
Beyond Hyper-Minimisation—Minimising DBAs
and DPAs is NP-Complete∗

Sven Schewe

University of Liverpool

Abstract
In this paper we study the problem of minimising deterministic automata over finite and infinite
words. Deterministic finite automata are the simplest devices to recognise regular languages,
and deterministic Büchi, Co-Büchi, and parity automata play a similar role in the recognition
of ω-regular languages. While it is well known that the minimisation of deterministic finite and
weak automata is cheap, the complexity of minimising deterministic Büchi and parity automata
has remained an open challenge. We establish the NP-completeness of these problems. A second
contribution of this paper is the introduction of almost equivalence, an equivalence class for
strictly between language equivalence for deterministic Büchi or Co-Büchi automata and language
equivalence for deterministic finite automata. Two finite automata are almost equivalent if they,
when used as a monitor, provide a different answer only a bounded number of times in any
run, and we call the minimal such automaton relatively minimal. Minimisation of DFAs, hyper-
minimisation, relative minimisation, and the minimisation of deterministic Büchi (or Co-Büchi)
automata are operations of increasing reduction power, as the respective equivalence relations on
automata become coarser from left to right. Besides being a natural equivalence relation for finite
automata, almost equivalence is language preserving for weak automata, and can therefore also
be viewed as a generalisation of language equivalence for weak automata to a more general class
of automata. From the perspective of Büchi and Co-Büchi automata, we gain a cheap algorithm
for state-space reduction that also turns out to be beneficial for further heuristic or exhaustive
state-space reductions put on top of it.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Automata Theory, Complexity, Büchi Automata, Parity Automata

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.400

1 Introduction

The minimisation of deterministic finite automata (DFAs) is a classic problem with an
efficient solution [8, 9]. This paper was originally written with only the question in mind
of whether or not a similar result can be obtained for deterministic automata over infinite
words. Is their minimisation tractable? For weak automata, the answer is known to be
positive [12], which seems to encourage a quest for a tractable solution for Büchi, Co-Büchi,
and parity automata as well. However, it turns out that their minimisation is intractable
(NP-complete).

This raised the question whether there are natural tractable problems between the
minimisation of DFAs and deterministic Büchi automata (DBAs) or deterministic Co-Büchi
automata (DCAs). The hyper-minimisation of deterministic automata [2, 1, 7] is such an

∗ This work was partly supported by the Engineering and Physical Science Research Council (EPSRC)
through the grant EP/H046623/1 ‘Synthesis and Verification in Markov Game Structures’. An extended
version is available as a technical report [21], which also contains the omitted proofs.

© Sven Schewe;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 400–411

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.400
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Sven Schewe 401

Figure 1 Figure 1a shows a minimal DFA A over the two letter alphabet {a, b}. Figure 1b shows
a hyperminisation of A, Figure 1c shows a minimal almost equivalent automaton to A, and Figure
1d shows a minimal language equivalent DBA to A. (Neither hyperminimal nor relative minimal
automata need to be unique.) Hyperminimal automata are the minimal automata with a finite
symmetric language difference to the source automaton [2, 1, 7]; they may only differ from the
minimal automaton in the preamble. (The non-trivial SCCs of the automaton reachable from the
initial state.) Minimal almost equivalent automata only guarantee that the symmetrical difference
intersected with the prefixes of every infinite word are finite. (In both cases, finite implies bounded
by the number of states of the automaton.) For weak automata—automata whose language is
equivalent when read as DBA or DCA—a minimal almost equivalent automaton is also a minimal
weak automaton.

example: If we minimise a DFA while allowing for a finite symmetrical difference between the
language of the source and target automaton, we may be rewarded by a smaller automaton.

We introduce a second relaxation, almost equivalence, where we require that acceptance
differs only on finitely many prefixes of every infinite word. This provides the guarantee that,
on each infinite run, the result is equivalent in almost all positions (cf. Figure 1), which is
not only interesting in itself, but can also be viewed as a generalisation of the minimisation
problem of weak automata [12] to a more general class.

This is a natural notion of almost equivalence on DFAs, which also forms a promising
basis for state-space reduction of Büchi and Co-Büchi automata. Different to the NP-
completeness of minimising Büchi and Co-Büchi automata, we show that finding a minimal
almost equivalent DFA is cheap. It is also a useful starting point for a state-space reduction of
a DBA or DCA A, because minimisation with respect to almost equivalence (like minimisation
and hyper-minimisation) of A when read as a DFA are language preserving.

The algorithm we develop for finding a minimal almost equivalent DFA can be strengthened
by using language equivalence on A (when read as a Büchi or Co-Büchi automata) in the
algorithm, which provides for a smaller—yet still language equivalent—target automaton.
This automaton has the interesting property that one can focus on its strongly connected
components (SCCs) in isolation when reducing its state-space further.

While the NP-completeness of the minimisation problem of DBAs, DCAs, and determin-
istic parity automata (DPAs) seems to rule out the use of state-space reduction on large
scale problems, this reduction technique therefore suggests that one might often get far on
the way of reducing the state-space without having to pay a high price, while getting for free
a division of the remaining potential parts of the automaton for further reduction.

This is fortunate, because the standard verification technique for the verification of Markov
decision processes against LTL specifications [3] as well as the synthesis of distributed systems
from LTL specifications [19, 16, 17, 22, 15, 20] require working with these deterministic
ω-automata, and techniques for the minimisation, or, indeed, for the state-space reduction of
the automata involved are more than welcome. The argument in favour of such reductions
becomes even stronger for algorithms that synthesise distributed systems [18, 11, 13, 23, 6],

FSTTCS 2010

402 Minimising Deterministic Parity and Büchi Automata is NP-Complete

where deterministic automata occur in various steps of the construction.

2 Deterministic Automata

2.1 ω-Automata
Parity automata are word automata that recognise ω-regular languages over finite set of
symbols. A deterministic parity automaton is a tuple P = (Σ, Q, q0, δ, π), where

Σ denotes a finite set of symbols,
Q denotes a finite set of states,
q0 ∈ Q+ with Q+ = Q∪̇{⊥,>} denotes a designated initial state,
δ : Q+×Σ→ Q+ is a function that maps pairs of states and input letters to either a new
state, or to ⊥ (false, immediate rejection, blocking) or > (true, immediate acceptance)1,
such that δ(>, σ) = > and δ(⊥, σ) = ⊥ hold for all σ ∈ Σ, and
π : Q+ → P ⊂ N is a priority function that maps states to natural numbers (mapping ⊥
and > to an odd and even number, respectively), called their priority. (They are often
referred to as colours.)

Parity automata read infinite input words α = a0a1a2 . . . ∈ Σω. (As usual, ω = N0
denotes the non-negative integers.) Their acceptance mechanism is defined in terms of runs:
The unique run ρ = r0r1r2 . . . ∈ Q+

ω of P on α is the ω-word that satisfies r0 = q0 and,
for all i ∈ ω, ri+1 = δ(ri, ai). A run is called accepting if the highest number occurring
infinitely often in the infinite sequence π(r0)π(r1)π(r2) . . . is even, and rejecting if it is odd.
An ω-word is accepted by P if its run is accepting. The set of ω-words accepted by P is
called its language, denoted L(P).

We assume without loss of generality that maxP ≤ |Q|+ 1. (If a priority p � 2 does not
exist, we can reduce the priority of all states whose priority is strictly greater than p by 2
without affecting acceptance.)

Deterministic Büchi and Co-Büchi automata—abbreviated DBAs and DCAs—are DPAs
where the image of the priority function π is contained in {1, 2} and {2, 3}, respectively.
In both cases, the automaton is often denoted A = (Σ, Q, q0, δ, F), where F ⊆ Q+ denotes
those states with priority 2. The states in F are also called final or accepting states, while
the remaining states Q+ r F are called rejecting states.

2.2 Finite Automata
Finite automata are word automata that recognise the regular languages over finite set of
symbols. A deterministic finite automaton (DFA) is a tuple F = (Σ, Q, q0, δ, F), where Σ, Q,
q0, and δ are defined a for DPAs, and F ⊆ Q∪̇{>} is a set of final states that contains >
(but not ⊥).

Finite automata read finite input words α = a0a1a2 . . . an ∈ Σ∗. Their acceptance
mechanism is again defined in terms of runs: The unique run ρ = r0r1r2 . . . rn+1 ∈ Q+

+ of
F on α is the word that satisfies r0 = q0 and, for all i ≤ n, ri+1 = δ(ri, ai). A run is called
accepting if it ends in a final state (and rejecting otherwise), a word is accepted by F if its
run is accepting, and the set of words accepted by F is called its language, denoted L(F).

1 The question whether or not an automaton can immediately accept or reject is a matter of taste. Often,
immediate rejection is covered by allowing δ to be partial while there is no immediate acceptance.
For technical convenience, we allow both, but treat > and ⊥ as accepting and rejecting sink states,
respectively.

Sven Schewe 403

2.3 Automata Transformations & Conventions
For a deterministic automaton A = (Σ, Q, q0, δ, F) or A = (Σ, Q, q0, δ, π) and a state q ∈ Q+,
we denote with Aq = (Σ, Q, q, δ, F) or Aq = (Σ, Q, q, δ, π), respectively, the automaton
resulting from A by changing the initial state to q. We also read finite automata at times as
Büchi (or Co-Büchi) automata and Büchi (or Co-Büchi) automata as finite automata in the
constructions, and let DFAs run on infinite words where this is convenient and its meaning
is clear in the context.

Automata define a directed graph whose unravelling from the initial state defines the
possible runs. For an automaton A = (Σ, Q, q0, δ, F) or A = (Σ, Q, q0, δ, π), this is the
directed graph (Q+, T) with T = {(p, q) ∈ Q+ ×Q+ | ∃σ ∈ Σ. δ(p, σ) = q}. When referring
to the reachable states (which always means reachable from the initial state) and SCCs of an
automaton, this refers to this graph.

2.4 Emptiness and Equivalence
A DPA is called empty if its language is empty and universal if it accepts every word α ∈ Σω.
For two automata P1 = (Σ, Q1, q

1
0 , δ1, π1) and P2 = (Σ, Q2, q

2
0 , δ2, π2), two states q1 ∈ Q1

and q2 ∈ Q2 are called equivalent if L(P1
q1

) = L(P2
q2

). (Equivalence of states naturally
extends to the same automaton, as P1 and P2 are not necessarily different.) Two automata
are equivalent if their initial states are equivalent. (Or, likewise, if they recognise the same
language.)

Emptiness, universality, and equivalence of parity, Büchi, and Co-Büchi automata is
computationally easy:

I Theorem 1. Language inclusion, equivalence, emptiness, and universality of parity, Büchi,
and Co-Büchi automata and their co-problems are NL-complete.

3 Minimising Büchi and Parity Automata is NP-Complete

In this section we show that the minimisation of deterministic Büchi, Co-Büchi, and parity
automata are NP-complete problems. This is in contrast to the tractable minimisation of
finite [8] and weak automata [12].

The hardest part of the NP-completeness proof is a reduction from the problem of finding
a minimal vertex cover of a graph to the minimisation of deterministic Büchi automata. For
this reduction, we first define the characteristic language of a simple connected graph. For
technical convenience we assume that this graph has a distinguished initial vertex.

We show that the states of a deterministic Büchi automaton that recognises this charac-
teristic language must satisfy side-constraints, which imply that it has at least 2n+ k states,
where n is the number of vertices of the graph, and k is the size of its minimal vertex cover.
We then show that, given a vertex cover of size k, it is simple to construct a deterministic
Büchi automaton of size 2n + k that recognises the characteristic language of this graph.
(It can be constructed in linear time and logarithmic space.) Furthermore, we show that
minimising the automaton defined by the trivial vertex cover can be used to determine a
minimal vertex cover for this graph, which concludes the reduction.

We call a non-trivial (|V | > 1) simple connected graph Gv0 = (V,E) with a distinguished
initial vertex v0 ∈ V nice. As a warm-up, we have to show that the restriction to nice graphs
leaves the problem of finding a minimal vertex cover NP-complete.

I Lemma 2. The problem of checking whether a nice graph Gv0 has a vertex cover of size k
is NP-complete.

FSTTCS 2010

404 Minimising Deterministic Parity and Büchi Automata is NP-Complete

Proof. As a special case of the vertex cover problem, it is in NP, and the problem of finding
a vertex cover of size k for a graph (V,E) can be reduced to the problem of checking if the
nice graph Gv = (V ∪̇{v, v′}, E ∪

{
{w, v} | w ∈ V ∪̇{v′}

}
has a vertex cover of size k + 1: A

vertex cover of Gv must contain a vertex cover of (V,E) and v or v′, and a vertex cover of
(V,E) plus v is a vertex cover of Gv. J

We define the characteristic language L(Gv0) of a nice graph Gv0 as the ω-language over
V\ = V ∪̇{\} (where \ indicates a stop of the evaluation in the next step—it can be read
‘stop’) consisting of
1. all ω-words of the form v0

∗v1
+v2

+v3
+v4

+ . . . ∈ V ω with {vi−1, vi} ∈ E for all i ∈ N,
(words where v0, v1, v2, . . . form an infinite path in Gv0), and

2. all ω-words starting with v0
∗v1

+v2
+ . . . vn

+\vn ∈ V\∗ with n ∈ N0 and {vi−1, vi} ∈ E for
all i ∈ N. (Words where v0, v1, v2, . . . , vn form a finite—and potentially trivial—path in
Gv0 , followed by a \ sign, followed by the last vertex of the path v0, v1, v2, . . . , vn.)

We call the ω-words in (1) trace-words, and those in (2) \-words. The trace-words are in V ω,
while the \-words are in V\ω r V ω.

Let B be a deterministic Büchi automaton that recognises the characteristic language of
Gv0 = (V,E). We call a state of B

a v-state if it can be reached upon an input word v0
∗v1

+v2
+ . . . vn

+ ∈ V\∗, with n ∈ N0
and {vi−1, vi} ∈ E for all i ∈ N, that ends in v = vn (in particular, the initial state of B
is a v0-state), and
a v\-state if it can be reached from a v-state upon reading a \ sign.

We call the union over all v-states the set of vertex-states, and the union over all v\-states
the set of \-states.

I Lemma 3. Let Gv0 = (V,E) be a nice graph with initial vertex v0, and let B = (V,Q, q0, δ, F)
be a deterministic Büchi automaton that recognises the characteristic language of Gv0 . Then
(1) the vertex- and \-states of B are disjoint, and, for all v, w ∈ V with v 6= w, (2) the
v-states and w-states and (3) the v\- and w\-states are disjoint. For each vertex v ∈ V , there
is (4) a v\-state and (5) a rejecting v-state, and (6), for every edge {v, w} ∈ E, there is an
accepting v-state or an accepting w-state.

Proof. 1. Let q\v be a v\-state and q a vertex-state. As B recognises L(Gv0), Bq\
v
must accept

vω, while Bq must reject it.
2. Let qv be a v-state and let qw be a w-state with v 6= w. As B recognises L(Gv0), Bqv must

accept \vω, while Bqw
must reject it.

3. Let q\v be a v\-state and let q\w be a w\-state with v 6= w. As B recognises L(Gv0), Bq\
v

must accept vω, while Bq\
w
must reject it.

4. As Gv0 is connected, there is, for every v ∈ V , a path v0v1v2 . . . v in Gv0 , and the state
reached by B upon reading v1v2 . . . v\ is a v\-state.

5. As Gv0 is connected, there is, for every v ∈ V , a path v0v1v2 . . . v in Gv0 . After reading
v1v2 . . . v, B is in a v-state. B remains in v-states if it henceforth reads v’s. (Note that
the automaton cannot block/reject immediately, as it should accept a continuation \vω
at any time.) As the word is rejecting, almost all states in the run of the automaton are
rejecting v-states.

6. Let us consider an arbitrary edge {v, w}. As Gv0 is connected, there is a path from
v0v1v2 . . . v in Gv0 , and v1v2 . . . v(wv)ω is in L(Gv0); the run of B on this ω-word is
therefore accepting. As almost all states in this accepting run are v-states or w-states,
there must be an accepting v-state or an accepting w-state.

J

Sven Schewe 405

The sixth claim implies that the set C of vertices with an accepting vertex-state is a
vertex cover of Gv0 = (V,E). It is also clear that B has at least |V | rejecting vertex-states,
|C| accepting vertex-states, and |V | \-states:

I Corollary 4. For a deterministic Büchi automaton that recognises the characteristic
language of a nice graph Gv0 = (V,E) with initial vertex v0, the set C = {v ∈ V | there is an
accepting v-state} is a vertex cover of Gv0 , and B has at least 2|V |+ |C| states. J

It is not hard to define, for a given nice graph Gv0 = (V,E) with vertex cover C, a Büchi
automaton BGv0

C = (V\, (V × {r, \})∪̇(C × {a}), (v0, r), δ, (C × {a})∪̇{>}) with 2|V | + |C|
states that recognises the characteristic language of Gv0 : We simply choose

δ
(
(v, r), v′

)
= (v′, a) if {v, v′} ∈ E and v′ ∈ C,

δ
(
(v, r), v′

)
= (v′, r) if {v, v′} ∈ E and v′ /∈ C,

δ
(
(v, r), v′

)
= (v, r) if v = v′,

δ
(
(v, r), v′

)
= (v, \) if v′ = \, and

δ
(
(v, r), v′

)
= ⊥ otherwise;

δ
(
(v, a), v′

)
= δ

(
(v, r), v′

)
, and

δ
(
(v, \), v

)
= > and δ

(
(v, \), v′

)
= ⊥ for v′ 6= v.

BGv0
C simply has one v\-state for each vertex v ∈ V of Gv0 , one accepting v-state for each

vertex in the vertex cover C, and one rejecting v-vertex for each vertex v ∈ V of Gv0 . It
moves to the accepting copy of a vertex state v only upon taking an edge to v, but not on a
repetition of v.

I Lemma 5. For a nice graph Gv0 = (V,E) with initial vertex v0 and vertex cover C, BGv0
C

recognises the characteristic language of Gv0 .

Proof. To show L(BGv0
C) ⊆ L(Gv0), let us consider an ω-word α accepted by BGv0

C . Then it
is either eventually accepted immediately when reading a v from a state (v, \), or by seeing
accepting states in C × {a} infinitely many times. By the construction of BGv0

C , α must be a
v\-word in the first case, and a trace-word in the latter.

To show L(BGv0
C) ⊇ L(Gv0), it is apparent that \-words are accepted immedi-

ately after reading the initial sequence that makes them \-words, while a trace-word
v0
i0−1v1

i1v2
i2v3

i3 . . . ∈ V ω with ij ∈ N and {vj , vj+1} ∈ E for all j ∈ ω, has the run
ρ = (v0, r)i0(v1, p1)(v1, r)i1−1(v2, p2)(v2, r)i2−1(v3, p3) . . ., with pi = a (and hence (vi, pi)
accepting) if vi in C. As C is a vertex cover, this is at least the case for every second index.
(There is no n ∈ N with {vn, vn+1} ∩ C = ∅.) ρ therefore contains infinitely many accepting
states. J

Corollary 4 and Lemma 5 immediately imply:

I Corollary 6. Let C be a minimal vertex cover of a nice graph Gv0 = (V,E). Then BGv0
C

is a minimal deterministic Büchi automaton that recognises the characteristic language of
Gv0 . J

From here, it is a small step to the main theorem of this section:

I Theorem 7. The problem of whether there is, for a given deterministic Büchi automaton,
a language equivalent Büchi automaton with at most n states is NP-complete.

Proof. For containment in NP, we can simply use non-determinism to guess such an automa-
ton. Checking that it is language equivalent is then in NL by Theorem 1.

FSTTCS 2010

406 Minimising Deterministic Parity and Büchi Automata is NP-Complete

By Corollary 6, we can reduce checking if a nice graph Gv with m vertices has a vertex
cover of size k to checking if the deterministic Büchi automaton BGv

V —which has 3m states and
is easy to construct (in deterministic logspace)—has a language equivalent Büchi automaton
with 2m + k states. As the problem we reduced from is NP-complete by Lemma 2, this
concludes the reduction. J

As minimising Co-Büchi automata coincides with minimising the dual Büchi automata,
the similar claim holds for Co-Büchi automata.

I Corollary 8. The problem of whether there is, for a given deterministic Co-Büchi automaton,
a language equivalent Co-Büchi automaton with at most n states is NP-complete. J

The problem of minimising deterministic parity automata cannot be easier than the
problem of minimising Büchi automata, and the ‘in NP’ argument that we can simply guess
a language equivalent DPA and then inexpensively check correctness (by Theorem 1) extends
to parity automata.

I Corollary 9. The problem if there is, for a given parity automaton, a language equivalent
parity automaton with n states is NP-complete. J

Note that, while there is a minimal number of priorities required for every language, the
number of states cannot be reduced by increasing the number of priorities, and minimising
the number of priorities can be done in polynomial time, changing only the priority functions
[14, 4].

4 Relative DFA Minimisation

Minimisation techniques for deterministic finite automata can be used to minimise determin-
istic Büchi and Co-Büchi automata. They are cheap—Hopcroft’s algorithm works in time
O(n logn) [8]—and have proven to be powerful devices for state-space reduction. From a
practical point of view, this invites—in the light of the intractability result for minimising
deterministic Büchi and Co-Büchi automata—the question if such tractable minimisation
techniques can be used for a space reduction of Büchi and Co-Büchi automata. From a
theoretical point of view, this invites the question of whether there are interesting tractable
minimisation problems between the minimisation (or hyper-minimisation [2, 1, 7]) of finite
automata, and the minimisation of Büchi and Co-Büchi automata.

Both the theoretical and the practical question turn out to have a positive answer: An
answer to the theoretical question is that we can define almost equivalence on automata
and their states as a relation, where two automata or states are almost equivalent if their
language intersected with the initial sequences of every omega word have finite difference.
We show that a minimal almost equivalent automaton is easy to construct. Besides being
interesting on their own account (for example, if we want to construct a monitor that errs
only a bounded number of times for every input word), they are language preserving for
deterministic Büchi and Co-Büchi automata. What is more, a minimal almost equivalent
automata to a weak automaton (an automaton that recognises the same language as DBA
and DCA) is a minimal language equivalent weak automaton.

From a practical point of view, the algorithm suggests an approximation that is valid for
both Büchi and Co-Büchi automata. There is, however, a simple and apparent improvement
of the algorithm when used for the minimisation of Büchi and Co-Büchi automata: Instead
of almost equivalence of states, we can use language equivalence for Büchi or Co-Büchi
automata, respectively. But the algorithm provides for more: It isolates the minimisation

Sven Schewe 407

problem within in the SCC. That is, both precise and approximative minimisation techniques
can look into these simpler sub-structures.

While being language preserving when the DBA or DCA is read as a DFA is a sufficient
criterion for language preservation of the automaton itself, it is by no means necessary. In
this context it becomes apparent that the NP-completeness result of the previous section
may not hint at the fact that state-space reduction for DBAs and DCAs is beyond price; one
should rather take it as a hint that a high price might have to be paid for the additional
benefit one can get from stronger state-space reductions than those for DFAs.

However, even if we consider DFAs, there is at time a desire for stronger reductions
than language preserving minimisation. For this reason, hyper-minimisation, the problem
of finding a minimal automaton with a finite symmetrical difference in its language, has
been studied for DFAs [2, 1, 7]. In this section, we introduce relative minimisation where
we seek a minimal automaton for which the symmetrical difference intersected with the
initial sequences of every infinite word is bounded. The underlying notion of approximate
equivalence is weaker than the f -equivalence used for hyper-minimisation, and in my opinion
it is also more natural even for DFAs. (One is often not really interested in differences on
words that one never observes.) It surely is the better starting point for minimising DBAs
and DCAs. We develop a simple algorithm for relative minimisation, and discuss how it can
be strengthened to approximate minimal DBAs or DCAs even better.

4.1 Almost Equivalence

For two (not necessarily different) DFAs A1 = (Σ, Q1, q
1
0 , δ1, F1) and A2 = (Σ, Q2, q

2
0 , δ2, F2),

we call two states q1 ∈ Q1 and q2 ∈ Q2 almost equivalent if, for all ω-words α ∈ Σω, it holds
that for the runs r1

0r
1
1r

1
2r

1
3 . . . and r2

0r
2
1r

2
2r

2
3 . . . of A1

q1
and A2

q2
on α, membership of the states

in the final states is equivalent almost everywhere (∃n ∈ ω. ∀i ≥ n. r1
i ∈ F1 ⇔ r2

i ∈ F2). Two
DFAs are called almost equivalent if their initial states are, and we extend these definitions
to DBAs and DCAs.

Obviously, almost equivalence is a congruence and hence defines quotient classes on the
states of automata. It is also easy to compute:

I Lemma 10. Testing almost equivalence (or inequivalence) of two DFAs A and B is NL-
complete, and the quotient class of a DFA A can be computed in time quadratic in the size
of the automaton.

Proof. It is simple to construct in deterministic logspace an automaton A ᵀ B whose states
are ordered pairs of A and B states, with the pair of initial states of A and B as initial state,
whose final states are the pairs of a final and a non-final state (where the final state might
be an A or a B state). Two states qa and qb are obviously almost equivalent if, and only if,
the language of (A ᵀ B)(qa,qb) is empty when read as a DBA, which is in NL by Theorem 1.
For completeness, it is again easy to reduce the reachability problem of directed graphs to
refuting almost equivalence of two automata.

This simple construction also caters for a quadratic deterministic algorithm for finding
the quotients of almost equivalent states: We can construct A ᵀA in quadratic time and
find the SCCs in A ᵀA in time linear in A ᵀA. Two states p, q are obviously either almost
equivalent or one can reach a final state in a non-trivial SCC from (p, q) in A ᵀA, and these
states can be computed in time linear in A ᵀA by a simple fixed-point algorithm. J

FSTTCS 2010

408 Minimising Deterministic Parity and Büchi Automata is NP-Complete

4.2 Finding minimal almost equivalent automata is tractable
We call the problem of finding a minimal automaton almost equivalent to a DFA A relative
minimisation. Besides the usefulness of relative minimisation for DFAs themselves, let us
consider the usefulness of relative minimisation for the state-space reduction of deterministic
Büchi and Co-Büchi automata.

I Lemma 11. Two deterministic Büchi and Co-Büchi automata that are, when read as
deterministic finite automata, almost language equivalent recognise the same language.

We can therefore use the inexpensive DFA minimisation, hyper-minimisation (which in
particular results in an almost equivalent automaton), and the newly introduced relative
minimisation of DFAs for a state-space reduction of DBAs and DCAs. This provides the
back-bone for efficient relative minimisation: To find, for a given DFA A = (Σ, Q′, q′0, δ′′, F ′),
a minimal deterministic automaton D that accepts an almost equivalent language, we execute
the following algorithm:
I Construction 12. In a first step2, we construct the minimal language equivalent automaton
B = (Σ, Q, q0, δ, F) in quasi-linear time using Hopcroft’s algorithm [8].

For B, we then introduce a pre-order (Q+,�) on the states of B such that (1) two states
are equivalent if, and only if, they are in the same SCC of B, (2) if p is reachable from q

then p � q, and (3) > and ⊥ are bigger than all states in Q. (This can obviously be done in
linear time.)

In a third step, we determine the quotient classes of almost equivalent states of B, and
pick, for each quotient class [q], a representative r[q] ∈ [q] that is maximal with respect to �
among the states almost equivalent to q.

We then construct an automaton C = (Σ, Q, r[q0], δ
′, F) by choosing the representative

r[q0] of the quotient [q0] of states almost equivalent to the initial state as new initial state,
and changing all transitions that lead to states whose representative is bigger (with respect
to �) to the representatives of these states. That is, for δ(q, σ) = q′, we get δ′(q, σ) = q′ if
q ' r[q′] and δ′(q, σ) = r[q′] otherwise.

Finally, we minimise C using Hopcroft’s algorithm again, yielding a DFA D.

I Lemma 13. The DFAs A and D of the above construction are almost equivalent.

Proof. First, A and B are language equivalent.
To compare the language of B and C, we note that, if p and q are almost equivalent, then

so are δ(p, σ) and δ(q, σ) for all σ in Σ. (Assuming the opposite, there would be a word
α ∈ Σω for which priority of the runs of Bδ(p,σ) and Bδ(q,σ) differ on infinitely many positions,
which implied the same for σ · α and runs on Bp and Bq and hence lead to a contradiction.)

Let us now consider runs rb0rb1rb2rb3 . . . and rc0r
c
1r
c
2r
c
3 . . . of B and C on some ω-word α.

Then rbi and rci are almost equivalent for all i ∈ ω by the above observation. Also, states in
a run of C can never go down in the pre-order (Q+,�). In particular, there is a bounded (at
most |Q|) number of positions in the run, where C takes an adjusted transition—a transition
δ′(q, σ) 6= δ(q, σ)—as this involves going strictly up in (Q+,�). The number of positions
i ∈ ω where either only rbi or only rci are final can thus be estimated by the number of
changed transitions taken times the bounded number of differences that can occur between
almost equivalent states in B.

Finally, C and D are again language equivalent. J

2 This step is not necessary for the correctness of the algorithm or for its complexity.

Sven Schewe 409

An key observation for the proof that D is minimal is that almost equivalent states are
in the same quotient class.

I Lemma 14. Two states of D that are almost equivalent are in the same SCC.

The proof that D is minimal builds on the fact that, whenever we go up in (Q+,�), we
choose the same representative.

I Theorem 15. There is no DFA E almost equivalent to D that is strictly smaller than D.

Proof. For convenience, we now look at quotient classes of almost equivalent states that
cover both D and E in this proof.

First, as D is minimal (among the language equivalent automata), all states in D are
reachable. Let us assume that there is a smaller DFA E almost equivalent to D. Then E
must (at least) have the same quotient classes as D, and hence, there must be a particular
quotient class [q] of D (and E), such that there are strictly less representatives of this class
in E than in D.

By the previous lemma, the representatives of quotient classes of almost equivalent
states of D are all in the same SCC. For trivial SCCs, this implies that there is only one
representative in D and hence at least as many in E .

For non-trivial SCCs, there is a witness of language non-equivalence that does not leave
the SCC for all different occurrences. (Note that Construction 12 guarantees for C that, once
an SCC is left, the target state—and hence the remainder of the run—is the same, no matter
from which representative of a quotient class we start. And the proof of the previous lemma
showed that the minimisation of C′ is SCC preserving.)

As E has less representatives, we can pick one representative r ∈ [q] of this class in D
such that, for all representatives e ∈ [q] in E , we construct a finite word αe ∈ Σ∗ that is
accepted either only by Ee or only by Dr, such that the run of Dr on αe stays in the SCC
containing r. This invites a simple pumping argument: We can construct a word starting
with a sequence β0 that leads to r in D. It also leads to some state e1 almost equivalent to r
in E . Next, we continue our word with αe1 , witnessing a difference. From the resulting state
in D, we continue with a non-empty sequence β1 ∈ Σ+ that brings us back to r. (We stay in
the same SCC by construction.) Meanwhile, we have reached some state e2 almost equivalent
to r in E . Next, we continue our word with αe2 , witnessing a difference, and continue with a
non-empty sequence β2 ∈ Σ+ that brings us back to r in D, and so forth. We thus create an
infinite sequence β0αe1β1αe2β2αe3 . . . with infinitely many differences, which contradicts the
almost equivalence of D and E . J

I Corollary 16. We can construct a minimal almost equivalent automaton to a given DFA
A in time quadratic in the size of A. J

Note that the quadratic cost occurs only for constructing the quotients of almost equivalent
states. Hence, there is a clear critical path, and improvement on this path would lead to an
improvement of the overall algorithm.

It is interesting to observe that the minimal automaton almost equivalent to a weak
automaton (when read as a DFA) obtained by Construction 12 is weak, and a language
equivalent weak automata is almost equivalent. (An automaton is called weak if it recognises
the same language when read as a DBA or as a DCA, or, similarly, if all states in the same
SCC have the priority.)

I Theorem 17. The algorithm from Construction 12 can be used to minimise weak automata.

Almost equivalence can hence be read as a generalisation of language equivalence of weak
automata.

FSTTCS 2010

410 Minimising Deterministic Parity and Büchi Automata is NP-Complete

4.3 Space Reduction for DBAs and DCAs
The techniques introduced for finding minimal almost equivalent automata can easily be
adjusted to stronger state-space reductions for DBAs and DCAs: If we use language equiva-
lence for the respective automata instead of almost equivalence, the resulting automaton
remains language equivalent.

I Theorem 18. Swapping quotients of almost equivalent states for the coarser quotients
of language equivalent states for DBAs and DCAs in Construction 12 provides a language
equivalent automaton D, and the cost remains quadratic in the size of A.

An interesting corollary from the proofs (see [21]) of Theorems 18 and 15 is:

I Corollary 19. Minimisation techniques for DBAs or DCAs can treat the individual SCCs
of the resulting automaton D individually. J

An interesting aspect of this minimisation is that we can treat a local version of weak
automata: We call an SCC weak if all infinite paths within this SCC are accepting or all
infinite paths within this SCC are rejecting. For weak SCCs, we can obviously make all
states accepting or rejecting, respectively, without changing the language of a DBA or DCA.

Doing so in the automaton C in from Construction 12 leads to all states equivalent by
the respective equivalence relation (almost equivalence or language equivalence as DBA or
DCA) becoming language equivalent when the automaton is read as a DFA, and are therefore
merged in D. Thus, there is exactly one of these states in D, and the D is locally optimal.

A further tractable minimisation would be to greedily merge states: For an automaton
A we denote with Ap.q the automaton that results from changing the transition function
δ to δ′ such that δ′(r, σ) = q if δ(r, σ) = p and δ′(r, σ) = δ(r, σ) otherwise, choosing q as
initial state if q was the former initial state, and removing p from the state-space. A natural
tractable minimisation would be to greedily consider Ap.q for language equivalent states p
and q until no further states can be merged. Note that, by Corollary 19, it suffices to look at
the respective SCCs only, which may speed up the computation significantly.

This is even more important for exhaustive search for minimal automata, such as the
SAT based methods suggested by Ehlers [5].

5 Discussion

This paper has two main results: First, it establishes that minimising deterministic Büchi,
Co-Büchi and parity automata are NP-complete problems.

A second central contribution is the introduction of relative minimisation of DFAs,
a powerful technique to minimise deterministic finite automata when allowing for minor
differences in their language. This natural minimisation problem on DFAs is strictly between
the problem of hyper-minimising DFAs and minimising DBAs or DCAs and can be viewed as
a generalisation of the minimisation problem of weak automata. We show that the relative
minimisation of DFAs is tractable and provide a simple quadratic algorithm.

Finally, we strengthened this algorithm by relaxing the requirement for merging states
from almost to language equivalent states, which provides a promising technique to reduce
the state-space of DBAs and DCAs. This technique does not only have the potential to
reduce the state-space of the automaton significantly, it also suffices to focus on its SCCs
when seeking to reduce the state-space of the automaton further. This can be used to
accelerate further reduction heuristics—like the greedy merge discussed—and exhaustive
search methods alike.

Sven Schewe 411

References
1 Andrew Badr. Hyper-minimization in O(n2). International Journal of Foundations of

Computer Science, 20(4):735–746, 2009.
2 Andrew Badr, Viliam Geffert, and Ian Shipman. Hyper-minimizing minimized deterministic

finite state automata. Informatique Théorique et Applications, 43(1):69–94, 2009.
3 Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press, 2008.
4 Olivier Carton and Ramón Maceiras. Computing the rabin index of a parity automaton.

Theoretical Informatics and Applications (ITA), 33(6):495–506, 1999.
5 Rüdiger Ehlers. Minimising deterministic Büchi automata precisely using SAT. In Proc. of

SAT, pages 326–332, 2010.
6 Bernd Finkbeiner and Sven Schewe. Uniform distributed synthesis. In Proc. of LICS, pages

321–330, 2005.
7 Paweł Gawrychowski and Artur Jeż. Hyper-minimisation made efficient. In In Proc. of

MFCS, pages 356–368, 2009.
8 John E. Hopcroft. An n log n algorithm for minimizing states in a finite automaton.

Technical Report CS-190, 1970.
9 John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata

Theory, Languages, and Computation. Addison-Wesley, 2000.
10 Neil Immerman. Nondeterministic space is closed under complementation. SIAM Journal

on Computing, 17(5):935–938, 1988.
11 Orna Kupferman and Moshe Y. Vardi. Synthesizing distributed systems. In Proc. of LICS,

pages 389–398, 2001.
12 Christoph Löding. Efficient minimisation of deterministic weak automata. Information

Processing Letters, 79(3):105–109, 2001.
13 P. Madhusudan and P. S. Thiagarajan. Distributed controller synthesis for local specifica-

tions. In Proc. of ICALP, pages 396–407, 2001.
14 Damian Niwinski and Igor Walukiewicz. Relating hierarchies of word and tree automata.

In Proc. of STACS, pages 320–331. 1998.
15 Nir Piterman. From nondeterministic Büchi and Streett automata to deterministic parity

automata. Journal of Logical Methods in Computer Science, 3(3:5), 2007.
16 Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Proc. of POPL,

pages 179–190, 1989.
17 Amir Pnueli and Roni Rosner. On the synthesis of an asynchronous reactive module. In

Proc. of ICALP, pages 652–671, 1989.
18 Amir Pnueli and Roni Rosner. Distributed reactive systems are hard to synthesize. In Proc.

FOCS, pages 746–757. 1990.
19 Michael O. Rabin. Automata on Infinite Objects and Church’s Problem, volume 13 of

Regional Conference Series in Mathematics. American Mathematical Society, 1972.
20 Sven Schewe. Tighter bounds for the determinisation of Büchi automata. In Proc. of

FoSSaCS, pages 167–181, 2009.
21 Sven Schewe. Minimisation of deterministic parity and buchi automata and relative min-

imisation of deterministic finite automata. CoRR, abs/1007.1333, 2010.
22 Sven Schewe and Bernd Finkbeiner. Synthesis of asynchronous systems. In Proc. of LOP-

STR, pages 127–142, 2006.
23 Igor Walukiewicz and Swarup Mohalik. Distributed games. In Proc. of FSTTCS, pages

338–351, 2003.

FSTTCS 2010

	Introduction
	Deterministic Automata
	-Automata
	Finite Automata
	Automata Transformations & Conventions
	Emptiness and Equivalence

	Minimising Büchi and Parity Automata is NP-Complete
	Relative DFA Minimisation
	Almost Equivalence
	Finding minimal almost equivalent automata is tractable
	Space Reduction for DBAs and DCAs

	Discussion

