
Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 202–211
http://www.floc-conference.org/ICLP-home.html

CIRCUMSCRIPTION AND PROJECTION

AS PRIMITIVES OF LOGIC PROGRAMMING

CHRISTOPH WERNHARD

Technische Universität Dresden
E-mail address: christoph.wernhard@tu-dresden.de

Abstract. We pursue a representation of logic programs as classical first-order sentences.
Different semantics for logic programs can then be expressed by the way in which they
are wrapped into – semantically defined – operators for circumscription and projection.
(Projection is a generalization of second-order quantification.) We demonstrate this for
the stable model semantics, Clark’s completion and a three-valued semantics based on the
Fitting operator. To represent the latter, we utilize the polarity sensitiveness of projection,
in contrast to second-order quantification, and a variant of circumscription that allows to
express predicate minimization in parallel with maximization. In accord with the aim of an
integrated view on different logic-based representation techniques, the material is worked
out on the basis of first-order logic with a Herbrand semantics.

Introduction

The multitude of semantics for logic programs is traditionally specified by a multitude
of techniques: different rule languages, consequence operators, syntactic transformations
like reduct and completion, and notions of model, two- and three-valued, for example. This
makes it difficult to uncover relationships and transfer results between the semantics. It lets
the long-term goal of a single logic-based system in which a variety of logic programming
methods is simultaneously available appear quite fanciful. This work aims towards a unified
and integrated view on different semantics for logic programs. We show a framework in
which a logic program is represented by a classical first-order sentence, and several semantics
for logic programs can be characterized by applying two further logic operators that are
defined in terms of classical semantics: circumscription and projection.

A key observation is that semantics for logic programs involve circumscription in a way
such that only certain occurrences of a predicate are affected, while others – basically those
in the scope of negation as failure – stay unminimized. Indeed, as shown in [Lin91] and
described in [Lif08], the stable models semantics can be characterized accordingly in terms
of circumscription. From this point of view, the purpose of a rule syntax is just to indicate
which occurrences are to be circumscribed. The alternative pursued here is to replace
each “original” predicate symbol by two replicas, one of them used in occurrences where
circumscription should take effect. The formula then is classical, permitting for example
simplifications that preserve classical equivalence.

Projection, a generalization of second-order quantification, can be used to control the
interaction between the replicas. In general, projection is applied in the context of this work
to express operations in a semantic way that are typically specified in syntactical terms, like

c© C. Wernhard
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.202

CIRCUMSCRIPTION AND PROJECTION AS PRIMITIVES OF LOGIC PROGRAMMING 203

systematic renaming of predicate symbols and completion construction, where we refine a
semantic characterization in [Lee06].

We apply our framework to the stable model semantics, Clark’s completion and a three-
valued semantics based on the Fitting operator. The first two are distinguished just by
the choice of circumscribed predicate occurrences, reflecting the characterization of Clark’s
completion in terms of stable models with negation as failure in the head described in
[Ino98]. The independence of syntactic constructions lets our framework quite naturally
cover extensions of normal logic programs, including disjunctive heads and negation as
failure in the head. In accord with the long-term goal of a unified logic-based knowledge
processing system, the material in the paper is worked out for first-order logic with a
Herbrand semantics, extended by circumscription and projection.

The paper is structured as follows: After notation and the used classical semantics
have been specified in Sect. 1, projection and circumscription are introduced in Sect. 2.
A view of logic programs as classical first-order sentences is described in Sect. 3. On
this basis, it is shown in Sect. 4 how semantics for logic programs are expressed in terms of
circumscription and projection. Specifically, the stable model semantics, Clark’s completion,
and a three-valued semantics based on the Fitting operator are considered. In Sect. 5, the
new characterization of the latter is related to the traditional definition, and a similar
characterization of partial stable models is sketched. In the conclusion, further potential
applications of this framework and a view on computational aspects are indicated.

Please note that this paper is a short version of [Wer10a], which includes additional
technical material such as proofs showing correspondence of the discussed and traditional
characterizations, and a further notational variant of the described framework that might
facilitate its application to prove properties of semantics for logic programs.

1. Notation and Preliminaries

Symbolic Notation. We use the following symbols, also with sub- and superscripts, to
stand for items of types as indicated in the following list (precise definitions of the types
are given later on), considered implicitly as universally quantified in definition, proposition
and theorem statements: F,G,H – Formula; A – Atom; L – Literal; S – Set of ground
literals (also called literal scope); M – Consistent set of ground literals; I, J,K – Structure;
β – Variable assignment. We write the positive (negative) literal with atom A as +A (−A).

The complement of literal L is written L̃. The set of complements of a given set S of

literals (i.e. {L̃|L∈S}) is written S̃. We assume a fixed first-order signature with at least
one constant symbol. The sets of all ground terms, all ground literals, all positive ground
literals, and all negative ground literals – with respect to this signature – are denoted
by TERMS, ALL, POS, NEG, respectively. Variables are x, y, z, also with subscripts.
The sequence x1, . . . , xn, where n is the arity of predicate symbol p, is abbreviated by xp.

Formulas. We assume that a formula is constructed from first-order literals and the logic
operators shown in the left column of Tab. 1. That is, we consider formulas of first-order
logic, extended by an operator for syntactic equality (

.
=) and the two operators project

and raise, discussed in Sect. 2. As meta-level notation with respect to this syntax, we
use versions of the binary connectives with arbitrary integers ≥ 0 as arity, sequences of

204 C. WERNHARD

Table 1: The Satisfaction Relation

〈I, β〉 |= L iffdef Lβ ∈ I
〈I, β〉 |= >
〈I, β〉 6|= ⊥
〈I, β〉 |= ¬F iffdef 〈I, β〉 6|= F
〈I, β〉 |= F1 ∧ F2 iffdef 〈I, β〉 |= F1 and 〈I, β〉 |= F2

〈I, β〉 |= F1 ∨ F2 iffdef 〈I, β〉 |= F1 or 〈I, β〉 |= F2

〈I, β〉 |= ∀x F iffdef for all t ∈ TERMS it holds that 〈I, β t
x〉 |= F

〈I, β〉 |= ∃x F iffdef there exists a t ∈ TERMS such that 〈I, β t
x〉 |= F

〈I, β〉 |= t1
.
= t2 iffdef t1β = t2β

〈I, β〉 |= projectS(F) iffdef there exists a J such that 〈J, β〉 |= F and J ∩ S ⊆ I
〈I, β〉 |= raiseS(F) iffdef there exists a J such that 〈J, β〉 |= F and J ∩ S ⊂ I ∩ S

variables as quantifier arguments, and omitting of universal quantifiers. A sentence is a
formula without free variables. A clausal sentence is a sentence ∀x1 . . . xn F , where F is a
conjunction with arbitrary arity of disjunctions (clauses) with arbitrary arity of literals.

Classical Semantics. We use a notational variant of the framework of Herbrand interpre-
tations: An interpretation is a pair 〈I, β〉, where I is a structure, that is, a set of ground
literals that contains for all ground atoms A exactly one of +A or −A, and β is a variable
assignment, that is, a mapping of the set of variables into TERMS. Formula F with all free
variables replaced by their image in β is denoted by Fβ; the variable assignment that maps
x to ground term t and all other variables to the same values as β is denoted by β t

x . As
explicated in [Wer08], the structure component I of an interpretation 〈I, β〉 represents a
structure in the conventional sense used in model theory, and, moreover, an interpretation
represents a second-order interpretation [Ebb84], if predicate variables are considered as
distinguished predicate symbols. The satisfaction relation between interpretations and for-
mulas is defined by the clauses in Tab. 1. Entailment and equivalence are straightforwardly
defined in terms of it. Entailment: F1 |= F2 holds if and only if for all 〈I, β〉 such that
〈I, β〉 |= F1 it holds that 〈I, β〉 |= F2. Equivalence: F1 ≡ F2 if and only if F1 |= F2 and
F2 |= F1.

2. Projection, Literal Scopes and Circumscription

The project operator, defined semantically in Tab. 1, is applied in the context of this
paper to provide semantic characterizations of operations and properties that are typi-
cally defined in syntactic terms: Clark’s completion, extracting the subformula with the
“converse rules” from Clark’s completion, systematic renaming of predicate symbols, and
independence of a formula from given predicate symbols. The formula projectS(F) is called
the projection of formula F onto literal scope S. The forgetting in F about S is a variant
of projection, where the scope is considered complementary:

Definition 1 (Forgetting). forgetS(F) def= projectALL−S(F).

We call a set of ground literals in the role as argument to projection a literal scope. When
specifying literal scopes, we let a set of predicate symbols stand for the set of all ground
instances of literals whose predicate symbol is in the set.

CIRCUMSCRIPTION AND PROJECTION AS PRIMITIVES OF LOGIC PROGRAMMING 205

As an intuitive special case of projection, consider a literal scope S that contains the
same atoms in positive as well as negative literals. The condition J ∩S ⊆ I in the definition
of project is then equivalent to J ∩ S = I ∩ S, that is, structures I and J are required
to be equal as far as members of S are considered, but unrelated otherwise. Projection is
a generalization of second-order quantification: if S is the set of all ground literals with
a predicate symbol other than p, then projectS(F) (or equivalently forget{p}(F)) can be
expressed by the second-order formula ∃p F .

Beyond second-order quantification, the condition J ∩S ⊆ I in the definition of project
encodes a different effect on literals depending on whether they are positive or negative
(w.r.t. to formulas that do not contain ¬). Hence, this variant of projection is also
termed literal projection. Consider for example, forget{+q,−q}((+p ∨−q) ∧ (+q ∨−r)) which

is equivalent to (+p∨−r), and, in contrast, forget{+q}((+p ∨−q) ∧ (+q ∨−r)) which is equiv-

alent to ((+p ∨−q) ∧ (+p ∨−r)), where −q is retained. In the context of this paper, these
effects are applied to specify a three-valued semantics for logic programs. Further ma-
terial on projection can be found in [Wer08]. The other “nonstandard” operator defined
in Tab. 1 is raise, which we apply to define scope-determined circumscription [Wer10b], a
generalization of predicate circumscription [McC80]:

Definition 2 (Scope-Determined Circumscription). circS(F) def= F ∧ ¬raiseS(F).

The argument S is also a literal scope, which then provides a uniform interface for ex-
pressions combining projection and circumscription. Superficially, raise is very similar to
project: Consider Tab. 1. The definition of project is equivalent to J ∩ S ⊆ I ∩ S. Just by
replacing the subset relation (⊆) with strict subset (⊂), the definition of raise is obtained.
If F is a sentence over disjoint sets of predicate symbols P , Q and Z, then the parallel
predicate circumscription of P in F with fixed Q and varied Z [Lif94], traditionally writ-
ten CIRC[F ;P ;Z], is expressed as circ(P∩POS)∪Q(F). Recall that in specifications of literal
scopes, we let a set of predicate symbols stand for the set of all ground instances of literals
whose predicate symbol is in the set. The scope (P ∩POS)∪Q thus is the set of all positive
ground literals with a circumscribed predicate symbol, and all ground literals with a fixed
predicate symbol. While circumscription traditionally just allows to express predicate mini-
mization, scope-determined circumscription symmetrically permits to express maximization
by scopes containing just negative ground literals with predicate symbols to be maximized.
In the context of this paper, parallel minimization and maximization is applied to specify
a three-valued semantics for logic programs.

3. Logic Programs as Classical Sentences

A logic program is typically understood as a set of rules of the form:

A1 | . . . |Ak | notAk+1 | . . . | notAl ← Al+1, . . . , Am, notAm+1, . . . , notAn. (3.1)

This involves logic operators which do not belong to classical first-order logic. To represent
a logic program as a classical first-order sentence, we assume that the set of all predicate
symbols can be partitioned into predicate groups, that is, disjoint sets of equal cardinality.
The idea is that each “original predicate symbol” is replicated once in each group. The
respective copy of the “original symbol” p in predicate group P is then written pP . If
P and Q are two predicate groups, we say that pP and pQ are corresponding predicate
symbols, assuming that they have the same arity, which we also call arity of p. We transfer

206 C. WERNHARD

the notation pP to atoms and literals: AP (LP) stands for an atom (literal) whose predicate
symbol is in predicate group P . Formally, the partitioning into predicate groups can be
modeled by means of a total ordering <pred on predicate symbols such that p denotes the

position of pP within predicate group P sorted according to <pred. Corresponding predicate
symbols then have the same positions within their respective group. The set of all such
positions p is written PREDS.

Definition 3 (Predicate Groups C,F ,O). The symbols C,F ,O denote three different pred-
icate groups.

Predicate groups C,F ,O are used to express logic programs. Roughly, the group indicates
whether a predicate occurrence should be circumscribed (group C), should be fixed with
respect to circumscription (group F), or is yet open (group O), that is, further operations
are applied that place it into group C or F at a later stage.

Definition 4 (Rule Clause, Raw Rule Clause). (i) A rule clause is a clause of the form

+AC1 ∨. . .∨+ACk ∨ −AFk+1 ∨. . .∨ −AFl ∨ −ACl+1 ∨. . .∨ −ACm ∨+AFm+1 ∨. . .∨+AFn ,

where n ≥ m ≥ l ≥ k ≥ 0.
(ii) A raw rule clause is like a rule clause, except that the literals with indexes from l + 1
to m are from predicate group O instead of C.

Based on Def. 4, a logic program can be understood as a clausal sentence with rule clauses
or raw rule clauses. In both cases, a logic program is then just a classical first-order sentence
that meets certain restrictions. ([Raw] rule clauses can contain universal variables.) When
we say that a [raw] rule clause corresponds to a rule of the form (3.1), we assume that the
[raw] rule clause has predicate symbols from groups as indicated by matching (3.1) with
Def. 4.

The head of a [raw] rule clause is the disjunction of those of its literals whose index is
less or equal to l, its body is the conjunction of the complements of its literals with index
greater than l. A [raw] rule clause can express a normal rule (if k = l = 1), integrity
constraint (if k = l = 0), disjunctive rule (if k = l > 1) and a rule with negation as failure
in the head (if l > k). The class of rules in general extended disjunctive programs (GEDP)
considered in [Ino98] is however strictly more general: In rules of the form (3.1), GEDP
would allow also negated atoms in place of the atoms Ai, for i ∈ {1, . . . , n}.

Predicate Renaming. Definition 6 below gives a semantic account of systematically re-
placing predicate symbols from one group P by their correspondents from another group Q.
First we define of shorthands for formulas that will be used at several places in the sequel.

Definition 5 (Predicate Inclusion). Let P,Q be predicate groups. (i) P ≤ Q def=
∀x

∧
p∈PREDS(−pP (xp) ∨ +pQ(xp)); (ii) P = Q def= (P ≤ Q) ∧ (Q ≤ P); (iii) P < Q def=

(P ≤Q) ∧ ¬(Q≤P).

Definition 6 (Predicate Renaming in Terms of Projection). Let P,Q, P be predicate
groups. Then renameP\Q(F) def= forgetP (F ∧ P =Q). Notation rename[P1\P2, ..., Pn−1\Pn](F)
is a shorthand for renamePn−1\Pn

(...(renameP1\P2
(F))...).

The formula renameP\Q(F) is equivalent to F with all occurrences of predicate symbols
from P replaced by their respective corresponding predicate symbols from Q.

CIRCUMSCRIPTION AND PROJECTION AS PRIMITIVES OF LOGIC PROGRAMMING 207

4. Semantics for Logic Programs via Circumscription and Projection

Based on the representation of a logic program as a clausal first-order sentence with raw
rule clauses, three well-known semantics for logic programs – the stable model semantics,
the classical models of Clark’s completion, and the three-valued minimal models obtained
with the Fitting operator – can be characterized in terms of circumscription and projection:

Definition 7 (Semantics For Logic Programs). Let F be a formula over C ∪ F ∪ O.
(i) ans-stable(F) def= renameF\C(circ(C∩POS)∪F (renameO\C(F))).
(ii) ans-completion(F) def= renameF\C(circ(C∩POS)∪F (renameO\F (F))).
(iii) ans-fitting(F) def= circ(C∩POS)∪(F∩NEG)(C ≤ F ∧ renameO\C(F) ∧ F ∗),
where F ∗ = rename[C\O, F\C, O\F](forgetC∩POS(circ(C∩POS)∪O∪F (F))).

The definientia are formulas of first-order logic extended with project (recall that rename is
a shorthand for a formula with project) and circ as additional operators. For ans-stable and
ans-completion, the involved projection could also be expressed as second-order quantifica-
tion, as indicated in Sect. 2, and the involved scope-determined circumscription corresponds
to parallel predicate circumscription of C with fixed F . For ans-fitting, in contrast, proper
generalizations of second-order quantification and parallel predicate circumscription are uti-
lized: The scope C ∩ POS of the forgetting is just about positive literals with a predicate
from C. The scope (C∩POS)∪(F∩NEG) of the outer circumscription expresses minimization
of C in parallel with maximization of F .

Semantics for logic programs are usually specified in terms of sets of atoms (answer
sets), or “partial interpretations”, that is, consistent sets of literals, representing a three-
valued assignment of atoms to truth values: true (false) for the atoms of positive (negative)
literals in the set, and undefined for the remaining atoms. In contrast, semantics for logic
programs are specified in Def. 7 as classical models. For ans-stable, such a classical model
〈I, β〉 corresponds to the answer set {A | +AC ∈ I}. Predicates from F are not considered
for the answer set, reflecting that F is forgotten by the outer rename. For ans-fitting, 〈I, β〉
corresponds to the partial interpretation {+A | +AC ∈ I} ∪ {−A|−AF ∈ I}.

The characterization of stable models in terms of circumscription (Def. 7.i) originates
from [Lin91] and is described as “definition F” in [Lif08] for logic programs over C ∪ F
(in our notation). We use the third group O for mapping to other semantics. In [Fer07]
a characterization of stable models in terms of a formula translation that is similar to
predicate circumscription has been presented. Roughly, it differs from circumscription in
that only certain occurrences of predicates are circumscribed. In this respect it is like
the approach pursued here. However, in [Fer07] these occurrences are identified by their
syntactic position within formulas from a fragment of classical propositional logic – to
the effect, that classically equivalent programs might not be equivalent when considered
as logic programs. For a formal proof of the correspondence of ans-stable to the original
characterization of stable models [Gel88] and variants of it see [Wer10a].

Equivalence of ans-completion to the syntactically defined Clark’s completion [Cla78] is
shown in [Wer10a] along the approach of [Lee06], but generalized to first-order logic and
refined by utilizing predicate groups: Head literals are distinguished by placing them in C,
which allows to prove equivalence of semantic and syntactic characterizations, whereas the
related Proposition 4 in [Lee06] just makes the weaker statement that the semantically
defined completion of F1 is equivalent to the syntactically defined Clark’s completion of F2

for some F2 that is equivalent to F1.

208 C. WERNHARD

The formula F in Def. 7 is over C ∪ F ∪ O. In ans-stable and ans-completion, it is
subjected to renaming the predicate symbols from O to either C or F , respectively, which
is actually the only difference between these semantics. For F that are just over C ∪ F
both semantics are identical. The characterization of Clark’s completion in terms of stable
models of programs with negation as failure in the head, described by means of a program
transformation in [Ino98], thus can be rendered by the following equivalence:

If F is over C ∪ F ∪ O, then ans-completion(F) ≡ ans-stable(renameO\F (F)). (4.1)

Based on a fixed-point characterization of the models of Clark’s completion as so-called
supported models [Apt88], it has been shown in [Mar92] that a stable model of a normal
logic program (i.e. with rules of the form (3.1) where k = l = 1) is also a minimal model
of its Clark completion. For more general classes of logic programs, analogous properties
can be proven on the basis of Def. 7: If F is over C ∪ F ∪ O and F ≡ forget(F,O ∩ POS),
then ans-stable(F) |= ans-completion(F) and, if in addition, F ≡ forget(F,F ∩ NEG), then
ans-stable(F) |= circC∩POS(ans-completion(F)) [Wer10a].

5. Three-Valued Semantics Based on the Fitting Operator

In [Fit85] a consequence operator Φ (Fitting operator) is introduced which is applied to
construct three-valued interpretations M , represented by consistent sets of ground literals.
For a ground program F with rules of the form (3.1), constrained by k = l = 1 (i.e. normal
rules), the value of the Fitting operator can be described as follows: The body of a rule is
true with respect to M , if and only if each of its literals is contained in M . It is false with
respect to M if and only if the complement of at least one of its literals is in M . For a given
M , the Fitting operator yields the union of (1.) the set of all positive literals +A such that
there exists a rule of F with head +A whose body is true with respect to M , and (2.) the
set of all negative literals −A such all rules of F with head +A have a body that is false
with respect to M . The minimal fixed point (minimal w.r.t. set inclusion of the consistent
literal sets M) of the Fitting operator then represents a (partial) model, the result of the
program, and thus might be called “answer set” according to “Fitting’s semantics”.

To show that ans-fitting (Def. 7.iii) corresponds to this semantics, we reconstruct it
in our framework. We use interpretations over the union of the two predicate groups C
and F to represent the consistent literal sets expressing three-valued or interpretations.
Structures I such that

〈I, β〉 |= C ≤ F (5.1)

(assignment β is irrelevant for (5.1) since C ≤ F does not contain free variables) are mapped
with the following one-to-one correspondence to such literal setsM : litset(I) def= {+A | +AC ∈
I} ∪ {−A | −AF ∈ I}; and litset−1(M) def= {+AC | +A ∈ M} ∪ {−AC | +A /∈ M} ∪
{+AF | −A /∈ M} ∪ {−AF | −A ∈ M}. Minimization with respect to set inclusion
of the literal sets M can be expressed by scope-determined circumscription with scope
S = (C ∩ POS) ∪ (F ∩ NEG), since litset(I) ⊆ litset(J) if and only if I ∩ S ⊆ J . The scope
S effects that predicates from C are minimized, and, in parallel, predicates from F are
maximized, which can not be directly expressed by conventional predicate circumscription.

The Fitting operator is – like the original form of Clark’s completion – applied to normal
logic programs, that is, sets of rules of the form (3.1) where k = l = 1. Such a program
corresponds to a clausal sentence with rule clauses that are over F except possibly for a
single positive literal over C. For Clark’s completion, in a first “preprocessing” step, such a

CIRCUMSCRIPTION AND PROJECTION AS PRIMITIVES OF LOGIC PROGRAMMING 209

sentence is transformed to an equivalent, possibly nonclausal, sentence of a second particular
form, which is then the basis for the proper completion transformation. A suitable such
second form will be specified in Def. 8 below. We call it normal completion input sentence,
since any clausal sentence with rule clauses constrained by k = l = 1 is equivalent to such
a sentence, obtainable by straightforward rewriting with equivalences, including

+p(t1, . . . , tn) ∨G ≡ ∀x1 . . . xn +p(x1, . . . , xn) ∨ ¬x1
.
= t1 ∨ . . . ∨ ¬xn

.
= tn ∨G, (5.2)

where x1, . . . , xn are variables not occurring in t1, . . . , tn, G.

Definition 8 (Normal Completion Input Sentence). A sentence F is called a normal com-
pletion input sentence if it is over C ∪ P , with P being a set of predicate symbols not in
C, and is of the form ∀x (

∧
p∈PREDS(+pC(xp) ∨ Gp(xp))), where (1.) x is x1, . . . , xk, with

k being the maximal arity of all members of PREDS, (2.) Gp(xp) are formulas whose free
variables are in xp, (3.) Gp(xp) does not contain predicate symbols from C.

In traditional terminology, a subformula +pC(xp) of a normal completion input sentence
corresponds to a head, and Gp(xp) to the negated disjunction of all bodies of clauses with
head +pC(xp). For a normal completion input sentence F over C∪F , Clark’s completion of F
can then be defined as renameF\C(F ∧ F ∗), where F ∗ is the syntactic completion addendum
of F , defined as follows:

Definition 9 (Syntactic Completion Addendum). Let F be a normal completion input
sentence with syntactic constituents as specified in Def. 8. The following sentence is called
the syntactic completion addendum of F : ∀x (

∧
p∈PREDS(−pC(xp) ∨ ¬Gp(xp))).

Let F be a normal completion input sentence over C ∪ F ∪ O. Recall the definition of
ans-fitting (Def. 7.iii):

ans-fitting(F) def= circ(C∩POS)∪(F∩NEG)(C ≤ F ∧ renameO\C(F) ∧ F ∗),
where F ∗ = rename[C\O, F\C, O\F](forgetC∩POS(circ(C∩POS)∪O∪F (F))). The outer circumscrip-

tion has the scope S discussed above in this section, and thus effects minimization to the
smallest models with respect to the three-valued view of interpretations. The argument
formula of this circumscription consists of three conjuncts. The first one is (5.1) which
excludes interpretations without a consistent three-valued correspondence. The other ones
correspond to the positive and negative consequences, respectively, of the Fitting operator.

Assume that the normal completion input sentence F has been obtained in a “pre-
processing” step, as outlined above, from an equivalent clausal sentence with raw clauses,
representing a conjunction F0 of rules of the form (3.1), constrained by k = l = 1, and
such that all heads have just mutually distinct variables as argument terms (in presence
of equivalence (5.2) the last condition is w.l.o.g.). Let p be some member of PREDS. The
formula Gp(xp) is then a constituent of F as specified in Def. 8. The second conjunct
renameO\C(F) is the original logic program, with O renamed to C, as in ans-stable. It can
be shown that 〈I, β〉 |= C ≤F ∧ renameO\C(¬Gp(xp)) if and only if there is a rule R with
head predicate p in F0 such that the body of its ground instance Rβ is true with respect
to litset(I). The subformulas (+pC(xp)∨ renameO\C(¬Gp(xp))) in renameO\C(F) then allow

to infer positive literals with predicate pC , corresponding to positive consequences of the
Fitting operator.

Analogously, 〈I, β〉 |= C ≤ F ∧ rename[F\C, O\F](Gp(xp)) if and only if for all rules R
with head predicate p in F0 it holds that the body of the ground instance Rβ is false with

210 C. WERNHARD

respect to litset(I). Subformulas of the form (−pF (xp) ∨ rename[F\C, O\F](Gp(xp))) then

allow to infer negative literals with predicate pF , corresponding to negative consequences
of the Fitting operator. Sentence F ∗ is the universally quantified conjunction of these
subformulas, for each predicate p from PREDS. It is equivalent to the syntactic completion
addendum of F (Def. 9), subjected to switching group assignments C and F , and renaming
O to F . This switching and renaming is expressed by rename applied to [C\O, F\C, O\F].
As shown in [Wer10a], the circumscription in F ∗ is equivalent to Clark’s completion of F .
The forgetting about C ∩ POS serves to extract an equivalent to the syntactic completion
addendum from the completion, according to the following theorem proven in [Wer10a]:

Theorem 5.1 (Semantic Extraction of the Completion Addendum). Let F be a completion
input sentence and F ∗ its completion. Then forgetC∩POS(F ∗) is equivalent to the syntactic
completion addendum of F .

Literal projection is utilized there to preserve the negative literals from C in the addendum,
but forget about the positive literals from C in the original formula, and with them the
whole original formula.

A further prominent semantics for logic programs with three-valued models is the partial
stable model semantics. In [Jan06] a characterization of partial stable models as stable
models of a translated program is given (tracing back to earlier work [Sch95]). Based
on a reconstruction of the syntactic transformation Tr(P) of [Jan06] in terms of rename,
and on the characterization of stable models by ans-stable, partial stable models can be
characterized in our framework as shown in the following definition. The three-valued (i.e.
partial) interpretations are represented there in the same way as shown above for the Fitting
semantics.

Definition 10. Let F be a formula over C ∪ F ∪ O. Let C′ and F ′ be two additional
predicate groups, different from each other and from C,F ,O.

ans-partial-stable(F) def= rename[C′\C,F ′\F](circ((C∪F)∩POS)∪C′∪F ′(C ≤ F ∧ F1 ∧ F2)),

where F1 = rename[O\C,F\F ′](F) and F2 = rename[O\C,F\C′,C\F](F).

6. Conclusion

We investigated a representation of logic programs as classical first-order sentences that
are wrapped into the semantically defined additional operators circumscription and projec-
tion, in different ways, rendering different established semantics of logic programs. The
generality of our framework indicates interesting spaces that have yet to be explored: Our
characterizations of semantics for logic programs apply to broad formula classes. The scopes
of circumscription and projection in the characterizations of semantics could be modified,
or additional applications of projection could be merged in, to express, for example, models
that are “stable only with respect to some atoms”, and to restrict answer sets to atoms that
are relevant for the user [Eit08, Geb09].

A computational approach to the processing of operators for circumscription and pro-
jection is “elimination”, analogous to second-order quantifier elimination: Computing for
a given formula that involves the operator (second-order quantifier, resp.) an equivalent
formula without the operator (second-order quantifier, resp.). Indeed, methods for the
computation of circumscription and projection can essentially be considered as methods for

CIRCUMSCRIPTION AND PROJECTION AS PRIMITIVES OF LOGIC PROGRAMMING 211

second-order quantifier elimination [Gab08, Wer08, Wer09]. Our framework thus indicates
that methods for processing logic programs could be seen in this context: On one hand,
established methods for second-order quantifier elimination might be applied to process
logic programs, which might be especially interesting for nonground programs. On the
other hand, known efficient techniques for processing logic programs with specific semantics
get embedded in a wider context when seen as particular efficient second-order quantifier
elimination methods for constrained inputs.

Acknowledgements. I am obliged to anonymous referees of an earlier version for sug-
gestions to improve the presentation and bringing important related works [Mar92, Sch95,
Jan06] to attention.

References

[Apt88] K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative knowledge. In Jack Minker
(ed.), Foundations of deductive databases and logic programming, pp. 89–148. Morgan Kaufmann,
San Francisco, 1988.

[Cla78] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker (eds.), Logic and Databases, pp.
292–322. Plenum Press, New York, 1978.

[Ebb84] H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Springer, New York, 1984.
[Eit08] T. Eiter and K. Wang. Semantic forgetting in answer set programming. Artif. Int., 172:1644–1672,

2008.
[Fer07] P. Ferraris, J. Lee, and V. Lifschitz. A new perspective on stable models. In IJCAI-07, pp. 372–379.

2007.
[Fit85] M. Fitting. A Kripke-Kleene semantics for logic programs. J. of Logic Prog., 2(4):295–312, 1985.
[Gab08] D. M. Gabbay, R. A. Schmidt, and A. Sza las. Second-Order Quantifier Elimination: Foundations,

Computational Aspects and Applications. College Publications, London, 2008.
[Geb09] M. Gebser, B. Kaufmann, and T. Schaub. Solution enumeration for projected Boolean search

problems. In CPAIOR 2009, pp. 71–86. 2009.
[Gel88] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In ICLP/SLP

1988, pp. 1070–1080. 1988.
[Ino98] K. Inoue and Chiaki Sakama. Negation as failure in the head. J. of Logic Prog., 35(1):39–78, 1998.
[Jan06] T. Janhunen, I. Niemelä, D. Seipel, Patrik Simons, and Jia-Huai You. Unfolding partiality and

disjunctions in stable model semantics. ACM Trans. on Comput. Logic, 7(1):1–37, 2006.
[Lee06] J. Lee and F. Lin. Loop formulas for circumscription. Artificial Intelligence, 170:160–185, 2006.
[Lif94] V. Lifschitz. Circumscription. In Handbook of Logic in AI and Logic Programming, vol. 3, pp.

298–352. Oxford University Press, Oxford, 1994.
[Lif08] V. Lifschitz. Twelve definitions of a stable model. In ICLP 2008, pp. 37–51. 2008.
[Lin91] F. Lin. A Study of Nonmonotonic Reasoning. Ph.D. thesis, Stanford University, 1991.
[Mar92] W. Markek and V. S. Subrahmanian. The relationship between stable, supported, default and

autoepistemic semantics for general logic programs. Theor. Computer Science, 103:365–386, 1992.
[McC80] John McCarthy. Circumscription – a form of non-monotonic reasoning. Artif. Int., 13:27–39, 1980.
[Sch95] J. S. Schlipf. The expressive powers of the logic programming semantics. J. of Computer and

System Sciences, 51(1):64–86, 1995.
[Wer08] C. Wernhard. Literal projection for first-order logic. In JELIA 08, pp. 389–402. 2008.
[Wer09] C. Wernhard. Tableaux for projection computation and knowledge compilation. In TABLEAUX

2009, pp. 325–340. 2009.
[Wer10a] C. Wernhard. Circumscription and projection as primitives of logic programming – ex-

tended version. Tech. rep., TU Dresden, 2010. Available from http://cs.christophwernhard.com/
papers/logprog2010extended.pdf.

[Wer10b] C. Wernhard. Literal projection and circumscription. In FTP’09, CEUR Proc., vol. 556. 2010.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

