Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 104—113
http://www.floc-conference.org/ICLP-home.html

A Framework for Verification and Debugging of Resource Usage Properties
RESOURCE USAGE VERIFICATION

PEDRO LOPEZ-GARCIA 2 AND LUTHFI DARMAWAN 2 AND FRANCISCO BUENO?

E-mail address: pedro.lopez@imdea.org,luthfi@clip.dia.fi.upm.es,bueno@fi.upm.es
! IMDEA Software, Madrid, Spain
2 Spanish Research Council (CSIC), Spain

3 Technical University of Madrid (UPM), Spain

ABSTRACT. We present a framework for (static) verification of general resource usage
program properties. The framework extends the criteria of correctness as the conformance
of a program to a specification expressing non-functional global properties, such as upper
and lower bounds on execution time, memory, energy, or user defined resources, given as
functions on input data sizes. A given specification can include both lower and upper
bound resource usage functions, i.e., it can express intervals where the resource usage
is supposed to be included in. We have defined an abstract semantics for resource usage
properties and operations to compare the (approximated) intended semantics of a program
(i-e., the specification) with approximated semantics inferred by static analysis. These
operations include the comparison of arithmetic functions (e.g., polynomial, exponential
or logarithmic functions). A novel aspect of our framework is that the static checking of
assertions generates answers that include conditions under which a given specification can
be proved or disproved. For example, these conditions can express intervals of input data
sizes such that a given specification can be proved for some intervals but disproved for
others. We have implemented our techniques within the Ciao/CiaoPP system in a natural
way, so that the novel resource usage verification blends in with the CiaoPP framework
that unifies static verification and static debugging (as well as run-time verification and
unit testing).

1. Introduction and Motivation

The conventional understanding of software correctness is absence of errors or bugs,
expressed in terms of conformance of all possible executions of the program with a func-
tional specification (like type correctness) or behavioral specification (like termination or
possible sequences of actions). However, in an increasing number of computing applications
additional observables play an essential role. For example, embedded systems must control

1998 ACM Subject Classification: D.1.6 [Programming Techniques]|: Logic Programming; D.2.4 [Soft-
ware Engineering]: Software/Program Verification—Assertion Checkers, Formal Methods; D.2.5 [Soft-
ware Engineering]: Testing and Debugging. General Terms: Performance, Verification.

Key words and phrases: Program Verification and Debugging, Cost Analysis, Resource Usage Analysis,
Complexity Analysis.

This research has been partially funded by the EU 7th. FP NoE S-Cube 215483, FET IST-231620 HATS,
MICINN TIN-2008-05624 DOVES and CM project P2009/TIC/1465 PROMETIDOS.

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
© P Lopez-Garcia, L. Darmawan, and F. Bueno LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Germany
€ Creative Commons Non-Commercial No Derivatives License Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.104

RESOURCE USAGE VERIFICATION 105

and react to the environment, which also establishes constraints about the system’s behav-
ior such as resource usage and reaction times. Therefore, it is necessary for these systems
to extend the criteria for correctness with new aspects which include non-functional global
properties such as maximum execution time and usage of memory, energy, or other types
of resources.

In this paper we propose techniques that extend the capacity of debugging and verifi-
cation systems based on static analysis [3, 2, 6], when dealing with a quite general class of
properties related to resource usage, including upper and lower bounds on execution time,
memory, energy, and user-defined resources (the latter in the sense of [8]). Such bounds are
given as functions on input data sizes (see [8] for the different metrics that can be used to
measure data sizes, such as list length, term depth, or term size). The proposed extension
has been implemented in the CiaoPP framework, that unifies static verification and static
debugging (as well as run-time verification and unit testing). For example, For example, it
extends the capacity of CiaoPP to certify programs with resource consumption assurances
and also to efficiently check such certificates.

We define an abstract semantics for resource usage properties and operations to com-
pare the (approximated) intended semantics of a program (i.e., the specification, given as
assertions in the program) with approximated semantics inferred by static analysis. These
operations include the comparison of arithmetic functions (e.g., polynomial, exponential
or logarithmic functions). In traditional static checking, for each property of (part of) an
assertion, the possible outcomes are true (property proved to hold), false (property proved
not to hold), and unknown (the analysis cannot prove true or false). However, it is very
common that cost functions have intersections, so that for a given interval of input data
sizes, one of them is smaller than the other one, but for another interval it is the other way
around. Thus, a novel aspect of the resource verification and debugging approach that we
propose is that the answers of the checking process go beyond these classical outcomes and
typically include conditions under which the truth or falsity of the property can be proved.
Such conditions can be parameterized by attributes of inputs, such as input data size or
value ranges. For example, it may be possible to say that the outcome is true if the input
data size is in a given range and false if it is in another one.

Example 1.1. Consider an assertion which declares an upper bound (ub) on the resource
usage, in terms of resolution steps, of the classical fibonacci program such as:
:— check comp fib(N,F): (int(N), var(F)) + steps_ub(exp(2, int(N))-1000).
meaning that the computation of any call to £ib(N,F) with the first argument bound to an
integer and the second one a free variable should take at most 2* — 1000 resolution steps, x
being the size of the first argument (i.e., the actual value of N, since it has to be an integer
number). This is true only for > 10, and maybe programmers have tried the program only
with big numbers, and then generalized their observations in the above assertion. We will
see how the CiaoPP system, with our approach, is able to inform the programmer that this
idea is wrong. Indeed, as we will see, the output of our assertion checking implementation
within the CiaoPP system is:
:- false comp fib(N,F): (int(N), var(F)) + steps_ub(exp(2,int(N))-1000).
in interval [0, 10] for int(N).
:-= true comp fib(N,F): (int(N), var(F)) + steps_ub(exp(2,int(N))-1000).
in interval [11, +inf] for int(N).

106 P. LOPEZ-GARCIA, L. DARMAWAN, AND F. BUENO

meaning that the system has proved that the assertion is false for values of the input
argument N in the interval [0, 10], and true for N in the interval [11,00). This is because in
the interval [0, 10], the lower bound on resolution steps inferred by the analysis is greater
than the upper bound expressed in the assertion, and in the interval [11,00), the upper
bound inferred by the analysis is less than the upper bound in the assertion.

In our approach, user specifications (i.e., assertions) can include for example lower and
upper bounds, and even asymptotic values of the resource usage of the computation (given
as functions on input data sizes). Moreover, a given specification can include both lower
and upper bound resource usage functions, i.e., it can express intervals where the resource
usage is supposed to be included in.

The most related work we are aware of presents a method for comparison of cost
functions inferred by the COSTA system for Java bytecode [1]. The method proves whether
a cost function is smaller than another one for all the values of a given initial set of input
data sizes. The result of this comparison is a boolean value. However, as mentioned before,
in our approach the result is in general a set of subsets (intervals) in which the initial set
of input data sizes is partitioned, so that the result of the comparison is different for each
subset. The method in [1] also differs from ours in that comparison is syntactic, using a
method similar to what was already being done in the CiaoPP system: performing a function
normalization and then using some syntactic comparison rules. However, in this work we go
beyond these syntactic comparison rules. Moreover, we present an application for which cost
function comparison is instrumental and which is not covered in the cited work: verification
of resource usage properties. This implies extending the criteria of correctness and defining
a resource usage (abstract) semantics and conditions under which a program is correct or
incorrect with respect to an (approximated) intended semantics.

In the following, we describe, in Section 2, how to extend and use the CiaoPP verification
framework, that we take as starting point, for the verification of general resource usage
program properties. In Section 3 we explain the technique that we have developed for
resource usage function comparison. Section 4 summarizes our conclusions.

2. A Framework for Verification of Resource Usage Properties

The verification and debugging framework of CiaoPP [6] uses abstract interpretation-
based analyses, which are provably correct and also practical, in order to statically compute
semantic approximations of programs. These semantic approximations are compared with
(partial) specifications, in the form of assertions that are written by the programmer, in
order to detect inconsistencies or to prove such assertions.

Both program verification and debugging compare the actual semantics [P] of a pro-
gram P with an intended semantics for the same program, which we will denote by I. In the
framework, both semantics are given in the form of (safe) approximations. The abstract
approximation [P], of the concrete semantics [P] of the program is actually computed
and compared directly to the (also approximate) specification, which is safely assumed to
be also given as an abstract value I,. Program verification is then performed by comparing
I, and [P],. We refer the reader to [3, 5, 6] for a detailed description of the foundations,
such as conditions for safely prove partial correctness or incorrectness, and implementation
issues of the framework. In this paper we concentrate on defining the main elements of the
framework required for its application to resource usage properties.

RESOURCE USAGE VERIFICATION 107

Resource usage semantics. Given a program p, let C, be the set of all calls to p. The
concrete resource usage semantics of a program p, for a particular resource of interest, [P],
is a set of pairs (p(t),r) such that ¢ is a tuple of terms, p(t) € Cp is a call to predicate p
with actual parameters ¢, and r is a number expressing the amount of resource usage of the
computation of the call p(¢). Such a semantic object can be computed by a suitable oper-
ational semantics, such as SLD-resolution, adorned with the computation of the resource
usage. We abstract away such computation, since it will in general be dependent on the
particular resource r refers to. The concrete resource usage semantics can be defined as a
function [P] : Cp, — R where R is the set of real numbers (note that depending on the type
of resource we can take other set of numbers, e.g., the set of natural numbers).
The abstract resource usage semantics is a set of 4-tuples:

(p(0) : c(v), P, inputy, sizep)
where p(0) : ¢(v) is an abstraction of a set of calls. ¥ is a tuple of variables and ¢(v) is an
abstraction representing a set of tuples of terms which are instances of v. ¢(v) is an element
of some abstract domain expressing instantiation states. ® is an abstraction of the resource
usage of the calls represented by p(v) : ¢(v). We refer to it as a resource usage interval
function for p, defined as follows:

e A resource usage bound function for p is a monotonic arithmetic function, ¥ : .S —
R, for a given subset S C RF, where R is the set of real numbers, k is the number
of input arguments to predicate p and R, is the set of real numbers augmented
with the special symbols co and —oo. We use such functions to express lower and
upper bounds on the resource usage of predicate p depending on input data sizes.

e A resource usage interval function for p is an arithmetic function, ® : S — RI,
where S is defined as before and RI is the set of intervals of real numbers, such
that ®(n) = [®!(n), ®*(n)] for all n € S, where ®!(n) and ®“(n) are resource usage
bound functions that denote the lower and upper endpoints of the interval ®(7n)
respectively for the tuple of input data sizes n. Although 7 is typically a tuple of
natural numbers, we do not want to restrict our framework. We require that ® be
well defined so that Va (®'(n) < ®%(7)).

inputy, is a function that takes a tuple of terms ¢ and returns a tuple with the input
arguments to p. This function can be inferred by using existing mode analysis or can
be given by the user by means of assertions. sizep(t) is a function that takes a tuple of
terms ¢ and returns a tuple with the sizes of those terms under a given metric. The metric
used for measuring the size of each argument of p can be automatically inferred (based on
type analysis information) or can be given by the user by means of assertions [8].

Example 2.1. Consider for example the naive reverse program in Figure 1, with the clas-
sical definition of predicate append. The first argument of nrev is declared input, and the
two first arguments of append are consequently inferred to be also input. The size measure
for all of them is inferred to be list-length. Then, we have that:

inputnre.((2,9)) = (2), Z.npl“fapp((l'aya z)) = (z,y),

sizenrev((2)) = (length(x)) and sizeqp,((z,y)) = (length(z), length(y)).

In order to make the presentation simpler, we will omit the input, and size, functions
in abstract tuples, with the understanding that they are present in all such tuples.

108 P. LOPEZ-GARCIA, L. DARMAWAN, AND F. BUENO

:— module(reverse, [nrev/2], [assertions]).

:— use_module(library(’assertions/native_props’)).
:- entry nrev(A,B) : (ground(A), list(A), var(B)).
nrev([],[1).

nrev([H|L],R) :- nrev(L,R1), append(R1,[H],R).

Figure 1: A module for naive reverse.

Intended meaning. The intended approximated meaning [, of a program is an abstract
semantic object with the same kind of tuples: (p(v) : ¢(v), ®, input,, sizep), which are given
in the form of assertions. The basic form of resource usage assertions is:!

:= comp Pred [: Precond | + ResUsage. ‘

which expresses that for any call to Pred, if Precond is satisfied in the calling state, then
ResUsage should also be satisfied for the computation of Pred. ResUsage defines in general
an interval of numbers for the particular resource usage of the computation of the call to
Pred (i.e., ResUsage is satisfied by the computation of the call to Pred if the resource usage
of such computation is in the defined interval).

Example 2.2. In the program of Figure 1 one could use the assertion:
:— comp nrev(A,B): (ground(A), 1list(A), var(B))

+ resource(ub, steps, l+exp(length(A), 2)).
to express that for any call to nrev(A,B) with the first argument bound to a ground list
and the second one a free variable, an upper bound (ub) on the number of resolution steps
performed by the computation is 1 + n?, where n = length(A). In this case, the interval
approximating the number of resolution steps is [0, 1 + n?]. Since the number of resolution
steps cannot be negative, the minimum of the interval is zero. If we assume that the resource
usage can be negative, the interval would be (—oo,1 + n?]. If we had a lower bound (1b)
instead of an upper bound in the assertion, the interval would be [1 + n?, co).

Such an assertion describes a tuple in I, which is given by (p(v) : ¢(v), ®, inputy, sizep),
where p(v) : ¢(v) is defined by Pred and Precond, and ® is defined by ResUsage. The
information about input, and size, is implicit in ResUsage. The concretization of I,
v(I4), is the set of all pairs (p(t),r) such that ¢ is a tuple of terms and p() is an instance of
Pred that meets precondition Precond, and r is a number that meets the condition expressed
by ResUsage (i.e., r lies in the interval defined by ResUsage) for some assertion.

Example 2.3. The assertion in Example 2.2 captures the following concrete semantic
tuples:

(nrev([a,b,c,d,e,f,gl,X), 35) (nrev([],Y), 1)
but it does not capture the following ones:

(nrev([A,B,C,D,E,F,G],X), 35) (nrev(W,Y), 1)

(nrev([a,b,c,d,e,f,g],X), 563) (nrev([],Y), 11)

those in the first line above because they correspond to calls which are outside the scope
of the assertion (i.e., they do not meet the precondition Precond); those on the second line

L Assertions may be prefixed with a status indicating that it is to be checked, or that it has been already
checked, detected to be false or detected to be true. Omitting this prefix means “to be checked” [9].

RESOURCE USAGE VERIFICATION 109

(which will never occur on execution) because they violate the assertion (i.e., they meet the
precondition Precond, but do not meet the condition expressed by ResUsage).

Partial correctness: comparing the abstract semantics. During verification / debug-
ging within our framework, we need to compare an abstract semantics inferred by analysis
with an intended abstract semantics. We give here some ideas about how to do it, and refer
the reader to [7] for a complete formalization of the abstract semantics and comparison
operations.

Given a program p and an intended resource usage semantics I, where I : Cp, — R, we
say that p is partially correct w.r.t. I if for all p(t) € C, we have that (p(),r) € I, where r
is precisely the amount of resource usage of the computation of the call p(t). We say that p
is partially correct with respect to a tuple of the form (p(v) : ¢;(v), ®1) if for all p(t) € C,
such that r is the amount of resource usage of the computation of the call p(¢), it holds
that: if p(t) € v(p(v) : ¢1(v)) then r € ®;(5), where § = size,(inputy(t)). Finally, we say
that p is partially correct with respect to [, if:

e For all p(t) € Cp, there is a tuple (p(v) : ¢1(v), @) in I, such that p(t) € v(p(v) :
cr(v)), and
e p is partially correct with respect to every tuple in I,.

Let (p(v) : ¢(v),®) and (p(v) : c;(v), ®r) be tuples expressing an abstract seman-
tics [P],, inferred by analysis and an intended abstract semantics I, respectively, such
that ¢;(0) C ¢(?),? and for all n € S (S C RF), ®(n) = [®!(n), ®*(n)] and ®;(n) =
[®!(7), ®%(72)]. We have that:

(1) If for all n € S, ®4(n) < ®!(n) and ®*(n) < ®%(n), then p is partially correct with

respect to (p(v) : ¢r(v), Pr).

(2) If for all @ € S ®%(7) < ®L(R) or ®%(A) < ®!(R), then p is incorrect with respect to

(p(0) : c1(0), @).

However, for simplicity, in this paper we assume that one of the endpoints of the interval
is always the maximum (resp., minimum) of the possible values, i.e., Vi (®}(72) = co) (resp.,
®L(n) = —oo or ®4(n) = 0, depending on the resource). Thus, one of the resource usage
bound function comparisons in each of the two cases above is always trivial. Therefore, we
will be faced with only one such comparison, between two resource usage bound functions,
each denoting either a lower bound (/) or an upper bound (u).

For the particular case where resource usage bound functions depend on one argument,
the result of the resource usage bound function comparison in our approach is in general a
set of intervals of input data sizes for which a function is less, equal, or greater than another.
This allows us to give intervals of input data sizes for which a program p is partially correct
(or incorrect).

3. Resource Usage Bound Function Comparison

Given two resource usage bound functions (one of them inferred by the static analysis
and the other one given in an assertion/specification present in the program), ¥;(n) and
Uy(n), n € R the objective of this operation is to determine intervals for n in which
Ui(n) > Wa(n), Ui(n) = ¥a(n), or ¥i(n) < ¥a(n).

2Note that the condition c; (9) £ ¢() can be checked using the CiaoPP capabilities for comparing program
state properties such as types.

110 P. LOPEZ-GARCIA, L. DARMAWAN, AND F. BUENO

Our approach consists in defining f(n) = ¥;(n) — ¥a(n) and finding the roots of the

equation f(n) = 0. Assume that the equation has m roots, ni,...,n,. These roots are
intersection points of ¥;(n) and ¥a(n). We consider the intervals S; = [0,n1), S2 = (n1, n2),
Sm = .. (Mm=1,1m), Sm+1 = (m, 00). For each interval S;, 1 < i < m, we select a value

v; in the interval. If f(v;) > 0 (respectively f(v;) < 0), then W;(n) > Uy(n) (respectively
Ui(n) < Wa(n)) for all n € S;.

Since our resource analysis is able to infer different types of functions (e.g., polynomial,
exponential and logarithmic), it is also desirable to be able to compare all of these func-
tions. For polynomial functions there exist powerful algorithms for obtaining roots. For the
other functions, we have to approximate them using polynomials. In this case, we should
guarantee that the error falls in the safe side when comparing the corresponding resource
usage bound functions.

3.1. Comparing Polynomial Functions

There are general methods for finding roots of polynomial equations. Root equation
finding of polynomial functions can be done analytically until polynomial order four. For
higher order polynomial functions, numerical methods must be used. According to the
fundamental theorem of algebra, a polynomial equation of order m has m roots, whether
real or complex numbers. Numerical methods exist that allow computing all these roots
(although the complex numbers are not needed in our approach).

For this purpose in our implementation we have used the GNU Scientific Library [4],
which offers a specific polynomial function library that uses analytical methods for find-
ing roots of polynomials up to order four, and uses numerical methods for higher order
polynomials.

3.2. Approximation of Non-Polynomial Functions

There are two non-polynomial resource usage functions that the CiaoPP analyses can
infer: exponential and logarithmic. For approximating these functions we use Taylor series.

Exponential function approximation using polynomials. This approximation is car-
ried out using these formulae:

z" 2 28
exmﬁfzoﬁzl—l—x—kg—i-g—i-... for all x
{ 2 l 3
af”:e“"“zlJra:lnaJr(x ;a) +(x ;a) +...

In our implementation these series are limited up to order 8. This decision has been taken
based on experiments we have carried out that show that higher orders do not bring a
significant difference in practice. Also, in our implementation, the computation of the
factorials is done separately and the results are kept in a table in order to reuse them.

Logarithmic function approximation using polynomials. Unfortunately this approx-
imation cannot be done in a straightforward way as previously. A Taylor series for this
function for whole interval does not exist, the series only holds for interval —1 < = < 1.
One possibility to work within this restriction is using range reduction [10].

RESOURCE USAGE VERIFICATION 111

xpi Xpit+delta fixi)

e'=f{xpi+delta)
e=f(xpi)

Figure 2: Case 1. x; > zp; (since €' > e). A safe approximate root found is s, fe.

3.3. Safety of the Approximation

Since the roots obtained for function comparison are in some cases approximations of
the real roots, we must guarantee that their values are safe, i.e., that they can be used
for verification purposes, in particular, for safely checking the conditions in (1) and (2)
(page 109.) Assume for example that we are going to safely check whether ®*(z) < ®Y(z)
(where ®" and ®Y are resource usage bound functions, the former is a result of program
analysis and the latter an assertion declared in the program). In this case, we define
f(z) = ®Y(z) — ®“(z), so that we can safely say that if f(z) > 0, then ®%(z) < ®Y(x).
Assume also that CIDlI is not given in the assertion, meaning that the specification does not
state any lower bound for the resource usage (i.e., the lower endpoint of any resource usage
interval is —oco, which means that ®}(z) < ®!(z) is always true). We can then safely state
that the assertion is true for all x such that f(z) > 0. In the same way, if we define
f(z) = ®!(z) — ®%(x) we can safely say that if f(x) > 0 then, ®%(x) < ®!(x), proving
that the assertion is false for all x such that f(x) > 0. We can reason similarly in the
comparisons involving a lower bound in the assertion (<I>ll) Thus, we focus exclusively on
safely determining values for z such that f(x) > 0, where f(z) is conveniently defined in
each case. Let us see how it can be performed.

In general, we approximate f(x) using a polynomial P(x), so that f(x) = P(z) + —e,
with e being an approximation error. Let the roots of equation f(x) = 0 be xy, ..., z,. Using
a root finding algorithm on equation P(z) = 0, we obtain the roots xpy, ..., zp,, so that we
have P(zp;) = 0, and therefore f(zp;) € [—e,+e]. Then, we have to determine, for each
approximated root zp;, 1 < i < n, a value e such that f(zp;+e) > 0and z; € [zp;—e, xp;+<].
We do this by first determining the relative position of zp; and z; (i.e., whether xp; is “to
the right” or “to the left” of x;) and then starting an iterative process that increments (or
decrements) xp; by some 0 until we have that, after m iterations, f(zp; +m 6) > 0.

Determining the relative position of the exact root. To determine the relative po-
sition of the exact root and its approximated value we use the gradient of f(x) around
x = xp;. For determining the gradient we use the values of e = f(xp;) and ¢’ = f(xp; + '),

112 P. LOPEZ-GARCIA, L. DARMAWAN, AND F. BUENO

with 6’ > 0 a relatively small number. Whether the approximated root is greater or less
than the exact root depends on the following conditions:

(1) if e < 0 and € > e then x; > xp;

(2) if e > 0 and € > e then x; < xp;

(3) if e > 0 and €’ < e then x; > xp;

(4) if e < 0 and €' < e then z; < xp;

From Figure 2 we can see the rationale behind the first case (the other cases follow an
analogous reasoning). If ¢’ > e then f(x) is increasing, but, since e < 0, then f(z) > 0 can
only occur for values of x greater than xp;. Therefore, z; > xp;. In such cases we use a
positive value of § for the iterative process. When z; < xp; we use a negative value of é.
Iterative process for computing the safe root. Once we have determined the relative
position of the exact root and its approximated value, we first set up the appropriate sign
for 6, where |0| is a relatively small number: § < 0 if the iteration should go to the left
(x; < xp;), or 6 > 0 if it should go to the right (x; > xp;). Then we iterate on the addition
xp; = xp; + 6 until f(ap;) > 0 (if e < 0) or f(ap;) < 0 (if e > 0). Such an iteration is
apparent in the following pseudo-code:

1: zsafe + xp;

2: if f(xp;) <0 then

3: while f(zsafe) < 0 do zsafe «+ xsafe+ o
4: end while

5. else (f(xp;) > 0)

6: while f(zsafe) >0 do zsafe + xsafe+ o
7. end while

8: end if

9: return zsafe

Example 3.1. Consider again the assertion in Example 1.1 in Section 1, which declares
an upper bound on resource usage given by function ®Y(x) = 2* — 1000. Let the analysis
infer a lower bound ®'(z) = 1.45 x 1.62% — 1. Their intersection occurs at x ~10.22.
However, the root obtained by our root finding algorithm is = ~ 10.89. By doing an
iterative approximation from 10.89 to the left, we finally obtain a safe approximate root of
T ~10.18.

Note that usually (as in the above example), resource usage functions are on variables
which range on natural numbers. Because of this, the iterative approximation process for
safe roots can be substituted by simply taking the closest natural number to the left or
right of the approximated root (depending on the gradient) to obtain a safe value. In the
previous example, we will simply take 10, without any iteration.

It turns out that the analysis also infers an upper bound given by function ®“(z) =
1.45 x 1.62% — 1. Thus, the output of our assertion checking for the fibonacci program
will be that of Example 1.1, showing extra conditions (an interval of integers) on which the
assertion can be proved false, on one hand, and another condition (the rest of the range of
the positive integer numbers) on which it can be proved true, on the other hand.

4. Conclusions

We have proposed a method for extending how a framework for verification/debugging
(implemented in the CiaoPP system) deals with specifications about the resource usage of

RESOURCE USAGE VERIFICATION 113

programs. We have provided a formalization which blends in with the previous framework
for verification of functional or program state properties. A key aspect of the framework is
to be able to compare mathematical functions. We have proposed a method which is safe,
in the sense that the results of verification/debugging cannot go wrong. In the case where
the resource usage functions being compared depend on one variable (which represents some
input argument size) our method reveals particular numerical intervals for such variable,
if they exist, which might result in different answers to the verification problem: a given
specification might be proved for some intervals but disproved for others. Our current
method computes such intervals with precision for polynomial and exponential resource
usage functions, and in general for functions that can be approximated by polynomials.
Moreover, we have proposed an iterative post-process to safely tune up the interval bounds
by taking as starting values the previously computed roots of the polynomials.

References

[1] E. Albert, P. Arenas, S. Genaim, I. Herraiz, and G. Puebla. Comparing cost functions in resource
analysis. In 1st International Workshop on Foundational and Practical Aspects of Resource Analysis
(FOPARA’09), Lecture Notes in Computer Science. Springer, 2009. To appear.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. A
Static Analyzer for Large Safety-Critical Software. In Proc. of PLDI’03. ACM Press, 2003.

[3] F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszynski, and G. Puebla.
On the Role of Semantic Approximations in Validation and Diagnosis of Constraint Logic Programs. In
Proc. of the 3rd. Int’l WS on Automated Debugging-AADEBUG, pages 155-170. U. Linkoping Press,
May 1997.

[4] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, and F. Rossi. GNU
Scientific Library Reference Manual. Network Theory Ltd, 2009. Library and Manual also available at
http://www.gnu.org/software/gsl/.

[5] M. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial Specifications, and an
Extensible Assertion Language for Program Validation and Debugging. In The Logic Programming
Paradigm: a 25-Year Perspective, pages 161-192. Springer-Verlag, 1999.

[6] M. Hermenegildo, G. Puebla, F. Bueno, and P. Lépez Garcia. Integrated Program Debugging, Verifi-
cation, and Optimization Using Abstract Interpretation (and The Ciao System Preprocessor). Science
of Comp. Progr., 58(1-2), 2005.

[7] P. Lopez-Garcia, L. Darmawan, F. Bueno, and M. Hermenegildo. Towards a Framework for Resource
Usage Verification and Debugging in the CiaoPP System. Technical Report CLIP1/2010.0, Techni-
cal University of Madrid (UPM), School of Computer Science, UPM, February 2010. Available at
http://cliplab.org/papers/resource-verif-10-tr.pdf.

[8] J. Navas, E. Mera, P. Lépez-Garcia, and M. Hermenegildo. User-Definable Resource Bounds Analysis
for Logic Programs. In ICLP’07, number 4670 in LNCS, pages 348-363, 2007.

[9] G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint Logic Programs.
In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors, Analysis and Visualization Tools for
Constraint Programming, number 1870 in LNCS, pages 23-61. Springer-Verlag, September 2000.

[10] Jyri Ylostalo. Function approximation using polynomials. Signal Processing Magazine, 23:99-102, Sep-
tember 2006.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

