
Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 226–235

http://www.floc-conference.org/ICLP-home.html

DYNAMIC MAGIC SETS FOR DISJUNCTIVE DATALOG PROGRAMS

MARIO ALVIANO

Department of Mathematics, University of Calabria — 87036 Rende (CS), Italy
E-mail address: alviano@mat.unical.it

Abstract. Answer set programming (ASP) is a powerful formalism for knowledge rep-
resentation and common sense reasoning that allows disjunction in rule heads and non-
monotonic negation in bodies. Magic Sets are a technique for optimizing query answering
over logic programs and have been originally defined for standard Datalog, that is, ASP

without disjunction and negation. Essentially, the input program is rewritten in order to
identify a subset of the program instantiation which is sufficient for answering the query.

Dynamic Magic Sets (DMS) are an extension of this technique to ASP. The optimization
provided by DMS can be exploited also during the nondeterministic phase of ASP systems.
In particular, after some assumptions have been made during the computation, parts of the
program may become irrelevant to a query (because of these assumptions). This allows for
dynamic pruning of the search space, which may result in exponential performance gains.

DMS has been implemented in the DLV system and experimental results confirm the
effectiveness of the technique.

Introduction

Answer set programming (ASP) is a powerful formalism for knowledge representation
and common sense reasoning [Bar03]. Allowing disjunction in rule heads and nonmonotonic
negation in bodies, ASP can express every query belonging to the complexity class ΣP

2

(NPNP); the same expressive power is preserved even if negation is restricted to be used in
a stratified way [Eit94].

Magic Sets are a technique for optimizing query answering over logic programs. ASP

computations are typically characterized by two phases, namely program instantiation and
answer set search. Program instantiation is deterministic and transforms the input program
into an equivalent one with no variables. Answer set search is nondeterministic in general
and works on the instantiated program.

Magic Sets have been originally defined for standard Datalog, that is, ASP without
disjunction and negation. Essentially, the input program is rewritten in order to identify
a subset of the program instantiation which is sufficient for answering the query. The

1998 ACM Subject Classification: Logic and constraint programming.
Key words and phrases: answer set programming, decidability, magic sets, disjunctive logic programs.
Thanks: The author is grateful to Wolfgang Faber, Gianluigi Greco and Nicola Leone for the fundamental

contribution in achieving the results summarized in this article and reported in [Alv09]. This research has
been partly supported by Regione Calabria and EU under POR Calabria FESR 2007-2013 within the PIA
project of DLVSYSTEM s.r.l., and by MIUR under the PRIN project LoDeN.

c© M. Alviano
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.226

DYNAMIC MAGIC SETS FOR DISJUNCTIVE DATALOG PROGRAMS 227

restriction of the instantiation is obtained by means of additional “magic” predicates, whose
extensions represent relevant atoms w.r.t. the query.

An attempt to extend the method to (disjunctive) ASP has been done in [Gre03].
Magic set predicates of [Gre03] have a deterministic definition and, consequently, have the
same extension in each answer set. Actually, this extension can always be computed during
program instantiation, and so we call the technique of [Gre03] Static Magic Sets (SMS).

In the context of (disjunctive) ASP, there is no reason for having a deterministic defi-
nition of magic predicates. Indeed, while Datalog programs admit exactly one answer set,
ASP programs can have several answer sets, each one representing a different, plausible
scenario. Since atoms relevant in one scenario could be irrelevant in another (or also in
each other), one expects that Magic Sets should capture this aspect and provide a dynamic
optimization to the answer set search.

Our principal contributions concerning Magic Sets for ASP are stated below.

• We have defined Dynamic Magic Sets (DMS). With DMS, ASP computations can
exploit the information provided by magic set predicates also during the nondeter-
ministic answer set search, allowing for potentially exponential performance gains
w.r.t. SMS. Indeed, the definition of our magic set predicates depends on the as-
sumptions made during the computation, identifying the atoms that are relevant in
the current (partial) scenario.

• We have established the correctness of DMS by proving that the transformed pro-
gram is query-equivalent to the original program and we have highlighted a strong
relationship between magic sets and unfounded sets: The atoms that are relevant
w.r.t. an answer set are either true or form an unfounded set.

• We have implemented DMS in the DLV system and compared the performance of
DLV with no magic sets, with SMS, and with DMS. The experimental results show
that in many cases DMS yields a significant performance benefit. The system is
available at http://www.dlvsystem.com/magic/.

The remainder of the paper is structured as follows. In Section 1, syntax and semantics
of ASP are briefly mentioned. Dynamic Magic Sets for stratified ASP programs are intro-
duced in Section 2. In Section 3, the implemented prototype system is briefly presented,
while experimental result are discussed in Section 4. Finally, in Section 5, we draw our
conclusion and discuss about future work we intend to address.

1. Answer Set Programming

In this section, we recall syntax and semantics of disjunctive ASP with stratified nega-
tion, the language for which we will introduce Dynamic Magic Sets in Section 2.2.

1.1. Syntax

A term is either a variable or a constant. If p is a predicate of arity k ≥ 0, and t1, . . . , tk
are terms, then p(t1, . . . , tk) is an atom1. A literal is either an atom p(t̄) (a positive literal),
or an atom preceded by the negation as failure symbol not p(t̄) (a negative literal). A rule
r is of the form

p1(t̄1) v · · · v pn(t̄n) :− q1(s̄1), . . . , qj(s̄j), not qj+1(s̄j+1), . . . , not qm(s̄m).

1We use the notation t̄ for a sequence of terms, for referring to atoms as p(t̄).

228 M. ALVIANO

where p1(t̄1), . . . , pn(t̄n), q1(s̄1), . . . , qm(s̄m) are atoms and n ≥ 1, m ≥ j ≥ 0. The
disjunction p1(t̄1) v · · · v pn(t̄n) is the head of r, while the conjunction q1(s̄1), . . . , qj(s̄j),
not qj+1(s̄j+1), . . . , not qm(s̄m) is the body of r. Moreover, H(r) denotes the set of head
atoms, while B(r) denotes the set of body literals. We also use B+(r) and B−(r) for
denoting the set of atoms appearing in positive and negative body literals, respectively, and
Atoms(r) for the set H(r) ∪ B+(r) ∪ B−(r). Rules are assumed to be safe, that is, each
variable appearing in a rule r also appears in B+(r). A rule r is positive (or negation-free)
if B−(r) = ∅, a fact if both B(r) = ∅ and |H(r)| = 1.

A program P is a finite set of rules; if all rules in it are positive, then P is a positive
program. Stratified programs constitute another interesting class of programs. A predicate
p appearing in the head of a rule r depends on each predicate q such that an atom q(s̄)
belongs to B(r); if q(s̄) belongs to B+(r), p depends on q positively, otherwise negatively.
A program is stratified if each cycle of dependencies involves only positive dependencies.

1.2. Semantics

Given a predicate p, a defining rule for p is a rule r such that some atom p(t̄) belongs
to H(r). If all defining rules of a predicate p are facts, then p is an EDB predicate; otherwise
p is an IDB predicate2. Given a program P, the set of rules having some IDB predicate in
head is denoted by IDB(P), while EDB(P) denotes the remaining rules, that is, EDB(P) =
P \ IDB(P).

The set of constants appearing in a program P is the universe of P and is denoted by
UP

3, while the set of ground atoms constructible from predicates in P with elements of UP

is the base of P, denoted by BP . We call a term (atom, rule, or program) ground if it does
not contain any variable. A ground atom p(t̄) (resp. a ground rule rg) is an instance of an
atom p(t̄′) (resp. of a rule r) if there is a substitution ϑ from the variables in p(t̄′) (resp. in
r) to UP such that p(t̄) = p(t̄′)ϑ (resp. rg = rϑ). Given a program P, Ground(P) denotes
the set of all instances of the rules in P.

An interpretation I for a program P is a subset of BP . A positive ground literal p(t̄)
is true w.r.t. an interpretation I if p(t̄) ∈ I; otherwise, it is false. A negative ground literal
not p(t̄) is true w.r.t. I if and only if p(t̄) is false w.r.t. I. The body of a ground rule rg is
true w.r.t. I if and only if all the body literals of rg are true w.r.t. I, that is, if and only if
B+(rg) ⊆ I and B−(rg)∩I = ∅. An interpretation I satisfies a ground rule rg ∈ Ground(P)
if at least one atom in H(rg) is true w.r.t. I whenever the body of rg is true w.r.t. I. An
interpretation I is a model of a program P if I satisfies all the rules in Ground(P).

Given an interpretation I for a program P, the reduct of P w.r.t. I, denoted Ground(P)I ,
is obtained by deleting from Ground(P) all the rules rg with B−(rg) ∩ I = ∅, and then by
removing all the negative literals from the remaining rules. The semantics of a program P
is then given by the set AS(P) of the answer sets of P, where an interpretation M is an
answer set for P if and only if M is a subset-minimal model of Ground(P)M .

Given a ground atom p(t̄) and a program P, p(t̄) is a cautious (resp. brave) consequence
of P, denoted by P |=c p(t̄) (resp. P |=b p(t̄)), if p(t̄) ∈ M for each (resp. some) M ∈

2
EDB and IDB stand for Extensional Database and Intensional Database, respectively.

3If P has no constants, then an arbitrary constant is added to UP .

DYNAMIC MAGIC SETS FOR DISJUNCTIVE DATALOG PROGRAMS 229

AS(P). Given a query Q = g(t̄)? (an atom)4, Ansc(Q,P) (resp. Ansb(Q,P)) denotes
the set of all the substitutions ϑ for the variables of g(t̄) such that P |=c g(t̄)ϑ (resp.
P |=b g(t̄)ϑ). Two programs P and P ′ are cautious-equivalent (resp. brave-equivalent)
w.r.t. a query Q, denoted by P≡c

QP
′ (resp. P≡b

QP
′), if Ansc(Q,P ∪F) = Ansc(Q,P ′ ∪F)

(resp. Ansb(Q,P ∪F) = Ansb(Q,P ′∪F)) is guaranteed for each set of facts F defined over
the EDB predicates of P and P ′.

2. Magic Sets Techniques

In this section, we first briefly discuss about Magic Sets in the literature; we then
introduce Dynamic Magic Sets, our proposal for extending the standard technique to ASP.

2.1. Overview of the Existing Literature

The Magic Set method is a strategy for simulating the top-down evaluation of a query by
modifying the original program by means of additional rules, which narrow the computation
to what is relevant for answering the query.

The key idea of Magic Sets is to materialize the binding information for IDB predicates
that would be propagated during a top-down computation, like for instance the one adopted
by Prolog. According to this kind of evaluation, all the rules r such that g(t̄′) ∈ H(r)
(where g(t̄′)ϑ = Q for some substitution ϑ) are considered in a first step. Then, the atoms
in Atoms(rϑ) different from Q are considered as new queries and the procedure is iterated.
Note that during this process the information about bound (i.e. non-variable) arguments in
the query is “passed” to the other atoms in the rule. Moreover, it is assumed that the rule
is processed in a certain sequence, and processing an atom may bind some of its arguments
for subsequently considered atoms, thus “generating” and “passing” bindings. Therefore,
whenever an atom is processed, each of its argument is considered to be either bound (b)
or free (f).

The specific propagation strategy adopted in a top-down evaluation scheme is called
sideways information passing strategy (SIPS), which is just a way of formalizing a partial
ordering over the atoms of each rule together with the specification of how the bindings
originate and propagate [Bee91, Gre03].

The first attempt to extend Magic Sets to disjunctive Datalog programs is due to
[Gre03]. Magic predicates of [Gre03] identify a sizeable superset of all the atoms relevant to
answer the given query. An important observation is that this set is defined in a determin-
istic way, which means that assumptions during the computation cannot be exploited for
restricting the relevant part of the program. In terms of bottom-up systems, this implies
that the optimization affects only the grounding portion of the solver. For this reason, we
refer to the method of [Gre03] as Static Magic Sets (SMS).

Intuitively, it would be beneficial to also have a form of conditional relevance, exploiting
also relevance for assumptions.5 In the following, we propose a novel Magic Set method
that guarantees semantic equivalence and also allows for the exploitation of conditional or
dynamic relevance, overcoming a major drawback of SMS.

4More complex queries can still be expressed using appropriate rules. We assume that each constant
appearing in Q also appears in P; if this is not the case, then we can add to P a fact p(t̄) such that p is a
predicate not occurring in P and t̄ are the arguments of Q.

5Experimental evidence for this intuition is provided in Section 4.

230 M. ALVIANO

2.2. Dynamic Magic Sets

Our proposal to extend Magic Sets to (disjunctive) ASP relies on the observation that
atoms relevant in one answer set could be irrelevant in another (or also in each other). DMS
capture this aspect, providing a dynamic optimization to the answer set search.

In order to properly describe the proposed Magic Set method, we need some additional
definition and notation. First, we can materialize the binding information for IDB predicates
by means of adorned atoms.

Definition 2.1 (Adorned atom). Let p(t1, . . . , tk) be an atom and α = α1 · · ·αk a string
of the alphabet {b, f}. Then pα(t1, . . . , tk) is the adorned version of p(t1, . . . , tk) in which
ti is considered either bound if αi is b, or free if αi is f.

Adorned atoms are then associated with magic atoms, which will be used for identifying
those atoms that are relevant for answering the input query.

Definition 2.2 (Magic atom). For an adorned atom pα(t̄), let magic(pα(t̄)) be its magic
version defined as the atom magic pα(t̄′), where t̄′ is obtained from t̄ by eliminating all
arguments corresponding to an f label in α, and where magic pα is a new predicate symbol
(for simplicity denoted by attaching the prefix “magic ” to the predicate symbol pα).

Finally, we formally define SIPS for (disjunctive) ASP rules.

Definition 2.3 (SIPS). A SIPS for a rule r w.r.t. a binding α for an atom p(t̄) ∈ H(r) is

a pair (≺
pα(t̄)
r , f

pα(t̄)
r), where:

(1) ≺
pα(t̄)
r is a strict partial order over the atoms in Atoms(r), such that:

(a) p(t̄) ≺
pα(t̄)
r q(s̄), for all atoms q(s̄) ∈ Atoms(r) different from p(t̄);

(b) for each pair of atoms q(s̄) ∈ (H(r) \ {p(t̄)}) ∪ B−(r) and b(z̄) ∈ Atoms(r),

q(s̄) ≺
pα(t̄)
r b(z̄) does not hold; and,

(2) f
pα(t̄)
r is a function assigning to each atom q(s̄) ∈ Atoms(r) a subset of the variables

in s̄—intuitively, those made bound when processing q(s̄).

The Dynamic Magic Set method is reported in Figure 1. The algorithm exploits a set
S for storing all the adorned predicates to be used for propagating the binding of the query
and, after all the adorned predicates are processed, outputs a rewritten program DMS(Q,P)
consisting of a set of modified and magic rules, stored by means of the sets modifiedRulesQ,P

and magicRulesQ,P , respectively.
The computation starts by initializing S and modifiedRulesQ,P to the empty set (step

1). Then, the function BuildQuerySeed(Q,P, S) is used for storing the query seed
magic(gα(t̄)) in magicRulesQ,P , where α is a string having a b in position i if ti is a
constant, or an f if ti is a variable. In addition, BuildQuerySeed(Q,P, S) adds the
adorned predicate magic gα into the set S.

The core of the algorithm (steps 2–9) is repeated until the set S is empty, i.e., until
there is no further adorned predicate to be propagated. In particular, an adorned predicate
pα is removed from S (step 3), and its binding is propagated in each rule of the form

r : p(t̄) v p1(t̄1) v · · · v pn(t̄n) :− q1(s̄1), . . . , qj(s̄j), not qj+1(s̄j+1), . . . , not qm(s̄m).

(with n ≥ 0) having an atom p(t̄) in the head (note that the rule r is processed as often as
head atoms with predicate p occur; steps 4–8).

DYNAMIC MAGIC SETS FOR DISJUNCTIVE DATALOG PROGRAMS 231

Input: A stratified program P, and a query Q = g(t̄)?

Output: The optimized program DMS(Q,P).

var S: set of adorned predicates; modifiedRulesQ,P ,magicRulesQ,P : set of rules;

begin

1. S := ∅; modifiedRulesQ,P := ∅; magicRulesQ,P := {BuildQuerySeeds(Q,P, S)};
2. while S 6= ∅ do

3. pα := an element of S; S := S \ {pα};
4. for each rule r ∈ P and for each atom p(t̄) ∈ H(r) do

5. ra:=Adorn(r, pα, S);

6. magicRulesQ,P := magicRulesQ,P

S

Generate(ra);

7. modifiedRulesQ,P := modifiedRulesQ,P

S

{Modify(ra) };
8. end for

9. end while

10. DMS(Q,P):=magicRulesQ,P ∪ modifiedRulesQ,P ∪ EDB(P);

11. return DMS(Q,P);

end.

Figure 1: Dynamic Magic Set algorithm (DMS) for stratified programs.

Adornment. The function Adorn(r, pα, S) implements the adornment of the rule r w.r.t.

an (adorned) head atom pα(t̄) according to a fixed SIPS (≺
pα(t̄)
r , f

pα(t̄)
r) (step 5). In par-

ticular, a variable X of an IDB atom6 q(s̄) in r is bound if and only if either:

(1) X ∈ f
pα(t̄)
r (q(s̄)) with q(s̄) = p(t̄); or,

(2) X ∈ f
pα(t̄)
r (b(z̄)) for an atom b(z̄) ∈ B+(r) such that b(z̄) ≺

pα(t̄)
r q(s̄) holds.

Therefore, Adorn(r, pα, S) produces an adorned disjunctive rule ra from an adorned pred-
icate pα and a suitable unadorned rule r (according to the bindings defined in (1) and (2)
above), by inserting all newly adorned predicates in S. Hence, the rule ra is of the form

ra : pα(t̄) v pα1
1 (t̄1) v · · · v pαn

n (t̄n) :− q
β1

1 (s̄1), . . . , q
βj

j (s̄j), not q
βj+1

j+1 (s̄j+1), . . . , not q
βm
m (s̄m).

Generation. The adorned rules are then used to generate magic rules defining magic predi-
cates, which represent the atoms relevant for answering the input query (step 6). The bodies
of magic rules contain the atoms required for binding the arguments of some atom, following

the adopted SIPS. More specifically, if qβi

i (s̄i) is an adorned atom (i.e., βi is not the empty
string) in an adorned rule ra having pα(t̄) in head, Generate(ra) produces a magic rule r∗

such that (i) H(r∗) = {magic(qβi

i (s̄i))} and (ii) B(r∗) is the union of {magic(pα(t̄))} and

the set of all the atoms q
βj

j (s̄j) ∈ Atoms(r) such that qj(s̄j) ≺
α
r qi(s̄i).

Modification. Subsequently, magic atoms are added to the bodies of the adorned rules in
order to limit the range of the head variables, thus avoiding the inference of facts which are
irrelevant for the query. The resulting rules are called modified rules (step 7).

A modified rule r′ is obtained from an adorned rule ra by adding to its body a magic
atom magic(pα(t̄)) for each atom pα(t̄) ∈ H(ra) and by stripping off the adornments of the
original atoms. Hence, the function Modify(ra) constructs a rule r′ of the form

r′ : p(t̄) v p1(t̄1) v · · · v pn(t̄n) :− magic(pα(t̄)), magic(pα1
1 (t̄1)), . . . , magic(pαn

n (t̄n)),
q1(s̄1), . . . , qj(s̄j), not qj+1(s̄j+1), . . . , not qm(s̄m).

Finally, after all the adorned predicates have been processed, the algorithm outputs the
program DMS(Q,P) (steps 10–11).

6EDB atoms are always adorned with the empty string.

232 M. ALVIANO

2.3. Query Equivalence Results

We conclude the presentation of the DMS algorithm by sketching the correctness proof
presented in [Alv09], to which we refer for the details. Throughout this section, we use the
well established notion of unfounded set for disjunctive programs with negation defined in
[Leo97]. Since we deal with total interpretations, represented as the set of atoms interpreted
as true, the definition of unfounded set can be restated as follows.

Definition 2.4 (Unfounded sets). Let I be an interpretation for a program P, and X ⊆ BP

be a set of ground atoms. Then X is an unfounded set for P w.r.t. I if and only if for each
ground rule rg ∈ Ground(P) with X ∩ H(rg) 6= ∅, either (1.a) B+(rg) 6⊆ I, or (1.b)
B−(rg) ∩ I 6= ∅, or (2) B+(rg) ∩ X 6= ∅, or (3) H(rg) ∩ (I \ X) 6= ∅.

Intuitively, conditions (1.a), (1.b) and (3) check if the rule is satisfied by I regardless of
the atoms in X, while condition (2) assures that the rule can be satisfied by taking the atoms
in X as false. Therefore, the next theorem immediately follows from the characterization
of unfounded sets in [Leo97].

Theorem 2.5. Let I be an interpretation for a program P. Then, for any answer set
M ⊇ I of P, and for each unfounded set X of P w.r.t. I, M ∩ X = ∅ holds.

We now prove the correctness of the DMS strategy by showing that it is sound and
complete. In both parts of the proof, we exploit the following set of atoms.

Definition 2.6 (Killed atoms). Given a model M for DMS(Q,P), and a model N ⊆ M

of Ground(DMS(Q,P))M , the set killedM
Q,P(N) of the killed atoms w.r.t. M and N is

defined as:

{ p(t̄) ∈ BP \ N | either p is EDB, or some magic(pα(t̄)) belongs to N }.

Thus, killed atoms are either false instances of some EDB predicate, or false atoms
which are relevant for Q (since a magic atom exists in N). Therefore, we expect that these
atoms are also false in any answer set for P containing M ∩ BP .

Proposition 2.7. Let M be a model for DMS(Q,P), and N ⊆ M a model of the reduct
Ground(DMS(Q,P))M . Then killedM

Q,P(N) is an unfounded set for P w.r.t. M ∩ BP .

The soundness of the algorithm for stratified programs is proved by the next lemma.

Lemma 2.8. Let Q be a query over a stratified program P. Then, for each answer set M ′

of DMS(Q,P), there is an answer set M of P such that, for every substitution ϑ, Qϑ ∈ M

if and only if Qϑ ∈ M ′.

Proof. Consider the program P ∪ (M ′ ∩BP), that is, the program obtained by adding to P
a fact for each atom in M ′ ∩BP . Since P is stratified, there is at least an answer set M for
P ∪ (M ′∩BP). Clearly M ⊇ M ′∩BP ; moreover, we can show that M is an answer set of P
as well (by following [Alv09]). Thus, since Qϑ belongs either to M ′ or to killedM ′

Q,P(M ′),
for every substitution ϑ, the claim follows by Proposition 2.7.

For proving the completeness of the algorithm we provide a construction for passing
from an interpretation for P to one for DMS(Q,P).

DYNAMIC MAGIC SETS FOR DISJUNCTIVE DATALOG PROGRAMS 233

Definition 2.9 (Magic variant). Let I be an interpretation for P. We define an interpreta-
tion var∞Q,P(I) for DMS(Q,P), called the magic variant of I w.r.t. Q and P, as the fixpoint
of the following sequence:

var0
Q,P(I) = EDB(P)

vari+1
Q,P(I) = vari

Q,P(I) ∪ {p(t̄) ∈ I | some magic(pα(t̄)) belongs to vari
Q,P(I)}

∪ {magic(pα(t̄)) | ∃ r∗g ∈ Ground(DMS(Q,P)) such that
magic(pα(t̄)) ∈ H(r∗g) and B+(r∗g) ⊆ vari

Q,P(I)}, ∀i ≥ 0

By definition, for a magic variant var∞Q,P(I) of an interpretation I for P, var∞Q,P(I) ∩
BP ⊆ I holds. More interesting, the magic variant of an answer set for P is in turn an
answer set for DMS(Q,P) preserving the truth/falsity of Qϑ, for every substitution ϑ.

Lemma 2.10. For each answer set M of P, there is an answer set M ′ of DMS(Q,P)
(which is the magic variant of M) such that, for every substitution ϑ, Qϑ ∈ M if and only
if Qϑ ∈ M ′.

Proof. We can show that M ′ = var∞Q,P(I) is an answer set of DMS(Q,P). Thus, since Qϑ

belongs either to M ′ or to killedM ′

Q,P(M ′), for every substitution ϑ, the claim follows by
Proposition 2.7.

From the above lemma, together with Lemma 2.8, the correctness of the Magic Set
method with respect to query answering directly follows.

Theorem 2.11. Let Q be a query over a stratified program P. Then both DMS(Q,P)≡b
QP

and DMS(Q,P)≡c
QP hold.

3. Implementation

DMS has been implemented and integrated into the core of the DLV [Leo04] system.
The DMS algorithm is applied automatically by default when the user invokes DLV with
-FB (brave reasoning) or -FC (cautious reasoning) together with a (partially) bound query.
Magic Sets are not applied by default if the query does not contain any constant. The
user can modify this default behaviour by specifying the command-line options -ODMS (for
applying Magic Sets) or -ODMS- (for disabling magic sets). If a completely bound query
is specified, DLV can print the magic variant of the answer set (not displaying magic
predicates), which witnesses the truth (for brave reasoning) or the falsity (for cautious
reasoning) of the query, by specifying the command-line option --print-model.

An executable of the DLV system supporting the Magic Set optimization is available
at http://www.dlvsystem.com/magic/.

4. Experimental Results

In order to evaluate the impact of the proposed method, we have compared DMS both
with the traditional DLV evaluation without Magic Sets and with the SMS rewriting. We
considered several benchmarks, including an application scenario that has received consid-
erable attention in recent years, the problem of answering user queries over possibly in-
consistent databases originating from integration of autonomous sources. Below, we briefly
discuss Conformant Plan Checking, a representative benchmark of our experimentation.

234 M. ALVIANO

G

S

 0

 100

 200

 300

 400

 500

 0 15000 30000 45000 60000

E
x
ec

u
ti

o
n
 t

im
e

(s
)

Instance size (number of states)

No Magic Sets (DLV)
Static Magic Sets (SMS)

Dynamic Magic Sets (DMS)

Figure 2: Conformant Plan Checking : instance structure and average execution time.

Definition 4.1 (Conformant Plan Checking [Gol96]). A state transition diagram and a
plan are given. A plan is a sequence of nondeterministic actions, and is conformant if all
its possible executions lead from an initial state S to a goal state G.

In our experiments, the shape of transition diagrams is as shown in Figure 2. A successor
state is guessed for each state in the input diagram, so that the plan is conformant if G is
reachable from S in each answer set of the program

trans(X, Y) v trans(X, Z) :− ptrans(X, Y, Z).
reach(X, Y) :− trans(X, Y).
reach(X, Y) :− reach(X, Z), trans(Z, Y).

The experiments have been performed on a 3GHz Intel R© Xeon R© processor system with
4GB RAM under the Debian 4.0 operating system with a GNU/Linux 2.6.23 kernel. The
DLV prototype used has been compiled using GCC 4.3.3. For each instance, we have
allowed a maximum running time of 600 seconds (10 minutes) and a maximum memory
usage of 3GB.

As shown in Figure 2, DMS has an exponential speed-up over both DLV and SMS. In
this case, the exponential computational gain of DMS over DLV and SMS is due to the
dynamic optimization of the answer set search phase resulting from our magic sets definition.
Indeed, DMS include nondeterministic relevance information that can be exploited also
during the nondeterministic search phase of DLV, dynamically disabling parts of the ground
program. In particular, after having made some choices, parts of the program may no longer
be relevant to the query, but only because of these choices, and the magic atoms present in
the ground program can render these parts satisfied, which means that they will no longer
be considered in this part of the search.

5. Conclusion

The Magic Set method is one of the most well-known techniques for the optimization of
positive recursive Datalog programs due to its efficiency and its generality. In our work, we
have extended the technique to (disjunctive) ASP. The main novelty of the proposed Magic
Set method is the dynamic optimization of the answer set search. Indeed, with DMS, ASP

computations can exploit the information provided by magic set predicates also during the
nondeterministic answer set search, allowing for potentially exponential performance gains
with respect to unoptimized evaluations.

DYNAMIC MAGIC SETS FOR DISJUNCTIVE DATALOG PROGRAMS 235

We have established the correctness of DMS for stratified ASP programs by proving that
the transformed program is query-equivalent to the original program. A strong relationship
between magic sets and unfounded sets has been highlighted: The atoms that are relevant
w.r.t. an answer set are either true or form an unfounded set.

DMS has been implemented in the DLV system. Experiments on the implemented pro-
totype system evidenced that our implementation can outperform the standard evaluation
in general also by an exponential factor. This is mainly due to the optimization of the
model generation phase, which is specific of our Magic Set technique.

Our research has been focused on ASP with stratified negation, because the concept of
“relevance” can be extended quite easily for this class of programs. Conversely, if recursion
over negation is allowed, an inconsistency may arise in some part of the program apparently
not related to the query. A first step forward in extending DMS to programs with unstrat-
ified negation has been done in [Alv10], in which the technique presented in this paper has
been proved to be correct for super-consistent ASP, a large class of programs including
odd-cycle-free programs (that is, programs in which no cycle of dependencies involves an
odd number of negative dependencies). Analysing the possibility to extend DMS to a larger
class of unstratified ASP programs is a challenge we intend to address in the future.

Acknowledgement

The author wishes to thank Wolfgang Faber for his care in checking this work and for
the fruitful discussions without which the results herein summarized could not be achieved.

References

[Alv09] Mario Alviano, Wolfgang Faber, Gianluigi Greco, and Nicola Leone. Magic Sets for Disjunctive
Datalog Programs. Tech. Rep. 09/2009, Department of Mathematics, University of Calabria, Italy,
2009. http://www.wfaber.com/research/papers/TRMAT092009.pdf.

[Alv10] Mario Alviano and Wolfgang Faber. Dynamic Magic Sets for Super-Consistent Answer Set Programs.
In 3rd Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP10). 2010.
To appear.

[Bar03] Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge
University Press, 2003.

[Bee91] Catriel Beeri and Raghu Ramakrishnan. On the power of magic. 10(1–4):255–259, 1991.
[Eit94] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Adding Disjunction to Datalog. In Proceedings

of the Thirteenth ACM SIGACT SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS-94), pp. 267–278. ACM Press, 1994.

[Gol96] Robert P. Goldman and Mark S. Boddy. Expressive Planning and Explicit Knowledge. In Proceedings
AIPS-96, pp. 110–117. AAAI Press, 1996.

[Gre03] Sergio Greco. Binding Propagation Techniques for the Optimization of Bound Disjunctive Queries.
IEEE Transactions on Knowledge and Data Engineering, 15(2):368–385, 2003.

[Leo97] Nicola Leone, Pasquale Rullo, and Francesco Scarcello. Disjunctive Stable Models: Unfounded Sets,
Fixpoint Semantics and Computation. 135(2):69–112, 1997.

[Leo04] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri, and
Francesco Scarcello. The DLV System for Knowledge Representation and Reasoning. 2004. To ap-
pear. Available via http://www.arxiv.org/ps/cs.AI/0211004.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

