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—— Abstract

Consider a scenario where we need to schedule a set of jobs on a system offering some resource
(such as electrical power or communication bandwidth), which we shall refer to as bandwidth.
Each job consists of a set (or bag) of job instances. For each job instance, the input specifies the
start time, finish time, bandwidth requirement and profit. The bandwidth offered by the system
varies at different points of time and is specified as part of the input. A feasible solution is to
choose a subset of instances such that at any point of time, the sum of bandwidth requirements
of the chosen instances does not exceed the bandwidth available at that point of time, and fur-
thermore, at most one instance is picked from each job. The goal is to find a maximum profit
feasible solution. We study this problem under a natural assumption called the no-bottleneck
assumption (NBA), wherein the bandwidth requirement of any job instance is at most the mini-
mum bandwidth available. We present a simple, near-linear time constant factor approximation
algorithm for this problem, under NBA.

When each job consists of only one job instance, the above problem is the same as the well-
studied unsplittable flow problem (UFP) on lines. A constant factor approximation algorithm
is known for the UFP on line, under NBA. Our result leads to an alternative constant factor
approximation algorithm for this problem. Though the approximation ratio achieved by our
algorithm is inferior, it is much simpler, deterministic and faster in comparison to the existing
algorithms. Our algorithm runs in near-linear time (O(n log? n)), whereas the running time of the
known algorithms is a high order polynomial. The core idea behind our algorithm is a reduction
from the varying bandwidth case to the easier uniform bandwidth case, using a technique that
we call slicing.
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1 Introduction

We consider a general resource allocation problem in which we need to schedule jobs on
a system offering a certain amount of some resource (such as electrical power, processing
nodes, communication bandwidth). Each job consists of a set (or bag) of job instances, out
of which at most one can be chosen. Each job instance requires a particular amount of
the resource for its execution. The total amount of the resource offered by the system is
different at different points of time. Our goal is to choose a subset of job instances such
that at any timeslot, the total amount of resource requirement does not exceed the total
amount of the resource available at that timeslot. We wish to maximize the profit of the
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chosen subset of jobs. The problem formulation is motivated by its applications in cloud
computing, bandwidth allocation in networks, smart energy management and allocating
processor nodes on a multi-processor system. We refer to [4, 11, 1, 12, 8] for a discussion on
some of these applications. Motivated by such scheduling and bandwidth allocation scenarios,
we study an abstract problem called the Varying bandwidth resource allocation problem with
bag constraints (BAGVBRAP), introduced in [8]. We use bandwidth as a generic term to refer
to the resource under contention. The BAGVBRAP problem generalizes several previously
studied scheduling and resource allocation problems. We next define the problem formally.

1.1 BAcVBRAP Problem Definition

The input consists of a set of jobs J. Each job J € J consists of a set of job instances of
which at most one can be selected for execution. A instance u of a job J is specified by an
interval I, = [a, b], where a and b are the start time and the finish time of the instance u; we
assume that a and b are integers. The job instance wu is also associated with a bandwidth
requirement p,, and a profit p,. Let D be the maximum finish time over all instances so that
the interval associated with every job instance is contained in the span [1, D]. We refer to
each integer 1 <t < D as a timeslot. For each timeslot ¢, the input specifies a number B;
which is the bandwidth available at timeslot ¢.

We use the term instance as a shorthand for job instance. Let U denote the set of all n
instances over all the jobs in J. For each instance u € U, we view each interval I,, = [a, ] as
a set of timeslots in the range [a,b]. We view each job as a bag of its instances. We say that
the instance u is active at a timeslot ¢, if ¢ € I,,. For a timeslot ¢, let A(t) denote the set of
all instances active at timeslot ¢.

A feasible solution is a subset of instances S C U such that at every timeslot ¢, the sum
of the bandwidth requirements of the instances from S active at time ¢ is at most By, i.e, for
every timeslot 1 <t < D,

E: puf;Bt
)

ueSNA(L

We call this the bandwidth constraint. Furthermore, it is required that at most one instance
is picked from each job; we call this the bag constraint; we view a job as a bag of instances
and hence the terminology. The problem is to find a feasible solution S such that the sum of
the profits of the jobs in S is maximized. This completes the problem description.

The concept of bag constraints is quite powerful. Apart from handling the notion of
release time and deadline, it can also work in a more general setting where a job can specify
a set of possible time intervals where it can be scheduled. Moreover, BAGVBRAP allows
for different instances of the same job to have different bandwidth requirements, processing
times and profits.

The maximum and minimum available bandwidths over all timeslots will be of use in
our discussion. We denote these by Bpax and By, that is Bpax = max;c(1,p] Bt and
Bmin = minge[y p) By. Similarly, the maximum and minimum bandwidth requirement over all
instances is also of interest. We denote these by pmax and pmin. That is, pmax = maxyecy pu
and ppin = ming,ey Pu-

Remark: We can assume that for each instance u, the start time and end time of u are in
the range [1,2n], since this leaves the problem combinatorially unchanged. Thus, we can
assume that D < 2n.
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1.2 Prior Work

The BAGVBRAP problem is a generalized formulation that captures as special cases many
well-studied scheduling and resource allocation problems. Here we shall describe some
important special cases and then present a brief survey of some of the prior work dealing
with these problems.
Uniform bandwidth resource allocation problem (UBRAP): This is the special case of
the BAGVBRAP problem, where the bandwidth available is uniform across all timeslots
and the bag constraints do not exist. Meaning, each job consists of only one instance and
forall 1 <t < D, By = B for some fixed B given as part of the input.
Uniform bandwidth resource allocation problem with bag constraints (BAGUBRAP): This
is the special case of the BAGVBRAP problem, where the bandwidth available is uniform
across all timeslots.
Varying bandwidth resource allocation problem (VBRAP): This is the special case of the
BAGVBRAP problem, where each job has only one instance. The VBRAP problem is the
same as the unsplittable flow problem (UFP) on line graphs, a well-studied problem.

Calinescu et al. [7] presented a 3-approximation for the UBRAP problem, based on LP
rounding technique that they refer to as “listing algorithm". Independently, Bar-Noy et

al. [4] also presented a local-ratio based 3-approximation algorithm for the same problem.

They also show how to handle bag constraints and derive a 5-approximation algorithm for
the BAGUBRAP problem. A further special case of the BAGUBRAP problem is obtained
when the bandwidth requirements and the bandwidth available are all unit. This special
case has been studied under the name weighted job interval selection problem (WJISP), for
which Bar-Noy et al. [5] and, independently, Berman and Dasgupta [6] presented local-ratio
based 2-approximation algorithms.

For the VBRAP problem (i.e., the UFP problem on line) Chakrabarti et al. [9] presented
an algorithm with an approximation ratio of O(log(pmax/fmin)). Bansal et al. [3] presented
an O(logn)-approximation algorithm for the same problem. No polynomial time constant
factor approximation algorithm is known for this problem. However, in a break-through
result, Bansal et al. [2] obtained a quasi-PTAS for UFP on line. For the BAGVBRAP problem,
an O(log(Bmax/Bmin))-approximation algorithm was obtained in [8]; this was achieved by
extending the LP based “listing” algorithm of Calinescu et al. [7],

Obtaining a polynomial time constant factor approximation algorithm for the VBRAP
problem has remained a challenging open problem. However, this has been achieved under a
reasonable assumption known as the no-bottleneck assumption (NBA).

No Bottleneck Assumption (NBA): We say that an input to the BAGVBRAP
problem satisfies the no bottleneck assumption (NBA), if the maximum bandwidth requirement
of every job instance is less than the minimum bandwidth available. That is, pmax < Bmin-

Chakrabarti et al. [9] obtained the first constant factor approximation algorithm for the
VBRAP problem, under NBA. For the same special case, Chekuri et al. [10] improved the
constant factor to (2 + €). Both these algorithms are based on randomized rounding of LP
solutions.

1.3 Our Result and Discussion

Our main result is a constant factor approximation algorithm for the BAGVBRAP problem,
under NBA. The running time of the algorithm is O(nlog?n), where n is the number of job
instances. The approximation ratio is 120.
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An important feature of our approach is the simplicity of both the algorithm and
analysis. We show how to handle the non-uniformity or the varying nature of the bandwidths
available, via a reduction to the easier case of uniform bandwidths. Namely, we present a
simple reduction from the BAGVBRAP problem with NBA to the BAGUBRAP problem.
Given a BAGVBRAP input with n job instances, our algorithm produces a BAGUBRAP
instance having at most O(nlogn) job instances. We then invoke the known constant factor
approximation algorithm for BAGUBRAP, due to Bar-Noy et al. [4], which is based on
the local ratio technique, and runs in time O(nlogn), where n is the number of input job
instances. Thus, our algorithm for BAGVBRAP runs in time O(nlog? n).

Our result yields a constant factor approximation algorithm for the UFP problem on
line, with NBA. The approximation ratio is 120. As mentioned earlier, Chakrabarti et al. [9]
and Chekuri et al. [10] have presented constant factor approximation algorithms for this
problem. The algorithm of Chekuri et al. guarantees an approximation ratio of (2 + ¢€) (for
any € > 0); this algorithm is based on randomized LP rounding. This algorithm offers a
tradeoff between approximation ratio and running time. The best running time achievable
within this framework is more than O(n!?). As the approximatio ratio approaches 2, the
running time grows substantially. Though our algorithm is inferior in terms of approximation
ratio, it is simpler, deterministic and runs in near-linear time (O(nlog®n)). We believe that
our technique of reducing varying bandwidths to uniform bandwidths may find application
in other scenarios as well.

Organization. The rest of the paper is devoted towards presenting our constant factor
approximation algorithm for the BAGVBRAP problem with NBA. For a better exposition of
our main ideas, in Section 3, we first consider a special case where the available bandwidths
are all integral multiples of Bp,;,. For this case, we present a constant factor approximation
algorithm. In Section 4, we will take care of the technicalities in dealing with the general
case and derive a constant factor approximation algorithm for the general case, which runs
in time O(nlog®n). Both the algorithms use reductions to BAGUBRAP.

2 Preliminaries

Here, we develop some notations used throughout the paper. For a set of instances X C U/
and a timeslot ¢ € [1, D], let px (t) denote the sum of bandwidth requirements of all instances
in X that are active at timeslot ¢, i.e., px(t) = X, cxna() Pu-

By a bandwidth profile P, we mean a function that specifies a bandwidth for each timeslot.
If P and @ are two bandwidth profiles, we define P — @) to be the profile R given by:
R(t) = max{0, P(t) — Q(t)}, for all timeslots t. For a bandwidth profile P and a constant
¢, we define ¢ ® P to be the profile P’ given by: P’(t) = c¢- P(t), for all timeslots t. By a
uniform strip of bandwidth b, we mean a profile which uniformly takes the bandwidth to be
b, for all timeslots. We say that the profile P is an integral profile, if for all timeslots ¢, P(t)
is an integral multiple of By, (we allow P(t) = 0).

We say that a set of instances X fits into a profile P, if for all timeslots ¢, px (t) < P(¢).
The input specifies a profile Py, given by: P;,(t) = By, for all timeslots ¢t. We shall refer to
P;,, as the input profile. Note that a feasible solution is simply a set of instances S that fits
into the input profile P;, and satisfies the bag constraints.
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Figure 1 Illustration of slicing

3 BacVBRAP with NBA: The Case of Integral Profiles

In this section, for a simple exposition of our main ideas, we focus on the special case where
the input bandwidth profile P;, is integral. For this case, we present a constant factor
approximation algorithm having running time O(n?logn). In the next section, we will take
care of the technicalities in dealing with the non-integral input profiles and derive a constant
factor approximation algorithm for the general case, which runs in time O(nlog?n).

Let K = Bpax/Bmin; since the profile is assumed to be integral, K is an integer. We
imagine the input bandwidth profile P;;, to be a curve giving a value for each timeslot ¢. We
slice the area under the curve horizontally into K slices each of height By, as illustrated
in Figure 1. For 1 < j < K, the bandwidth profile of the jth slice is defined as follows: for
1<t<D,

. 1 > 9. .
Slicej (t) — { OBmln if Bt =] Bmln

otherwise
Consider a feasible solution S C U (which fits into the profile P;, and satisfies the bag
constraints). The solution S is said to be slice-respecting, if it is possible to assign the
instances of S to the K slices satisfying the following two properties: (i) each instance u € S
is assigned to one of the K slices; (ii) for 1 < j < K, the subset of instances assigned to the
jth slice fits into the profile Slice;.
Let Sopt € U be the optimum solution. Our algorithm and analysis have two main
components:
First, we will show that the optimum solution S,y can be partitioned into 16 subsets
such that each subset is a slice-respecting solution (see Section 3.1).
Second, we will present an algorithm that will output a slice-respecting solution S such
that the profit of S is a 5-approximation to the optimum slice-respecting solution (namely,
the maximum profit solution among all slice respecting solutions). This algorithm is
obtained via a reduction to the BAGUBRAP problem. (see Section 3.2).
It follows that S is a 80-approximation to Sopt. This yields the following theorem.

» Theorem 1. There exists a 80-approximation algorithm for the BAGVBRAP problem with
NBA when the input bandwidth profile Py, is integral. The running time of the algorithm is
O(n?logn).

3.1 Partitioning S, into Slice-respecting Solutions

In this section, we will prove the following lemma.
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» Lemma 2. Any feasible solution S can be partitioned into 16 subsets such that each subset
is a slice-respecting solution.

The intuitive idea behind the above claim is as follows. We will delete the first slice from
the bottom of the profile and obtain a new profile. We shall identify a subset of instances Y
and delete them such that the remaining instances fits into the new profile. We will show
that the deleted subset of instances Y can be partitioned into a collection of 16 subsets
such that each subset in the collection fits into the deleted (first) slice. We shall then apply
the above procedure recursively K times obtaining K such collections. A slice-respecting
solution can be formed by picking one subset from each collection. This way, we can form 16
slice respecting solutions.

The rest of the section is devoted to proving Lemma 2 formally. The following two lemmas
are useful for this purpose.

» Lemma 3. Let P be any integral profile. Let X CU be any subset of instances that fits
into the profile P. Then, there exists a subset Y C X such that: (i) for all timeslots t,
py (t) > min{px (t), Bmin}; (7)Y fits into the uniform strip of bandwidth 4 - Buin.

Proof. For a subset T' C U, a job instance is said to be critical for T if removal of the job
instance from 7' causes the total bandwidth of the remaining jobs in 7" to fall below By, at
some timeslot. More formally, a job instance u is said to be critical for T, if p7\ {3 (t) < Bmin
for some t € I,,.

We start with Y = X and then repeatedly remove jobs that are not critical for Y until no
more such jobs exist. We argue that the remaining jobs in Y satisfy the required properties.
The first property follows from the fact that we never remove a critical job. The second
property is proved by contradiction. Suppose that for some timeslot £, py () > 4 - Byn. Let

t = m;ax{t <tand py(t) <2 By} and t,.= mtin{t >t and py(t) < 2 Buin}-

First, let us suppose that both ¢; and ¢, exist. Note that by definition of ¢; and ¢,, we
have that py (t) > 2 - Buyin, for all ¢ € (¢;,t,). We will now argue that there exists some job
instance u € Y, such that I, is contained in (¢;,¢,). If this were not so, then for any timeslot
t' € (t;,t-), any job instance u’ active at timeslot ¢’ would also be active at timeslot ¢; or at
timeslot t,.. This implies that for any t' € (¢;,¢,), py (t') < py (1) + py () <4 - Bpin. This
would contradict our hypothesis that py (f) > 4 - Bpin- Therefore, there exists a job instance
u such that I, is contained in (¢;,¢,). This combined with the fact that py (¢) > 2 - Byin,
for all ¢ € (t;,t,) and the NBA implies that « is not a critical job. This contradicts our
construction of Y.

Now, let us assume that #; does not exist. Then py (t) > 2 - B, for all t € [1,1]. Let
u’ € Y be the job with the earliest finish time and let its finish time be t,,. Note that
py (t) > 2 By for all t € [1,¢,/]. This fact along with the NBA assumption implies that u’
is not a critical job. This contradicts our construction of Y.

The case when t, does not exist is handled similar to the case of ¢; not existing as above.
This completes the proof of the lemma. O

» Lemma 4. Let X C U be any subset of instances that fits into the uniform strip of bandwidth
4 - Buin. Then, X can be partitioned into a collection of 16 subsets { X1, Xs, ..., X16} such
that each subset X; fits into the uniform strip of bandwidth By, -

Proof. We say that an instance u € X is large, if p, > Bmnin/2; otherwise, u is said to be
small. Let X, C X be the set of large instances and let X be the set of small instances. Let
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us first focus on the set X,. Create 8 uniform strips of bandwidth B, named Py, Ps, . .., Pk,
called buckets. Arrange the instances in X, in a list in increasing order of their start times.
Scan this list and for each instance u, add u to a bucket where it can fit without violating
the bandwidth constraint. The crucial claim is that each instance u will fit into some bucket.
To see this claim, consider the first instance u that does not fit into any bucket. Let the
starting timeslot of u be ty. Since we are dealing with large instances, each bucket contains
exactly one large instance active at the timeslot ¢y . Let Y be the set of these instances.
Their combined bandwidth at to is py (t9) > 4 - Bmin. This is a contradiction since X is
assumed to fit into a uniform strip of bandwidth 4 - Bin.

The argument for small tasks is similar. Consider 8 uniform strips of bandwidth By,
@1, Q2, ..., Qs, which are referred to as buckets. Scan the small instances in the increasing
order of their start times. For each instance u, add u to a bucket where it would fit without
violating the bandwidth constraint. As before, we claim that every instance will fit into at
least one bucket. To see this, suppose u be the first instance that does not fit into any bucket.
Let the starting timeslot of u be ty. For each 1 < ¢ < 8, let Y; be the set of instances in Q;
active at timeslot tg. Since u is small, py; (t9) > Bmin/2. Let Y be the union of Y7, Y5, ..., Ys.
Their combined bandwidth at to is py (t9) > 4 - Bmin. This is a contradiction since X is
assumed to fit into a uniform strip of bandwidth 4 - Bin.

The set of instances added to the 16 buckets Py, Ps, ..., P and Q1,Q2,...,Qs are taken
to be the required subsets X1, Xo, ..., X1s. O

We now prove Lemma 2. Let Py = P;, be the input profile and let Xy = S be the given
solution. We first invoke Lemma 3 with Py and X as inputs and obtain a set of instances Y7.
We then apply Lemma 4 to partition Y; into a collection of 16 subsets {Y}, Y2, ... Y{!6}.
Note that each of these subsets Y} fits into the profile of the first slice. We delete the
first slice (bottom-most slice) from the profile Py and obtain a profile P; (formally, we set
P, = Py — Slice;). We also delete the set of instances Y7 from X, and get a new set of
instances X7 = Xg — Y7. Observe that the set of instances X fits into the profile P;. This
allows us to apply the above process starting with P; and X; as inputs. Overall, we will
apply the above process iteratively K times.

Formally, for j = 1 to K, we do as follows:

Invoke Lemma 3 with P;_; and X;_; as inputs and obtain a set of instances Y;.

Invoke Lemma 4 to partition Y; into a collection of 16 subsets {le, YjQ, ceey leﬁ}. Note

that each set Y} fits into the profile of the jth slice.

Define a new integral profile P; = P;_; — Slice;.

Define X; = X;_1 —Y}. The set of instances X fits into the profile P;.

We now form 16 solutions: for 1 < ¢ < 16, let Z; = Uf(zlei. Each set Z; is a slice-
respecting solution. This completes the proof of Lemma 2.

3.2 Approximating the Optimum Slice-respecting Solution

In this section, we shall present an algorithm for finding a 5-approximation to the optimum
slice-respecting solution. We achieve this goal via a reduction to the BAGUBRAP problem,
for which Bar-Noy et al. [4] designed a local-ratio based 5-approximation algorithm.

Let S* be the optimum slice-respecting solution. Our goal is to find a 5-approximation to
S*, via a reduction to the BAGUBRAP problem. Let Z be the input instance, which we will
transform into an input instance Z of BAGUBRAP. Let the timespan of Z be [1, D] so that all
the job instances finish before D. In the transformed instance Z, the timespan will be [1, KD,
where K is the number of slices. The bandwidth profile of Z is obtained by concatenating
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the bandwidth profiles of the K slices; namely, for 1 < j < K, the range [1 + (j — 1)D, j D]
corresponds to the jth slice. Formally, in the input instance I, , the bandwidth available f?t
is declared as follows: for 1 < j < K and for each timeslot t € [1 + (j — 1)D, j D], we set
B, = Slicej(t — (j — 1)D). Note that in 7, the bandwidths available at all timeslots are either
Biin or 0.

For each job J € J of the input Z, we create a corresponding job J in Z. For each job
instance u € U in the input instance Z with associated interval I,, = [a, b], we create at most
K copies of u as follows. For each slice 1 < j < K, we create a copy of u, if the instance
u can be scheduled in the jth slice (meaning, for all ¢ € [a, b], Slice;(t) # 0); this copy of
u is declared to have the interval I = [(j — 1)D + a, (j — 1)D + b]. This way, at most K
copies are created for the instance u. Each of these copies will have the same bandwidth
requirement and profit as the instance u. If J € J is the job to which the instance u belongs,
then all these copies of u are made instances of the corresponding job J in the transformed
input Z. For instance, if a job J € J had d instances in Z, its corresponding job in 7 would
have at most dK instances.

A minor issue in the above construction is that in f, the bandwidths available are
not uniform across all the timeslots. However, these are all either B, or 0. This is
easily addressed via compressing the profile by deleting all timeslots where the bandwidth
availability is 0. This way, we get a BAGUBRAP instance. This completes the reduction.

It is easy to see that a slice-respecting feasible solution S to Z can be converted into a
feasible solution S for Z and vice versa. To see the forward direction, if v is an instance
picked in the solution S and assigned to slice j, we pick the instance IJ in S. For the reverse
direction, if the instance I7 is picked in the solution S , we include the instance I, in S and
assign it to the slice j. Now invoking the 5-approximation algorithm for the BAGUBRAP
problem [4], we get the desired 5-approximation to the optimum slice-respecting solution.

The 5-approximation algorithm for the BAGUBRAP problem runs in time O(nlog(n)),
where 7 is the number of job instances in Z. In our reduction, for each job instance u € Z, at
most K instances are created in Z and hence, n < Kn. Recall that K = Bax/Bmin. We can
assume that Bax < npmax. Under NBA, we also have that By > pmax. Hence, K = O(n).
Thus, our algorithm runs in time O(n?logn).

4 A Constant Factor Approximation for the General Case

We now consider the general case involving non-integral input profiles and derive a constant
factor approximation algorithm having running time O(n log? n). The core idea of slicing
is the same as that of the earlier section. The new result is obtained by dealing with some
technicalities. First, instead of slicing the input profile into slices of equal height, here we
shall slice the profile into slices of geometrically increasing heights. This enables us to bring
down the running time. Secondly, we shall “floor" the input profile by carefully decreasing
the bandwidth available at every timeslot so that it becomes “geometric" and it is therefore,
suitable for “geometric slicing". However, the “flooring" increases the approximation ratio by
a constant factor.

We say that a profile P is a geometric integral profile (GIP), if one of the following two
conditions is true:

For all timeslots ¢, either P(t) = 0 or P(t) = 2 - By, for some integer i > 0.

There exists an integer constant ¢ > 0 such that for all timeslots ¢, either P(¢) = 0 or

P(t) = (2¢ — 2°)Byin, for some integer i > 0.
In the former case the profile is said to be a type-1 GIP and in the latter case, the profile
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Figure 2 Illustration of slicing

said to be a type-2 GIP. The idea of having two different types of GIPs is that we shall start
with a type-1 GIP and as we delete slices iteratively, we obtain type-2 GIPs.
We first convert the input profile Py, into a type-1 GIP by “flooring” the bandwidths, as

follows. Define a new profile ﬁm given by ]3”, (t) = 2° - Buin, where i = [log(P;y,(t)/Bmin) |-

Figure 2 presents the flooring of the profile shown in Figure 1. A feasible solution S C U
(which fits into the profile P;,) may not fit into the profile P,,. Our algorithm will actually
output a solution that fits into the profile ]3m In this process, we lose a constant factor in
the approximation.

Similar to the previous section, we now define the notion of slices and slice-respecting
solutions. Let K =1+ |log(Bmax/Bmin) |- We slice the profile ﬁm horizontally into K slices
in a geometric manner. The profile of the first slice Slice; is the uniform strip of bandwidth
Buin- For 2 < j < K, the bandwidth profile of the jth slice is given by the following profile:
for1<t<D,

. 2j72 . Bmin if ﬁln(t) > 2j71 . Bmin
Slice;(t) = -
icey (t) { 0 otherwise

See Figure 2 for an illustration of the slices.

Consider a feasible solution S C U (which fits into the profile P, and satisfies the bag
constraints). The solution S is said to be slice-respecting, if it is possible to assign the
instances of S to the K slices satisfying the following two properties: (i) each instance u € S
is assigned to one of the K slices; (ii) for 1 < j < K, the subset of instances assigned to the
jth slice fits into the profile Slice;.

Let Sopt € U be the optimum solution. Our algorithm and analysis have two main
components:

First, we will show that the solution S, can be partitioned into 24 subsets such that

each subset is a slice-respecting solution.

Second, we will present an algorithm that will output a slice-respecting solution S such

that the profit of S is a 5-approximation to the optimum slice-respecting solution.
It follows that S is a 120-approximation to Syp¢. This yields the following theorem.

» Theorem 5. There exists a 120-approzimation algorithm for the BAGVBRAP problem
with NBA. The running time of the algorithm is O(nlog®n).

We now focus on the first component and prove a lemma similar in spirit to Lemma 2.

» Lemma 6. Any feasible solution S CU can be partitioned into 24 subsets such that each
subset is a slice-respecting solution.
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We first state two variants of Lemma 3 that deal with the two types of GIPs. The proofs
are similar to that of Lemma 3.

» Lemma 7. Let P be any type-1 GIP. Let X CU be any subset of instances that fits into
the profile 2 ® P. Then, there exists Y C X such that: (i) for all timeslots t, py (t) >
min{px(t),2 - Bmin}; (7)Y fits the uniform strip of bandwidth 6 - By .

» Lemma 8. Let P be any type-2 GIP with parameter ¢ > 0. Let X CU be any subset of
instances that fits into the profile 2 ® P. Then, there exists Y C X such that: (i) for all
timeslots t, py (t) > min{px (t),2 -2 Bunin}; (1) Y fits into the uniform strip of bandwidth
6 - 2°- Buin-

We next state a variant of Lemma 4. The proof is similar to that of Lemma 4.

» Lemma 9. Let X C U be any subset of instances that fits into the uniform strip of
bandwidth 6 - o - Byin, for some integer a > 1. Then, X can be partitioned into 24 subsets
X1, Xo, ..., Xoq such that each subset X; fits into the uniform strip of bandwidth o - By -

We now prove Lemma 6. The proof is similar to that of Lemma 2 and is proved in an
iterative manner. In the first iteration, we apply Lemma 7 and Lemma 9 on profile Isin,
which is a type-1 GIP. In the subsequent iterations, we will apply Lemma 8 and 9, as the
profiles considered in these iterations are type-2 GIPs.

Let Py = ﬁm be the input profile, which is a type-1 GIP. Let Xy = S be the given
solution that fits into the profile P;,. Observe that Xg fits into the profile 2 ® Py. We first
invoke Lemma 7 with Py and X, as inputs and obtain a set of instances Y;. We then apply
Lemma 9 to partition Y; into 24 subsets Yi', Y2, ..., Y** (here a = 1). Note that each of
these subsets Y7 fits into the profile Slice;. We delete the first slice (bottom-most slice) from
the profile Py and obtain a profile P; (formally, we set P, = Py — Slice;). We also delete the
set of instances Y7 from Xy and get a new set of instances X; = Xy — Y7.

The profile P; is a type-2 GIP with parameter ¢ = 0 and X; fits into 2 ® P;. We invoke
Lemma 8 with P; and X; as inputs and obtain a set of instances Y>. We then apply Lemma 9
to partition Y3 into 24 subsets Y3, Y2, ..., Y24 (here a = 2° = 1). Note that each of these
subsets Y3 fits into the profile Slices. We now delete the second slice from the profile P; and
obtain a profile P (formally, we set P, = P; — Slices). We also delete the set of instances Y
from X7 and get a new set of instances Xo = X; — Y5. The profile P; is a type-2 GIP with
parameter ¢ = 1 and X5 fits into 2 ® Ps.

We can now iteratively apply the above process starting with P, and X5 as inputs. We
continue like this for K iterations. Formally, for j = 2 to K, do as follows:

Invoke Lemma 8 with P;_; and X;_; as inputs and obtain a set of instances Y;.

Invoke Lemma 9 to partition Y; into 24 subsets Y}',Y?,..., Y%, Each set Y] fits into

the profile Slice;.

Define a profile P; given by P; = P;j_; — Slicej. The profile P; is a type-2 GIP with

parameter ¢ = j — 2.

Define X; = X;_1 — Y. The set of instances X fits into the profile 2 ® P;.

We now form 24 solutions: for 1 < i < 24, let Z; = Ulein. Each set Z; is a slice-
respecting solution. This completes the proof of Lemma 6.

We now outline the second component required to prove Theorem 5. What we need is
an algorithm that approximates the optimum slice respecting solution within a factor of 5.
The construction is the same as that of Section 3.2. However, we do not get a BAGUBRAP
instance, since the bandwidths available are not uniform. Nevertheless, we can scale the
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slices (and the associated job instances), so as to make all the slices of uniform bandwidth.
This way we can get a BAGUBRAP instance.

In the current scenario K = O(log(Bmax/Bmin)). Now an analysis similar to the one

performed in the previous section shows that the running time of our algorithm is O(n log? n).
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