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—— Abstract

We consider the following fundamental scheduling problem. The input consists of n jobs to
be scheduled on a set of machines of bounded capacities. Each job is associated with a release
time, a due date, a processing time and demand for machine capacity. The goal is to schedule all
of the jobs non-preemptively in their release-time-deadline windows, subject to machine capacity
constraints, such that the total busy time of the machines is minimized. Our problem has
important applications in power-aware scheduling, optical network design and unit commitment
in power systems. Scheduling to minimize busy times is APX-hard already in the special case
where all jobs have the same (unit) processing times and can be scheduled in a fixed time interval.

Our main result is a 5-approximation algorithm for general instances. We extend this result
to obtain an algorithm with the same approximation ratio for the problem of scheduling moldable
jobs, that requires also to determine, for each job, one of several processing-time vs. demand
configurations. Better bounds and exact algorithms are derived for several special cases, including
proper interval graphs, intervals forming a clique and laminar families of intervals.
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1 Introduction

Traditional research interest in cluster systems has been high performance, such as high
throughput, low response time, or load balancing. In this paper we focus on minimizing
machine busy times, a fundamental problem in cluster computing, which aims at reducing
power consumption (see, e.g., [22] and the references therein).

Given is a set of n jobs J = {J1,..., J,} that need to be scheduled on a set of identical
machines, each of which having capacity g, for some g > 1. Each job J has a release time
r(J), a due date d(J), a processing time (or, length) p(J) > 0 (such that d(J) > r(J) +p(J))
and a demand 1 < R(J) < g for machine capacity; this is the amount of capacity required
for processing J on any machine.

A feasible solution schedules each job J on a machine M non-preemptively during a
time interval [¢t(J),t(J) + p(J)), such that ¢(J) > r(J) and t(J) + p(J) < d(J), and the
total demand of jobs running at any given time on each machine is at most g. We say
that a machine M is busy at time ¢ if there is at least one job J scheduled on M such that
t € [t(J),t(J) + p(J)); otherwise, M is idle at time ¢. We call the time period in which a
machine M is busy its busy period and denote its length by busy(M). The goal is to find a
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feasible schedule of all jobs on a set of machines such that the total busy time of the machines,
given by >, busy(M), is minimized. We consider the offline version of this problem where
the entire input is given in advance.

Note that the number of machines to be used is part of the output (and can take any
integral value m > 1). Indeed, a solution which minimizes the total busy time may not be
optimal in the number of machines used. Also, it is NP-hard to approximate our problem
within ratio better than %, already in the special case where all jobs have the same (unit)
processing times and can be scheduled in a fixed time interval, by a simple reduction from
the subset sum problem.’

1.1 Applications

Power-aware scheduling. The objective of power-aware scheduling is to minimize the
power consumption for running a cluster of machines, while supporting Service Level Agree-
ments (SLAs). SLAs, which define the negotiated agreements between service providers and
consumers, include quality of service parameters such as demand for a computing resource
and a deadline. The power consumption of a machine is assumed to be proportional to the
time the machine is in on state. While on, a machine can process several tasks simultaneously.
The number of these tasks hardly affects the power consumption, but must be below the
given machine’s capacity. Thus, we get an instance of our problem of minimizing the total
busy time of the schedule.

Optical network design. Communication in an optical network is achieved by lightpaths,
which are simple paths in the network. Hardware cost for operating such a network is
proportional to the number of switching units such as Optical Add-Drop Multiplexers (or
OADMs) installed at the nodes in the network. A lightpath j with transmission rate R(j)
uses that capacity in an OADM at each internal node on the path. Assuming that the
OADMs have transmission capacity g, one would like to “groom” multiple lightpaths together
so that their aggregate transmission rate is at most g. It is easy to see that this grooming
problem [11, 10, 9] for minimizing switching costs in optical networks with path-topologies
can be reduced to our real-time scheduling problem.

Unit commitment given future demand. The Unit commitment in power systems
involves determining the start-up and shut-down schedule of generation units to meet the
required demand. This is one of the major problems in power generation (see, e.g., [24, 2]
and the references therein). Under-commitment of units would result in extra cost due to the
need to purchase the missing power in the spot market, while overcommitment would result
in extra operating cost. In a simplified version of the problem, assume that all generation
units have the same capacity and that the blocks of future demands are given in advance.
This yields an instance of our real-time scheduling problem, where each generation unit
corresponds to a machine, and each block of demand corresponds to a job.

1.2 Related Work

Job scheduling on parallel machines has been widely studied (see, e.g., the surveys in [7, 4]).
In particular, much attention was given to interval scheduling [14], where jobs are given

L Given the integers a1, ..., an € {1,..., g} summing to 2g, the subset sum problem (SSP) is to determine
if there is a subset of numbers adding to exactly g. In the reduction, we create for each 4, a job J; with
demand a;, release time 0, processing time 1 and deadline 1. The yes instance of SSP results in the
busy time of 2 while the no instance results in the busy time of 3.
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as intervals on the real line, each representing the time interval in which a job should be
processed. Each job has to be processed on some machine, and it is commonly assumed
that a machine can process a single job at any time. Some of the earlier work on interval
scheduling considers the problem of scheduling a feasible subset of jobs whose total weight is
maximized, i.e., a mazimum weight independent set (see, e.g., [1] and the survey in [13]).

There is wide literature also on real-time scheduling, where each job has to be processed on
some machine during a time interval between its release time and due date. There are studies
of real-time scheduling with demands, where each machine has some capacity; however, to
the best of our knowledge, all of this prior art refers to objectives other than minimizing the
total busy time of the schedule (see, e.g., [1, 18, 5, 6]). There has been earlier work also on
the problem of scheduling the jobs on a set of machines so as to minimize the total cost (see,
e.g., [3]), but in these works the cost of scheduling each job is fized. In our problem, the cost
of scheduling each of the jobs depends on the other jobs scheduled on the same machine in

the corresponding time interval; thus, it may change over time and among different machines.

Scheduling moldable jobs, where each job can have varying processing times, depending on
the amount of resources allotted to this job, has been studied using classic measures, such
as minimum makespan, or minimum (weighted) sum of completion times (see, e.g., [21, 16]
and a comprehensive survey in [20]). Scheduling moldable jobs differs from malleable jobs in
which the amount of resources allotted to jobs may change over their execution [15].

Our study relates also to batch scheduling of conflicting jobs, where the conflicts are given
as an interval graph. In the p-batch scheduling model (see e.g. Chapter 8 in [4]), a set of jobs
can be processed jointly. All the jobs in the batch start simultaneously, and the completion
time of a batch is the last completion time of any job in the batch. (For known results on
batch scheduling, see e.g., [4, 19].) Our scheduling problem differs from batch scheduling in
several aspects. While each machine can process (at most) g jobs simultaneously, for some

g > 1, the jobs need not be partitioned to batches, i.e., each job can start at different time.

Also, while in known batch scheduling problems the set of machines is given, we assume
that any number of machines can be used for the solution. Finally, while common measures
in batch scheduling refer to the maximum completion time of a batch, or a function of the
completion times of the jobs, we consider the total busy times of the machines. Other work on
energy minimization consider utilization of machines with variable capacities, corresponding

to their voltage consumption [17], and scheduling of jobs with precedence constraints [12, 25].

The complexity of our scheduling problem was studied in [23]. This paper shows that the
problem is NP-hard already for ¢ = 2, where the jobs are intervals on the line. Flammini et
al. [9] consider our scheduling problem where jobs are given as intervals on the line with unit
demand. For this version, they give a 4-approximation algorithm for general inputs and better
bounds for some subclasses of inputs. In particular, the paper presents a 2-approximation
algorithm for instances where no interval is properly contained in another (i.e., the input
forms a proper interval graph), and a (2 + €)-approximation for bounded lengths instances,
i.e., the length (or, processing time) of any job is bounded by some fixed integer d.? A
2-approximation algorithm was given in [9] for instances where any two intervals intersect,
i.e., the input forms a clique (see also in [10]). In this paper we improve and extend the
results of [9].

2 A slight modification of the algorithm yields an improved bound of 1 + ¢, where & > 0 is an input
parameter.
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1.3 Our Results

Our main result is a 5-approximation algorithm for real-time scheduling of moldable jobs.
Before summarizing our results, we introduce some notation. Denote by I(.J) the interval
[r(J),d(J)) in which J can be processed.

» Definition 1. An instance J is said to have interval jobs if d(J) = r(J) + p(J) holds for
all jobs J € J. An instance J with interval jobs is called
proper if for any two jobs J,J' € J, neither I(J) C I(J') nor I(J') C I(J) holds.
laminar if the intervals I(J) for all jobs J form a laminar family, i.e., for any two jobs
J,J' €T, wehave I(J)NI(J)=0or I(J) CI(J),or I(J)CI(J).
a clique if intervals I(J) for all jobs J form a clique, i.e., for any two jobs J,J' € J, we
have I(J)NI(J") # 0.

We first prove the following result for instances with interval jobs.

» Theorem 2. There exists a 5-approzimation algorithm for real-time scheduling instances
with interval jobs. Furthermore, if the instance is proper, there erists a 2-approximation
algorithm.

We use the above algorithm, as a subroutine, to design our algorithm for the general real-time
scheduling problem.

» Theorem 3. There exists a 5-approximation algorithm for the real-time scheduling problem.

Next, we consider an extension to real-time scheduling of moldable jobs. In this generalization,
a job does not have a fixed processing time and demand; rather, it can be scheduled in
one of several possible configurations. More precisely, for each job J € J, we have ¢ > 1
configurations, where configuration 4 is given by a pair (p;(.J), R;(J)). The problem involves
deciding which configuration i; is to be used in the schedule for each job J. Once a
configuration i is finalized for a job .J, its processing time and demand are given by p;, (J)
and R;,(J), respectively. We assume that ¢ is polynomially bounded in the input size.

» Theorem 4. There exists a 5-approzimation algorithm for real-time scheduling of moldable
jobs.

Finally, we present improved bounds for some cases of instances with interval jobs.

» Theorem 5. Consider an instance J consisting of interval jobs with unit demands. There
exist (i) a polynomial time exact algorithm if J is laminar, and (it) a PTAS if J is a clique.

1.4 Preliminaries

» Definition 6. Given a time interval I = [s,t), the length of I is len(I) = t — s. This
extends to a set 7 of intervals; namely, the length of 7 is 1en(Z) =} ;.7 len(/). We define
the span of Z as span(Z) = len(UZ).

Note that span(Z) < len(Z) and equality holds if and only if Z is a set of pairwise disjoint
intervals.

Given an instance J and machine capacity g > 1, we denote by OPT(J) the cost of an
optimal solution, that is, a feasible schedule in which the total busy time of the machines is
minimized. Also, we denote by OPT..(J) the cost of the optimum solution for the instance
J, assuming that the capacity is g = oco. For any job J, let w(J) = R(J) - p(J) denote the
total work required by job J, then for a set of jobs J, w(J) = >_ ;¢ 7 w(J) is the total work
required by the jobs in J. The next observation gives two immediate lower bounds for the
cost of any solution.
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» Observation 7. For any instance J and machine capacity g > 1, the following bounds
hold.

The work bound: oPT(J) > w(gj).

The span bound: OPT(J) > OPToo(J).
The work bound holds since g is the maximum capacity that can be allocated by a single

machine at any time. The span bound holds since the busy-time does not increase by relaxing

the capacity constraint.

While analyzing any schedule S that is clear from the context, we number the machines
as My, Ms, ..., and denote by J; the set of jobs assigned to machine M; under the schedule
S. W.lo.g., the busy period of a machine M; is contiguous; otherwise, we can divide the
busy period to contiguous intervals and assign the jobs of each contiguous interval to a
different machine. Obviously, this will not change the total busy time. Therefore, we say
that a machine M; has a busy interval which starts at the minimum start time of any job
scheduled on M; and ends at the maximum completion time of any of these jobs. It follows
that the cost of M; is the length of its busy interval, i.e., busy(M;) = span(;) for all i > 1.3

2 Interval Scheduling: Theorem 2

2.1 General Instances with Interval Jobs

In this section we present an algorithm for instances with interval jobs, where each job
J € J may have an arbitrary processing time and any demand 1 < R(J) < g. Algorithm
First_Fit_with_Demands (FFp), shown in the frame below, divides the jobs into two
groups, NARROW and WIDE, as given below. It schedules NARROW and WIDE jobs on distinct
sets of machines. The WIDE jobs are scheduled arbitrarily, while NARROW jobs are scheduled
greedily by considering them one after the other, from longest to shortest. Each job is
scheduled on the first machine it can fit. Let « € [0, 1] be a parameter to be fixed later.

» Definition 8. For a subset J' C J of jobs, let NARROW(J') ={J € J' | R(J) < a - g}
and WIDE(J') ={J € J" | R(J) > a - g}.

Algorithm (FFp):
1. Schedule jobs in WIDE(J) arbitrarily on some machines. Do not use these machines
for scheduling any other jobs.
2. Sort the jobs in NARROW(J) by non-increasing lengths, i.e., p(J1) > ... > p(J,).
3. Forj=1,...,n do:
a. Let m denote the number of machines used for jobs {Ji,...,Jj_1}.
b. Assign J; to the first machine that can process it, i.e., find the minimum value of
i:1 <4¢<m such that, at any time ¢ € I(.J;), the total capacity allocated on M;
is at most g — R(J;).
c. If no such machine exists open (m + 1)th machine and schedule J; on it.

Let FFp(J) denote the total busy time of the schedule computed by FFp on job J.
» Theorem 9. If o = 1/4, for any instance J with interval jobs, we have

FFp(J) < 0PTou(T) +4- w(j) <5.0p1(J).

3 By span(J;) we refer to the span of the set of intervals representing the jobs, as scheduled on M;.

173

FSTTCS 2010



174

Minimizing Busy Time in Real-time Scheduling

To prove the theorem we bound the costs of the WIDE and NARROW jobs separately. It is
easy to bound the contribution of WIDE jobs to the overall cost. The following lemma follows
directly from the definition of WIDE jobs.

» Lemma 10. The cost incurred by jobs in WIDE(J) is at most 3- ;cyupp(r) P(J) < M

The rest of the section is devoted to bounding the cost of the NARROW jobs. The next
observation follows from the fact that the first-fit algorithm F F'p assigns a job J to machine
M; with ¢ > 2 only when it could not have been assigned to machines M} with k& < 4, due to
capacity constraints.

» Observation 11. Let J be a job assigned to machine M; by FFp, for some i > 2. For
any machine My, (k < 1), there is at least one time t; (J) € I(J) and a set s; x(J) of jobs
assigned to My, such that, for every J' € s;(J), (a) t;x(J) € I(J'), and (b) p(J") > p(J).
In addition, R(J) +3_ ycs, () R(J') >

In the subsequent analysis, we assume that each job J € J;, for i > 2, fixes a unique time
t;;i—1(J) and a unique set of jobs s;,;-1(J) C Ji—1. We say that J blames jobs in s; ;—1(J).

» Lemma 12. For any 1 <i < m — 1, we have g - span(Ji+1) < 7311},(;{1)

Proof. Following Observation 11, for a job J € [J;, denote by b(J) the set of jobs in J;41
which blame J, i.e., b(J) = {J" € Jit1 | J € si+1,i(J’)}. Let Jp, (resp. Jg) be the job with
earliest start time (resp. latest completion time) in b(J). Since each job in b(J) intersects J,
we have span(b(J)) < p(J) +p(Jr) +p(Jr) <3-p(J) =3- REJ; Thus,

S R(J)span(b(J)) <3 w(). 1)

JET;

Now, we observe that

> R(J)span(b )):/te . > R(J)dt.

JeT: JET; tespan(b(J))

We bound the right-hand-side as follows. For any ¢ € span(J;+1), there exists a job
J' € Jiy1 with t € [r(J),d(J")). For all jobs J € s;41,(J'), since J' € b(J), we have
t € span(b(J)). Hence, 3 ;¢ 7 tcspanivo(r)) B(S) = 2 ses,,y (o) B(J). By Observation 11
ZJ€3i+l,i(J') R(J)>g—R(J') > (1 —a«)-g. We thus conclude

> R(J)span(b(J)) > span(Jit1) - (1 — ) - g. (2)
JeJ;
From (1) and (2) we get the lemma. <

Proof of Theorem 9: The overall cost of the schedule computed by F'F'p is the contribution
of WIDE jobs and NARROW jobs. Note that the busy time of M;, for 1 < ¢ < m is exactly
busy(M;) = span(J;). Now from Lemmas 10 and 12, we have that the total cost of FFp is
at most

HODED) S gty < T 4 +"’z(<{>g
< w(W;éEg(J)) OPT () + wélNAROFj)OW(J»
< OPTOO(j)—I—maX{;’lEa} w(gj)
< opra(d) +4- 2T,

g
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The second inequality follows since span(J1) < OPToo (7). The last inequality holds since
a = 1/4. The proof now follows from Observation 7.

2.2 Proper Instances with Interval Jobs

We now consider instances in which no job interval is contained in another. The intersection
graphs for such instances are known as proper interval graphs. The simple greedy algorithm
consists of two steps. In the first step, the jobs are sorted by their starting times (note that,
in a proper interval graph, this is also the order of the jobs by completion times). In the
second step the jobs are assigned to machines greedily in a NextFit manner; that is, each job
is added to the currently filled machine, unless its addition is invalid, in which case a new
machine is opened.

Greedy Algorithm for Proper Interval Graphs:

1. Sort the jobs in non-decreasing order of release times, i.e., r(J1) < ... <7r(J,).

2. For j =1,...,n do: Assign J; to the currently filled machine if this satisfies the
capacity constraint g; otherwise, assign J; to a new machine and mark it as being

current filled.

» Theorem 13. Greedy is a 2-approximation algorithm for proper interval graphs.

Proof. Let D; be the total demand of jobs active at time ¢. Also, let Mto denote the number
of machines active at time ¢ in an optimal schedule, and let MtA be the number of machines
active at time ¢ in the schedule output by the algorithm. The proofs of the following lemmas
are omitted due to lack of space.

A
» Lemma 14. For any t, we have Dy > g {MgflJ.

» Lemma 15. For any t, we have MP > M /2.

Therefore, the cost of the output solution is ftEspan(j) MAdt < ftEspan(j) 2. MPdt =

2-0prT(J), as claimed. <

3 Real-time Scheduling: Theorem 3

In this section we show how the results of §2 can extended to scheduling general instances J
where each job J can be processed in the time window [r(J), d(J)).

» Lemma 16. If there exists a [B-approximation algorithm for the real-time scheduling
with g = oo, there exists an algorithm that computes a feasible solution to the real-time
scheduling problem instance, J, with cost at most 8- OPToo(J) +4 - %, thus yielding a
(8 + 4)-approzimation.

Proof. We first compute a schedule, called S, with busy-time at most 8 - OPTo,(J), for
the given instance with g = co. Let [too(J),teo(J) + p(J)) C [r(J),d(J)) be the interval
during which job J is scheduled in S.,. We next create a new instance J’ obtained from
J by replacing r(J) and d(J) with t.(J) and t(J) + p(J), respectively, for each job
J. Note that OPT(J') < B OPT(J) < B -0PT(J). We then run algorithm FFp
on instance J’. Theorem 9 implies that the resulting solution has busy-time at most
OPToo(J') + 4+ 2L < 3. 0PT () +4- 22 < (8 +4) - 0PT(T) as claimed. <

The following theorem with the above lemma implies a 5-approximation algorithm for
the real-time scheduling.
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» Theorem 17. If g = oo, the real-time scheduling problem is polynomially solvable.

The rest of this section is devoted to proving the above theorem. To describe our dynamic
programming based algorithm, we first identify some useful properties of the optimum
schedule. Recall that we can assume, w.l.o.g., that the busy period of each machine is a
contiguous interval.

» Lemma 18. W.l.o.g., we can assume that the busy period of any machine in the optimum
schedule starts at a time given by d(J) — p(J) for some job J and ends at a time given
by either r(J') + p(J'), for some job J', or d(J) — p(J) + p(J’) for some jobs J and J'.
Furthermore, we can assume that the start time of any job J is either its release time r(J)
or the start time of the busy period of some machine.

Motivated by Lemma 18, we consider the following definition.

» Definition 19. A time ¢ is called interesting if t = r(J) or d(J) — p(J) for some job .J,
ort=r(J)+p(J) or d(J)—p(J)+ p(J') for some jobs J and J'. Let T denote the set of

interesting times.

Thus, w.l.o.g., we may assume that the busy periods of all machines and placements of all
jobs start and end at interesting times. Let the intervals of all the jobs be contained in [0, T).
W.lo.g., we may assume that both 0 and T are interesting times. Note that the number of
interesting times is polynomial.

Now we describe our dynamic program. Informally, the algorithm processes the jobs
J in the order of non-increasing processing times p(J). It first guesses the placement
[t,t+p(J1)) € [r(J1),d(J1)) of job J; with largest processing time. Once this is done, the
remainder of the problem splits into two independent sub-problems: the “left” problem
[0,t) and the “right” problem [t + p(J1),T). This is so because any job J whose interval
[r(J),d(J)) has an intersection with [t,t 4 p(J1)) of size at least p(J) can be scheduled inside
the interval [t,t 4+ p(J1)) without any extra cost. The “left” sub-problem then estimates the
minimum busy time in the interval [0,t) for scheduling jobs whose placement must intersect
[0,¢); similarly the “right” sub-problem estimates the minimum busy time in the interval
[t+p(J1),T) for scheduling jobs whose placement must intersect [t+p(J1),T). More formally,

» Definition 20. Let t1,to € T with to > ¢; and ¢ = p(J) for some job J. Let jobs[ty, to, ]
denote the set of jobs in J whose processing time is at most £ and whose placement must
intersect the interval [t1,12), i.e.,

jobs[t,te,l] ={J € T | p(J) <l ity —r(J) < p(J),d(J) —ta < p(J)}.

Let cost[t1,to, £] be the minimum busy-time inside the interval [¢1,t2) for scheduling jobs in
jobs[t1, to, f] in a feasible manner.

Note that cost[t1,l2,f] counts the busy-time only inside the interval [t1,ts) assuming
that the busy-time outside this interval is already “paid for”. For convenience, we define
jobsl[ty,te,f] = 0 and costlty,ta, €] = 0, whenever to < ¢;.

» Lemma 21. If jobs[t1,te,£] = O then cost[ty,t2, ] = 0. Otherwise, let J € jobslt1,ta,?)
be a job with the longest processing time among the jobs in jobsl[ty,te, £]. Then,

costlty,to, ] = miNye[r(g),d()—p(J)NT (min{p(]), t+p(J) —ty,ta —t}

+ cost[ty, t,p(J)] + cost[t+p(J),t2,p(J)]>. (3)
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Note that the number of interesting times and the number of distinct processing lengths
are polynomial. Thus, the quantities cost[ty,ta,£] for t1,to € T and ¢ = p(J) for some
J € J and their corresponding schedules can be computed, using the relation in Lemma 21,

in polynomial time. We finally output the schedule corresponding to cost|[0, T, max je 7 p(J)].

By definition, this gives the optimum solution.

4 Real-time Scheduling for Moldable Jobs: Theorem 4

A job J in an instance J of the real-time scheduling problem with moldable jobs is described

by a release time r(J), a due date d(J), and a set of configurations {(p;(J), Ri(J)}i=1,....q-

We assume, w.l.o.g., that p;(J) < d(J) — r(J) for all 1 < i < ¢g. The goal is to pick a
configuration 1 < iy < ¢ for each job J and schedule these jobs on machines with a capacity
g such that the total busy-time is minimized while satisfying the capacity constraints. Given
configurations 7 = {is}je7, let J (i) denote the instance of real-time scheduling problem
derived from J by fixing configuration i; for each job J. Let oPT(J) denote the cost of
the optimum solution, and let = {#%} ses denote the configurations used in the optimum

schedule. From Observation 7, we have

w(J (%))
P

5-0PT(J) > OPToo(J (i) + 4 - (4)

In this section, we prove the following main lemma.

» Lemma 22. Given an instance J of the real-time scheduling with moldable jobs, we can

find in polynomial time configurations i = {is} se, such that OPToo (T (7)) + 4 - MJT@» is
minimized.

Proof. Motivated by Lemma 18 and Definition 19, we define the set of interesting times as
follows.

» Definition 23. A time ¢ is called interesting if ¢t = r(J) or d(J) — p;(J) for some job J
and configuration 4, or t = r(J) 4+ p;(J) or d(J) — p;(J) + pir(J') for some jobs J and J' and
their respective configurations ¢ and i’. Let 7 denote the set of interesting times.

Note that the size of T is polynomial and we can assume, w.l.o.g., that the busy periods of
all machines and placements of all jobs start and end at interesting times. Let the intervals of
all the jobs be contained in [0, 7). W.l.o.g. we can assume that both 0 and T" are interesting
times. For a job J € J and a configuration 1 < i; < g, let w;,(J) =p;,(J) - R;,(J).

» Definition 24. Let t1,to € T with ¢t > t; and £ = p;(J) for some job J. Let
jobsty,te, l] ={J € T |r(J) > t1 — £,d(J) < ty + £}.

For a choice of configurations i = {7} 1€jobsts ta,0]> let costlty, t, ¢,7] denote the minimum
busy-time inside interval [t1,t2) for scheduling jobs in jobs[t1,t2,¢]() in a feasible manner.
Let ublty, t2, £] be the minimum value of

costlty, ta, £, + 4 - w(jobslty, t2,£](7))

g

where the minimum is taken over all configurations i that satisfy p;,(J) < ¢, for all jobs
J e jobs[tl,tQ,f].
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As before, costl[ty, ta, E,ﬂ counts the busy-time only inside the interval [t1,t2), assuming that
the busy-time outside this interval is already “paid for”.

» Lemma 25. If jobs[ty,t2, ] = 0 we have ublty, ta, ] =0. Ifty <ty then

ubfty, tz, ] = Z min 4. 2 (J)

L i J <£
JEjobs[ty,ta,l] iripis (NS 9

Otherwise, we have

ublty, to,f] = min min min
J€jobs[ti,ta,l] igipi (J)<L telr(J),d(J)—pi, (J)NT

(min {piJ(J),maX{O, t+pi,(J) —t1}, max{0,ts — t}}
Y w2 Pl

i 7/ :P4 N<pi
J!€jobs[ty b, L]\ igr:pi g (J)Spi, () g
(gobs[ty,min{t,ta},p; ; (J)]Ujobs[max{t+p; ; (J),t1},t2,p; 5 ())])

+ ublty, min{t, ta}, pi, (J)] + ub[max{t+piJ(J),t1},t2,piJ(J)]>. (5)

Note that the number of interesting times and the number of distinct processing lengths
are polynomial. Thus, the quantities ub[t1,ts, ] for t1,t2 € T and £ = p;(J), for some
J € J,1 <1< q and their corresponding job-configurations and schedules can be computed,
using the relation in Lemma 25, in polynomial time. The algorithm finally outputs the
job-configurations corresponding to ub[0, T, max jec 7,1<i<q Pi(J)]. By definition, this proves
Lemma 22. |

Now, recall that Lemma 16 and Theorem 17 together imply that given an instance J (Z)
of the real-time scheduling problem, we can compute in polynomial time a feasible schedule
with busy-time at most OPT oo (J (7)) +4 - wI @) Thys, equation (4), Lemma 22, Lemma 16,

and Theorem 17 together imply that we can find a schedule with cost at most

OPToo (T (7)) +4- < 5-or7T(J),

thus yielding a 5-approximation.

5 Interval Scheduling with Unit Demands: Theorem 5

In this section, we consider instances with interval jobs, where all jobs have unit demands,

i.e., p(J) = d(J) — r(J) and R(J) = 1.

5.1 Laminar Instances

We show a polynomial time exact algorithm in case the job intervals I(J), for all jobs J,
form a laminar family, i.e., for any two jobs J,J’ € J, it holds that I(J)NI(J') = 0 or
I(J) Cc I(J"), or I(J") C I(J).

Since the job intervals are laminar, the jobs can be represented by a forest F' of rooted
trees, where each vertex in a tree T' € F corresponds to a job, and a vertex v(J) is an
ancestor of a vertex v(J') if and only if I(J') C I(J). Let the level of a vertex be defined as
follows. Any root of a tree in the forest is at level 1. For all other vertices v, the level of v is
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1 plus the level of its parent. Consider an algorithm which assigns jobs in level ¢ to machine
Mreyq1-
» Theorem 26. The algorithm yields an optimal solution for laminar instances.

Proof. Clearly, the algorithm outputs a feasible solution, since at most g jobs are scheduled
on any machine at any time. Let M; (resp., Ni) be the number of active machines (resp.,
jobs) at time t. Then M; = [N;/g]. This proves the claim. <

5.2 A PTAS and more for Cliques

In the following we show that if all jobs have unit demands, and the corresponding graph is
a clique, then the problem can be approximated within factor 1 4 ¢, for any € > 0. Recall
that for general instances of job intervals with unit demands the problem is NP-hard already
for g = 2 [23]. We show that for inputs that form cliques, the problem with g = 2 is solvable
in polynomial time.

Since the instance J forms a clique, there is a time tg such that ¢y € I(J) for all J € J.
The PTAS consists of two main phases. First, it extends the interval lengths, then it finds
(using dynamic programming) an optimal schedule of the resulting instance on m = [n/g|
machines. Note that the original intervals are sub-intervals of the stretched ones, therefore,
any feasible schedule of the stretched intervals induces a feasible schedule.

Approximation Scheme for a Clique:

1. Let ¢ > 1 be a constant.

2. Let tg be such that tg € J for all J € J. Let left(J) = to—r(J), right(J) = d(J)—to.
Also, let sh(J) = min{left(J),right(J)} and lo(J) = max{left(J),right(J)} be
the length of the short (resp. long) segment of J w.r.t. to. If sh(J)/lo(J) €
((k—=1)/c,k/c] for some 1 < k < ¢, stretch the short segment to round the ratio to k/c.

3. Partition the jobs into 2¢ — 1 classes. For £ € {1,...,c}, the class ¢ consists of all jobs
for which sh(J)/lo(J) = ¢/c and left(J) > right(J). For £ € {c¢+1,...,2¢—1}, the
class £ consists of all jobs for which sh(J)/1o(J) = (¢ — ¢)/c and 1left(J) < right(J).
Let ny be the number of jobs in class £, 1 < ¢ < 2¢ — 1.

4. Fori>1,let C;(ny,...,nh._;) be the minimum cost of scheduling the longest nj, jobs
of class ¢, for all ¢, on 7 machines. Let m = [n/g|. Use dynamic programming to find
a schedule achieving Cy,(ny, ..., M2c—1).

We can show the next result — the proof is omitted due to lack of space.
» Theorem 27. For any e € (0,1], the scheme with ¢ =1/e is a PTAS for any clique.

The case g = 2: In this case we can solve the problem optimally, using a reduction to the
minimum-weight perfect matching in a complete graph. We first ensure that the number of
jobs is even by adding a dummy job with an empty interval. We next construct a complete
graph in which each job corresponds to a vertex, and for every pair 4, j, the edge (J;, J;)
has weight span(J; U J;). Use Edmond’s algorithm [8] to find a minimum-weight perfect
matching in the graph. It is easy to see that this matching gives the optimum solution to
our problem.
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