
Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 294–299

http://www.floc-conference.org/ICLP-home.html

REALIZING THE DEPENDENTLY TYPED λ-CALCULUS

ZACHARY SNOW 1

1 Department of Computer Science and Engineering
University of Minnesota
4-192 EE/CS Building
200 Union Street SE
Minneapolis, MN 55455
E-mail address: snow@cs.umn.edu

Abstract. Dependently typed λ-calculi such as the Edinburgh Logical Framework (LF)
can encode relationships between terms in types and can naturally capture correspondences
between formulas and their proofs. Such calculi can also be given a logic programming
interpretation: the system is based on such an interpretation of LF. We have considered
whether a conventional logic programming language can also provide the benefits of a
Twelf-like system for encoding type and term dependencies through dependent typing,
and whether it can do so in an efficient manner. In particular, we have developed a sim-
ple mapping from LF specifications to a set of formulas in the higher-order hereditary
Harrop (hohh) language, that relates derivations and proof-search between the two frame-
works. We have shown that this encoding can be improved by exploiting knowledge of the
well-formedness of the original LF specifications to elide much redundant type-checking
information. The resulting logic program has a structure that closely follows the original
specification, thereby allowing LF specifications to be viewed as meta-programs that gen-
erate hohh programs. We have proven that this mapping is correct, and, using the Teyjus
implementation of λProlog, we have shown that our translation provides an efficient means
for executing LF specifications, complementing the ability the Twelf system provides for
reasoning about them. In addition, the translation offers new avenues for reasoning about
such specifications, via reasoning over the generated hohh programs.

1. Introduction and problem description

There is significant and growing interest in tools for specifying and reasoning about
formal systems. These systems, such as programming languages and logics are typically
defined in terms of a rules-based operational semantics. This leads to one obvious technique
for specification: through the use of predicate logics, and languages like Prolog. In this
setting we can encode expressions in the formal system as terms in the language, and use
predicates to define the operational semantics. The systems that we might wish to specify
can have a rich structure, for instance they may include a notion of binding or abstraction,
and require operations like capture-avoiding substitutions and properties like α-equivalence.
Implementing these features anew, for each logic or language that one wishes to specify, is
time consuming and error prone, and so might benefit from language integration. Therefore

1998 ACM Subject Classification: Languages, Theory.
Key words and phrases: logical frameworks, logic programming.

c© Z. Snow
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010  
Editors: Manuel Hermenegildo, Torsten Schaub 
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany 
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.294



REALIZING THE DEPENDENTLY TYPED λ-CALCULUS 295

logics or languages that embody these notions are often preferred, and have been widely
used in the specification, and particularly the implementation, of such systems [Wha05].

Moving in a different direction, we might think of encoding properties of terms, and re-
lationships between terms, not through explicit predicate definitions, but instead implicitly

through types. Dependent types, like those provided by the dependently typed λ-calculus,
provide powerful and natural methods for expressing these kinds of constraints. Further-
more, analyzing such specification for properties of correctness can often be reduced to type
checking. This approach, distinct from that of predicate encodings, has also found wide-
spread adoption in specifying and implementing formal systems, as well [Nec97, Ler06].

But specification is only the first goal. Given a specification of a formal system, we
can think of doing several things: we can reason over the specifications, and thereby prove
various properties about the logic or language being specified. We can also animate the
specifications: for instance, having specified a language and its operational semantics, we
might execute the specification in order to evaluate programs written in that language. The
latter possibility actually benefits from the former; whereas traditionally we might specify
and reason in one language, and then implement in another, here we execute exactly the
same program about which we have reasoned. This handily removes the question of whether
the implementation matches the specification.

Therefore our focus has been on problems associated with specifying formal systems
using dependently typed languages, and then efficiently animating these specifications. In
particular, we have sought to leverage existing work in the realm of efficient implementa-
tions of predicate logics when doing so, by designing translations from dependently typed
languages to predicate logics.

2. Background and overview of the existing literature

As we have described, we can think of using various languages for specifying systems.
On the one hand, we have higher order predicate logics like hohh, a logic based on Horn
clauses, in which terms are those of the λ-calculus, but with support for handling the binding
structure inherent in such terms. λProlog [Nad88] is a higher order logic programming
language based on hohh, and extended in various ways (for instance, with a module system
that supports programming in the large, with ad hoc polymorphism, and with facilities
for interacting with the outside world). Furthermore, λProlog admits an efficient compiled
implementation, as realized by the Teyjus system [Gac08]. Finally, there has already been
work in analyzing and reasoning over programs written in λProlog [Gac09b, Bae10a], and
there exist tools [Gac09a, Bae10b] for reasoning over it, both interactively and automatically,
as well.

On the other hand, we have logics and languages founded on the dependently typed
λ-calculus, for instance the The Edinburgh Logical Framework (LF) [Har93]. Twelf [Pfe99]
is an implementation of LF that allows for reasoning over such specifications, and animating
them. In and of itself, LF is strictly a specification language; it has no operational semantics
of its own. However, one can apply the Curry-Howard Isomorphism [How80] to realize a
logic programming interpretation of LF. In this context one defines types that correspond
to judgments; then searching for an inhabitant of such a type corresponds to searching for
a proof of the given judgment. Constructors for the type play the role of inference rules
for constructing derivations of the judgment. And the discovered inhabitant, called a proof

term, is itself a proof of the relevant judgment.



296 Z. SNOW

Twelf animates specifications in an interpreted fashion. There has already been research
into improving this implementation by way of optimization (e.g., [Pie06, Pie03], which have
proved quite fruitful. In the end, however, the existing implementation of Twelf suffers due
to its interpreted nature, and we find that it cannot be used on many realistically sized
programs.

3. Goal of the research

The specific goal of my research as described herein has been to develop an efficient
implementation of logic programming search for LF specifications, in particular through
translation to λProlog, so that they may be executed using the Teyjus system. In addition,
an important aspect of this work has been to ensure that this translation is transparent, so
that the structure of the LF specification is clear from the structure of the generated logic
program. This facilitates an understanding of the translation that allows the programmer
to view LF specifications as a meta-programs, and enables reasoning over LF specifications
using existing tools for reasoning over hohh programs.

4. Current status of the research

We have developed several translations from LF specifications into hohh. The problem
of translating an LF specification into equivalent hohh has been investigated by Felty [Fel89,
Fel90] — in this context, “equivalence” should be understood to mean the following: if an LF
judgment has a derivation under a particular LF specification, then the translated judgment
has a derivation under the translated specification in hohh. However this translation is not
suitable for the purposes of logic programming, as it assumes that the proof term is already
known, whereas when animating specifications this is exactly what is not known. Thus,
taking inspiration from this translation we have developed our “simplified” translation that
is suitable for logic programming.

Next we have improved this translation in two ways. First, the simplified translation
is inefficient in that there are redundancies in proof search, that can be avoided through
various observations about the nature of valid LF specifications. Indeed, this aspect of LF
specifications, (that is, that they contain significant amounts of redundant typing informa-
tion) has been investigated by, e.g., Reed [Ree08], for the purpose of limiting the size of
proof terms, which can become quite large. Addressing these redundancies is critical to the
usefulness of the translation as an implementation mechanism for a separate reason: these
redundancies can lead to inefficiencies, and even asymptotic changes in the complexity of
algorithms implemented in specifications. Second, the simplified translation generates hohh

logic programs that are relatively opaque, in the sense that it is not obvious that the logic
program corresponds to the original specification. This is largely due to the fact that the
simplified translation does not make much use of the rich type system afforded us by hohh.

We address these issues in a second, “optimized” translation. We first develop a tech-
nique for identifying and eliminating redundancies in proof search. And we improve the
transparency of the translation by making a deeper use of the type system of hohh, to, for
instance, reflect the non-dependent aspects of LF types as hohh types. Our final translation
includes these optimizations, along with a few others, and results in a translation that is ef-
ficient and transparent. Because the generated λProlog programs share the same structure
as the original LF specification we can view LF specifications as meta-programs. What’s



REALIZING THE DEPENDENTLY TYPED λ-CALCULUS 297

more, as we’ve proved that our various translations are equivalent to LF, it is possible to
reason over the resulting logic programs in order to reach conclusions about the properties
of the original specification. And finally, we’ve developed a system that implements the
translation.

Our implementation, named Parinati [Sno10] and written in Objective Caml, is released
under the GNU General Public License version 3. Given a valid LF specification written
in the concrete sytnax of Twelf, along with various types for which inhabitants should be
sought, it generates a λProlog program that can be compiled and run using the Teyjus
system.

5. Preliminary results accomplished

Preliminary experimental results comparing the efficiency of our implementation with
that of Twelf are quite good: we have obtained an increase in efficiency of anywhere from 2
times to over 100 times in many cases. What’s more, for sufficiently large problem sizes our
implementation is almost always more efficient in terms of running time, apparently due to
the extreme memory consumption that Twelf can exhibit — this is characteristic of certain
kinds of interpreted implementations [Bri94] of logic programming search, including Twelf.

Beyond various performance metrics we have also demonstrated the transparency of
the translation. In fact, our translation generates λProlog programs that almost exactly
matches code that might be written “by hand”, and the underlying structure of the original
LF specification is completely clear. As already described, this allows the programmer to
view the LF specification as a kind of meta-program for generating λProlog, and furthermore
allows for reasoning over the resulting program as a method for reasoning over the original
LF specification. What’s more, this transparency is not only enabling, it is also elucidating:
the generated hohh program is easier to reason about because it highlights those types that
could have logical importance, and elides those that do not.

6. Open issues and expected achievements

There are a number of possible directions to take this work. First, there are still some
examples in which our implementation is only as efficient, or even less efficient, than that
of Twelf. We have begun a series of experiments to determine what factors are causing this
slowdown, which we believe to be due to differences in the treatment of occurs checking
between the two systems. Next, the efficiency of the implementation depends on our ability
to accurately identify and eliminate redundancies. Any improvements we might make to
this identification process should lead to performance increases.

Much of our work has been on optimizing our translation to λProlog; however, a differ-
ent approach is to compile directly to, for instance, the Teyjus virtual machine’s instruction
set. By employing such an approach we might avoid some of the thorny questions as-
sociated with redundancy elimination. More generally, direct compilation could allow us
to regain opportunities for those improvements that might be lost by translating first to
λProlog and then relying on its implementation that is not specially optimized to treat LF-
specific programs. However, this would clearly eliminate the possibility of treating LF as a
meta-programming language for writing complex λProlog programs, as the requirement of
transparency could not be fulfilled.



298 Z. SNOW

Twelf has several extensions aimed at the practicalities of programming. One particu-
larly useful extension is the ability to use metavariables in the type for which an inhabitant
is to be sought; these are instantiated during search. While the translation we have de-
scribed includes this extension, we have not yet fully understood the theoretical aspects of
it in terms of correctness of the translated programs.

Finally, we have only begun to understand how our translation fares when the purpose
is to reason over an LF specification by analyzing the resulting hohh program. In the
future we could apply existing tools to both LF specifications and their hohh counterparts
generated by the translation, to judge the relative merits of reasoning in either system.

Acknowledgements

This work has been supported by the NSF grants CCR-0429572 and CCF-0917140.
Opinions, findings, and conclusions or recommendations expressed in this papers are those
of the authors and do not necessarily reflect the views of the National Science Foundation.

References

[Bae10a] David Baelde, Dale Miller, and Zach Snow. Focused inductive theorem proving, 2010. Accepted
for publication at IJCAR’10.

[Bae10b] David Baelde, Zach Snow, and Alexandre Viel. The Tac system, 2010.
[Bri94] Pascal Brisset and Olivier Ridoux. The architecture of an implementation of lambda-prolog: Pro-

log/mali. In ILPS Workshop: Implementation Techniques for Logic Programming Languages. 1994.
[Fel89] Amy Felty. Specifying and Implementing Theorem Provers in a Higher-Order Logic Programming

Language. Ph.D. thesis, University of Pennsylvania, 1989.
[Fel90] Amy Felty and Dale Miller. Encoding a dependent-type λ-calculus in a logic programming lan-

guage. In Mark Stickel (ed.), Proceedings of the 1990 Conference on Automated Deduction, LNAI,
vol. 449, pp. 221–235. Springer, 1990.

[Gac08] Andrew Gacek, Steven Holte, Gopalan Nadathur, Xiaochu Qi, and Zach Snow. The Teyjus system
– version 2, 2008. Available from http://teyjus.cs.umn.edu/.

[Gac09a] Andrew Gacek. Abella, 2009. Available from http://abella.cs.umn.edu/.
[Gac09b] Andrew Gacek. A Framework for Specifying, Prototyping, and Reasoning about Computational

Systems. Ph.D. thesis, University of Minnesota, 2009.
[Har93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal of

the ACM, 40(1):143–184, 1993.
[How80] William A. Howard. The formulae-as-type notion of construction, 1969. In J. P. Seldin and R. Hind-

ley (eds.), To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus, and Formalism, pp.
479–490. Academic Press, New York, 1980.

[Ler06] Xavier Leroy. Formal certification of a compiler back-end or: programming a compiler with a
proof assistant. In J. Gregory Morrisett and Simon L. Peyton Jones (eds.), POPL, pp. 42–54.
ACM, 2006.

[Nad88] Gopalan Nadathur and Dale Miller. An Overview of λProlog. In Fifth International Logic Pro-
gramming Conference, pp. 810–827. MIT Press, Seattle, 1988.
URL http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclp88.pdf

[Nec97] George C. Necula. Proof-carrying code. In Conference Record of the 24th Symposium on Principles
of Programming Languages 97, pp. 106–119. ACM Press, Paris, France, 1997.

[Pfe99] Frank Pfenning and Carsten Schürmann. System description: Twelf — A meta-logical framework
for deductive systems. In H. Ganzinger (ed.), 16th Conference on Automated Deduction (CADE),
no. 1632 in LNAI, pp. 202–206. Springer, Trento, 1999.

[Pie03] Brigitte Pientka and Frank Pfenning. Optimizing higher-order pattern unification. In 19th Inter-
national Conference on Automated Deduction, pp. 473–487. Springer-Verlag, 2003.



REALIZING THE DEPENDENTLY TYPED λ-CALCULUS 299

[Pie06] Brigitte Pientka. Eliminating redundancy in higher-order unification: A lightweight approach. In
Ulrich Furbach and Natarajan Shankar (eds.), IJCAR, Lecture Notes in Computer Science, vol.
4130, pp. 362–376. Springer, 2006.

[Ree08] Jason Reed. Redundancy elimination for LF. Electron. Notes Theor. Comput. Sci., 199:89–106,
2008. doi:http://dx.doi.org/10.1016/j.entcs.2007.11.014.

[Sno10] Zach Snow. Parinati, 2010. Available from http://www.cs.umn.edu/~snow/parinati.
[Wha05] Michael William Whalen. Trustworthy translation for the requirements state machine language

without events. Ph.D. thesis, Minneapolis, MN, USA, 2005. Adviser-Heimdahl, Mats Per.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.




