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Abstract
Coalgebra is an abstract framework for the uniform study of different kinds of dynamical systems.
An endofunctor F determines both the type of systems (F -coalgebras) and a notion of behavioral
equivalence (∼F ) amongst them. Many types of transition systems and their equivalences can
be captured by a functor F . For example, for deterministic automata the derived equivalence
is language equivalence, while for non-deterministic automata it is ordinary bisimilarity. The
powerset construction is a standard method for converting a nondeterministic automaton into an
equivalent deterministic one as far as language is concerned. In this paper, we lift the powerset
construction on automata to the more general framework of coalgebras with structured state
spaces. Examples of applications include partial Mealy machines, (structured) Moore automata,
and Rabin probabilistic automata.
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1 Introduction

Coalgebra is by now a well established general framework for the study of the behaviour
of large classes of dynamical systems, including various kinds of automata (deterministic,
probabilistic etc.) and infinite data types (streams, trees and the like). For a functor
F : Set→ Set, an F -coalgebra is a pair (X, f), consisting of a set X of states and a function
f : X → F (X) defining the observations and transitions of the states. Coalgebras generally
come equipped with a standard notion of equivalence called F -behavioural equivalence that
is fully determined by their (functor) type F . Moreover, for most functors F there exists
a final coalgebra into which any F -coalgebra is mapped by a unique homomorphism that
identifies all F -equivalent states.

Much of the coalgebraic approach can be nicely illustrated with deterministic automata
(DA), which are coalgebras of the functor D(X) = 2×XA. In a DA, two states are D-
equivalent precisely when they accept the same language. The set 2A∗ of all formal languages
constitutes a final D-coalgebra, into which every DA is mapped by a homomorphism that
sends any state to the language it accepts.

It is well-known that non-deterministic automata (NDA) often provide more efficient
(smaller) representations of formal languages than DA’s. Language acceptance of NDA’s is
typically defined by turning them into DA’s via the powerset construction. Coalgebraically
this works as follows. NDA’s are coalgebras of the functor N(X) = 2 × Pω(X)A, where
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Pω is the finite powerset. An N -coalgebra (X, f : X → 2 × Pω(X)A) is determinized by
transforming it into a D-coalgebra (Pω(X), f ] : Pω(X) → 2 × Pω(X)A) (for details see
Section 3). Then, the language accepted by a state s in the NDA (X, f) is defined as the
language accepted by the state {s} in the DA (Pω(X), f ]).

For a second variation on DA’s, we look at partial automata (PA): coalgebras of the
functor P (X) = 2× (1 +X)A, where for certain input letters transitions may be undefined.
Again, one is often interested in the DA-behaviour (i.e., language acceptance) of PA’s. This
can be obtained by turning them into DA’s using totalization. Coalgebraically, this amounts
to the transformation of a P -coalgebra (X, f : X → 2 × (1 + X)A) into a D-coalgebra
(1 +X, f ] : 1 +X → 2× (1 +X)A).

Although the two examples above may seem very different, they are both instances of one
and the same phenomenon, which it is the goal of the present paper to describe at a general
level. Both with NDA’s and PA’s, two things happen at the same time: (i) more (or, more
generally, different types of) transitions are allowed, as a consequence of changing the functor
type by replacing X by Pω(X) and (1 +X), respectively; and (ii) the behaviour of NDA’s
and PA’s is still given in terms of the behaviour of the original DA’s (language acceptance).

For a large family of F -coalgebras, both (i) and (ii) can be captured simultaneously
with the help of the categorical notion of monad, which generalizes the notion of algebraic
theory. The structuring of the state space X can be expressed as a change of functor type
from F (X) to F (T (X)). In our examples above, both the functors T1(X) = Pω(X) and
T2(X) = 1 +X are monads, and NDA’s and PA’s are obtained from DA’s by changing the
original functor type D(X) into N(X) = D(T1(X)) and P (X) = D(T2(X)). Regarding (ii),
one assigns F -semantics to an FT -coalgebra (X, f) by transforming it into an F -coalgebra
(T (X), f ]), again using the monad T . In our examples above, the determinization of NDA’s
and the totalization of PA’s consists of the transformation of N - and P -coalgebras (X, f)
into D-coalgebras (T1(X), f ]) and (T2(X), f ]), respectively.

We shall investigate general conditions on the functor types under which the above
constructions can be applied: for one thing, one has to ensure that the FT -coalgebra map f
induces a suitable F -coalgebra map f ]. Our results will lead to a uniform treatment of all
kinds of existing and new variations of automata, that is, FT -coalgebras, by an algebraic
structuring of their state space through a monad T . Furthermore, we shall prove a number
of general properties that hold in all situations similar to the ones above. For instance,
there is the notion of N -behavioural equivalence with which NDA’s, being N -coalgebras,
come equipped. It coincides with the well-known notion of Park-Milner bisimilarity from
process algebra. A general observation is that if two states in an NDA are N -equivalent
then they are also D- (that is, language-) equivalent. For PA’s, a similar statement holds.
One further contribution of this paper is a proof of these statements, once and for all for all
FT -coalgebras under consideration.

Coalgebras of type FT were studied in [15, 2, 11]. In [2, 11] the main concern was
definitions by coinduction, whereas in [15] a proof principle was also presented. All in all,
the present paper can be seen as the understanding of the aforementioned papers from a new
perspective, presenting a uniform view on various automata constructions and equivalences.

The structure of the paper is as follows. After preliminaries (Section 2) and the details of
the motivating examples above (Section 3), Section 4 presents the general construction as
well as many more examples. In Section 5, a large family of automata (technically: functors)
is characterized to which the constructions above can be applied. Section 6 discusses related
work and presents pointers to future work. A technical report [27] contains all the proofs as
well as further examples.
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274 Generalizing the powerset construction, coalgebraically

2 Background

In this section we introduce the preliminaries on coalgebras and algebras. First, we fix
some notation on sets. We will denote sets by capital letters X,Y, . . . and functions by lower
case letters f, g, . . . Given sets X and Y , X × Y is the cartesian product of X and Y (with
the usual projection maps π1 and π2), X + Y is the disjoint union (with injection maps κ1
and κ2) and XY is the set of functions f :Y → X. The collection of finite subsets of X is
denoted by Pω(X), while the collection of full-probability distributions with finite support
is Dω(X) = {f : X → [0, 1] | f finite support and

∑
x∈X f(x) = 1}. For a set of letters

A, A∗ denotes the set of all words over A; ε the empty word; and w1 · w2 (and w1w2) the
concatenation of words w1, w2 ∈ A∗.

2.1 Coalgebras
A coalgebra is a pair (X, f : X → F (X)), where X is a set of states and F : Set→ Set is a
functor. The functor F , together with the function f , determines the transition structure (or
dynamics) of the F -coalgebra [22].

An F -homomorphism from an F -coalgebra (X, f) to an F -coalgebra (Y, g) is a function
h:X → Y preserving the transition structure, i.e., g ◦ h = F (h) ◦ f .

An F -coalgebra (Ω, ω) is said to be final if for any F -coalgebra (X, f) there exists a
unique F -homomorphism [[−]]X : X → Ω. All the functors considered in examples in this
paper have a final coalgebra.

Let (X, f) and (Y, g) be two F -coalgebras. We say that the states x ∈ X and y ∈ Y
are behaviourally equivalent, written x ∼F y, if and only if they are mapped into the same
element in the final coalgebra, that is [[x]]X = [[y]]Y .

2.2 Algebras
Monads can be thought of as a generalization of algebraic theories. A monad T = (T, µ, η)
is a triple consisting of an endofunctor T on Set and two natural transformations: a unit
η : Id ⇒ T mapping a set X to its free algebra T (X), and a multiplication µ : T 2 ⇒ T . They
satisfy the following commutative laws

µ ◦ ηT = idT = µ ◦ Tη and µ ◦ µT = µ ◦ Tµ.

Sometimes it is more convenient to represent a monad T, equivalently, as a Kleisli triple
(T, (_)], η) [17], where T assigns a set T (X) to each set X, the unit η assigns a function
ηX : X → T (X) to each set X, and the extension operation (_)] assigns to each f : X → T (Y )
a function f ] : T (X)→ T (Y ), such that,

f ] ◦ ηX = f (ηX)] = idT (X) (g] ◦ f)] = g] ◦ f ] ,

for g : Y → T (Z). Monads are frequently referred to as computational types [18]. We list
now a few examples. In what follows, f : X → T (Y ) and c ∈ T (X).

Nondeterminism T (X) = Pω(X); ηX is the singleton map x 7→ {x}; f ](c) =
⋃
x∈c f(x).

Partiality T (X) = 1 + X where 1 = {∗} represents a terminating (or diverging)
computation; ηX is the injection map κ2 : X → 1+X; f ](κ1(∗)) = κ1(∗) and f ](κ2(x)) =
f(x).

Further examples of monads include: exceptions (T (X) = E + X), side-effects (T (X) =
(S × X)S), interactive output (T (X) = µv.X + (O × v) ∼= O∗ × X) and full-probability
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(T (X) = Dω(X)). We will use all these monads in our examples and we will define ηX and
f ] for each later in Section 4.1.

A T-algebra of a monad T is a pair (X,h) consisting of a set X, called carrier, and a
function h : T (X)→ X such that h ◦ µX = h ◦ Th and h ◦ ηX = idX . A T -homomorphism
between two T-algebras (X,h) and (Y, k) is a function f : X → Y such that f ◦ h = k ◦ Tf .
T-algebras and their homomorphisms form the so-called Eilenberg-Moore category SetT.
There is a forgetful functor UT : SetT → Set defined by

UT((X,h)) = X and UT(f : (X,h)→ (Y, k)) = f : X → Y .

The forgetful functor UT has left adjoint X 7→ (T (X), µX : TT (X) → T (X)), map-
ping a set X to its free T-algebra. If f : X → Y with (Y, h) a T-algebra, the unique
T-homomorphism f ] : (T (X), µX)→ (Y, h) with f ] ◦ ηX = f is given by

f ] : T (X)
Tf // T (Y ) h // Y .

The function f ] : (T (X), µX)→ (T (Y ), µY ) coincides with function extension for a Kleisli
triple. For the monad Pω the associated Eilenberg-Moore category is the category of join
semi-lattices, whereas for the monad 1 +− is the category of pointed sets.

3 Motivating examples

In this section, we introduce two motivating examples. We will present two constructions, the
determinization of a non-deterministic automaton and the totalization of a partial automaton,
which we will later show to be an instance of the same, more general, construction.

3.1 Non-deterministic automata
A deterministic automaton (DA) over the input alphabet A is a pair (X, 〈o, t〉), where X is
a set of states and 〈o, t〉 : X → 2 ×XA is a function with two components: o, the output
function, determines if a state x is final (o(x) = 1) or not (o(x) = 0); and t, the transition
function, returns for each input letter a the next state. DA’s are coalgebras for the functor
2×IdA. The final coalgebra of this functor is (2A∗

, 〈ε, (−)a〉) where 2A∗ is the set of languages
over A and 〈ε, (−)a〉, given a language L, determines whether or not the empty word is in the
language (ε(L) = 1 or ε(L) = 0, resp.) and, for each input letter a, returns the derivative of
L: La = {w ∈ A∗ | aw ∈ L}. From any DA, there is a unique map l into 2A∗ which assigns
to each state its behaviour (that is, the language that the state recognizes).

X
l //_________

〈o,t〉
��

2A∗

〈ε,(−)a〉��
2×XA

id×lA
//______ 2× (2A∗)A

A non-deterministic automaton (NDA) is similar to a DA but the transition function gives a
set of next-states for each input letter instead of a single state. Thus, an NDA over the input
alphabet A is a pair (X, 〈o, δ〉), where X is a set of states and 〈o, δ〉 : X → 2× (Pω(X))A is
a pair of functions with o as before and where δ determines for each input letter a a set of
possible next states. In order to compute the language recognized by a state x of an NDA A,
it is usual to first determinize it, constructing a DA det(A) where the state space is Pω(X),
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276 Generalizing the powerset construction, coalgebraically

and then compute the language recognized by the state {x} of det(A). Next, we describe in
coalgebraic terms how to construct the automaton det(A).

Given an NDA A = (X, 〈o, δ〉), we construct det(A) = (Pω(X), 〈o, t〉), where, for all
Y ∈ Pω(X), a ∈ A, the functions o : Pω(X)→ 2 and t : Pω(X)→ Pω(X)A are

o(Y ) =
{

1 ∃y∈Y o(y) = 1
0 otherwise

t(Y )(a) =
⋃
y∈Y

δ(y)(a).

The automaton det(A) is such that the language l({x}) recognized by {x} is the same as
the one recognized by x in the original NDA A (more generally, the language recognized by
state X of det(A) is the union of the languages recognized by each state x of A).

We summarize the situation above with the following commuting diagram:

X

〈o,δ〉
��

{·} // Pω(X)

〈o,t〉vvmmmmmmmm
l //____ 2A∗

〈ε,(−)a〉��
2× Pω(X)A

id×lA
//_________ 2× (2A∗)A

We note that the language semantics of NDA’s, presented in the above diagram, can also be
obtained as an instance of the abstract definition scheme of λ-coinduction [2, 11].

3.2 Partial automata
A partial automaton (PA) over the input alphabet A is a pair (X, 〈o, ∂〉) consisting of a
set of states X and a pair of functions 〈o, ∂〉 : X → 2 × (1 + X)A, with o : X → 2 as for
DA and ∂ : X → (1 + X)A a transition function, which for any input letter a is either
undefined (no a-labelled transition takes place) or specifies the next state that is reached.
PA’s are coalgebras for the functor 2× (1 + Id)A. Given a PA A, we can construct a total
(deterministic) automaton tot(A) by adding an extra sink state to the state space: every
undefined a-transition from a state x is then replaced by a a-labelled transition from x to the
sink state. More precisely, given a PA A = (X, 〈o, ∂〉), we construct tot(A) = (1 +X, 〈o, t〉),
where

o(κ1(∗)) = 0
o(κ2(x)) = o(x)

t(κ1(∗))(a) = κ1(∗)
t(κ2(x))(a) = ∂(x)(a)

The language l(x) recognized by a state x will be precisely the language recognized by x in
the original partial automaton. Moreover, the new sink state recognizes the empty language.
Again we summarize the situation above with the help of following commuting diagram,
which illustrates the similarities between both constructions:

X

〈o,∂〉
��

κ2 // 1 +X

〈o,t〉vvmmmmmmmm
l //____ 2A∗

〈ε,(−)a〉��
2× (1 +X)A

id×lA
//_________ 2× (2A∗)A

4 Algebraically structured coalgebras

In this section we present a general framework where both motivating examples can be
embedded and uniformly studied. We will consider coalgebras for which the functor type FT
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can be decomposed into a transition type F specifying the relevant dynamics of a system
and a monad T providing the state space with an algebraic structure. For simplicity, we fix
our base category to be Set.

We will study coalgebras f : X → FT (X) for a functor F and a monad T such that
FT (X) is a T-algebra, that is FT (X) is the carrier of a T-algebra (FT (X), h). In the
motivating examples, F would be instantiated to 2× IdA (in both) and T to Pω, for NDAs,
and to 1 +− for PAs. The condition that FT (X) is a T-algebra would amount to require
that 2 × Pω(X)A is a join-semilattice, for NDAs, and that 2 × (1 + X)A is a pointed set,
for PAs. This is indeed the case, since the set 2 can be regarded both as a join-semilattice
(2 ∼= Pω(1)) or as a pointed set (2 ∼= 1+1) and, moreover, products and exponentials preserve
the algebra structure.

The inter-play between the transition type F and the computational type T (more
precisely, the fact that FT (X) is a T-algebra) will allow each coalgebra f : X → FT (X) to
be extended uniquely to a T -algebra morphism f ] : (T (X), µX)→ (FT (X), h) which makes
the following diagram commute.

X

f
��

ηX // T (X)

f]wwppppppp

FT (X)

f ] ◦ ηX = f

Intuitively, ηX : X → T (X) is the inclusion of the state space of the coalgebra f : X → FT (X)
into the structured state space T (X), and f ] : T (X) → FT (X) is the extension of the
coalgebra f to T (X).

Next, we will study the behaviour of a given state or, more generally, we would like to say
when two states x1 and x2 are equivalent. The obvious choice for an equivalence would be
FT -behavioural equivalence. However, this equivalence is not exactly what we are looking
for. In the motivating example of non-deterministic automata we wanted two states to be
equivalent if they recognize the same language. If we would take the equivalence arising from
the functor 2×Pω(Id)A we would be distinguishing states that recognize the same language
but have difference branching types, as in the following example.

•
a��

•
a

""EE
EEa

||yyy
y

c
""EE

EEb
||yyy

y
b �� c��

• • • •

We now define a new equivalence, which will absorb the effect of the monad T .
We say that two elements x1 and x2 in X are F -equivalent with respect to a monad T,

written x1 ≈TF x2, if and only if ηX(x1) ∼F ηX(x2). The equivalence ∼F is just F -behavioural
equivalence for the F -coalgebra f ] : T (X)→ FT (X).

If the functor F has a final coalgebra (Ω, ω) , we can capture the semantic equivalence
above in the following commuting diagram

X

f
��

ηX // T (X)

f]xxqqqqqqq

[[−]] //____ Ω
ω

��
FT (X)

F [[−]] //________ F (Ω)

(1)

Back to our first example, two states x1 and x2 of an NDA (in which T is instantiated to Pω
and F to 2× IdA) would satisfy x1 ≈TF x2 if and only if they recognize the same language
(recall that the final coalgebra of the functor 2× IdA is 2A∗).
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278 Generalizing the powerset construction, coalgebraically

It is also interesting to remark the difference between the two equivalences in the case
of partial automata. The coalgebraic semantics of PAs [24] is given in terms of pairs of
prefix-closed languages 〈V,W 〉 where V contains the words that are accepted (that is, are the
label of a path leading to a final state) and W contains all words that label any path (that is
all that are in V plus the words labeling paths leading to non-final states). We exemplify
what V and W would be in the following examples for state s0 and q0.

W = c∗ + c∗b+ c∗ab∗

V = c∗ab∗
s0

b
!!CC

C
a //

c

�� ?>=<89:;76540123s1

b

SS
s2

q0
a //

c

�� ?>=<89:;76540123q1

b

TT
W = c∗ + c∗ab∗

V = c∗ab∗

Thus, state s0 and q0 would be distinguished by FT -equivalence (for F = 2 × IdA and
T = 1 +−) but they are equivalent with respect to the monad 1 +−, s0 ≈TF q0, since they
accept the same language.

We will show in Section 5 that the equivalence ∼FT is contained in ≈TF .

4.1 Examples
In this section we show more examples of applications of the framework above.

4.1.1 Partial Mealy machines
A partial Mealy machine is a set of states X together with a function t : X → (B× (1 +X))A,
where A is a set of inputs and B is a set of output values (with a distinguished value ⊥).
For each state s and for each input a the automaton produces an output value and either
terminates or continues to a next state. Applying the framework above we will be totalizing
the automaton, similarly to what happened in the example of partial automata, by adding an
extra state to the state space which will act as a sink state. The behaviour of the totalized
automaton is given by the set of causal functions from Aω (infinite sequences of A) to Bω,
which we denote by Γ(Aω, Bω) [23]. A function f : Aω → Bω is causal if, for σ ∈ Aω, the
n-th value of the output stream f(σ) depends only on the first n values of the input stream
σ.

X

t

��

// 1 +X

t]
xxrrrrrrrrrrrr

[[−]] //___________

[[κ1(∗)]](σ) = (⊥,⊥, . . .)
[[κ2(s)]](a:σ) = b:([[n]](σ))

where 〈b, n〉 = t(s)(a)

Γ(Aω, Bω)

��
(B × (1 +X))A //_______________ (B × Γ(Aω, Bω))A

4.1.2 Structured Moore automata
In the following examples we look at the functor F (X) = T (B)×XA, for B and A arbitrary
sets and T = (T, η, (−)]) an arbitrary monad. This represents Moore automata with outputs
in T (B) and inputs in A. For any set X, FT (X) has a T-algebra lifting and the final
coalgebra of F is T (B)A∗ . The final map [[−]] : T (X)→ T (B)A∗ is defined below.

X

〈o,t〉
��

ηX // T (X)
[[m]](ε) = o](m)
[[m]](aw) = [[t](m)(a)]](w)〈o,t〉]vvmmmmmmmmmm

[[−]] //____________ T (B)A∗

〈ε,(−)a〉
��

T (B)× (T (X))A //______________ T (B)× (T (T (B)A∗))A
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4.1.2.1 Moore automata with exceptions

Consider T (X) = E + X, with E a set of exceptions, η(x) = κ2(x) and, for a function
f : X → T (Y ), f ] : T (X)→ T (Y ) is defined as f ] = [id, f ].

An FT -coalgebra 〈o, t〉 : X → (E +B)× (E +X)A will associate with every state s an
output value (either in B or an exception in E) and, for each input a, a next state or an
exception. The behaviour of a state x, given by [[η(x)]], will be a formal power series over A
with output values in E +B (that is, a function from A∗ to E +B), defined as follows:

[[κ1(e)]](w) = κ1(e) [[κ2(s)]](ε) = o(s) [[κ2(s)]](aw) = [[t(s)(a)]](w).

4.1.2.2 Moore automata with side effects

Consider T (X) = (S ×X)S , with S a set of side-effects, η(x) = λs.〈s, x〉 and, for a function
f : X → T (Y ), f ] : T (X)→ T (Y ) is defined as f ](g)(s) = f(x)(s′) where 〈s′, x〉 = g(s).

Take now an FT -coalgebra 〈o, t〉 : X → (B × S)S × ((S ×X)S)A and let us explain the
intuition behind this automaton type. Let S be the set of side effects (for instance, one
could take S = V L, functions associating memory locations to values). The set S ×X can
be interpreted as the configurations of the automaton, where S contains information about
the state of the system and X about the control of the system. Then, we can think of
o : X → (S ×B)S as a function that for each configuration S ×X provides an output and
the new state of the system (note that X → (S ×B)S ∼= S ×X → S ×B). The transition
function t : X → ((S ×X)S)A gives a new configuration for each input letter and current
configuration (again we use the fact that X → ((S ×X)S)A ∼= S ×X → (S ×X)A).

The behaviour of a state x will be given by [[η(x)]], defined below, and it will be a function
that for each configuration and for each sequence of actions returns an output value and a
side effect.

[[g]](ε)(s) = o(x)(s′) where 〈s′, x〉 = g(s)
[[g]](aw1) = [[λs.t(s)(a)(s′)]](w1) where 〈s′, x〉 = g(s)

4.1.2.3 Moore automata with interactive output

Consider T (X) = µv.X + (O × v) ∼= O∗ ×X, with O a set of outputs, η(x) = 〈ε, x〉 and, for
f : X → T (Y ), f ] : T (X) → T (Y ) is given by f ](〈w, x〉) = 〈ww′, x′〉 where 〈w′, x′〉 = f(x).
Take an FT -coalgebra 〈o, t〉 : X → (O∗ × B) × (O∗ × X)A. For B = 1, this coincides
with a (total) subsequential transducer [8]: o : X → O∗ is the terminal output function;
t : X → (O∗ ×X)A is the pairing of the output function and the next state-function.

The behaviour of a state x will be given by [[η(x)]] = [[〈ε, x〉]], where, for every 〈w, x〉 ∈
O∗ ×X, [[〈w, x〉]] : A∗ → B∗, is given by

[[〈w, x〉]](ε) = w · o(x) [[〈w, x〉]](aw1) = w · ([[t(x)(a)]](w1))

4.1.2.4 Probabilistic Moore automata

Take T (X) = Dω(X), η the Dirac distribution (defined below) and, for f : X → T (Y ),
f ] : T (X)→ T (Y ) is given by

f ](c) = λy.
∑

d∈Dω(Y )

 ∑
x∈f−1(d)

c(x)

× d(y) η(x) = λx′.

{
1 x = x′

0 otherwise
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Take an FT -coalgebra 〈o, t〉 : X → Dω(B)×Dω(X)A. For B = 2 (note that Dω(2) ∼= [0, 1])
this gives rise to a (Rabin) probabilistic automaton [21]: each state x has an output value in
o(x) ∈ [0, 1] and, for each input a, t(x)(a) is a probability distribution of next states. The
behaviour of a state x is given by [[η(x)]] : A∗ → [0, 1], defined below. Intuitively, one can
think of [[η(x)]] as a probabilistic language: each word is associated with a value p ∈ [0, 1].

[[d]](ε) =
∑

b∈[0,1]
(

∑
o(x)=b

d(x))× b

[[d]](aw) = [[λx′.
∑

c∈Dω(X)
(
∑
b=t(x)(a) d(x))× c(x′)]](w)

It is worth to note that this exactly captures the semantics of [21], while the ordinary ∼FT
coincides with probabilistic bisimilarity of [14].

5 Coalgebras and T-Algebras

In the previous section we presented a framework, parameterized by a functor F and a
monad T, in which systems of type FT (that is, FT -coalgebras) can be studied using a novel
equivalence ≈TF instead of the classical ∼FT . The only requirement we imposed was that
FT (X) has to be a T-algebra.

In this section, we will present functors F for which the requirement of FT (X) being a
T-algebra is guaranteed because they can be lifted to a functor F ∗ on T-algebra. For these
functors, the equivalence ≈TF coincides with ∼F∗ . In other words, working on FT -coalgebras
in Set under the novel ≈TF equivalence is the same as working on F ∗-coalgebras on T-algebras
under the ordinary ∼F∗ equivalence. Next, we will prove that for this class of functors and
an arbitrary monad T the equivalence ∼FT is contained in ≈TF . Instantiating this result for
our first motivating example of non-deterministic automata will yield the well known fact
that bisimilarity implies trace equivalence.

Let T be a monad. An endofunctor F ∗ : SetT → SetT is said to be the T-algebra lifting
of a functor F : Set→ Set if the following square commutes1:

SetT

UT
��

F∗
// SetT

UT
��

Set F // Set

If the functor F has a T-algebra lifting F ∗ then FT (X) is the carrier of the algebra
F ∗(T (X), µ). Functors that have a T-algebra lifting are given, for example, by those
endofunctors on Set constructed inductively by the following grammar

F :: = Id | B | F × F | FA | TG

where A is an arbitrary set, B is the constant functor mapping every set X to the carrier of a
T-algebra (B, h), and G is an arbitrary functor. Since the forgetful functor UT : SetT → Set
creates and preserves limits, both F1 × F2 and FA have a T-algebra lifting if F , F1, and F2
have. Finally, TG has a T-algebra lifting for every endofunctor G given by the assignment
(X,h) 7→ (TGX,µGX). Note that we do not allow taking coproducts in the above grammar,
because coproducts of T-algebras are not preserved in general by the forgetful functor UT.
Instead, one could resort to extending the grammar with the carrier of the coproduct taken

1 This is equivalent to the existence of a distributive law λ : TF ⇒ FT [12].
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directly in SetT. For instance, if T is the (finite) powerset monad, then we could extend the
above grammar with the functor F1 ⊕ F2 = F1 + F2 + {>,⊥}.

Now, let F be a functor with a T-algebra lifting and for which a final coalgebra Ω exists.
If Ω can be constructed as the limit of the final sequence (for example assuming the functor
accessible [1]), then, because the forgetful functor UT : SetT → Set preserves and creates
limits, Ω is the carrier of a T-algebra, and it is the final coalgebra of the lifted functor F ∗.
Further, for any FT -coalgebra f : X → FT (X), the unique F -coalgebra homomorphism
[[−]] as in diagram (1) is a T -algebra homomorphism between T (X) and Ω. Conversely, the
carrier of the final F ∗-coalgebra (in SetT) is the final F -coalgebra (in Set).

Intuitively, the above means that for an accessible functor F with a T-algebra lifting F ∗,
F ∗-equivalence in SetT coincides with F -equivalence with respect to T in Set. The latter
equivalence is coarser than the FT -equivalence in Set, as stated in the following theorem.

I Theorem 1. Let T be a monad. If F is an endofunctor on Set with a T-algebra lifting,
then ∼FT implies ≈TF .

The proof of this theorem (presented in [27]) relies on the fact that for every monad T and
functor F with a T-algebra lifting, if h : (X, f)→ (Y, g) is an FT -coalgebra homomorphism,
then (ηY ◦ h)] : (T (X), f ])→ (T (Y ), g]) is an F -coalgebra homomorphism.

The above theorem instantiates to the well-known facts: for NDA, where F (X) = 2×XA

and T = Pω, that bisimulation implies language equivalence; for partial automata, where
F (X) = 2 × XA and T = 1 + −, that equivalence of pairs of languages, consisting of
defined paths and accepted words, implies equivalence of accepted words; for probabilistic
automata, where F (X) = [0, 1] ×XA and T = Dω, that probabilistic bisimilarity implies
probabilistic/weighted language equivalence. Note that, in general, the above inclusion is
strict.

6 Discussion

In this paper, we lifted the powerset construction on automata to the more general framework
of FT -coalgebras. Our results lead to a uniform treatment of several kinds of existing and
new variations of automata (that is, FT -coalgebras) by an algebraic structuring of their state
space through a monad T . We showed as examples partial Mealy machines, structured Moore
automata, nondeterministic, partial and probabilistic automata. The technical report [27]
shows (as further examples) several behavioural equivalences that are extremely interesting
for the theory of concurrency. It is worth mentioning that the framework instantiates to many
other examples, among which weighted automata [26]. These are simply structured Moore
automata for B = 1 and T = S−ω (for a semiring S) [7]. It is easy to see that ∼FT coincides
with weighted bisimilarity [5], while ≈TF coincides with weighted language equivalence [26].

Some of the aforementioned examples can also be coalgebraically characterized in the
framework of [9]. There, instead of considering FT -coalgebras on Set and F ∗-coalgebras on
SetT (the Eilenberg-Moore category), TG-coalgebras on Set and G-coalgebras on SetT (the
Kleisli category) are studied. The main theorem of [9] states that under certain assumptions,
the initial G-algebra is the final G-coalgebra that characterizes (generalized) trace equivalence.
In [27], we present a first step in exploring the connection between both frameworks. However,
the exact relationship is not clear yet and further research is needed in order to make it
precise. It is worth to remark that many of our examples will not fit the framework in [9]:
for instance, the exception, the side effect, the full-probability and the interactive output
monads do not fulfill their requirements (the first three do not have a bottom element and
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the latter is not commutative). Moreover, we also note that the example of partial Mealy
machines is not purely trace-like, as all the examples in [9].

There are two other future research directions. On the one hand, we will try to exploit
F -bisimulations up to T [15, 16] as a sound and complete proof technique for ≈TF . On the
other hand, we would like to lift many of those coalgebraic tools that have been developed
for “branching equivalences” (such as coalgebraic modal logic [6, 25] and (axiomatization
for) regular expressions [3]) to work with the “linear equivalences” induced by ≈TF .
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