Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 172—181
http://www.floc-conference.org/ICLP-home.html

SUBSUMER: A PROLOG 6-SUBSUMPTION ENGINE

JOSE SANTOS! AND STEPHEN MUGGLETON !

! Department of Computing, Imperial College London
E-mail address: {jcs06,shm}@doc.ic.ac.uk

ABSTRACT. State-of-the-art #-subsumption engines like Django (C) and Resumer2 (Java)
are implemented in imperative languages. Since #-subsumption is inherently a logic prob-
lem, in this paper we explore how to efficiently implement it in Prolog.

f-subsumption is an important problem in computational logic and particularly relevant
to the Inductive Logic Programming (ILP) community as it is at the core of the hypotheses
coverage test which is often the bottleneck of an ILP system. Also, since most of those
systems are implemented in Prolog, they can immediately take advantage of a Prolog based
0-subsumption engine.

We present a relatively simple (& 1000 lines in Prolog) but efficient and general 6-
subsumption engine, Subsumer. Crucial to Subsumer’s performance is the dynamic and
recursive decomposition of a clause in sets of independent components. Also important are
ideas borrowed from constraint programming that empower Subsumer to efficiently work
on clauses with up to several thousand literals and several dozen distinct variables.

Using the notoriously challenging Phase Transition dataset we show that, cputime wise,
Subsumer clearly outperforms the Django subsumption engine and is competitive with
the more sophisticated, state-of-the-art, Resumer2. Furthermore, Subsumer’s memory
requirements are only a small fraction of those engines and it can handle arbitrary Prolog
clauses whereas Django and Resumer2 can only handle Datalog clauses.

1. Introduction and motivation

Current state-of-the-art ILP systems are usually developed in Prolog, e.g. Aleph [Sri07]
and ProGolem [Mug09], mainly because many of the algorithms needed for an ILP system
are already built-in in a Prolog engine (e.g. unification, backtracking, SLD-resolution).

However, for complex learning problems where predicates are highly non-determinate
and the target concept size is large (> 10 literals), the Prolog’s built-in SLD-resolution
is inadequate. In these situations there is a combinatorial explosion of alternative variable
bindings and consequently it will often take too long for the Prolog engine to decide whether
the given goal succeeds. This is unacceptable for an ILP system as there will be, typically,
tenths to hundredths of thousands such complex goals (i.e. putative hypothesis) that need
to be evaluated before a final theory is proposed.

The subsumption problem at the culprit of the ILP bottleneck has not received much
attention because, for many ILP applications, Prolog’s built-in resolution seems to suffice.
However, due to the non-determinism explosion highlighted above, ILP researchers often

1998 ACM Subject Classification: 1.2.3 Deduction and Theorem Proving.
Key words and phrases: Theta-subsumption, Prolog, Inductive Logic Programming.

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
© J. Santos and S. Muggleton LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Germany
€ Creative Commons Non-Commercial No Derivatives License Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.172

SUBSUMER: A PROLOG 6#-SUBSUMPTION ENGINE 173

have to bound the maximum hypotheses length and recall (i.e. number of solutions per
predicate) to relatively small values, which may be preventing better theories to be found.

In the last few years two efficient subsumption engines, Django [Mal04] and Resumer2
[Kuz08], were developed. However these are complex engines, around 10.000 lines of source
code each, implemented in C and Java respectively, making them unpractical to use within a
Prolog based ILP system. More importantly, both those engines require substantial amounts
of memory, sometimes 10x more memory than the ILP system itself for the same data. This
limits considerably their applicability given that, for challenging problems, the ILP system
already consumes a sizeable portion of the system’s resources.

The motivation for Subsumer was to develop a simple, lightweight, fully general Prolog
subsumption engine that could be easily integrated from any Prolog application and, in
particular, Prolog implementations of ILP systems.

2. The #-subsumption problem

f-subsumption [Rob65] is an approximation to logical implication. While implication
is undecidable in general #-subsumption is a NP-complete problem [Kap86]. A clause C6-
subsumes a clause D (C k¢ D) if and only if there exists a substitution 6 such that C6 C D.

Example 2.1 (6-subsumption).

C: h(XO) — ll(Xo,Xl),ll(Xo,XQ),ll(Xg,Xg),ZQ(Xl,XQ),ZQ(Xl,Xg)
D : h(cy) « 11(co,c1),11(co, c2),12(c1,c2)

C0 subsumes D with 0 = {X¢/co, X1/c1, X2/c2, X3/}

The f-subsumption problem is thus, given two clauses, C' and D, find a substitution 6
such that all literals of C' can be mapped into a subset of the literals of D.

The standard algorithm for f-subsumption is based on Prolog’s SLD-resolution [Kow71].
Within SLD-resolution all mappings from the literals in C onto the literals in D (for the
same predicate symbol) are constructed left-to-right in a depth-first search manner. Note
that the order of the literals in C' has a significant impact on SLD-resolution (in)efficiency.

2.1. f-subsumption time complexity

Let N and M be the lengths of clauses C' and D. The standard #-subsumption algorithm
has complexity O(M¥) as we need to map each literal of C' (ranging from 1..N) to a literal
in D (ranging from 1..M).

In practice, since SLD-resolution tests the consistency of the matching while construct-
ing the substitution (thus bounding other variables) and not just at the end, for clauses C
with too many literals (i.e. M ~ N) the subsumption problem may become overconstrained
and thus be easier than when M is a fraction of N.

Let V be the set of distinct variables in C, and T the set of distinct terms in D. The
#-subsumption problem is then equivalent to do a mapping from V to 7. This approach
has complexity O(\T||V|) which is generally better than O(M?Y) since usually the clauses
we are interested have |T'| << M and |V| << N. Django, Resumer2 and Subsumer all use
this latter mapping.

174 J. SANTOS AND S. MUGGLETON

1. solve_component (VarsInComp, VarsConstr)

2 if VarsInComp is empty then

3 return true

4 Let V = most_promising_free_variable(VsInComp, VsConstr)
5. Let SubVsInComps = decomp_comp(VsInComp, VsConstr, V)

6. Let V_Neighbours = free vars sharing a literal with V

7 for each value Val in V’s domain

8 do

9 V=Val;

9 Let NVsConstr = update_vars_domains(V_Neighbours, VsConstr)
10. for each component VComp in SubVsInComps

11. do

12. solve_component (VComp, NVsConstr)

13. done

14. done

15. return false

16. end solve

Figure 1: Pseudo-code for Subsumer’s main algorithm

3. Subsumer: A Prolog #-subsumption engine

Subsumer is a publicly available (http://ilp.doc.ic.ac.uk/Subsumer), simple (~
1000 lines of Prolog) fully general §-subsumption engine with the expected behaviour from
a Prolog implementation as it does not need to keep state. The Subsumer library exports
a predicate, theta_subsumes(+subsumer, +subsumee), that either fails or succeeds. In
case of success the variables in the subsumer clause are bound with the corresponding
terms/variables of the subsumee and all possible solutions are returned by backtracking.

3.1. Main algorithm

Subsumer’s main algorithm (Fig 1) works by at each iteration finding the most “promis-
ing” free (i.e still unbound) variable, V', to bound from the current component. Note that
a component is defined solely by the variables appearing on it. The current heuristic is
to pick the variable with smallest domain. Then the current component is decomposed
assuming V' has been bound (line 5). The components are returned in increasing order of
their number of variables. In that way smaller components, which in principle are easier
to test, are evaluated before longer ones. This can speed up the overall subsumption test
significantly in case no solution is found for those smaller components.

In line 7 we iterate over the possible values for V’s domain and in line 9 update its
neighbour variables domain. This neighbour variable domain update is the most expen-
sive part of Subsumer’s algorithm but, due to space restrictions, we will be not be able
to go into detail here. Essentially, it is implemented with a sophisticated indexing and
back-indexing datastructure, that allows efficient assignment of a value to a variable and
respective propagation of its new value to its direct interacting variables.

Each time the domain for a neighbour of V' becomes inconsistent we have to backtrack
and assign a different value to V. Although this can be particularly lengthy and get to
several levels of deep recursion before a backtracking occurs, it works well in practice.

Also note that this algorithm is natural to parallelize. The natural place is the “for
each loop” in line 8 where we could evaluate several components in parallel. This type of

SUBSUMER: A PROLOG 6#-SUBSUMPTION ENGINE 175

parallelization has the peculiar property of possibly achieving superlinear (in the number
of cores) speedups in case the subsumption test fails. This is because if a thread evaluating
a component fails, all the other component evaluation threads running in parallel can stop
immediately as there will be no solution for the whole clause. Unfortunately, however,
implementing this parallel algorithm is not easy with current Prolog compilers *.

3.2. Datastructures

The subsumer clause, C = h < by, ..,.., b, is represented as a list of literals. The hy-
pothesis is preprocessed to gather all the distinct (upon variable renaming) calling patterns
for the existing predicate symbols. E.g. 11(Xp), X7 and [1(X3, X2) have the same calling
pattern but 11(Xy, X;) and [1(Xy, Xo) are distinct.

The subsumee clause, D = e < g¢1,..,..,gn is given as a list of ground literals rep-
resenting everything known to be true about e (it is the ground bottom clause of e with
recall set to infinity). The example is preprocessed so that we just keep for each distinct
predicate symbol p,, (i.e. PredicateName/Arity) its available list of values Val(py/,), that
is the predicate symbol domain. For instance, we would compactly represent clause D in
Example 2.1, as {11/2: [{co, c1), (co, c2)],12/2 : [{co, c2)]}.

The space needed to store clause’s D related information is thus: O(Z{V Val(ps/a,))
where N is the number of distinct predicate symbols in D. A necessary condition for
subsumption is that all distinct predicate symbols in C' also exist in D.

The variables are extracted from C' and their initial domain is computed. The initial
domain for a variable is the intersection of its individual domains in each of the unique calling
patterns it occurs. For instance, we the initial domains for clause C' when subsuming clause
D in Example 2.1, is Xo € {co}, X1 € {1}, Xa € {2}, X3 € {c2}.

All direct pairwise variable interactions are also stored. A variable v; directly inter-
acts with another variable vo iff they share the same literal in C. For instance, we have
the following variable interactions for clause C' in Example 2.1: Xo : {X1, X9, X3}, X1 :
{Xo, X2, X3}, Xo : {Xo, X1}, X5 : {Xo, X3}

We also have a datastructure that, for each variable, holds the indexs of the literals
where the variable occurs in the clause (clause’s head being index 1). For the same clause
C from Example 2.1 we then have X : [1,2,3,4], X5 : [2,5,6], X2 : [3,5], X3 : [4,6].

3.3. Clause decomposition

The dominant factor for reduced time complexity in Subsumer is clause decomposition.
Let H = h « b1,..,b;,..,by and suppose literal b; succeeds k; > 0 times. The worst
case number of predicate calls is Hiv k; which, assuming an average branching factor, b, of
solutions per literal leads to a O(b") time complexity. For non-determinate clauses (i.e.
clauses having literals with b > 1) this becomes untractable for relatively small N.

However, when the clause is decomposable in K groups of independent literals the
complexity drops from O(bY) to Z{(O(bNei), which is O(b™**Ne:). The worst case is now
only exponential in the size of the longest group rather than the whole clause size.

IThere are two problems: efficiency and transparency. From our experience, managing the threads
explicitly in YAP is inefficient and also obfuscates the structure of the algorithm underneath. The ideal
situation would be for Prolog compilers to have native parallel versions of list processing libraries (predicate
checklist/2 in library(apply-macros) is the relevant one here).

176 J. SANTOS AND S. MUGGLETON

The reasoning is then applied recursively to the newly found subcomponents. This idea,
named once-transformation, was initially presented in [Cos03]. In Subsumer we implement
a variant of it with several important differences. In the once-transformation the clause
was transformed and independent literals were embedded in once/1 calls. The transformed
clause was then called by the Prolog engine. In our approach, the clause is not transformed
and our unit of evaluation are the distinct logical variables in a component, not a literal.

Two clause components are independent if, and only if, they do not share any (free)
variable. Note that a clause is only satisfiable if all its components are. Thus if one compo-
nent has no solutions then there is no solution for the whole clause. Equally importantly,
the different solutions (#-substitutions) of a component do not impact the solutions of the
remaining components meaning that we can safely skip to the next component as soon as
a solution for the current component has been found.

Example 3.1. h(X) < a(X,Y),b(X,Z2),c(Y,A),d(Y,B),e(Z,C), f(Z,D)

In Example 3.1 all variables are connected and thus the whole clause is a single com-
ponent. However, when variable X becomes bound, literals a(z,Y"), ¢(Y, A),d(Y, B) belong
to one component and literals b(x, Z),e(Z,C), f(Z, D) to another. They are independent
of each other as they do not share any common variable. This type of decomposition,
when the head variables are assumed ground, is called the cut-transformation in [Cos03].
Resumer2 does this level of decomposition whereas Django does not do any form of clause
decomposition.

In Subsumer this decomposition is applied recursively. If variable Y becomes bound
next, then component a(x,y),c(y, A),d(y, B) can be further divided into two components
c(y, A) and d(y, B). Literal a(x,y) no longer appears as it is now fully ground and thus no
longer belongs to a component.

Also significantly, in Subsumer the independent components are created dynamically
rather than statically at the beginning of clause evaluation. Although this has an overhead,
it allows to choose the variable with the smallest domain (or another promising heuristic) as
the splitting variable rather than, as in the once-transformation, an arbitrary variable where
no information about its goodness exist. The costs of doing the decomposition dynamically
should be more than offset by minimizing early the domain of the variable used.

3.4. Related engines

There are only two other subsumption engines comparable with Subsumer in terms of
the complexity of clauses they can handle: Django [Mal04] and Resumer2 [Kuz08|.

Common to the three engines are algorithms inspired by the constraint satisfaction
framework. All do some custom form of arc-consistency and propagate constraints. Django
and Resumer?2 require particularly large quantities of memory as they perform determinate
matching between the literals in the subsumer clause and the literals in the subsumee prior
of starting its normal non-determinate matching.

Determinate matching is an idea originally presented in [Kie94|, where signatures (fin-
gerprints) of a literal are computed taking into account its neighbours (i.e. variables and
literals it interacts). If the same unique fingerprint exists on both clauses for a given pair
of literals these can be safely matched. Django computes these signatures with second level
neighbours whereas Resumer2 uses only first level neighbours. This explains partially why

SUBSUMER: A PROLOG 6#-SUBSUMPTION ENGINE 177

Django requires even more memory than Resumer2. Subsumer does not perform any form
of determinate matching.

Django default variable ordering heuristic is the minimal variable domain divided by
the number of variable interactions. In Resumer2 each variable is assigned a weight equal
to its number of interactions divided by its domain size and then variables are selected with
probability proportional to their weight. Subsumer uses simply minimal variable domain.
Django also has a meta layer where it tries to adapt its heuristics to the underlying dataset.
Resumer2 main novelty on the other side is a randomized restart mechanism inspired by
SAT solvers, where if it finds itself stuck for a long time in a subsumption test, it restarts
subsumption with a different variable ordering. This is an interesting idea whose impact
we will investigate in the next section.

Finally, Subsumer can deal with arbitrary Prolog clauses whereas both Resumer2 and
Django can handle only Datalog clauses (i.e. Prolog clauses with no function symbols).

4. Empirical evaluation

In this section we extensively compare Django, Resumer2 and Subsumer. The goal
is to compare running times and memory requirements for the three engines on a very
challenging benchmark for #-subsumption engines. In the sections below when we refer to
examples we mean the subsumee clauses and by hypotheses we mean the subsumer clauses.
This analogy is due to the direct translation of clauses’ roles to an ILP system.

All the datasets, subsumption engines and scripts to replicate these experiments can
be found at http://ilp.doc.ic.ac.uk/Subsumer.

4.1. Datasets

The datasets selected to compare the subsumption engines are instances of the Phase
Transition (PT) problem [Gio00]. This artificial problem was originally developed to be a
challenge for relational learners like ILP systems. In an ILP system the task is to induce a
theory (i.e. target concept) that, together with provided background knowledge, entails a
set of positive examples (of the target concept) but no negative examples.

The PT problem is a collection of noise free datasets of varying difficulty each charac-
terized by two parameters, the target concept size, M € [5..30], and the distinct number
of terms, L € [12..38], present in a subsumee clause. Furthermore each instance is highly
non-determinate with 100 solutions per distinct predicate symbol/arity. For each instance
there are 200 positive and 200 negative examples evenly divided between train and test
and there exists at least one single clause (the target concept) that perfectly discriminates
between the positive and negative examples (i.e. has 100% accuracy).

The instances belong to three major regions: Yes, No and Phase Transition. In the Yes
region the probability that a randomly generated clause will cover an arbitrary example is
close to 1, in the No region is close to 0 and in the narrow Phase Transition (PT) region
the probability drops abruptly from 1 to 0.

We selected 43 datasets from the set of 702 possible PT instances (range(M)*range(L) =
26 % 27 = 702) as they are good representatives of the three regions. 12 instances are from
the Yes region, 15 from the No region and 16 from the PT region. These are the same
instances that were used in [Bot03] but there to highlight the difficulty of learning concepts
from the PT and No regions for a relational learning system.

178 J. SANTOS AND S. MUGGLETON

4.2. Subsumees/Examples

Each example is a single (saturated) clause with all facts known to be true about it.

All the 400 examples per dataset instance were used. From the subsumption engine
perspective all examples are equal, there is no distinction between positive or negative
examples. However, since our hypotheses are biased to cover positive examples, it is a
better challenge if subsumee clauses that are less likely to be covered are also included.

Due to the nature of the PT dataset all the examples for a particular instance have the
same size (i.e. number of literals) and the number of distinct predicate symbols is equal to
the concept size, M. The number of distinct terms in an example is L. The arity of all
predicate symbols is three with the first argument being always the term from the head.
All terms in the examples are constants with no function symbols.

Below is a small excerpt of an example for dataset id=3 (m=18,1=16). The full example
has 801 literals.

p(d0) < br0(do, d0_9, d0_5), br0(d0, d0_9, d0_3), br0(d0, d0_9, d0_2), . . .,
br3(do0, d0-0, d0_11), br3(d0, d0_0, d0_1), br4(d0, d0_9, d0_6), . . .,
br7(d0, d0_0, d0_3), br7(d0, d0_0, d0_15), br7(d0, d0_0, d0_13).

The examples length range from 501 literals (m=>5, 1=15) to 2921 literals (m=29, 1=24).
These instances are from the Yes and No region respectively.

4.3. Subsumers/Hypotheses

The clauses used as subsumers (i.e. hypotheses) were generated using the concept of
assymmetric relative minimal generalizations (ARMG) [Mug09]. Essentially the ARMG
algorithm receives a clause C' and an example e as input and returns a reduced clause R,
where all literals from C responsible for not entailing e are pruned.

The hypotheses generation algorithm employed receives a list of positive examples and
computes the iterative ARMG of all of them. The iterative ARMG of a list of examples is
found by computing the (variablized) bottom clause for the first example and then, using
it as the start clause, iteratively apply the ARMG algorithm to the remaining examples.

The more examples used to construct an ARMG the smaller (and more general) it will
be. Furthermore an ARMG will at least entail all the examples used in its construction.

In order to create the ARMGs we used 10 randomly selected lists of 6, 7, 8, 9 and 10
positive only examples 2 , yielding 50 varying length hypotheses (10 hypotheses are ARMGs
with 6 positive examples, ..., 10 hypotheses are ARMGs with 10 positives).

Below is a small excerpt of an hypothesis, an ARMG of 6 positive examples, for dataset
id=3 (m=8,1=16). The full hypothesis has 59 literals.

p(A) « brO(A, B,C),br0(A, B, D), br0(A, E, F),br0(A, E, G), brO(A, E H)
bri(A, E,0), brl(A, E,N),brl(A, E. L), br1(A, E, J), br2(A, J, K),.
bra(A, H,Q),brd(A, D, F),brd(A, D, C),br5(A, I, N), br6(A4, J,Q)-

2We did not want to mix positive and negative examples in the ARMG. The reason is that we know
this dataset is noise free and since an ARMG, by construction, covers the examples used to create it, the
resulting clauses would be shorter and thus less difficult to test for subsumption.

SUBSUMER: A PROLOG 6#-SUBSUMPTION ENGINE 179

Note that, since our hypotheses are not random -they are biased towards covering posi-
tive examples- in the Yes, No and Phase transition regions the probabilities for subsumption
are not necessarily close to 1, 0 and 0.5. Nevertheless, it is still relevant to divide the dataset
in these three regions as the subsumption tests have a region related difficulty (e.g. longer
clauses with more terms in examples and variables in hypotheses).

The hypotheses length vary significantly within each instance (e.g. from 59 to 121
literals for m=17,1=14) but the extremes are 29 literals (m=14, 1=24) and 626 literals
(m=26, 1=12). These instances are both from the PT region. The length of the examples
and hypotheses is just a rough indication of the subsumption problem difficulty. Other
important factors are: ratio between those lengths, distinct terms in the examples, distinct
variables in the hypotheses, distinct predicate symbols.

4.4. Subsumption engines

We used Subsumer, Django [Mal04] and Resumer2 [Kuz08]. Older subsumption en-
gines based on determinate matching [Kie94] and maximal clique search [Sch96] were not
tested as we could no longer find them publicly available. However, in [Mal04] they were
tested against Django and it clearly outperformed those older engines by several orders of
magnitude (speedups between 150x to 1200x).

As for Resumer2, we will also test a variant, which we name Resumerl, that has ran-
domized restarts turned off. This experiment is interesting because it directly tests the
importance of randomized restarts in this benchmark. Furthermore, by comparing the rel-
ative performance of Resumerl to Resumer2, we can roughly estimate the gains we would
obtain if we were to implement randomized restarts in top of Subsumer.

We compiled Django with gce 4.1.2; Resumer2 (and Resumerl) with Sun’s Java 1.6 and
Subsumer with YAP6 Prolog [dS06], all with full optimizations enabled. All experiments
were performed in a Athlon Opteron processor 1222 running at 3.0 GHz with 4 GB RAM
and a 64 bit build of Linux.

4.5. Results and discussion

A first point to mention is that the four subsumption engines returned the same list
of subsumed examples for each instance. This was expected as otherwise there would be
at least one faulty implementation. Nevertheless, this is strong evidence that all engines
correctly implement 6-subsumption. Notice that each instance consists of 50 (hypotheses)
* 400 (examples) = 20.000 subsumption tests.

Analyzing Table 13 the first conclusion is that Django consumes too much memory. It
consumes so much memory that in only 14 of the 43 datasets it did not crash for exceeding
the 4Gb memory limit. It could not solve a single dataset from the No region, the most
difficult one. Also, from a CPU time perspective, Django is clearly behind Resumerl /2 and
Subsumer by up to 2 orders of magnitude for the few datasets it managed to finish.

The interesting comparison is between Resumerl/2 and Subsumer. Resumerl is faster
than Subsumer but the difference is merely, on average, 5%. Also relevant, standard devi-
ation in Subsumer’s running times are about half of Resumerl’s. More importantly, Sub-
sumer’s memory requirements are only a small fraction (1/8 to 1/10) of either Resumer.

3Note that the PT and Overall columns favor Django as, naturally, we can just take into account the
datasets where Django successfully finished.

180 J. SANTOS AND S. MUGGLETON

Table 1: Average CPU times (seconds) and memory (megabytes) for problems in each region
of the Phase Transition dataset

Phase Transition dataset region
Yes No PT Overall
Engine CPU RAM CPU RAM CPU RAM CPU RAM
Django 4,404 2,248 N/A N/A 78,736 3,037 15,023 2,361
Resumerl 99 608 544 1,167 225 749 301 855
Resumer2 75 578 154 1,136 120 875 119 883
Subsumer 190 75 442 141 292 92 316 105

Resumer?2 is clearly best on all regions. It is followed by Resumerl though Subsumer
manages to outperform Resumerl in the No region by 23%. Notice that randomized restarts
are particularly helpful in this region and are solely responsible for the almost 4 times
speedup that Resumer2 has over Resumerl. In the easiest Yes region, Subsumer is about 2
times slower than either Resumer and randomized restarts have almost no impact. In the
PT region Resumerl outperforms Subsumer by 30% and Resumer2 outperforms both by
about 2 times showing that, again, randomized restarts are important. Randomized restarts
are more helpful as the difficulty of the subsumption test increases. This is as expected as,
for simple instances, randomized restarts do not have time to occur.

Overall, Resumer2 clearly outperforms Resumerl being, on average, 2.5 times faster
than it. Also the standard deviation for a subsumption test in Resumer2 decreased consid-
erably comparing with Resumerl. Notably, this is achieved without increasing the memory
footprint. This result is further evidence to Resumer2’s authors claim in [Kuz08] that
randomized restarts are helpful to reduce expected subsumption time.

We did a further experiment to test to which extent dynamic clause decomposition is
important to Subsumer. We disabled it and analyzed how Subsumer performed using only
the cut transformation. Although for the Yes and PT regions dynamic clause decomposition
turned out to be mainly overhead (10%-25% slower), for all the problems in the No region
it proved essential. Without it Subsumer would get stuck. It is in the No region that
Subsumer outperforms Resumerl and this is due to dynamic clause decomposition.

To test the importance of the particular compilers used, in a separate experiment we
compiled Resumerl with GNU Java compiler (gcj 4.3.3) also with full optimizations enabled.
This gcj version of Resumerl took 2.5 times longer and required 25% more memory than
Resumerl compiled with Sun’s JVM. Subsumer compiled with SWI-Prolog (5.6.59) takes
5.5 times longer than with YAP6. Compilers significantly influence running times.

5. Conclusions and future directions

Our subsumption engine comparison on the challenging PT problem showed that Sub-
sumer clearly outperformed Django both in time and memory and that it is competitive
with Resumer2 without randomized restarts. Furthermore, Subsumer requires only ~ 1/8
of Resumer2’s memory and can handle arbitrary Prolog clauses. We also confirmed the
importance of randomized restarts as previously pointed out in [Kuz08]. This is incentive
to implement a randomized restart strategy in a future version of Subsumer.

Also worth investigating is the impact of our #-subsumption engine embedded in a
Prolog based ILP system. Could ILP systems then tackle problems they cannot now?

SUBSUMER: A PROLOG 6#-SUBSUMPTION ENGINE 181

Besides the ILP community, we expect that other related research communities, e.g
automated theorem proving, can also profit from our Prolog subsumption engine.

From a strict performance perspective, there would be gains in relaxing Subsumer’s
auto-imposed constraint of having no state. Namely, often hypotheses are related and have
many identical literals, much of the datastructures could be computed once and, at the
expense of some memory, running times could be significantly improved.

As for the #-subsumption problem itself, it is worth verifying if it could be entirely
mapped to a constraint satisfaction problem or a sub-graph isomorphism matching problem.
If so, one can then use existing state-of-the-art solvers for those problems and check whether
they are any better than custom engines like Resumer2 or Subsumer.

Acknowledgments

We thank Ondrej Kuzelka and Filip Zelezny for kindly providing Resumer2 and Django
and, specially, for fruitful discussions that improved both Resumer2 and Subsumer. The
first author thanks Wellcome Trust for his Ph.D. scholarship. The second author thanks
the Royal Academy of Engineering and Microsoft for funding his present 5 year Research
Chair. We are also indebted to three anonymous referees for valuable comments.

References

[Bot03] Marco Botta, Attilio Giordana, Lorenza Saitta, and Michele Sebag. Relational learning as search
in a critical region. Journal of Machine Learning Research, 4:431-463, 2003.

[Cos03] Vitor Santos Costa, Ashwin Srinivasan, Rui Camacho, Hendrik Blockeel, Bart Demoen, Gerda
Janssens, Jan Struyf, Henk Vandecasteele, and Wim Van Laer. Query transformations for improving
the efficiency of ILP systems. Journal of Machine Learning Research, 4:465-491, 2003.

[dS06] Anderson Faustino da Silva and Vitor Santos Costa. The design and implementation of the YAP
compiler: An optimizing compiler for logic programming languages. In Sandro Etalle and Miroslaw
Truszezynski (eds.), ICLP, LNCS, vol. 4079, pp. 461-462. Springer, 2006.

[Gio00] Attilio Giordana and Lorenza Saitta. Phase transitions in relational learning. Machine Learning,
41(2):217-251, 2000.

[Kap86] Deepak Kapur and Paliath Narendran. NP-completeness of the set unification and matching prob-
lems. In Jorg H. Siekmann (ed.), CADE, LNCS, vol. 230, pp. 489-495. Springer, 1986.

[Kie94] Jrg-Uwe Kietz and Marcus Lbbe. An efficient subsumption algorithm for Inductive Logic Program-
ming. Proc. 11th Int. Conf. on Machine Learning, pp. 130-138. Morgan Kaufmann, 1994.

[Kow71] Robert A. Kowalski and Donald Kuehner. Linear resolution with selection function. Artif. Intell.,
2(3/4):227-260, 1971.

[Kuz08] Ondrej Kuzelka and Filip Zelezny. A restarted strategy for efficient subsumption testing. Fundam.
Inform., 89(1):95-109, 2008.

[Mal04] Jérome Maloberti and Michele Sebag. Fast theta-subsumption with constraint satisfaction algo-
rithms. Machine Learning, 55(2):137-174, 2004.

[Mug09] Stephen Muggleton, Jose Santos, and Alireza Tamaddoni-Nezhad. Progolem: a system based on
relative minimal generalisation. In Luc De Raedt (ed.), Proceedings of the 19th International Con-
ference on ILP, LNCS, vol. 5989, pp. 131-148. Springer, 2009.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution principle. J. ACM, 12(1):23—
41, 1965.

[Sch96] Tobias Scheffer, Ralf Herbrich, and Fritz Wysotzki. Efficient theta-subsumption based on graph
algorithms. In S. Muggleton (ed.), ILP workshop, LNCS, vol. 1314, pp. 212-228. Springer, 1996.

[Sri07] Ashwin Srinivasan. The Aleph Manual. University of Oxford, 2007.

