
Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 162–171
http://www.floc-conference.org/ICLP-home.html

TABLING AND ANSWER SUBSUMPTION FOR REASONING ON

LOGIC PROGRAMS WITH ANNOTATED DISJUNCTIONS

FABRIZIO RIGUZZI 1 AND TERRANCE SWIFT 2

1 ENDIF – Università di Ferrara, Via Saragat 1, Ferrara, Italy
E-mail address: fabrizio.riguzzi@unife.it

2 CENTRIA – Universidade Nova de Lisboa, Quinta da Torre 2829-516, Caparica, Portugal
E-mail address: tswift@cs.suysb.edu

Abstract. The paper presents the algorithm “Probabilistic Inference with Tabling and
Answer subsumption” (PITA) for computing the probability of queries from Logic Pro-
grams with Annotated Disjunctions. PITA is based on a program transformation tech-
niques that adds an extra argument to every atom. PITA uses tabling for saving intermedi-
ate results and answer subsumption for combining different answers for the same subgoal.
PITA has been implemented in XSB and compared with the ProbLog, cplint and CVE
systems. The results show that in almost all cases, PITA is able to solve larger problems
and is faster than competing algorithms.

Introduction

Languages that are able to represent probabilistic information have a long tradition
in Logic Programming, dating back to [Sha83, van86]. With these languages, it is pos-
sible to model domains which contain uncertainty, situation often appearing in the real
world. Recently, efficient systems have started to appear for performing reasoning with
these languages [DR07, Kim08]

Logic Programs with Annotated Disjunction (LPADs) [Ven04] are a particularly inter-
esting formalism because of the simplicity of their syntax and semantics, along with their
ability to model causation [Ven09]. LPADs share with many other languages a distribu-
tion semantics [Sat95]: a theory defines a probability distribution over logic programs and
the probability of a query is given by the sum of the probabilities of the programs where
the query is true. In LPADs the distribution over logic programs is defined by means of
disjunctive clauses in which the atoms in the head are annotated with a probability.

Various approaches have appeared for performing inference on LPADs. [Rig07] proposed
cplint that first finds all the possible explanations for a query and then makes them
mutually exclusive by using Binary Decision Diagrams (BDDs), similarly to what has been
proposed for the ProbLog language [DR07]. [Rig08] presented SLGAD resolution that
extends SLG resolution by repeatedly branching on disjunctive clauses. [Mee09] discusses
the CVE algorithm that first transforms an LPAD into an equivalent Bayesian network and
then performs inference on the network using the variable elimination algorithm.

Key words and phrases: Probabilistic Logic Programming, Tabling, Answer Subsumption, Logic Pro-
grams with Annotated Disjunction, Program Transformation.

c© F. Riguzzi and T. Swift
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.162

fabrizio.riguzzi@unife.it
tswift@cs.suysb.edu

TABLING AND ANSWER SUBSUMPTION FOR LPADS 163

In this paper, we present the algorithm “Probabilistic Inference with Tabling and An-
swer subsumption” (PITA) for computing the probability of queries from LPADs. PITA
builds explanations for every subgoal encountered during a derivation of the query. The
explanations are compactly represented using BDDs that also allow an efficient computa-
tion of the probability. Since all the explanations for a subgoal must be found, it is very
useful to store such information so that it can be reused when the subgoal is encountered
again. We thus propose to use tabling, which has recently been shown useful for probabilis-
tic logic programming in [Kam00, Rig08, Kim09, Man09]. This is achieved by transforming
the input LPAD into a normal logic program in which the subgoals have an extra argument
storing a BDD that represents the explanations for its answers. Moreover, we also exploit
answer subsumption to combine different explanations for the same answer. PITA is tested
on a number of datasets and compared with cplint, CVE and ProbLog [Kim08]. The
algorithm was able to successfully solve more complex queries than the other algorithms in
most cases, and it was also almost always faster.

The paper is organized as follows. Section 1 briefly recalls tabling and answer subsump-
tion. Section 2 illustrates syntax, semantics and inference for LPADs. Section 3 presents
PITA, Section 4 describes the experiments and Section 5 concludes the paper.

1. Tabling and Answer Subsumption

The idea behind tabling is to maintain in a table both subgoals encountered in a query
evaluation and answers to these subgoals. If a subgoal is encountered more than once, the
evaluation reuses information from the table rather than re-performing resolution against
program clauses. Although the idea is simple, it has important consequences. First, tabling
ensures termination of programs with the bounded term size property. A program P has the
bounded term size property if there is a finite function f : N → N such that if a query term
Q to P has size size(Q), then no term used in the derivation of Q has size greater than
f(size(Q)). This makes it easier to reason about termination than in basic Prolog. Second,
tabling can be used to evaluate programs with negation according to the Well-Founded
Semantics (WFS) [van91]. Third, for queries to wide classes of programs, such as datalog
programs with negation, tabling can achieve the optimal complexity for query evaluation.
And finally, tabling integrates closely with Prolog, so that Prolog’s familiar programming
environment can be used, and no other language is required to build complete systems. As
a result, a number of Prologs now support tabling, including XSB, YAP, B-Prolog, ALS,
and Ciao. In these systems, a predicate p/n is evaluated using SLDNF by default: the
predicate is made to use tabling by a declaration such as table p/n that is added by the
user or compiler.

This paper makes use of a tabling feature called answer subsumption. Most formulations
of tabling add an answer A to a table for a subgoal S only if A is a not a variant (as a
term) of any other answer for S. However, in many applications it may be useful to order
answers according to a partial order or (upper semi-)lattice. In the case of a lattice, answer
subsumption may be specified by means of a declaration such as table p(,or/3 - zero/1)).
where a lattice is defined on the second argument by providing a bottom element (returned
by zero/1) and a join operation (or/3). With the previous declaration, if a table contains
an answer p(a,E1) and a new answer p(a,E2) were derived, the answer p(a,E1) is replaced
by p(a,E3), where E3 is obtained by or(E1, E2, E3). Answer subsumption over arbitrary

164 F. RIGUZZI AND T. SWIFT

upper semi-lattices is implemented in XSB for stratified programs [Swi99]; in addition, the
mode-directed tabling of B-Prolog can also be seen as a form of answer subsumption.

2. Logic Programs with Annotated Disjunctions

A Logic Program with Annotated Disjunctions [Ven04] consists of a finite set of anno-
tated disjunctive clauses of the form h1 : α1 ; . . . ; hn : αn ← b1, . . . , bm. In such a clause
h1, . . . hn are logical atoms and b1, . . . , bm are logical literals, {α1, . . . , αn} are real numbers
in the interval [0, 1] such that

∑n
j=1 αj ≤ 1. h1 : α1 ; . . . ; hn : αn is called the head

and b1, . . . , bm is called the body. Note that if n = 1 and α1 = 1 a clause corresponds to
a normal program clause, sometimes called a non-disjunctive clause. If

∑n
j=1 αj < 1, the

head of the annotated disjunctive clause implicitly contains an extra atom null that does
not appear in the body of any clause and whose annotation is 1 −

∑n
j=1 αj . For a clause

C of the form above, we define head(C) as {(hi : αi)|1 ≤ i ≤ n} if
∑n

i=1 αi = 1 and as
{(hi : αi)|1 ≤ i ≤ n} ∪ {(null : 1 −

∑n
i=1 αi)} otherwise. Moreover, we define body(C) as

{bi|1 ≤ i ≤ m}, hi(C) as hi and αi(C) as αi.
If LPAD T is ground, a clause represents a probabilistic choice between the non-

disjunctive clauses obtained by selecting only one atom in the head. If T is not ground,
it can be assigned a meaning by computing its grounding, ground(T). The semantics of
LPADs, given in [Ven04], requires the ground program to be finite, so the program must
not contain function symbols if it contains variables.

By choosing a head atom for each ground clause of an LPAD we get a normal logic pro-
gram called a possible world of the LPAD (instance in [Ven04]). A probability distribution
is defined over the space of possible worlds by assuming independence between the choices
made for each clause.

More specifically, an atomic choice is a triple (C, θ, i) where C ∈ T , θ is a substitution
that grounds C and i ∈ {1, . . . , |head(C)|}. (C, θ, i) means that, for ground clause Cθ, the
head hi(C) was chosen. A set of atomic choices κ is consistent if (C, θ, i) ∈ κ, (C, θ, j) ∈
κ ⇒ i = j, i.e., only one head is selected for a ground clause. A composite choice κ is a
consistent set of atomic choices. The probability P (κ) of a composite choice κ is the product
of the probabilities of the individual atomic choices, i.e. P (κ) =

∏
(C,θ,i)∈κ αi(C).

A selection σ is a composite choice that, for each clause Cθ in ground(T), contains an
atomic choice (C, θ, i) in σ. We denote the set of all selections σ of a program T by ST .
A selection σ identifies a normal logic program wσ defined as follows: wσ = {(hi(C) ←
body(C))θ|(C, θ, i) ∈ σ}. wσ is called a possible world (or simply world) of T . Since
selections are composite choices, we can assign a probability to possible worlds: P (wσ) =
P (σ) =

∏
(C,θ,i)∈σ αi(C).

We consider only sound LPADs in which every possible world has a total well-founded
model. In this way, the uncertainty is modeled only by means of the disjunctions in the
head and not by the features of the semantics. In the following we write wσ |= φ to mean
that the closed formula φ is true in the well-founded model of the program wσ.

The probability of a closed formula φ according to an LPAD T is given by the sum of
the probabilities of the possible worlds where the formula is true according to the WFS:
P (φ) =

∑
σ∈ST ,wσ |=φ P (σ). It is easy to see that P satisfies the axioms of probability.

Example 2.1. The following LPAD encodes the dependency of a person’s sneezing on his
having the flu or hay fever:

TABLING AND ANSWER SUBSUMPTION FOR LPADS 165

�� ���� ��ciao
3

2
1

a0a�� ���� ��ciao
1

3

2

a1a
XC1∅ XC2∅

(a) MDD.

�� ���� ��ciao
0

1
a0a�� ���� ��ciao

1

0

a1a
XC1∅1 XC2∅1

(b) BDD.

Figure 1: Decision diagrams for Example 2.1.

C1 = strong sneezing(X) : 0.3 ; moderate sneezing(X) : 0.5 ← flu(X).
C2 = strong sneezing(X) : 0.2 ; moderate sneezing(X) : 0.6 ← hay fever(X).
C3 = flu(david).
C4 = hay fever(david).

If the LPAD contains function symbols, its semantics can be given by following the
approach proposed in [Poo00] for assigning a semantics to ICL programs with function
symbols. A similar result can be obtained using the approach of [Sat95]. In a forthcoming
extended version of this paper we discuss how this can be done.

In order to compute the probability of a query, we can first find a covering set of explana-
tions and then compute the probability from them. A composite choice κ identifies a set of
possible worlds ωκ that contains all the worlds relative to a selection that is a superset of κ,
i.e., ωκ = {wσ|σ ∈ ST , σ ⊇ κ}. Similarly we can define the set of possible worlds associated
to a set of composite choices K: ωK =

⋃
κ∈K ωκ. Given a closed formula φ, we define the

notion of explanation and of covering set of composite choices. A finite composite choice κ is
an explanation for φ if φ is true in every world of ωκ. In Example 2.1, the composite choice
{(C1, {X/david}, 1)} is an explanation for strong sneezing(david). A set of choices K is
covering with respect to φ if every world wσ in which φ is true is such that wσ ∈ ωK . In Ex-
ample 2.1, the set of composite choices L1 = {{(C1, {X/david}, 1)}, {(C2, {X/david}, 1)}}
is covering for strong sneezing(david). Moreover, both elements of L1 are explanations, so
L1 is a covering set of explanations for the query strong sneezing(david).

We associate to each ground clause Cθ appearing in a covering set of explanations a
multivalued variable XCθ with values {1, . . . , head(C)}. Each atomic choice (C, θ, i) can
then be represented by the propositional equation XCθ = i. If we conjoin equations for a
single explanation and disjoin expressions for the different explanations we obtain a Boolean
function that assumes value 1 if the values assumed by the multivalued variables correspond
to an explanation for the goal. Thus, if K is a covering set of explanations for a query φ,
the probability of the Boolean formula f(X) =

∨
κ∈K

∧
(C,θ,i)∈κXCθ = i taking value 1 is

the probability of the query, where X is the set of all ground clause variables.
For example, the covering set of explanations L1 translates into the function f(X) =

(XC1∅ = 1) ∨ (XC2∅ = 1). Computing the probability of f(X) taking value 1 is equivalent
to computing the probability of a DNF formula which is an NP-hard problem. In order to
solve it as efficiently as possible we use Decision Diagrams, as proposed by [DR07].

A Multivalued Decision Diagram (MDD) [Tha78] represents a function f(X) taking
Boolean values on a set of multivalued variables X by means of a rooted graph that has one
level for each variable. Each node has one child for each possible value of the multivalued
variable associated to the level of the node. The leaves store either 0 or 1. For example,
the MDD corresponding to the function for L1 is shown in Figure 1(a). MDDs represent a
Boolean function f(X) by means of a sum of disjoint terms, thus the probability of f(X)

166 F. RIGUZZI AND T. SWIFT

can be computed by means of a dynamic programming algorithm that traverses the MDD
and sums up probabilities.

Decision diagrams can be built with various software packages that provide highly
efficient implementation of Boolean operations. However, most packages are restricted to
work on Binary Decision Diagram (BDD), i.e., decision diagrams where all the variables are
Boolean [Bry86]. To work on MDD with a BDD package, we must represent multivalued
variables by means of binary variables. Various options are possible, we found that the
following, proposed in [DR08], gives the best performance. For a variable X having n
values, we use n− 1 Boolean variables X1, . . . , Xn−1 and we represent the equation X = i
for i = 1, . . . n− 1 by means of the conjunction X1 ∧X2 ∧ . . .∧Xi−1 ∧Xi, and the equation
X = n by means of the conjunction X1 ∧ X2 ∧ . . . ∧ Xn−1. The BDD representation of
the function for L1 is given in Figure 1(b). The Boolean variables are associated with the

following parameters: P (X1) = P (X = 1), . . . , P (Xi) = P (X=i)∏i−1
j=1(1−P (Xj))

.

3. Program Transformation

The first step of the PITA algorithm is to apply a program transformation to an LPAD
to create a normal program that contains calls for manipulating BDDs. In our implemen-
tation, these calls provide a Prolog interface to the CUDD1 C library and use the following
predicates2

• init, end : for the allocation and deallocation of a BDD manager, a data structure
used to keep track of the memory for storing BDD nodes;
• zero(-BDD), one(-BDD), and(+BDD1, +BDD2, -BDDO), or(+BDD1, +BDD2,

-BDDO), not(+BDDI, -BDDO): Boolean operations between BDDs;
• add var(+N Val, +Probs, -Var): addition of a new multi-valued variable with N Val

values and parameters Probs;
• equality(+Var, +Value, -BDD): BDD represents Var=Value, i.e. that the variable

Var is assigned Value in the BDD;
• ret prob(+BDD, -P): returns the probability of the formula encoded by BDD.

add var(+N Val,+Probs,-Var) adds a new random variable associated to a new instantia-
tion of a rule with N Val head atoms and parameters list Probs. The auxiliary predicate
get var n/4 is used to wrap add var/3 and avoid adding a new variable when one already
exists for an instantiation. As shown below, a new fact var(R,S,Var) is asserted each time
a new random variable is created, where R is an identifier for the LPAD clause, S is a list
of constants, one for each variable of the clause, and Var is an integer that identifies the
random variable associated with clause R under grounding S. The auxiliary predicates has
the following definition
get var n(R,S, Probs, V ar)←

(var(R,S, V ar)→ true ;
length(Probs, L), add var(L,Probs, V ar), assert(var(R,S, V ar))).

where R, S and Probs are input arguments while Var is an output argument.
The PITA transformation applies to clauses, literals and atoms.

• If h is an atom, PITAh(h) is h with the variable BDD added as the last argument.
• If bj is an atom, PITAb(bj) is bj with the variable Bj added as the last argument.

1http://vlsi.colorado.edu/~fabio/
2BDDs are represented in CUDD as pointers to their root node.

http://vlsi.colorado.edu/~fabio/

TABLING AND ANSWER SUBSUMPTION FOR LPADS 167

In either case for an atom a, BDD(PITA(a)) is the value of the last argument of PITA(a),

• If bj is negative literal ¬aj , PITAb(bj) is the conditional
(PITA′b(aj) → not(BNj , Bj); one(Bj)), where PITA′b(aj) is aj with the variable
BNj added as the last argument.

In other words, the BDD BNj for a is negated if it exists (i.e. PITA′b(aj) succeeds);
otherwise the BDD for the constant function 1 is returned.

A non-disjunctive fact Cr = h is transformed into the clause
PITA(Cr) = PITAh(h)← one(BDD).

A disjunctive fact Cr = h1 : α1 ; . . . ; hn : αn. where the parameters sum to 1, is
transformed into the set of clauses PITA(Cr)

PITA(Cr, 1) = PITAh(h1)← get var n(r, [], [α1, . . . , αn], V ar),
equality(V ar, 1, BDD).

. . .
P ITA(Cr, n) = PITAh(hn)← get var n(r, [], [α1, . . . , αn], V ar),

equality(V ar, n,BDD).
In the case where the parameters do not sum to one, the clause is first transformed into
h1 : α1 ; . . . ; hn : αn ; null : 1 −

∑n
1 αi. and then into the clauses above, where the list

of parameters is [α1, . . . , αn, 1 −
∑n

1 αi] but the (n + 1)-th clause (the one for null) is not
generated.

The definite clause Cr = h← b1, b2, . . . , bm. is transformed into the clause
PITA(Cr) = PITAh(h)← PITAb(b1), P ITAb(b2), and(B1, B2, BB2), . . . ,

P ITAb(bm), and(BBm−1, Bm, BDD).
The disjunctive clause

Cr = h1 : α1 ; . . . ; hn : αn ← b1, b2, . . . , bm.
where the parameters sum to 1, is transformed into the set of clauses PITA(Cr)
PITA(Cr, 1) = PITAh(h1)← PITAb(b1), P ITAb(b2), and(B1, B2, BB2), . . . ,

P ITAb(bm), and(BBm−1, Bm, BBm),
get var n(r, V C, [α1, . . . , αn], V ar),
equality(V ar, 1, B), and(BBm, B,BDD).

. . .
P ITA(Cr, n) = PITAh(hn)← PITAb(b1), P ITAb(b2), and(B1, B2, BB2), . . . ,

P ITAb(bm), and(BBm−1, Bm, BBm),
get var n(r, V C, [α1, . . . , αn], V ar),
equality(V ar, n,B), and(BBm, B,BDD).

where V C is a list containing each variable appearing in Cr. If the parameters do not sum
to 1, the same technique used for disjunctive facts can be applied.

Example 3.1. Clause C1 from the LPAD of Example 2.1 is translated into
strong sneezing(X,BDD) ← flu(X,B1), get var n(1, [X], [0.3, 0.5, 0.2], V ar),

equality(V ar, 1, B), and(B1, B,BDD).
moderate sneezing(X,BDD) ← flu(X,B1), get var n(1, [X], [0.3, 0.5, 0.2], V ar),

equality(V ar, 2, B), and(B1, B,BDD).
while clause C3 is translated into
flu(david,BDD) ← one(BDD).

In order to answer queries, the goal solve(Goal,P) is used, which is defined by

168 F. RIGUZZI AND T. SWIFT

solve(Goal, P) ← init, retractall(var(, ,)),
add bdd arg(Goal,BDD,GoalBDD),
(call(GoalBDD)→ ret prob(BDD,P) ; P = 0.0),
end.

Moreover, various predicates of the LPAD should be declared as tabled. For a predicate p/n,
the declaration is table p(1,..., n,or/3-zero/1), which indicates that answer subsumption is
used to form the disjunct of multiple explanations: At a minimum, the predicate of the goal
should be tabled; as in normal programs, tabling may also be used for to ensure termination
of recursive predicates, or to reduce the complexity of evaluations.

PITA is correct for range restricted, bounded term-size and fixed-order dynamically
stratified LPADs. A formal presentation with all proofs and supporting definitions will be
reported in a forthcoming extended version of this paper.

4. Experiments

PITA was tested on programs encoding biological networks from [DR07], a game of dice
from [Ven04] and the four testbeds of [Mee09]. PITA was compared with the exact version
of ProbLog [DR07] available in the git version of Yap as of 19/12/2009, with the version
of cplint [Rig07] available in Yap 6.0 and with the version of CVE [Mee09] available in
ACE-ilProlog 1.2.20. All experiments were performed on Linux machines with an Intel Core
2 Duo E6550 processor (2333 MHz) and 4 GB of RAM.

The biological network problems compute the probability of a path in a large graph
in which the nodes encode biological entities and the links represents conceptual relations
among them. Each programs in this dataset contains a deterministic definition of path plus
a number of links represented by probabilistic facts. The programs have been sampled from
a very large graph and contain 200, 400, . . ., 5000 edges. Sampling has been repeated ten
times, so overall we have 10 series of programs of increasing size. In each test we queried
the probability that the two genes HGNC 620 and HGNC 983 are related.

We used the definition of path of [Kim08] that performs loop checking explicitly by
keeping the list of visited nodes:

path(X,Y) ← path(X,Y, [X], Z).
path(X,Y, V, [Y |V]) ← edge(X,Y).
path(X,Y, V 0, V 1) ← edge(X,Z), append(V 0, S, V 1),

¬member(Z, V 0), path(Z, Y, [Z|V 0], V 1).
This definition gave better results than the one without explicit loop checking. We are
currently investigating the reasons for this unexpected behavior.

We ran PITA, ProbLog and cplint on the graphs in sequence starting from the smallest
program and in each case we stopped after one day or at the first graph for which the
program ended for lack of memory3. In PITA, we used the group sift method for automatic
reordering of BDDs variables4. Figure 2(a) shows the number of subgraphs for which each
algorithm was able to answer the query as a function of the size of the subgraphs, while
Figure 2(b) shows the execution time averaged over all and only the subgraphs for which
all the algorithms succeeded. PITA was able to solve more subgraphs and in a shorter time

3CVE was not applied to this dataset because the current version can not handle graph cycles.
4For each experiment, we used either group sift automatic reordering or no reordering of BDDs variables

depending on which gave the best results.

TABLING AND ANSWER SUBSUMPTION FOR LPADS 169

500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7

8

9

10

Edges

G
r
a
p
h
s

ProbLog
cplint
PITA

(a) Number of successes.

500 1000 1500 2000 2500 3000
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Size

T
im

e
 (

s)

ProbLog
cplint
PITA

(b) Execution times.

Figure 2: Biological graph experiments.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

N

T
i
m
e

(
s
)

cplint
CVE
PITA

Figure 3: Three sided die.

than cplint and ProbLog. For PITA the vast majority of time for larger graphs was spent
on BDD maintenance.

The second problem models a game in which a die with three faces is repeatedly thrown
until a 3 is obtained. This problem is encoded by the program

on(0, 1) : 1/3 ; on(0, 2) : 1/3 ; on(0, 3) : 1/3.
on(N, 1) : 1/3 ; on(N, 2) : 1/3 ; on(N, 3) : 1/3←
N1 is N − 1, N1 ≥ 0, on(N1, F),¬on(N1, 3).

Form the above program, we query the probability of on(N,1) for increasing values of N.
Note that this problem can also be seen as computing the probability that a Hidden Markov
Model (HMM) is in state 1 at time N , where the HMM has three states of which 3 is an
end state.

In PITA, we disabled automatic variable reordering. The execution times of PITA,
CVE and cplint are shown in Figure 3. In this problem, tabling provides an impressive
speedup, since computations can be reused often.

The four datasets of [Mee09], containing programs of increasing size. served as a final
suite of benchmarks. bloodtype encodes genetic inheritance of blood type, growingbody
and growinghead contains programs with growing bodies and heads respectively, and uwcse

encodes a university domain. In PITA we disabled automatic reordering of BDDs variables

170 F. RIGUZZI AND T. SWIFT

20 40 60 80
10

−3

10
−2

10
−1

10
0

10
1

10
2

Number of persons in family

T
im

e
 (

s)

cplint
CVE
PITA

(a) bloodtype.

5 10 15 20 25 30 35 40
10

−3

10
−2

10
−1

10
0

N

T
im

e
 (

s)

cplint
CVE
PITA

(b) growingbody.

Figure 4: Datasets from [Mee09].

5 10 15 20
10

−4

10
−2

10
0

10
2

10
4

10
6

N

T
im

e
 (

s)

cplint
CVE
PITA

(a) growinghead.

0 5 10 15
10

−4

10
−2

10
0

10
2

10
4

Number of PhD students

T
im

e
 (

s)

cplint
CVE
PITA

(b) uwcse.

Figure 5: Datasets from [Mee09].

for all datasets except for uwcse where we used group sift. The execution times of cplint,
CVE and PITA are shown respectively in Figures 4(a), 4(b), 5(a) and 5(b)5. PITA was
faster than cplint in all domains and faster than CVE in all domains except growingbody.

5. Conclusion and Future Works

This paper presents the algorithm PITA for computing the probability of queries from
an LPAD. PITA is based on a program transformation approach in which LPAD disjunctive
clauses are translated into normal program clauses.

The experiments substantiate the PITA approach which uses BDDs together with
tabling with answer subsumption. PITA outperformed cplint, CVE and ProbLog in scal-
ability or speed in almost all domains considered.

5For the missing points at the beginning of the lines a time smaller than 10−6 was recorded. For the
missing points at the end of the lines the algorithm exhausted the available memory.

TABLING AND ANSWER SUBSUMPTION FOR LPADS 171

References

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans. on Comput.,
35(8):677–691, 1986.

[DR07] L. De Raedt, A. Kimmig, and H. Toivonen. ProbLog: A probabilistic Prolog and its application in
link discovery. In International Joint Conference on Artificial Intelligence, pp. 2462–2467. 2007.

[DR08] L. De Raedt, B. Demoen, D. Fierens, B. Gutmann, G. Janssens, A. Kimmig, N. Landwehr, T. Man-
tadelis, W. Meert, R. Rocha, V. Santos Costa, I. Thon, and J. Vennekens. Towards digesting the
alphabet-soup of statistical relational learning. In NIPS*2008 Workshop on Probabilistic Program-
ming. 2008.

[Kam00] Y. Kameya and T. Sato. Efficient EM learning with tabulation for parameterized logic programs.
In Computational Logic, LNCS, vol. 1861, pp. 269–284. Springer, 2000.

[Kim08] A. Kimmig, V. Santos Costa, R. Rocha, B. Demoen, and L. De Raedt. On the efficient execution
of ProbLog programs. In International Conference on Logic Programming, LNCS, vol. 5366, pp.
175–189. Springer, 2008.

[Kim09] A. Kimmig, B. Gutmann, and V. Santos Costa. Trading memory for answers: Towards tabling
ProbLog. In International Workshop on Statistical Relational Learning. KU Leuven, Leuven, Bel-
gium, 2009.

[Man09] T. Mantadelis and G. Janssens. Tabling relevant parts of SLD proofs for ground goals in a prob-
abilistic setting. In Colloquium on Implementation of Constraint and Logic Programming Systems.
2009.

[Mee09] W. Meert, J. Struyf, and H. Blockeel. CP-Logic theory inference with contextual variable elimination
and comparison to BDD based inference methods. In International Conference on Inductive Logic
Programming. KU LEuven, Leuven, Belgium, 2009.

[Poo00] D. Poole. Abducing through negation as failure: stable models within the independent choice logic.
J. Log. Program., 44(1-3):5–35, 2000.

[Rig07] F. Riguzzi. A top down interpreter for LPAD and CP-logic. In Congress of the Italian Association
for Artificial Intelligence, LNAI, vol. 4733, pp. 109–120. Springer, 2007.

[Rig08] F. Riguzzi. Inference with logic programs with annotated disjunctions under the well founded seman-
tics. In International Conference on Logic Programming, LNCS, vol. 5366, pp. 667–771. Springer,
2008.

[Sat95] T. Sato. A statistical learning method for logic programs with distribution semantics. In Interna-
tional Conference on Logic Programming, pp. 715–729. 1995.

[Sha83] E. Y. Shapiro. Logic programs with uncertainties: a tool for implementing rule-based systems. In
International Joint conference on Artificial intelligence, pp. 529–532. Morgan Kaufmann Publishers
Inc., 1983.

[Swi99] T. Swift. Tabling for non-monotonic programming. Ann. Math. Artif. Intell., 25(3-4):201–240, 1999.
[Tha78] A. Thayse, M. Davio, and J. P. Deschamps. Optimization of multivalued decision algorithms. In

International Symposium on Multiple-Valued Logic, pp. 171–178. IEEE Computer Society Press, Los
Alamitos, CA, USA, 1978.

[van86] M H van Emden. Quantitative deduction and its fixpoint theory. J. Log. Program., 30(1):37–53,
1986.

[van91] A. van Gelder, K.A. Ross, and J.S. Schlipf. Unfounded sets and well-founded semantics for general
logic programs. J. ACM, 38(3):620–650, 1991.

[Ven04] J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic programs with annotated disjunctions. In
International Conference on Logic Programming, LNCS, vol. 3131, pp. 195–209. Springer, 2004.

[Ven09] J. Vennekens, M. Denecker, and M. Bruynooghe. CP-logic: A language of causal probabilistic events
and its relation to logic programming. Theory Pract. Log. Program., 9(3):245–308, 2009.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

	Introduction
	1. Tabling and Answer Subsumption
	2. Logic Programs with Annotated Disjunctions
	3. Program Transformation
	4. Experiments
	5. Conclusion and Future Works
	References

