common, in the following we stick to these two notions.

CERTIFIED SUBTERM CRITERION AND USABLE RULES 333

Now the second improvement can be defined formally. Again, it is a minor but crucial
modification of Def. 4.2. It suffices to

replace
∧

ℓ→r∈R

(root(ℓ) = f =⇒ ℓ → r ∈ U) by
∧

ℓ→r∈R

(ℓ ≈ f(tcap(~tn)) =⇒ ℓ → r ∈ U).

Hence, incorporating both improvements results in the following definition which now
contains a π in the superscript to distinguish it from Def. 4.2.

Definition 4.5 (Improved Closure Under Usable Rules).

urClosedπU ,R(x) = true,

urClosedπU ,R(f(~tn)) =
∧

i∈π(f)

urClosedπU ,R(ti) ∧
∧

ℓ→r∈R

(ℓ ≈ f(tcap(~tn)) =⇒ ℓ → r ∈ U),

urClosedπU ,R(Q) =
∧

ℓ→r∈Q

urClosedπU ,R(r),

urClosedπU (P,R) = urClosedπU ,R(P) ∧ urClosedπU ,R(U).

Note that we do not define the improved usable rules of a DP problem (P,R) (as we
would, by demanding that U is the least set satisfying urClosedπU (P,R)). Hence, every set
U that satisfies the closure properties can be used later on. It is easy to see, that the
usable rules w.r.t. Def. 4.2 satisfy the closure properties as well as a version of usable rules
which only incorporates one of the two improvements. Thus, by this definition we gain the
advantage that we can handle several variants of usable rules.

Having defined all necessary notions, we are ready to present the improved reduction
pair processor with usable rules where the second part also incorporates [9, Theorem 28]
which allows to delete rules by a syntactic criterion.

Theorem 4.6 (Reduction Pair Processors with Usable Rules). Let c be some binary symbol,
let Cε = {c(x, y) → x, c(x, y) → y},4 and let U be some TRS (called the usable rules). For
every signature F and TRS R, let R¬F = {ℓ → r ∈ R | ℓ /∈ T (F ,V)}. Finiteness of
(P \ ≻,R) implies finiteness of (P,R), provided:

(a) (≻,%) is a reduction pair,
(b) P ⊆ ≻ ∪%,
(c) U ∪ Cε ⊆ %,
(d) % is π-compatible,
(e) urClosedπU (P,R).

If additionally Cε ⊆ ≻, ≻ is monotone, U ⊆ R, and F is the set of all symbols occurring in
rhss of P∪U , then R can be replaced by U without any strictly decreasing rules and one can
remove all rules which contain symbols of F in their left-hand side. Formally, finiteness of
(P¬F \ ≻,U¬F \ ≻) implies finiteness of (P,R).

4The real definition of Cε in IsaFoR is slightly different due to technical reasons. Since there is no restriction

on the type of variables, there might be only one variable. To this end x and y are replaced by all possible

terms. And as the type of function symbols is also unrestricted there might be no fresh symbol c. However,

in IsaFoR the signature is implicit where every arity is allowed. For example, the term c(c, c) contains one

symbol (c, 1) and two symbols (c, 0) where (c, 1) 6= (c, 0). In this way, we can always get a fresh symbol

(c, n) where n is larger than all arities that occur in R and we use a constant (d, 0) to obtain this high arity.

Hence, we define Cε =
⋃

s,t
{c(s, t, d, . . . , d) → s, c(s, t, d, . . . , d) → t}.

334 C. STERNAGEL AND R. THIEMANN

Regarding requirement (c), observe that most reduction pairs that are currently used
in automated termination tools do satisfy Cε ⊆ %. Therefore, requirement (c) of Thm. 4.1
can usually be replaced by U ⊆ %. Requirement (d) is easy to satisfy by choosing an
appropriate argument filter π which depends on the reduction pair. And if U is chosen as
the usable rules w.r.t. any known definition of usable rules, then condition (e) is satisfied.
Thus, for most reduction pairs one has only replaced requirement R ⊆ % of Thm. 4.1 by
the weaker condition U ⊆ % in Thm. 4.6.

Example 4.7. To solve the remaining DP problem ({(2.10)–(2.12)},R) of Ex. 3.2 we use a
polynomial order [19] where Pol(set♯(x)) = Pol(del(y, x)) = x, Pol(x :y) = Pol(if(. . . , y)) =

y+1, Pol(if2♯(x, y, z)) = x+z, Pol(x < y) = Pol(⊥) = Pol(⊤) = 0, and Pol(c(x, y)) = x+y.
A corresponding compatible argument filter π is defined by π(set♯) = {1}, π(del) = π(:) =

{2}, π(if) = {5}, π(if2♯) = {1, 3}, π(<) = π(⊥) = π(⊤) = ∅, and π(c) = {1, 2}. For this
argument filter, the minimal set of usable rules is U = {(2.1), (2.2), (2.4)–(2.8)}. Note that
it would also be accepted if, e.g., Rule (2.3) would be added.

Then all conditions of Thm. 4.6 are satisfied and one can remove Pair (2.10) as it is
strictly decreasing. The remaining DP problem ({(2.11),(2.12)},R) is then easily solved
by another application of the reduction pair processor where one chooses Pol(set♯(x)) = 0,

Pol(if2♯(x, y, z)) = 1, Pol(c(x, y)) = x+ y, and where U = ∅.

In theory UsableRules we have proven Thm. 4.6. Although a similar proof has already
been performed by the authors of [10] and [12]—on paper, not formalized—this proof has
never been published in some reviewed article, it is only available in [22]. Moreover, our
proof is not just a formalization of the proof in [22], but there are some essential differences
which are pointed out in the following.

The standard proof of Thm. 4.6 is by transforming a minimal chain t1σ1 →
∗
R s2σ2 →P

t2σ2 . . . into a chain over filtered terms π(t1)δ1 →
∗
π(U)∪Cε

π(s2)δ2 →π(P) π(t2)δ2 . . . and then

uses the preconditions of the theorem to show that certain pairs of π(P) (and therefore
also pairs of P) cannot occur infinitely often. Here, one uses a transformation Iπ which
transforms σi into δi. For the second part of the theorem where ≻ is monotone, one requires
another transformation I which does not apply any argument filter. Hence, there are two
transformations I and Iπ where for both transformations similar results are shown.

In our formalization we were able to simplify the proofs considerably by not constructing
filtered terms. Moreover, we use the same transformation I for both parts of the theorem.

A problem in the standard proof of the reduction pair processor with usable rules is
the implicit assumption that the TRS R meets the variable condition, i.e., V(ℓ) ⊇ V(r) and
ℓ /∈ V for all rules ℓ → r ∈ R. Although in practice this condition is nearly always satisfied,
we have to deal with this assumption, where there are three alternatives. First, one can
check that the TRS R meets the variable condition whenever the theorem is applied on
some concrete DP problem (P,R). This would clearly increase the runtime for certifying a
given proof. Second, one can define finiteness of DP problems or soundness of processors in
a way that it incorporates the variable condition. However, this will make the development
of other processors more complicated which do not care about the variable condition. And
third, one can try to prove Thm. 4.6 without assuming the variable condition. This is the
alternative we have finally formalized and which does not appear in the literature so far.

For the upcoming formal definition of I we essentially use a combination of the defini-
tions of [9] and [10] where x# xs denotes the Isabelle list with head x and tail xs.

CERTIFIED SUBTERM CRITERION AND USABLE RULES 335

Definition 4.8. Let R and U be two TRSs, let F be some signature, and let c be the
binary symbol of Cε. We define I as a function from terms to terms as follows:

comb([t]) = t,

comb(t# s# ts) = c(t, comb(s# ts)),

rewrite(R, t) = {C[rσ]p | ℓ → r ∈ R, t = C[u],match(u, ℓ) = σ},

I(x) = x,

I(f(~tn)) =

f(~tn) if ¬SNR(f(~tn)),

f(I(~tn)) if SNR(f(~tn)), f ∈ F , and ∀ℓ → r ∈ R \ U .ℓ 6≈ f(tcap(~tn)),

comb(f(I(~tn)) # I(rewrite(R, f(~tn)))) otherwise.

I and tcap are homeomorphically extended to operate on lists, i.e., I(~tn) = (I(t1), . . . , I(tn)).

The function comb just combines a non-empty list of terms into one term. It is easy to
prove that one can access all terms in the list by rewriting with Cε: comb([. . . , ti, . . .]) →

∗
Cε

ti.
The function rewrite computes the list of one-step reducts of a given term by using a

sound and complete matching algorithm match. The major difference between {s | t →R s}
and rewrite(R, t) is that the latter instantiates a rule by the matcher of the lhs and the
corresponding redex (as usual), but it never instantiates variables which only occur in the
rhs of the rule. For example, if R = {a → x} then {s | a →R s} is the set of all terms,
whereas rewrite(R, a) = [x]. Hence, rewrite is sound (rewrite(R, t) ⊆ {s | t →R s}) but in
general not complete. However, under one condition completeness is achieved: whenever
t →R s by a reduction with a rule that satisfies the variable condition, then s ∈ rewrite(R, t).

The main reason for introducing rewrite is that without the assumption of the variable
condition on R the set {s | t →R s} may be infinite. Then the definition of I as in
[10]—where {I(s) | f(~tn) →R s} is used instead of I(rewrite(R, f(~tn)))—does not work in
combination with comb, as comb expects a list (or a finite set) as input. Also note that this
input must be finite as one finally wants to obtain a single term containing all input terms.

The first case of I(f(~tn)) is mainly a technicality. Usually, I is only defined on ter-
minating terms. To make I a total function on all terms we inserted the case distinction
on SNR(f(~tn)). Termination of I is then proven using well-founded induction on

⊲
→SN(R)

where in this proof the soundness result for rewrite is crucial.
The transformation I is constructed in such a way that for every reduction t →R s

one obtains a weak decrease, provided that the usable rules and Cε are weakly decreasing.
Therefore, in the definition of I there are essentially two cases for a term f(~tn). If only
usable rules can be used to reduce f(~tn) at the root position, then I(f(~tn)) is obtained by
applying I on the arguments, resulting in f(I(~tn)). The corresponding reduction will then
result in a weak decrease as one can also perform the reduction with the usable rules on
the transformed term. The condition that only usable rules are applicable is ensured by
demanding that no lhs of a non-usable rule in R \ U can be unified with f(tcap(~tn)).

Otherwise, all rules may have been used to rewrite f(~tn). Then, in addition to f(I(~tn))
we have to store all one-step reducts of t. This is done by encoding them in a single term
using comb. Now every possible reduct can be accessed using Cε. And since Cε is weakly
decreasing we obtain a weak decrease. This is proven formally in the upcoming lemma.

336 C. STERNAGEL AND R. THIEMANN

Lemma 4.9 (Properties of I). Let (%,≻) be a reduction pair, let % be π-compatible, let
U ∪Cε ⊆ %, let urClosedπU ,R(U), and let the rhss of U be terms within T (F ,V). Let SNR(t),

SNR(tσ), and SNR(f(~tn)).

(i) If urClosedπU ,R(t) and t ∈ T (F ,V) then tI(σ) %∗ I(tσ).

(ii) I(tσ) →∗
Cε

tI(σ). And if t /∈ T (F ,V) then I(tσ) →+
Cε

tI(σ).

(iii) If f(~tn) →R,ǫ s using a rule ℓ → r and I(f(~tn)) = f(I(~tn)) then ℓ → r ∈ U ,

I(f(~tn)) %
∗ ◦ →U ◦ %∗ I(s). And I(f(~tn)) →

+
Cε

◦ →U ◦ %∗ I(s) if ℓ /∈ T (F ,V).

(iv) If f(~tn) →R s and I(f(~tn)) = comb(. . .) then I(f(~tn)) →
+
Cε

I(s).

(v) If t →R s then I(t) %∗ I(s). Moreover, t →U¬F
s or I(t) →+

Cε
◦ %∗ I(s).

(vi) If t →∗
R s then I(t) %∗ I(s). Moreover, I(t) %∗ ◦ →Cε ◦ %∗ I(s) or t →∗

U¬F
s.

Here, I is homeomorphically extended to substitutions, i.e., I(σ)(x) = I(σ(x)).

In the following proof sketch of Lem. 4.9, all essential points are included, especially
those where we deviate from the standard proofs.

Proof. The proof of (vi) is a straight-forward induction on the reduction length using (v).
We prove (v), by induction over t. First note that t is not a variable. Otherwise,

there would be some x → r ∈ R, contradicting SNR(t). Hence the base case is trivial.
In the step-case, we make a case distinction on how t = f(~tn) is transformed. The case
I(t) = comb(. . .) is solved by (iv). Otherwise, I(t) = f(I(~tn)). For a root reduction we use
(iii). Otherwise, s = f(t1, . . . , si, . . . , tn) and ti →R si. Applying the induction hypothesis
is easy, but some additional effort is required to prove I(s) = f(I(t1), . . . , I(si), . . . , I(tn)).

Proving (iv), essentially requires completeness of rewrite. First we prove that if f(~tn) →R

s then the employed rule ℓ → r must satisfy V(ℓ) ⊇ V(r), as otherwise SNR(f(~tn)) would
not hold. Under this condition, completeness of rewrite states that s ∈ rewrite(R, f(~tn)).
The remaining proof of (iv) can be done by simple inductions using the definitions of comb

and Cε.
To prove (iii), we first show that I(f(~tn)) = f(I(~tn)) ensures that the employed rule

ℓ → r is usable. The reason is that f(~tn) = ℓσ implies f(tcap(~tn)) ≈ ℓ and hence, ℓ →
r /∈ R \ U by the definition of I. By the requirement on the rhss of U we know that
r ∈ T (F ,V). Hence, we can build the following steps using (ii) and (i) in combination
with urClosedπU ,R(U): I(f(~tn)) = I(ℓσ) %∗ ℓI(σ) →U rI(σ) %∗ I(rσ) = I(s). And if

ℓ /∈ T (F ,V) then we additionally get I(ℓσ) →+
Cε

ℓI(σ) by (ii).
Proving (ii), is a straight-forward induction on t.
And finally, for (i), we also use induction on t. In the step-case we first prove that

t ∈ T (F ,V) in combination with urClosedπU ,R(f(~tn)) implies f(I(~tnσ)) = I(f(~tnσ)). Then,
for all argument positions i ∈ π(f), we apply the induction hypothesis to obtain tiI(σ) %

∗

I(tiσ). Then, by monotonicity of %, we obtain f(. . . , tiI(σ), . . .) %
∗ f(. . . , I(tiσ), . . .). For

all other positions, π-compatibility of % provides the same inequality.

With the help of Lem. 4.9 it is now possible to prove the main result of this section.

Proof of Thm. 4.6. Assume that there is a minimal infinite chain where siσi →P tiσi →
∗
R

si+1σi+1 and SNR(tiσi) for all i. Let F be the set of all symbols that occur in rhss of P ∪U .
Then by the conditions of the theorem and by using Lem. 4.9 (i), (vi), and (ii), for all i we
conclude

siI(σi) →P tiI(σi) %
∗ I(tiσi) %

∗ I(si+1σi+1) %
∗ si+1I(σi+1). (‡)

CERTIFIED SUBTERM CRITERION AND USABLE RULES 337

By using P ⊆ ≻ ∪ % we obtain a strict or weak decrease between every two terms siI(σi)
and si+1I(σi+1). Thus, by Lem. 3.4, the strictly decreasing pairs can only occur finitely
often. This shows that there must be some n such that for all i, si+n → ti+n ∈ P \ ≻.
Hence, there is an infinite minimal (P \ ≻,R)-chain.

If additionally, Cε ⊆ ≻ and ≻ is monotone, we first prove that there is some n with
tn+iσn+i →

∗
U¬F

sn+i+1σn+i+1 and sn+i ∈ T (F ,V) for all i. If this would not be the case,

then infinitely often tiσ →∗
U¬F

si+1σi+1 does not hold or infinitely often si /∈ T (F ,V).

Hence, by Lem. 4.9(vi), for infinitely many i, I(tiσi) %∗ ◦ →Cε ◦ %∗ I(si+1σi+1) or by
Lem. 4.9(ii), for infinitely many i, I(siσi) →

+
Cε

siI(σi). As ≻ contains Cε and is monotone,
we also have →Cε ⊆ ≻, and hence in both cases we obtain infinitely many strict decreases.
Using the same reasoning as for (‡), we have infinitely many i with siI(σi) (≻ ∪%) ◦ %∗

◦ ≻ ◦ %∗ si+1I(σi+1) and for the remaining is we can use the previous results showing
siI(σ) (≻ ∪%) ◦ %∗ si+1I(σi+1). Then, using Lem. 3.4 where N = (≻ ∪ %)∗ and S =
N ◦ ≻ ◦N , yields a contradiction.

Hence, for all i we obtain sn+iσn+i →P¬F
tn+1σn+i →

∗
U¬F

sn+i+1σn+i+1. Since P ∪U ⊆

≻ ∪% and since both ≻ and % are monotone and stable, we conclude (again by Lem. 3.4)
that from some point onwards only rules from (P¬F ∪ U¬F) \ ≻ are used. Hence, we
have constructed a (P¬F \ ≻,U¬F \ ≻)-chain which is also minimal since SNR(tiσi) implies
SNU¬F\≻(tiσi) as U¬F ⊆ R by the requirement U ⊆ R.

To obtain an executable function which checks for correct applications of Thm. 4.6
it is only demanded that the input and output DP problem, the reduction pair (without
the details of the fresh symbol c), and the usable rules are given. The corresponding
interpretation / precedence / . . . for c is then added automatically. Moreover, the argument
filter is constructed from the reduction pair. For example, for polynomial interpretations
one always defines π in a way that i ∈ π(f) iff xi occurs within Pol(f(~xn)). In this way,
% is always π-compatible and Cε ⊆ %. Hence, for the automation of Thm. 4.6 where ≻ is
not monotone, one only has to check P ⊆ ≻ ∪ %, U ⊆ %, and urClosedπU (P,R) since the
remaining requirements are satisfied by construction.

For the other case, where also rules of R are deleted, it is additionally checked that
≻ is monotone and that U ⊆ R. To achieve the former for polynomials, it is ensured
that the coefficients of all variables are larger than zero and that all remaining parts of
the polynomial are non-negative. For path orders in combination with argument filters, it
is ensured that no argument is dropped, i.e., the argument filter may only permute and
duplicate arguments.

5. Experiments

In the end, what we want to have is a workflow which automatically certifies or rejects
a given termination proof in CPF-format (a common format for termination proofs that is
supported by all certifiers).5 To this end, we have to parse the proof, detect which proces-
sors have been applied on which DP problems, and ensure that the preconditions of every
processor are met. We achieved this goal by writing a CPF parser and for each processor
an executable function which checks the preconditions. If a processor application cannot be
certified, the function rejects, providing an informative error message. As the parser and

5http://cl-informatik.uibk.ac.at/software/cpf/

338 C. STERNAGEL AND R. THIEMANN

the check-functions are written in Isabelle, we just invoke Isabelle’s code-generator [13] to
obtain the executable program CeTA from IsaFoR.

This is in contrast to the other two certifiers CiME/Coccinelle and Rainbow/CoLoR.6

Both of them provide a parser (as part of CiME and Rainbow) that takes a termination
proof and produces a Coq-script as output. The resulting script refers to facts proven in
Coccinelle and CoLoR, respectively, which can then be checked by Coq.

For more details on this difference and the architecture of the overall proof-checking
function in CeTA we refer to [23].

To measure the impact of our results we used 5 strategies for the two termination tools
AProVE [11] and TTT2 [18].

• In the basic strategy the termination tools only use the dependency graph processor
and the reduction pair processor without usable rules. (These are the only techniques
that have been described in [23].)

• The sc strategy is an extension of basic by the subterm criterion processor.
• Similarly, ur is like basic except that usable rules may be used.
• The fourth strategy, sc+ur, is a combination of the previous three.
• Finally, full, is a strategy where all CeTA-certifiable processors may be used. We re-
fer to http://cl-informatik.uibk.ac.at/software/ceta/versions.php for the
details where all techniques are listed. (Our experiments have been performed using
CeTA version 1.10.)

Note that for basic, sc, ur, and sc+ur, we only take linear polynomial interpretations as
reduction pairs, whereas in full also other reduction pairs are used.

For each of the 2132 standard TRSs in the Termination Problem Database (version
7.0.2)7 and for each strategy, we first ran both termination tools for at most one minute
and then tried to certify all successful proofs with CeTA. The experiments were performed
on a machine with 8 Dual Core AMD Opteron 885 processors and 64 GB RAM running
Linux. An overview of the results is given in the following table where the column labels
A, C, and T, refer to AProVE, CeTA, and TTT2, respectively.

basic sc ur sc+ur full

A C A C A C A C A C
YES 453 453 566 566 681 681 684 684 1242 1242

avg. time 0.063 0.051 0.064 0.061 0.051

T C T C T C T C T C
YES 439 439 553 553 663 663 669 669 1223 1223

avg. time 0.059 0.048 0.065 0.062 0.074

The table rows show successful termination proofs / certificates for termination proofs
(YES), and the average time for certifying (in seconds). All details on the experiments are
available on CeTA’s website.

When comparing basic with sc+ur one can observe that adding the subterm criterion
and usable rules helps to increase the number of certified termination proofs by over 50%
for both termination tools. Moreover, checking the additional application conditions of
the new techniques—where urClosedπU (P,R) is the most expensive one—does not have any
measurable impact on the certification time. That checking AProVE’s proofs is slightly

6Note that for a restricted set of techniques, CoLoR also features code-generation.
7available at http://termcomp.uibk.ac.at/

CERTIFIED SUBTERM CRITERION AND USABLE RULES 339

faster is explained by the fact that TTT2 always produces proofs with polynomial orders over
the rationals, even if all coefficients are naturals. And thus, for TTT2’s proofs, CeTA always
has to perform computations over the rationals.

Our results also helped to win the annual termination competition for certified termi-
nation of TRSs in 2009.8 First several termination tools were run to generate proofs on a
random subset of 365 TRSs from the TPDB. For this, the tools where usually configured for
a specific certifier in mind by restricting the set of termination techniques correspondingly.
Then, all certifiers were run on all proofs. The following table summarizes the results,
where the bold entries correspond to those proofs which were constructed specifically for
that certifier.

tool AProVE TTT2 AProVE CiME AProVE total
intended certifier CeTA Coccinelle CoLoR
proofs 259 264 165 56 220 964
CeTA 259 264 94 50 107 774
Coccinelle 12 2 104 55 30 203
CoLoR 67 53 92 9 178 399

We observe that many proofs generated for CeTA cannot be handled by the other
certifiers—only between 1 % and 26 % of these proofs have been certified—where one
major reason is that the other certifiers do not incorporate usable rules.

Looking at the other direction we see, that even if the termination tool produced proofs
for another certifier, CeTA (version 1.09) achieved between 60 % and 90 % of the score of
the intended certifier.

In total, only 190 proofs have been rejected by CeTAin the competition. Of these proofs,
65 are supported in the meantime (the competition version did not feature monotone ma-
trix interpretations [7], which are supported by version 1.10), 117 contain unsupported
techniques (non-linear polynomial orders and RPO [6]), 6 are obviously buggy (e.g., the
subterm criterion is applied with a projection that maps a binary symbol to its third argu-
ment), and 2 are faulty (some LPO was wrongly applied and some argument filter delivers
an unsolvable constraint). (At least for one of these proofs we know that this was due to
an output bug of the proof producing tool.)

6. Conclusion

We have presented the first formalization of two important termination techniques
within the theorem prover Isabelle/HOL: the subterm criterion and the reduction pair
processor with usable rules, where we combined the improvements of [10] and [12]. The
integration of these techniques into our termination proof certifier CeTA allowed to certify
significantly more termination proofs.

However, there are several termination techniques that have not been certified by now.
To change this, in the future we aim at certifying several techniques for innermost ter-
mination like narrowing, rewriting, and instantiation [1, 12], or estimations of innermost
dependency graphs [1, 10, 14].

8
http://termcomp.uibk.ac.at/termcomp/competition/certificationResults.seam?cat=10235&comp=101722

340 C. STERNAGEL AND R. THIEMANN

References

[1] T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical Computer

Science, 236:133–178, 2000.

[2] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[3] F. Blanqui, W. Delobel, S. Coupet-Grimal, S. Hinderer, and A. Koprowski. CoLoR, a Coq library on

rewriting and termination. In Proc. WST’06, pages 69–73, 2006.

[4] É. Contejean, P. Courtieu, J. Forest, A. Paskevich, O. Pons, and X. Urbain. A3PAT, an approach for

certified automated termination proofs. In Proc. PEPM’10. To appear.

[5] É. Contejean, P. Courtieu, J. Forest, O. Pons, and X. Urbain. Certification of automated termination

proofs. In Proc. FroCoS’07, LNAI 4720, pages 148–162, 2007.

[6] N. Dershowitz. Termination of rewriting. J. Symb. Comp., 3:69–116, 1987.

[7] J. Endrullis, J. Waldmann, and H. Zantema. Matrix Interpretations for Proving Termination of Term

Rewriting. Journal of Automated Reasoning, 40(2-3):195–220, 2008.

[8] C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl. Maximal termina-

tion. In Proc. RTA’08, LNCS 5117, pages 110–125, 2008.

[9] J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework: Combining techniques

for automated termination proofs. In Proc. LPAR’04, LNAI 3452, pages 301–331, 2005.

[10] J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termination of higher-order

functions. In Proc. FroCoS’05, LNAI 3717, pages 216–231, 2005.

[11] J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termination proofs in the DP

framework. In Proc. IJCAR’06, LNAI 4130, pages 281–286, 2006.

[12] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving dependency pairs.

Journal of Automated Reasoning, 37(3):155–203, 2006.

[13] F. Haftmann and T. Nipkow. Code generation via higher-order rewrite systems. In Proc. FLOPS’10.

To appear.

[14] N. Hirokawa and A. Middeldorp. Automating the dependency pair method. Information and Compu-

tation, 199(1-2):172–199, 2005.

[15] N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool: Techniques and features. Information and

Computation, 205(4):474–511, 2007.

[16] S. Kamin and J. J. Lévy. Two generalizations of the recursive path ordering. Unpublished Manuscript,

University of Illinois, IL, USA, 1980.

[17] A. Koprowski and J. Waldmann. Arctic termination ...below zero. In Proc. RTA’08, LNCS 5117, pages

202–216, 2008.

[18] M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean Termination Tool 2. In Proc. RTA’09,

volume 5595 of LNCS, pages 295–304, 2009.

[19] D. Lankford. On proving term rewriting systems are Noetherian. Technical Report MTP-3, Louisiana

Technical University, Ruston, LA, USA, 1979.

[20] S. Lucas. Polynomials over the reals in proofs of termination: From theory to practice. RAIRO Theo-

retical Informatics and Applications, 39(3):547–586, 2005.

[21] T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order Logic.

LNCS 2283. Springer, 2002.

[22] R. Thiemann. The DP Framework for Proving Termination of Term Rewriting. PhD thesis, RWTH

Aachen University, 2007. Available as Technical Report AIB-2007-17, http://aib.informatik.

rwth-aachen.de/2007/2007-17.pdf.

[23] R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In Proc. TPHOLs’09,

LNCS 5674, pages 452–468, 2009.

[24] X. Urbain. Modular & incremental automated termination proofs. Journal of Automated Reasoning,

32(4):315–355, 2004.

[25] H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta Informaticae, 24:89–105,

1995.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 341-356
http://rewriting.loria.fr/rta/

TERMINATION OF LINEAR BOUNDED TERM REWRITING

SYSTEMS

IRÈNE DURAND 1 AND GÉRAUD SÉNIZERGUES 1 AND MARC SYLVESTRE 1

1 LaBRI, Université Bordeaux 1

351 Cours de la libération, 33405 Talence cedex, France

E-mail address, I. Durand: idurand@labri.fr

E-mail address, G. Sénizergues: ges@labri.fr

E-mail address, M. Sylvestre: sylvestr@labri.fr

Abstract. For the whole class of linear term rewriting systems and for each integer k, we

define k-bounded rewriting as a restriction of the usual notion of rewriting. We show that

the k-bounded uniform termination, the k-bounded termination, the inverse k-bounded

uniform, and the inverse k-bounded problems are decidable. The k-bounded class (BO(k))

is, by definition, the set of linear systems for which every derivation can be replaced

by a k-bounded derivation. In general, for BO(k) systems, the uniform (respectively

inverse uniform) k-bounded termination problem is not equivalent to the uniform (resp.

inverse uniform) termination problem, and the k-bounded (respectively inverse k-bounded)

termination problem is not equivalent to the termination (respectively inverse termination)

problem. This leads us to define more restricted classes for which these problems are

equivalent: the classes BOLP(k) of k-bounded systems that have the length preservation

property. By definition, a system is BOLP(k) if every derivation of length n can be replaced

by a k-bounded derivation of length n. We define the class BOLP of bounded systems that

have the length preservation property as the union of all the BOLP(k) classes. The class

BOLP contains (strictly) several already known classes of systems: the inverse left-basic

semi-Thue systems, the linear growing term rewriting systems, the inverse Linear-Finite-

Path-Ordering systems, the strongly bottom-up systems.

1. Introduction

General context. A Term-Rewriting System (TRS for short)R is said to be terminating on a
term s when it does not admit any infinite derivation starting from s. It is said to be inverse
terminating on s when the system R−1 terminates on s. The TRS R is said to be uniformly
terminating (u-terminating for short) when it does not admit any infinite derivation, and it
is said to be inverse u-terminating when the system R−1 u-terminates. The u-termination
property is part of the definition of a complete TRS, which is a useful algebraic notion.
These properties are also pertinent for TRSs which are models of functional programs or
any kind of computational processes. It is well-known that these problems are undecidable

1998 ACM Subject Classification: Primary: F.4.2, Secondary: F.3.2, F.4.1.

Key words and phrases: term rewriting, termination, rewriting strategy.

c© I. Durand, G. Sénizergues, and M. Sylvestre
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.341

342 I. DURAND, G. SÉNIZERGUES, AND M. SYLVESTRE

for general finite TRS ([7]) and even for quite restricted subclasses of TRS (see [2],[10] for
example). Nevertheless, because of its importance, many techniques have been developed in
order to prove uniform-termination (u-termination for short) and termination of TRSs (see
in particular [3],[9, section 1.3], [14, chap. 6]) or even to decide automatically u-termination
or termination, but for specific classes of TRS.

Contents. The present paper follows the last trend of research quoted above:
1- we show that u-termination, inverse u-termination, termination, inverse termination are
decidable for a particular strategy that we call bounded rewriting,
2- we deduce from this decision procedure that u-termination, inverse u-termination, ter-
mination and inverse termination problems are decidable for some classes of TRS.

We define a new rewriting strategy for linear TRSs called bounded rewriting. Let k ∈ N.
Intuitively, a derivation is said to be k-bounded (bo(k)) if when a rewriting rule is applied,
the parts of the substitution located at a depth greater than k are not used further in the
derivation, i.e. do not match a left-handside of a rule applied further. A TRS R will be said
to be bo(k) if for any derivation s →∗

R t, there exists a bo(k) derivation s bo(k)→
∗
R t. The

class of bo(k) TRSs is denoted by BO(k), and the class of bounded TRSs BO is
⋃

k∈N BO(k).
A TRS will be said to bo(k)-terminates on a term s if there is no infinite bo(k)-derivation
starting from s. It is said to be uniformly bo(k)-terminating (u-bo(k)-terminating for short)
if there is no infinite bo(k)-derivation. The main result of this paper is the decidability of
the u-bo(k)-termination problem and of the bo(k)-termination problem. We also prove in
section 6 that the inverse u-bo(k)-termination and the inverse bo(k)-termination problems
are decidable. This rewriting strategy is closely related to the bottom-up strategy introduced
in [4]: every bottom-up TRS is bounded, and for every bounded TRS, there is an equivalent
TRS which is bottom-up. Both strategies are defined using marking tools, but the definition
of the bounded strategy is simpler and more intuitive. For every linear TRS (R,F) and
every integer k, there is a TRS (R′,F) such that for every s, t ∈ T (F):

• there is a derivation of length n from s to t in R iff there is a derivation of length
n from s to t in R′,

• there is a bo(k)-derivation of length n from s to t in R iff there is a bo(0)-derivation
of length n form s to t in R′.

Thus, it is sufficient to prove that the u-bo(0)-termination and the bo(0)-termination prob-
lems are decidable to obtain the decidability of the u-bo(k)-termination and the bo(k)-
termination problems. Following the idea developed for the bottom-up strategy, we use
a ground TRS S ∪ A to simulate bo(0)-derivations. This construction is made in such a
way that the existence of an infinite bo(0)-derivation starting from a term s in R is equiv-
alent to the existence of an infinite derivation starting from s in S ∪ A. It follows from
the decidability of the termination and u-termination problems for ground TRS that the
u-bo(0)-termination and the bo(0)-termination problems are decidable. The TRS A has
rules which allow to replace any subterm of a term t located at an internal node by a leaf
labeled by the constant symbol #, and the TRS S consists of a set of rules of the form
lσ → rσ where l → r ∈ R and σ is a substitution that maps variables to an element of
F0 ∪ {#}. A bo(0)-step C[lσ] → C[rσ] in R is simulated in two steps : first, using A, we
reduce C[lσ] to C[lσ′] where lσ′ ∈ LHS(S), and then we apply the rule lσ′ → rσ′ ∈ S. We
define a subclass of BO(k), the length preservation bottom-up class BOLP(k), for which:

• termination (respectively inverse termination) and k-bounded termination (resp.
inverse k-bounded termination) are equivalent,

TERMINATION OF LINEAR BOUNDED TERM REWRITING SYSTEMS 343

• u-termination (respectively inverse u-termination) and u-k-bounded termination
(resp. inverse u-k-bounded termination) are equivalent.

A BO(k) TRS is BOLP(k) iff for every derivation s →∗
R t there is a bo(k)-derivation of

same length. The class of length preservation bounded TRSs BOLP is
⋃

k∈N BOLP(k). This
class contains several already known TRSs: the inverse left-basic semi-Thue systems [12],
the linear growing TRS [8], the inverse Linear-Finite-Path-Overlapping TRSs [13], and the
strongly bottom-up TRSs [4]. Note that a version of this article with full proofs is available
at http://dept-info.labri.fr/~sylvestr/research/papers/.

2. Preliminaries

2.1. Words and Terms

The set N is the set of positive integers. A finite word over an alphabet A is a map
u : [0, ℓ− 1] → A, for some ℓ ∈ N. The integer ℓ is the length of the word u and is denoted
by |u|. The set of words over A is denoted by A∗ and endowed with the usual concatenation
operation u, v ∈ A∗ 7→ u · v ∈ A∗. The empty word is denoted by ε. A word u is a prefix
of a word v iff there exists some w ∈ A∗ such that v = u · w. We denote by u � v the fact
that u is a prefix of v. Assuming a total order on A, we denote by �Lex the lexicographic
order on words.

We assume the reader familiar with terms. We call signature a set F of symbols with
fixed arity ar : F → N. The subset of symbols of arity m is denoted by Fm.

As usual, a set P ⊆ N∗ is called a tree-domain (or, domain, for short) iff for every
u ∈ N∗,
i ∈ N:

(u · i ∈ P ⇒ u ∈ P) & (u · (i+ 1) ∈ P ⇒ u · i ∈ P).

We call P ′ ⊆ P a subdomain of P iff, P ′ is a domain and, for every u ∈ P, i ∈ N:

(u · i ∈ P ′ & u · (i+ 1) ∈ P) ⇒ u · (i+ 1) ∈ P ′.

A (first-order) term on a signature F is a partial map t : N∗ → F whose domain is a
non-empty tree-domain and which respects the arities. We denote by T (F ,V) the set of
first-order terms built upon the signature F ∪ V , where F is a finite signature and V is a
denumerable set of variables of arity 0.

The domain of t is also called its set of positions and denoted by Pos(t). The set of
variables of t is denoted by Var(t). The root symbol of t, t(ǫ) is also denoted by root(t). The
set of variable positions (resp. non variable positions) of a term t is denoted by PosV(t) (resp.
PosV(t)). The set of leaves of t is the set of positions u ∈ Pos(t) such that u ·N∩Pos(t) = ∅.
It is denoted by Lv(t). A branch is a set of positions P satisfying: there exists u ∈ Lv(t)
such that v ∈ P iff v � u. We write Pos+(t) for Pos(t)\{ǫ}. Given v ∈ Pos+(t), its father
fth(v) is the position u such that v = u ·w and |w| = 1. Given a term t and u ∈ Pos(t) the
subterm of t at u is denoted by t/u and defined by Pos(t/u) = {w | u · w ∈ Pos(t)} and
∀w ∈ Pos(t/u), t/u(w) = t(u · w). A term which does not contain twice the same variable
is called linear. Given a linear term t ∈ T (F ,V), x ∈ Var(t), we shall denote by pos(t, x)
the position of x in t. The depth of a term t is inductively defined by:

• dpt(t) := 0 if t ∈ V ,
• dpt(t) := 1 if t ∈ F0,

344 I. DURAND, G. SÉNIZERGUES, AND M. SYLVESTRE

• dpt(t) := 1 +max({dpt(t/i)), i ∈ {0 , . . . ,n − 1}}) if root(t) ∈ Fn.

A term containing no variable is called ground. The set of ground terms is T (F). Among
all the variables, there is a special one �. A term containing exactly one occurrence of
� is called a context. A context is usually denoted as C[]. If v is the position of �
in C[], C[t] denotes the term C[] where t has been substituted at position v. We also
denote by C[]v such a context and by C[t]v the result of the substitution. We denote by
|t| := Card(Pos(t)) the size of a term t. A substitution σ is a mapping from V to T (F ,V).
The substitution σ extends uniquely to a morphism σ : T (F ,V) → T (F ,V), where
σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)), for each f ∈ F , ti ∈ T (F ,V). Let t be a linear term
and PosV(t) = {u1, . . . , un}, where the ui are given in lexicographic order. The term t is
said to be standardized if for all i, 1 ≤ i ≤ n, t/ui = xi.

2.2. Term rewriting systems

A rewrite rule built upon the signature F is a pair l → r of terms in T (F ,V). We
call l (resp. r) the left-handside (resp. right-handside) of the rule (lhs and rhs for short).
A rule is linear if both its left and right-handsides are linear. A rule is left-linear (resp.
right-linear) if its left-handside (resp. right-hanside) is linear. Given a set of rules R, we
denote by LHS(R) the set {l | l → r ∈ R}. A TRS is a pair (R,F) where F is a signature
and R a set of rewrite rules built upon the signature F . When F is clear from the context
or contains exactly the symbols of R, we may omit F and write simply R. The TRS R is
said to respect the variable restriction if for every l → r ∈ R, Var(r) ⊆ Var(l). We denote
by (R−1,F) the TRS consisting of the rules {r → l|l → r ∈ R}. Given a TRS (R,F), and
two terms t1, t2, we say that there exists a R-rewriting step between t1 and t2 in R and
write t1 →R t2 if there exists a context C[], a rule l → r ∈ R, and a substitution σ such
that t1 = C[lσ] and t2 = C[rσ]. The term lσ is called a redex of t1, and rσ is called the
contractum of lσ. Given some n ≥ 0, a derivation in R of length n from s to t is a sequence
of the form s = s0 →R s1 →R . . . →R sn = t. The relation →n

R is defined as follows:
s →n t if there exists a derivation of length n from s to t. The relation →∗

R (resp. →+
R) is

defined by: s →∗ t (resp. s →+ t) if there is some n ≥ 0 (resp. n > 0) such that s →n
R t.

More generally, the notation defined in [9] will be used in proofs. A TRS is left-linear (resp.
right-linear) if each of its rules is left-linear (resp. right-linear). A TRS is linear if each of
its rules is linear. A TRS R is growing [8] if for every rule l → r ∈ R, and every occurrence
of a variable in Var(l)∩Var(r), this occurence has depth 0 or 1 in l. Two TRSs (R,F) and
(R′,F) are said to be equivalent if for all n ≥ 0, →n

R=→n
R′ .

3. Bounded rewriting

From now on, until the end of this paper, we suppose that all the TRSs satisfy the
variable restriction. In order to define bounded rewriting for linear TRS, we need some
marking tools. In the following we assume that F is a signature. We shall illustrate many
of our definitions with the following TRS

Example 3.1. F = {a, b, f, g, h, i}, R1 = {f(x) → g(x), g(h(x)) → i(x), i(x) → a, a → b}.

TERMINATION OF LINEAR BOUNDED TERM REWRITING SYSTEMS 345

3.1. Marking

We mark the symbols of a term using natural integers.

3.1.1. Marked symbols.

Definition 3.2. We define the (infinite) signature of marked symbols: FN := {f i | f ∈
F , i ∈ N}.
For j ∈ N, we denote by F≤j the signature: F≤j := {f i | f ∈ F , i ≤ j}. The mapping
m : FN → N maps every marked symbol to its mark: m(f i) = i.

3.1.2. Marked terms.

Definition 3.3. The terms in T (FN,V) are called marked terms.

The mapping m is extended to marked terms by: if t ∈ V ,m(t) := 0, otherwise,
m(t) := m(root(t)). For every f ∈ F , we identify f0 and f ; it follows that F ⊂ FN,
T (F) ⊂ T (FN) and T (F ,V) ⊂ T (FN,V). We use mmax(t) to denote the maximal mark of
a marked term t:
mmax(t) := max{m(t/u) | u ∈ Pos(t)}.

Example 3.4. m(a1) = 1,m(i0(a2)) = 0,m(h3(a0)) = 3,m(h1(x)) = 1,m(x) = 0,
mmax(i0(a1)) = 1,mmax(x) = 0.

Definition 3.5. Given t ∈ T (FN,V) and i ∈ N, we define the marked term ti whose marks
are all equal to i:

if t is a variable x ti := x
if t is a constant c ti := ci

otherwise t = f(t1, . . . , tn),where n ≥ 1 ti := f i(t1
i, . . . , tn

i)

This marking extends to sets of terms S (Si := {ti | t ∈ S}) and substitutions σ (σi : x 7→

(xσ)i).
Notation: in the sequel, given a term t ∈ T (F ,V), t will always refer to a term of T (FN,V)

such that t
0
= t.

Definition 3.6. For every marked term t, we denote by ̂t the unique marked term such
that:

̂t
0
:= t

0
, ∀u ∈ PosV(t),m(̂t/u) := max(m(t/u), |u|+ 1).

We extend this definition to marked substitutions (̂σ : x 7→ ̂xσ) and sets of terms

(̂S := {̂s | s ∈ S}).

Example 3.7. Let t1 = f0(f1(x)), and t2 = f2(f2(h2(a2))). We have: ̂t1 = f1(f2(x)),
̂t2 = f2(f2(h3(a4))).

346 I. DURAND, G. SÉNIZERGUES, AND M. SYLVESTRE

3.2. Marked rewriting

Let R be a linear TRS, and let s ∈ T (FN). Let us suppose that s decomposes as

s = C[lσ]v, with (l, r) ∈ R, (3.1)

for some marked context C[]v and substitution σ. We then write s ◦→ t when

s = C[lσ], t = C[r̂σ]. (3.2)

More precisely, an ordered pair of marked terms (s, t) is linked by the relation ◦→ iff,
there exists C[]v, (l, r), l, σ fulfilling equations (3.1-3.2).

The map s 7→ s0 (from marked terms to unmarked terms) extends into a map from
marked derivations to unmarked derivations: every

s0 = C0[l0σ0]v0 ◦→ C0[r0̂σ0]v0 = s1 ◦→ . . . ◦→ Cn−1[rn−1σ̂n−1]vn−1
= sn (3.3)

is mapped to the derivation

s0 = C0[l0σ0]v0 → C0[r0σ0]v0 = s1 → . . . → Cn−1[rn−1σn−1]vn−1
= sn. (3.4)

The context Ci[]vi , the rule (li, ri), the marked version l̄i of li and the substitution σi
completely determine si+1. Thus, for every fixed pair (s0, s0), this map is a bijection from
the set of derivations (3.3), to the set of derivations (3.4).

From now on, each time we deal with a derivation s →∗ t between two terms s, t ∈
T (F ,V), we may implicitly decompose it as (3.4) where n is the length of the derivation,
s = s0 and t = sn.

3.3. Bounded derivations

Definition 3.8. The marked derivation (3.3) is k-bounded (bo(k)) if the following assertions
hold for every 0 ≤ i < n :

• if li /∈ V , mmax(li) ≤ k,
• if li ∈ V , sup({m(si/u)|u ≺ vi}) ≤ k.

The derivation (3.4) is bo(k) if the corresponding marked derivation (3.3) is bo(k).

Example 3.9. Let us consider the following derivations in R1:

(1) f(h(a)) → g(h(a)) → i(a) → a

(2) f(h(a)) → g(h(a)) → g(h(b)) → i(b) → a

The first derivation is bo(1) since the associated marked derivation is bo(1):
f(h(a)) ◦→ g(h1(a2)) ◦→ i(a2) ◦→ a. The second one is bo(2):
f(h(a)) ◦→ g(h1(a2)) ◦→ g(h1(b)) ◦→ i(b1) ◦→ a.

Let k ∈ N. It is clear that the composition of two bo(k) marked derivations is bo(k)
too, but the composition of two unmarked bo(k)-derivations might not be bo(k), as shown
in the following example:

Example 3.10. The two derivations in R1: f(h(a)) → g(h(a)) and g(h(a)) → i(a) → a are
bo(0) while the derivation: f(h(a)) → g(h(a)) → i(a) → a is not bo(0) (but is bu(1)).

In the following we thus (mainly) manipulate marked bo(k)-derivations. Let us intro-
duce some convenient notations.

TERMINATION OF LINEAR BOUNDED TERM REWRITING SYSTEMS 347

Definition 3.11. Let n, k ∈ N. The binary relation bo(k) ◦→
n
R over T (FN) is defined

by: s bo(k) ◦→
n
R t iff there exists a bo(k)-marked derivation from s to t of length n. The

binary relation bo(k) ◦→
∗
R is defined by: s bo(k) ◦→

∗
R t iff there exists m ∈ N such that

s bo(k) ◦→
m
R t. The binary relation bo(k)→

n
R over T (F) is defined by: s bo(k)→

n
R t iff there

exists a bo(k)-derivation from s to t of length n. The binary relation bo(k)→
∗
R is defined

by: s bo(k)→
∗
R t iff there exists m ∈ N such that s bo(k)→

m
R t.

Next lemma shows that the study of bo(k)-derivations can be reduced to the study of
bo(0)-derivations.

Lemma 3.12. Let R be a linear TRS and let k > 0. There exists an equivalent linear TRS
R′ such that: for all n ∈ N, bo(k)→

n
R= bo(0)→

n
R′.

Sketch of proof. Let R′ be the TRS consisting of the rules:

{lσ → rσ | l → r ∈ R, σ : V → T (F ,V), lσ is standardized, ∀x ∈ V , dpt(xσ) ≤ k}.

One can easily check that R′ is finite, equivalent to R and that, for all n ∈ N,

bo(k)→
n
R= bo(0)→

n
R′ .

Example 3.13. Let us consider the bo(1)-derivation in example 3.9
f(h(a)) → g(h(a)) → i(a) → a and the TRS R′ built for R1 and k = 1. We have:

R′ ={f(x1) → g(x1), f(f(x1)) → g(f(x1)), f(g(x1)) → g(g(x1)),

f(h(x1)) → g(h(x1)), f(i(x1)) → g(i(x1)), f(a) → g(a), f(b) → g(b),

g(h(x1)) → i(x1), g(h(f(x1))) → i(f(x1)), g(h(g(x1))) → i(g(x1)),

g(h(h(x1))) → i(h(x1)), g(h(i(x1))) → i(i(x1)), g(h(a)) → i(a),

g(h(b)) → i(b), i(x1) → a, i(f(x1)) → a, i(g(x1)) → a,

i(h(x1)) → a, i(i(x1)) → a, i(a) → a, i(b) → a, a → b}

and the following bo(0)-derivation in R′:

f(h(a)) ◦→f(h(x1))→g(h(x1)) g(h(a
1)) ◦→h(x1)→i(x1) i(a

1) ◦→i(x1)→a a.

3.4. Bounded systems

We introduce here a hierarchy of classes of linear TRSs, based on their ability to meet
the bounded restriction over derivations.

Definition 3.14. Let p be some property of derivations. A TRS (R,F) is called P if
∀s, t ∈ T (F) such that s →∗

R t there exists a p-derivation from s to t.

We denote by BO(k) the class of BO(k) TRSs. One can check that, for every k > 0,
BO(k − 1) (BO(k). Finally, the class of bounded systems BO is defined by: BO =
⋃

k∈N BO(k).
The class BO contains several already known classes of TRS (see section 7.4).

348 I. DURAND, G. SÉNIZERGUES, AND M. SYLVESTRE

Remark 3.15. The most obvious extension of the BO definition to left-linear TRSs (keeping
the marking process and the definitions unchanged) is not really interesting since even the
TRS consisting of the rules {f(x) → g(x, x), a → b} is not in BO: for every k ∈ N there is a
bo(k + 1)-derivation:

f(f(. . . f(a) . . .)) → g(f1(f2(. . . (fk(ak+1) . . .)), f1(f2(. . . (fk(ak+1) . . .)))

→ g(f1(f2(. . . (fk(ak+1) . . .)), f1(f2(. . . (fk(b) . . .)))

but there derivation from f(f(. . . f(a) . . .)) to g(f(f(. . . (f(a) . . .)), f(f(. . . (f(b) . . .))) that is
bo(k).

Let R be some linear TRS over the signature F . Let us introduce a new unary symbol
f1 /∈ F and consider the signature F1 = F ∪ {f1}. We then define

Rf1 = {l → r ∈ R, l /∈ V} ∪ {C[l] ◦→ C(r)|l → r ∈ R, dpt(C []) = 1}.

It is clear that Rf1 is a linear finite TRS over F1 such that LHS(Rf1) ∩ V = ∅.

Lemma 3.16. For every s, t ∈ T (F), and integers k ≥ 0, n ≥ 0,

(1) s →n
R t ⇔ f1(s) →

n
Rf1

f1(t)

(2) s bo(k)→
n
R t ⇔ f1(s) bo(k)→

n
Rf1

f1(t)

Definition 3.17. An infinite inverse bo(k)-derivation is a derivation s0 →R−1 s1 →R−1

. . . →R−1 sn . . . such that there exist (sm)m ∈ N, that satisfying: for all i ∈ N, si+1 bo(k)◦→R

si.

Definition 3.18. We say that the TRS R bo(k)-terminates (respectively inverse bo(k)-
terminates) on a term s iff there is no infinite bo(k)-derivation (resp. inverse bo(k)-
derivation) starting from s in R.
The bo(k)-termination (resp. inverse bo(k)) problem for a linear TRS R is the following
problem:
INSTANCE: A linear TRS R, an integer k, and a term s.
QUESTION: Does R bo(k)-terminate (reps. inverse bo(k)-terminate) on s ?

Definition 3.19. We say that the TRSR u-bo(k)-terminates (respectively inverse u-bo(k)-
terminates) iff there is no infinite bo(k)-derivation (resp. inverse bo(k)-derivation) in R.
The u-bo(k)-termination (resp. inverse u-bo(k)) problem for a linear TRS R is the following
problem:
INSTANCE: A linear TRS R, and an integer k.
QUESTION: Does R u-bo(k)-terminate ?

The main result of this paper is the decidability of the u-bo(k)-termination, bo(k)-
termination, inverse u-bo(k)-termination, and inverse bo(k)-termination problems. By
lemma 3.16, it is sufficient to prove these results for TRSs R satisfying LHS(R) ∩ V = ∅.
So, from now on until the end of section 6, we suppose that all the TRSs are satisfying this
condition.

4. Simulation of bounded derivations by a ground rewriting system

In this section, we prove that a bo(0)-derivation can be simulated using a ground TRS.

TERMINATION OF LINEAR BOUNDED TERM REWRITING SYSTEMS 349

Definition 4.1. Let # be a constant such that # /∈ F0. Let A be the (infinite) TRS on
T ((F ∪ {#}N)) consisting of the rules:

{f i(c1, . . . , cn) → #i | i ∈ N, f ∈ Fn, n > 0, c1, . . . , cn ∈ (F0 ∪ {#})N}.

For j ∈ N, we denote by A≤j the restriction of A on T ((F ∪{#})≤j) consisting of the rules:

{f i(c1, . . . , cn) → #i | i ≤ j, f ∈ Fn, n > 0, c1, . . . , cn ∈ (F0 ∪ {#})≤j}.

Lemma 4.2. Let s, t ∈ T ((F ∪ {#})N). If s →∗
A t, then ̂s →∗

A
̂t.

Definition 4.3. A marked term t ∈ T ((F ∪ {#})N,V) is said to be smoothly-increasing
(s-increasing for short) iff for every branch b, the sequence of marks on b has the form:

0, 0, . . . , 0, 1, 2, . . . , ℓ

i.e. more formally: for every w ∈ Lv(t), there exists some u � w such that,

• ∀v ≺ u,m(t̄/v) = 0,
• m(t̄/u) ∈ {0, 1},
• ∀v � u, ∀i ∈ N, if v · i � w then m(t̄/v · i) = m(t̄/v) + 1.

A substitution σ is said to be s-increasing if for every x ∈ V , the term xσ is s-increasing.

Note that by definition of a s-increasing term t, and since the variables are all marked
by 0, for all positions u ∈ PosV(t), for all v � u, m(t/v) = 0.

Example 4.4. The terms f0(h1(x)) and f2(h1(a2)) are not s-increasing. The terms
f0(f0(h1(a2))) and f1(a2) are s-increasing.

Lemma 4.5. Let C[] and t be s-increasing. The term C[t] is s-increasing.

Lemma 4.6. Let s be a s-increasing term and s bo(0) ◦→
∗
R t. The marked term t is s-

increasing.

Definition 4.7. Let t ∈ T ((F∪{#})N,V) be a marked term and P be a subdomain of Pos(t)
such that PosV(t) ⊆ P . We define Red(t, P) as the unique term such that Pos(Red(t, P)) =
P and such that t →∗

A Red(t, P).

The term Red(t, P) is obtained from t by substituting the subtree t/u by the symbol

#m(t/u), for every position u ∈ P\Lv(t) such that ∀i ∈ N, u · i /∈ P .

Lemma 4.8. Let t ∈ T ((F∪{#})N,V) and P be a subdomain of Pos(t) such that PosV(t) ⊆

P . We have Red(̂t, P) = ̂Red(t, P).

4.1. Top of a term

Definition 4.9 (Top domain of a term). Let t be a s-increasing term. We define the top
domain of t, denoted by Topd(t) as: u ∈ Topd(t) iff u ∈ Pos(t) ∧m(t/u) ≤ 1.

Note that by definition of a s-increasing term, Topd(t) is a subdomain of t and since
for every u ∈ PosV(t), m(t/u) = 0, we have PosV(t) ⊆ Topd(t).

Definition 4.10 (Top of a term). Let t be a s-increasing term. We denote by Top(t) the
term Red(t,Topd(t)).

350 I. DURAND, G. SÉNIZERGUES, AND M. SYLVESTRE

Example 4.11. Let t1 = f0(h1(a2)), t2 = f0(h0(a1)). We have: Topd(t1) = {ǫ, 0},
Topd(t2) = Pos(t2),Top(t1) = f(#1),Top(t2) = t2.

Intuitively, the top of a term t will be the only part of t which could be used in a bo(0)-
derivation starting from t. We extend this definition to sets of s-increasing terms (Top(S) :=
{Top(t) | t ∈ S}) and to s-increasing marked substitutions (Top(σ) : x 7→ Top(xσ)).

Lemma 4.12. Let C[]v, t1 be s-increasing and let t = C[t1]v. We have:

Top(t) = Top(C[]v)[Top(t1)]v.

Lemma 4.13. Let t and σ be s-increasing. We have: Top(tσ) = Top(t)Top(σ).

4.2. The ground system S

Definition 4.14. For a linear TRS R, we consider the following ground TRS S over
T ((F ∪ {#})≤1) consisting of all the rules of the form: lσ → r̂σ, where l → r is a rule of
R, and σ : V → (F0 ∪ {#})≤1.

Note that since σ : V → (F0 ∪ {#})≤1, by definition of ,̂ ̂σ : V → (F0 ∪ {#})≤1. The
TRS S ∪ A≤1 will be used to simulate the bo(0)-derivations in R.

4.3. Lifting lemma

Lemma 4.15. Let s′ ∈ T ((F∪{#})N), s, t ∈ T ((F∪{#})≤1). Assume that s′ →∗
A s →S t.

There exists a term t′ ∈ T ((F ∪ {#})N) such that s′ bo(0) ◦→R t′ →∗
A t.

Proof. We have s →S t. This means that s = C[lσ]v, t = C[r̂σ]v, for some rule l → r ∈ R,
marked context C[]v, and marked substitution σ : V → (F0 ∪ {#})≤1. Since s′ →∗

A s, and

since A goes from bottom to top, there exists a context C
′
[]v, a substitution σ′ such that

s′ is of the form s′ = C ′[lσ′]v, with C
′
[]v such that C

′
[] →∗

A C[], and σ′ such that for every

x ∈ Var(l), xσ′ →∗
A xσ. By definition of bo(0) ◦→, s′ = C ′[lσ′]v bo(0) ◦→R t′ = C

′
[r ̂σ′]v. By

Lemma 4.2, for every x ∈ Var(r), x̂σ′ →∗
A x̂σ. Hence, t′ = C ′[r ̂σ′] →∗

A C[r ̂σ′] →∗
A C[r̂σ] = t.

We have built a derivation: s′ bo(0) ◦→ t′ →∗
A t. The result holds.

Example 4.16. Let us consider the TRS S built from the TRS R1.

S = {f(#) → g(#1), f(#1) → g(#1), f(a) → g(a1), f(a1) → g(a1),

f(b) → g(b1), f(b1) → g(b1), g(h(#)) → i(#1), g(h(#1)) → i(#1),

g(h(a)) → i(a1), g(h(a1)) → i(a1), g(h(b)) → i(b1), g(h(b1)) → i(b1),

i(#) → a, i(#1) → a, i(a) → a, i(a1) → a, i(b) → a, i(b1) → a, a → b}.

We have the following derivation:

g(h(a)) →A,a→# g(h(#)) →S,f(h(#))→i(#1)) i(#
1)).

In the proof of lemma 4.15, we build the derivation:

g(h(a)) bo(0) ◦→R1,g(h(x))→i(x) i(a
1)) →A,a1→#1 i(#1).

TERMINATION OF LINEAR BOUNDED TERM REWRITING SYSTEMS 351

4.4. Projecting lemma

Lemma 4.17 (projecting lemma). Let s ∈ T (FN) be s-increasing, and s bo(0) ◦→R t.

There is a derivation: Top(s) →∗
A≤1→S Top(t).

Proof. By definition of bo(0) ◦→, there exist a context C[]v, a marked substitution σ, and
a rule
l → r ∈ R such that s = C[lσ]v and t = C[r̂σ]v. Since s is s-increasing, by lemma 4.6, t
is s-increasing, and Top(t) is well defined. Moreover, the marked context C[]v, the substi-
tution σ, and the terms r and l are s-increasing. So, by lemmas 4.12 and 4.13: Top(s) =

Top(C[]v)[lTop(σ)]v, and, Top(t) = Top(C[]v)[rTop(̂σ)]v. By definition of Top, Top(s) ∈

T ((F ∪{#})≤1). Let us define the substitution τ by τ : x 7→ Red(xTop(σ),Topd(xTop(̂σ))).
By definition of Red, Top(s) →A Top(C[]v)[lτ]. Moreover, Top(s) ∈ T ((F ∪ {#})≤1).
Thus, we have Top(s) →∗

A≤1 Top(C[]v)[lτ]v. Let x ∈ Var(l). Let us prove that xτ ∈

(F0 ∪ {#})≤1. Let u ∈ Pos(xσ). If |u| ≥ 1, by definition of ̂, we have m(x̂σ/u) ≥ 2, and

u /∈ Topd(xTop(̂σ)). Thus, xτ is reduced to a constant, and since Top(s) ∈ T ((F ∪{#})≤1),

xτ ∈ (F0 ∪{#})≤1. Hence, the rule lτ → r̂τ belongs to S and Top(s) →∗
A≤1 Top(C)[lτ] →S

Top(C)[r̂τ]. By lemma 4.8, for all x ∈ Var(r),

x̂τ = ̂
Red(xTop(σ),Topd(xTop(̂σ))) = Red(x̂Topσ),Topd(xTop(̂σ)) = xTop(̂σ).

So, ̂τ = Top(̂σ), and Top(t) = Top(C[]v)[rTop(̂σ)]v = Top(C[]v)[r̂τ]v. We have built a
derivation: Top(s) →∗

A≤1→S Top(t). The result holds.

Example 4.18. Let us consider the TRS R1, S built for this TRS, and the following bo(0)
rewriting step: s = f(f(g1((a2)))) ◦→R1,f(x)→g(x) t = g(f1(g2(a3))).

We have Top(s) = f(f(#1)),Top(t) = g(#1), and the following derivation:
f(f(#1)) →A≤1 f(#) →S,f(#)→g(#1) g(#

1).

Definition 4.19. Let us define the relation �m on marked terms by:

s �m t ⇔ s = t ∧ ∀u ∈ Pos(s),m(s/u) < m(t/u).

Lemma 4.20. Let s →∗
S∪A≤1 t. For every term s′ �m s there exists a term t′ �m t such

that: s′ →∗
S∪A≤1 t′.

5. Decidability of termination problems

In this section, we prove that the u-bo(k)-termination and the bo(k)-termination prob-
lems are decidable.

Proposition 5.1. Let s0 ∈ T (FN). If the TRS S ∪A≤1 does not terminate on s0, then R
does not bo(0)-terminate on s0.

Proof. Assume that S ∪ A≤1 does not terminate on s0 ∈ T (FN). By lemma 4.20, since
s0 �m s0, there exists an infinite derivation in S ∪ A≤1 starting from s0. The TRS A≤1 is
obviously u-terminating. Thus, such an infinite derivation contains an infinite number of
steps in S and is of the form:

s0 →
∗
A≤1 s1 →S s2 →

∗
A≤1 s3 →S s4 →

∗
A≤1 . . . →S s2n →∗

A≤1

352 I. DURAND, G. SÉNIZERGUES, AND M. SYLVESTRE

We now show that repeated application of lemma 4.15 yields an infinite marked bo(0)-
derivation in R: first, consider s0 →

∗
A≤1 s1 →S s2. By lemma 4.15 there exists t1 such that

s0 bo(0) ◦→R t1 →∗
A s2. Since t1 →∗

A s2, we can apply lemma 4.15 to t1 →∗
A s3 →S s4. We

obtain a term t2 such that s0 bo(0) ◦→R t1 bo(0) ◦→R t2 →∗
A s4. Following this process, we

obtain an infinite sequence such that s0 bo(0) ◦→R t1 bo(0) ◦→R t2 bo(0) ◦→R . . . bo(0) ◦→R

tn We conclude that R does not bo(0)-terminate on s0.

Proposition 5.2. Let s0 ∈ T (F). If R does not bo(0)-terminate on s0, then S ∪A≤1 does
not terminate on s0.

Proof. If R does not bo(0)-terminate on s0, there is an infinite derivation:

s0 = s0 bo(0) ◦→R s1 bo(0) ◦→R . . . sn bo(0) ◦→R

The term s0 is s-increasing since it has no mark. Moreover, the step s0 bo(0) ◦→R s1 is
bo(0). By lemma 4.17, s0 = Top(s0) →

∗
A≤1→S Top(s1). Another application of lemma 4.17

on s1 bo(0) ◦→R s2 leads to a derivation: Top(s0) →+
S∪A≤1

Top(s1) →+
S∪A≤1

Top(s2).
Following this process, we obtain an infinite derivation:

Top(s0) →
+
S∪A≤1

Top(s1) →
+
S∪A≤1

. . .Top(sn) →
+
S∪A≤1

. . .

and S ∪ A≤1 does not terminate on Top(s0) = s0.

Theorem 5.3. The bo(0)-termination and u-bo(0)-termination problems are decidable.

Proof. By propositions 5.1 and 5.2, a linear TRS R bo(0)-terminates on a term s0 iff the
TRS S ∪ A≤1 terminates on s0. If R does not u-bo(0)-terminate, then by proposition 5.2,
the system S ∪ A≤1 does not u-terminate. Conversely, if S ∪ A≤1 does not u-terminate,
then there exists an infinite derivation starting from a term s0. By proposition 5.1, the
system R does not bo(0)-terminate on s0. So, R u-bo(0)-terminates iff the ground TRS
S∪A≤1 u-terminates. It is well known that the termination and the u-termination problems
are decidable for ground TRS (see e.g.[1]). Hence, the bo(0)-termination and u-bo(0)-
termination problems are decidable.

Corollary 5.4. The bo(k)-termination and the u-bo(k)-termination problem are decidable.

Proof. This is a straightforward consequence of theorem 5.3 and lemma 3.12.

Note that in general, for a BO(0) TRS, the u-bo(0)-termination property (respectively
the bo(0) termination property) and the u-termination (resp. termination) property are not
equivalent.

Definition 5.5. Let R be a BO(k) TRS. We say that R has the bo(k) length preservation
property if for every n ∈ N: →n

R= bo(k)→
n
R.

We denote by BOLP(k) the class of BO(k) TRSs that have the bo(k) length preservation
property. Finally, the class of bounded systems with the length preservation property is
denoted by BOLP. One can check that for every k > 0, BOLP(k − 1) (BO(k).

Example 5.6. Let R2 = {f(x) → g(x), g(a) → f(a)}. This TRS is BO(0) but does not have
the bo(0) length preservation property. There is a derivation of length 2: f(a) → g(a) → f(a),
but there is no bo(0)-derivation of length 2 from f(a) to f(a) (there is one of length 0).
Moreover, this TRS does not u-terminate but u-bo(0)-terminates.

Corollary 5.7. The termination and u-termination problems for TRSs in BOLP(k) are
decidable.

TERMINATION OF LINEAR BOUNDED TERM REWRITING SYSTEMS 353

Proof. Let R ∈ BOLP(k) and let s0 ∈ T (F). Clearly, if R does not bo(k)-terminate on
s0, then the TRS R does not terminate on s0. Conversely, let us suppose that there is an
infinite derivation starting from s0: s0 →R s1 →R s2 →R . . . →R sn Since R has the
bo(k) length preservation property, there is for each m ∈ N a marked bo(k)-derivation Dm

such that Dm = s0 bo(k) ◦→
m
R sm. The TRS R has a finite number of rules, so there is only

a finite number of possible one step rewriting starting from s0. Hence, there exists a term

s′1 such that the set {m′ | Dm′ = s0 bo(k) ◦→R s′1 bo(k) ◦→
m′−1
R sm′} is infinite. Repeating

this process, we obtain an infinite derivation:

s0 bo(k) ◦→R s′1 bo(k) ◦→R . . . bo(k) ◦→R s′n bo(k) ◦→

Hence, the TRS R does not bo(k)-terminate on s0. We have established that, for all
s0 ∈ T (F):

R bo(k)-terminates on s0 ⇔ R terminates on s0.

So, for R, the termination problem is equivalent to the bo(k)-termination problem, and the
u-termination problem is equivalent to the u-bo(k)-termination problem. By corollary 5.4,
bo(k)-termination and u-bo(k) termination problems are decidable. Hence, termination and
u-termination problems for TRSs in BOLP(k) are decidable.

6. Decidability of inverse termination problems

Definition 6.1. Let s ∈ T (FN,V). We denote by N0(s) the number of positions u ∈ Pos(s)
such that m(s/u) 6= 0: N0(s) := Card({u ∈ Pos(s)|m(s/u) 6= 0}).

Lemma 6.2. Let R be a linear TRS such that for all l → r ∈ R, Var(l) = Var(r) and let
s,t be s-increasing. If s bo(0) ◦→R t then N0(s) ≤ N0(t). Moreover, if N0(s) = N0(t), then

Top(s) →S Top(t) (where S is the ground TRS introduced in 4.14).

Proposition 6.3. The inverse u-bo(k)-termination problem is decidable.

Sketch of proof. By lemma 3.12, we only have to prove this result for the inverse u-bo(0)-
termination problem. Let R be a linear TRS. If there exists a rule l → r such that
Var(r) ⊂ Var(l), one can easily check that there exists an infinite inverse bo(0)-derivation
in R−1 using only the rule r → l. Thus, we can suppose that Var(r) = Var(l). Let us
prove that R inverse u-bo(0)-terminates iff the ground TRS S−1 u-terminates. Clearly, if
there is an infinite derivation in S−1, R−1 does not inverse bo(0)-terminate. Conversely,
let s0 →R−1 s1 →R−1 . . . →R−1 sn →R−1 . . . be an infinite inverse bo(0)-derivation. There
exists (sm)m∈N, such that ∀i ∈ N, si+1 bo(0) ◦→ si. Without lost of generality, we can
suppose that the si are s-increasing. By lemma 6.2, there is an integer N such that for
all m ≥ N , : N0(sm) = N0(sN). By lemma 6.2, for all m ≥ N , Top(sm+1) →S Top(sm).
Hence, there is an infinite derivation in S−1: Top(sN) →S−1 Top(sN+1) →S−1 Since
the u-termination problem for ground TRS is decidable, the result holds.

Proposition 6.4. The inverse bo(k)-termination problem is decidable.

Lemma 6.5. Let R be a BOLP(k) TRS. The system R−1 u-terminates (respectively termi-
nates on s) iff R inverse u-bo(k)-terminates (resp. bo(k)-terminates on s).

Corollary 6.6. Let R be a BOLP(k) TRS. The inverse u-termination and inverse termi-
nation problems are decidable.

354 I. DURAND, G. SÉNIZERGUES, AND M. SYLVESTRE

7. BO-systems versus BU-systems

7.1. Bottom-up derivations

We now release the hypothesis that every TRS R satisfies LHS(R)∩V = ∅. The class of
BO linear TRSs is closely related to the class of bottom-up TRSs BU introduced in [4] in the
following sense: every BU TRS is BO, and for every BO TRS, there is an equivalent TRS
which is BU. The BU TRSs are also defined using marking tools. The marked derivation
used to define BU TRS will be denoted by ⊲→. Let us recall some of the definitions given
in [4].

The right-action ⊙ of the monoid (N,max, 0) over the set FN consists in applying the
operation max on every mark: for every t̄ ∈ FN, n ∈ N,

Pos(t̄⊙ n) := Pos(t̄), ∀u ∈ Pos(t̄),m((t̄⊙ n)/u) := max(m(t̄/u), n),

(t̄⊙ n)0 = t̄0

For every linear marked term t̄ ∈ T (FN,V) and variable x ∈ Var(t̄), we define:

M(t̄, x) := sup{m(t/w) | w < pos(t, x)}+ 1. (7.1)

Let s ∈ T (FN) and t ∈ T , and let us suppose that s ∈ T (FN) decomposes as

s = C[lσ]v, with (l, r) ∈ R, (7.2)

for some marked context C[]v and substitution σ. We define a new marked substitution σ

(such that σ
0
= σ0) by: for every x ∈ Var(r),

xσ := (xσ)⊙M(l, x). (7.3)

We then write s ⊲→ t when
s = C[lσ], t = C[rσ]. (7.4)

The map s 7→ s0 (from marked terms to unmarked terms) extends into a map from
marked derivations to unmarked derivations: every derivation d:

s0 = C0[l0σ0]v0 ⊲→ C0[r0σ0]v0 = s1 ⊲→ . . . ⊲→ Cn−1[rn−1σn−1]vn−1
= sn (7.5)

is mapped to the derivation d:

s0 = C0[l0σ0]v0 → C0[r0σ0]v0 = s1 → . . . → Cn−1[rn−1σn−1]vn−1
= sn. (7.6)

Definition 7.1 ([4]). The marked derivation (7.5) is weakly bottom-up if, for every 0 ≤ i <
n, li /∈ V ⇒ m(li) = 0, and li ∈ V ⇒ sup{m(si/u) | u < vi} = 0.

Definition 7.2 ([4]). The derivation (7.6) is weakly bottom-up if the corresponding marked
derivation (7.5) starting from the same term s = s is weakly bottom-up.

We shall abbreviate “weakly bottom-up” to wbu.

Definition 7.3 ([4]). A derivation is bu(k) if it is wbu and, in the corresponding marked
derivation ∀0 ≤ i ≤ n, mmax(si) ≤ k.

TERMINATION OF LINEAR BOUNDED TERM REWRITING SYSTEMS 355

7.2. Bottom-up systems

We denote by BU(k) the class of bu(k) systems. We define the class of bottom-up
systems, denoted BU, by: BU =

⋃

k∈N BU(k). A system is said to be strongly bu(k) iff every
wbu derivation is bu(k). The class of strongly BU(k) systems is denoted by SBU(k). We
define strongly bottom-up systems, denoted SBU by: SBU =

⋃

k∈N SBU(k).

7.3. Equivalence between bounded rewriting and bottom-up rewriting

Proposition 7.4. Let R be a TRS, let e = max({dpt(l)|l → r ∈ R}) and let k ∈ N. The
following assertions hold:

(1) if R is BU(k), then R is BO(k · e),
(2) if R is SBU(k) then R is BOLP(k · e),
(3) if R is BO(k), there is an equivalent TRS R′ in BU(1).

Definition 7.5. A TRS (R,F) is said to inverse-preserves rationality if for every recog-
nizable set T ⊆ T (F), the set (→∗

R)[T] := {s ∈ T (F) | ∃t ∈ T, s →∗
R t} is recognizable

too.

From the equivalence between BU and BO and the inverse-preservation of rationality
by BU TRSs [4] we obtain:

Proposition 7.6. Every BO TRS inverse-preserves rationality.

7.4. Classes of systems in BOLP

The class SBU(1) contains several classes of TRSs [4]. Among them, there are:

• the inverse left-basic semi-Thue systems (viewed as unary term rewriting systems)
[12],

• the linear growing term rewriting systems [8],
• the inverse Linear-Finite-Path-Overlapping TRSs [13],
• the strongly bottom-up TRSs [4].

By corollaries 5.7 and 6.6, for all these TRSs, the termination, u-termination, inverse ter-
mination, and u-inverse termination problems are decidable.

8. Related works and perspectives

Related works. We borrowed from [4] the idea of simulating derivations according to a
special strategy by some ground TRS. Note however, that the class BO(k) itself is new.
Its advantages over the class BU(k) is that its definition is simpler, it allows a simpler
proof of the projecting lemma and it makes lemma 3.12 true, while this lemma, mutatis
mutandis, does not hold for the class BU(k). The principle of replacing the original rewriting
relation over a signature F by some other binary relation over a marked-alphabet FN was
already used in [5] in order to get an algorithm for termination. However, the two marking
mechanisms turn out to be different:
- in the case of word rewriting systems, the marked derivation used here is not generated by
a semi-Thue system while the marked derivation of [5] is generated by an (infinite) semi-
Thue system;

356 I. DURAND, G. SÉNIZERGUES, AND M. SYLVESTRE

- the direct image of a rational set R by a system which is match-bounded over R is rational
while the direct image of a rational set by a BO(0) system needs not be rational; from this
point of view our BO(0)-semi-Thue systems resemble the inverses of match-bounded systems
(though, they are not comparable for inclusion);
- the marking process used here extends naturally to terms while the notion of [5] seems
more difficult to extend to terms (although interesting ways of doing such an extension have
been studied in [6] and successfully implemented).

Perspectives. Let us mention some natural perspectives of development for this work:

• it is tempting to extend the notion of bounded rewriting (resp. system) to left-linear
systems; this class would extend the class of growing systems studied in [11];

• we think that the direct image of a context-free language through bounded rewriting
is context-free;

• one should try to devise a class of semi-Thue systems that includes both the class
of BO(k) systems and the class of inverses of match-bounded systems, and still
possesses the interesting algorithmic properties of these classes.

Some work in these directions has been undertaken by the authors.

Acknowledgment. We thank the anonymous referees for their useful comments, which im-
proved the presentation of our results.

References

[1] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press, New York, NY,

USA, 1998.

[2] M. Dauchet. Simulation of Turing machines by a regular rewrite rule. Theoret. Comput. Sci., 103(2):409–

420, 1992.

[3] N. Dershowitz and J.P. Jouannaud. Rewrite Systems. In Handbook of theoretical computer science,

vol.B, Chapter 2, pages 243–320. Elsevier, 1991.

[4] I. Durand and G. Sénizergues. Bottom-up rewriting is inverse recognizability preserving. In Proceedings

RTA’07, volume 4533 of LNCS, pages 114–132. Springer-Verlag, 2007.

[5] A. Geser, D. Hofbauer, and J. Waldmann. Termination proofs for string rewriting systems via inverse

match-bounds. J. Automat. Reason., 34(4):365–385, 2005.

[6] A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On tree automata that certify termination of

left-linear term rewriting systems. Inform. and Comput., 205(4):512–534, 2007.

[7] G. Huet and D. Lankford. On the uniform halting problem for term rewriting systems. Rapport Laboria,

1978.

[8] F. Jacquemard. Decidable approximations of term rewriting systems. In Proceedings of the 7th Inter-

national Conference on Rewriting Techniques and Applications, volume 1103, pages 362–376, 1996.

[9] J.W. Klop. Term rewriting systems. In Handbook of Logic in Computer Science, Vol. 2, pages 1–116.

Oxford University Press, 1992.

[10] Y. Matiyasevich and G. Sénizergues. Decision problems for semi-Thue systems with a few rules. Theoret.

Comput. Sci., 330(1):145–169, 2005.

[11] T. Nagaya and Y. Toyama. Decidability for left-linear growing term rewriting systems. In RTA ’99:

Proceedings of the 10th International Conference on Rewriting Techniques and Applications, pages 256–

270, London, UK, 1999. Springer-Verlag.

[12] J. Sakarovitch. Syntaxe des langages de Chomsky, essai sur le determinisme. Thèse de doctorat d’État,

Université Paris VII, 1979.

[13] T. Takai, Y. Kaji, and H. Seki. Right-linear finite path overlapping term rewriting systems effectively

preserve recognizability. In RTA, pages 246–260, 2000.

[14] Terese. Term Rewriting Systems. Cambridge University Press, 2003.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 357-372
http://rewriting.loria.fr/rta/

POLYNOMIALLY BOUNDED MATRIX INTERPRETATIONS

JOHANNES WALDMANN

Hochschule für Technik, Wirtschaft und Kultur (FH) Leipzig, Fakultät IMN, PF 30 11 66, D-04251

Leipzig, Germany.

E-mail address: waldmann@imn.htwk-leipzig.de

Abstract. Matrix interpretations can be used to bound the derivational complexity of

rewrite systems. We present a criterion that completely characterizes matrix interpreta-

tions that are polynomially bounded. It includes the method of upper triangular inter-

pretations as a special case, and we prove that the inclusion is strict. The criterion can

be expressed as a finite domain constraint system. It translates to a Boolean constraint

system with a size that is polynomial in the dimension of the interpretation. We report

on performance of an implementation.

1. Introduction

Algorithms with polynomial complexity are widely accepted as practical. Since rewrit-
ing is a model of computation, we are interested in polynomial derivational complexity of
rewriting. The derivational complexity of a (terminating) rewrite system is the length of a
longest derivation in the system, measured as a function of the size of its initial term.

For a given terminating rewrite system, one can estimate its derivational complexity
by looking at the proof method that established termination. We investigate the method of
matrix interpretations [Hof06, End08]. If a rewrite system admits a matrix interpretation
that is strictly compatible with all rules, then its derivational complexity is at most expo-
nential. By restricting the shape of the matrices, we can lower this bound: if the matrices
are upper triangular, derivational complexity is polynomial [Mos08].

Matrix interpretations are in fact weighted finite tree automata [Wal09], and an upper
bound on the derivational complexity of the rewrite system is obtained from a bound for
the growth of of the weight function computed by the automaton. So it is natural to use
automata-theoretic results for a more detailed analysis. We can apply methods for the
determination of (non-)ambiguity of classical (non-weighted) automata. The connection is
immediate since a weighted automaton (over the standard semi-ring of natural numbers
with standard addition and multiplication) can be seen as a path-counting device for an
underlying classical automaton.

1998 ACM Subject Classification: F.4.2 [Grammars and Other Rewriting Systems] Term Rewriting,

F.1.1 [Models of Computation] Weighted Automata, F.1.3 [Complexity Measures and Classes] Machine-

independent Complexity, D.3.3 [Language Constructs and Features] Constraints.

Key words and phrases: derivational complexity of rewriting, matrix interpretation, weighted automata,

ambiguity of automata, finite domain constraints.

c© Johannes Waldmann
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.357

358 JOHANNES WALDMANN

The core of the paper is organized as follows. We show in Section 3 that it is enough
to consider weighted word automata even if the object is term rewriting. In Section 4 we
reduce the question of growth of a weighted automaton to the question of ambiguity of
non-weighted automata. Then in Section 5 we give an algorithm that decides polynomial
growth of an automaton. In Section 6 we show a rewriting system that has a polynomially
bounded matrix interpretation, but no triangular matrix interpretation. In Section 7 we
discuss the degree of the polynomial growth bounds. We then explain in Section 8 how
the decision algorithms can be realized by finite domain constraint systems, and how these
can be transformed to constraints in propositional logic. In Section 9 we report on the
performance of an implementation of our method.

2. Notation and Preliminaries

We recall some notions and notations.
Terms and Rewriting [Baa98]. For a ranked signature Σ = Σ0 ∪ . . .∪Σk, we denote by

Term(Σ, V) the set of terms over Σ with variables from a set V , and Term(Σ) := Term(Σ, ∅).
The size of a ground term is the total number of symbol occurrences: if f ∈ Σk, then
|f(t1, . . . , tk)| = 1 + |t1|+ . . .+ |tk|.

We use paths to address subterms. A path is a sequence of steps, and a step is a pair of a
function symbol and a number. The number indicates in which subtree the path continues.
Formally, from the given ranked signature Σ, we construct a path signature Σ′ ⊆ Σ× N of
unary symbols: for each f ∈ Σ of arity k, we have symbols (f, 1), . . . , (f, k) in Σ′. We often
abbreviate (f, i) by fi. For t ∈ Term(Σ, V), the set of all paths from the root of t to any
node is

Path(f(t1, . . . , tk)) = {ǫ} ∪
⋃

{(f, i) · p | 1 ≤ i ≤ k, p ∈ Path(ti)}.

E.g., Path(f(a, g(b))) = {ǫ, (f, 1), (f, 2), (f, 2)(g, 1)}. Note that |t| = |Path(t)|, the size of t
is the number of paths in t. We write tp for the function symbol that is reached by following
the path p ∈ Path(t):

(f(. . .))ǫ = f, (f(t1, . . . , tk))(f,i)·w = (ti)w.

A rewrite system R is a set of pairs of terms with variables, and it defines a rewrite
relation →R in the usual way.

The derivational complexity [Hof89] of a terminating rewrite system R is the function

dcR : N+ → N : n 7→ max{k | ∃t1, t2 ∈ Term(Σ) : |t1| ≤ n ∧ t1 →
k
R t2}.

Matrix Interpretations [End08]. Let N
d denote the set of d-dimensional vectors with

entries in N. We picture these as column vectors. We use these orders on N
d:

x ≥ y ⇐⇒ x1 ≥ y1 ∧ . . . ∧ xd ≥ yd, x > y ⇐⇒ x ≥ y ∧ x1 > y1.

We use k-ary linear functions F : (Nd)k → N
d that are given by k square matrices

M1, . . . ,Mk and a vector v via

F : (x1, . . . , xk) 7→ M1x1 + . . .+Mkxk + v.

We call v the absolute part of F , and write v = abs(F). A linear function is monotone (with
respect to >, in each argument separately) iff for each i, the top left entry of Mi is ≥ 1.

POLYNOMIALLY BOUNDED MATRIX INTERPRETATIONS 359

We define orderings on these functions. For F given by (M1, . . . ,Mk, v) and F ′ given
by (M ′

1, . . . ,M
′
k, v

′), we write

F ≥ F ′ ⇐⇒ v ≥ v′ ∧ ∀1 ≤ i ≤ k : Mi ≥ M ′
i

F > F ′ ⇐⇒ v > v′ ∧ F ≥ F ′

For any tuple of argument vectors ~x = (x1, . . . , xk), we have F ≥ F ′ ⇒ F (~x) ≥ F ′(~x) and
F > F ′ ⇒ F (~x) > F ′(~x).

A matrix interpretation assigns to each k-ary function symbol f ∈ Σk a k-ary linear
function [f] : (Nd)k → N

d. Since linear functions of this shape are closed with respect
to composition (substitution), an interpretation can be extended from function symbols to
terms (with variables).

We say an interpretation [·] is compatible with a rewrite rule l → r iff [l] > [r].

Example 2.1. Take Σ = Σ1 = {a, b}, and the monotone interpretation

[a] : x 7→

(

1 1
0 1

)

x, [b] : x 7→

(

1 0
0 1

)

x+

(

0
1

)

,

that is compatible with R = {ab → ba}, since

[ab] : x 7→

(

1 1
0 1

)

x+

(

1
1

)

> [ba] : x 7→

(

1 1
0 1

)

x+

(

0
1

)

.

If a monotone interpretation is compatible with each rule of a rewrite system R, then
t1 → t2 implies [t1] > [t2] and since > is well-founded on N

d, the system R is terminating.
More specifically, the length of each rewrite sequence starting in some t ∈ Term(Σ) is
bounded by the first (top) component of [t]. This follows from the definition of > on N

d.
We define the growth of the matrix interpretation [·] by growth[] : n 7→ max{[t]1 | t ∈

Term(Σ), |t| ≤ n}. Then the derivational complexity of a rewriting system R is bounded by
the growth of any matrix interpretation that is compatible with R.

Weighted Automata [Dro09]. We use automata with weights in N, corresponding to
matrix interpretations. We only need word (not tree) automata.

A N-weighted word automaton A = (Q, λ, µ, δ) over signature Σ consists of mappings

λ : Q → N, µ : Σ → Q2 → N, δ : Q → N,

where we picture states as numbers, Q = {1, . . . , d}, and λ ∈ N
1×d is the (row) vector

of initial weights, for each letter c ∈ Σ, µ(c) ∈ N
d×d is a (square) transition matrix, and

δ ∈ N
d×1 is the (column) vector of final weights. We extend µ homomorphically from letters

to words by µ(u · v) = µ(u) · µ(v). For a word w ∈ Σ∗, we denote by A(p, w, q) the entry

at position (p, q) in the matrix µ(w). If a = A(p, w, q), then we also write p
w:a
→A q, and we

define p
w

→A q as A(p, w, q) > 0. The weight A(w) computed by A for a word w ∈ Σ∗ is
given by λ · µ(w) · δ. The growth function growthA of an N-weighted automaton A over Σ
is defined as the function n 7→ max{A(w) | w ∈ Σn}.

For a signature of unary function symbols (as in string rewriting), a d-dimensional
matrix interpretation is a weighted automaton in this sense. It has states Q = {1, . . . , d, d+
1}. We have λ = (1, 0, . . . , 0) (the initial state is 1) and δ = (0, . . . , 0, 1)T (the final state
is d + 1), and for c ∈ Σ, we construct µ(c) as follows: The interpretation of c is given by
[c] : x 7→ M1x + v, for a matrix M1 ∈ N

d×d and a vector v ∈ N
d. From that we define

360 JOHANNES WALDMANN

µ(c) =

(

M v
0 . . . 0 1

)

∈ N
(d+1)×(d+1). Then for any w ∈ Σ∗, the weight A(w) computed by

the automaton is equal to the first (top) entry of the value [w] of w under the interpretation.

Example 2.2. [continued] The transition matrices of the automaton are given on the left,
and a pictorial representation is shown on the right:

µ(a) =

1 1 0
0 1 0
0 0 1

 , µ(b) =

1 0 0
0 1 1
0 0 1

 ,
1

// ?>=<89:;1
a:1

//

a:1

b:1

TT

?>=<89:;2
b:1

//

a:1

b:1

TT

?>=<89:;3
1

//

a:1

b:1

TT

One can now see that A (as a classical automaton) corresponds to the regular expression
Σ∗aΣ∗bΣ∗, and as a weighted automaton it computes, for input w, the number of index
pairs (i, j) with i < j such that wi = a ∧ wj = b, equivalently, the number of inversions
(with respect to b < a). This is exactly the function that is needed in the termination proof
of R = {ab → ba}.

3. Terms and Words

In this section we show that in order to bound the growth of a matrix interpretation
(for a term rewriting system), it is sufficient to bound the growth of a N-weighted word
automaton. The reason is that a matrix interpretation corresponds to a rather restricted
form of tree automaton, called path-separated [Kop09].

From a d-dimensional matrix interpretation [·] over Σ we construct a weighted word
automaton A over the path signature Σ′ ⊂ Σ × N with states QA = {1, . . . , d} by taking
Fi (the matrix that is the factor for the i-th argument in the linear function [f]) as the
transition matrix µA(fi). The initial weight vector λA is (1, 0, . . . , 0), and the final weight
vector δA is obtained as follows. Denote by S the set of absolute parts of the interpretation
{abs[f] | f ∈ Σ}. Then δA(i) is 1 if there is some v ∈ S with v(i) > 0. Otherwise, δA(i) = 0.
This automaton A can be used to bound the growth of the first (top) component [t]1 of the
interpretation of a term t.

Example 3.1. From the interpretation (for the unary signature {a, b}) on the left, we
construct the automaton on the right:

[a] : x 7→

1 1 1
0 1 0
0 0 1

 · x+

0
2
2

[b] : x 7→

1 1 0
0 0 1
0 1 0

 · x+

0
0
1

?>=<89:;2

a:1

1

//

b:1

��

1
// ?>=<89:;1

Σ:1

Σ:1
88

r
r

r
r

r
r

r
r

r

a:1 &&L
L

L
L

L
L

L
L

L

?>=<89:;3

a:1

TT 1
//

b:1

BB

The final weight vector (indicated by outgoing arrows) is δA = (0, 1, 1)T . State 1 is not final
because the top components of both absolute parts are zero. Note that the absolute parts
of the interpretation are ignored except for their signum.

POLYNOMIALLY BOUNDED MATRIX INTERPRETATIONS 361

The following proposition formalizes an argument given in [Mos08] (before Theorem 6).

Proposition 3.2. For a matrix interpretation [·] and the corresponding automaton A, there
is a constant C such that for all t ∈ Term(Σ) we have [t]1 ≤ |t| · C · growthA(|t|).

Proof. By distributivity of matrix multiplication (over addition), the value of the matrix
interpretation of a term t can be written as the sum of the values of matrix products along
paths—and that is exactly what the automaton A computes:

[t] =
∑

p∈Path(t)

µA(p) · abs[tp].

We take C as the maximal entry of vectors in S. Then each v ∈ S is point-wise smaller
or equal to C · δA. Taking the first (top) component of [t] corresponds to multiplication by
λA from the left. In all, [t]1 = λA · [t] ≤

∑

p∈Path(t)C · A(p) ≤
∑

p∈Path(t)C · growthA(|p|) ≤

|t| · C · growthA(|t|), since |p| ≤ |t| (the length of a path compared to the size of the term).
So the claim follows.

Since Proposition 3.2 introduces a factor |t|, we obtain the following

Theorem 3.3. If growthA (constructed from the matrix interpretation [·]) is bounded by a
polynomial of degree g, then growth[] is bounded by a polynomial of degree g + 1.

We also have a converse. For any p ∈ Σ′∗, there is a set T of terms t ∈ Term(Σ) with
|t| ≤ D(1 + |p|) and p ∈ Path(t) and δA ≤

∑

t∈T abs[tp]. Here, D is the maximal arity of
Σ, and |T | ≤ d, the dimension of the interpretation. The terms in T have the path p as
their “spine”, and some additional nullary symbols. At the end of the spine, there is some
symbol to “cover” some non-zero entry of δA. Then A(p) ≤

∑

t∈T µA(p) ·abs[tp] ≤
∑

t∈T [t]1.
That is, growthA(n) ≤ |T | · growth[](D(1 + n)). If growth[] is polynomially bounded, then
growthA is polynomially bounded.

Remark 3.4. The given translation ignores the entries in the absolute parts of the matrix
interpretation. Indeed they do not influence the degree of the growth polynomial. Referring
to Example 2.2, the present construction would remove state 3 which effectively acts as a
“sink” state (no transition leaves this state). One may wonder whether state 1 could
be ignored as well. In general, this may alter the degree of growth since there could be
transitions from states > 1 to state 1.

4. Growth and Ambiguity

By Theorem 3.3, we will restrict our attention to weighted word automata. In the
present section, we connect the weight function of a weighted automaton to the ambiguity
of a non-weighted automaton. The ambiguity of a (non-weighted) automaton A is the
function ambA that maps each word w ∈ Σ∗ to the number of accepting computations
(paths) of A on w.

Definition 4.1. Let A by an N-weighted automaton. Obtain the skeleton A′ = skel(A)
by removing all weights. That is, (p, q) is an edge in skel(A) with label c ∈ Σ exactly if
A(p, c, q) > 0. If λA(p) > 0, then p is initial in A. If δA(p) > 0, then p is final in A.

362 JOHANNES WALDMANN

The following observation is immediate.

Proposition 4.2. If all weights in A are from the set {0, 1}, then the growth function of
A and the ambiguity function of skel(A) are identical.

Proof. We use the fact that A(p, w, q) is the sum over the weights of all paths from p to q
labelled w. Given the precondition of the proposition, the weight of a such a path in A is
1 or 0, respectively, if there exists a corresponding path in skel(A) or not, respectively.

We observe now that the weight of an edge can be ignored if it is used at most once.
To this end we define:

Definition 4.3. An edge (p, q) in skel(A) is called recurrent if there is a path from q to p
in skel(A). All other edges are called transitional.

We will apply this notion to edges of weight > 0 in A as well.

Proposition 4.4. Each path p
w
→ q uses each transitional edge of A at most once.

Proof. Assume p → q is used twice. Then p → q →∗ p → q, and (p, q) is recurrent.

Theorem 4.5. The growth function of A behaves the same (up to a constant factor) as the
growth function of the automaton A′ obtained from A by giving weight 1 to each transitional
edge.

Proof. It is immediate that for all p, w, q: A(p, w, q) ≥ A′(p, w, q). Let N be the number
of transitional edges in A. If N = 0, then there is nothing to show. For N > 0, let W
be the maximal weight of a transitional edge. We claim that A(p, w, q) ≤ WN ·A′(p, w, q).
This follows since in each path, each transitional edge can be used at most once, and it
contributes W (multiplicatively).

It is possible to reduce this constant WN but we do not need this here.
We will see (Theorem 5.2, Item 1) that for A to be polynomially bounded, its recurrent

edges have to have weight 1 (and not larger). Together with Proposition 4.5 this means
that when we talk about polynomially bounded N-weighted automata, we do not actually
consider their edge weights in an essential way. This allows to apply known results on
ambiguity, by Proposition 4.2.

5. Deciding Polynomial Growth

In this section, we give an algorithm to decide whether a given N-weighted automaton
has polynomially bounded behaviour. By applying the ideas from Section 4, we transform
the problem to a question of ambiguity of non-weighted automata that can be solved with
known methods. In particular we will apply

Theorem 5.1 ([Web91], Condition EDA). A trim automaton
A over Σ is exponentially ambiguous if and only if there exist a
state q of A and a word w ∈ Σ+ such that there are at least two

different paths q
w
→A q.

// ?>=<89:;q

w

w

TT

//

Here, a (classical) automaton is trim if each state is useful: it is accessible from some
initial state, and it reaches some final state. For weighted automata A, we define the same
concepts (trim, useful, accessible) by considering skel(A), that is, we use only paths of
weight > 0.

POLYNOMIALLY BOUNDED MATRIX INTERPRETATIONS 363

A strongly connected component (SCC) of the automaton A is a maximal set C of
states such that any two p, q ∈ C are connected. Note that an edge (p, q) is recurrent
(Definition 4.3) exactly if p and q belong to a common SCC.

A node is not necessarily connected to itself. Such nodes do not belong to any SCC,
and they are called transitional. The incoming and outgoing edges of these nodes are
transitional edges, as defined earlier. The automaton has a unique decomposition into
SCCs and transitional nodes.

We call an automaton A unambiguous if it “contains no diamond” [Béa08]: there are
no two paths with identical origin, end, and label.

We now characterize growth properties of N-weighted automata:

Theorem 5.2. For a trim N-weighted automaton over Σ,

(1) if there is a recurrent edge with weight > 1, then growth(A) is exponential.
(2) if all recurring edges have weight one, and there is one SCC that is an ambiguous

automaton, then growth(A) is exponential.
(3) if all recurring edges have weight one and each SCC is an unambiguous automaton,

then growth(A) is bounded by a polynomial.

Proof. Item 1: assume there is some edge p
x:a
→ q with a ≥ 2 in some SCC C. Since the edge

is inside an SCC, there is also a path q
w:b
→ q with b > 0. Since the automaton is trim, there

is a path i
wi:ai→ p from some initial state i, and a path p

wf :af
→ f to some final state. Then

we can compose these paths, where xw gives a loop, and we obtain that for each k ∈ N, the
word wi(xw)

kwf has at least weight 2k.
In the following cases, we apply Proposition 4.2.
Item 2: assume there is some SCC C that is ambiguous. So it contains a diamond:

there are states p, q ∈ C and a non-empty word w such that there are two different paths

from p to q labelled w. Since C is strongly connected, there is a path q
w′

→ p. This implies
that the condition of Theorem 5.1 holds true (for the state p and the word w ◦w′), and the
automaton C is exponentially ambiguous.

Item 3: follows from Remark 7.3 and Proposition 7.4 below. There we will see that in
this case it does not matter that the unambiguous components are strongly connected.

Example 5.3. The interpretation shown in Example 3.1 is compatible with {ba → ab, a3 →
ba2b, b4 → a} (SRS/Zantema/z025). The conditions of Theorem 5.2 are fulfilled: SCCs are
{1} and {2, 3}. There are no edges with weight > 1. Each SCC is unambiguous. This
is trivial for the singleton, and {2, 3} is unambiguous since the restrictions of µ(a) and
µ(b) to that component are permutation matrices. Any product of permutation matrices
is again a permutation matrix, and has entries in {0, 1} only. In general, the restriction to
unambiguous components does not need to give a permutation matrix.

6. Comparison to Triangular Method

We prove that our method for proving polynomial derivational complexity is strictly
more powerful than the method of triangular interpretations [Mos08].

We recall that the matrices in a triangular interpretation must have zeroes below the
main diagonal, and zeroes or ones on the main diagonal. The elements above the main
diagonal are unrestricted. The interpretation in Example 2.1 is triangular.

364 JOHANNES WALDMANN

We make the obvious observation that each triangular interpretation fulfills the condi-
tions of Theorem 5.2, since the SCCs of the interpretation are singletons. All edges except
loops are transitional.

The interesting statement is:

Theorem 6.1. There is a rewriting system S with these properties:

• S has a compatible polynomially bounded matrix interpretation,
• S has no compatible triangular interpretation.

The proof is contained in the rest of this section. The main technical result is a mono-
tonicity property of triangular interpretations (Proposition 6.2).

We use signature Σ = {L,R, a,X} and take the rewriting system

S = {Raa → aaR,RX → LX, aaL → Laa,XL → XRa}.

This is based on a system suggested by Jörg Endrullis for a related problem.
A typical S-derivation has R travelling right, and L travelling left: for any k ≥ 0,

XRa2kX →k Xa2kRX → Xa2kLX →k XLa2kX → XRa2k+1X →k Xa2kRaX. (6.1)

For termination, it is essential to count the length of blocks of a modulo 2. As the above
derivation shows, XRaevenX →∗ XRaoddX, but XRaoddX 6→∗ XRaevenX.

There is a polynomially bounded matrix interpretation that is compatible with S, see
Example 7.5 below.

We now prove that S has no compatible triangular interpretation of any dimension.
Since the signature is unary, we consider the transition matrices of the weighted automaton
corresponding to the interpretation, cf. Example 2.1 and Example 2.2. The relations ≥, >
for interpretations are expressed equivalently for matrices: we write A ≥ B if ∀i, j : Ai,j ≥
Bi,j , and A > B if A ≥ B and Atop,right > Btop,right.

Proposition 6.2. For any upper triangular nonnegative integer matrix A of dimension d,
the sequence (Ad, Ad+1, . . .) of powers of A is increasing: for all k ≥ d we have Ak ≤ Ak+1.

Proof. Take any k ≥ d and consider any pair of indices i, j with 1 ≤ i, j ≤ d. Then Ak
i,j

is the sum of weights of paths of length k from i to j. For each such path p we construct
a path p′ (of length k + 1) that contributes to Ak+1

i,j in such a way that the construction

p 7→ p′ is injective and (weakly) weight-increasing. Since |p| ≥ d, at least one vertex v is
contained twice in p. Since A is upper triangular, occurrences of v must be consecutive
in p. We construct p′ from p by adding an edge v → v for the leftmost repeated index v
of p. Since the weight of this new edge is ≥ 1, the weight of p′ is at least the weight of
p. By construction, the leftmost repeated vertex in p′ occurs at least thrice. For any two
non-equal paths p′, q′ constructed this way, we can delete the leftmost repetition and obtain
two non-equal paths p, q of length k that contribute to Ak

i,j .

Assume there is a triangular interpretation [·] of dimension d compatible with S. Take
k ≥ d/2. Then the interpretation must verify [XRa2kX] > [XRa2k+1X] by the derivation
6.1. On the other hand Proposition 6.2 implies [a2k] ≤ [a2k+1]. By monotonicity of mul-
tiplication, we obtain [XRa2kX] ≤ [XRa2k+1X], a contradiction. This proves Theorem
6.1.

POLYNOMIALLY BOUNDED MATRIX INTERPRETATIONS 365

7. Bounds for the Degree of the Growth Polynomial

The degree of ambiguity of a (classical) automaton can be determined by the following:

Theorem 7.1 ([Web91], Condition IDAd). A trim automaton A over Σ is polynomially
ambiguous of degree at least d if and only if there exist states p1, q1, . . . , pd, qd in A and

words u1, . . . , ud ∈ Σ+ and v1, . . . , vd−1 ∈ Σ∗ such that ∀1 ≤ i ≤ d : pi
ui→A pi

ui→A qi
ui→A qi

and ∀1 ≤ i < d : qi
vi→A pi+1.

GFED@ABCp1

u1

u1

// GFED@ABCq1

u1

v1

// GFED@ABCp2

u2

u2

// GFED@ABCq2

u2

v2

// . . .
vd−1

// GFED@ABCpd

ud

ud

// GFED@ABCqd

ud

It is possible to check this condition in O(|A|6) steps, and also by a corresponding
constraint system of this size. Still we found it to be infeasible submit this system to a
constraint solver.

The following definition fits with the constraint system that we will describe later:

Definition 7.2. An unambiguous decomposition of an automaton A with state set Q is a
system U = {U1, . . . , Uk} of non-empty and pairwise disjoint subsets Ui ⊆ Q such that

• each recurrent edge is contained in some Ui

• and for each i, the restriction of A to Ui is unambiguous.

The decomposition U defines a relation LU on Q that consists of all pairs (p, q) such that
p, q are in different components of U and there is a path from p to q.

The height of a decomposition is the height (length of a longest chain) of LU .

Remark 7.3. The SCC decomposition in Theorem 5.2, Item 3 is an unambiguous decom-
position. Its height is strictly smaller than the number of SCCs.

The connection to the degree of a polynomial growth bound is:

Proposition 7.4. If all recurring edges of a trim N-weighted automaton A have weight
one, and skel(A) admits an unambiguous decomposition of height g, then A is polynomially
bounded with degree g.

Proof. Assume that condition IDAd holds. Then denote by Pi (Qi, resp.) the component
of the decomposition that contains pi (qi, resp.) Note that these components exist since
both pi and qi are incident to recurring edges. We observe Pi 6= Qi. (Otherwise, the
common component would be ambiguous.) This implies LU (Pi, Qi). We also have Pi 6=
Pi+1. (Otherwise, LU (Pi, Qi) ∧ LU (Qi, Pi), in contradiction to the finite height of LU .)
This implies LU (Pi, Pi+1), and we infer d < g. This shows that the ambiguity of skel(A) is
bounded by a polynomial of degree g. By Theorem 4.5, the growth function of the weighted
automaton A is bounded by a polynomial of the same degree g.

We remark that the statement in Proposition 7.4 is not an equivalence, in the sense
that there may be decompositions U such that the height of LU is larger than the degree
of ambiguity. E.g., the SCC decomposition for Example 7.5.

366 JOHANNES WALDMANN

Example 7.5. This interpretation is compatible with system S from Theorem 6.1:

[L] : x 7→

1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 6
0 0 0 0 1

· x+

0
0
1
0
0

, [X] : x 7→

1 0 6 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

· x+

0
6
0
0
1

,

[R] : x 7→

1 0 4 0 0
0 0 0 1 6
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

· x+

1
0
0
0
1

, [a] : x 7→

1 0 0 0 2
0 0 0 1 0
0 0 0 0 1
0 1 0 0 6
0 0 1 0 0

· x+

0
0
1
0
0

.

The translation from Section 3 turns this into a
weighted automaton with 5 states, shown right. The
SCCs of this automaton are {{1}, {2, 4}, {3, 5}}. Re-
current edges are the loops as well as the edges labelled
R and a inside the two SCCs with two elements. The
height of the SCC decomposition is two. Note that
the only edge from 1 to {2, 4} is labelled X, and this
label does not occur inside {2, 4}. This implies that
these two SCCs can be merged, resulting in the unam-
biguous decomposition {{1, 2, 4}, {3, 5}}. Its height is
one, implying a quadratic bound on the derivational
complexity of S. This bound is sharp since the rewrite
system does admit derivation of quadratic length, e.g.,

Rk(aa)k →k2 (aa)kRk.

As an application of Proposition 7.4, we show how to modify triangular interpretations
in order to improve (that is, reduce) the degree of their growth polynomial bound, in some
cases.

Proposition 7.6. For an upper triangular interpretation over alphabet Σ, let D be the set
of indices p such that there exists c ∈ Σ such that the entry at position p on the main
diagonal of the linear term of the interpretation of c is positive. Then the interpretation is
polynomially bounded with a degree of at most |D|.

Proof. Each p ∈ D constitutes a singleton SCC in the automaton. So all chains have length
≤ |D| − 1, and by Theorem 3.3 the result follows.

Example 7.7. (SRS/Zantema/z025) {ba → ab, a3 → ba2b, b4 → a} is solved by the inter-
pretation

[a] : x 7→

1 1 1 0
0 0 0 1
0 0 0 1
0 0 0 1

· x+

0
1
2
3

, [b] : x 7→

1 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

· x+

0
0
0
1

where D = {1, 4}, from which we infer maximum degree |D| = 2. This bound is sharp since
there are derivations of quadratic length because of the rule ba → ab.

POLYNOMIALLY BOUNDED MATRIX INTERPRETATIONS 367

8. Certificates for Polynomial Bounds

In this part of the paper we show how the conditions of Theorem 5.2 and Proposition 7.4
can be deduced from existence of a “certificate”. We describe how to construct a (finite
domain) constraint system that specifies validity of the certificate. The subjects of the
constraints are relations on the set Q of states of the given N-weighted (word) automaton
A. These unknown relations are existentially quantified at the outer level.

We also build a constraint system that describes compatibility of an (unknown) linear
interpretation [·] with a given rewrite system R.

We combine both systems and use a constraint solver to find the interpretation [·] and
its polynomial growth certificate A at the same time.

The (by now) standard idea for constraint solving is to translate the constraint system
into a propositional logic formula. In the present paper, we discuss this “SAT encoding” of
the relational constraints only. For the encoding of compatibility constraints, we refer to
[End08].

8.1. Encoding of Relations

A relation on finite domains is directly modelled as a matrix of propositional variables.
In the constraint systems we will need the identity relation, on some domain. We

denote it by 1, and model it trivially with a matrix of propositional constants (True on the
diagonal).

For relations R,S, the implication R ⊆ S is modelled by point-wise propositional
implication between the corresponding matrix entries. Intersection R ∩ S is modelled by
point-wise “and”, and union R ∪ S by point-wise “or”.

We also need composition of relations R ◦ S, and this corresponds to Boolean matrix
multiplication; as well as the inverse R− of a relation, corresponding to matrix transposition.

Then, we want to describe the image and pre-image of a relation w.r.t. a set. By abuse
of notation, if we have a binary relation R ⊆ A×B and a unary relation (a set) A′ ⊆ A, we
write A′ ◦ R for {b | ∃a ∈ A′ : (a, b) ∈ R}, similarly for R ◦ B′ for B′ ⊆ B. This is realized
by multiplying the Boolean matrix R with the Boolean vector A′ (resp., B′).

The cost of most operations is proportional to the square of the matrix dimension,
except for composition (multiplication), where the cost is cubic. Here “cost” refers to the
formula size, or, equivalently, to the number of additional propositional variables that will
be created by conversion to an equisatisfiable conjunctive normal form.

8.2. Encoding SCCs

The automaton A defines for each a ∈ Σ an “edge” relation

µ>0(a) = {(p, q) : µ(a)(p, q) > 0},

and a “heavy edge” relation

µ>1(a) = {(p, q) : µ(a)(p, q) > 1}.

An (over-)approximation E ⊆ Q×Q of the reachability relation of the automaton A is
specified by the constraints

⋃

{µ>0(a) | a ∈ Σ} ⊆ E ∧ E ◦ E ⊆ E

368 JOHANNES WALDMANN

Correctness claim: For any solution E of the constraint system: If there is any path

p
w
→A q of length |w| > 0 and weight > 0, then E(p, q) holds.

Note that we do require transitivity, but not reflexivity.
Also, we do not model reachability exactly. This would require to specify E as the

smallest relation with the given properties. This is not easily expressed in the given logic,
where we only have existential quantification. Over-approximation of reachability may even
be helpful, as explained in Section 7.

The relation S ⊆ Q×Q (over-)approximates “being in the same SCC”: S = E ∩ E−.
Correctness claim: for any solution (E,S) of the constraint system,

• if p → q is a recurring edge in A, then S(p, q);

In particular ¬S(p, p) implies that p is a transitional node.
Condition (1) of Theorem 5.2 is modelled by the constraint

S ∩
⋃

{µ>1(a) | a ∈ Σ} = ∅.

Correctness claim: if the constraint system has a solution, then each recurring edge of A
has weight = 1.

The size of the constraint system is cubic in the number of states of A, since we need
composition of relations (once).

8.3. Encoding Unambiguity

As in [Web91], we use the criterion that an automaton A is unambiguous if the reachable
and productive states of the cross product automaton A×A are on its diagonal [Sak03].

We define a relation T ⊆ (Q × Q)2 that (over-)approximates the edge relation of the
product automaton, by

{((p, p′), (q, q′)) | ∃a ∈ Σ : µ>0(a)(p, q) ∧ µ>0(a)(p
′, q′)} ⊆ T.

We use relations R,P ⊆ Q × Q with the intention that R(p, q) holds true if the state
(p, q) ∈ A×A is reachable, and P (p, q) holds true if the state (p, q) ∈ A×A is productive.
We specify:

• the diagonal states are reachable and productive: 1 ⊆ R ∧ 1 ⊆ P,
• each successor of a reachable state is reachable: (R ◦ T) ∩ S ⊆ R,
note that we restrict to transitions that stay inside the (approximated) SCCs.

• each predecessor of a productive state is productive: (T ◦ P) ∩ S ⊆ P,
• each state that is both reachable and productive, is on the diagonal: R ∩ P ⊆ 1

Correctness claim: if the constraint system has a solution, then S describes an unambiguous
decomposition U of A. Here, p and q are in the same component of U if S(p, q). The
height of LU is finite. — Proof: By construction, each recurrent edge is contained in some
component, and each component is unambiguous. A cycle of components is impossible since
S is transitive.

The size of the constraint system is Θ(d4) since we need to compute the (pre)image of
a relation on Q2.

Remark 8.1. If we collect all the constraints up to here, then we already have a method that
is more powerful in proving polynomial complexity bounds than triangular interpretations.
E.g., it finds a proof for the system in Theorem 6.1. In the following, we bound the degree
of the growth polynomial.

POLYNOMIALLY BOUNDED MATRIX INTERPRETATIONS 369

8.4. Unary Encoding of (Small) Numbers

A number n is given by a unary relation N that we view as a subset of the range. In
our case, N ⊆ {1, . . . , d} where d is the dimension of the interpretation = the number of
states of the automaton. Equivalently, N : {1, . . . , d} → Boolean. A value of k is encoded
by the assignment {1, . . . , k} 7→ True, {k + 1, . . . , d} 7→ False. That is, for any N encoding
a number we have the constraint ∀1 ≤ i < d : N(i) ⇐ N(i+ 1).

For the given application, we did not investigate other encodings (e.g., binary) as the
range of numbers is small (it is the number of states of the automaton), and we do not need
arithmetical operations, only comparison: M > N is given by

∨

{M(i)∧¬N(i) | 1 ≤ i ≤ d}.

8.5. Encoding the Height of a Relation

The height of a relation L ⊆ Q ×Q is the length of a longest L-chain. To express the
condition “the height of L is at most g”, we use a “height” function h : Q → {0, 1, . . . , g}
and the constraints

∀p, q : L(p, q) ⇒ (h(p) > h(q)).

The range of h is implemented by unary numbers as discussed above.
The cost of this constraint is Θ(d2 · g), since we do d2 comparisons that cost Θ(g) each.
We apply this for g = the intended degree of polynomial growth, and the relation

L = {(p, q) | S(p, p) ∧ ¬S(p, q) ∧ E(p, q) ∧ S(q, q)}.

Correctness claim: if the constraint system has a solution, then the automaton A admits
an unambiguous decomposition of height ≤ g. — Proof: If p, q are recurrent nodes from
distinct S-components such that A contains a path from p to q, then L(p, q). Therefore,
each L-chain is a chain of S-components, and each of them is unambiguous.

Remark 8.2. In the general case, an unambiguous component may contain recurrent and
transitional edges, and the weight of transitional edges is irrelevant by Theorem 4.5. Since
we use the relation S (for efficiency of implementation), we discard the possibility that
unambiguous components contain transitional edges of weight > 1.

8.6. Encoding Improved Triangular Interpretations

We show that Proposition 7.6 can be implemented as a constraint system with little
effort. We use binary variables C1, . . . , Cd to encode membership in the set D:

∀1 ≤ p ≤ d : ∀c ∈ Σ : [c](p, p) > 0 ⇒ Cp

and we express that at most g of these variables are true, by a relation Z ⊆ Q× {1, . . . , g}
with the intention that Z(p, h) = “at most h of C1, . . . , Cp are true.” This is specified by

Z(p, h) = (Cp ∧ Z(p− 1, h− 1)) ∨ (¬Cp ∧ Z(p− 1, h)).

and obvious border cases. This constraint system is used in addition to the constraint sys-
tem that describes compatibility of a triangular interpretation with the rewriting system.
It is statically known that entries below the main diagonal are zero, so the multiplication
of such matrices can be implemented with less effort than for full matrices. So we ex-
pect the constraint solver to be able to handle somewhat larger matrix dimensions. The
interpretation in Example 7.7 was found this way.

370 JOHANNES WALDMANN

9. Results

The method described in this paper was implemented for the termination analyzer
Matchbox. Given a rewriting system R, the implementation produces constraint systems
for various values of d (matrix dimension) and g (degree of growth) and submits them to
solvers in parallel. As soon as a solution for some g is found, all other attempts for degrees
≥ g are terminated.

In the 2009 Termination Competition, Matchbox entered the category of Derivational
Complexity/Full rewriting. Of the 616 problems, it could prove polynomial derivational
complexity for 58 of them. The winner CaT got 98 answers. (The results of the third
participant TCT are currently not available.)

In 3 cases, Matchbox got a better degree bound than CaT, and in two cases, Matchbox
could prove polynomial complexity where CaT couldn’t. In 9 cases, CaT got a better degree
bound than Matchbox; and in 36 cases, CaT proved polynomial complexity where Matchbox
couldn’t.

The differences in performance are mainly due to the different methods that the pro-
grams apply: Matchbox uses the method of the present paper exclusively, while CaT uses a
combination of triangular interpretations, root labelling, relative termination, arctic matrix
interpretations and match-bounds.

10. Discussion

There are several open question related to polynomially bounded matrix interpretations.
We mention only a few.

Formal verification of certificates for polynomial derivational complexity is possible. As
a certificate, we can take the relations that are specified by the constraint system. Then it
is easy to formally verify their validity, since it only needs propositional logic. (If a SAT
solver can find it, then it is easy to check.)

Does there exist a rewriting system with polynomially bounded complexity that does
not admit a polynomially bounded matrix interpretation? It is easy to answer “yes”
for term rewriting: it was already noted in [End08] that the ground rewriting system
{f(a, b) → f(b, b), f(b, a) → f(a, a)} does not admit a matrix interpretation. Its deriva-
tional complexity obviously is linear. The question seems much harder for string rewriting,
even in the following restricted setting:

Do all match-bounded string rewriting systems have a polynomially (even linearly)
bounded matrix interpretation? Experience in the recent termination competition suggests
otherwise. Still, this may be due to vastly different search methods. Certificates for match-
boundedness can be found by completion [End06, Kor09], and quite often this gives large
automata quickly. On the other hand, matrix interpretations are usually found via con-
straint solving (via SAT, as described here), and this usually cannot handle much more
than dimension 5.

From a “practical” viewpoint, one would be interested in a constraint system that
describes a certificate for the exact degree of the growth polynomial with less than O(n6)
size—or in an altogether different method for the construction of automata that are compat-
ible with a given rewrite system, and polynomially bounded. As very concrete challenges,
one could try to find polynomially bounded matrix interpretations for two famous rewrite

POLYNOMIALLY BOUNDED MATRIX INTERPRETATIONS 371

systems z001= {a2b2 → b3a3} and z086= {a2 → bc, b2 → ac, c2 → ab}. In both cases,
matrix interpretations (of dimension 5) are known, but they grow exponentially.

What about using different weight domains for the interpretations? It is easy to gener-
alize the matrix interpretation method to rational (or real) numbers [Geb07], but it seems
harder to obtain complexity information from such interpretations. We would need to de-
cide whether a given Q-weighted automaton is polynomially bounded. The easy connections
from Section 4 do not hold, as a polynomially growing automaton could contain recurrent
edges of weight > 1 (e.g., if they are directly followed by edges of suitable weights < 1).

Acknowledgements. I appreciate the anonymous referees’ careful reading and detailed
discussion.

References

[Baa98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press,

1998.

[Béa08] Marie-Pierre Béal, Eugen Czeizler, Jarkko Kari, and Dominique Perrin. Unambiguous automata.

Mathematics in Computer Science, 1(4):625–638, 2008.

[Dro09] Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted Automata. Springer,

2009.

[End06] Jörg Endrullis, Dieter Hofbauer, and Johannes Waldmann. Decomposing terminating rewriting

relations. In Workshop on Termination. 2006.

[End08] Jörg Endrullis, Johannes Waldmann, and Hans Zantema. Matrix interpretations for proving ter-

mination of term rewriting. J. Autom. Reasoning, 40(2-3):195–220, 2008.

[Geb07] Andreas Gebhardt, Dieter Hofbauer, and Johannes Waldmann. Matrix evolutions. In Dieter Hof-

bauer and Alexander Serebrenik (eds.), Proc. Workshop on Termination, Paris. 2007.

[Hof89] Dieter Hofbauer and Clemens Lautemann. Termination proofs and the length of derivations. In

Nachum Dershowitz (ed.), RTA, Lecture Notes in Computer Science, vol. 355, pp. 167–177. Springer,

1989.

[Hof06] Dieter Hofbauer and Johannes Waldmann. Termination of string rewriting with matrix interpreta-

tions. In Frank Pfenning (ed.), RTA, Lecture Notes in Computer Science, vol. 4098, pp. 328–342.

Springer, 2006.

[Kop09] Adam Koprowski and Johannes Waldmann. Max/plus tree automata for termination of term rewrit-

ing. Acta Cybern., 19(2):357–392, 2009.

[Kor09] Martin Korp and Aart Middeldorp. Match-bounds revisited. Inf. Comput., 207(11):1259–1283,

2009.

[Mos08] Georg Moser, Andreas Schnabl, and Johannes Waldmann. Complexity analysis of term rewriting

based on matrix and context dependent interpretations. In Ramesh Hariharan, Madhavan Mukund,

and V. Vinay (eds.), FSTTCS, LIPIcs, vol. 08004. Internationales Begegnungs- und Forschungszen-

trum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2008.

[Sak03] Jacques Sakarovitch. Eléments de théorie des automates. Vuibert, Paris, 2003.

[Wal09] Johannes Waldmann. Automatic termination. In Ralf Treinen (ed.), RTA, Lecture Notes in Com-

puter Science, vol. 5595, pp. 1–16. Springer, 2009.

[Web91] Andreas Weber and Helmut Seidl. On the degree of ambiguity of finite automata. Theor. Comput.

Sci., 88(2):325–349, 1991.

372 JOHANNES WALDMANN

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 373-384
http://rewriting.loria.fr/rta/

OPTIMIZING MKBTT (SYSTEM DESCRIPTION) !

SARAH WINKLER 1 AND HARUHIKO SATO 2 AND
AART MIDDELDORP 1 AND MASAHITO KURIHARA 2

1 Institute of Computer Science
University of Innsbruck, Austria
E-mail address, S. Winkler: sarah.winkler@uibk.ac.at

2 Graduate School of Information Science and Technology
Hokkaido University, Japan
E-mail address, H. Sato: haru@complex.eng.hokudai.ac.jp

E-mail address, A. Middeldorp: aart.middeldorp@uibk.ac.at

E-mail address, M. Kurihara: kurihara@ist.hokudai.ac.jp

Abstract. We describe performance enhancements that have been added to mkbTT, a
modern completion tool combining multi-completion with the use of termination tools.

1. Introduction

The Knuth-Bendix completion tool mkbTT combines a multi-completion approach as
introduced by Kurihara and Kondo [Kur99] with the use of automatic termination tools
proposed by Wehrman, Stump and Westbrook [Weh06]. In this paper we present several
performance enhancements which improved the first version described in [Sat08].

(1) Checking for and joining isomorphic processes results in considerable speedups for
some input systems.

(2) Critical pair criteria were carried over to the context of multi-completion to reduce
the number of nodes.

(3) Several indexing techniques were implemented to allow for a higher inference rate,
namely path indexing, discrimination trees and code trees.

(4) Different selection strategies to choose the next process and node were compared.

The potential of these optimizations, which are described in the next four sections, is
witnessed by the first automatic completion of the CGE4 system (an axiomatization of group
theory with four commuting endomorphisms) obtained with the new version of mkbTT. The
optimizations can be conveniently configured through the web interface, which is described
in Section 6. The experimental results reported in Section 7 show their usefulness.

Key words and phrases: Knuth-Bendix completion, termination prover, automated deduction.
!This research is supported by FWF (Austrian Science Fund) project P18763. The first author is sup-

ported by a DOC-fFORTE fellowship of the Austrian Academy of Sciences.

c© S. Winkler, H. Sato, A. Middeldorp, and M. Kurihara
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.373

374 S. WINKLER, H. SATO, A. MIDDELDORP, AND M. KURIHARA

We start by recalling some basic definitions. A Knuth-Bendix completion (KB) proce-
dure takes a set of equations together with a reduction order as input and aims to produce
a terminating and confluent rewrite system with the same equational theory. We call a KB
run fair if all critical pairs among persistent rewrite rules are eventually considered. In
Knuth-Bendix completion with termination tools (KBtt), a reduction order is no longer re-
quired. Instead, the inference system of KB is extended to work on tuples (E,R,C) of a set
of equations E and rewrite systems R and C, which we refer to as KBtt states. The inference
system mkbTT simulates multiple KBtt runs. Each run is identified by a bit sequence called
a process. The inference rules of mkbTT operate on objects called nodes. A node has the
form 〈s : t, R0, R1, E, C0, C1〉 where s, t are terms and the remaining components (called
labels) are sets of processes. In the sequel we assume familiarity with [Sat08, Sat09].

2. Isomorphisms on Processes

The number of parallel processes simulated by mkbTT is critical for overall performance.
However, some systems exhibit process pairs which are very similar and actually equally
likely to succeed. This is illustrated in the following example.

Example 2.1. When running mkbTT on CGE2 [Stu06], a process p with state

Ep =

(x ∗ y) ∗ z ≈ x ∗ (y ∗ z)
f(e) ≈ e
g(e) ≈ e

g(x) ∗ f(y) ≈ f(y) ∗ g(x)

Rp = Cp =

e ∗ x → x
g(x) ∗ x → e
f(x ∗ y) → f(x) ∗ f(y)
g(x ∗ y) → g(x) ∗ g(y)

has to orient the equation g(x) ∗ f(y) ≈ f(y) ∗ g(x). As both orientations are possible the
process will be split, but the states (Ep0, Rp0, Cp0) and (Ep1, Rp1, Cp1) of the resulting child
processes are the same up to interchanging f and g. Hence the deductions corresponding to
these processes will be symmetric if the choice function is reasonably fair.

The following definition formally captures such similarities in general.

Definition 2.2. A mapping θ : T (F ,V) → T (F ,V) induces an isomorphism between two
rewrite systems R and R′ if R′ = {θ(l) → θ(r) | l → r ∈ R} and for all terms s and t,
s →R t if and only if θ(s) →R′ θ(t). Similarly, θ induces an isomorphism between two sets
of equations E and E′ if E′ = {θ(u) ≈ θ(v) | u ≈ v ∈ E} and for all terms s and t, s ≈E t
if and only if θ(s) ≈E′ θ(t).

Two rewrite systems R and R′ are isomorphic if there exists an isomorphism θ between
them, which is expressed by writing R ∼=θ R′. Two KBtt states (E,R,C) and (E′, R′, C ′)
are isomorphic if there is an isomorphism θ such that E ∼=θ E′, R ∼=θ R′, and C ∼=θ C ′.
Two mkbTT processes p and q are isomorphic in a node set N if their projected states
(E(N, p), R(N, p), C(N, p)) and (E(N, q), R(N, q), C(N, q)) are isomorphic.

Isomorphic processes are equally likely to succeed, which is easy to prove as the rewrite
relations coincide.

Lemma 2.3. Assume N is a node set with isomorphic processes p and q. If there exists
a fair mkbTT completion run N (∗ N ′ such that E(N ′, p) = ∅ then there is another fair
deduction N (∗ N ′′ such that E(N ′′, q) = ∅.

OPTIMIZING MKBTT 375

Due to Lemma 2.3, completeness is not compromised if one of two isomorphic pro-
cesses is removed. mkbTT exploits such symmetries by checking for two concrete shapes of
isomorphisms.

– Renamings swap function symbols as in Example 2.1 where p0 and p1 are isomorphic
processes under the mapping θ that exchanges f and g.

– Argument permutations associate with every function symbol f of arity n a permuta-
tion πf ∈ Sn. Then the mapping on terms defined by θ(x) = x and θ(f(t1, . . . , tn) =
f(θ(tπf (1)), . . . , θ(tπf (n))) may also induce an isomorphism. For example, during a
completion run of SK3.02 [Ste90] a process p with state

Ep =
{

(x+ y)+ z ≈ x+(y+ z)
}

Rp = Cp =

{

f(f(x)) → x
f(x+ y) → f(x)+ f(y)

}

has to orient the associativity axiom. Again both orientations are possible, but the
two child processes emerging from a process split are isomorphic under an argument
permutation satisfying π+ = (1 2).

mkbTT can check for both kinds of isomorphisms, either only in orient inferences to
avoid unnecessary splittings or by comparing the states of all process pairs repeatedly.

3. Indexing Techniques

For rewrite inferences mkbTT needs to filter out nodes from the current node set that
can be used to rewrite a given node. In the case of deduce inferences one needs to find nodes
that overlap with the current node. Especially rewrite inferences are frequently executed.
Performing these operations efficiently is crucial for overall performance.

In automated reasoning this problem is referred to as the indexing problem: Given a
large set L of terms (the index), a binary relation on terms R (the retrieval condition) and
a term t (the query term), find all s ∈ L such that (s, t) ∈ R. For this purpose, a number
of sophisticated term indexing techniques have been developed [Sek01].

In the case of mkbTT, for rewrite1 the retrieval of variants, for rewrite2 finding encom-
passments, and for deduce the search of unifiable terms is required. Since encompassment
retrieval can be implemented as multi-term retrieval of subsumed terms, indexing structures
need to support variance, subsumption and unifiability as retrieval conditions. Variant and
encompassment retrieval is required particularly often and consumes about 25% of the total
computation time if performed naively.

mkbTT currently supports path indexing [McC92, Gra96] to retrieve unifiable terms.
For variant and generalization retrieval, also discrimination trees [McC92, Gra96] and code
trees [Vor95] are implemented.

In line with earlier observations in automated reasoning, the use of indexing techniques
in mkbTT increases performance considerably.

4. Critical Pair Criteria

Maintenance and treatment of equational consequences derived in a deduction is a
critical factor in many automated reasoning tools. Since it keeps track of multiple processes
this is an even more serious issue for mkbTT. For standard completion several critical pair
criteria were proposed as a means to filter out equational consequences that can be ignored
without losing completeness.

376 S. WINKLER, H. SATO, A. MIDDELDORP, AND M. KURIHARA

In the setting of mkbTT, also the computation of critical pair criteria can be shared
among multiple processes. If a node with datum s : t is deduced from an overlap o for a
process set E then CPC(o, E,N) returns all processes for which s ≈ t is not superfluous.
Thus the deduce rule is modified as follows.

Definition 4.1. The inference rule

deduce
N

N ∪ {〈s : t,∅,∅, E,∅,∅〉}

is applicable if there exist nodes 〈l : r,R, . . . 〉, 〈l′ : r′, R′, . . . 〉 ∈ N such that s ≈ t is a
critical pair originating from an overlap o involving the rules l1 → r1 and l2 → r2, and
E = CPC(o,R ∩R′, N) += ∅.

Given a critical pair s ≈ t originating from an overlap (l1 → r1, p, l2 → r2)σ, all
implemented criteria have in common that the term l1σ = l1σ[l2σ] is checked for being
reducible in a different way than by l1 → r1 and l2 → r2. Consequently, all criteria need
to filter the current node set N for nodes that allow to rewrite l1σ in an appropriate way
(depending on the actual criterion). The execution of a CPC function can thus be shared
among multiple processes. Moreover, CPC functions can take advantage from term indexing
techniques as they require to find encompassments for a given term.

The criteria implemented in mkbTT are multi-completion variants of the criteria devel-
oped for standard completion: the primality criterion PCP [Kap88], the blocked criterion
BCP [Bac88], and the connectedness criterion CCP [Küc85]. The projection of an mkbTT

deduction using a critical pair criterion to a process p yields a KBtt deduction which is
fair with respect to the criterion. Being specializations of the more general compositeness
criterion [Bac94], the implemented criteria are correct. This means that a nonfailing de-
duction which is fair with respect to a critical pair criterion is also fair in the more general
sense. Hence, according to the definition of fairness in mkbTT [Sat09, Section 4], deductions
using critical pair criteria are also fair, so correctness is preserved. Experimental results
evaluating the usefulness of the critical pair criteria are given in Section 7.

5. Selection Strategies

At the beginning of mkbTT’s main control loop, a choice function selects a node to
process next by evaluating a cost heuristic. The measure applied in this selection has
significant impact on performance. To allow for a variety of strategies, we defined a language
that is general enough to cover selection strategies that proved to be useful, but also allows
to capture some concepts used in selection strategies of other automated reasoning tools.
A selection strategy is thus specified by the following grammar:

strategy ::= ? | (node p,strategy) | float(strategy:strategy)
node p ::= data(termpair p) | el(processset p) | -node p | node p + node p | *

processset p ::= min(process p) | sum(process p) | #
process p ::= process p + process p | e(eqs p) | r(trs p) | c(trs p)

eqs p ::= sum(termpair p) | #
trs p ::= sum(termpair p) | cp(eqs p) | #

termpair p ::= smax | ssum

The following paragraphs shortly comment on the elements of selection strategies.

OPTIMIZING MKBTT 377

• The simplest strategy ? chooses a node randomly. Otherwise, a strategy can be a
tuple (np,s) consisting of a node property np and another strategy s. By using
this rule multiple times, a node property tuple of the form (np1, . . . (npk,?) . . .)
is obtained. A selection strategy is implemented by mapping each node to the
corresponding cost tuple of integers and choosing the (lexicographic) minimum. To
mix strategies, a strategy can also be of the shape r(s1:s2). Here r is assumed
to be a rational value in [0, 1], with the intention that in every selection step the
strategy s1 is applied with probability r, and s2 is used in the remaining cases.

• Node properties capture features of nodes with integers. A node property of a node
n = 〈s : t, . . . , E, . . .〉 can be its creation time (denoted by *), a property of the
node’s datum s : t, or a process set property pp of its equation labels E, which is
written as el(pp). Moreover, node properties can be added or inverted.

• A process set property may be the number of processes it contains (denoted by #)
or the sum or the minimum over a property of the processes it contains.

• A process property pp of a process p may be an equation set property of its equa-
tion projection E(N, p) or a TRS property of either its rule projection R(N, p) or
its constraint projection C(N, p), which is expressed by writing e(pp), r(pp) and
c(pp), respectively. In addition, process properties can be added.

• An equation set property of a set of equations E can be its cardinality (#), or the
sum over a term pair property of all its elements. A TRS property of a rewrite
system R can additionally be a property of its critical pairs CP(R).

• Finally, a term pair property of terms s and t can be the sum |s|+ |t| or maximum
max{|s|, |t|} of their sizes.

Many automated reasoning tools [Vor01] employ a size-age ratio when selecting a fact to
be processed next. For example, if this ratio is 2 : 3 then out of 5 selections 2 will pick
the oldest and 3 the smallest node, i.e., the node where the sum of its term sizes |s|+ |t| is
minimal. In mkbTT a parameter r ∈ [0, 1] controls the ratio of weight-determined selections,
i.e., an age-weight ratio of 2 : 3 would correspond to r = 0.6. This is described with the
following strategy:

ssize/age(r) = r((data(ssum),?):(*,?))

In the first version of mkbTT [Sat08] we first chose a process p for which |E(N, p)|+|R(N, p)|
was minimal and then a node for this process by considering the term size and timestamp,
the latter to ensure fairness of the derivation. By again using a size-age ratio in the second
step, this is captured by the strategy

smkbtt1(r) = (el(min(e(#)+r(#))),ssize/age(r))

The selection approach used in Slothrop [Weh06] corresponds to choosing a process for
which |E(N, p)|+ |CP(R(N, p))|+ |C(N, p)| is minimal, which is expressed as follows:

sslothrop(r) = (el(min(e(#)+r(cp(#))+c(#))),ssize/age(r))

We recently experimented with an approach which first restricts attention to those processes
where the number of symbols in E(N, p) and C(N, p) is minimal, then selects nodes with
minimal data and finally goes for a node which has the greatest number of processes in its
equation label:

ssum = (el(min(e(sum(ssum))+c(sum(ssum)))),(data(ssum),(-el(#),?))))

378 S. WINKLER, H. SATO, A. MIDDELDORP, AND M. KURIHARA

The strategy where ssum is replaced by smax is referred to as smax. To use other heuristics
than those just described, the strategy can also be specified via a command line option.

6. Web Interface

In addition to a command line interface, mkbTT is now also available via a web interface
which allows to configure various options.

• The user can set both a global timeout and a timeout for each termination check.
• Concerning termination checks, users can either apply TTT2 [Kor09] or incorporate
an external tool. If TTT2 is used internally, different predefined termination strategies
can be selected. This includes basic reduction orderings as well as ttt2micro and
ttt2fast, two powerful and fast strategies. Alternatively, a user-defined strategy
may be supplied in the strategy language of TTT2. Another option allows to check
termination externally with AProVE [Gie06] or MuTerm [Ala07].

• For the retrieval of encompassments and variants, one of the implemented indexing
techniques can be selected (path indexing, discrimination trees, code trees or naive
search in the node set).

• To filter deduced equations, one of the three implemented critical pair criteria PCP,
BCP or CCP can be selected, as well as certain combinations.

• Users can choose if isomorphism checks employing symbol renamings or term per-
mutations are to be used, and whether these checks are performed repeatedly or
only when processes are split.

The screenshot in Figure 1 gives an impression of the web interface, which is accessible at

http://colo6-c703.uibk.ac.at/mkbtt/interface/

7. Experimental Results

All of the following experiments were performed on a single core of a server equipped
with eight dual-core AMD Opteron R© processors 885 running at a clock rate of 2.6GHz
and 64GB of main memory. As a test set we used 101 problems collected from various
papers. These include theories underlying unit equality problems in TPTP 3.6.0 [Sut09],
all examples coming with the Slothrop [Weh06] distribution, all systems in [Ste90, Section 3],
instances of parametric systems given in [Bün94, Chr89], and systems describing commuting
group endomorphisms [Stu06]. The whole testbench as well as the full experimental data
can be obtained from the website.

In its fastest configuration it took the previous version [Sat08] of mkbTT 175 seconds
to complete CGE2, and more than 3000 seconds to complete CGE3. The implemented
optimizations, in particular isomorphisms and different selection strategies, allowed for
significant speedups: Using smax as selection strategy, ttt2micro for termination checks
and code trees for indexing operations, completing CGE2 and CGE3 requires 8.4 and 184
seconds, respectively. Using periodical checks for renaming isomorphisms further reduces
these numbers to 4.7 and 33 seconds. The implemented optimizations even allow mkbTT to
complete CGE4, which was neither achieved with the previous version nor with any other
approach we know of. With the same settings as described above, a complete system is
obtained in 622 seconds.

OPTIMIZING MKBTT 379

Figure 1: Web interface of mkbTT.

The current version of mkbTT can also produce a canonical presentation for the proof
reduction system presented in [Weh05]. Using ttt2micro as termination strategy and
ssum to control node selections, a complete system is obtained in 115 seconds. According
to [Weh05] Waldmeister [Löc02] produces a ground-complete system for this theory. Since
the resulting system is not terminating with one of the reduction orders implemented in
Waldmeister, it is not clear whether it can produce a complete system for this theory.

The following paragraphs present experimental results for each of the optimizations
presented in the previous sections. In all of the following examples, mkbTT performs termi-
nation checks by interfacing TTT2 internally, using ttt2micro as termination strategy. The

380 S. WINKLER, H. SATO, A. MIDDELDORP, AND M. KURIHARA

none rename rename+ permutations permutations+
(1) (2) (1) (2) (1) (2) (1) (2) (1) (2)
188 25 188 25 186 21 188 25 188 25

Table 1: Isomorphisms.

naive path indexing discrimination trees code trees
(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)
19.9 387 91 18.9 345 18 16.5 150 5 15.8 106 5

Table 2: Indexing techniques.

global timeout and the timeout for each termination check were set to 600 and 10 seconds,
respectively. If not stated otherwise, we used smax to control node selections, code trees for
indexing operations and neither critical pair criteria nor isomorphisms.

Isomorphisms. The results obtained with mkbTT using isomorphism checks are given in
Table 1. The columns list (1) the average time in seconds and (2) the average number of
processes. As witnessed by the CGE examples, renaming isomorphisms can greatly improve
performance on systems with symmetries. Also when tested on the whole database, repeat-
edly checking for renamings (rename+) pays off slightly. Apparently the advantage gained
on systems with isomorphic processes outweighs the overhead required for the remaining
input problems. Argument permutations, on the other hand, have little effect. For exam-
ple, when completing the systems LS94 G0 and GRP012-4th coming from group theory,
the number of processes drops from 8 to 4 and 4 to 2 using argument permutations. That
also affects the time required for their completion. But since these examples are small and
easily completable in any case, the overall performance is not improved.

Indexing Techniques. Table 2 presents results obtained with mkbTT using different indexing
techniques for rewriting. The columns list (1) the average time to complete a system, (2)
the time required for encompassment, and (3) the time for variant retrieval. Retrieving
unifiable terms for the computation of overlaps requires only about 1% of the computation
time (using naive search in node sets). While path indexing hardly adds anything, the use
of discrimination trees allows to decrease this ratio to 0.3%.

Critical Pair Criteria. Table 3 summarizes the outcome of mkbTT applying the critical pair
criteria mentioned in Section 4. For the column “all”, the criteria PCP, BCP and CCP
were combined such that every equation deemed superfluous by some criterion got filtered
out. The columns list (1) the time required to complete a system, and (2) the number of
critical pairs that were recognized as redundant, both for the successful process and for all
processes. In the last two rows, the number of successful completions and the total time for
all problems in the test series are given. The prefix BGK94 designates examples originating
from [Bün94]. Problem Chr89-A2 is taken from [Chr89], CGE3 stems from [Stu06], WS06-1
describes the proof reduction system presented in [Weh05], and GRP463-1 is the theory
associated with the respective problem in the unit equality division of TPTP [Sut09].

The use of PCP, BCP and the combination of all criteria increments the number of
successes by one. Timewise, there are some input problems which exhibit a speedup with

OPTIMIZING MKBTT 381

none PCP BCP CCP all
(1) (1) (2) (1) (2) (1) (2) (1) (2)

BGK94-D8 ∞ 550.9 28/220 550.2 28/212 ∞ 549.7 28/224
BGK94-D16 105.9 101.1 19/119 104.3 19/112 106.6 8/41 104.7 20/125
Chr89-A2 126.8 133.7 70/904 134.5 51/771 168.7 25/199 137.5 75/923
CGE3 198.7 197.7 16/23 198.3 16/20 197.5 8/11 200.4 18/29
GRP463-1 8.6 5.5 24/237 7.1 24/223 9.5 9/43 6.5 27/257
WS06-1 138.6 139.7 0/0 140.3 0/0 139.3 0/0 138.3 0/0

...
...

...
...

...
...

successes 70 71 71 70 71
total time 18867 18814 18815 18935 18822

Table 3: Critical pair criteria.

critical pair criteria, such as BGK-D16 or GRP463-1. For other problems such as Chr89-A2,
many critical pairs were filtered out but few of them were actually of use for the successful
process. Comparing the implemented criteria, PCP proved to be both the fastest and the
most powerful option. BCP recognizes slightly fewer redundancies, but is still feasible.
For CCP, the computational overhead clearly outweighs the advantage of the (rather few)
superfluous critical pairs. Also using the combination of all criteria is hardly worth the
effort, despite the fact that the largest number of critical pairs is filtered out. Overall,
critical pair criteria allow for rather small improvements.

Selection Strategies. Table 4 illustrates the effect of different selection strategies. The strate-
gies ssum, smax, sslothrop and smkbtt1 are described in Section 5, where the latter two use a
size-age ratio of 0.65. The strategy smkbtt1max differs from smkbtt1 in that ssum is replaced
by smax. The columns list (1) the time required to complete a system and (2) the number
of selected nodes, i.e., the number of iterations of the main control loop. In the last two
rows the number of successful completions and the average time for these are given. The
prefix SK90 designates examples originating from [Ste90].

For many problems, the results depend greatly on the selection strategy used. Some
problems like CGE3 perform better when the node size measure smax is used. Using smax
also improves the average time to complete a problem, although overall ssum could complete
the most input problems. There are also some problems like SK90-3.04 where sslothrop
needs the fewest node selections. However, this strategy tends to take more time as the
critical pair computation in its node measure is costly to compute. Altogether, 78 examples
could be completed with some strategy.

References

[Ala07] B. Alarcón, R. Gutiérrez, J. Iborra, and S. Lucas. Proving termination of context-sensitive rewriting
with MU-TERM. In Proc. 6th PROLE, ENTCS, vol. 188, pp. 105–115. 2007.

[Bac88] L. Bachmair and N. Dershowitz. Critical pair criteria for completion. Journal of Symbolic Compu-
tation, 6(1):1–18, 1988.

[Bac94] L. Bachmair and N. Dershowitz. Equational inference, canonical proofs, and proof orderings. Jour-
nal of the ACM, 41(2):236–276, 1994.

[Bün94] R. Bündgen, M. Göbel, and W. Küchlin. A fine-grained parallel completion procedure. In Proc.
7th ISSAC, pp. 269–277. 1994.

382 S. WINKLER, H. SATO, A. MIDDELDORP, AND M. KURIHARA

ssum smax smkbtt1 smkbtt1max sslothrop
(1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

Chr89-A2 77.9 153 149.6 150 ∞ ∞ ∞
SK90-3.04 74.6 133 1.6 39 37.6 105 2.3 42 2.9 33
SK90-3.27 59.1 68 70.0 46 56.8 58 178.5 86 ∞
BGK94-D8 303.7 217 90.4 134 ∞ 71.1 105 591.9 160
BGK94-D10 39.8 126 31.7 102 ∞ 198.4 171 ∞
BGK94-M14 1.48 34 ∞ ∞ ∞ ∞
TPTP/GRP454-1 87.4 168 2.0 38 14.5 75 ∞ 8.8 40
TPTP/GRP484-1 252.2 324 ∞ ∞ ∞ ∞
CGE2 138.2 157 9.0 44 7.6 56 9.9 46 15.8 46
CGE3 ∞ 189.6 56 ∞ 121.3 58 343.9 66

...
...

...
...

...
...

successes 74 71 66 68 69
average time 22.2 12.8 23.5 15.8 38.9

Table 4: Selection strategies.

[Chr89] J. Christian. Fast Knuth-Bendix completion. In Proc. 3rd RTA, LNCS, vol. 355, pp. 551–555. 1989.
[Gie06] J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termination proofs in the

dependency pair framework. In Proc. 3rd IJCAR, LNAI, vol. 4130, pp. 281–286. 2006.
[Gra96] P. Graf. Term Indexing, LNAI, vol. 1053. Springer-Verlag, 1996.
[Kap88] D. Kapur, D.R. Musser, and P. Narendran. Only prime superpositions need be considered in the

Knuth-Bendix completion procedure. Journal of Symbolic Computation, 6(1):19–36, 1988.
[Kor09] M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean termination tool 2. In Proc. 20th

RTA, LNCS, vol. 5595, pp. 295–304. 2009.
[Küc85] W. Küchlin. A confluence criterion based on the generalised Newman lemma. In Proc. 2nd EURO-

CAL, LNCS, vol. 204, pp. 390–399. 1985.
[Kur99] M. Kurihara and H. Kondo. Completion for multiple reduction orderings. Journal of Automated

Reasoning, 23(1):25–42, 1999.
[Löc02] B. Löchner and T. Hillenbrand. A phytography of Waldmeister. AI Communications, 15(2-

3):127–133, 2002.
[McC92] W. McCune. Experiments with discrimination-tree indexing and path indexing for term retrieval.

Journal of Automated Reasoning, 9(2):147–167, 1992.
[Sat08] H. Sato, S. Winkler, M. Kurihara, and A. Middeldorp. Multi-completion with termination tools

(system description). In Proc. 4th IJCAR, LNAI, vol. 5195, pp. 306–312. 2008.
[Sat09] H. Sato, S. Winkler, M. Kurihara, and A. Middeldorp. Constraint-based multi-completion proce-

dures for term rewriting systems. IEICE Transactions on Information and Systems, E92-D(2):220–
234, 2009.

[Sek01] R. Sekar, I. V. Ramakrishnan, and A. Voronkov. Term indexing. In Handbook of Automated Rea-
soning, pp. 1853–1964. Elsevier Science Publishers, 2001.

[Ste90] J. Steinbach and U. Kühler. Check your ordering – termination proofs and open problems. Tech.
Rep. SR-90-25, Universität Kaiserslautern, 1990.

[Stu06] A. Stump and B. Löchner. Knuth-Bendix completion of theories of commuting group endomor-
phisms. Information Processing Letters, 98(5):195–198, 2006.

[Sut09] G. Sutcliffe. The TPTP problem library and associated infrastructure. Journal of Automated Rea-
soning, 43(4):337–362, 2009.

[Vor95] A. Voronkov. The anatomy of Vampire. Journal of Automated Reasoning, 15(2):237–265, 1995.
[Vor01] A. Voronkov. Algorithms, datastructures, and other issues in efficient automated deduction. In

Proc. 1st IJCAR, LNCS, vol. 2083, pp. 13–28. 2001.
[Weh05] I. Wehrman and A. Stump. Mining propositional simplification proofs for small validating clauses.

In Proc. 3rd PDPAR, ENTCS, vol. 144, pp. 79–91. 2005.

OPTIMIZING MKBTT 383

[Weh06] I. Wehrman, A. Stump, and E.M. Westbrook. Slothrop: Knuth-Bendix completion with a modern
termination checker. In Proc. 17th RTA, LNCS, vol. 4098, pp. 287–296. 2006.

384 S. WINKLER, H. SATO, A. MIDDELDORP, AND M. KURIHARA

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 385-400
http://rewriting.loria.fr/rta/

MODULAR COMPLEXITY ANALYSIS VIA RELATIVE COMPLEXITY

HARALD ZANKL AND MARTIN KORP

Institute of Computer Science, University of Innsbruck, Austria

E-mail address: {harald.zankl,martin.korp}@uibk.ac.at

Abstract. In this paper we introduce a modular framework which allows to infer (feasi-

ble) upper bounds on the (derivational) complexity of term rewrite systems by combining

different criteria. All current investigations to analyze the derivational complexity are

based on a single termination proof, possibly preceded by transformations. We prove that

the modular framework is strictly more powerful than the conventional setting. Further-

more, the results have been implemented and experiments show significant gains in power.

1. Introduction

Term rewriting is a Turing complete model of computation. As an immediate conse-
quence all interesting properties are undecidable. Nevertheless many powerful techniques
have been developed for establishing termination. The majority of these techniques have
been automated successfully. This development has been stimulated by the international
competition of termination tools.1 Most automated analyzers gain their power from a modu-
lar treatment of the rewrite system (typically via the dependency pair framework [2,11,22]).

For terminating rewrite systems Hofbauer and Lautemann [14] consider the length of
derivations as a measurement for the complexity of rewrite systems. The resulting notion
of derivational complexity relates the length of a rewrite sequence to the size of its starting
term. Thereby it is, e.g., a suitable metric for the complexity of deciding the word problem
for a given confluent and terminating rewrite system (since the decision procedure rewrites
terms to normal form). If one regards a rewrite system as a program and wants to estimate
the maximal number of computation steps needed to evaluate an expression to a result,
then the special shape of the starting terms—a function applied to data which is in normal
form—can be taken into account. Hirokawa and Moser [12] identified this special form of
complexity and named it runtime complexity.

To show (feasible) upper complexity bounds currently few techniques are known. Typ-
ically termination criteria are restricted such that complexity bounds can be inferred. The
early work by Hofbauer and Lautemann [14] considers polynomial interpretations, suitably

1998 ACM Subject Classification: F.2 Analysis of Algorithms and Problem Complexity, F.4 Mathematical

Logic and Formal Languages.

Key words and phrases: term rewriting, complexity analysis, relative complexity, derivation length.

This research is supported by FWF (Austrian Science Fund) project P18763.

1 http://termcomp.uibk.ac.at

c© Harald Zankl and Martin Korp
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.385

386 HARALD ZANKL AND MARTIN KORP

restricted, to admit quadratic derivational complexity. Match-bounds [9] and arctic matrix
interpretations [16] induce linear derivational complexity and triangular matrix interpre-
tations [19] admit polynomially long derivations (the dimension of the matrices yields the
degree of the polynomial). All these methods share the property that until now they have
been used directly only, meaning that a single termination technique has to orient all rules
in one go. However, using direct criteria exclusively is problematic due to their restricted
power.

In [12,13] Hirokawa and Moser lift many aspects of the dependency pair framework from
termination analysis into the complexity setting, resulting in the notion of weak dependency
pairs. So for the special case of runtime complexity for the first time a modular approach
has been introduced. There the modular aspect amounts to using different interpretation
based criteria for (parts of the) weak dependency graph and the usable rules. However, still
all rewrite rules considered must be oriented strictly in one go and only restrictive criteria
may be applied for the usable rules. A further drawback of weak dependency pairs is that
they may only be used for bounding runtime complexity while there seems to be no hope
to generalize the method to derivational complexity.

In this paper we present a different approach which admits a fully modular treatment.
The approach is general enough that it applies to derivational complexity (and hence also
to runtime complexity) and basic enough that it allows to combine completely different
complexity criteria such as match-bounds and triangular matrix interpretations. By the
modular combination of different criteria also gains in power are achieved. These gains
come in two flavors. On one hand our approach allows to obtain lower complexity bounds
for several rewrite systems where bounds have already been established before and on the
other hand we found bounds for systems that could not be dealt with so far automatically.

The remainder of the paper is organized as follows. In Section 2 preliminaries about
term rewriting and complexity analysis are fixed. Afterwards, Section 3 familiarizes the
reader with the concept of a suitable complexity measurement for relative rewriting. Sec-
tion 4 formulates a modular framework for complexity analysis based on relative complexity.
In Section 5 we show that the modular setting is strictly more powerful than the conven-
tional approach. Our results have been implemented in the complexity prover CaT. The
technical details can be inferred from Section 6. Section 7 is devoted to demonstrate the
power of the modular treatment by means of an empirical evaluation. Section 8 concludes.

2. Preliminaries

We assume familiarity with (relative) term rewriting [3, 10, 21]. Let F be a signature
and V be a disjoint set of variables. By T (F ,V) we denote the set of terms over F and V and
by T (F) the set of ground terms over F . We write Fun(t) for the set of function symbols
occurring in a term t. The size of a term t is denoted |t| and ‖t‖ computes the number of
occurrences of function symbols in t. Positions are used to address symbol occurrences in
terms. Given a term t and a position p ∈ Pos(t), we write t(p) for the symbol at position p.
We use FPos(t) to denote the subset of positions p ∈ Pos(t) such that t(p) ∈ F .

A rewrite rule is a pair of terms (l, r), written l → r such that l is not a variable and
all variables in r are contained in l. A term rewrite system (TRS for short) is a set of
rewrite rules. For complexity analysis we assume TRSs to be finite. A TRS R is said to
be duplicating if there exists a rewrite rule l → r ∈ R and a variable x that occurs more
often in r than in l. A TRS is called linear if for all rewrite rules l → r ∈ R any variable x

MODULAR COMPLEXITY ANALYSIS VIA RELATIVE COMPLEXITY 387

occurs at most once in l and r, respectively. A rewrite relation is a binary relation on terms
that is closed under contexts and substitutions. For a TRS R we define →R to be the
smallest rewrite relation that contains R. As usual →∗ denotes the reflexive and transitive
closure of → and →n the n-th iterate of →. A relative TRS R/S is a pair of TRSs R and S
with the induced rewrite relation →R/S = →∗

S · →R · →∗
S . In the sequel we will sometimes

identify a TRS R with the relative TRS R/∅.
The derivation length of a term t with respect to a relation → and a set of terms L is de-

fined as follows: dl(t,→, L) = max{m | ∃u t →m u, t ∈ L}. We abbreviate dl(t,→, T (F ,V))
by dl(t,→). The derivational complexity computes the maximal derivation length of all
terms up to a given size, i.e., dc(n,→) = max{dl(t,→) | |t| 6 n}. Sometimes we say that R
(R/S) has linear, quadratic, etc. derivational complexity if dc(n,→R) (dc(n,→R/S)) can
be bounded by a linear, quadratic, etc. polynomial in n.

2.1. Triangular Matrix Interpretations

An F-algebra A consists of a non-empty carrier A and a set of interpretations fA for
every f ∈ F . By [α](·)A we denote the usual evaluation function of A according to an
assignment α. An F-algebra A together with two relations ≻ and � on A is called a
monotone algebra if every fA is monotone with respect to ≻ and �, ≻ is a well-founded
order, and ≻ · � ⊆ ≻ and � · ≻ ⊆ ≻ holds. Any monotone algebra (A,≻,�) induces a well-
founded order on terms, i.e., s ≻A t if for any assignment α the condition [α](s)A ≻ [α](t)A
holds. The order �A is defined similarly. A relative TRSR/S is compatible with a monotone
algebra (A,≻A,�A) if R ⊆ ≻A and S ⊆ �A. Matrix interpretations (M,≻M,�M) (often
just denoted M) are a special form of monotone algebras. Here the carrier is Nd for some
fixed dimension d ∈ N \ {0}. The order �M is the point-wise extension of >N to vectors
and ~u ≻M ~v if ~u1 >N ~v1 and ~u �M ~v. If every f ∈ F of arity n is interpreted as

fM(~x1, . . . , ~xn) = F1 ~x1 + · · · + Fn ~xn + ~f where Fi ∈ N
d×d and ~f ∈ N

d for all 1 6 i 6 n
then monotonicity of ≻M is achieved by demanding Fi(1,1) > 1 for any 1 6 i 6 n. A matrix
interpretation where for every f ∈ F all Fi (1 6 i 6 arity(f)) are upper triangular is called
triangular matrix interpretation (abbreviated by TMI). A square matrix A of dimension d
is of upper triangular shape if A(i,i) 6 1 and A(i,j) = 0 if i > j for all 1 6 i, j 6 d. For
historic reasons a TMI based on matrices of dimension one is also called strongly linear

interpretation (SLI for short). In [19] it is shown that the derivational complexity of a
TRS R is bounded by a polynomial of degree d if there exists a TMI M of dimension d
such that R is compatible with M.

2.2. Match-Bounds

Let F be a signature, R a TRS over F , and L ⊆ T (F) a set of ground terms. The
set {t ∈ T (F) | s →∗

R t for some s ∈ L} of reducts of L is denoted by →∗
R(L). Given a

set N ⊆ N of natural numbers, the signature F × N is denoted by FN . Here function
symbols (f, n) with f ∈ F and n ∈ N have the same arity as f and are written as fn. The
mappings liftc : F → FN, base : FN → F , and height : FN → N are defined as liftc(f) = fc,
base(fc) = f , and height(fc) = c for all f ∈ F and c ∈ N. They are extended to terms,
sets of terms, and TRSs in the obvious way. The TRS match(R) over the signature FN

consists of all rewrite rules l′ → liftc(r) for which there exists a rule l → r ∈ R such that
base(l′) = l and c = 1 + min{height(l′(p)) | p ∈ FPos(l)}. Here c ∈ N. The restriction of

388 HARALD ZANKL AND MARTIN KORP

match(R) to the signature F{0,...,c} is denoted by matchc(R). Let L be a set of terms. The
TRS R is called match-bounded for L if there exists a c ∈ N such that the maximum height
of function symbols occurring in terms in →∗

match(R)
(lift0(L)) is at most c. If we want to

make the bound c precise, we say that R is match-bounded for L by c. If we do not specify
the set of terms L then it is assumed that L = T (F). If a linear TRS R is match-bounded
for a language L then R is terminating on L. Furthermore dl(t,→R, L) is bounded by a
linear polynomial for any term t ∈ L [9].

In order to prove that a TRS R is match-bounded for some language L, the idea
is to construct a tree automaton that is compatible with match(R) and lift0(L). A tree
automaton A = (F , Q,Qf ,∆) is said to be compatible with some TRS R and some language
L if L ⊆ L(A) and for each rewrite rule l → r ∈ R and state substitution σ : Var(l) → Q
such that lσ →∗

∆
q it holds that rσ →∗

∆
q.

3. Relative Complexity

In this section we introduce complexity analysis for relative rewriting, i.e., given R/S
only the R-steps contribute to the complexity. To estimate the derivational complexity of
a relative TRS R/S, a pair of orderings (≻,�) will be used such that R ⊆ ≻ and S ⊆ �.
The necessary properties of these orderings are given in the next definition.

Definition 3.1. A complexity pair (≻,�) consists of two finitely branching rewrite rela-
tions ≻ and � that are compatible, i.e., � · ≻ ⊆ ≻ and ≻ · � ⊆ ≻. We call a relative TRS
R/S compatible with a complexity pair (≻,�) if R ⊆ ≻ and S ⊆ �.

The next lemma states that given a complexity pair (≻,�) and a compatible relative
TRS R/S, the ≻ ordering is crucial for estimating the derivational complexity of R/S.
Intuitively the result states that every R/S-step gives rise to at least one ≻-step.

Lemma 3.2. Let (≻,�) be a complexity pair and R/S be a compatible relative TRS. Then

for any term t terminating on R/S we have dl(t,≻) > dl(t,→R/S).

Proof. By assumption R/S is compatible with (≻,�). Since ≻ and � are rewrite relations
→R ⊆ ≻ and →S ⊆ � holds. From the compatibility of ≻ and � we obtain →R/S ⊆ ≻.
Hence for any sequence

t →R/S t1 →R/S t2 →R/S · · ·

also

t ≻ t1 ≻ t2 ≻ · · ·

holds. The result follows immediately from this.

Obviously ≻ must be at least well-founded if finite complexities should be estimated.
Because we are especially interested in feasible upper bounds the following corollary is
specialized to polynomials.

Corollary 3.3. Let R/S be a relative TRS compatible with a complexity pair (≻,�). If

the derivational complexity of ≻ is linear, quadratic, etc. then the derivational complexity

of R/S is linear, quadratic, etc.

Proof. By Lemma 3.2.

MODULAR COMPLEXITY ANALYSIS VIA RELATIVE COMPLEXITY 389

This corollary allows to investigate the derivational complexity of (compatible) complex-
ity pairs instead of the derivational complexity of the underlying relative TRS. Complexity
pairs can, e.g., be obtained by TMIs.

Theorem 3.4. Let (M,≻M,�M) be a TMI of dimension d. Then (≻M,�M) is a com-

plexity pair. Furthermore dl(t,≻M) is bounded by a polynomial of degree d for any term t.

Proof. Straightforward from [19, Theorem 6].

The following example familiarizes the reader with relative derivational complexity
analysis.

Example 3.5. Consider the relative TRS R/S where R = {f(x) → x} and S = {a → a}.
Then the SLI M satisfying fM(x) = x + 1 and aM = 0 induces the complexity pair
(≻M,�M). Furthermore R/S is compatible with (≻M,�M). Theorem 3.4 gives a linear
bound on ≻M. HenceR/S admits (at most) linear derivational complexity by Corollary 3.3.
It is easy to see that this bound is tight.

4. Modular Complexity Analysis

Although Theorem 3.4 in combination with Corollary 3.3 is already powerful, a severe
drawback is that given a relative TRS R/S all rules in R must be strictly oriented by ≻M.
The next (abstract) example demonstrates the basic idea of an approach that allows to
weaken this burden.

Example 4.1. Consider the relative TRS R/S where R = {r, r′}. Instead of estimating
dl(t,→R/S) directly, we want to bound it by dl(t,→{r}/({r′} ∪ S)) + dl(t,→{r′}/({r} ∪ S)). To

proceed we separate the r from the r′-steps. I.e., any reduction sequence in R/S can be
written as

t →{r}/S t1 →{r}/S t2 →{r′}/S t3 →{r}/S · · ·

which immediately gives rise to a sequence

t →{r}/({r′} ∪ S) t1 →{r}/({r′} ∪ S) t2 →{r′}/({r} ∪ S) t3 →{r}/({r′} ∪ S) · · ·

Obviously dl(t,→{r}/({r′} ∪ S)) + dl(t,→{r′}/({r} ∪ S)) > dl(t,→R/S).

Next we formalize the main observation needed for modular complexity analysis of a
relative TRS R/S. As already indicated in the example above the key idea is that every
rule from R can be investigated relative to the other rules in R and S. The next theorem
states the main result in this direction. In the sequel we assume that Ri ⊆ R for any i.
Furthermore, sometimes Ri refers to {ri} if R = {r1, . . . , rn} and 1 6 i 6 n. The context
clarifies if Ri is an arbitrary subset of R or its i-th rule. In addition we denote by Si the
TRS (S ∪ R) \ Ri. If S is not explicitly mentioned then S = ∅.

Theorem 4.2. Let (R1 ∪R2)/S be a relative TRS for which the term t terminates. Then

dl(t,→R1/S1
) + dl(t,→R2/S2

) > dl(t,→(R1 ∪R2)/S).

Proof. We abbreviate R1 ∪ R2 by R. Assume that dl(t,→R/S) = m. Then there exists a
rewrite sequence

t →R/S t1 →R/S t2 →R/S · · · →R/S tm−1 →R/S tm (1)

390 HARALD ZANKL AND MARTIN KORP

of length m. Next we investigate this sequence for every relative TRS Ri/Si (1 6 i 6 2)
where mi overestimates how often rules from Ri have been applied in the original sequence.
Fix i. If the sequence (1) does not contain an Ri step then t →m

Si
tm and mi = 0. In the

other case there exists a maximal (with respect to mi) sequence

t →Ri/Si
ti1 →Ri/Si

ti2 →Ri/Si
· · · →Ri/Si

timi−1
→Ri/Si

tm (2)

where i1 < i2 < · · · < imi−1 < m. Together with the fact that every rewrite rule in R
is either contained in R1 or R2 we have m1 + m2 > m. If mi = 0 we obviously have
dl(t,→Ri/Si

) > mi and if t →mi

Ri/Si
tm with mi > 0 we know that dl(t,→Ri/Si

) > mi by

the choice of sequence (2). (Note that in both cases it can happen that dl(t,→Ri/Si
) > mi

because sequence (1) need not be maximal with respect to →Ri/Si
.) Putting things together

yields
dl(t,→R1/S1

) + dl(t,→R2/S2
) > m1 +m2 > m = dl(t,→R/S)

which concludes the proof.

As already indicated, the reverse direction of the above theorem does not hold. This is
illustrated by the following example.

Example 4.3. Consider the relative TRS R/S with R = {a → b, a → c} and S = ∅. We
have a →R/S b or a →R/S c. Hence dl(a,→R/S) = 1. However, the sum of the derivation
lengths dl(a,→R1/S1

) and dl(a,→R2/S2
) is 2.

Although for Theorem 4.2 equality cannot be established the next result states that for
complexity analysis this does not matter.

Theorem 4.4. Let (R1 ∪R2)/S be a relative TRS for which the term t terminates. Then

max{O(dl(t,→R1/S1
)),O(dl(t,→R2/S2

))} = O(dl(t,→(R1 ∪R2)/S)).

Proof. We abbreviate the union R1 ∪R2 by R. The >-direction follows immediately from
Theorem 4.2 and some basic properties of the O-notation like max16i62{O(dl(t,→Ri/Si

))} =
O(

∑

16i62
{dl(t,→Ri/Si

)}). For the 6-direction we select a j ∈ {1, 2} such that Rj/Sj

determines the complexity of R/S, i.e., O(dl(t,→Rj/Sj
)) = max16i62{O(dl(t,→Ri/Si

))}.

By construction of Rj/Sj any derivation of the form

t →Rj/Sj
t1 →Rj/Sj

· · · →Rj/Sj
tm

induces a derivation
t →+

R/S t1 →+

R/S · · · →+

R/S tm

of at least the same length. Putting things together finishes the proof.

Theorems 4.2 and 4.4 allow to split a relative TRS R/S into smaller components R1/S1

and R2/S2—such that R1 ∪ R2 = R—and evaluate the complexities of these components
(e.g., by different complexity pairs) independently. Note that this approach is not restricted
to relative rewriting. To estimate the complexity of a (non-relative) TRS R just consider
the relative TRS R/∅.

In Theorem 3.4 we have already seen one method to obtain complexity pairs. In the
next subsection we study how the match-bounds technique can be suited for relative com-
plexity analysis. Afterwards, in Section 4.2, we show that under certain circumstances the
derivational complexity of a relative TRS R/S can be estimated by considering R1/S1 and
R2/S. Note that Theorem 4.2 requires R2/S2 with S2 = R1 ∪ S instead of R2/S.

MODULAR COMPLEXITY ANALYSIS VIA RELATIVE COMPLEXITY 391

4.1. Complexity Pairs via Match-Bounds

It is easy to use the match-bound technique for estimating the derivational complexity
of a relative TRS R/S; just check for match-boundedness of R ∪ S. This process either
succeeds by proving that the combined TRS is match-bounded, or, when R ∪ S cannot be
proved to be match-bounded, it fails. Since the construction of a compatible tree automaton
does not terminate for TRSs that are not match-bounded, the latter situation typically does
not happen. This behavior causes two serious problems. On the one hand we cannot benefit
from Theorem 4.4 because whenever we split a relative TRS R/S into smaller components
R1/S1 and R2/S2 then R1 ∪ S1 is match-bounded if and only if R2 ∪ S2 is match-bounded
since both TRSs coincide. On the other hand the match-bound technique cannot cooperate
with other techniques since either linear derivational complexity of all or none of the rules
in R is shown. In [23] these problems have been addressed by checking if there is a c ∈ N

such that the maximum height of function symbols occurring in terms in derivations caused
by the TRS matchc+1(R) ∪ matchc(S) ∪ liftc(S) is at most c. Below we follow a different
approach which seems to be more suitable for our setting. That is, given some relative
TRS R/S we adapt the match-bound technique in such a way that it can orient the rewrite
rules in R strictly and the ones in S weakly. To this end we introduce a new enrichment
match-RT(R/S). The key idea behind the new enrichment is to keep heights until a labeled
version of a rule in R is applied.

To simplify the presentation we consider linear TRSs only. The extension to non-
duplicating TRSs is straightforward and follows [17].

Definition 4.5. Let S be a TRS over a signature F . The TRS match-RT(S) over the
signature FN consists of all rules l′ → liftc(r) such that base(l′) → r ∈ S. Here c =
height(l′(ǫ)) if ‖base(l′)‖ > ‖r‖ and liftc(base(l

′)) = l′, and c = min {1 + height(l′(p)) | p ∈
FPos(l′)}) otherwise. Given a relative TRS R/S, the relative TRS match-RT(R/S) is
defined as match(R)/match-RT(S).

To satisfy the requirement that the new enrichment match-RT(R/S) counts only R-
steps we try to keep the labels of the function symbols in a contracted redex if a size-
preserving or size-decreasing rewrite rule in S is applied. We need this requirement on the
size that the new enrichment is compatible with multi-set orderings ≻mul and �mul which
induce a linear complexity.

Example 4.6. Consider the TRS R = {rev(x) → rev′(x, nil), rev′(nil, y) → y} and the
TRS S = {rev′(cons(x, y), z) → rev′(y, cons(x, z))}. Then match(R) contains the rules

rev0(x) → rev′1(x, nil1) rev′0(nil0, y) → y

rev1(x) → rev′2(x, nil2) rev′0(nil1, y) → y

· · · · · ·

and match-RT(S) contains

rev′0(cons0(x, y), z) → rev′0(y, cons0(x, z))

rev′0(cons1(x, y), z) → rev′1(y, cons1(x, z))

· · ·

Both infinite TRSs together constitute match-RT(R/S).

392 HARALD ZANKL AND MARTIN KORP

In order to prove that a relative TRSR/S admits at most linear derivational complexity
using the enrichment match-RT(R/S) we need the property defined below.

Definition 4.7. Let R/S be a relative TRS. We call R/S match-RT-bounded for a set of
terms L if there exists a number c ∈ N such that the height of function symbols occurring
in terms in →∗

match-RT(R/S)(lift0(L)) is at most c.

Let MFun(t) = {height(f) | f ∈ Fun(t)} denote the multiset of the heights of the
function symbols that occur in the term t. The precedence ≻ on N is defined as i ≻ j if
and only if j >N i. Let Mul(N) denote all multisets over N. We write s ≻mul t for terms
s, t ∈ T (F ,V) if MFun(s) is greater than MFun(t) in the multiset extension of ≻ on N.
Similarly, s �mul t if s ≻mul t or MFun(s) = MFun(t).

A key property of the relative TRS match-RT(R/S) is that the rewrite rules which
originate from rules in R can be oriented by ≻mul and all other rules can be oriented
by �mul. Hence the derivation length induced by the relative TRS R/S on some language
L is bounded by a linear polynomial whenever R/S is match-RT-bounded for L.

Lemma 4.8. Let R and S be two non-duplicating TRSs. We have →match(R) ⊆ ≻mul and

→match-RT(S) ⊆ �mul.

Proof. From the proof of [9, Lemma 17] we know that for a non-duplicating TRS R and
two terms s, t ∈ T (F ,V), s ≻mul t whenever s →match(R) t. If s →match-RT(S) t then either
MFun(s) ⊇ MFun(t) or s →match(S) t by Definition 4.5. In the former case we have
s �mul t and in the latter one s ≻mul t and hence s �mul t by the definition of �mul. This
concludes the proof of the lemma.

Theorem 4.9. Let R/S be a relative TRS such that R and S are linear and let L be a set

of terms. If R/S is match-RT-bounded for L then R/S is terminating on L. Furthermore

dl(t,→R/S , L) is bounded by a linear polynomial for any term t ∈ L.

Proof. At first we show that R/S is terminating on L. Assume to the contrary that there
is an infinite rewrite sequence of the form

t1 →R/S t2 →R/S t3 →R/S · · ·

with t1 ∈ L. Because R and S are left-linear, this derivation can be lifted to an infinite
match-RT(R/S) rewrite sequence

t′1 →match-RT(R/S) t
′
2 →match-RT(R/S) t

′
3 →match-RT(R/S) · · ·

starting from t′1 = lift0(t1). Since the original sequence contains infinitely many R-steps
the lifted sequence contains infinitely many match(R)-steps. Moreover, because R/S is
match-RT-bounded for L, there is a c > 0 such that the height of every function symbol
occurring in a term in the lifted sequence is at most c. Lemma 4.8 as well as compatibility
of ≻mul and �mul yields t′i ≻mul t

′
i+1

for all i > 1. However, this is excluded because ≻ is
well-founded on {0, . . . , c} and hence ≻mul is well-founded on T (F{0, . . . , c},V) [3]. To prove
the second part of the theorem consider an arbitrary (finite) rewrite sequence

t →R/S t1 →R/S · · · →R/S tm

with t ∈ L. Similar as before this sequence can be lifted to a match-RT(R/S) sequence

t′ →match-RT(R/S) t
′
1 →match-RT(R/S) · · · →match-RT(R/S) t

′
m

MODULAR COMPLEXITY ANALYSIS VIA RELATIVE COMPLEXITY 393

of the same length starting from t′ = lift0(t) such that t′i ≻mul t
′
i+1

for all i > 0. Here
t′0 = t′. Because R/S is match-RT-bounded for L, we know that there is a c > 0 such
that the height of every function symbol occurring in a term in the lifted sequence is at
most c. Let k be the maximal number of function symbols occurring in some right-hand
side in R∪ S. Due to a remark in [4] we know that the length of the ≻mul chain from t′ to
t′m is bounded by ‖t′‖ · (k+1)c. Since ‖t′‖ = ‖t‖ and both, the lifted as well as the original
sequence are as long as the ≻mul chain starting at t′, we conclude that the length of the
R/S rewrite sequence starting at the term t is bounded by ‖t‖ · (k + 1)c.

Corollary 4.10. Let R/S be a relative TRS such that R and S are linear and let L be a

set of terms. If R/S is match-RT-bounded for L then (→R/S ,→S) is a complexity pair.

Furthermore dl(t,→R/S , L) is bounded by a linear polynomial for any term t ∈ L.

Proof. Follows immediately from Theorem 4.9.

To prove that a relative TRS R/S is match-RT-bounded for a set of terms L we con-
struct a tree automaton A that is compatible with the rewrite rules of match-RT(R/S) and
lift0(L). Since the set →∗

match-RT(R/S)(lift0(L)) need not be regular, even for left-linear R

and S and regular L (see [9]) we cannot hope to give an exact automaton construction. The
general idea [8, 9] is to look for violations of the compatibility requirement: lσ →∗

∆
q and

rσ 6→∗
∆

q for some rewrite rule l → r, state substitution σ, and state q. Then we add new
states and transitions to the current automaton to ensure rσ →∗

∆
q. After rσ →∗

∆
q has

been established, we repeat this process until a compatible automaton is obtained. Note
that this may never happen if new states are repeatedly added.

Example 4.11. We show that the relative TRS R/S of Example 4.6 is match-RT-bounded
by constructing a compatible tree automaton. As starting point we consider the automaton

nil0 → 1 rev0(1) → 1 cons0(1, 1) → 1 rev′0(1, 1) → 1

which accepts the set of all ground terms over the signature {nil, rev, cons, rev′}. Since
rev0(x) →match(R) rev′1(x, nil1) and rev0(1) → 1, we add the transitions nil1 → 2 and
rev′1(1, 2) → 1. At next consider the rule rev′1(nil0, y) →match(R) y with rev′1(nil0, 2) →∗ 1.
In order to solve this compatibility violation we add the transition 2 → 1. After that we
consider the compatibility violation rev′1(cons0(1, 1), 2) →∗ 1 but rev′1(1, cons1(1, 2)) 6→∗ 1
caused by the rule rev′1(cons0(x, y), z) →match-RT(S) rev

′
1(y, cons1(x, z)). In order to ensure

rev′1(1, cons1(1, 2)) →
∗ 1 we reuse the transition rev′1(1, 2) → 1 and add the new transition

cons1(1, 2) → 2. Finally rev′0(cons1(x, y), z) →match-RT(S) rev
′
1(y, cons1(x, z)) and the deriva-

tion rev′0(cons1(1, 2), 1) →∗ 1 give rise to the transition cons1(1, 1) → 2. After this step,
the obtained tree automaton is compatible with match-RT(R/S). Hence R/S is match-RT-
bounded by 1. Due to Corollary 4.10 we can conclude linear derivational complexity ofR/S.
We remark that the ordinary match-bound technique fails on R/S because R ∪ S induces
quadratic derivational complexity (consider the term revn(x)σm for σ = {x 7→ cons(y, x)}).

4.2. Beyond Complexity Pairs

An obvious question is whether it suffices to estimate the complexity of R1/S1 and
R2/S (in contrast to R2/S2) to conclude some complexity bound for (R1 ∪R2)/S. The
following example by Hofbauer [15] shows that in general the complexity of (R1 ∪R2)/S

394 HARALD ZANKL AND MARTIN KORP

might be much larger than the sum of the components; even for systems where both parts
have linear derivational complexity.

Example 4.12. Consider the TRS R1 consisting of the single rule c(L(x)) → R(x) and the
TRS R2 consisting of the rules

R(a(x)) → b(b(R(x))) R(x) → L(x) b(L(x)) → L(a(x))

Here S = ∅. The derivational complexity of the relative TRS R1/S1 is linear, due to the
SLI that just counts the c’s. The derivational complexity of R2/S is linear as well since the
system is match-bounded by 2. However, the relative TRS R/S with R = R1 ∪R2 admits
exponentially long R-derivations in the size of the starting term:

cn(L(a(x))) → cn−1(R(a(x))) → cn−1(b(b(R(x)))) → cn−1(b(b(L(x))))

→ cn−1(b(L(a(x)))) → cn−1(L(a(a(x)))) →∗ L(a2
n

(x))

Under certain circumstances the problem from the preceding example does not occur.
Although developed for a different setting (to estimate weak dependency pair steps relative
to usable rule steps) the weight gap principle of Hirokawa and Moser [12] gives a sound
criterion when estimating complexity bounds as shown above. Among non-duplication ofR1

the theorem requires a special linear bound on R2. Then the derivational complexity of
R1/R2 determines the derivational complexity of R1∪R2. However, in contrast to runtime
complexity, for derivational complexity non-duplication is no (real) restriction since any
duplicating TRSs immediately admits exponentially long derivations. Because we focus on
feasible upper bounds all systems considered are non-duplicating.

Theorem 4.13 (Hirokawa and Moser [12]). Let R1 and R2 be TRSs, R1 be non-duplicating,

and let M be an SLI such that R2 ⊆ ≻M. Then for all R1 and M there exist constants K
and L such that

K · dl(t,→R1/R2
) + L · |t| > dl(t,→R1∪R2

)

whenever t is terminating on R1 ∪R2.

The next corollary generalizes this result to the relative rewriting setting.

Corollary 4.14. Let (R1 ∪R2)/S be a relative TRS, R1 be non-duplicating, and let M be

an SLI such that R2 ⊆ ≻M and S ⊆ �M. Then for all R1 and M there exist constants K
and L such that

K · dl(t,→R1/(R2 ∪ S)) + L · |t| > dl(t,→(R1 ∪R2)/S)

whenever t is terminating on (R1 ∪R2)/S.

Proof. Follows from Theorem 4.13.

An immediate consequence of the above corollary is that for any relative TRS R/S we
can shift rewrite rules in R that are strictly oriented by an SLI M into the S component,
provided that R is non-duplicating and all rules in S behave nicely with respect to �M.
Note that the above corollary does not require that all rules from R are (strictly) oriented.
This causes some kind of non-determinism which is demonstrated in the next example.

Example 4.15. Consider the TRSs R = {a(b(x)) → a(c(x)), d(c(x)) → d(b(x))} and
S = ∅. Obviously there are two SLIs that allow to preprocess R/S. Counting b’s results
in the relative TRS R2/S2 whereas counting c’s yields R1/S1. Note that both results are
different and cannot be further processed by Corollary 4.14.

MODULAR COMPLEXITY ANALYSIS VIA RELATIVE COMPLEXITY 395

5. Assessment

In the first part of this section we prove that the modular setting based on Theorem 4.4
is strictly more powerful in theory than the direct approach. (For gains in power in practice,
cf. Section 7.) To make the reasoning easier we assume full (in contrast to relative) rewriting
and that Theorem 4.4 has been applied iteratively, until every component Ri consists of a
single rule. The next lemma states that if only TMIs of dimension one are employed, then
in theory there is no difference in power between the two settings.

Lemma 5.1. Let R be a TRS. There exists a TMI M of dimension one compatible with R
if and only if there exists a family of TMIs Mi of dimension one such that Mi is compatible

with Ri/Si for any i.

Proof. The implication from left to right obviously holds since M is a suitable candidate
for every Mi. For the reverse direction we construct a TMI M compatible with R based
on the family of TMIs Mi. It is straightforward to check that defining fM(x1, . . . , xm) =
∑

i fMi
(x1, . . . , xm) for any f ∈ F yields a TMI of dimension one compatible with R.

Due to Theorem 4.4 the complexity is not affected when using the modular setting.
Hence when using TMIs of dimension one in theory both approaches can prove the same
bounds. But experiments in Section 7 show that in practice proofs are easier to find in the
modular setting since, e.g., the coefficients of the interpretations can be chosen smaller. For
larger dimensions just the only-if direction of Lemma 5.1 holds. To see this we consider the
TRS Strategy removed AG01/#4.21.2 For this system a modular complexity proof based on
TMIs of dimension two (see web site in Footnote 5 on page 398) yields a quadratic upper
bound on the derivational complexity. However, due to the next lemma no such proof is
possible in the direct setting. (We remark that there exist TMIs of dimension three that
are compatible with this TRS).

Lemma 5.2. The TRS Strategy removed AG01/#4.21 does not admit a TMI of dimension

two compatible with it.

Proof. To address all possible interpretations we extracted the set of constraints that repre-
sent a TMI of dimension two compatible with the TRS. MiniSmt3 can detect unsatisfiability
of these constraints. Details can be found at the web site in Footnote 5 on page 398.

The next result shows that any direct proof transfers into the modular setting without
increasing the bounds on the derivational complexity.

Lemma 5.3. Let ≻ be a finitely branching rewrite relation and let R be a TRS compatible

with ≻. Then for any i there exits a complexity pair (≻i,�i) which is compatible with the

relative TRS Ri/Si. Furthermore for any term t we have O(dl(t,≻)) = maxi{O(dl(t,≻i))}.

Proof. Fix i. Let (≻i,�i) be (≻,=). It is easy to see that (≻,=) is a complexity pair
because ≻ and = are compatible rewrite relations. It remains to show that O(dl(t,≻)) =
maxi{O(dl(t,≻i))}. To this end we observe that

∑

i(dl(t, (≻i,�i)) = n · dl(t,≻) for all
terms t. Here n denotes the number of complexity pairs. Basic properties of the O-notation
yield the desired result.

2 Labels in sans-serif font refer to TRSs from the TPDB 7.0.2, see http://termination-portal.org.
3 http://cl-informatik.uibk.ac.at/software/minismt

396 HARALD ZANKL AND MARTIN KORP

As a corollary we obtain that in general the modular complexity setting is more powerful
than the direct one. Even when applying just TMIs of the same dimension modularly.

Corollary 5.4. The modular complexity setting is strictly more powerful than the direct one.

Proof. Due to Lemmata 5.2 and 5.3. and the discussion before Lemma 5.2.

As already mentioned earlier, the modular setting does not only allow to combine
TMIs (of different dimensions) in one proof but even different complexity criteria. This is
illustrated in the next example.

Example 5.5. Consider the TRS R (Transformed CSR 04/Ex16 Luc06 GM) with the rules:

c → a mark(a) → a g(x, y) → f(x, y)

c → b mark(b) → c g(x, x) → g(a, b) mark(f(x, y)) → g(mark(x), y)

By using Corollary 4.14 twice, we can transform R into the relative TRS R′/S ′ where R′ =
R1∪R2, S

′ = R\R′, R1 = {g(x, x) → g(a, b)}, and R2 = {mark(f(x, y)) → g(mark(x), y)}.
After that we can apply match-RT-bounds (extended to non-duplicating TRSs) to show that
the derivational complexity induced by the relative TRS R1/S1 is at most linear. Finally,
by applying Theorem 4.4 with TMIs of dimension two to the relative TRS R2/S2 we obtain
a quadratic upper bound on the derivational complexity of R. Further details of the proof
can be accessed from the web site accompanying this paper (see Footnote 5 on page 398).
The quadratic bound is tight as R admits derivations

markn(x)σm →m markn−1(x)τmγ →m markn−1(x)σmγ →2m(n−1) xσmγn

of length 2mn where σ = {x 7→ f(x, y)}, τ = {x 7→ g(x, y)}, and γ = {x 7→ mark(x)}. Last
but not least we remark that none of the involved techniques can establish an upper bound
on its own. In case of match-bounds this follows from the fact that R admits quadratic
derivational complexity. The same reason also holds for Corollary 4.14 because SLIs induce
linear complexity bounds. Finally, TMIs fail because they cannot orient the rewrite rule
g(x, x) → g(a, b).

Next we consider the TRS Zantema 04/z086. The question about the derivational
complexity of it has been stated as problem #105 on the RTA LooP.4

Example 5.6. Consider the TRS R (Zantema 04/z086) consisting of the rules:

a(a(x)) → c(b(x)) b(b(x)) → c(a(x)) c(c(x)) → b(a(x))

Adian showed in [1] that R admits at most quadratic derivational complexity. Since the
proof is based on a low-level reasoning on the structure of R, it is specific to this TRS and
challenging for automation. With our approach we cannot prove the quadratic bound on the
derivational complexity of R. However, Corollary 4.14 permits to establish some progress.
Using an SLI counting a’s and b’s it suffices to determine the derivational complexity of
R3/S3. This means that it suffices to bound how often the rule c(c(x)) → b(a(x)) is applied
relative to the other rules. The benefit is that now, e.g., a TMI must only orient one rule
strictly and the other two rules weakly (compared to all three rules strictly). It has to be
clarified if the relative formulation of the problem can be used to simplify the proof in [1].

The next example shows that although the modular approach permits lower bounds
compared to the old one further criteria for splitting TRSs should be investigated.

4 http://rtaloop.mancoosi.univ-paris-diderot.fr

MODULAR COMPLEXITY ANALYSIS VIA RELATIVE COMPLEXITY 397

Example 5.7. Consider the TRS R (SK90/4.30) consisting of the following rules:

f(nil) → nil f(nil ◦ y) → nil ◦ f(y) f((x ◦ y) ◦ z) → f(x ◦ (y ◦ z))

g(nil) → nil g(x ◦ nil) → g(x) ◦ nil g(x ◦ (y ◦ z)) → g((x ◦ y) ◦ z)

In [19] a TMI compatible with R of dimension four is given showing that the derivational
complexity is bounded by a polynomial of degree four. Using Theorem 4.4 with TMIs
of dimension three yields a cubic upper bound (see web site in Footnote 5 on page 398).
Although our approach enables showing a lower complexity than [19] this bound is still
not tight since the derivational complexity of R is quadratic. For this particular TRS it is
easy to observe that rules defining f do not interfere with rules defining g and vice versa.
Thereby we could estimate the derivational complexity of R by bounding the two TRSs
defining f and g separately.

6. Implementation

To estimate the derivational complexity of a TRS R we first transform R into the
relative TRS R/∅. If the input is already a relative TRS this step is omitted. Afterwards
we try to estimate the derivational complexity of R/S by splitting R into TRSs R1 and R2

such that dl(t,→R1/S1
) + dl(t,→R2/S2

) > dl(t,→R/S). This is done by moving step by step
those rewrite rules from R to S of which the derivational complexity can be bounded. In
each step a different technique can be applied. As soon as R is empty, we can compute the
derivational complexity of R/S by summing up all intermediate results. In the following we
describe the presented approach more formally and refer to it as the complexity framework.

A complexity problem (CP problem for short) is a pair (R/S, f) consisting of a rel-
ative TRS R/S and a unary function f . In order to prove the derivational complexity
of a CP problem so-called CP processors are applied. A CP processor is a function that
takes a CP problem (R/S, f) as input and returns a new CP problem (R1/(R2 ∪ S), f ′)
as output. Here R = R1 ∪ R2. In order to be employed to prove an upper bound on
the complexity of a given CP problem they need to be sound : f(n) + dc(n,→R/S) ∈
O(f ′(n) + dc(n,→R1/(R2 ∪ S))). To ensure that a CP processor can be used to prove a
lower-bound on the derivational complexity of a given CP problem it must be complete,
i.e., f(n) + dc(n,→R/S) ∈ Ω(f ′(n) + dc(n,→R1/(R2 ∪ S))). From the preceding sections the
following CP processors can be derived.

Theorem 6.1. The CP processor

(R/S, f) 7→

(R1/(R2 ∪ S), f ′) if R2 ⊆ ≻ and R1 ∪ S ⊆ �
for some complexity pair (≻,�)

(R/S, f) otherwise

where R = R1 ∪R2 and f ′(n) = f(n) + dc(n,≻) is sound.

Proof. Follows from Corollary 3.3 and Theorem 4.4.

398 HARALD ZANKL AND MARTIN KORP

Table 1: Derivational complexity of 1172 TRSs

p l q c time timeout
direct 287 180 87 20 0.72 192
modular 311 198 86 27 1.19 340

Note that the above theorem defines a general version of a CP processor based on a
complexity pair (≻,�). To obtain concrete instances of this CP processor one can use for
example the complexity pairs from Theorem 3.4 and Corollary 4.10.

Theorem 6.2. The CP processor

(R/S, f) 7→

(R1/(R2 ∪ S), f ′) if R1 is non-duplicating and

R2 ⊆ ≻M and S ⊆ �M for some SLI M

(R/S, f) otherwise

where R = R1 ∪R2 and f ′(n) = f(n) + n is sound.

Proof. Straightforward by Corollary 4.14.

7. Experimental Results

The techniques described in the preceding sections are implemented in the complexity
analyzer CaT (freely available from http://cl-informatik.uibk.ac.at/software/cat)
which is built on top of TTT2 [18], a powerful termination tool for TRSs. Both tools are
written in OCaml and interface MiniSat [6] and Yices [5].

Below we report on the experiments we performed with CaT on the 1172 TRSs in version
7.0.2 of the TPDB that are non-duplicating.5 All tests have been performed on a server
equipped with eight dual-core AMD Opteron R© processors 885 running at a clock rate of
2.6 GHz and on 64 GB of main memory. We remark that similar results have been ob-
tained on a dual-core laptop. Our results are summarized in Table 1. Here, direct refers
to the conventional setting where all rules must be oriented at once whereas modular first
transforms a TRS R into a relative TRS R/∅ before the CP processors from Section 6 are
employed. As base methods we use the match-bounds technique as well as TMIs and arctic
matrix interpretations [16] of dimensions one to three. The latter two are implemented by
bit-blasting arithmetic operations to SAT [7, 16]. The coefficients of a matrix of dimen-
sion d are represented in 6− d bits, one additional bit is used for intermediate results. All
base methods are run in parallel, but criteria that yield larger derivational complexity are
executed slightly delayed. This allows to maximize the number of low bounds.

Table 1 shows that the modular approach allows to prove significantly more polynomial
bounds (column p) for the systems; furthermore these bounds are also smaller. Here column l

refers to linear, q to quadratic, and c to cubic derivational complexity. We also list the
average time (in seconds) needed for finding a bound and the number of timeouts, i.e, when
the tool did not deliver an answer within 60 seconds. The modular setting is slower since
there typically more proofs are required to succeed. However, we anticipate that by making
use of incremental SAT solvers (for the matrix methods) the time can be reduced.

5 Full details available from http://cl-informatik.uibk.ac.at/software/cat/modular.

MODULAR COMPLEXITY ANALYSIS VIA RELATIVE COMPLEXITY 399

Table 2: Termination competition 2009 (derivational complexity)

points p l q c r

CaT 540 137 84 41 7 5
Matchbox 397 102 44 52 5 1
TCT 380 109 32 69 8 0

For a comparison of our method with other tools we refer the reader to the interna-
tional termination competition (referenced in Footnote 1 on page 385). In 2008 and 2009,
CaT won all categories related to derivational complexity analysis. Note that in 2009 it used
a slightly weaker implementation of Theorem 4.4 than presented here and did not imple-
ment Corollary 4.14; especially the latter speeds up proofs. Some statistics from the 2009
competition are listed in Table 2. The total points are computed by a scoring scheme that
favors tools that yield small upper bounds. The column r indicates polynomial bounds of
degree four.

8. Conclusion

In this paper we have introduced a modular approach for estimating the derivational
complexity of TRSs by considering relative rewriting. We showed how existing criteria (for
full rewriting) can be lifted into the relative setting without much effort. The modular
approach is easy to implement and has been proved strictly more powerful than traditional
methods in theory and practice. Since the modular method allows to combine different
criteria, typically smaller complexity bounds are achieved. All our results directly extend
to more restrictive notions of complexity, e.g., runtime complexity (see below). We stress
that as a by-product of our investigations we obtained an alternative approach to [23] that
can be used to prove relative termination using match-bounds. It remains open which
of the two approaches is more powerful. Finally we remark that our setting allows a more
fine-grained complexity analysis, i.e., while traditionally a quadratic derivational complexity
ensures that any rule is applied at most quadratically often, our approach can make different
statements about single rules. Hence even if a proof attempt does not succeed completely,
it may highlight the problematic rules.

As related work we mention [15] which also considers relative rewriting for complexity
analysis. However, there the complexity of R1 ∪ R2 is investigated by considering R1/R2

and R2. Hence [15] also gives rise to a modular reasoning but the obtained complexities are
typically beyond polynomials. For runtime complexity analysis Hirokawa and Moser [12,13]
consider weak dependency pair steps relative to the usable rules, i.e., WDP(R)/UR(R).
However, since in the current formulation of weak dependency pairs some complexity might
be hidden in the usable rules they do not really obtain a relative problem. As a consequence
they can only apply restricted criteria for the usable rules. Note that our approach can
directly be used to show bounds on WDP(R)/UR(R) by considering WDP(R)∪UR(R). Due
to Corollary 4.14 this problem can be transformed into an (unrestricted) relative problem
WDP(R)/UR(R) whenever the constraints in [12] are satisfied. Moreover, if somehow the
problematic usable rules could be determined and shifted into theWDP(R) component, then
this improved version of weak dependency pairs corresponds to a relative problem without
additional restrictions, admitting further benefit from our contributions.

400 HARALD ZANKL AND MARTIN KORP

We plan to investigate if the arctic matrix method also satisfies the weight gap principle.
Other promising techniques that (might) allow a modular processing of subsystems comprise
criteria for constructor sharing TRSs [20]. Last but not least it seems feasible to combine the
approach for relative match-bounds introduced in [23] with the one presented in Section 4.1.
By doing so, a stronger version of relative match-bounds could be obtained.

Acknowledgments. We thank Johannes Waldmann for communicating Example 4.12.

References

[1] Adian, S.I.: Upper bound on the derivational complexity in some word rewriting system. Doklady Math.

80(2), 679–683 (2009)

[2] Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. TCS 236(1-2), 133–178 (2000)

[3] Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)

[4] Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Comm. ACM 22(8), 465–476

(1979)

[5] Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: CAV 2006. LNCS, vol.

4144, pp. 81–94 (2006)

[6] Eén, N., Sörensson, N.: An extensible SAT-solver. In: SAT 2004. LNCS, vol. 2919, pp. 502–518 (2004)

[7] Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term

rewriting. JAR 40(2-3), 195–220 (2008)

[8] Genet, T.: Decidable approximations of sets of descendants and sets of normal forms. In: RTA 1998.

LNCS, vol. 1379, pp. 151–165 (1998)

[9] Geser, A., Hofbauer, D., Waldmann, J., Zantema, H.: On tree automata that certify termination of

left-linear term rewriting systems. I&C 205(4), 512–534 (2007)

[10] Geser, A.: Relative termination. PhD thesis, Universität Passau, Germany (1990). Available as: Report

91-03, Ulmer Informatik-Berichte, Universität Ulm, 1991

[11] Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. I&C 199(1-2), 172–199 (2005)

[12] Hirokawa, N., Moser, G.: Automated complexity analysis based on the dependency pair method. In:

IJCAR 2008. LNCS, vol. 5195, pp. 364–379 (2008)

[13] Hirokawa, N., Moser, G.: Complexity, graphs, and the dependency pair method. In: LPAR 2008. LNCS

(LNAI), vol. 5330, pp. 652–666 (2008)

[14] Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations (preliminary version).

In: RTA 1989. LNCS, vol. 355, pp. 167–177 (1989)

[15] Hofbauer, D., Waldmann, J.: Complexity bounds from relative termination proofs. Talk at the

Workshop on Proof Theory and Rewriting, Obergurgl (2006). Available from http://www.imn.

htwk-leipzig.de/~waldmann/talk/06/rpt/rel/main.pdf

[16] Koprowski, A., Waldmann, J.: Max/plus tree automata for termination of term rewriting. AC 19(2),

357–392 (2009)

[17] Korp, M., Middeldorp, A.: Match-bounds revisited. I&C 207(11), 1259–1283 (2009)

[18] Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean Termination Tool 2. In: RTA 2009.

LNCS, vol. 5595, pp. 295–304 (2009)

[19] Moser, G., Schnabl, A., Waldmann, J.: Complexity analysis of term rewriting based on matrix and

context dependent interpretations. In: FSTTCS 2008. LIPIcs, vol. 2, pp. 304–315 (2008)

[20] Ohlebusch, E.: On the modularity of confluence of constructor-sharing term rewriting systems. In:

CAAP 1994. LNCS, vol. 787, pp. 261–275 (1994)

[21] Terese: Term Rewriting Systems. vol. 55 of Cambridge Tracts in Theoretical Computer Science. Cam-

bridge University Press (2003)

[22] Thiemann, R.: The DP Framework for Proving Termination of Term Rewriting. PhD thesis, RWTH

Aachen (2007). Available as technical report AIB-2007-17

[23] Waldmann, J.: Weighted automata for proving termination of string rewriting. J. Autom. Lang. Comb.

12(4), 545–570 (2007)

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 401-416
http://rewriting.loria.fr/rta/

PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES

HANS ZANTEMA 1,2 AND MATTHIAS RAFFELSIEPER 1

1 Department of Computer Science, TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Nether-
lands
E-mail address: H.Zantema@tue.nl

E-mail address: M.Raffelsieper@tue.nl

2 Institute for Computing and Information Sciences, Radboud University Nijmegen, P.O. Box 9010,
6500 GL Nijmegen, The Netherlands

Abstract. For a general class of infinite data structures including streams, binary trees,
and the combination of finite and infinite lists, we investigate the notion of productivity.
This generalizes stream productivity. We develop a general technique to prove productivity
based on proving context-sensitive termination, by which the power of present termination
tools can be exploited. In order to treat cases where the approach does not apply directly,
we develop transformations extending the power of the basic approach. We present a tool
combining these ingredients that can prove productivity of a wide range of examples fully
automatically.

1. Introduction

Some computations potentially go on forever. A standard example is the sieve of Er-
atosthenes producing the infinitely many prime numbers. The result of such a computation
is then an infinite stream of elements. Although the computation itself goes on forever,
there is a kind of termination involved that is called productivity: every finite initial part
will be produced after a finite number of steps. We will consider computations specified by a
number of rewrite rules that are interpreted as a lazy functional program. Then productivity
can be characterized and investigated as a property of term rewriting, as was investigated
before in [6, 11, 4, 19, 12].

Streams can be seen as infinite terms. Even when restricting to data structures rep-
resenting the result of a computation, it is natural not to restrict to streams. In case the
computation possibly ends, then the result is not a stream but a finite list, and when paral-
lelism is considered, naturally infinite trees come in. In this paper we develop techniques for
automatically proving productivity of specifications in a wide range of infinite data struc-
tures, including streams, the combination with finite lists, and several kinds of infinite trees.
Earlier techniques specifically for stream specifications were given in [6, 4, 19]. A key idea
of our approach is to prove productivity by proving termination of context-sensitive rewrit-

ing [17, 9], that is, the restricted kind of rewriting in which rewriting is disallowed inside
particular arguments of particular symbols. As strong tools like AProVE [8] and µ-Term

c© Hans Zantema and Matthias Raffelsieper
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.401

402 HANS ZANTEMA AND MATTHIAS RAFFELSIEPER

[13] have been developed to prove termination of context-sensitive rewriting automatically,
the power of these tools can now be exploited to prove productivity automatically. As the
underlying technique is completely different from the technique of [6, 4], it is expected that
both approaches have their own merits. Indeed, there are examples where the technique of
[6, 4] fails and our technique succeeds. The comparison the other way around is hard to
make as the technique of [6, 4] only applies for proving productivity for a single ground term
while our technique applies for proving productivity for all ground terms.

Through this paper we consider two kinds of terms: finite terms and infinite terms. As
the elements of the infinite data structures we intend to define are infinite terms, infinite
terms are unavoidable here. On the other hand, terms occurring in our specifications are
finite. Rewriting has been investigated both for finite and infinite terms. But rewriting
finite terms is much easier and better understood than infinitary rewriting, and for many
properties, like several variants of termination, there is strong tool support to investigate
these properties. We follow the policy to use infinite terms only where necessary, and exploit
understanding and tool support for rewriting finite terms as much as possible. In this way
we need the concept of infinite terms, but not of infinitary rewriting. Following this policy,
elements of infinite data structures over a data set D are considered as infinite terms in
which elements of D act as constants, and the infinite terms are composed from constructor
symbols taken from a set C, and elements of D. In this world of infinite terms we want
to avoid that data elements are infinite terms themselves. For instance, in considering
streams over natural numbers as infinite terms, we want to be able to consider a stream
0 : 1 : 2 : 3 : 4 : · · · , but we do not want the data elements in such a stream to be infinite
terms like s∞(0). When specifying elements of infinite data structures over a data set D, the
set D may be described as the set of (finite) ground normal forms of some rewriting system
Rd over data signature Σd. As an example, for natural numbers with + we can choose
Σd = {0, s,+}, and Rd consists of the rules 0 + x→ x and s(x) + y → s(x+ y). Apart from
Σd and Rd the specification then is given by a set Rs of rewrite rules over C ∪Σd∪Σs, where
Σs consists of constants and auxiliary operations to be introduced for the specification. For
instance, for defining the above mentioned stream nat = 0 : 1 : 2 : 3 : 4 : · · · we introduce an
auxiliary function f ∈ Σs on streams that replaces each element by its successor, and specify
nat by choosing Rs to consist of the two rules

nat→ 0 : f(nat), f(x : σ)→ s(x) : f(σ).

Here we have C = {:}, Σd = {0, s}, Rd = ∅, Σs = {nat, f}, and x, σ are variable symbols of
type data and stream, respectively. In this setting productivity means that for every n the
initial term can be rewritten to a (finite) term in which all symbols on depth less than n
are constructor symbols. This notion of productivity is consistent with stream productivity
as in [6, 4, 19], formalizing the spirit of stream productivity as introduced in [15]. It is also
consistent with productivity as defined in [11, 12] for a setting even more general than ours.

Proving productivity may be hard. For the sieve of Eratosthenes proving productivity
is beyond the scope of fully automatic techniques as it depends on the fact that there are
infinitely many prime numbers. Moreover, we can specify an extra stream by filtering out
every element in this stream of prime numbers that is distinct from its predecessor plus 2.
This yields a stream specification, easily expressed in the format of this paper, of which
productivity is equivalent to the existence of infinitely many prime twins: a well-known
open problem in number theory. As expected for such a format suitable for expressing a

PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES 403

well-known open problem, productivity is an undecidable property. This has been proved
independently by several people in [5, 16].

In contrast to [6, 4], we focus on requiring productivity not only for a single initial term,
like nat in the above example, but for all finite ground terms. An easy induction argument
shows that productivity holds for all ground terms if and only if every ground term rewrites
to a term of which the root is a constructor symbol. As in [19] this characterization is the
basis of our productivity investigations, but now for more general infinite data structures
than only streams. A main reason for the focus on productivity for all ground terms is this
technical convenience. In many cases, however, productivity of a single ground terms is
equivalent to productivity for all ground terms over the operations that are relevant for the
single ground term. If this does not hold and one is interested in productivity for a single
ground term, our approach fails while the approach of [6, 4] may succeed.

The paper is organized as follows. In Section 2 we introduce infinite terms and give
examples of several infinite data structures consisting of infinite terms. In Section 3 we in-
troduce our notions of proper specifications and productivity. Being interested in determin-
istic computations, in proper specifications we require the rewrite systems to be orthogonal.
A first basic result (Theorem 3.4) states that a specification is productive if for all rules
the root of the right-hand side is a constructor symbol. In Section 4 we relate productivity
to context-sensitive rewriting. The main result (Theorem 4.1) states that a specification
is productive if context-sensitive termination holds for the rules of the specification, where
rewriting is only allowed in the data arguments of the constructor symbols, and in all argu-
ments of the other symbols. For cases where these approaches fail, in Section 5 we investigate
transformations that transform a proper specification into another one, such that produc-
tivity of the original specification can be concluded from productivity of the transformed
specification, the latter typically proved by the basic techniques from the earlier sections.
Through these sections we give several examples of specifications of streams and binary
trees for which productivity is proved. For many of these, productivity cannot be proved
by earlier techniques. In Section 6 we describe an implementation of our techniques, by
which productivity of all productive examples presented in this paper can be proved fully
automatically. We conclude in Section 7.

2. Infinite Terms

Intuitively, a term (both finite and infinite) is defined by saying which symbol is at
which position. Here, a position p ∈ N∗ is a finite sequence of natural numbers. In order
to be a proper term, some requirements have to be satisfied as indicated in the following
definition. As we will only consider infinite terms over a set C of constructors and a set D
of data (disjoint from C), our terms will be two-sorted1: a sort s for the (infinite) terms to
be defined, and a sort d for the data. Every f ∈ C is assumed to be of type dn× sm → s for
some n,m ∈ N. We write ar(d, f) = n and ar(s, f) = m. We write ⊥ for undefined.

Definition 2.1. A (possibly infinite) term of sort s over C,D is defined to be a map t :
N∗ → C ∪ D ∪ {⊥} such that

• the root t(ǫ) of the term t is a constructor symbol, so t(ǫ) ∈ C, and

1In [11, 12] an arbitrary many-sorted setting is proposed. Our approach easily generalizes to a more
general many-sorted setting, but for notational convenience we restrict to the two-sorted setting.

404 HANS ZANTEMA AND MATTHIAS RAFFELSIEPER

• for all p ∈ N∗ and all i ∈ N we have

t(pi) ∈ D ⇐⇒ t(p) ∈ C ∧ 1 ≤ i ≤ ar(d, t(p)), and

t(pi) ∈ C ⇐⇒ t(p) ∈ C ∧ ar(d, t(p)) < i ≤ ar(d, t(p)) + ar(s, t(p)).
So t(pi) = ⊥ for all p, i not covered by the above two cases.

We write T∞(C,D) for the set of all terms over C,D.

An alternative equivalent definition of T∞(C,D) can be given based on co-algebra. An-
other alternative uses metric completion, where infinite terms are limits of finite terms.
However, for the results in this paper we do not need these alternatives.

A position p ∈ N∗ satisfying t(p) ∈ C is called a position of t of sort s. A position
p ∈ N∗ satisfying t(p) ∈ D is called a position of t of sort d. The depth of a position p ∈ N∗

is the length of p considered as a string.
The usual notion of finite term coincides with a term in this setting having finitely many

positions, that is, t(p) = ⊥ for all but finitely many p. In case ar(s, f) > 0 for all f ∈ C
then no finite terms exist. This holds for streams. In case ar(d, f) = 0 for all f ∈ C then no
position of sort D exist, and terms do not depend on D.

For f ∈ C with ar(d, f) = n, ar(s, f) = m, n elements u1, . . . , un ∈ D and m terms
t1, . . . , tm we write f(u1, . . . , un, t1, . . . , tm) for the term t defined by t(ǫ) = f , t(i) = ui for
every i = 1, . . . , n, t(ip) = ti−n(p) for every p ∈ N∗ and i = n+1, . . . , n+m, and t(ip) = ⊥
if i 6∈ {1, . . . , n+m}, or i ∈ {1, . . . , n} and p 6= ǫ.

Example 2.2 (Streams). Let D be an arbitrary given non-empty data set, and let C = {:},
with ar(d, :) = ar(s, :) = 1. Then T∞(C,D) coincides with the usual notion of streams over
D, being functions from N to D. More precisely, a function f : N → D gives rise to an
infinite term t defined by t(2n) = : and t(2n1) = f(n) for every n ∈ N, and t(w) = ⊥ for
all other strings w ∈ N∗. Conversely, every t : N∗ → C ∪ D satisfying the requirements of
the definition of a term is of this shape. Note that if #D = 1, then there exists only one
such term.

In case D is finite, an alternative approach is not to consider the binary constructor ‘:’,
but unary constructors for every element of D. In this approach D does not play a role and
is irrelevant.

Example 2.3 (Finite and infinite lists). Let D be an arbitrary given non-empty data set,
and let C = {:, nil}, with ar(d, :) = ar(s, :) = 1 and ar(d, nil) = ar(s, nil) = 0. Then T∞(C,D)
covers both the streams over D as in Example 2.2 and the usual (finite) lists. As in Example
2.2, a function f : N → D gives rise to an infinite term t defined by t(2n) = : and
t(2n1) = f(n) for every n ∈ N, and t(w) = ⊥ for all other strings w ∈ N∗. The only way
nil can occur is where t(2n) = nil for some n ≥ 0, t(2i) = : and t(2i1) ∈ D for every i < n,
and t(w) = ⊥ for all other strings w ∈ N∗, in this way representing a finite list of length n.
Conversely, every t : N∗ → C ∪ D satisfying the requirements of the definition of a term is
of one of these two shapes. In the literature this combination of finite and infinite lists is
sometimes called lazy lists.

Example 2.4 (Binary trees). For infinite binary trees several variants fit in our format. We
will meet the following:

• Infinite binary trees with nodes labeled by D are obtained by choosing C = {b}
with ar(d, b) = 1 and ar(s, b) = 2. In Example 4.4 the nodes are labeled by D ×D,
obtained by choosing ar(d, b) = 2 instead.

PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES 405

• The combination of finite and infinite binary trees with nodes labeled by D is ob-
tained by choosing C = {b, nil} with ar(d, b) = 1, ar(s, b) = 2 and ar(d, nil) =
ar(s, nil) = 0. In Example 3.5 the nodes are unlabeled, obtained by choosing
ar(d, b) = 0 instead.

3. Specifications and Productivity

Throughout this paper we use some basics of term rewriting as is introduced e.g. in
[1, 17]. In particular, a term rewriting system (TRS) is called orthogonal if the left-hand
sides of the rules do not overlap, and every variable occurs at most once in every left-hand
side of a rule.

We consider specifications in order to define elements of T∞(C,D). We do this for the
special case where D consists of the ground normal forms of an orthogonal terminating TRS
Rd over a signature Σd. Here all symbols of Σd are considered to be of sort dn → d for some
n ≥ 0. For defining elements of T∞(C,D) we introduce a set Σs of defined symbols of sort s,
disjoint from C, all being of sort dn× sm → s for some n,m ∈ N, just like the elements of C.
The real specification is given by a set Rs of rewrite rules of sort s being of a special shape.
Although the goal is to define elements of T∞(C,D), most times being infinite, all terms in
the specification are finite, and rewriting always refers to rewriting finite terms. All terms
are well-sorted, that is, for every symbol f occurring in a term the sort of the term on the
i-th argument equals the sort expected at that argument.

Definition 3.1. A proper specification (Σd,Σs, C, Rd, Rs) consists of Σd,Σs, C, Rd as de-
scribed above and a TRS Rs over Σd ∪ C ∪ Σs consisting of rules of the shape

f(u1, . . . , un, t1, . . . , tm)→ t,

where

• f ∈ Σs is of type dn × sm → s,
• for every i = 1, . . . ,m the term ti is either

– a variable of sort s, or
– ti = g(d1, . . . , dk, σ1, . . . , σl) for some g ∈ C with ar(d, g) = k and ar(s, g) = l,

where σ1, . . . , σl are variables of sort s, and d1, . . . , dk are terms over Σd,
• t is a (well-sorted) term of sort s,
• Rs ∪Rd is orthogonal, and
• every term of the shape f(u1, . . . , un, t1, . . . , tm) for f ∈ Σs, u1, . . . , un ∈ D, and in

which every ti is of the shape g(u′1, . . . , u
′
n, t

′
1, . . . , t

′
m) for g ∈ C and u′1, . . . , u

′
n ∈ D,

matches with the left-hand side of a rule from Rs.

Intuitively, the last bullet requires exhaustiveness of pattern matching, as is a standard
requirement in functional programming. Orthogonality is required for forcing unicity of the
result of computation. The second bullet requires simplicity of left-hand sides of rules; in
case this restriction does not hold it can be obtained by unfolding the rules and introducing
extra symbols.

A proper specification is therefore a generalization of proper stream specifications as
given in [18, 19]. Fixing C,D, typically a proper specification will be given by Rd, Rs in
which Σd,Σs and the arities are left implicit since they are implied by the terms occurring
in Rd, Rs. If a proper specification is only given by Rs, then Rd is assumed to be empty.
This is what we will do several times, starting in Example 3.5.

406 HANS ZANTEMA AND MATTHIAS RAFFELSIEPER

For a term t = f(· · ·) we write root(t) = f ; the symbol f is called the root of t.
A specification is called productive for a given ground term of sort s if every finite part

of the intended resulting infinite term can be computed in finitely many steps. As the
intended resulting infinite term consists of constructor symbols and data elements, and all
ground terms of sort d rewrite to data elements by assumption, this is equivalent to the
following.

Definition 3.2. A proper specification (Σd,Σs, C, Rd, Rs) is productive for a ground term t
of sort s if for every k ∈ N there is a reduction t→∗

Rs∪Rd
t′ for which every symbol of sort

s in t′ on depth less than k is in C.

An important consequence of productivity is well-definedness: the term admits a unique
interpretation as an infinite term. Intuitively, existence follows from taking the limit of the
process of computing a constructor on every level, and reduce data terms to normal form.
Uniqueness follows form orthogonality. For an investigation of well-definedness of stream
specifications we refer to [18].

As in [19], in this paper we are interested in productivity for all finite ground terms of
sort s rather than a single one. The following proposition states that for this case reaching
a constructor on every arbitrary depth is equivalent to reaching a constructor at the root.
As the latter characterization is simpler, this is the basis of all further observations on
productivity in this paper. In [11, 12] productivity is also required for infinite terms, being
a stronger restriction than ours, see Example 4.2. Again we stress that in this section all
terms are finite.

Proposition 3.3. A specification (Σd,Σs, C, Rd, Rs) is productive for all ground terms of

sort s if and only if every ground term t of sort s admits a reduction t→∗
Rs∪Rd

t′ for which

root(t′) ∈ C.

Proof. The “only if” direction of the proposition is obvious. For the “if” direction, we prove
the following claim by induction on k.

Claim. Let k ∈ N, and for all ground terms t of sort s we have t→∗
Rs∪Rd

t′

with root(t′) ∈ C. Then t→∗
Rs∪Rd

t′′ for a term t′′ in which every symbol of
sort s on depth less than k is in C.

If k = 1, then the claim directly holds by choosing t′′ = t′.
Otherwise, we have t →∗

Rs∪Rd
t′ = f(u1, . . . , un, t1, . . . , tm) with root(t′) = f ∈ C, with

f of type dn × sm → s. Applying the induction hypothesis to t1, . . . , tm yields ti →
∗
Rs∪Rd

t′′i
with all symbols of sort s in t′′i are on depth < k − 1, for i = 1, . . . ,m. Now

t→∗
Rs∪Rd

f(u1, . . . , un, t1, . . . , tm)→∗
Rs∪Rd

f(u1, . . . , un, t
′′
1, . . . , t

′′
m)

proves the claim.

Our first theorem gives a simple syntactic criterion for productivity, which can also be
seen as a particular case of the analysis of friendly nesting specifications as given in [4].

Theorem 3.4. Let S = (Σd,Σs, C, Rd, Rs) be a proper specification in which for every ℓ→ r
in Rs the term r is not a variable and root(r) ∈ C. Then S is productive.

Proof. According to Proposition 3.3 for every ground term t of sort s it suffices to prove
that t →∗

Rs∪Rd
t′ for a term t′ satisfying root(t′) ∈ C. We do this by induction on t. Let

t = f(u1, . . . , un, t1, . . . , tm) for m,n ≥ 0. If f ∈ C we are done. So we may assume f ∈ Σs.

PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES 407

As they are ground terms of sort d, all ui rewrite to elements of D. By the induction
hypothesis, all ti rewrite to terms with root in C, and in which the arguments of sort d
rewrite to elements of D. Now by the last requirement of properness, the resulting term
matches with the left-hand side of a rule from Rs. By the assumption, by rewriting according
to this rule a term is obtained of which the root is in C.

Example 3.5. Choose C = {b, nil} with ar(s, b) = 2 and ar(d, b) = ar(d, nil) = ar(s, nil) = 0
representing the combination of finite and infinite unlabeled binary trees. Then

c→ b(b(nil, c), c)

is a proper specification that is productive due to Theorem 3.4; the symbol c represents an
infinite tree in which the number of nodes on depth n is exactly the n-th Fibonacci number.
In the same setting

p → b(f(p), nil)
f(b(x, y)) → b(f(y), b(nil, f(x)))

f(nil) → nil
is a proper specification that is productive due to Theorem 3.4. The symbol p represents
the infinite tree of which the initial part until depth 100 is shown in the following picture,
in which the root of the tree is shown on top left:

4. Proving Productivity by Context-Sensitive Termination

As intended for generating infinite terms, the TRS Rs ∪ Rd will never be terminating.
However, when disallowing rewriting inside arguments of sort s of constructor symbols, it
may be terminating. The main result of this section states that if this is the case, then

408 HANS ZANTEMA AND MATTHIAS RAFFELSIEPER

the specification is productive. The variant of rewriting with the restriction that rewriting
inside certain arguments of certain symbols is disallowed, is called context-sensitive rewriting

[17, 9]. In context-sensitive rewriting, for every symbol f the set µ(f) of arguments of f is
specified inside which rewriting is allowed. More precisely, µ-rewriting →R,µ with respect
to a TRS R is defined inductively by

• if ℓ→ r ∈ R and ρ is a substitution, then ℓρ→R,µ rρ;
• if i ∈ µ(f) and ti →R,µ t′i and t′j = tj for all j 6= i, then f(t1, . . . , tn) →R,µ

f(t′1, . . . , t
′
n).

In our setting we choose µ by µ(c) = {1, . . . ,ar(d, c)} for all c ∈ C, and µ(f) =
{1, . . . ,ar(f)} for all f ∈ Σd ∪ Σs, where we write ar(f) = ar(d, f) + ar(s, f) for f ∈ Σs.
In the rest of this paper the only instance of context-sensitive rewriting we consider is with
respect to this particular µ, which is left implicit from now on. So in µ-rewriting, rewriting
inside s-arguments of constructor symbols is disallowed, and is allowed in all other positions.
A TRS is called µ-terminating if µ-rewriting is terminating.

Theorem 4.1. Let (Σd,Σs, C, Rd, Rs) be a proper specification for which Rs ∪ Rd is µ-

terminating for µ as defined above. Then the specification is productive.

Proof. We define a ground µ-normal form to be a ground term that can not be rewritten by
µ-rewriting. We prove the following claim by induction on t:

Claim: If t is a ground µ-normal form of sort s, then the root(t) ∈ C.
Assume root(t) 6∈ C. Then t = f(u1, . . . , un, t1, . . . , tm) for f ∈ Σs, u1, . . . , un are of sort
d, and t1, . . . , tm are of sort s. Since µ(f) = {1, . . . , n +m}, they are all ground µ-normal
forms. So u1, . . . , un ∈ D. By the induction hypothesis all ti have their roots in C. Since ti
is a µ-normal form and the arguments of sort d are in µ(c) for every c ∈ C, the arguments
of ti of sort d are all in D. Due to the shape of the rules now a rule is applicable on t on
the root level, so satisfies the restriction of µ-rewriting, contradicting the assumption that t
is a µ-normal form. This concludes the proof of the claim.

According to Proposition 3.3 for productivity we have to prove that every ground term
t of sort s rewrites to a term having its root in C. Apply µ-rewriting on t as long as possible.
Due to µ-termination this will end in a term on which µ-rewriting is not possible, so a
ground µ-normal form. Due to the claim this ground µ-normal form has its root in C.

Example 4.2. Consider the following stream specification

ones → 1 : ones f(0 : σ) → f(σ)
f(1 : σ) → 1 : f(σ)

Productivity for all ground terms including f(ones) follows from Theorem 4.1: entering this
rewrite system in the tool AProVE [8] or µ-Term [13] together with the context-sensitivity
information that rewriting is disallowed in the second argument of ‘:’ fully automatically
yields a proof of context-sensitive termination. Alternatively, by entering this specification
in our tool yields exactly the same proof.

In this specification f is the stream function that removes all zeros. So productivity
depends on the fact that the stream of all zeros does not occur as the interpretation of a
subterm of any ground term in this specification. For instance, by adding the rule zeros→
0 : zeros the specification is not productive any more as f(zeros) does not rewrite to a term
having a constructor as its root.

PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES 409

This also shows the difference between our requirement of productivity of all finite
ground terms and the requirement in [11, 12] of productivity of all terms, including infinite
terms. There this example is not productive on the infinite term representing the stream
of all zeros. Finally we mention that the technique from [4] fails to prove productivity for
f(ones), since the specification is not data obliviously productive.

Example 4.3. We specify the sorted stream of Hamming numbers: all positive natural
numbers that are not divisible by other prime numbers than 2, 3 and 5. Here D = {sn(0) |
n ≥ 0}. For + and ∗ we have the standard rules, we also need comparison cmp for which
cmp(n,m) yields 0 if n = m, s(0) if n > m and s(s(0)) if n < m. So Rd consists of the rules

x+ 0 → x cmp(0, 0) → 0
x+ s(y) → s(x+ y) cmp(s(x), 0) → s(0)

x ∗ 0 → 0 cmp(0, s(x)) → s(s(0))
x ∗ s(y) → (x ∗ y) + x cmp(s(x), s(y)) → cmp(x, y)

For Rs we need a function mul to multiply a stream element-wise by a number, a function
mer for merging two sorted streams, and an auxiliary function f. Finally we have a constant
h for the sorted stream of Hamming numbers. The rules of Rs read:

mul(x, y : σ) → x ∗ y : mul(x, σ) f(0, x : σ, y : τ) → x : mer(σ, τ)
mer(x : σ, y : τ) → f(cmp(x, y), x : σ, y : τ) f(s(0), σ, y : τ) → y : mer(σ, τ)

f(s(s(x)), y : σ, τ) → y : mer(σ, τ)

h → s(0) : mer(mer(mul(s2(0), h),mul(s3(0), h)),mul(s5(0), h))
Now we have a proper stream specification, being the folklore functional program for generat-
ing Hamming numbers, up to notational details. Productivity is proved fully automatically
by our tool: µ-Term [13] is called together with the context-sensitivity information that
rewriting is disallowed in the second argument of ‘:’, yielding a proof of context-sensitive
termination. So by Theorem 4.1 productivity can be concluded.

For completeness we mention that the tool of [6, 4] also finds a proof of productivity of
h in this example.

Example 4.4. The Calkin–Wilf tree [3] is a binary tree in which every node is labeled by
a pair of natural numbers. The root is labeled by (1, 1), and every node labeled by (m,n)
has children labeled by (m,m + n) and (m + n, n). It can be proved that for all natural
numbers m,n > 0 that are relatively prime the pair (m,n) occurs exactly once as a label
of a node, and no other pairs occur. So the labels of the nodes represent positive rational
numbers, and every positive rational number m/n occurs exactly once as a pair (m,n).
There is one constructor b with ar(d, b) = ar(s, b) = 2. From Example 4.3 we take the data
set D consisting of the natural numbers, and also the symbol + and its two rules. Now the
Calkin–Wilf tree c is defined by

c→ f(s(0), s(0)), f(x, y)→ b(x, y, f(x, x+ y), f(x+ y, y)).

Our tool proves productivity of this specification by calling µ-Term [13] that proves context-
sensitive termination, hence proving productivity by Theorem 4.1.

Theorem 4.1 can be seen as a strengthening of Theorem 3.4: if all roots of right-hand
sides of rules from Rs are in C then Rs ∪ Rd is µ-terminating, as is shown in the following
proposition.

410 HANS ZANTEMA AND MATTHIAS RAFFELSIEPER

Proposition 4.5. Let S = (Σd,Σs, C, Rd, Rs) be a proper specification in which for every

ℓ→ r in Rs the term r is not a variable and root(r) ∈ C. Then Rs ∪Rd is µ-terminating.

Proof. Assume there exists an infinite µ-reduction. For every term in this reduction count
the number of symbols from Σs that are on allowed positions. Due to the assumptions by
every Rd-step this number remains the same, while by every Rs-step this number decreases
by one. So this reduction contains only finitely many Rs-steps. After these finitely many Rs-
steps an infinite Rd-reduction remains, contradicting the assumption that Rd is terminating.

The reverse direction of Theorem 4.1 does not hold, as is illustrated in the next example.

Example 4.6. Consider the proper (stream) specification (Σd,Σs, C, Rd, Rs), where Σd =
{0, 1}, Rd = ∅, C = {:} with ar(d, :) = ar(s, :) = 1, and Rs being the below TRS:

p → zip(alt, p)
alt → 0 : 1 : alt

zip(x : σ, τ) → x : zip(τ, σ)

This specification is productive, as we will see later in Example 5.2. However, it ad-
mits an infinite context-sensitive reduction p→ zip(alt, p) which is continued by repeatedly
reducing the redex p.

The stream p describes the sequence of right and left turns in the well-known dragon

curve, obtained by repeatingly folding a paper ribbon in the same direction.

5. Transformations for Proving Productivity

To be able to handle examples like the above, we investigate transformations of such
specifications for which productivity of the original system can be concluded from produc-
tivity of the transfomed one. Whenever productivity of a specification cannot be determined
directly, then we apply one of these transformations and try to prove productivity of the
transformed specification, instead.

One such transformation is the reduction of right-hand sides, that is, a rule ℓ → r of
Rs is replaced by ℓ → r′ for a term r′ satisfying r →∗

Rs∪Rd
r′. Write R = Rs ∪ Rd, and

write R′ for the result of this replacement. Then by construction we have →R′ ⊆ →+

R, and
→R ⊆ →R′ · ←∗

R, that is, every →R-step can be followed by zero or more →R-steps to
obtain a →R′-step. We present our theorems in this more general setting such that they are
applicable more generally than only for reduction of right-hand sides.

Theorem 5.1. Let S = (Σd,Σs, C, Rd, Rs) and S ′ = (Σd,Σs, C, Rd, R
′
s) be proper specifica-

tions satisfying →R′ ⊆ →+

R for R = Rs ∪ Rd and R′ = R′
s ∪ Rd. If S ′ is productive, then

S is productive, too.

Proof. Let S ′ be productive, i.e., every ground term t of sort s admits a reduction t→∗
R′ t′

for which root(t′) ∈ C. Then by →R′ ⊆ →+

R we conclude t →∗
R t′, proving productivity of

S.

PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES 411

Example 5.2. We apply this theorem to Example 4.6. Observe that we can rewrite the
right-hand side of the rule p→ zip(alt, p) as follows:

zip(alt, p)→ zip(0 : 1 : alt, p)→ 0 : zip(p, 1 : alt)

So we may transform our specification by replacing Rs by the TRS R′
s consisting of the

following rules:
p → 0 : zip(p, 1 : alt)

alt → 0 : 1 : alt
zip(x : σ, τ) → x : zip(τ, σ)

Clearly, this is a proper specification that is productive due to Theorem 3.4. Now produc-
tivity of the original specification follows from Theorem 5.1 and →R′

s
⊆ →+

Rs
. Our tool

finds exactly this proof.

Concluding productivity of the original system from productivity of the transformed
system is called soundness, the converse is called completeness. The following example
shows the incompleteness of Theorem 5.1.

Example 5.3. Consider the two proper (stream) specifications S and S ′ defined by

Rs: c → f(c) R′
s: c → f(c)

f(σ) → 0 : σ f(x : σ) → 0 : x : σ

Here C = {:}, Rd = ∅, Σd = {0}. Since c →R f(c) →R 0 : c and f(· · ·) →R 0 : · · · we
conclude productivity of S, as c and f are the only symbols in Σs.

For the TRS R′
s we have that →R′

s
⊆ →+

Rs
, since any step with the rule

f(x : σ) → 0 : x : σ of R′
s can also be done with the rule f(σ) → 0 : σ of Rs. How-

ever, S ′ is not productive, as the only reduction starting in c is c→ f(c)→ f(f(c))→ · · · in
which the root is never in C.

Next we prove that with the extra requirement→R ⊆ →R′ · ←∗
R, as holds for reduction

of right-hand sides, we have both soundness and completeness.

Theorem 5.4. Let S = (Σd,Σs, C, Rd, Rs) and S ′ = (Σd,Σs, C, Rd, R
′
s) be proper specifica-

tions satisfying →R′ ⊆ →+

R and →R ⊆ →R′ · ←∗
R for R = Rs ∪Rd and R′ = R′

s ∪Rd.

Then S is productive if and only if S ′ is productive.

Proof. The “if” direction follows from Theorem 5.1.
For the “only-if” direction first we prove the following claim:

Claim: If t→R t′ and t→∗
R t′′, then there exists a term v satisfying t′ →∗

R v
and t′′ →∗

R′ v.

Let t →R t′ be an application of the rule ℓ → r in R, so t = C[ℓρ] and t′ = C[rρ] for
some C, ρ. According to the Parallel Moves Lemma ([17], Lemma 4.3.3, page 101), we can
write t′′ = C ′′[ℓρ1, . . . , ℓρn], and t′, t′′ have a common R-reduct C ′′[rρ1, . . . , rρn]. Due to
ℓρi →R rρi and →R ⊆ →R′ · ←∗

R there exist ti satisfying ℓρi →R′ ti and rρi →
∗
R ti, for all

i = 1, . . . , n. Now choosing v = C ′′[t1, . . . , tn] proves the claim.
Using this claim, by induction on the number of →R-steps from t to t′ one proves the

generalized claim: If t→∗
R t′ and t→∗

R t′′, then there exists a term v satisfying t′ →∗
R v and

t′′ →∗
R′ v.
Let t be an arbitrary ground term of sort s. Due to productivity of S there exists t′

satisfying t→∗
R t′ and root(t′) ∈ C. Applying the generalized claim for t′′ = t yields a term

412 HANS ZANTEMA AND MATTHIAS RAFFELSIEPER

v satisfying t′ →∗
R v and t →∗

R′ v. Since root(t′) ∈ C and t′ →∗
R v we obtain root(v) ∈ C.

Now t→∗
R′ v implies productivity of S ′.

Example 5.3 generalizes to a general application of Theorem 5.1 other than rewriting
right-hand sides as follows. Assume a rule from Rs in a proper transformation contains an
s-variable σ in the left-hand side being an argument of the root. Then for every c ∈ C
this rule may be replaced by an instance of the same rule, obtained by replacing σ by
c(x1, . . . , xn, σ1, . . . , σm), where ar(d, c) = n, ar(s, c) = m. If this is done simultaneously for
every c ∈ C, so replacing the original rule by #C instances, then the result is again a proper
specification. Also the requirements of Theorem 5.1 hold, even →R′ ⊆ →R. We show this
transformation by an example.

Example 5.5. We want to analyze productivity of the following variant of Example 4.6, in
which p has been replaced by a stream function, and Rs is the below TRS:

p(σ) → zip(σ, p(σ))
alt → 0 : 1 : alt

zip(x : σ, τ) → x : zip(τ, σ)

Proving productivity by Theorem 3.4 fails. Also proving productivity with the technique
of Theorem 4.1 fails, since there exists the infinite context-sensitive reduction

p(alt)→ zip(alt, p(alt)
︸ ︷︷ ︸

)→

Furthermore, reducing the right-hand side of p(σ) → zip(σ, p(σ)) can only be done
by applying the first rule, not creating a constructor as the root of the right-hand side.
What blocks rewriting using the zip rule is the variable σ in the first argument of zip.
Therefore, we apply Theorem 5.1 as sketched above, note that C = {:}, and replace the rule
p(σ) → zip(σ, p(σ)) by the single rule p(x : σ) → zip(x : σ, p(x : σ)) to obtain the TRS R′

s.
This now allows us to rewrite the new right-hand side by the zip rule, replacing the previous
rule by p(x : σ)→ x : zip(p(x : σ), σ), i.e., we obtain the TRS R′′

s consisting of the following
rules:

p(x : σ) → x : zip(p(x : σ), σ)
alt → 0 : 1 : alt

zip(x : σ, τ) → x : zip(τ, σ)

Productivity of R′′
s follows from Theorem 3.4. This implies productivity of R′

s due to
Theorem 5.1 which in turn implies productivity of our initial specification S, again due to
Theorem 5.1. Our tool finds exactly the proof as given here.

Example 5.6. For stream computations it is often natural also to use finite lists. The
data structure combining streams and finite lists is obtained by choosing C = {:, nil}, with
ar(d, :) = ar(s, :) = 1 and ar(d, nil) = ar(s, nil) = 0, as mentioned in Example 2.3. An
example using this is defining the sorted stream p = 1 : 2 : 2 : 3 : 3 : 3 : 4 : · · · of natural
numbers, in which n occurs exactly n times for every n ∈ N. This stream can be defined by
a specification not involving finite lists, but here we show how to do it in this extended data
structure based on standard operations like conc. Apart from conc we use copy, for which
copy(k, n) is the finite list of k copies of n, for k, n ∈ N, and a function f for generating
p = f(0). Taking D to be the set of ground terms over {0, s} and Rd = ∅, we choose Rs to

PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES 413

consist of the following rules:

p → f(0) f(x) → conc(copy(x, x), f(s(x)))
copy(s(x), y) → y : copy(x, y) conc(nil, σ) → σ

copy(0, x) → nil conc(x : σ, τ) → x : conc(σ, τ)

Note that productivity of this system is not trivial: if the rule for f is replaced by f(x) →
conc(copy(x, x), f(x)), then the system is not productive.

Productivity cannot be proved directly by Theorem 3.4 or Theorem 4.1; context-sensitive
termination does not even hold for the single f rule. However by replacing the f rule by the
two instances

f(0)→ conc(copy(0, 0), f(s(0))) and f(s(x))→ conc(copy(s(x), s(x)), f(s(s(x)))),

and then applying rewriting right-hand sides by which these two rules are replaced by

f(0)→ f(s(0)) and f(s(x))→ s(x) : conc(copy(x, s(x)), f(s(s(x))))

yields a proper specification for which context-sensitive termination is proved by AProVE
[8] or µ-Term [13], proving productivity of the original example by Theorem 5.1 and The-
orem 4.1. Our tool finds a similar proof as given here: right-hand sides were slightly more
rewritten.

Example 5.7. We conclude this section by an example in binary trees, in which the nodes
are labeled by natural numbers, so there is one constructor b : d× s2 → s and D consists of
ground terms over {0, s}. The rules are

c → b(0, f(g(0), left(c)), g(0)) left(b(x, xs, ys)) → xs
g(x) → b(x, g(s(x)), g(s(x))) f(b(x, xs, ys), zs) → b(x, ys, f(zs, xs))

To get an impression of the hardness of this example, observe that f and left are similar to
zip and tail for streams, respectively, and the recursion in the rule for c has the flavor of
c→ 0 : zip(· · · , tail(c)). Our tool proves productivity by Theorem 5.1 and Theorem 4.1, by
first rewriting right-hand sides and then proving context-sensitive termination.

6. Implementation

We have implemented a tool to check productivity of proper specifications using the
techniques presented in this paper. It is accessible via the web-interface

http://pclin150.win.tue.nl:8080/productivity.

The input format requires the following ingredients:

• the variables,
• the operation symbols with their types,
• the rewrite rules.

Details of the format can be seen from the examples that are available. All other information,
like which symbols are in C is extracted by the tool from these ingredients.

As a first step, the tool checks that the input is indeed a proper specification. Checking
syntactic requirements, such as no function symbol returning sort d has an argument of sort
s, the TRS is 2-sorted and orthogonal, and the left-hand sides have the required shape, are
all straightforward. However, to verify the last requirement of a proper specification, namely
that the TRS is exhaustive, is a hard job if we allow D to be the set of ground normal forms

414 HANS ZANTEMA AND MATTHIAS RAFFELSIEPER

of any terminating orthogonal Rd. Instead we restrict to the class of proper specifications
in which D consists of the constructor ground terms of sort d, i.e., the terms in D do not
contain symbols occurring as root symbol in a left-hand side of a rule in Rd. To check
whether this is the case, we use anti-matching as described in [14]. It can easily be shown
that the normal forms of ground terms w.r.t. Rd are only constructor terms if and only if
there is no anti-matching term that has a defined symbol as root and only terms built from
constructors and variables as arguments. The idea of the proof is that such a term could be
instantiated to a ground term, which is a normal form due to the anti-matching property.
Then, checking exhaustiveness of Rs has to only consider constructor terms for both data
and structure arguments.

To analyze productivity of a given proper specification, the tool first investigates whether
Theorem 3.4 can be applied directly: it checks whether the roots of all right-hand sides are
constructors. If this simple criterion does not hold, then it tries to show context-sensitive
termination using the existing termination prover µ-Term, by which productivity will follow
by Theorem 4.1.

If both of these first attempts fail then the tool tries to transform the given specification.
Since rewriting of right-hand sides is both sound and complete, as was shown in Section 5,
a productive specification can never be transformed into an unproductive one by this tech-
nique. Therefore, this is the first transformation to try. However, large right-hand sides
often make it harder for termination tools to prove context-sensitive termination. There-
fore, the tool tries to only rewrite positions on right-hand sides that appear to be needed to
obtain a constructor prefix tree of a certain, adjustable depth. This is done by traversing the
term in an outermost fashion and only trying to rewrite arguments if the possibly matching
rules require a constructor for that particular argument. If at least one right-hand side
could be rewritten, a new specification with the rewritten right-hand sides is created. Since
rewriting of right-hand sides is not guaranteed to terminate, we limit the maximal number
of rewriting steps. After rewriting the right-hand sides in this way, the tool again tries to
prove productivity of the transformed TRS using our basic techniques.

As shown in Examples 5.5 and 5.6, it can be helpful to replace a variable by all con-
structors of its sort applied to variables. Therefore, in case productivity could not be shown
so far, it is tried to instantiate a variable on a position of a right-hand side that is required
by the rules for the defined symbol directly above it. Then the instantiated right-hand sides
are rewritten again to obtain new specifications for which productivity is analyzed further.

The described transformations are applied in the order of their presentation a number
of times. If a set limit of applications of transformations is reached, the tool finally tries to
rewrite to deeper context-prefixes on right-hand sides and does a final check for productivity,
using a larger timeout value.

Using these heuristics the tool is able to automatically prove productivity of all pro-
ductive examples presented in this paper. This especially includes the example of a stream
specification given in the following section, which could not be proved to be productive by
any other automated technique we are aware of.

7. Conclusions and Related Work

We have presented new techniques to prove productivity of specifications of infinite ob-
jects like streams. Until now several techniques were developed for proving productivity of

PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES 415

stream specifications, but not for other infinite data structures like infinite trees or the com-
bination of streams and finite lists. In this paper we gave several examples of applying our
techniques to these infinite data structures. We implemented a tool by which productivity
of all of these examples could be proved fully automatically. For the non-stream examples
there are hardly other techniques to compare. For streams there are examples where our
technique outperforms all earlier techniques. For instance, the techniques from [6, 4] fail to
prove productivity of Example 4.2. For this example the technique from [19] succeeds, but
this technique fails as soon binary stream operations come in like zip. To our knowledge our
technique is the first that can deal with productivity for f(p) of the specification consisting
of the combination of Example 4.6 (describing the paper folding stream) and the two rules
f(0 : σ)→ f(σ), f(1 : σ)→ 1 : f(σ). Our tool first performs rewriting of the right-hand side
of the p-rule and then proves context-sensitive termination by µ-Term. Note the subtlety in
this example: as soon as a ground term t can be composed of which the interpretation as
a stream contains only finitely many ones, then the system will not be productive for f(t).
So as a consequence we conclude that the paper folding stream p contains infinitely many
ones, as the specification is productive for f(p).

Some ideas in this paper are related to earlier observations. In [10] the observation was
made that if right-hand sides of stream definitions have ‘:’ as its root, then well-definedness
can be concluded, comparable to what we did by Theorem 3.4, and can be concluded from
friendly-nestingness in [4]. A similar observation can be made about process algebra, where
a recursive specification is called guarded if right-hand sides can be rewritten to a choice
among terms all having a constructor on top, see e.g. [2], Section 5.5. In that setting every
specification has at least one solution, while guardedness also implies there is at most one
solution ([2], Theorem 5.5.11). So guardedness implies well-definedness, being of the flavor of
combining Theorem 3.4 with rewriting right-hand sides. From both of these observations we
obtain well-definedness, which is a slightly weaker notion than productivity. An investigation
of well-definedness for stream specifications based on termination was made in [18]. We want
to stress that productivity is strictly stronger than well-definedness, which is shown by the
stream specification c→ f(c), f(x : σ)→ 0 : c, being well-defined but not productive.

As far as we know the relationship of productivity with context-sensitive termination as
expressed in Theorem 4.1 is new. Some ingredients of this relationship were given before in
[19] where productivity of stream specifications was related to outermost termination and
in [7] where outermost termination was related to context-sensitive termination. An alter-
native way to proceed would have been a further elaboration of combining the approaches
from [19] and [7] to prove productivity: if the combination of the specification and a partic-
ular overflow rule is outermost terminating, then the specificiation is productive. Here for
proving outermost termination the approach from [7] can be used. However, for examples
like Example 4.3 this approach fails, even in combination with rewriting right-hand sides,
while context-sensitive termination can be proved by standard tools, proving productivity
by Theorem 4.1. For the other way around we only found examples where the direct ap-
proach is successful, too, in combination with rewriting right-hand sides. Apart from these
experiments some intuition why our approach is to be preferred is the following. By the
technique from [7] to prove outermost termination by proving context-sensitive termination
of a transformed system, the size of the system increases dramatically. If the goal is to prove
productivity, compared to the approach of this paper it is quite a detour to first transform
the problem to outermost termination and then use such a strongly expanding transfor-
mation to relate it to context-sensitive termination, while it can be done directly without

416 HANS ZANTEMA AND MATTHIAS RAFFELSIEPER

such an expansion by Theorem 4.1. Summarizing, we do not expect that the power of our
approach can be improved by extending it by trying to prove outermost termination of the
specification extended by the overflow rule, neither for streams nor for other infinite data
structures.

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, Cambridge, UK,
1998.

[2] J. C. M. Baeten, T. Basten, and M. A. Reniers. Process Algebra: Equational Theories of Communicating
Processes, volume 50 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
Cambridge, UK, 2009.

[3] N. Calkin and H. Wilf. Recounting the rationals. American Mathematical Monthly, 107(4):360–363,
2000.

[4] J. Endrullis, C. Grabmayer, and D. Hendriks. Data-oblivious stream productivity. In Proceedings of
the 11th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR’08), volume 5330 of Lecture Notes in Computer Science, pages 79–96. Springer-Verlag, 2008.
Web interface tool: http://infinity.few.vu.nl/productivity/.

[5] J. Endrullis, C. Grabmayer, and D. Hendriks. Complexity of Fractran and productivity. In Proceedings
of the 22th Conference on Automated Deduction (CADE’09), volume 5663 of Lecture Notes in Computer
Science, pages 371–387. Springer-Verlag, 2009.

[6] J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J.W. Klop. Productivity of stream definitions.
In Proceedings of the Conference on Fundamentals of Computation Theory (FCT ’07), volume 4639 of
Lecture Notes in Computer Science, pages 274–287. Springer-Verlag, 2007.

[7] J. Endrullis and D. Hendriks. From outermost to context-sensitive rewriting. In Proceedings of the 20th
International Conference on Rewriting Techniques and Applications (RTA’09), volume 5595 of Lecture
Notes in Computer Science, pages 305–319. Springer-Verlag, 2009.

[8] J. Giesl et al. AProVE. Web interface and download: http://aprove.informatik.rwth-aachen.de.
[9] J. Giesl and A. Middeldorp. Transformation techniques for context-sensitive rewrite systems. Journal

of Functional Programming, 14:329–427, 2004.
[10] R. Hinze. Functional pearl: streams and unique fixed points. In ICFP ’08: Proceeding of the 13th ACM

SIGPLAN international conference on Functional programming, pages 189–200. ACM, 2008.
[11] A. Isihara. Productivity of algorithmic systems. In SCSS 2008, volume 08-08 of RISC-Linz Report,

pages 81–95, 2008.
[12] A. Isihara. Algorithmic Term Rewriting Systems. PhD thesis, Free University Amsterdam, 2010.
[13] S. Lucas et al. µ-Term. Web interface and download: http://zenon.dsic.upv.es/muterm/.
[14] M. Raffelsieper and H. Zantema. A transformational approach to prove outermost termination auto-

matically. In Proceedings of the 8th International Workshop in Reduction Strategies in Rewriting and
Programming (WRS’08), volume 237 of Electronic Notes in Theoretical Computer Science, pages 3–21.
Elsevier Science Publishers B. V. (North-Holland), 2009.

[15] B. A. Sijtsma. On the productivity of recursive list definitions. ACM Transactions on Programming
Languages and Systems, 11(4):633–649, 1989.

[16] J. G. Simonsen. The Π
0

2-completeness of most of the properties of rewriting systems you care about
(and productivity). In R. Treinen, editor, Proceedings of the 20th Conference on Rewriting Techniques
and Applications (RTA), Lecture Notes in Computer Science. Springer, 2009.

[17] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, Cambridge, UK, 2003.

[18] H. Zantema. Well-definedness of streams by termination. In Proceedings of the 20th International Con-
ference on Rewriting Techniques and Applications (RTA’09), volume 5595 of Lecture Notes in Computer
Science, pages 164–178. Springer-Verlag, 2009.

[19] H. Zantema and M. Raffelsieper. Stream productivity by outermost termination. In Proceedings of the
9th International Workshop in Reduction Strategies in Rewriting and Programming (WRS’09), vol-
ume 15 of Electronic Proceedings in Theoretical Computer Science, 2010.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

	10002.Frontmatter.2668
	Author Index
	Conference Organization
	External Reviewers

	10002.Preface.2667
	10002.BojanczykMikolaj.2639
	10002.VanOostrom.2640
	10002.AotoTakahito.2641
	10002.AppelClaus.2642
	10002.AvanziniMartin.2643
	10002.BahrPatrick.2644
	10002.BahrPatrick.2645
	10002.EndrulisJoerg.2646
	10002.FujitaKen_Etsu.2647
	10002.GmeinerKarl.2648
	10002.GuglielmiAlessio.2649
	10002.HillsMark.2650
	10002.KahrsStefan.2651
	10002.KollerAlexander.2652
	10002.KutsiaTemur.2653
	10002.LevyJordi.2654
	10002.MimramSamuel.2655
	10002.NaurauterFriedrich.2656
	10002.OttoCarsten.2657
	10002.RiescoAdrian.2658
	10002.Schmidt_SchaussManfred.2659
	10002.SimonssenJakob.2660
	10002.SternagelChristian.2661
	10002.DurandIrene.2662
	10002.WaldmannJohannes.2663
	10002.WinklerSarah.2664
	10002.ZanklHarald.2665
	10002.ZantemaHans.2666

