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Abstract
This paper describes a project that aims at showing that propositional proofs of certain tau-
tologies in weak proof system give upper bounds on the computational complexity of functions
associated with the tautologies. Such bounds can potentially be used to prove (conditional or
unconditional) lower bounds on the lengths of proofs of these tautologies and show separations
of some weak proof systems. The prototype are the results showing the feasible interpolation
property for resolution. In order to prove similar results for systems stronger than resolution
one needs to define suitable generalizations of boolean circuits. We will survey the known results
concerning this project and sketch in which direction we want to generalize them.
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1 Introduction

Proof complexity studies problems about formal systems that are related to similar problems
in computational complexity. In particular, some complexity classes can be associated in
a natural way with formal systems and one can translate problems about these classes to
problems about the formal systems. The formal systems that we have in mind are weak
arithmetical theories formalized in predicate logic and proof systems for propositional calculus.
Our original reason for studying weak arithmetical theories was to show the unprovability of
some open problems in computational complexity theory. Since the attempts to show that,
say, P 6= NP is unprovable in Peano Arithmetic completely failed, researchers focused on the
study of much weaker theories. Unfortunately we are still unable to show such independence
results even for the weakest theory in which polynomial time computations are formalizable.
Nevertheless, a number of interesting results have been proven and new proof methods have
been introduced.

In computational complexity the most important problems can be reduced to proving
lower bounds on the circuit size of boolean functions. Similarly, in proof complexity one can
reduce problems about unprovability in weak theories of arithmetic to proving lower bounds
on the lengths of proofs of tautologies in certain proof systems. In the 1980s the pioneering
work in the area of lower bounds on propositional proofs was done by Armin Haken, who
proved exponential lower bounds on proofs in Resolution [6], and Miklos Ajtai, who proved
superpolynomial lower bounds (later extended to exponential) on proofs in bounded depth
Frege systems [1]. In the early 1990s Jan Krajíček introduced a new method for proving lower
bounds on propositional proofs, which we now call feasible interpolation [8]. This enables
one to reduce the task of proving lower bounds on the lengths of propositional proofs to the
task of proving lower bounds on the circuit size of boolean functions defined from tautologies.
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Although the problem of proving nontrivial lower bounds on the size of boolean circuits is a
notoriously open problem, this reduction is very useful for the following two reasons. First,
one can often show that the reduction gives monotone boolean circuits and then one can use
the well-known exponential lower bounds on the size of such circuits. Secondly, even when
the reduction to monotone boolean circuits is not possible and we only get general circuits,
the reduction gives us important information that, for example, can be used to show lower
bounds based on some conjectures from computational complexity theory.

The method of feasible interpolation has been successfully applied to obtain exponential
lower bounds on the lengths of proofs in Resolution [9] and several other proof systems for
propositional logic. However, this method fails for systems that are only a little stronger
than resolution, unless some commonly accepted conjectures in computational complexity are
false [13, 4, 3]. Therefore we started a project whose aim is to find structures that are more
general than boolean circuits and prove for them generalized forms of feasible interpolation.
Our motivation is not only to find new ways of proving lower bounds on the lengths of proofs,
but also to study a question important per se: can one extract computational information
from any propositional proof?

There are other approaches to the fundamental question of proving lower bounds on
the lengths of propositional proofs, most notably the approach based on proof complexity
generators, [10, 12]. Proof complexity generators are inspired by the concept of pseudorandom
generators and the conjecture is that some pseudorandom generators can actually be used to
construct tautologies with no polynomial proofs. However, if this is true than one must find
connections between propositional proofs and computational complexity for strong proof
systems. It is likely that before such connections are found for strong proof systems, they
will be discovered for moderately strong systems. Therefore we focus on such propositional
proof systems.

Another approach, also studied by Krajíček, is based on using a different form of
tautologies that are used in the feasible interpolation theorems [11]. For such tautologies, it
is conceivable that the associated computational problem is solvable in polynomial time even
for stronger systems. In [11] such a connection is proved for a very special form of tautologies
and proofs in bounded depth Frege systems.

Although our project has already yielded some preliminary results, it would be premature
to try to describe them in this paper. We will rather focus on describing the results that
we want to generalize, hoping that our presentation will be more understandable than the
original ones in [17, 9].

2 Preliminaries

2.1 Propositional proof systems
The Resolution propositional proof system is a proof system for proving tautologies that are
in DNF form. Given a tautology φ in DNF form, we take its negation, which is in CNF form,
and treat it as a set of disjunctions, which are called clauses. A proof of φ in Resolution is a
proof of contradiction from the clauses. In Resolution we treat clauses as sets of literals; a
literal is a propositional variable or negated propositional variable. The single rule used in
Resolution is:

Γ, p ∆,¬p
Γ,∆ .

The contradiction, which is the last clause in the proof, is represented by the empty set.
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32 On extracting computations from propositional proofs (a survey)

A Frege system is any sound and complete propositional proof system that is based on a
finite number of rules. No nontrivial lower bounds are known for Frege systems. A depth d
Frege system is a Frege system in which only formulas of depth d are allowed. We want to
present bounded depth Frege systems as generalizations of Resolution. Thus we will define a
depth d Frege system as a refutation proof system based on sequents that use formulas of
depth at most d. We will only use formulas with negations at variables; so ¬φ denotes the
formula obtained from φ by switching conjunctions and disjunctions and switching literals.
Defining the depth of a literal to be 1, we get that Resolution is the depth 1 Frege system.

For d > 1, the cut rule of Resolution is generalized to arbitrary formulas φ of depth at
most d:

Γ, φ ∆,¬φ
Γ,∆ .

Further, we also have rules for introducing conjunctions and disjunctions:

Γ, φ ∆,
∧
A

Γ,∆, φ ∧
∧
A

Γ, φ,
∨
A

Γ, φ ∨
∨
A
,

and the weakening rule:

Γ
Γ, φ .

We treat sequents as sets, and conjunctions and disjunctions as set operations in order not
to have to introduce structural rules.

2.2 Polynomial search problems

Polynomial search problems, also called Total Function Nondeterministic Polynomial search
problems and abbreviated by TFNP, are given by a binary relation R such that
1. R(x, y) is decidable in deterministic polynomial time;
2. there exists a polynomial p such that for all x and y, if R(x, y), then |y| ≤ p(|x|);
3. for every x there exists y such that R(x, y).
Given such a relation and x, the task is to find y such that R(x, y). There is a natural
concept of polynomial reduction of one polynomial search problem to another one. Also
many natural classes of polynomial search problems have been defined and they play an
important role in proof complexity.

We will only mention one of these classes, Polynomial Local Search, or PLS. An instance
of a Polynomial Local Search problem for a given input x is determined by a search space
S, a feasibility predicate F ⊆ S, a neighborhood function N : S → S, and a cost function
c : S → N. The search space is S = {0, 1}m, where m is polynomial in |x|. The functions N ,
c and the predicate F are computable in polynomial time. Formally, this means that the
predicate F is parametrized by the input x and F (s, x) is a binary relation in P, etc. for the
other notions. The functions and the predicate should satisfy:
1. F (0̄);
2. if F (s), then F (N(s));
3. if F (s) and N(s) 6= s, then c(s) < c(N(s)).
The task is to find a “local maximum”, which is an s ∈ S such that s = N(s).
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2.3 The Karchmer-Wigderson game
Karchmer and Wigderson found a characterization of the circuit depth of boolean functions
using communication complexity.

I Theorem 1. [7] The minimal depth of a circuit computing a boolean function f(x1, . . . , xn)
is equal to the minimal number of bits that two players need to communicate in the worst
case in the following game. Player I gets an input u such that f(u) = 0 and Player II gets
an input v such that f(v) = 1. By sending messages, they should determine an index i such
that ui 6= vi.

This theorem also holds for partial boolean functions.

3 Razborov’s characterization of circuit complexity

Note that the task in the Karchmer-Wigderson game can be viewed as a communication
complexity analogue of search problems. Given u and v such that f(u) = 0 and f(v) = 1,
there always exists an index i such that ui 6= vi and the task is to find such an i. In
communication complexity theory one speaks about computing relations, but the analogy
with search problems is more appropriate.

When analogues of the usual complexity concepts are defined in communication com-
plexity, O(logn) communication bits correspond to polynomial time. Thus in the Karchmer-
Wigderson Theorem the boolean functions of NC1/poly are characterized by the commu-
nication complexity class corresponding to search problems solvable in polynomial time.
Razborov came up with the idea to characterize P/poly, a probably larger class of functions,
by a communication complexity analogue of a probably larger class of polynomial search
problems. He showed that such a class of search problems is PLS.

To state his theorem we have to translate the definition of PLS into a communication
complexity problem. Let a partial boolean function f(x1, . . . , xn) be given. Again, Player I
gets an input u such that f(u) = 0 and Player II gets an input v such that f(v) = 1. So
the predicate F and the functions N and c will now depend on u and v. But we are not
interested in the computational complexity of these functions, only in their communication
complexity. Roughly speaking, we want, for every s ∈ S, the communication complexity of
computing F (s, u, v), N(s, u, v) and c(s, u, v) to be small.

The goal of the players is again to determine an index i such that ui 6= vi, but now they
want to do it by first computing a local maximum. Therefore, we need another function
p : S → {1, 2, . . . , n} that tells the players the index, given a local maximum s. The function
only depends on s ∈ S, thus it does not play any role in defining the complexity of the
problem. What however does play an important role is the size of the set of feasible solutions,
{s ∈ S; F (s, u, v)}.

We say that the (f, F,N, c, p) is a PLS communication protocol if for every u, v such that
f(u) = 0 and f(v) = 1 and every local maximum s (with respect to the parameters u, v), the
number p(s) is an index such that up(s) 6= vp(s).

The complexity of a protocol (f, F,N, c, p) is defined to be the number

C =

∣∣∣∣∣∣
⋃

f(u)=0,f(v)=1

{s ∈ S; F (s, u, v)}

∣∣∣∣∣∣ · 22CC(F,c)+CC(N),

where 2CC(F, c) is the maximal communication complexity of computing simultaneously
F (s, u, v) and c(s, u, v) and CC(N) is the maximal communication complexity of computing
N(s, u, v).
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This is a rather technical definition that enables Razborov to state his theorem in a
strong form. However, if we were only interested in the communication complexity analogue
of PLS, we would only require that |S| be of polynomial size, which would correspond to
the exponential size of the search space in the usual PLS, and that CC(F ), CC(c), CC(N)
be O(logn), which would correspond to F, c,N being computable in polynomial time. Then,
clearly, the number C would be bounded by a polynomial in n.

I Theorem 2. [17] For a given partial boolean function f , the smallest complexity C of
PLS communication protocols (f, F,N, c, p) is, up to a constant factor, equal to the circuit
complexity of f .

We will consider a special case of the theorem that has a more transparent proof. We
restrict the above protocols (f, F,N, c, p) as follows.
1. To compute F (s, u, v), the players only need to send one bit to each other independently

on each other.
2. For every s ∈ S, either N(s, u, v) = s independently of u, v, or there are two elements

s0, s1 ∈ S and one assigned player such that, given u, v, N(s) ∈ {s0, s1}, and the assigned
player knows N(s); thus the player only needs to send one bit to the other player.

3. c only depends on s, not on u, v.
We will call such protocols restricted PLS communication protocols. Essentially, these are
protocols in which the players need to send the minimal possible number of bits. Note that
condition 1. can be stated more explicitly as follows.
1. There are two predicates FI(s, u) and FII(s, v) such that F (s, u, v) ≡ FI(s, u)∧FII(s, v).

I Lemma 3. The smallest |S| in restricted protocols for f is equal to the circuit complexity
of f .

We will sketch the proof of this lemma.

1. First, assume a circuit D computing f is given. Define S to be the nodes of the
circuit, except that we have to rename the output node of the circuit to 0̄. Given u, v such
that f(u) = 0, f(v) = 1, the predicate F (s, u, v) is defined to be true if, for the function fs
computed at the gate s, fs(u) 6= fs(v). The cost function c is an arbitrary antimonotone
function from the DAG of the circuit to natural numbers. Given a node s, if it is an input,
then N(s) = s, otherwise s0 and s1 are its input nodes. The assigned player is Player I if
the gate at s is ∧ and Player II if the gate is ∨. For an input node s labeled by xi or ¬xi,
p(s) = i; otherwise it is defined arbitrarily.

We leave the verification of the properties to the reader.

2. Consider a protocol (f, F,N, c, p). Let U = {u; f(u) = 0} and V = {v; f(v) = 1}.
Let s ∈ S be feasible for some u ∈ U and v ∈ V , which means that it satisfies F (s, u, v). The
condition 1. concerning F says that the set {(u, v) ∈ U × V ; F (s, u, v)} is a combinatorial
rectangle Us × Vs, where Us = {u ∈ U ; FI(s, u)} and Vs = {v ∈ V ; FII(s, v)}. We will
construct a circuit whose nodes will be the elements of S such that, for every s ∈ S, the
function fs computed at the node s will satisfy

fs(u) = 0 and fs(v) = 1, for all u ∈ Us and v ∈ Vs. (1)

If s is such that N(s) = s and p(s) = i, then we label s by xi or ¬xi. If s is feasible for
some u, v, then exactly one of the two labels is correct; otherwise we do not care. To see
that only one label is correct, suppose that s is feasible for u and v, and ui = 0 and vi = 1.
Then the label should be xi. It is not possible that s is feasible for some u′ and v′ such
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that u′
i = 1 and v′

i = 0. If it were, we would also have F (s, u′, v), because it is equivalent to
FI(s, u′) ∧ FII(s, v). But this is impossible, because u′

i = vi.
Now suppose that s is such that N(s, u, v) ∈ {s0, s1} is associated with Player I. It may

still happen that, for some i = 0, 1, N(s, u, v) = si for all (u, v) ∈ Us × Vs. In such a case
we just join s by a wire to si and fs = fsi

. Otherwise we label s by ∧ and connect it to s0
and s1. The verification that condition (1) is preserved reduces to proving the following two
implications:

F (s, u, v)→ FI(s0, u) ∨ FI(s1, u),
F (s, u, v)→ FII(s0, v) ∧ FII(s1, v).

The first implication follows trivially from F (s, u, v) → F (N(s), u, v) → F (s0, u, v) ∨
F (s1, u, v). To prove the second one, suppose w.l.o.g. that N(s, u, v) = s0. Since N(s, u, v)
only depends on u and since the value s1 is also possible, there must be some u′ ∈ Us such that
N(s, u′, v) = s1. Thus we have F (s0, u, v) ∧ F (s1, u

′, v), whence FII(s0, v) ∧ FII(s1, v). J

Theorem 2 can be now proved from Lemma 3 by showing that general communication
protocols can be reduced to the restricted protocols of Lemma 3. For example, if the players
need k > 1 bits to compute N , we introduce, for every s, 2k − 1 new vertices and replace the
arrows s→ s0, s→ s1 by a tree. Instead of going directly from s to s0 or s1, the players will
go to these vertices in k steps. Similarly, we have to replace each vertex by 2` vertices if the
feasibility predicate F needs ` > 1 communication bits to be decided, etc.

4 Feasible interpolation

Suppose φ(x̄, ȳ)∨ψ(x̄, z̄) is a tautology where x̄ is the string of propositional variables that φ
and ψ share and ȳ and z̄ are disjoint strings. Suppose we substitute a string of truth values
ā for x̄. Then the terms in the tautology φ(ā, ȳ) ∨ ψ(ā, z̄) have disjoint sets of propositional
variables, hence either φ(ā, ȳ) is a tautology, or ψ(ā, z̄) is a tautology, or both. Thus such
tautologies give us a computational problem: given ā, determine which of the two formulas
φ(ā, ȳ) or ψ(ā, z̄) is a tautology. In general, this problem is not in P, unless P = NP∩coNP.
But what if we not only know that φ(x̄, ȳ) ∨ ψ(x̄, z̄) is a tautology, but also have a proof of
it? Krajíček’s important discovery is that in some cases we can solve this task if we have a
proof. Exactly when this is possible depends on the proof system.

I Definition 4. We say that a propositional proof system P has the feasible interpolation
property, if there exists a polynomial time algorithm A such that given a P -proof d of
φ(x̄, ȳ) ∨ ψ(x̄, z̄) and an assignment ā for the common variables x̄,
1. if A(d, ā) = 0, then φ(ā, ȳ) is a tautology,
2. if A(d, ā) = 1, then ψ(ā, z̄) is a tautology.

I Theorem 5. [9] The Resolution proof system has the feasible interpolation property.

We will reproduce Krajíček’s proof and show how it can be done only using Lemma 3.
The basic idea is to use the given refutation d to define a communication search problems in
the sense of Razborov and from it to construct a circuit C that satisfies 1. and 2. of the
theorem. Since C is constructed in polynomial time from d, the construction gives us the
polynomial algorithm A.

Let d be a Resolution derivation of the empty clause from two sets of clauses Φ(x̄, ȳ) and
Ψ(x̄, z̄), where x̄ are the common variables of the two sets.
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Let f be the partial function defined by:

f(ū) = 0 if ∃ȳ
∧

Φ(ū, ȳ),
f(v̄) = 1 if ∃z̄

∧
Ψ(v̄, z̄),

and otherwise undefined. For every ū such that f(ū) = 0 we choose a w̄u such that
∧

Φ(ū, ȳ)
is true, and similarly we define t̄v for every v̄ such that f(v̄) = 1.

The search space S is the set of clauses of the proof d. The initial element 0̄ ∈ S is the
empty clause. The cost function c is the distance from the empty clause.

Given a clause Σ, the feasibility predicate F (Σ, ū, v̄) is satisfied, if both assignments
ū, w̄ut̄v and v̄, w̄u, t̄v falsify Σ.

If Σ is an initial clause, we put N(Σ) = Σ; the definition of p(Σ) is irrelevant, because
such a Σ is never feasible. Suppose, now, that Σ = Γ,∆ and it was derived from clauses
Σ0 = Γ, p and Σ1 = ∆,¬p. We distinguish several cases according to to which set of variables
p belongs.
1. If p = yj , then we assign Σ to Player I and N(Σ, ū, v̄) = Σ(wu)j

.
2. If p = zl, then we assign Σ to Player II and N(Σ, ū, v̄) = Σ(tv)l

.
3. If p = xi, then the players tell each other the values ui and vi. Then

a. if ui = vi, then N(Σ, ū, v̄) = Σui
;

b. otherwise N(Σ, ū, v̄) = Σ and p(Σ) = i.

This is a protocol in the sense of Razborov, so one can apply his Theorem 2. However,
one can also easily reduce it to the simpler Lemma 3. Note that the above protocol almost
satisfies the restrictions needed in Lemma 3. Only in 3. the players have to send two bits
instead of one. This can be rectified as follows.

Add to the search space S also all xi and ¬xi, if they are not already present. Put
N(xi) = xi, N(¬xi) = ¬xi and p(xi) = p(¬xi) = i. Define F (xi, ū, v̄) to be true if ui = 0
and vi = 1 and dually for ¬xi.

For Σ,Σ0,Σ1 as above such that the resolved variable is p = xi, add two new vertices Σ′
0

and Σ′
1 to S. Associate Σ with Player I and both Σ′

0 and Σ′
1 with Player II. Then define:

N(Σ, ū, v̄) = Σ′
uj
;

if ui = vi, put N(Σ′
ν , ū, v̄) = Σν , for ν = 0, 1;

if ui 6= vi, put N(Σ′
0, ū, v̄) = ¬xi and N(Σ′

1, ū, v̄) = xi;
FI(xi, ū) ≡ ui = 0 and FII(xi, v̄) ≡ vi = 1;
FI(¬xi, ū) ≡ ui = 1 and FII(¬xi, v̄) ≡ vi = 0;
FI(Σ′

i, ū) ≡ FI(Σ, ū) ∧N(Σ, ū, v̄) = i for i = 0, 1;
FII(Σ′

i, v) ≡ FII(Σ, v) for i = 0, 1.

We leave the verification of the properties to the reader. J

We have shown that there exists a circuit C with the properties required by the theorem
whose size is at most 2n+ 3|d|, where |d| denotes the number of clauses in the Resolution
proof d. In [15] we gave a different, more direct proof of Theorem 5. In our construction the
number of vertices in the circuit C is at most 2n+ |d|; however, the circuit uses on top of
the usual gates ∧ and ∨ (together with literals xi and ¬xi) also the ternary gate selector. If
the selector gates are replaced by circuits in the basis ∧,∨, we get the same bound as above
2n+ 3|d|. But not only that: the circuits are identical.
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5 From communication protocols to proofs

We are studying three things: circuits, PLS communication protocols and Resolution proofs.
We have shown how to construct a protocol from a circuit, a circuit from a protocol and
a protocol from a proof. Further, this gives us a construction of a circuit from proof, by
transitivity, but a direct construction was shown in [15]. To complete the picture, it remains
to construct proofs from protocols and circuits. We will only show the construction of a proof
from a protocol. The other remaining construction follows by transitivity, but, certainly,
a direct construction is also possible. To simplify the presentation, we will only consider
protocols for the Karchmer-Wigderson games and restricted PLS protocols.

I Proposition 6. Let P be a protocol in the form of a Karchmer-Wigderson game for
computing a partial boolean function f(x̄) that uses k communication bits. Then one can
construct a tautology of the form φ(x̄, ȳ) ∨ ψ(x̄, z̄), with φ(x̄, ȳ) and ψ(x̄, z̄) in DNF, and a
Resolution proof d of it such that
1. the size of the proof is |d| = O(|2k|) and
2. the formulas φ(x̄, ȳ) and ψ(x̄, z̄) define a partial boolean function that is at least as much

defined as f , which means
a. if f(ū) = 0, then there exists w̄ such that φ(ū, w̄) is false, and
b. if f(v̄) = 1, then there exists t̄ such that ψ(v̄, t̄) is false.

Furthermore, the proof has the form of a tree.

To prove the proposition, consider all possible situations that may appear when playing
according to the protocol P . We will inductively assign a clause to each of them. For the
initial situation when they start, we take the empty clause. Suppose we are in a situation
s with a clause Σ and Player I is to speak. Then we choose a new variable yi and assign
Σ ∨ yi to the situation after Player I sent the bit 0, respectively, Σ ∨ ¬yi to the situation
after Player I sent the bit 1. If it is Player II to speak we do the same with a variable zj
instead of yi. Suppose that the game ends in a situation where the players learn that the ith
bit of Player I is 0 while the ith bit of Player II is 1. Let Σ be the clause assigned to this
situation, let ΣI , respectively ΣII , be the subclause of Σ consisting of yis, respectively zjs.
Then we introduce two clauses

ΣI ∨ ¬xi and ΣII ∨ xi.

If it is 1 and 0, we take xi in the first clause and ¬xi in the second.
One can see immediately that the clauses form a Resolution refutation. Let us check

condition 2.(a). Let ū such that f(u) = 0 be given. We want to find an assignment that
makes all initial clauses made of xis and yjs false. Given u, the protocol P determines how
Player I plays in each situation, so we can set the values w according to what the protocol
says. Since the protocol is correct, the clause ΣI ∨¬xi (respectively ΣI ∨xi) must be satisfied.

Again, we leave the details to the reader. J

I Proposition 7. Let P be a restricted PLS communication protocol for computing a
partial boolean function f(x̄) with a search space S. Then one can construct a tautology of
the form φ(x̄, ȳ) ∨ ψ(x̄, z̄), with φ(x̄, ȳ) and ψ(x̄, z̄) in DNF, and its Resolution proof d such
that
1. the size of the proof is |d| = O(|S|) and
2. the formulas φ(x̄, ȳ) and ψ(x̄, z̄) define a partial boolean function that is at least as much

defined as f (in the sense of the previous proposition).
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The idea of the proof is essentially the same: we introduce a variable for every possible
bit sent by the players and describe the dependences between them by clauses. Here are
more details.

For every node s in the search space S, we introduce variables yF,s and zF,s. The meaning
is that s is feasible iff yF,s ∧ zF,s is true. If s is assigned to Player I (respectively Player II),
we also introduce yN,s (respectively zN,s) for the neighborhood function N .

Let s be such that N(s) = s and suppose that the function p determines that ui = 0 and
vi = 1 (where ū is the input of Player I and v̄ is the input of Player II).1 Then we introduce
the clauses

yF,s → ¬xi and zF,s → xi. (2)

Again, if it is 1 and 0, then we switch the negation at xi.
Let s be such that N(s) 6= s, N(s) ∈ {s0, s1} and s is assigned to Player I. Then we

introduce the following clauses:

(yF,s ∧ yN,s)→ yF,s0 ,

(yF,s ∧ ¬yN,s)→ yF,s1 ,

zF,s → zF,s0 ,

zF,s → zF,s1 .

If s is assigned to Player II we take the same clauses with ys and zs switched.
Finally we take two clauses for the initial node 0̄:

yF,0̄ and zF,0̄.

In order to derive the empty clause from these clauses, first derive ¬yF,s ∨ ¬zF,s from
every pair of clauses (2). Then continue deriving such clauses for all s ∈ S (going in the
direction of decreasing cost). Once we have ¬yF,0̄∨¬zF,0̄, we resolve with the last two clauses
to obtain the empty clause.

The verification of the condition 2. of the proposition is the same as in the previous
proof. J

Combining the proof of Theorem 2 and Proposition 7 we get a construction of a tautology
and its Resolution proof from a function and its circuit. Unfortunately, this is not the
converse to feasible interpolation. In particular, it does not give us a reduction of proving
lower bounds on circuit complexity to proving lower bounds on the length of proofs. Such a
reduction would require a construction that, for a given partial boolean function f and a
suitable representation of f by a tautology τ , would transform any boolean circuit for f into
a proof of τ . It seems rather unlikely that such a reduction is possible. We only have the
following trivial observation.

I Corollary 8. Let fn(x1, . . . , xn) n = 1, 2, . . . , be a sequence of booelan functions. Suppose
that there is no sequence of DNF tautologies φn(x̄, ȳ) ∨ ψn(x̄, z̄) such that they represent the
boolean functions fn in the sense of Proposition 6 and have polynomial size Resolution proofs.
Then fn do not have polynomial size circuits.

1 According to the definition p only tells the index, but we have already noticed that the actual values
are also determined.
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6 Generalizations

A natural question connected with Razborov’s characterization of circuit complexity is: What
happens when we replace PLS by a different class of polynomial search problems? One
can consider subclasses of PLS and get characterizations of classes of circuits with certain
restrictions. This line of research may be interesting, but we are interested in the opposite
direction: replacing PLS by larger classes of polynomial search problems.

Our motivation is to generalize the feasible interpolation property and show that it
holds true for stronger proof systems. There are results [13, 4, 3] showing that if certain
bit commitment schemas are secure, then sufficiently strong proof systems do not have
the feasible interpolation property. Therefore we need a concept of computation that is
stronger than boolean circuits, but not too strong, otherwise it would not provide us with
any new information about the complexity of the interpolation problem. Generalizations of
Razborov’s theorem seems to be the right place to look for such concepts.

The classes of search problems that we want to use instead of PLS are those that
characterize provably total polynomial search problems in fragments of Bounded Arithmetic.
The fragments form a hierarchy, denoted by T 0

2 , T
1
2 , T

2
2 , . . . , where, roughly speaking, Tn2

is a theory that is based on the induction axioms for sets of complexity Σp
n from the

Polynomial Time Hierarchy. These theories have a tight connection to bounded depth
Frege propositional proof systems. The provably total polynomial search problems of T 0

2
are solvable in polynomial time; for T 1

2 they belong to PLS. Characterizations for higher
fragments were found relatively recently, see e.g. [14, 2, 16] (but there are more papers about
it).

Very recently, working with Neil Thapen, we obtained a kind of generalization of boolean
circuits that can be used for a generalized feasible interpolation theorem for depth 2 Frege
systems. This result is too fresh to be included in this paper. We will present it on the
conference.

The negative results about feasible interpolation apply to bounded depth Frege of a
sufficiently large depth, but it is not clear where the border is. In particular, we do not have
an argument implying that depth 2 Frege systems do not have the feasible interpolation
property. This is one more reason for studying generalizations.

How do the search problems come into play?

Suppose that∧
Φ(x̄, ȳ) ∧

∧
Ψ(x̄, z̄) (3)

is not satisfiable. This is equivalent to saying that, for every ū, w̄, v̄, t̄, if ū, w̄ satisfies
∧

Φ(x̄, ȳ)
and v̄, t̄ satisfies

∧
Ψ(x̄, z̄), then ū 6= v̄. The last condition is equivalent to the statement

that ui 6= vi for some i. So the following is a search problem associated with a formula of
the form (3):

Given a proof d in a proof system P of unsatisfiability of (3) and assignments ū, w̄, v̄, t̄
such that

∧
Φ(ū, w̄) ∧

∧
Ψ(v̄, t̄) is true, find i such that ui 6= vi.

For this problem to be nontrivial, we have to scale it up to an exponentially large structure.
Think of the formula, the proof and the assignments as being exponentially large. For example,
we can represent the assignments ū and v̄ as boolean functions ū, v̄ : {0, 1}n → {0, 1}. In
Bounded Arithmetic this is formalized by second order theories, [5].
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In order to prove that the search problem above always has a solution we need to prove
that the proof system is sound. The strength of the theory needed to prove it depends on
the strength of the proof system P ; the stronger the proof system is the stronger the theory
must be.

For proving soundness of Resolution, T 1
2 suffices. All provably total polynomial search

problems in T 1
2 are reducible to PLS. Hence the problem above is reducible to a PLS problem.

The functions and the predicate in such a PLS problem can be viewed as polynomial time
algorithms that use ū, v̄ as oracles. What is only important for us that they only ask a
polynomial number of queries. If we now scale it down from the exponential domain to the
polynomial one, we see that to compute these functions and this predicate we only need a
logarithmic number of communication bits. This gives us the PLS communication protocol.

In a similar fashion we can associate classes of search problems with depth d Frege systems
for d > 1.

Acknowledgment I would like to thank to Jan Krajíček and Neil Thapen for their comments
on the draft of this paper.
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