Global Model Checking of Ordered
Multi-Pushdown Systems

Mohamed Faouzi Atig

Uppsala University, Sweden
mohamed_faouzi.atig@it.uu.se

—— Abstract
In this paper, we address the verification problem of ordered multi-pushdown systems: A multi-
stack extension of pushdown systems that comes with a constraint on stack operations such
that a pop can only be performed on the first non-empty stack. First, we show that for an
ordered multi-pushdown system the set of all predecessors of a regular set of configurations is
an effectively constructible regular set. Then, we exploit this result to solve the global model
checking which consists in computing the set of all configurations of an ordered multi-pushdown
system that satisfy a given w-regular property (expressible in linear-time temporal logics or the
linear-time p-calculus). As an immediate consequence of this result, we obtain an 2ETIME
upper bound for the model checking problem of w-regular properties for ordered multi-pushdown
systems (matching its lower-bound).

Keywords and phrases Concurrent Programs, Pushdown Systems, Global Model-Checking.

Digital Object ldentifier 10.4230/LIPIcs.FSTTCS.2010.216

1 Introduction

Automated verification of multi-threaded programs is an important and a highly challenging
problem. In fact, even when such programs manipulate data ranging over finite domains,
their control structure can be complex due to the handling of (recursive) procedure calls in
the presence of concurrency and synchronization between threads.

In the last few years, a lot of effort has been devoted to the verification problem for models
of concurrent programs (see, e.g., [7, 24, 15, 2, 25, 3, 13, 16]) where each thread corresponds
to a sequential program with (recursive) procedure calls. In fact, it is well admitted that
pushdown systems are adequate models for such kind of threads [10, 21], and therefore, it is
natural to model recursive concurrent programs as multi-stack systems.

In general, multi-stack systems are Turing powerful and hence come along with unde-
cidability of basic decision problems [20]. A lot of efforts have been nevertheless devoted
recently to the development of precise analysis algorithms of specific formal models of some
classes of programs [17, 11, 8, 22, 14].

Context-bounding has been proposed in [19] as a suitable technique for the analysis of
multi-stack systems. The idea is to consider only runs of the system that can be divided into
a given number of contexts, where in each context pop and push operations are exclusive
to one stack. The state space which may be explored is still unbounded in presence of
recursive procedure calls, but the context-bounded reachability problem is NP-complete even
in this case. In fact, context-bounding provides a very useful tradeoff between computational
complexity and verification coverage.

In [24], La Torre et al. propose a more general definition of the notion of a context. For
that, they define the class of bounded-phase visibly multi-stack pushdown systems (BVMPS)
where only those runs are taken into consideration that can be split into a given number of
phases, where each phase admits pop operations of one particular stack only. In the above

@@@@ © Mohamed Faouzi Atig;
O™ licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 216-227

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.216
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Mohamed Faouzi Atig

case, the emptiness problem is decidable in double exponential time by reducing it to the
emptiness problem for tree automata.

Another way to regain decidability is to impose some order on stack operations. In [9],
Breveglieri et al. define ordered multi-pushdown systems (OMPS), which impose a linear
ordering on stacks. Stack operations are constrained in such a way that a pop operation is
reserved to the first non-empty stack. In [1], we show that the emptiness problem for OMPS
is in 2ETIME-complete. (Recall that 2ETIME is the class of all decision problems solvable
by a deterministic Turing machine in time 22" for some constant d.) The proof of this result
lies in a complex encoding of OMPS into some class of grammars for which the emptiness
problem is decidable. Moreover, we prove that the class of ordered multi-pushdown systems
with 2k stacks are strictly more expressive than bounded-phase visibly multi-stack pushdown
systems with k& phases.

In this paper, we consider the problem of verifying ordered multi-pushdown systems with
respect to a given w-regular property (expressible in the linear-time temporal logics [18] or
the linear-time p-calculus [26]). In particular, we are interested in solving the global model
checking for ordered multi-pushdown systems which consists in computing the set of all
configurations that satisfy a given w-regular property. The basic ingredient for achieving
this goal is to define a procedure for computing the set of backward reachable configurations
from a given set of configurations. Therefore, our first task is to find a finite symbolic
representation of the possibly infinite state-space of an ordered multi-pushdown system. For
that, we consider the class of recognizable sets of configurations defined using finite state
automata [19, 2, 23].

Then, we show that for an ordered multi-pushdown system M the set of all predecessors
Pre*(C) of a recognizable set of configurations C' is an effectively constructible recognizable
set. The proof of this result is done by induction on the number of stacks of M. Technically,
we use a result given in [4] establishing that the set of configurations C,,, where the first
(n — 1) stacks are empty, from which M can reach a configuration in C' is recognizable and
effectively constructible. Then, to compute the intermediary configurations in Pre*(C) when
the first (n — 1) stacks are not empty, we construct an ordered multi-pushdown system
M’ with (n — 1) stacks that: (1) performs the same operations on its stacks as the ones
performed by M on its first (n — 1) stacks, and (2) simulates a push operation of M over
its n-th stack by a transition of the finite-state automaton accepting the recognizable set
of configurations C,,. Now, we can apply the induction hypothesis to M’ and construct a
finite-state automaton accepting the set of all predecessors Pre*(C).

As an application of this result, we show that the set of configurations of an ordered
multi-pushdown system satisfying a given w-regular property is recognizable and effectively
constructible. Our approach also allows to obtain an 2ETIME upper bound for the model
checking problem of w-regular properties for ordered multi-pushdown systems (matching its
lower-bound [1]).

Related works: In [23], A. Seth shows that the set of predecessors of a recognizable set of
configurations of a bounded-phase visibly multi-stack pushdown system is recognizable and
effectively constructible. In fact, our results generalize the obtained result in [23] since any
bounded-phase visibly multi-stack pushdown system with k£ phases can be simulated by an
ordered multi-pushdown system with 2k stacks [1].

To the best of our knowledge, this is the first work that addresses the global model
checking for ordered multi-pushdown systems.

217

FSTTCS 2010

218

Global Model Checking of Ordered Multi-Pushdown Systems

2 Preliminaries

In this section, we introduce some basic definitions and notations that will be used in the
rest of the paper.

Integers: Let N be the set of natural numbers. For every ¢,j € N such that ¢ < j, we use
[i, 7] (resp. [i,7]) to denote the set {k € N|i <k < j} (resp. {k € N|i <k < j}).

Words and languages: Let 3 be a finite alphabet. We denote by X* (resp. XT) the set
of all words (resp. non empty words) over ¥, and by e the empty word. A language is a
(possibly infinite) set of words. We use X to denote the set X U {e}.

Let u be a word over ¥. The length of w is denoted by |u|. For every j € [1, |u|], we use
u(7) to denote the j* letter of u. We denote by u* the mirror of u.

Transition systems: A transition system (TS for short) is a triplet 7 = (C, X, —) where:
(1) C is a (possibly infinite) set of configurations, (2) X is a finite set of labels (or actions)
such that C N =), and (3) -C C x X, x C is a transition relation. We write ¢ <7 ¢’
whenever ¢ and ¢’ are two configurations and «a is an action such that (¢, a,c’) €—.

Given two configurations ¢,c¢’ € C, a finite run p of 7 from c to ¢’ is a finite sequence
C0a1CL - - - ApCy, for some n > 1, such that: (1) ¢g = c and ¢, = ¢, and (2) ¢; —51 544 for
all 7 € [0,n]. In this case, we say that p has length n and is labelled by the word ajas - - - ay,.

Let ¢,/ € C and u € ¥*. We write c——:—>7 ¢’ if one of the following two cases holds: (1)

n=0,c=c,and u=¢, and (2) there is a run p of length n from ¢ to ¢’ labelled by u. We
also write c==%¢’ (resp. c==1¢/) to denote that c==7 ¢’ for some n > 0 (resp. n > 0).
n

For every C1,Co C C, let Tracesr(C1,C3) = {u € ¥* |I(c1,c2) € C1 x Oy g :u>§— e}
be the set of sequences of actions generated by the runs of 7 from a configuration in C to a
configuration in Cs.

For every C' C C, let Prer(C’) = {c € C|3(c;a) € C" x T, ¢ 57 '} be the set of
immediate predecessors of C’. Let Pre’ be the reflexive-transitive closure of Prer, and let
Pre;'- = Prer o Pre}.

Finite state automata: A finite state automaton (FSA) is a tuple A = (Q, X, A, I, F)
where: (1) @ is the finite non-empty set of states, (2) X is the finite input alphabet, (3)
A C (Q x X X Q) is the transition relation, (4) I C @ is the set of initial states, and
(5) F C @ is the set of final states. We represent a transition (q,a,q’) in A by ¢4’
Moreover, if I’ and F’ are two subsets of @, then we use A(I’, F') to denote the finite state
automaton defined by the tuple (Q, %, A, I, F).

The size of A is defined by |A| = (|Q| + |X]). We use T(A) = (Q, %, A) to denote the
transition system associated with A. The language accepted (or recognized) by A is given
by L(A) = Tracesy(a)(I, F).

3 Ordered Multi-Pushdown Systems

In this section, we first recall the definition of multi-pushdown systems. Then ordered
multi-pushdown systems |9, 1] appear as a special case of multi-pushdown systems.

Mohamed Faouzi Atig

3.1 Multi-pushdown systems

Multi-pushdown systems have one read-only left to right input tape and n > 1 read-write
memory tapes (stacks) with a last-in-first-out rewriting policy. A transition is of the
form ¢ = (¢, Y1, .-, V) —=(¢', a1, ..., ,). Being in a configuration (p,ws,...,w,), which is
composed of a state p and a stack content w; for each stack i, ¢ can be applied if both ¢ = p
and the i-th stack is of the form ~;w/} for some wj. Taking the transition, the system moves
to the successor configuration (¢', aywi, ..., a,wl,).

» Definition 1. A multi-pushdown system (MPS) is a tuple M = (n,Q,T', A) where n > 1
is the number of stacks, @ is the finite set of states, I' is the stack alphabet containing the
special stack symbol L, and A C (@ x (I'e)") x (@ x (I'*)™) is the transition relation such
that, for all ((¢,v1,-.-,7n), (¢s01,...,an)) € A and i € [1,n], we have:

If ; # L, then o; € (T'\ {L})*.
If v; = L, then a; = o} L for some o € T'..

In the rest of this paper, we use (q,71,-..,Yn) =>m{¢,a1,...,q,) to denote that the
transition ((q,v1,---,%n), (¢'s 1, ..., ay)) is in A. The size of M, denoted by | M|, is defined
by (n+ 1Q] + 3] + [T).

A stack content of M is a sequence from Stack(M) = (I'\ {L})*{L}. A configuration
of M is a (n+ 1)-tuple (g, wn,...,wy,) with ¢ € Q and w1, ..., w, € Stack(M). The set of
all configurations of M is denoted by Conf(M).

The behavior of the MPS M is described by its corresponding TS T (M) defined by the
tuple (Conf(M), 3, —) where ¥ = A and — is the smallest transition relation such that if
t={q,7,, V) =m{d a1, ..., ap) then (¢, w1, ..., vowy) J’%T(M)(q',alwl, e QpWy)
for all wy,...,w, € I'* such that yywy,...,vaw, € Stack(M). Observe that the symbol L
marks the bottom of a stack. According to the transition relation, 1 can never be popped.

3.2 Symbolic representation of MPS configurations

We show in this section how we can symbolically represent infinite sets of MPS configurations
using special kind of finite automata which were introduced in [23]. Let M = (n,Q, T, A)
be a MPS. A M-automaton for accepting configurations of M is a finite state automaton
A= (Qm, T, Apnm, Inm, Faq) such that T = Q. We say that a configuration (g, w1, ..., w,)
of M is accepted (or recognized) by A if and only if the word w = wiws -+ w, is in
L(A({¢},Frm)). (Notice that for every word w € L(A({q}, Fam)) there are unique words
Wi, ..., W, € Stack(M) such that w = wy - - w,.) The set of all configurations recognized
by A is denoted by Laq(A). A set of configurations of M is said to be recognizable if and
only if it is accepted by some M-automaton.

Finally, it is easy to see that the class of M-automaton is closed under boolean operations
and that the emptiness and membership problems are decidable in polynomial time.

3.3 Ordered multi-pushdown systems

An ordered multi-pushdown system is a multi-pushdown system in which one can pop only
from the first non-empty stack (i.e., all preceding stacks are equal to).

» Definition 2. An ordered multi-pushdown system (OMPS for short) is a multi-pushdown
system (n, @, T, A) such that A contains only the following types of transitions:

219

FSTTCS 2010

220

Global Model Checking of Ordered Multi-Pushdown Systems

(q@,7v,€ ... €)= m{d vy €, ... e) for some ¢,¢' € Q and ~,v', 7" € (T'\ {L}).
(q,7,€....€) = mld e6,7 € ... ¢€) for some ¢,¢' € Q and 7,7 € (T'\ {L}) (' is
pushed on one of stacks 2 to n).

(g, Ly, Lv,eyee) =add v L, Lo, L€, ... €) for some q,¢ € Q and v,y €
(T'\ {L}) (v is popped from one of the stacks 2 to n).

(q,7,€...,€) =>m(d € ... ¢€) for some ¢,¢' € Q and v € (T'\ {L}).

For n > 1, we call a MPS (resp. OMPS) a n-MPS (resp. n-OMPS) if its number of stacks
is equal to n.

4 Computing the set of predecessors for an OMPS

In this section, we show that the set of predecessors of a recognizable set C' of configurations
of an OMPS is recognizable and effectively constructible (see Corollary 8). To simplify
the presentation, we can assune without loss of generality that the set C' contains only
one configuration of the form (g, L, ..., L) where all the stacks are empty. This result is
established by Lemma 3.

» Lemma 3. Let M = (n,Q,T,A) be an OMPS and A be a M-automaton. Then, it
is possible to construct, in time and space polynomial in (M| + |A]), an OMPS M’ =
(n,Q U{qs},T,A") where Q C Q', q5 ¢ Q', and |M'| = O(|M| + |A|) such that for every
¢ € Conf(M), ¢ € Prei g (Lam(A)) if and only if c € Preg o) ({(ar, L, ..., L)}).

Proof. The proof is similar to the case of standard pushdown systems. Technically, this can
be done by adding to the OMPS M pop rules that check, in nondeterministic way, if the
current configurations belongs to Lag(A) by simulating the finite state automaton .A. |

In the following, we recall a result given in [4] establishing that the set of configurations
C’ with empty first (n — 1) stacks (i.e., C’ C Q x ({L})"! x Stack(M)) from which the
OMPS M can reach a configuration of the form (g, L, ..., L) where all the stacks are empty
is recognizable and effectively constructible.

» Lemma 4. Let M = (n,Q,T,A) be an OMPS and q € Q be a state. Then, it is possible to
construct, in time O(|M|2"") with d is a constant, a M-automaton A such that |A| = O(|M)
and ¢ € Lp(A) if and only if c € Pre*T(M)({(q,J_, o) ande=(¢,L,..., L, w) for
some ¢' € Q and w € Stack(M).

Proof. To prove Lemma 4 in [4], we have defined the class of effective generalized pushdown
systems (EGPS) where operations on stacks are (1) pop the top symbol of the stack, and (2)
push a word in some (effectively) given set of words L over the stack alphabet, assuming that
L is in some class of languages for which checking whether L intersects regular languages is
decidable. We have shown in [4] that the automata-based saturation procedure for computing
the set of predecessors in standard pushdown systems [5] can be extended to prove that for
EGPS too the set of all predecessors of a recognizable set of configurations is an effectively
constructible recognizable set.

Then, we have shown that, given an OMPS M with n stacks, it is possible to construct
an EGPS P, whose pushed languages are defined by OMPSs with (n — 1) stacks, such that
the following invariant is preserved: The state and the stack’s content of P are the same
as the state and the content of the n-th stack of M when its first (n — 1) stacks are empty.
Thus, the saturation procedure for EGPS can be used to show that Lemma 4 holds. <

Mohamed Faouzi Atig

Next, we state our main theorem which is a generalization of the result obtained in [23].

» Theorem 5. Let M = (n,Q,T,A) be an OMPS and q € Q be a state. Then, it is

possible to construct, in time O(|M\2d") where d is a constant, a M-automaton A such that
dn

Al = O(M|*™") and Lym(A) = Prezou({(e L., D)}).

Proof. We proceed by induction on the number of stacks of the OMPS M.

Basis. n = 1. Then, M is a pushdown system. From [5], we know that the emptiness
problem for M can be solved in time polynomial in |M|.

Step. n > 1. Then, we can use Lemma 4 to construct, in time O(|]M |2d ") with d’ is a constant

(we assume w.l.o.g that d’ < d), a M-automaton A" = (Q4/,T', A4/, Q, F4/) such that |A'| =
O(IM|) and (¢", L,..., L ,w) € Lp(A) if and only if (¢”, L,..., L, w) éT(M) (¢, L,...,1)
for some 7/ € A*. Afterwards, we assume w.l.0.g that the M-automaton has no e-transitions.

Let M n = (n,Q,T', A1) be the OMPS built from M by discarding the set of pop
operations of M over the n'" stack. Formally, we have Ay, = AN ((Q x (T)" ™! x
{e}) x (Q x (F*)”)) Then, it is easy to see that for every configuration (¢’,wy,...,w,) in
Pre}(M,)({(qJ_, ..., 1)}, there are ¢ € Q, w € Stack(M), 7/ € A* and 7 € Al such
that:

(qlawlv .o 7wn) :T>’>;'(M[11n[) (qllv J—7 R Lﬂl}) é>’?’(,/\/l) (qv J—a ey J—)

Since the OMPS M|y ,, can only have push operations over its n-th stack, we have
(¢, wi,...,wy) :T>§,(M (¢",L,..., L, w) if and only if there is v € (I'\ {L})* such that

w = vwy, and (¢, w1y, ..., wy—1,1) :T>?;’(M[1,n[) (¢",L,...,Lv).

On the other hand, let M’ = (n—1,Q X Q4/,T', A’) be an (n—1)-OMPS built up from the
OMPS M[l,n[and the FSA A’ such that <(q1,p1), Y1y - ,’yn,]_) _>M’<(QQap2)7 Al,y... 7an,1>
if and only if {(g1,71,...,Vn—1,€) —>M[M[(qg, 1y, Qp_1, Q) and po %3’(«4’) py for some
oy € (T\{L})U{e}). In fact, the OMPS M’ defines a kind of synchronous product between
the pushed word over the n-th stack of OMPS M|, ,,; and the reverse of the input word of
the FSA A’. Observe that the size of the constructed (n — 1)- OMPS M’ is O(|M|?)).

Then, the relation between M', M| ,;, and A" is given by Lemma 6 which follows
immediately from the definition of M’.

(1,n[)

» Lemma 6. ((¢1,p1),w1,...,Wnp—1) :§>$’(M’) ((g2yp2), L,..., L) if and only if there is a v €
(T\{L})* such that (q1,w1,...,Wp—-1,L) :T>*T(M[1,n[) (g2, L,..., L,vl) and py :U>*T(A,) p1.

Now, we can apply the induction hypothesis to M’ to show that for every (¢”,p") €
d(n—
Q x Q ., it possible to construct , in time O(|]M|? (1)H), a M’-automaton A,y such

that [A | = O(MPP" ") and Ly (Agrpm) = Pred v ((((a"p"), L, ..., L)}).

From the M'-automaton A~) and the M-automaton A’, we can construct a M-
automaton A such that (¢/,w1,...,w,) € Ly (A) if and only if there are ¢” € @ and
p',p" € Q4 such that: (1) q”é*ﬂfl,)p”, (2) (¢, p'),w1,...,wn_1) € Ly (A(gr pry), and
(3) p’:w%;(A,)p for some p € F 4. Observe that such an automaton A of the size O(|M|[2™")
(by taking d as big as needed) is effectively constructible from A,) and A’ using standard
automata operations. Moreover, we have:

> Lemma 7. Ly (A) = Prey ({(¢; L,..., L)}).

221

FSTTCS 2010

222

Global Model Checking of Ordered Multi-Pushdown Systems

Proof. (C) Let (¢/,w1,...,w,) € Ly(A). Then, there are ¢” € Q and p',p” € Q4 such

1t Wi
that: (1) q”:>7-(A,)p”, (2) ((¢',p'),w1,...,wn—1) € Lay (Aggrpry), and (3) p':>7-(A,)p
for some p € Fy.

So, we can apply Lemma 6 to the run ((¢/,p’), w1, ..., ws—_1) :g%-(M,) ((¢",p"), L,..., 1)

to show that there is v € T* such that (¢/, w1, ..., wn—1, 1) :T>*T(M (¢",L,...,L,v)and

(t,n[)
p” :U%—(A,) p’. Thus, we have (¢/, w1, ..., Wp_1, W) :T>*T(M) (¢",L,..., Livwy,).
n—1
Now, we can use the runs q”J':%-(A,)p”7 p” :U>§—(A,) p’, and p'%ﬁ-(w)p to show that
(¢",L,..., L,vow,) € Ly(A"). This implies that (¢”, L,..., L,vwy) é*T(M) (¢, L,...,1).
Hence, we have (¢',ws,...,w,) € Prezy({(g; L,...,1)}) and therefore Lxq(A) €
PTG;’(M)({(% J—a R J—)})

(2) Let (¢'swi,...,wn) € Prey({(¢;L,...,1)}). Then, there are ¢" € Q, v € I'",
e A*, and T € Af‘l n[such that:

(q/a Wi, ... 7wn) :T>'>’7<’(M[1,n[) (qllv J—7 ey J—a an) é>'>|7<'(,/\/l) (q’ J—v te J—)

Since (¢”,L,..., J_,vwn)i—%-(M)(q, 1,...,1), we have (¢",L,..., L,vw,) € Ly (A).

n—1
This implies that there are p’, p”’ € Q4 and p € F 4 such that q”L:V‘T(A,)p”, p" :v%—(A,) P,
and p'== *T(A')p'

On the other hand, we can show (¢/,w1,...,w,—1,1) ——T—>$-(M[l D) (¢",L,..., 1L, v) since
we have (¢/,w1,...,wy,) :T%’(M[l,n[) (¢",L,..., L ivwy).
Then, we can apply Lemma 6 to (¢/,w1,...,w,—1,1) =T>fr(M[1) (¢",L,...,L,v) and

p” :v>*T(A/) p’ to show that ((¢/,p'),w1,...,wp_1) :§>fr(/\/l/) ((¢",p"),L,...,L). This im-
plies that ((¢',p'),w1,...,wn-1) € L (A pry). Now, we can use the definition of the

n—1
M-automaton A to show that (¢’,ws1,...,w,) € Lar(A) since we have q”l:%—(A,)p”,
((¢",p"), w1, ..., wn—1) € Ly (Agrpry), and p’%?(A,)p with p € F4.. Hence, we have
This terminates the proof of Lemma 7. |
This terminates the proof of Theorem 5. |

As an immediate consequence of Theorem 5 and Lemma 3, we obtain:

» Theorem 8. Let M = (n,Q,T',A) be an OMPS and A" be a M-automaton. Then, it is
possible to construct, in time O((|JM] + \A’|)2d") where d is a constant, a M-automaton A
such that | Al = O((IM| + |A')2") and L (A) = Prez vy (La(A')).

We can extend the previous result to show that the operator Pre’ preservers also
recognizability.

» Theorem 9. Let M = (n,Q,T',A) be an OMPS and A" be a M-automaton. Then, it is
possible to construct, in time O((|M| + | A'|)2") where d is a constant, a M-automaton A
such that |A| = O((IM| + |A')2™) and La(A) = Pref 0 (La(A).

Proof. For Pre", it is sufficient to construct a M-automaton that recognizes the set
Preqa) (Lat(A)) which is an easy extension of the construction given in [6] for standard
pushdown systems. |

Mohamed Faouzi Atig

5 Applications to Linear-Time Global Model Checking

5.1 The repeated state global reachability problem

Let M = (n,Q,T,A) be an ordered multi-pushdown system. In the this section, we are
interested in solving the repeated state global reachability problem which consists in computing,
for a given state qf € @, the set of all configurations ¢ of M such that there is an infinite
run of 7 (M) starting from ¢ that visits infinitely often the state g¢;.

To this aim, let us introduce the following notation: For every i € [1,n], we denote by
Mg = (n,Q,T,Ap ;) the OMPS built from M by discarding pop operations of M over

the last (n — i) stacks. Formally, we have Ap ;= AN ((Q x (D)’ x ({e})"™%) x (Q x (I'*)™)).

For every i € [1,n], and every (¢,7) € Q x (I'\ {L}), let Ci(qn/) denote the set of all
configurations (¢, wy, ..., wy,) € Conf(M) such that w; =--- = w;—; = L and w; = vyu for
some u € Stack(M). Moreover, let cl(-(m) be the configuration (g, w1, ..., w,) of M such that
w; =L and w; = L for all j # i. Then, the solution of the repeated state global reachability
problem is based on the following fact:

» Theorem 10. Let c be a configuration of M and qy be a state of M. There is an infinite
run starting from ¢ that visits infinitely often the state g5 if and only if there is i € [1,n],
q € Q, and v € T such that:

1. ce Prefr(M)(C’i(q"Y)), and
2. cgq,v) € Pre;'-(M[M])(Preg—(M[w)(Ci(q’w) N ({qs} x (Stack(M))™)).

Proof. (=) : Let p = cotociticata--- be an infinite run of 7T (M) starting from ¢y = c.

Recall that for every j € N, ¢; is a configuration of M and t; is a transition of M

such that ¢; ﬁ»T(M) cj+1. Let i € [1,n] be the maximal index such that for every j €
N, there is k; > j such that tz; is a pop transition over the i-th stack of M. Hence,
from the definition of ¢, there is r € N such that for every h > r, there is dp € [1,7]
such that the transition ¢ is a pop transition over the dj-th stack of M. This implies
that for every h > r, we have ¢y, %T(M[l,i]) cp+1. Moreover, we must have cg; is in
Q x ({L1)1 x (T \{L})* - Stack(M)) x (Stack(M))"* since t;, is a pop operations over
the i-th stack of M.

Construct a sequence m = c¢j,cj, ¢, - -+ of configurations of M as follows: c¢j, is the
first configuration of p such that jo > r and ¢;, is a pop transition over the ¢-stack of M,
for every ¢ > 0, ¢j, is the first configuration of p such that j, > j,—1 and ¢;, is a pop
transition over the i-stack of M. Recall that, by definition, we have for every [€ N, ¢;, is in
Qx ({LH) = x ((T\ {L})* - Stack(M)) x (Stack(M))"—%.

Now, for every I > 0, let 7 be the suffix of 7 starting at cj,, and let m® be the minimal
length of the configurations of 7V, where the length of a configuration is defined as the
length of its i-th stack.

Construct a subsequence ' = ¢, ¢, ., - -+ of 7 as follows: ¢,, is the first configuration of

7 of length m(9); for every I > 0, ¢, is the first configuration of w(#-1+1) of length m(=-1+1),

Since the number of states and stack symbols is finite, there exists a subsequence
7" = CpyCa, Cy - -+ Of ™' whose elements have all the same state ¢, and the same symbol ~
on the top of the i-th stack. Observe that ¢y, s, Cyy, ... are in Ci(q’v).

Since p is an accepting run, there is an index b > 1 and a configuration c,, with state ¢
such that:

T % ‘f'/ JF T// *
CO==T (M) Cxo =T (M) Car =7 T(M) Cas

223

FSTTCS 2010

224

Global Model Checking of Ordered Multi-Pushdown Systems

Since ¢y = ¢ and ¢, € C’i(‘m), we have ¢ € Pre}(M)(Ci(q’V)), and so (1) holds.
Due to the definition of 7 (and so, 7" and #”’), we have

ol + L
o0 =T (Myy) Car = T (M) o
Since ¢z, € Q@ x ({L})1 x (T\ {L})* - Stack(M)) x (Stack(M))"~% then there are
Wiy Wity -, Wy € Stack(M) such that ¢,y = (¢, L,..., L, yw;, wiy1,...,wy,). Due to the
definition of the subsequence 7’ and 7’ all the configurations of p between ¢, and ¢, have
a content of the I-th stack (with ¢ <1 < k) of the form wjw;. In particular, the configuration

cq; is of the form (qz,u1,. .., w1, Usw;, Ui 1Wit1, - . ., UnWy,) and the configuration c,, is of
the form (g, L, ..., L, yv;w;, vix1Wit1, - - ., Vpwy). This implies:
(7)) _ o+
e =g L Loy b D)=) (@ 0 i Wiy Ui)
and
T// %
(qfauh vy Uj—1, Uy Uj 15 - - - aun):>7'(/\/l[1’i]) (Qa J—v RN J—7’Y/Ui7’ui+1a s 7U7L)

Consequently, (2) holds, which concludes the proof.

(<) : It is easy to see that we can use (1) and (2) to construct a run starting from c that
visits infinitely often the state gy.
<

Since the sets of configurations Ci(qw) and ({gr} x (Stack(M))™) are recognizable, we
can use Theorem 8 and Theorem 9 to construct M-automata recognizing Prez M)(ng’"’))

and Pre%M[u])(Pre*T(M[l,i])(C'i(qﬁ)) N ({g} x (Stack(M))™)). Hence, we can construct a
M-automaton that recognizes the set of all configurations ¢ of M such that there is an
infinite run of 7 (M) starting from ¢ that visits infinitely often the state gy.

» Theorem 11. Let M = (n,Q,T,A) be an OMPS and q € Q be a state. Then, it is
possible to construct, in time O((|M|)2dn) where d is a constant, a M-automaton A such
that |A| = O((IM)2™") and for every configuration ¢ € Conf(M), ¢ € Lai(A) if and only if
there is an infinite run of T (M) starting from c that visits infinitely often the state q.

5.2 w-regular properties

In this section, we assume that the reader is familiar with w-regular properties expressed in
the linear-time temporal logics [18] or the linear time p-calculus [26]. For more details, the
reader is referred to [18, 28, 26, 27].

Let ¢ be an w-regular formula built from a set of atomic propositions Prop, and let
M = (n,Q,T',A) be an OMPS with a labeling function A : Q — 2™ associating to each
state ¢ € @Q the set of atomic propositions that are true in it. In the following, we are
interested in solving the global model checking problem which consists in computing the set of
all configurations ¢ of M such that every infinite run starting from c satisfies the formula ¢.

To solve this problem, we adopt an approach similar to [6, 5] and we construct a Buchi
automaton B-, over the alphabet 2Pm0P accepting the negation of ¢ [28, 27]. Then, we
compute the product of the OMPS M and of the Biichi automaton B-, to obtain an n-OMPS
M, with a set of repeating states G. Now, it is easy to see that the original problem
can be reduced to the repeated state global reachability problem which compute the set of
all configurations ¢ such that there is an infinite run of 7 (M) starting from ¢ that visits
infinitely often a state in G. Hence, as an immediate consequence of Theorem 11, we obtain:

Mohamed Faouzi Atig

» Theorem 12. Let M = (n,Q,T,A) be an OMPS with a labeling function A, and let ¢
be a linear time p-calculus formula or linear time temporal formula. Then, it is possible to
construct, in time O((2/4! - |M|)2dn) where d is a constant, a M-automaton A such that
|A] = O((21¢! - |IM])2™) and for every configuration ¢ € Conf(M), ¢ € L(A) if and only if
there is an infinite run of T (M) starting from c that does not satisfy .

Proof. It is well known that it is possible to construct, in time exponential in ||, a Biichi
automaton B, for the negation of —¢ having exponential size in |p| [28, 26]. Therefore, the
product of M and B-, has polynomial size in | M| and exponential size in |¢|. Applying
Theorem 11 to the n-OMPS M_,, (the product of M and B-,) of size O(2/¥l - |M]) we
obtain our complexity result. |

Observe that we can also construct a M-automaton A’ such that for every configuration
¢ € Conf(M), c € Lyp(A) if and only if every infinite run of 7 (M) starting from ¢ that
satisfies ¢ since the class of M-automata is closed under boolean operations.

We are now ready to establish our result about the model checking problem for w-regular
properties which consists in checking whether, for a given configuration ¢ of the OMPS, every
infinite run starting from c satisfies the formula ¢.

» Theorem 13. The model checking problem for the linear-time temporal logics or the
linear-time p-calculus and OMPSs is 2ETIME-complete.

Proof. The 2ETIME upper bound is established by Theorem 12. To prove hardness, we
use the fact that the emptiness problem for ordered multi-pushdown automata is 2ETIME-
complete [1]. <

6 Conclusion

We have shown that the set of all predecessors of a recognizable set of configurations of an
ordered multi-pushdown system is an effectively constructible recognizable set. We have also
proved that the set of all configurations of an ordered multi-pushdown system that satisfy a
given w-regular property is effectively recognizable. From these results we have derived an
2ETIME upper bound for the model checking problem of w-regular properties.

It may be interesting to see if our approach can be extended to solve the global model-
checking problem for branching time properties expressed in CTL or CTL* by adapting the
constructions given in [5, 12] for standard pushdown systems.

Acknowledgements I want to thank Ahmed Bouajjani who greatly helped by reading this
paper at various stages.

—— References

1 M. F. Atig, B. Bollig, and P. Habermehl. Emptiness of multi-pushdown automata is
2ETIME-complete. In Proceedings of DLT’08, volume 5257 of LNCS, pages 121-133.
Springer, 2008.

2 M. F. Atig, A. Bouajjani, and T. Touili. On the reachability analysis of acyclic networks
of pushdown systems. In CONCUR, volume 5201 of LNCS, pages 356-371. Springer, 2008.

3 M. F. Atig and T. Touili. Verifying parallel programs with dynamic communication struc-
tures. In CIAA, volume 5642 of LNCS, pages 145-154. Springer, 2009.

4 Mohamed Faouzi Atig. From multi to single stack automata. In CONCUR, volume 6269
of Lecture Notes in Computer Science, pages 117-131. Springer, 2010.

225

FSTTCS 2010

226

Global Model Checking of Ordered Multi-Pushdown Systems

5

10

11

12

13

14

15

16

17

18
19

20

21

22

23

24

25

26

A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Ap-
plication to model-checking. In CONCUR, volume 1243 of LNCS, pages 135-150. Springer,
1997.

A. Bouajjani and O. Maler. Reachability analysis of pushdown automata. In Proc. Intern.
Workshop on Verification of Infinite-State Systems (Infinity’96), 1996.

A. Bouajjani, M. Miiller-Olm, and T. Touili. Regular symbolic analysis of dynamic networks
of pushdown systems. In CONCUR’05, LNCS, 2005.

A. Bouajjani and T. Touili. Reachability Analysis of Process Rewrite Systems. In
FSTTCS’03. LNCS 2914, 2003.

L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespi Reghizzi. Multi-push-down languages
and grammars. International Journal of Foundations of Computer Science, 7(3):253-292,
1996.

J. Esparza and J. Knoop. An automata-theoretic approach to interprocedural data-flow
analysis. In FoSSaCS, volume 1578 of LNCS, pages 14-30. Springer, 1999.

J. Esparza and A. Podelski. Efficient algorithms for pre* and post* on interprocedural
parallel flow graphs. In POPL’00. ACM, 2000.

Alain Finkel, Bernard Willems, and Pierre Wolper. A direct symbolic approach to model
checking pushdown systems (extended abstract). In Faron Moller, editor, Proceedings of
the 2nd International Workshop on Verification of Infinite State Systems (INFINITY’97),
volume 9 of Electronic Notes in Theoretical Computer Science, pages 27-39, Bologna, Italy,
July 1997. Elsevier Science Publishers.

Alexander Heufner, Jéréme Leroux, Anca Muscholl, and Grégoire Sutre. Reachability
analysis of communicating pushdown systems. In FOSSACS, volume 6014 of Lecture Notes
in Computer Science, pages 267-281. Springer, 2010.

Ranjit Jhala and Rupak Majumdar. Interprocedural analysis of asynchronous programs.
In POPL. IEEE, 2007.

V. Kahlon. Boundedness vs. unboundedness of lock chains: Characterizing decidability of
pairwise cfl-reachability for threads communicating via locks. In LICS, pages 27-36. IEEE
Computer Society, 2009.

A. Lal and T.W. Reps. Reducing concurrent analysis under a context bound to sequential
analysis. In CAV, volume 5123 of LNCS, pages 37-51. Springer, 2008.

D. Lugiez and Ph. Schnoebelen. The regular viewpoint on pa-processes. In CONCUR,
volume 1466 of LNCS, pages 50-66. Springer, 1998.

Amir Pnueli. The temporal logic of programs. In FOCS, pages 46-57. IEEE, 1977.

S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In
TACAS, volume 3440 of LNCS, pages 93—107. Springer, 2005.

G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecidable. ACM
Trans. Program. Lang. Syst., 22(2):416-430, 2000.

T.W. Reps, S. Schwoon, and S. Jha. Weighted pushdown systems and their application to
interprocedural dataflow analysis. In SAS, volume 2694 of LNCS, pages 189-213. Springer,
2003.

K. Sen and M. Viswanathan. Model checking multithreaded programs with asynchronous
atomic methods. In CAV, pages 300-314. LNCS 4144, 2006.

Anil Seth. Global reachability in bounded phase multi-stack pushdown systems. In CAV,
volume 6174 of Lecture Notes in Computer Science, pages 615—-628. Springer, 2010.

S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive languages.
In Proceedings of LICS, pages 161-170. IEEE, 2007.

S. La Torre, P. Madhusudan, and G. Parlato. Context-bounded analysis of concurrent
queue systems. In Proceedings of TACAS’08, LNCS, pages 299-314. Springer, 2008.
Moshe Y. Vardi. A temporal fixpoint calculus. In POPL, pages 250-259, 1988.

Mohamed Faouzi Atig 227

27 Moshe Y. Vardi. Alternating automata and program verification. In Computer Science
Today, volume 1000 of Lecture Notes in Computer Science, pages 471-485. Springer, 1995.
28 Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic program
verification (preliminary report). In LICS, pages 332-344. IEEE Computer Society, 1986.

FSTTCS 2010

	Introduction
	Preliminaries
	Ordered Multi-Pushdown Systems
	Multi-pushdown systems
	Symbolic representation of MPS configurations
	Ordered multi-pushdown systems

	Computing the set of predecessors for an OMPS
	Applications to Linear-Time Global Model Checking
	The repeated state global reachability problem
	w-regular properties

	Conclusion

