
Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 94–103
http://www.floc-conference.org/ICLP-home.html

SAMPLER PROGRAMS: THE STABLE MODEL SEMANTICS OF

ABSTRACT CONSTRAINT PROGRAMS REVISITED

TOMI JANHUNEN

Aalto University School of Science and Technology
Department of Information and Computer Science
PO Box 15400, FI-00076 Aalto, Finland
E-mail address: Tomi.Janhunen@tkk.fi

Abstract. Abstract constraint atoms provide a general framework for the study of aggre-
gates utilized in answer set programming. Such primitives suitably increase the expressive
power of rules and enable more concise representation of various domains as answer set
programs. However, it is non-trivial to generalize the stable model semantics for programs
involving arbitrary abstract constraint atoms. For instance, a nondeterministic variant of
the immediate consequence operator is needed, or the de�nition of stable models cannot
be stated directly using primitives of logic programs. In this paper, we propose sampler
programs as a relaxation of abstract constraint programs that better lend themselves to
the program transformation involved in the de�nition of stable models. Consequently, the
declarative nature of stable models can be restored for sampler programs and abstract
constraint programs are also covered if decomposed into sampler programs. Moreover, we
study the relationships of the classes of programs involved and provide a characterization
in terms of abstract but essentially deterministic computations. This result indicates that
all nondeterminism related with abstract constraint atoms can be resolved at the level of
program reduct when sampler programs are used as the intermediate representation.

1. Introduction

The stable model semantics [Gel88] of logic programs, also known as the answer set
semantics, constitutes the semantical cornerstone of answer set programming (ASP). Un-
doubtedly, the simple and intuitive de�nition of stable models [Lif08] has played a major
role in the success of ASP during the past two decades. Applications that emerged in
the meantime demonstrate that knowledge engineers have easily grasped the essentials of
rules subject to stable models. Nevertheless, the practise of ASP has led to a rich body of
extensions to the basic syntax of normal logic programs such as strong negation [Gel90], dis-
junctions [Gel91], and various kinds of aggregates, which have also appeared in other similar
disciplines. Extensions in the last category typically enable concise expression of a particular
combinatorial condition involving a set of atoms or objects. Examples of aggregates sup-
ported by contemporary ASP solvers include the cardinality and weight constraints [Sim99]
and the sum, count, and max aggregates [Del03]. To get a concrete idea of their power,

1998 ACM Subject Classi�cation: I.2.4, F.4.1.
Key words and phrases: stable models, abstract constraints, program reduction, translation, choice rules.
This research has been partially funded by the Academy of Finland under project #122399.

c© T. Janhunen
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.94

SAMPLER PROGRAMS 95

consider a sum aggregate 500 ≤ sum{Y : capacity(X,Y) : in(X) : disk(X)} formalizing
the su�ciency of disk space selected for a particular PC con�guration. Such an aggregate
requires no updates when the number of disks for con�guring PCs is changed.

The study of aggregates has recently lifted to the level of abstract constraint atoms which
nicely capture a variety of important aggregates. However, it is non-trivial to generalize sta-
ble models for arbitrary abstract constraint atoms as witnessed by the number of proposals
in this respect. Only the interpretation of special cases, viz. monotone [Mar08] and convex
abstract constraints [Liu06], is unanimous. As regards the general case, abstract computa-
tions, i.e., sequences of interpretations associated with a program, have been proposed as a
semantical basis [Liu10]. A key justi�cation is that persistent deterministic computations
essentially capture stable models of normal logic programs. This interconnection suggests an
alternative way of de�ning the semantics of abstract constraint programs, but computations
bring along nondeterminism and other degrees of freedom that pre-empt a conclusive se-
mantical de�nition. Besides, the declarative nature of stable models is jeopardized because
the outcome of a computation potentially depends on the entire sequence.

Our hypothesis is that abstract constraint programs lack a natural counterpart of the
Gelfond-Lifschitz reduct [Gel88] which plays a key role in the de�nition of stable models.
For instance, in case of a normal logic program P , a stable model M is de�ned as the least
model of PM , i.e., the program P reduced with respect to M . Attempts to generalize this
idea for abstract constraint programs become intricate because the reduced program cannot
be directly represented as an abstract constraint program. For instance, the representation
proposed in [She07] requires new atoms and it e�ectively produces a positive normal program.
Alternatively, propositional (default) logic has been used to formalize the reduct [She09a].

In this paper, we address the aforementioned de�ciency related to reducts by proposing
a completely new class of programs, viz. sampler programs. They form a relaxation of
abstract constraint programs so that a reasonable notion of a reduct can be established
within the class of sampler programs. This class of programs is introduced as follows.
First, in Section 2, we recall a much simpler class of choice logic programs [Soi99] designed
for modelling product con�gurations. The syntax is based on a slight extension of normal
rules�enabling a straightforward generalization of stable models. Nevertheless, it provides
us with insights into how stable models can be lifted to the case of sampler programs as
carried out in Section 3. The relationship of sampler programs and choice logic programs is
then explored in terms of translations in Section 4. The translations presented in this case
indicate that choice logic programs and sampler programs are equally expressive [Jan06].

In the second part of this paper, we apply the theory developed for sampler programs to
abstract constraint programs, which are �rst recalled in Section 5. The idea is to decompose
abstract constraint atoms into sets of samplers systematically. In this way, we are able to
de�ne stable models in the context of abstract constraint programs in a traditional way
[Gel88] using the notions of a program reduct and the least model. This aspect restores the
declarative nature of stable models and makes our approach original due to its simplicity.
The semantics obtained in this way coincides with the one proposed in [She07, She09a,
She09b]. Moreover, motivated by the computation-based approach [Liu10], we propose a
notion of canonical computations for abstract constraint programs in Section 6. The novelty
is that all nondeterminism can be handled globally via the de�nition of stable models, and
resorting to nondeterministic variants of the immediate consequence operator or conditional
satisfaction [Son07b] can be avoided altogether. A comparison with related work is carried
out in Section 7. Finally, we present our conclusions in Section 8.

96 T. JANHUNEN

2. Choice Logic Programs (CLPs)

In this section, we introduce the class of choice logic programs [Soi99] that suit well for
nondeterministic speci�cations. A choice logic program (CLP) P is a set of choice rules

a1 | . . . | al ← b1, . . . , bm,∼c1, . . . ,∼cn (2.1)

where l ≥ 0, m ≥ 0, n ≥ 0, and a1, . . . , al, b1, . . . , bm, and c1, . . . , cn are propositional atoms,
or just atoms for short. A rule is normal, i� l = 1, and an integrity constraint (IC), i� l = 0.
A fact is a normal rule with l = 1, m = 0, and n = 0, and thus written brie�y as a1 ←.

The signature of a CLP P , denoted by At(P), is the set of atoms appearing in its rules.
An interpretation I ⊆ At(P) of P determines which atoms of At(P) are true (a ∈ I) and
which false (a 6∈ I). A positive literal b is satis�ed in an interpretation, denoted I |= b, i�
b ∈ I. A negative literal ∼c is satis�ed in I, denoted I |= ∼c, i� c 6∈ I. A conjunction
l1, . . . , ln of literals is satis�ed in I, denoted I |= l1, . . . , ln, i� I |= l1, . . . , and I |= ln. A
disjunction a1 | . . . | al of atoms is satis�ed in I, denoted I |= a1 | . . . | al, i� I |= ai holds
for some i ∈ {1, . . . , l}. A choice rule of the form (2.1) is satis�ed in I i� I |= b1, . . . , bm
and I |= ∼c1, . . . ,∼cn imply I |= a1 | . . . | al. An interpretation M ⊆ At(P) for a CLP P is
called a model of P , denoted by M |= P , i� every choice rule (2.1) of P is satis�ed by M .

De�nition 2.1 (Reduct [Soi99]). The reduct PM of a CLP P with respect to an interpre-
tation M ⊆ At(P) contains a positive rule a ← b1, . . . , bm for each choice rule (2.1) such
that (i) a ∈ {a1, . . . , al}, (ii) M |= a, and (iii) M |= ∼c1, . . . ,∼cn.

The reduced program PM is a positive normal program having rules of the form a ←
b1, . . . , bm where m ≥ 0. Such a program P has a unique ⊆-minimal model, also known as
the least model of P hereafter denoted by LM(P). Stable models are de�ned as follows.

De�nition 2.2 (Stable Model [Soi99]). An interpretationM ⊆ At(P) is a stable model of a
CLP P i� M |= P and M = LM(PM). The set of stable models of P is denoted by SM(P).

This de�nition coincides with [Gel88] when l = 1 for every rule (2.1). Moreover, any ICs
contained in P do not contribute to PM and their satisfaction is enforced by the condition
M |= P above. In fact, this condition implies M |= PM , and thus also LM(PM) ⊆ M , but
the converse does not hold in general. Consider, e.g., the CLP P = {← b,∼c} andM = {b}.

Example 2.3. We note that P = {a | b | c← ∼d} has seven stable models {a}, {b}, {c},
{a, b}, {a, c}, {b, c}, {a, b, c}. To verify the last but one model, i.e., M = {b, c}, we observe
that M |= P and PM = {b←; c←}1 so that LM(PM) = {b, c} coincides with M .

Let us stress that a choice rule {a1, . . . , al} ← b1, . . . , bm,∼c1, . . . ,∼cn in the style of
smodels [Sim02] can be captured with a1 | . . . | al | e← b1, . . . , bm,∼c1, . . . ,∼cn and e←.

3. Sampler Programs (SPs)

Our next objective is to develop the theory of sampling atoms, or samplers for short,
and to propose a completely new class of logic programs based on them.

De�nition 3.1 (Sampler). A sampling atom, or a sampler for short, π is a triple 〈D,L,G〉
where the domain πD = D of π is a �nite set of atoms and L ⊆ G ⊆ D. The sets L and G
are the least and the greatest satis�er of π, also denoted by πL and πG, respectively.

1For clarity, semicolons are used to separate rules in programs.

SAMPLER PROGRAMS 97

The basic intuition behind a sampler π is that it provides a compact representation for
the set of literals {a | a ∈ πL} ∪ {∼a | a ∈ πD \ πG}. Therefore, we de�ne that π is satis�ed
in an interpretation I, denoted by I |= π, i� πL ⊆ I ∩πD ⊆ πG. This de�nition justi�es the
name of the new primitive: the projection of I with respect to πD can be viewed as a sample
of the interpretation I. In order to satisfy π, the sample must be in the range determined
by πL and πG, i.e., a superset of πL and a subset of πG. The set of satis�ers of a sampler π,
denoted πS, is {S ⊆ πD | πL ⊆ S ⊆ πG}. A sampler π is called exact, if πL = πG, and then
abbreviated as a pair 〈D,S〉 where S = L = G. Thus positive and negative literals based
on an atom a are captured by primitive exact samplers of the forms 〈{a}, {a}〉 and 〈{a}, ∅〉.

We assign a disjunctive interpretation to any set of samplers Π = {π1, . . . , πk}, i.e.,
I |= Π i� I |= πj for some 1 ≤ j ≤ k. A sampler program (SP) P is a set of sampling rules of
the form Π← Π1, . . . ,Πn where Π and each Πi with 1 ≤ i ≤ n is such a set. In this notation,
a singleton {π} can be abbreviated by π whereas primitive exact samplers 〈{a}, {a}〉 and
〈{a}, ∅〉 are abbreviated by a and ∼a, respectively. The set of head samplers that appear
in some rule head Π of P is denoted by HeadS(P). Likewise, we de�ne the set BodySS(P)
of sampler sets Π that occur in the rule bodies of P . A sampling rule Π ← Π1, . . . ,Πn is
satis�ed in an interpretation I i� I |= Π1, . . . , I |= Πn imply I |= Π. Intuitively speaking,
the body conditions Π1, . . . ,Πn correspond to sets of samples taken of I. If at least one
sample in each set Πi produces the expected outcome, the same must hold for the head Π.

Example 3.2. Consider an in�nite SP P having rules {p0, q0} ← and {pi+1, qi+1} ← {pi, qi}
for all i ≥ 0. Here each atom a denotes a primitive exact sampler 〈{a}, {a}〉. The latter
rules correspond to choice rules pi+1|qi+1 ← pi and pi+1|qi+1 ← qi for each i ≥ 0. Thus the
�alternating� interpretation M = {p0, q1, p2, q3, . . .} is a model of P among others.

De�nition 3.3 (Reduct). For an SP P and an interpretation M ⊆ At(P), the reduct of

(1) a sampler π = 〈D,L,G〉, denoted πM , is the sampler 〈G,L,G〉, if M |= π,
(2) a set Π of samplers, denoted ΠM , is the sampler set {πM | π ∈ Π and M |= π}, and
(3) a sampler program P , denoted by PM , contains for all Π ← Π1, . . . ,Πn ∈ P such

thatM |= Π1, . . . ,M |= Πn, and for all π ∈ Π such thatM |= π, a reduced sampling
rule 〈S, S〉 ← ΠM

1 , . . . ,Π
M
n where the exact satis�er S = M ∩ πG belongs to πS.

The goal of the de�nition of πM is to partially evaluate negative default literals in L =
{∼a | a ∈ D \G} with respect to M |= π. For the same reason, we also have πL ⊆ S ⊆ πG
for the satis�er S in the last item. Thus M |= P implies M |= PM . The rules of a reduced
SP PM are all positive in the following sense: their heads comprise of single sampling atoms
π satisfying πD = πL = πG and their bodies involve only sampling atoms π with πD = πG.
Positive SPs share a number of properties with their counterparts amongst normal programs.

Proposition 3.4 (Properties of Positive SPs). Let P and Q be two positive SPs.

(1) If M1 |= P and M2 |= P are two models of P , then also M1 ∩M2 |= P .
(2) The program P has a unique ⊆-minimal model, i.e., the least model LM(P) of P

which coincides with
⋂
{M ⊆ At(P) |M |= P}.

(3) The least model LM(P) is the least �xed point lfp(TP) of the immediate consequence
operator TP de�ned for any I ⊆ At(P) by TP (I) =⋃

{S | π ← Π1, . . . ,Πn ∈ P, πS = {S}, and I |= Π1, . . . , I |= Πn}.

Example 3.5. Consider a positive SP P with one sampling rule 〈{a}, {a}〉 ← 〈{a}, ∅, {a}〉.
The interpretation M1 = ∅ is not a model of P but M2 = {a} is the least one.

98 T. JANHUNEN

We conclude that SPs provide a reasonable generalization of normal programs and CLPs.
Accordingly, the de�nition of stable models (De�nition 2.2) is applicable to SPs as such.

Example 3.6. For the sampler program P and interpretation M from Example 3.2, the
reduct PM is the positive SP {p0 ←; q1 ← p0; p2 ← q1; q3 ← p2; . . .}. Thus M is stable
as M |= P and LM(PM) = M . In Example 3.5, M2 = {a} is uniquely stable as PM2 = P .

4. Relationship of CLPs and SPs

Let us begin by explaining how choice programs can be viewed as a special case of
sampler programs. In this respect, we can fully exploit the conciseness of samplers and
abbreviations introduced so far. A choice rule r of the form (2.1) can be rewritten as

TrSP(r) = {a1, . . . , al} ← 〈{b1, . . . , bm}, {b1, . . . , bm}〉, 〈{c1, . . . , cn}, ∅〉. (4.1)

In particular, the head of (4.1) is a shorthand for {〈{a1}, {a1}〉, . . . , 〈{al}, {al}〉} by the
notational conventions introduced above�not to be confused with the head of an smodels
choice rule. The correctness of the program level transformation TrSP(P) =

⋃
r∈P TrSP(r)

is formulated below. We omit the proof of this and subsequent theorems for space reasons.

Theorem 4.1 (Correctness of TrSP). For any CLP P , SM(P) = SM(TrSP(P)).

Transforming SPs into CLPs is of equal interest. Due to the disjunctive interpretation
of sets of sampling atoms, a set of choice rules is required to represent a sampling rule
r = Π ← Π1, . . . ,Πn in general. The length of the resulting CLP, denoted by TrCLP(r) in
the sequel, can be kept polynomial with respect to ‖r‖ using new atoms.

De�nition 4.2. A sampling rule Π← Π1, . . . ,Πn with Π = {π1, . . . , πl} is translated into

(1) a normal rule si ← πL,∼(πD \ πG) for each π ∈ Πi;
(2) a choice rule h1| . . . |hl ← s1, . . . , sn;
(3) for each πi ∈ Π, an integrity constraint ← (πi)L, s1, . . . , sn,∼hi,∼((πi)D \ (πi)G);
(4) a normal rule a← hi for each πi ∈ Π and a ∈ (πi)L;
(5) a choice rule c1 | . . . | ck | e← hi with {c1, . . . , ck} = (πi)G \ (πi)L for each πi ∈ Π;
(6) and an integrity constraint ← hi, b for each πi ∈ Π and b ∈ (πi)D \ (πi)G.

In the above, h1, . . . , hl and s1, . . . , sn are new atoms corresponding to samplers π1, . . . , πl
in the head Π and the sets Π1, . . . ,Πn in the body, respectively. The atom e in (5) is new.

The rules of Item 1 evaluate sampler sets Π1, . . . ,Πn in the body. The rule of Item 2
is a skeleton of the original sampling rule. The application of head samplers is enforced by
the integrity constraints of Item 3 (cf. De�nition 3.3). The rules in Items 4�6 enforce the
satisfaction of a single head sampler πi ∈ Π once applied. The translation of an entire SP P
is TrCLP(P) = (

⋃
r∈P TrCLP(r))∪{e←}. To formulate the correctness of TrCLP, we need to

map any interpretation M ⊆ At(P) to an interpretation ExtP (M) ⊆ At(TrCLP(P)) which
includes (i) M as such, (ii) the atom s associated with Π ∈ BodySS(P) i� M |= Π, (iii) the
atom h associated with π ∈ HeadS(P) i� M |= π and M |= Π1, . . . ,M |= Πn, and (iv) e.

Theorem 4.3 (Faithfulness of TrCLP). Let P be any SP and TrCLP(P) its translation into a
CLP. (i) If M ∈ SM(P), then N = ExtP (M) ∈ SM(TrCLP(P)). (ii) If N ∈ SM(TrCLP(P)),
then its projection M = N ∩At(P) belongs to SM(P) and N = ExtP (M).

Due to new atoms, any SP P and TrCLP(P) are visibly equivalent [Jan06] but not strongly
equivalent [Lif01]. To conclude, SPs may provide more compact representations than CLPs.

SAMPLER PROGRAMS 99

5. Abstract Constraint Programs (ACPs)

The objective of this section is to show how SPs can be exploited to de�ne the semantics
of abstract constraint programs in the general case [Bla08]. Our strategy is to extend the
stable model semantics by decomposing abstract constraint atoms into sets of samplers.

De�nition 5.1. An abstract constraint atom π, or an ac-atom for short, has the form
〈D, {S1, . . . , Sk}〉 where the domain πD = D is a �nite set propositional atoms and each set
Sj ⊆ D where 1 ≤ j ≤ k is a satis�er in the set πS = {S1, . . . , Sk} of satis�ers.

The idea is that an interpretation M satis�es an abstract constraint atom π i� the
projection M ∩ πD ∈ πS. An abstract constraint program (ACP) consists of rules of the
form π ← π1, . . . , πn where π and each πi is an abstract constraint atom. Certain subclasses
have been identi�ed: An ac-atom is monotone [Mar08] i� S1 ∈ πS and S1 ⊆ S2 ⊆ πD imply
S2 ∈ πS. Furthermore, an ac-atom is convex [Liu06] i� S1 ∈ πS, S1 ⊆ S2 ⊆ S3, and S3 ∈ πS
imply S2 ∈ πS. The rules of monotone ACPs and convex ACPs solely consist of monotone
and convex ac-atoms, respectively. It is clear that monotone ACPs specialize convex ones.

We are now ready to address the semantics of ACPs from the perspective of SPs. Con-
sider two samplers π and π′ such that πD = (π′)D. We say that π extends π′ i� (π′)S ⊆ πS,
i.e., πL ⊆ (π′)L and (π′)G ⊆ πG. Intuitively speaking, the range of π is greater than or
equal to that of π′, denoted π′ ≤ π. Samplers which are ≤-maximal provide a basis for the
decomposition of ac-atoms and they also guarantee the uniqueness of decompositions.

De�nition 5.2 (Decomposition). An ac-atom π = 〈D, {S1, . . . , Sk}〉 is decomposed into a
set of samplers DS(π) = {π1, . . . , πm} such that (πj)D = D, (πj)L ∈ πS, and (πj)G ∈ πS for
each 1 ≤ j ≤ m,

⋃m
i=1 (πj)S = πS, and each πj ∈ DS(π) is ≤-maximal within DS(π).

We observe that 1 ≤ m ≤ k holds for the cardinality m of DS(π). If m = 1, then

k = 2|G\L|, which shows that DS(π) can provide exponentially more succinct representation
of π. If m = k, then each Si, 1 ≤ i ≤ k, corresponds to an exact sampler 〈D,Si〉 of its own.
The decomposition of ac-atoms preserves satisfaction under classical semantics, i.e., I |= π
i� I |= DS(π) holds for any ac-atom π and any interpretation I of π. If an ac-atom π is
monotone, then DS(π) includes a sampler π′ = 〈D,Si, D〉 for the domain D = πD and each
⊆-minimal satis�er Si ∈ πS. Thus we obtain DS(〈{a}, {∅, {a}}〉) = {〈{a}, ∅, {a}〉}. On the
other hand, if π is convex, then DS(π) contains a sampler π′ = 〈D,Si, Sj〉 for each pair of
a ⊆-minimal satis�er Si ∈ πS and a ⊆-maximal satis�er Sj ∈ πS such that Si ⊆ Sj . Note
that for monotone ac-atoms π, the domain D = πD is the unique ⊆-maximal element in πS.

As regards a rule π0 ← π1, . . . , πn involving ac-atoms, it can be modularly decomposed
into a sampling rule DS(π0) ← DS(π1), . . . ,DS(πn). The respective decomposition of an
entire ACP P is denoted by DS(P). Stable models generalize for ACPs via De�nition 2.2.

De�nition 5.3 (Stable Models of ACPs). Given an ACP P , an interpretation M ⊆ At(P)
of P is a stable model of P i� M |= P and M = LM(DS(P)M).

The reduct DS(P)M is a positive SP for which the least model is well-de�ned according
to Proposition 3.4. In addition, the condition M |= P is equivalent to M |= DS(P) as
classical models are preserved by decomposition. Hence we have SM(P) = SM(DS(P)) for
any ACP P in general. It is also possible to combine De�nitions 2.1 and 3.3 in order to
generalize the Gelfond-Lifschitz reduct for ACPs. For an entire ACP P , we can de�ne PM as
DS(P)M so that De�nition 2.2 becomes directly applicable to ACPs. For an individual rule
π0 ← π1, . . . , πn ∈ P such that M |= π1, . . . ,M |= πn and M |= π0 under the assumption

100 T. JANHUNEN

that M |= P , the reduct DS(P)M contains a reduced rule 〈S, S〉 ← DS(π1)
M , . . . ,DS(πn)M

with S = M ∩ πG for every ≤-maximal sampler π ∈ DS(π0) such that M |= π. When
the reduction takes place, an ac-atom πi is mapped into DS(πi)

M which is not generally
representable as an ac-atom due to �xed domains. A convex ACP is illustrated below.

Example 5.4. Consider an ACP P with the following rules:

〈{a}, {∅, {a}}〉 ←; 〈{b}, {∅, {b}}〉 ←; 〈{c}, {∅, {c}}〉 ←;
〈∅, ∅〉 ← 〈{a, b, c}, {{a}, {b}, {c}, {a, b}, {a, c}, {b, c}}〉.

The �rst monotone rule expresses the free choice of a and it decomposes into 〈{a}, ∅, {a}〉 ←.
The rules for b and c are analogous. The last rule captures a cardinality constraint [Sim99]
← 1{a, b, c}2 with a convex ac-atom. If decomposed, 6 samplers 〈{a, b, c}, L,G〉 where L ⊆
G, L ∈ {{a}, {b}, {c}} and G ∈ {{a, b}, {a, c}, {b, c}} result. The models of P are M1 = ∅
and M2 = {a, b, c}. For M1, we obtain only 〈∅, ∅〉 ← to PM1 so that M1 ∈ SM(P). The
reduct PM2 contains rules 〈{a}, {a}〉 ←, 〈{b}, {b}〉 ←, and 〈{c}, {c}〉 ←. ThusM2 ∈ SM(P).

6. Characterization Based on Computations

The stable models of ACPs have been characterized in terms of abstract computa-
tions, e.g., in the monotone case [Mar08, Liu06]. In what follows, we review the de�-
nition of computations for arbitrary ACPs [Liu10] but using ordinals as indices. Given
an interpretation I ⊆ At(P) of an ACP P , the set P (I) of supporting rules of P is
{π ← π1, . . . , πn ∈ P | I |= π1, . . . , I |= πn}. Moreover, the set HAt(P) of head atoms of P
is
⋃
{πD | π ← π1, . . . , πn ∈ P}. Computations associated with P are sequences of interpre-

tations 〈Iα〉 indexed by ordinals α. Their properties are formalized using a nondeterministic
immediate consequence operator Tnd

P that assigns to any interpretation I ⊆ At(P) a set of
interpretations J ⊆ HAt(P (I)) such that J |= Heads(P (I)) where Heads(P (I)) is the set of
heads of the rules in P (I). Persistent computations 〈Iα〉 meet the following criteria [Liu10]:

(R) Revision: For every ordinal α, the interpretation Iα+1 is grounded in Iα and P , i.e.,
Iα+1 ∈ Tnd

Q (Iα) for some program Q ⊆ P (Iα).

(P) Persistence of beliefs: The sequence 〈Iα〉 starts from I0 = ∅ and it is monotonically
increasing, i.e., Iα ⊆ Iα+1 for all ordinals α, and Iβ =

⋃
α<β Iα for limit ordinals β.

(C) Convergence: The limit I∞ that de�nes the result of the computation 〈Iα〉 is a
supported model of P , i.e., it satis�es the �xed-point condition I∞ ∈ Tnd

P (I∞).
(Pr) Persistence of reasons: There is a sequence 〈Pα〉 of programs such that for all ordinals

α, the program Pα ⊆ P (Iα), Pα ⊆ Pα+1, and Iα+1 ∈ Tnd
Pα

(Iα).

Item (P) and Knaster-Tarski lemma guarantee that the limit I∞ =
⋃
α Iα exists. It is de�ned

as a stable model of P in [Liu10]. De�nition 5.3 leads to another class of computations.

De�nition 6.1 (Canonical Computations for ACPs). Given an ACP P and an interpreta-
tionM ⊆ At(P), the canonicalM -computation for P is a sequence 〈Iα〉 such that (i) I0 = ∅,
(ii) Iα+1 = TDS(P)M (Iα) for each ordinal α, and (iii) Iβ =

⋃
α<β Iα for limit ordinals β.

The operator TDS(P)M is monotone and compact since the rules of DS(P)M have the

form 〈S, S〉 ← DS(π1)
M , . . . ,DS(πn)M and the samplers involved have �nite domains. Thus,

given a canonicalM -computation 〈Iα〉 for an ACP P andM ⊆ At(P), we know that (i) 〈Iα〉
is monotonically increasing, (ii) the limit Iω = lfp(TDS(P)M), and (iii) Iω = TDS(P)M (Iω).

SAMPLER PROGRAMS 101

Corollary 6.2 (Characterization). For an ACP P , an interpretation M ⊆ At(P) is a stable
model of P i� M |= P and M = Iω for the result Iω of the canonical M -computation 〈Iα〉.

Theorem 6.3 (Properties of Canonical Computations). Let P be an ACP and M ⊆ At(P)
a model of P such that Iω = M for the limit Iω of the canonical M -computation 〈Iα〉. Then
〈Iα〉 satis�es (R), (P), (C), and (Pr) when Pα and Q in (Pr) and (R), respectively, are
substituted by Pα(M) = {π ← π1, . . . , πn ∈ P (M) | Iα |= DS(π1)

M , . . . , Iα |= DS(πn)M}.

The characterization above is limited to the �successful cases�, i.e., when the result turns
out to be a stable model. The properties of canonical M -computations are not semantically
important when M 6|= P or Iω 6= M . In both cases, the interpretation M is disquali�ed
as a stable model. It is nevertheless clear that (P) holds even for failing computations.
Finally, we note that the semantics based on De�nition 5.3 can be stricter than the one
based on abstract computations. As shown in [She09a], there is a persistent computation
and a stable model M = {p(−1), p(1), p(2)} for an ACP with p(1) ←; p(−1) ← p(2); and
p(2)← π where the ac-atom π corresponds to a sum aggregate Sum({X | p(X)}) ≥ 1 based
on the domain πD = D = {p(−1), p(1), p(2)}. In our approach, the reduct PM consists of
p(1)←, p(−1)← p(2), and p(2)← 〈D, {p(2)}, D〉 which indicate the instability of M .

7. Comparison with Previous Approaches

This research was initially motivated by the notions of computations proposed for ACPs.
In view of the results presented in [Liu10], we have lifted the notion of M -computations,
originally proposed for normal programs, to the case of ACPs. One of our key design
decisions was to push all nondeterminism involved in abstract computations to the notion of a
program reduct�much in the spirit of choice logic programs [Soi99] covered by De�nition 2.1.
Corollary 6.2 indicates that each stable model M of an ACP P is generated by a unique
computation satisfying the criteria of [Liu10] by Theorem 6.3. As noted above, those criteria
lead to a weaker notion of stability if directly generalized for ACPs. Stability notions based
on additional criteria [Liu10] depart from the traditional �xed-point de�nition [Gel88].

The alternative interpretation of ac-atoms as sampler sets led us to an approach which
is closely related to the one presented in [She07]. In this work, the counterpart of a sampler
π = 〈D,L,G〉 is an abstract L-pre�xed power set of the form L] (G \ L), i.e., the set
of sets {L ∪K | K ⊆ G \ L} which coincides with πS. These structures are merely used
as a compact representation of ac-atoms rather than new primitives for logic programs.
Moreover, the generalization of the Gelfond-Lifschitz reduct for an ACP P takes place at
a lower level of abstraction: the Shen-You reduct PM [She07] is formulated as a positive
normal logic program and new atoms become a necessity. The way in which ac-atoms are
decomposed as sets of samplers (cf. De�nition 5.2) pave the way for a tight interconnection.

Theorem 7.1. For an ACP P and an interpretation M ⊆ At(P), M ∈ SM(P) i� there is
a unique minimal model N of the Shen-You reduct PM such that M = N ∩At(P).

This result covers also rules of the form π ← π1, . . . , πn which have arbitrary ac-atoms in
their heads. Further interconnections can be reported from [She09a] for ACPs con�ning to a
limited syntax, i.e., rules of the form a← π1, . . . , πn. Given this restriction, stable models of
[Den01, Son07b] coincide with models obtained as minimal models of PM . By Theorem 7.1
the same observation can be made for stable models conforming to De�nition 5.3. The
iterative construction of stable models in [Son07b] is analogous to canonicalM -computations

102 T. JANHUNEN

introduced by us. A di�erence is that using SPs, a �xed reduct PM = DS(P)M of an ACP
P can be formalized and there is no need to parameterize the construction of M otherwise.
In this respect, the approaches in [Son07b, Son07a] resort to conditional satisfaction. There
are further consequences of the relationships pointed above. First of all, the semantics
of monotone ACPs is captured in the standard way [Mar08] in our approach. The case
of convex ACPs [Liu06] is also covered as illustrated by Example 5.4. We also observe
that cardinality and weight rules of the smodels system [Sim99] essentially lead to convex
constraints. Finally, the notions based on minimal models [Del03, Fab04, Fer05] are prone to
self-supporting stable models as shown in [She09a]. We avoid such models by Theorem 7.1.

As the last comparison, we address the program transformation trm(·) from [Pel03].
The idea is to map sets of classical literals FD〈L,G〉 = {b | b ∈ L} ∪ {¬c | c ∈ D \G} which
satisfy an ac-atom π = 〈D, {S1, . . . , Sk}〉 and are ⊆-minimal in this respect. Given a rule
a← π, each set FD〈L,G〉 gives rise to one normal rule a← L,∼(D\G) in the translation. This

is analogous to translating ≤-maximal samplers π′ = 〈D,L,G〉 ∈ DS(π) using TrCLP(·) from
De�nition 4.2. However, since new atoms are not introduced, the translation trm(·) may
create an exponential number of normal rules already for rules of the form a ← π1, . . . , πn
with several ac-atoms in the rule body. A further aspect is that rules π ← π1, . . . , πn
involving proper ac-atoms π in their heads are not covered at all.

8. Conclusions

In this paper, we propose samplers as new building blocks of logic programs. The
respective class of sampler programs (SPs) is designed using a conceptually simpler class of
choice logic programs (CLPs) as a starting point. Based on the intuitions provided by CLPs,
the stable model semantics (De�nition 2.2) extends for SPs in a natural way. As witnessed
by De�nition 3.3, the notion of a program reduct [Gel88, Soi99] carries over for SPs so
that, in particular, the resulting program is a (positive) SP. The availability of polynomial,
faithful, and modular (PFM) translation functions TrSP and TrCLP suggests that CLPs and
SPs have the same expressive power in the sense of [Jan06] but SPs may provide more
concise representation due to samplers and the disjunctive interpretation of sampler sets.

The second main theme of this paper is the application of SPs in order to de�ne the
semantics of abstract constraint programs (ACPs). Notably, this class of programs lacks a
natural counterpart of Gelfond-Lifschitz reduction [Gel88] which would yield ACPs as its
outcome. In pursuit of a simple semantical de�nition, we propose an approach in which
ACPs are interpreted as SPs using the decomposition of ac-atoms as sampler sets as basis.
The decomposition method DS(·) is highly modular since each ac-atom π can be locally
decomposed into DS(π) independently of other ac-atoms in the program. The combination
of De�nitions 2.2, 3.3, and 5.2 enables the de�nition of stable models for ACPs as given in
De�nition 5.3: M ∈ SM(P) i�M |= P andM = LM(DS(P)M). The new logic programming
primitives proposed in this paper, samplers, play a key role in this streamlined de�nition.
The de�nition is stated without a reference to other logics such as propositional or default
logics in contrast with [She07, She09a]. Nevertheless, the semantics of ACPs originally
proposed in [She07] is supported by our results (Theorem 7.1). In view of computations, we
established in Corollary 6.2 that each M ∈ SM(P) has a unique deterministic computation,
i.e., the canonical M -computation, associated with it. By these observations, we conclude
that SPs form an interesting class of logic programs between CLPs and ACPs.

SAMPLER PROGRAMS 103

Acknowledgement

The author would like to thank Martin Gebser for his comments on a draft of this paper.

References

[Bla08] H. Blair, V. Marek, and J. Remmel. Set based logic programming. Annals of Mathematics and

Arti�cial Intelligence, 52(1):81�105, 2008.
[Del03] T. Dell'Armi, W. Faber, G. Ielpa, N. Leone, and G. Pfeifer. Aggregate functions in disjunctive

logic programming: Semantics, complexity, and implementation in dlv. In Proc. IJCAI-03, pp.
847�852. Morgan Kaufmann, 2003.

[Den01] M. Denecker, N. Pelov, and M. Bruynooghe. Ultimate well-founded and stable semantics for logic
programs with aggregates. In Proc. ICLP'01, LNCS, vol. 2237, pp. 212�226. Springer, 2001.

[Fab04] W. Faber, N. Leone, and G. Pfeifer. Recursive aggregates in disjunctive logic programs: Semantics
and complexity. In Proc. JELIA'04, LNCS, vol. 3229, pp. 200�212. Springer, 2004.

[Fer05] P. Ferraris. Answer sets for propositional theories. In Proc. LPNMR'05, LNCS, vol. 3662, pp.
119�131. Springer, 2005.

[Gel88] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proc. ICLP'88,
pp. 1070�1080. 1988.

[Gel90] M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Proc. ICLP'90, pp. 579�
597. The MIT Press, 1990.

[Gel91] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases. New
Generation Computing, 9(3/4):365�385, 1991.

[Jan06] T. Janhunen. Some (in)translatability results for normal logic programs and propositional theories.
Journal of Applied Non-Classical Logics, 16(1�2):35�86, 2006.

[Lif01] V. Lifschitz, D. Pearce, and A. Valverde. Strongly equivalent logic programs. ACM Transactions

on Computational Logic, 2(4):526�541, 2001.
[Lif08] Vladimir Lifschitz. Twelve de�nitions of a stable model. In Proc. ICLP'08, LNCS, vol. 5366, pp.

37�51. Springer, 2008.
[Liu06] L. Liu and M. Truszczynski. Properties and applications of programs with monotone and convex

constraints. Journal of Arti�cial Intelliegence Research, 27:299�334, 2006.
[Liu10] L. Liu, E. Pontelli, T. C. Son, and M. Truszczynski. Logic programs with abstract constraint

atoms: The role of computations. Arti�cial Intelligence, 174:295�315, 2010.
[Mar08] V. Marek, I. Niemelä, and M. Truszczynski. Logic programs with monotone abstract constraint

atoms. Theory and Practice of Logic Programming, 8(2):167�199, 2008.
[Pel03] N. Pelov, M. Denecker, and M. Bruynooghe. Translation of aggregate programs to normal logic

programs. In Proc. ASP'03, CEUR Workshop Proceedings, vol. 78. 2003.
[She07] Y.-D. Shen and J.-H. You. A generalized Gelfond-Lifschitz transformation for logic programs with

abstract constraints. In Proc. AAAI'07, pp. 483�488. AAAI Press, 2007.
[She09a] Y.-D. Shen and J.-H. You. A default approach to semantics of logic programs with constraint

atoms. In Proc. LPNMR'09, LNCS, vol. 5753, pp. 277�289. Springer, 2009.
[She09b] Y.-D. Shen, J.-H. You, and L.-Y. Yuan. Characterizations of stable model semantics for logic

programs with arbitrary constraint atoms. Theory and Practice of Logic Programming, 9(4):529�
564, 2009.

[Sim99] P. Simons. Extending the stable model semantics with more expressive rules. In Proc. LPNMR'99,
LNCS, vol. 1730, pp. 305�316. Springer, 1999.

[Sim02] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model semantics.
Arti�cial Intelligence, 138(1�2):181�234, 2002.

[Soi99] T. Soininen and I. Niemelä. Developing a declarative rule language for applications in product
con�guration. In Proc. PADL'99, LNCS, vol. 1551, pp. 305�319. Springer, 1999.

[Son07a] T. C. Son and E. Pontelli. A constructive semantic characterization of aggregates in answer set
programming. Theory and Practice of Logic Programming, 7(3):355�375, 2007.

[Son07b] T. C. Son, E. Pontelli, and P. H. Tu. Answer sets for logic programs with arbitrary abstract
constraint atoms. Journal of Arti�cial Intelligence Research, 29:353�389, 2007.

