
Uniqueness of Normal Forms is Decidable for
Shallow Term Rewrite Systems∗

Nicholas Radcliffe1 and Rakesh M. Verma2

1 Computer Science Department
Virginia Tech
114 McBryde Hall, Blacksburg, VA 24061, USA
nradclif@vt.edu

2 Computer Science Department
University of Houston
501 Philip G. Hoffman Hall, Houston, TX 77204, USA
rmverma@cs.uh.edu

Abstract
Uniqueness of normal forms (UN=) is an important property of term rewrite systems. UN= is
decidable for ground (i.e., variable-free) systems and undecidable in general. Recently it was
shown to be decidable for linear, shallow systems. We generalize this previous result and show
that this property is decidable for shallow rewrite systems, in contrast to confluence, reachability
and other properties, which are all undecidable for flat systems. Our result is also optimal in
some sense, since we prove that the UN= property is undecidable for two superclasses of flat
systems: left-flat, left-linear systems in which right-hand sides are of depth at most two and
right-flat, right-linear systems in which left-hand sides are of depth at most two.
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1 Introduction

Term rewrite systems (TRSs), finite sets of rules, are useful in many computer science
fields including theorem proving, rule-based programming, and symbolic computation. An
important property of TRSs is confluence (also known as the Church-Rosser property), which
implies uniqueness of normal forms (UN=). Normal forms are expressions to which no rule is
applicable. A TRS has the UN= property if there are not distinct normal forms n, m such
that n ∗←→R m, where ∗←→R is the symmetric closure of the rewrite relation induced by the
TRS R.

Uniqueness of normal forms is an interesting property in itself and well-studied [9].
Confluence can be a requirement too strong for some applications such as lazy programming.
Additionally, in the proof-by-consistency approach for inductive theorem proving, consistency
is often ensured by requiring the UN= property.

We study the decidability of uniqueness of normal forms. Uniqueness of normal forms is
decidable for ground systems [12], but is undecidable in general [12]. Since the property is
undecidable in general, we would like to know for which classes of rewrite systems, beyond
ground systems, we can decide UN=. In [13, 14] a polynomial time algorithm for this property
was given for linear, shallow rewrite systems. A rewrite system is linear if variables occur at
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most once in each side of any rule. It is shallow if variables occur only at depth zero or depth
one in each side of any rule. It is flat if both the left- and right-hand sides of all the rules
have height zero or one. An example of a linear flat (in fact, ground) system that has UN=

but not confluence is {f(c)→ 1, c→ g(c)}. More sophisticated examples can be constructed
using a sequential ‘or’ function in which the second argument gives rise to a nonterminating
computation.

In this paper, we consider the class of shallow systems, i.e., we drop the linearity restriction
of [13], and a subset of this class, the flat systems. For flat systems many properties are
known to be undecidable including confluence, reachability, joinability, and existence of
normal forms [7, 11, 3]. On the other hand, the word problem is known to be decidable
for shallow systems [1]. This paper shows that the uniqueness of normal forms problem is
decidable for the class of shallow term rewrite systems, which is a significant generalization
of [13] and also somewhat surprising since so many properties are undecidable for this class
of systems. We also prove the undecidability of UN= for two subclasses of linear systems:
left-hand sides are linear, flat and right-hand sides are of depth at most two and conversely
right-flat, right-linear, and depth two left-hand sides, which shows that our result is optimal
as far as depth restrictions are involved and close to optimal as far as linearity and depth
restrictions are concerned (the problem is undecidable for the linear, depth-two class [11]).

The structure of our decidability proof is as follows: in [13, 14] it was shown that UN= for
shallow systems can be reduced to UN= for flat systems, (ii) checking UN= for flat systems
can be reduced to searching for equational proofs between terms drawn from a finite set of
terms, and (iii) existence of equational proofs between terms in part (ii) is done thanks to
the decidability of the word problem by Comon et al. [1].

Our strategy for part (ii) above, assuming a flat TRS, R, is to show that a sufficiently
small witness to non-UN= for R exists if, and only if, any witness at all exists. To see this,
say 〈M,N〉 is a minimal witness to non-UN= (in that the sum of the sizes of M and N is
minimal). We show that we can replace certain subterms of M and N that are not equivalent
to constants with variables, obtaining a witness 〈M ′, N ′〉. If the heights of M ′ and N ′ are
both strictly less than the maximum of {1, C}, where C is the number of constants in our
rewrite system, then 〈M ′, N ′〉 is sufficiently small. Otherwise, M ′ or N ′ must have a big
subterm (i.e. a subterm whose height is greater than, or equal to, the number of constants),
and this subterm is equivalent to a constant. However, in this case (when there is a constant
that is equivalent to a big subterm of a component of a minimal witness), we can show that
there is a small witness to non-UN=. So, in all cases, we end up with a small witness.

Comparison with related work. Viewed at a very high level, the proof of decidability
shows some similarity with other decidability proofs of properties of rewrite systems such as
[2]. The basic insight seems to be that, just as in algebra the terms that equal 0 are crucial
in a sense, so in rewriting are the terms that reduce to (or are equivalent to) constants.
Of course, this observation is about as helpful in proofs of decidability as a compass is to
someone lost in a maze. The details in both scenarios are vital and there are many twists
and turns. The proof of undecidability shows some similarity with proofs in [12, 4].

1.1 Definitions
Terms. A signature is a set F along with a function arity: F → N. Members of F are
called function symbols, and arity(f) is called the arity of the function symbol f . Function
symbols of arity zero are called constants. Let X be a countable set disjoint from F that
we shall call the set of variables. The set T (F , X) of F-terms over X is defined to be the
smallest set that contains X and has the property that f(t1, . . . , tn) ∈ T (F , X) whenever
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f ∈ F , n = arity(f), and t1, . . . , tn ∈ T (F , X). The set of function symbols with arity n is
denoted by Fn; in particular, the set of constants is denoted by F0. We use root(t) to refer
to the outermost function symbol of t.

The size, |t|, of a term t is the number of occurrences of constants, variables and
function symbols in t. So, |t| = 1 if t is a constant or a variable, and |t| = 1 + Σn

i=1|ti| if
t = f(t1, . . . , tn) for n > 0. The height of a term t is 0 if t is a constant or a variable, and
1 +max{height(t1), . . . , height(tn)} if t = f(t1, . . . , tn). If a term t has height zero or one,
then it is called flat. A position of a term t is a sequence of natural numbers that is used
to identify the locations of subterms of t. The subterm of t = f(t0, . . . , tn−1) at position p,
denoted t|p, is defined recursively: t|λ = t, t|k = tk, for 0 ≤ k ≤ n − 1, and t|k.p = (t|k)|p.
If t = f(t0, . . . , tn−1), then we call t0, . . . , tn−1 the depth-1 subterms of t. If all variables
appearing in t are either t itself or depth-1 subterms of t, then we say that t is shallow. The
notation g[a] focuses on (any) one occurrence of subterm a of term g, and s{u 7→ v} denotes
the term obtained from term s by replacing all occurrences of the subterm u in s by term v.

A substitution is a mapping σ : X → T (F , X) that is the identity on all but finitely
many elements of X. Substitutions are generally extended to a homomorphism on T (F , X)
in the following way: if t = f(t1, . . . , tk), then (abusing notation) σ(t) = f(σ(t1), . . . , σ(tk)).
Oftentimes, the application of a substitution to a term is written in postfix notation. A
unifier of two terms s and t is a substitution σ (if it exists) such that sσ = tσ. We assume
familiarity with the concept of most general unifier [9], which is unique up to variable
renaming and denoted by mgu.
Term Rewrite Systems. A rewrite rule is a pair of terms, (l, r), usually written l → r.
For the rule l → r, the left-hand side is l /∈ X, and the right-hand side is r. Notice that l
cannot be a variable. A rule, l→ r, can be applied to a term, t, if there exists a substitution,
σ, such that lσ = t′, where t′ is a subterm of t; in this case, t is rewritten by replacing the
subterm t′ = lσ with rσ. The process of replacing the subterm lσ with rσ is called a rewrite.
A root rewrite is a rewrite where t′ = t. A rule l→ r is flat (resp. shallow) if both l and r
are flat (resp. shallow). The rule l→ r is collapsing if r is a variable. A term rewrite system
(or TRS) is a pair, (T , R), where R is a finite set of rules and T is the set of terms over some
signature. A TRS, R, is flat (resp. shallow) if all of the rules in R are flat (resp. shallow). If
we think of → as a relation, then +

−→ and ∗−→ denote its transitive closure, and reflexive and
transitive closure, respectively. Also, ↔, +

←→, and ∗←→ denote the symmetric closure, symmetric
and transitive closure, and symmetric, transitive, and reflexive closure, respectively. We put
an ‘r’ over arrows to denote a root rewrite, i.e., r←→.

A derivation is a sequence of terms, t1, . . . , tn, such that ti → ti+1 for i = 1, . . . , n− 1;
this sequence is often denoted by t1 → t2 → . . .→ tn. A proof is a sequence, t1, . . . , tn, such
that ti ↔ ti+1 for i = 1, . . . , n− 1; this sequence is generally denoted by t1 ↔ t2 ↔ . . .↔ tn.
If R is a rewrite system, then a proof is over R if it can be constructed using rules in R.
If π is a proof, we say that π ∈ s ∗←→t if π is of the form s ↔ . . . ↔ t (it is possible for the
proof sequence to consist of a single term, in which case s = t and the proof is simply a
sequence with a single element, s). We say that π ∈ s+

←→t if π ∈ s ∗←→t and the proof sequence
contains at least two terms. We write s ∗←→t (resp. s+

←→t) to denote that there is a proof, π,
with π ∈ s ∗←→t (resp. π ∈ s+

←→t).
A normal form is a term, t ∈ T (F , X), such that no subterm of t can be rewritten. A

term that is not a normal form, i.e., one with a subterm that can be rewritten, is called
reducible. We denote the set of all normal forms for R by NFR, or simply NF . A rewrite
system R is UN= if it is not the case that R has two distinct normal forms, M and N ,
such that M ∗←→N . If such a pair exists, then we say that the pair, 〈M,N〉, is a witness to



Nicholas Radcliffe and Rakesh M. Verma 287

non-UN=. The size of a witness, denoted |〈M,N〉|, is |M |+ |N |. A minimal witness is a
witness with minimal size. Finally, we define SubMinWitR to be set of all terms M ′ such
that 〈M,N〉 is a minimal witness, and M ′ is a subterm of M .

2 Preliminary Results

We begin with a few simple results, whose proofs are omitted to save space, on when rules
apply. They are used throughout the paper to show that normal forms are preserved under
certain transformations. Before we begin, notice that it is relatively simpler to preserve
normal forms when the relevant TRS is linear. For instance, imagine any flat and linear TRS
such that f(g(a), h(b)) is a normal form. Since g(a) is evidently a normal form, f(g(a), g(a))
would also be a normal form, when the TRS is linear. If the TRS is not linear, then there
could be a rule of the form f(x, x)→ t, making f(g(a), g(a)) reducible. The results below
handle such complications presented by non-linear rules.

I Definition 1. Let R be a rewrite system, and let l→ r = ρ ∈ R be a rule. The pattern of
ρ, denoted Patt(ρ), is a set of equations {i = j | l|i = l|j , l|i, l|j ∈ X}.

I Definition 2. Let t ∈ T (F , X) be a term with root(l) = root(t). If A = {i1, i2, . . . , ik} is
the set of positions that appear in equations in Patt(ρ), then the pattern of t with respect to
ρ, denoted Pattρ(t), is the set {ia = ib | t|ia = t|ib , ia, ib ∈ A}.

Note that Pattρ(t) is undefined if root(l) 6= root(t).

I Lemma 3. Let R be a flat TRS. Let t ∈ T (F , X) be a term, and let l → r = ρ ∈ R be a
rule. Then ρ can be applied to t at λ if, and only if, (i) l|i = t|i whenever l|i is a constant,
and (ii) Pattρ(t) is defined and Patt(ρ) ⊆ Pattρ(t).

Consider the term f(a, x, x, g(b)). Let’s assume that it is a normal form. We want to
know if altering depth-1 subterms can make the term reducible. Clearly, replacing x with a
constant could potentially make the term reducible, depending on the rules in the rule set.
But what about replacing any of the depth-1 subterms with a normal form containing a fresh
variable? Notice that such a replacement could not make condition (i) of the above lemma
true if it had been false. But what if condition (i) is true and condition (ii) is false? Could
replacing a depth-1 subterm, or even several depth-1 subterms, with terms containing fresh
variables make condition (ii) true? This question is answered by the following proposition.

I Proposition 4. Let R be a flat TRS, and let M = f(s1, . . . , sm) be a normal form for R.
Let S = {ti1 , . . . , tin} be a set of normal forms, where n ≤ m and each term contains at least
one fresh variable (relative to M). Further, say that tij 6= tik whenever sij 6= sik for all
ij , ik ∈ {i1, . . . , in}. If M ′ is what one obtains from M by replacing each sij with tij , then
M ′ ∈ NFR.

I Lemma 5. If R is any TRS such that f(t1, . . . , tm) ∈ SubMinWitR, then ti
∗←→Rtj is

impossible for ti 6= tj. This is equivalent to saying that there is no term s that is equivalent
to both ti and tj via R.

2.1 Normal Forms Equivalent to Constants
Let E be a finite set of equations. Following the authors of [1], we extend E to Ê by closing
under the following inference rules:
1. g = d, l = r

dσ = rσ
if l, g /∈ X and σ = mgu(l, g)
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2. x = d, y = r

d = r{y 7→ x}
if y ∈ X and x ∈ F0 ∪X

3. g[a] = d, a = b

g[b] = d
if a, b ∈ F0

Notice that if E is flat, then Ê is flat, as well.
We can think of a rewrite system as a set of equations: if s→ t is a rule in R, then s↔ t

is its corresponding equation. We write ER for the set of equations obtained in this way from
a rewrite system R. Clearly, if s and t are terms in T (F , X), then they are R-equivalent if
and only if they are ER equivalent. Also, from [1] we know that terms are ER equivalent if,
and only if, they are ÊR-equivalent. In [1], the authors show that, if R is a shallow TRS and
s, t ∈ T (F , X), then there is a procedure that produces, for any proof, π ∈ s ∗←→R t, over R,
a new proof, which is denoted by π1rr ∈ s ∗←→ÊR

t, over ÊR, such that there is at most one
root rewrite step in π1rr.

Consider the following example: R = {f(x, x)→ c, f(x, x)→ g(a, x), g(a, x)→ g(a, x), a→
h(b), b→ h(c)}. It is easy to check that ÊR = ER ∪ {c↔ g(a, x)}. We use ÊR to search for
a minimal witness to non-UN= for R; in particular, we will use the fact that for every proof
s
∗←→Rt, there is a proof s ∗←→

ÊR
t with at most one root rewrite.

Clearly, c is an R-normal form, so if we are looking for a minimal witness to non-UN=

for R, 〈c, ?〉 might be a good first guess. We know that c↔
ÊR

f(x, x), so maybe 〈c, f(u, v)〉
is a minimal witness, for some normal forms u and v. This is not possible. First, notice that
f(x, x) appears on the LHS of a rule, so f(t, t) cannot be a normal form, for arbitrary term
t. Second, notice that if f(t, t) is equivalent to another normal form, then we can assume
it is of the form f(u, v), because we have already “used up” our only root rewrite by using
c↔

ÊR
f(x, x). So, maybe we can plug some term, t, into x, and then rewrite one instance

of it to a normal form u, and another instance of it to a normal form v, obtaining a minimal
witness of the form 〈c, f(u, v)〉? This cannot be the case, because if 〈c, f(u, v)〉 is a minimal
witness, then (by Lemma 5 and the fact that u ∗←→v) 〈u, v〉 would violate the minimality of
〈c, f(u, v)〉. So, we should consider c↔

ÊR
g(a, x) as the (one and only) rewrite step in our

proof. We know that a is not a normal form, and must, therefore, be rewritten to one -
h(h(c)). But what about x? Should we plug anything into it? Say we were to plug t into x,
and then rewrite t to some normal form, u. This would be unnecessary, because non-linearity
is not an issue here, and so we can leave x as it is. So, 〈c, g(h(h(c)), x)〉 is a minimal witness,
and the relevant proof looks like: c↔

ÊR
g(a, x)↔

ÊR
g(h(b), x)↔

ÊR
g(h(h(c)), x).

Now, here is the interesting part. Notice that we have four R-normal forms equivalent
to constants, but only three constants in R, i.e, c ∗←→

ÊR
c, h(c) ∗←→

ÊR
b, h(h(c)) ∗←→

ÊR
a, and

g(h(h(c)), x) ∗←→
ÊR
c. From the Pigeonhole Principle, we can conclude that there must be some

constant in R that is equivalent to two distinct normal forms (of course, we already knew
this, but in general this technique will be useful). We generalize the lessons learned from
this example in the following results.

I Lemma 6. Let R be a flat TRS. Let 〈M0,M1〉 be a minimal witness to non-UN= for R, and
say M = f(t1, . . . , tm) is a subterm of M0. Let c be a constant, and let c r←→

ÊR
f(s1, . . . , sm)

∗←→
ÊR

f(t1, . . . , tm) = M be a proof with a single root rewrite. If si is not a constant, then
height(ti) = 0.

Proof. Let Sconst be the set of positive integers, i, such that si ∈ F0. If none of the si’s is a
variable, then there is nothing to show; so, assume at least one of the si’s is a variable. Now,
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let

s′j =
{

sj if j ∈ Sconst
xsj

otherwise and t′j =
{

tj if j ∈ Sconst
xsj

otherwise

where xsj is a fresh variable not appearing in M0 or M1, and xsi = xsj if and only if
si = sj . We show that (i) f(s′1, . . . , s′m) ∗←→

ÊR
f(t′1, . . . , t′m), (ii) f(t′1, . . . , t′m) ∈ NFR, and (iii)

for i /∈ Sconst, height(ti) = 0.
Part (i). If j /∈ Sconst, then s′j = t′j = xsj . So, say j ∈ Sconst. In this case, s′j =

sj
∗←→
ÊR
tj = t′j . So, f(s′1, . . . , s′m) ∗←→

ÊR
f(t′1, . . . , t′m). Part (ii). Let j, j′ /∈ Sconst, and say

tj 6= tj′ . In order to apply Proposition 4, we need to show that t′j 6= t′j′ . From Lemma 5, we
know that sj 6= sj′ , and hence t′j = xsj 6= xsj′ = t′j′ . Therefore, we can apply Proposition 4
to obtain that f(t′1, . . . , t′m) ∈ NFR. Part (iii). Notice that, by (i) and f(s′1, . . . , s′m) ∗←→

ÊR
c,

we have f(t1, . . . , tm) ∗←→
ÊR
c
∗←→
ÊR
f(t′1, . . . , t′m) = N . Also, since N contains at least one

fresh variable not appearing in M0 or M1, we know that M 6= N and C[N ] 6= M0 or M1,
where C[] is a context and M0 = C[M ]. Hence 〈C[N ],M1〉 is a witness to non-UN=, with
|C[N ]| ≤ |M0|. But 〈M0,M1〉 is a minimal witness, so |C[N ]| = |C[M ]| and |N | = |M |.
Since |t′i| = 1 for all i /∈ Sconst, it must be the case that |ti| = 1. Thus, we have that
height(ti) = height(t′i) = 0 for all i /∈ Sconst. �

I Corollary 7. Under the same assumptions as Lemma 6 plus the assumption that at
least one of the si’s is a constant, there is a j such that sj ∈ F0 and height(tj) =
height(f(t1, . . . , tm))− 1 with 1 ≤ j ≤ m.

Proof. Since height(ti) = 0 whenever si /∈ F0, we know that height(ti) ≤ height(tj)
whenever si /∈ F0 and sj ∈ F0. So, amongst the direct subterms of f(t1, . . . , tm) with
maximal height, there must be one, tj , such that sj ∈ F0. �

I Proposition 8. Let R be a flat TRS, and let c ∈ F0. Let 〈M,N〉 be a minimal witness,
and let N ′ be a subterm of N such that height(N ′) = k. Further, let π ∈ c ∗←→N ′ be a proof
over R. Then we can find either (i) 1 + k distinct normal forms equivalent to constants, the
normal forms having heights 0, 1, . . . , k, or (ii) a witness, 〈N0, N1〉, to non-UN=, such that
N0 and N1 are flat.

Proof. We proceed by induction on height(N ′). For the base case we assume that height(N ′) =
0. If the proof is trivial, i.e., if c = N ′, then we have 1 = 1 + height(N ′) normal form ( with
height zero) equivalent to a constant. So, assume that π has at least one step.

We know that there is a proof, π1rr ∈ c
+
←→
ÊR
N ′, such that there is only one root rewrite

step in π1rr. Since the first step in π1rr is necessarily a root rewrite, π1rr must have the
form c

r←→wσ = N ′, where the rule applied is c → w or w → c, and height(w) = 0 (notice
that if c r←→u ∗←→N ′ for some term u with height(u) > 0, then we would need a second root
rewrite to get back to N ′). If w ∈ X, then x ↔ c ↔ y, where x, y are distinct variables.
Therefore, 〈x, y〉 is a witness to non-UN= with x and y flat. If w ∈ F0, then we have found
1 = 1 + height(N ′) normal form (with height zero) equivalent to a constant.

For the inductive step, assume that height(N ′) > 0, and that the proposition holds for
any height strictly less than height(N ′). Now, π1rr has the form

c
r←→
ÊR
f(t1, . . . , tm) ∗←→

ÊR
f(u1, . . . , um) = N ′

and ti ∗←→ÊR
ui for 1 ≤ i ≤ m. We have two cases: (i) there is an i such that ti ∈ F0, and (ii)

there is no such i. For (i), by Corollary 7, there exists an i such that ti is a constant and
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height(ui) = k − 1. So, we can apply the inductive hypothesis to conclude that we have
either (i) 1 + (1 + (height(N ′)− 1)) = 1 + height(N ′) distinct normal forms, with heights
0, 1, . . . , height(N ′), equivalent to constants (the first height(N ′) − 1 normal forms come
from the inductive hypothesis, and the final normal form is N ′ itself, which is equivalent to
c), or (ii) a witness, 〈N0, N1〉, to non-UN=, such that N0 and N1 are flat.

In case (ii), if c ↔
ÊR

f(s1, . . . , sm) is the rule used for c ↔
ÊR

f(t1, . . . , tm), then si

is a variable for 1 ≤ i ≤ m. We need to show that f(s1, . . . , sm) ∈ NFR. From Lemma
5, we know that ti 6= tj whenever ui 6= uj for 1 ≤ i, j ≤ m. Since ti 6= tj implies that
si 6= sj , we see that si 6= sj whenever ui 6= uj . We can assume that the variables s1, . . . , sm
are fresh relative to f(u1, . . . , um), and so we can replace ui with si in f(u1, . . . , um),
obtaining f(s1, . . . , sm) ∈ NFR by Proposition 4. Since f(s1, . . . , sm) is a normal form,
we can replace the variables appearing in f(s1, . . . , sm) with fresh variables to produce a
new normal form, f(s′1, . . . , s′m), such that f(s1, . . . , sm) ↔

ÊR
c ↔

ÊR
f(s′1, . . . , s′m). So,

〈f(s1, . . . , sm), f(s′1, . . . , s′m)〉 is our witness with f(s1, . . . , sm) and f(s′1, . . . , s′m) flat. �

I Corollary 9. Let R be a flat TRS, and let c ∈ F0. Let 〈M,N〉 be a minimal witness, and
let N ′ be a subterm of N , with height(N ′) ≥ |F0|. Further, let π ∈ c ∗←→RN ′ be a proof over
R. Then we can find either (i) a witness, 〈M0,M1〉, to non-UN=, such that M0 and M1 are
flat, or (ii) a witness, 〈N0, N1〉, to non-UN=, such that height(N0), height(N1) ≤ |F0|.

Proof. By Proposition 8, we know that we can find either (a) a witness, 〈M0,M1〉, to
non-UN=, such that M0 and M1 are flat, or (b) 1 + height(N ′) distinct normal forms
equivalent to constants. If (a) is the case, then we are done. So assume that (b) is true.
Since there are 1 + height(N ′) > |F0| normal forms equivalent to, at most, |F0| constants,
we know, by the Pigeonhole Principle, that a single constant is equivalent to two distinct
normal forms. From the above observation, we know that the normal forms have heights 0,
1, 2, . . ., height(N ′). The smallest (height-wise) 1 + |F0| normal forms each have height no
more than |F0|. So, we know that we can find a witness, 〈N0, N1〉, to non-UN=, such that
height(N0), height(N1) ≤ |F0|. �

I Proposition 10. Let R be a flat TRS. Then, either (i) there does not exist a constant
c ∈ F0 and normal form N ∈ SubMinWitR such that c ∗←→

ÊR
N and height(N) ≥ |F0|, or

(ii) there exists a witness, 〈N0, N1〉 to non-UN= for R such that height(N0), height(N1) ≤
k = max{1, |F0|}. Further, there is an effective procedure to decide whether (i) or (ii) is the
case.

Proof. Consider all ground1 normal forms over the signature of the rewrite system, i.e.,
consisting of constants and function symbols appearing in the finitely many rules of R,
with height less than, or equal to, k; we use NF≤k to denote this set. Notice that if
there is a constant, c ∈ F0, and an element of SubMinWitR, N , with height(N) ≥ |F0|,
such that c ∗←→N , then by Corollary 9 there is a witness, 〈N0, N1〉, to non-UN= for R with
height(N0), height(N1) ≤ k. By a result in [1], the word problem is decidable for flat systems.
So, we can construct the set of all pairs, (s, t), such that s, t ∈ NF≤k and s

∗←→Rt. If we
do not find a witness to non-UN= in NF≤k, then we know that there is no c ∈ F0 and
N ∈ SubMinWitR such that height(N) ≥ |F0| and c ∗←→RN . Otherwise, we have found the
witness 〈N0, N1〉 with height(N0), height(N1) ≤ k. �

1 As in [13, 14], for nonlinear rewrite systems also we can expand the signature of the rewrite system
with 3α new constants, where α is the maximum arity of a function symbol in the rules, and focus on
ground normal forms.



Nicholas Radcliffe and Rakesh M. Verma 291

2.2 Shrinking Witnesses
Say 〈f(a, g(b, f(c, x))), h(y, y, h(a, b, c))〉 is a witness to non-UN= for some TRS. Can we
replace big subterms of a component of the witness, without changing the fact that it is a
witness, i.e., if we replace g(b, f(c, x)) with a variable, z, will 〈f(a, z), h(y, y, h(a, b, c))〉 still
be a witness? We show that we can replace depth-1 subterms that are not equivalent to a
constant with a variable. This shrinks the size of the witness; in particular, only depth-1
subterms of such a shrunk witness that are equivalent to a constant can have height greater
than, or equal to, the number of constants in the TRS. So, a shrunk minimal witness either
has small components, or there is a large subterm of a component of a minimal witness that
is equivalent to a constant. If the latter is the case, then we know, by Corollary 9, that there
is a small witness.

I Definition 11. Let R be a rewrite system. For each term (up to renaming of variables), t,
we can add a new variable xt to X without altering the relation ∗←→, where xs = xt if, and
only if, s ∗←→R t. Let t = f(t1, . . . , tn) be a term in T (F , X). Then we define

φ(t) =
{
xt if t is not equivalent to a constant
t otherwise

Let u = f(u1, . . . , um) for m > 0 and v ∈ X. We define the function α that maps terms
to terms as follows: α(u) = f(φ(u1), . . . , φ(um)) and α(v) = v.

Notice that α(c) = c for c ∈ F0, since α only affects depth-1 subterms.

I Lemma 12. Let R be a flat TRS, and let u↔R v be a proof over R, where u↔R v is not
a root rewrite. Then, there is a proof α(u) ∗←→R α(v).

Proof. Say u = f(u1, . . . , um) and v = f(v1, . . . , vm) (notice that if u ↔R v is not a root
rewrite, then neither u nor v can have height zero). Since the rewrite is not a root rewrite,
we know that there are ui and vi such that ui ↔R vi, and uj = vj for all j 6= i. If ui, vi are
equivalent to a constant, then φ(ui) = ui and φ(vi) = vi, and hence α(u)↔R α(v). If ui, vi
are not equivalent to a constant, then φ(ui) = xui

= xvi
= φ(vi), and hence α(u) = α(v). �

I Lemma 13. Let R be a flat TRS, and let u↔R v be a proof over R, where u↔R v is a
root rewrite. If the rewrite has the form u = wσ → xσ = v (i.e. it uses a collapsing rule
w → x), then α(u)↔R φ(v); otherwise α(u)↔R α(v).

Proof. In case of a collapsing rule, any instantiations of x appearing as depth-1 subterms
of u are equal to v, and so they are replaced by φ(v) in α(u). Since constants in w are
never replaced, α(u) ↔R φ(v). Otherwise, if s is a depth-1 subterm of u or v that is an
instantiation of a shared variable, then every depth-1 instance of s is replaced by φ(s) in
α(u) and α(v). So, α(u)↔R α(v). �

I Proposition 14. Let R be a flat TRS. Let s and t be terms not equivalent to a constant
and π ∈ s ∗←→t be a proof over R. Then, either there is a proof α(s) ∗←→

ÊR
y for some variable

y, or there is a proof α(s) ∗←→
ÊR

α(t).

Proof. We know that there is a proof, π1rr, over ÊR with at most one root rewrite. If π1rr
has zero steps, then α(s) = α(t), and so α(s) ∗←→

ÊR
α(t). Assume that π1rr has at least one

step, and say that it has the form s = s0 ↔ÊR
. . .↔

ÊR
sk = t for some k ≥ 1. We consider

three cases: (i) π1rr has no root rewrite; (ii) the only root rewrite in π1rr uses a collapsing
rule; and (iii) the only root rewrite in π1rr does not use a collapsing rule.
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In cases (i) and (iii), we know, by lemmas 12 and 13, that there is a proof α(si) ∗←→
ÊR

α(si+1) for 0 ≤ i ≤ k − 1. Therefore, there is a proof α(s) ∗←→
ÊR

α(t).
In case (ii), let wσ = sj ↔ÊR

sj+1 = xσ be the instance of the collapsing rule, w → x,
for some 0 ≤ j ≤ k − 1. For i < j, we know that there is a proof α(si) ∗←→ÊR

α(si+1). By
Lemma 13, we know that α(sj) ↔ÊR

φ(sj+1), and so there is a proof α(s) ∗←→
ÊR

φ(sj+1).
Since the terms in π1rr cannot be equivalent to a constant (since s, t are not equivalent to a
constant), we know that φ(sj+1) = xsj+1 , and so the proof is complete �

I Remark 15. As mentioned above, for any term v not equivalent to a constant, φ(v) can
be chosen so that it does not appear as a subterm of any finite number of terms. Therefore,
φ(sj+1) can be chosen so that it does not appear as a subterm of s0, s1, . . . , sk.

I Proposition 16. Let R be a flat TRS, and let 〈M,N〉 be a minimal witness to non-UN=

for R, with M,N not equivalent to a constant. Then either 〈α(M), y〉 or 〈α(M), α(N)〉 is a
witness for some variable, y.

Proof. We know from Proposition 14 that either there is a proof α(M) ∗←→
ÊR

y for some
variable y, or there is a proof α(M) ∗←→

ÊR
α(N). So, we need to show that (i) α(M), α(N),

and y are normal forms, and that (ii) α(M) 6= y (whenever α(M) ∗←→
ÊR

y) and α(M) 6= α(N).
For (i), we need to show that if s and t are depth-1 subterms of M (or N) that are not

equivalent to constants, then φ(s) 6= φ(t) whenever s 6= t. So, say that s 6= t. If s ∗←→
ÊR
t, then

〈s, t〉 would violate the minimality of 〈M,N〉, since |s|+ |t| < |M | ≤ |M |+ |N |. So, we know
that s and t are not equivalent, and hence φ(s) 6= φ(t). We know by Proposition 4 that α(M)
and α(N) are normal forms, because the variables replacing subterms of M and N can be
chosen so that they are fresh. Since variables are always normal forms, we know that α(M),
α(N), and y are normal forms.

For (ii), if M is not a variable, then α(M) is not a variable, and hence α(M) 6= y. If M
is a variable, then, by Remark 15, we can choose y so that it does not appear as a subterm
of M . So, α(M) = M 6= y.

To see that α(M) 6= α(N), we need to consider two cases. If root(M) 6= root(N),
then clearly α(M) 6= α(N), since α does not affect the outermost function symbol. If
root(M) = root(N), then it must be the case that M |i 6= N |i for some integer, i. In order for
α(M) = α(N) to be true, M |i and N |i must be replaced by the same variable. But this only
happens when M |i and N |i are equivalent, and if M |i and N |i were equivalent, then (setting
M ′ = M |i and N ′ = N |i) 〈M ′, N ′〉 would be a witness with |M ′| < |M | and |N ′| < |N |.
This would violate the minimality of 〈M,N〉, so M |i and N |i cannot be equivalent, and
hence M |i and N |i must be replaced by distinct variables. Therefore, α(M) 6= α(N). �

3 Decidability for Flat and Shallow Rewrite Systems

I Lemma 17. Let R be a flat TRS, and say that there is no constant c ∈ F0 and normal form
N ′ ∈ SubMinWitR such that c ∗←→

ÊR
N ′ and height(N ′) ≥ |F0|. Let 〈M,N〉 be a minimal

witness to non-UN= for R. Then height(α(M)), height(α(N)) ≤ k = max{1, |F0|}.

Proof. We know that (i) all depth-1 subterms of α(M) and α(N) that are not equivalent
to a constant are necessarily variables, and (ii) there is no constant c ∈ F0 and normal
form N ′ ∈ SubMinWitR such that c ∗←→

ÊR
N ′ and height(N ′) ≥ |F0|. Hence, the depth-1

subterms of α(M) and α(N) are either (i) variables or (ii) elements of SubMinWitR with
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height strictly less than |F0|. This means that the heights of α(M) and α(N) are at most
max{1, |F0|}. �

I Theorem 1. Let R be a flat TRS. If there is a witness to non-UN= for R, then there
exists a witness, 〈N0, N1〉, with height(N0), height(N1) ≤ k = max{1, |F0|}. Hence UN= is
decidable for R.

Proof. By Proposition 10, we know that there is either (i) no constant c ∈ F0 and normal
form N ′ ∈ SubMinWitR such that c ∗←→

ÊR
N ′ and height(N ′) ≥ |F0|, or (ii) a witness,

〈N0, N1〉 to non-UN= for R such that height(N0), height(N1) ≤ k. Further, there is an
effective procedure to decide if (i) or (ii) is the case.

If (ii) is the case, then we have our witness. So, assume that (i) is the case, and let 〈M,N〉
be a minimal witness to non-UN= for R. If M and N are equivalent to a constant, c, and
height(M), height(N) < |F0|, then we are done. So, we assume (without loss of generality)
thatM,N are not equivalent to a constant, and thus we can apply Proposition 14. Hence there
is either a proof α(M) ∗←→

ÊR
y for some variable y, or a proof α(M) ∗←→

ÊR
α(N). By Lemma 17,

we know that height(α(M)), height(α(N)) ≤ k. Hence, by Proposition 16, either 〈α(M), y〉
or 〈α(M), α(N)〉 is a witness to non-UN= with height(α(M)), height(α(N)), |y| ≤ k.

So, if there is a witness to non-UN= for R, then there is a witness, 〈N0, N1〉, with
height(N0), height(N1) ≤ k. The following algorithm, on input R, determines if R is UN=:
Enumerate all ground normal forms over the signature of the rewrite system, i.e., consisting
of constants and function symbols appearing in the finitely many rules of R, with height less
than, or equal to, k; say they are N0, . . . , Nn. In [1], the authors show that the word problem
is decidable for shallow TRS. So, for 0 ≤ i < j ≤ n, check if Ni ∗←→ÊR

Nj . If Ni ∗←→ÊR
Nj for

some 0 ≤ i < j ≤ n, then R is not UN=; otherwise, R is UN=. �
Now that we have shown that UN= is decidable for flat rewrite systems, we extend this

result to shallow rewrite systems. We do this by flattening a shallow rewrite system, i.e.,
transforming a shallow rewrite system into a flat one in a way that preserves UN=.

I Theorem 2. Let R be a shallow TRS. Then UN= is decidable for R.

4 Undecidability of UN= for some Rewrite Systems

We show that UN= is undecidable for certain rewrite systems by showing that a decision
procedure for UN= for these rewrite systems could be used to construct a decision procedure
for the Post Correspondence Problem (PCP) [8]. As PCP is undecidable, so must UN=

be for these rewrite systems. Note that, in this section, we sometimes use concatenation
to denote the application of a unary function, i.e., f(g(h(c))) could, for convenience, be
denoted by fgh(c). We consider rewrite systems with rules that have flat right-hand sides,
and left-hand sides with height at most two. For each PCP instance, P , with tiles τ1, . . . , τk
(each tile is basically a pair of strings) and tile alphabet Γ, we construct a TRS, RP , with
flat right-hand sides, and left-hand sides with height at most two. Let T be the set of tiles,
and say Γbot is the set of words appearing on the bottom of a tile, and Γtop is the set of
words appearing on the top of a tile in T . We construct the TRS as follows:
1. For each tile τi, f(i(x), u(y), v(z)) → f(x, y, z), where u ∈ Γtop is on the top of tile τi,

and v ∈ Γbot is on the bottom of τi.
2. For constants s and α, f(s, s, s)→ α.
3. For each a ∈ Γ and each tile τi, f(i(x), a(y), a(y))→ β, where β is a constant.
4. s→ s, f(x, y, z)→ f(x, y, z), a(x)→ a(x), and i(x)→ i(x) for every a ∈ Γ and tile τi.
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The rules from item (1) are used to construct the bulk of the proof. The rule from (3) allows
you to reach the normal form β once a PCP instance has been constructed. Notice that
α and β are the only two normal forms for RP . The rules from item (4) do not play a
non-trivial role in any proof—they exist simply to eliminate the possibility of there being
more than two normal forms. Notice that u, v ∈ Γ+ appear on the left-hand side of a rule.
This means that the left-hand side can have height strictly greater than two. However,
putting u, v on the left-hand side of a rule is just a convenience, as such a rule can be
simulated by rules with flat right-hand sides, and left-hand sides with height at most two.
For instance, let u = γm . . . γ1 and v = δn . . . δ1, for γi, δj ∈ Γ and n ≥ m. In this case, the
rule f(i(x), u(y), v(z))→ f(x, y, z) can be simulated by:

f(i(x), y, δn(z)) → f (n−1)(x, y, z)
...

f (m+1)(x, y, δm+1(z)) → f (m)(x, y, z)
f (m)(x, γm(y), δm(z)) → f (m−1)(x, y, z)

...
f (2)(x, γ2(y), δ2(z)) → f (1)(x, y, z)
f (1)(x, γ1(y), δ1(z)) → f(x, y, z)

We given an outline of the proof of correctness and omit details for lack of space.

I Lemma 18. A minimal proof over RP cannot contain a backward application of rule type
1 at the root position immediately followed by a forward application at the root position of
rule type 1.

I Lemma 19. Let α ∗←→β be a proof over RP with minimal length. Then the proof must have
the form α↔ f(s, s, s) +

←→f(i(t′), a(t), a(t))↔ β.

I Corollary 20. Let P be a PCP instance. If RP is not UN=, then there is a solution to the
PCP instance.

It is straight-forward to show that if there is a solution to P , then RP violates UN=. So, if
P is an instance of PCP, then there is a solution to P if and only if RP violates UN=. Since
PCP is undecidable, we have the following theorem.

I Theorem 3. UN= is undecidable for TRS with rules that have flat, linear right-hand sides
and left-hand sides with height at most two.

A slight modification of the rules can produce another result. Consider the following rule set:
1. For each tile τi, f(i(x), u(y), v(z)) ← f(x, y, z), where u ∈ Γtop is on the top of tile τi,

and v ∈ Γbot is on the bottom of τi.
2. For constants s and α, f(s, s, s)→ α.
3. For each a ∈ Γ and each tile τi, f(i(x), a(y), a(y))← β.
4. β → γ, where γ is a constant.
5. s→ s, f(x, y, z)→ f(x, y, z), a(x)→ a(x), and i(x)→ i(x) for every a ∈ Γ and tile τi.
Notice that now α and γ are the only two normal forms. Let α ∗←→γ be a proof over RP with
minimal length. Then the proof must have the form α ↔ f(s, s, s) +

←→ f(i(t′), a(t), a(t)) ↔ β

↔ γ. So, we have the following corollary.

I Corollary 21. UN= is undecidable for TRS with rules that have linear, flat left-hand sides,
and right-hand sides with height at most two.
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5 Conclusion

The UN= property of TRSs is shown to be decidable for the shallow class and undecidable
for the class of TRSs in which one side of the rule is allowed to be at most depth-two
and the other side is flat and linear. Among the fundamental properties of TRSs only the
word problem and the UN= property are now known to be decidable for the shallow class.
An important direction for future research is to give a complete classification of the basic
properties for all 15 classes obtained by combinations of linearity and depth restrictions on
variables in each side of TRSs (see also [11] in this regard).

Acknowledgements We thank Ross Greenwood for a careful reading and for his comments
and questions.
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