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Abstract
This article is a survey of developments in algorithmic convex geometry over the past decade.
These include algorithms for sampling, optimization, integration, rounding and learning, as well
as mathematical tools such as isoperimetric and concentration inequalities. Several open problems
and conjectures are discussed on the way.
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1 Introduction

Algorithmic convex geometry is the study of the algorithmic aspects of convexity. While
convex geometry, closely related to finite-dimensional functional analysis, is a rich, classical
field of mathematics, it has enjoyed a resurgence since the late 20th century, coinciding
with the development of theoretical computer science. These two fields started coming
together in the 1970’s with the development of geometric algorithms for convex optimization,
notably the Ellipsoid method. The ellipsoid algorithm uses basic notions in convex geometry
with profound consequences for computational complexity, including the polynomial-time
solution of linear programs. This development heralded the use of more geometric ideas,
including Karmarkar’s algorithm and interior point methods. It brought to the forefront
fundamental geometric questions such as rounding, i.e., applying affine transformations to
sets in Euclidean space to make them easier to handle. The ellipsoid algorithm also resulted
in the striking application of continuous geometric methods for the solution of discrete
optimization problems such as submodular function minimization.

A further startling development occurred in 1989 with the discovery of a polynomial
method for estimating the volume of a convex body. This was especially surprising in the
light of an exponential lower bound for any deterministic algorithm for volume estimation.
The crucial ingredient in the volume algorithm was an efficient procedure to sample nearly
uniform random points from a convex body. Over the past two decades the algorithmic
techniques and analysis tools for sampling and volume estimation have been greatly extended
and refined. One noteworthy aspect here is the development of isoperimetric inequalities
that are of independent interest as purely geometric properties and lead to new directions in
the study of convexity. Efficient sampling has also lead to alternative polynomial algorithms
for convex optimization.

Besides optimization, integration and sampling, our focus problems in this survey are
rounding and learning. Efficient algorithms for the first three problems rely crucially on
rounding. Approximate rounding can be done using the ellipsoid method and with a tighter
guarantee using random sampling. Learning is a problem that generalizes integration. For
example, while we know how to efficiently compute the volume of a polytope, learning one
efficiently from random samples is an open problem. For general convex bodies, volume
computation is efficient, while learning requires a superpolynomial number of samples (volume
computation uses a membership oracle while learning gets only random samples).

This survey is not intended to be comprehensive. There are numerous interesting
developments in convex geometry, related algorithms and their growing list of applications
and connections to other areas (e.g., data privacy, quantum computing, statistical estimators
etc.) that we do not cover here, being guided instead by our five focus problems.

1.1 Basic definitions
Recall that a subset S of Rn is convex if for any two points x, y ∈ S, the interval [x, y] ⊆ S.
A function f : Rn → R+ is said to be logconcave if for any two points x, y ∈ Rn and any
λ ∈ [0, 1],

f(λx+ (1− λ)y) ≥ f(x)λf(y)1−λ.

The indicator function of a convex set and the density function of a Gaussian distribution
are two canonical examples of logconcave functions.

A density function f : Rn → R+ is said to be isotropic, if its centroid is the origin, and
its covariance matrix is the identity matrix. In terms of the associated random variable X,
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44 Algorithmic Convex Geometry

this means that

E(X) = 0 and E(XXT ) = I.

This condition is equivalent to saying that for every unit vector v ∈ Rn,∫
Rn

(vTx)2f(x) dx = 1.

We say that f is C-isotropic, if

1
C
≤
∫
Rn

(vTx)2f(x) dx ≤ C

for every unit vector v. A convex body is said to be isotropic if the uniform density over it is
isotropic. For any full-dimensional distribution D with bounded second moments, there is
an affine transformation of space that puts it in isotropic position, namely, if

z = ED(X) and A = E((X − z)(X − z)T )

then y = A−
1
2 (X − z) has an isotropic density.

For a density function f : Rn → R+, we let πf be the measure associated with it. The
following notions of distance between two distributions P and Q will be used: The Total
variation distance of P and Q is

dtv(P,Q) = sup
A∈A
|P (A)−Q(A)|.

The χ-squared distance of P with respect to Q is

χ2(P,Q) =
∫ n

R

(
dP (u)− dQu

dQ(u)

)2
dQ(u) =

∫ n

R

dP (u)
dQ(u) dP (u)− 1

The first term in the last expression is also called the L2 distance of P w.r.t. Q. Finally, P
is said to be M -warm w.r.t. Q if

M = sup
A∈A

P (A)
Q(A) .

A discrete-time Markov chain is defined using a triple (K,A, {Pu : u ∈ K}) along with a
starting distribution Q0, where K is the state space, A is a set of measurable subsets of K
and Pu is a measure over K, as a sequence of elements of K, w0, w1, . . ., where w0 is chosen
from Q0 and each subsequent wi is chosen from Pwi−1 . Thus, the choice of wi+1 depends
only on wi and is independent of w0, . . . , wi−1. It is easy to verify that a distribution Q is
stationary iff for every A ∈ A,∫

A

Pu(K \A) dQ(u) =
∫
K\A

Pu(A) dQ(u).

The conductance of a subset A is defined as

φ(A) =
∫
A
Pu(K \A) dQ(u)

min{Q(A), Q(K \A)}

and the conductance of the Markov chain is

φ = min
A

φ(A) = min
0<Q(A)≤ 1

2

∫
A
Pu(K \A) dQ(u)

Q(A) .
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The following weaker notion of conductance will also be useful. For any 0 ≤ s < 1
2 , the

s-conductance of a Markov chain is defined as

φs = min
A:s<Q(A)≤ 1

2

∫
A
Pu(K \A) dQ(u)
Q(A)− s .

We let Varf (g) denote the variance of a real-valued function g w.r.t. a density function f .
The unit ball in Rn by Bn. We use O∗(.) to suppress error parameters and terms that are
polylogarithmic in the leading terms.

2 Problems

We now state our focus problems more precisely and mention the current bounds on their
complexity. Algorithms achieving these bounds are discussed in a Section 4. As input to
these problems, we typically assume a general function oracle, i.e., access to a real-valued
function as a blackbox. The complexity will be measured by both the number of oracle calls
and the number of arithmetic operations.

2.1 Optimization
Input: an oracle for a function f : Rn → R+; a point x0 with f(x0) > 0; an error parameter
ε.
Output: a point x such that

f(x) ≥ max f − ε.

Linear optimization over a convex set is the special case when f = e−c
T xχK(x) where cTx is

a linear function to be minimized and K is the convex set. This is equivalent to a membership
oracle for K in this case. Given only access to the function f , for any logconcave f , the
complexity of optimization is poly(n, log(1/ε)) by either an extension of the Ellipsoid method
to handle membership oracles [21], or Vaidya’s algorithm [60] or a reduction to sampling
[6, 25, 45]. This line of work began with the breakthrough result of Khachiyan [34] showing
that the Ellipsoid method proposed by Yudin and Nemirovskii [65] is polynomial for explicit
linear programs. The current best time complexity is O∗(n4.5) achieved by a reduction to
logconcave sampling [45]. For optimization of an explicit function over a convex set, the
oracle is simply membership in the convex set. A stronger oracle is typically available, namely
a separation oracle that gives a hyperplane that separates the query point from the convex
set, in the case when the point lies outside. Using a separation oracle, the ellipsoid algorithm
has complexity O∗(n2) while Vaidya’s algorithm and that of Bertsimas and Vempala have
complexity O∗(n).

The current frontier for polynomial-time algorithms is when f is a logconcave function
in Rn. Slight generalizations, e.g., linear optimization over a star-shaped body is NP-hard,
even to solve approximately [49, 9].

2.2 Integration/Counting
Input: an oracle for a function f : Rn → R+; a point x0 with f(x0) > 0; an error parameter
ε.
Output: a real number A such that

(1− ε)
∫
f ≤ A ≤ (1 + ε)

∫
f.
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46 Algorithmic Convex Geometry

Dyer, Frieze and Kannan [15, 16] gave a polynomial-time randomized algorithm for
estimating the volume of a convex body (the special case above when f is the indicator
function of a convex body) with complexity poly(n, 1/ε, log(1/δ)), where δ is the probability
that the algorithm’s output is incorrect. This was extended to integration of logconcave
functions by Applegate and Kannan [3] with an additional dependence of the complexity
on the Lipschitz parameter of f . Following a long line of improvements, the current best
complexity is O∗(n4) using a variant of simulated annealing, quite similar to the algorithm
for optimization [45].

In the discrete setting, the natural general problem is when f is a distribution over the
integer points in a convex set, e.g., f is 1 only for integer points in a convex body K. While
there are many special cases that are well-studied, e.g., perfect matchings of a graph [23],
not much is known in general except a roundness condition [30].

2.3 Learning

Input: random points drawn from an unknown distribution in Rn and their labels given by
an unknown function f : Rn → {0, 1}; an error parameter ε.
Output: A function g : Rn → {0, 1} such that P(g(x) 6= f(x)) ≤ ε over the unknown
distribution.

The special case when f is an unknown linear function can be solved by using any linear
classifier that correctly labels a sample of size

C

ε

(
n log 1

ε
+ log 1

δ

)
,

where C is a constant. Such a classifier can be learned by using any efficient algorithm for
linear programming. The case when f is a polynomial threshold function of bounded degree
can also be learned efficiently essentially by reducing to the case of linear thresholds via a
linearization of the polynomial.

2.4 Sampling

Input: an oracle for a function f : Rn → R+; a point x0 with f(x0) > 0; an error parameter
ε.
Output: a random point x whose distribution D is within ε total variation distance of the
distribution with density proportional to f .

As the key ingredient of their volume algorithm [16], Dyer, Frieze and Kannan gave a
polynomial-time algorithm for the case when f is the indicator function over a convex body.
The complexity of the sampler itself was poly(n, 1/ε). Later, Applegate and Kannan [3]
generalized this to smooth logconcave functions with complexity polynomial in n, 1/ε and
the Lipschitz parameter of the logconcave function. In [45] the complexity was improved to
O∗(n4) and the dependence on the Lipschitz parameter was removed.

2.5 Rounding.

We first state this problem for a special case.
Input: a membership oracle for a convex body K; a point x0 ∈ K; an error parameter ε.
Output: a linear transformation A and a point z such that K ′ = A(K − z) satisfies one of
the following:
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Exact sandwiching:

Bn ⊆ K ′ ⊆ RBn. (1)

Second moment sandwiching: For every unit vector u,

1− ε ≤ EK′((u · x)2) ≤ 1 + ε.

Approximate sandwiching:

vol(Bn ∩K ′) ≥
1
2vol(Bn) and vol(K ′ ∩RBn) ≥ 1

2vol(K
′). (2)

When the input is a general density function, the second moment condition extends readily
without any change to the statement.

The classical Löwner-John theorem says that for any convex body K, the ellipsoid E
of maximal volume contained in K has the property that K ⊆ nE (and K ⊆

√
nE if K is

centrally symmetric). Thus by using the transformation that makes this ellipsoid a ball, one
achieves R = n in the first condition above (exact sandwiching). Moreover, this is the best
possible as shown by the simplex. However, computing the ellipsoid of maximal volume is
hard. Lovász [41] showed how to compute an ellipsoid that satisfies the containment with
R = n3/2 using the Ellipsoid algorithm. This remains the best-known deterministic algorithm.
A randomized algorithm can achieve R = n(1 + ε) for any ε > 0 using a simple reduction to
random sampling [27]. In fact, all that one needs is n · C(ε) random samples [8, 57, 54, 1],
and then the transformation to be computed is the one that puts the sample in isotropic
position.

3 Geometric inequalities and conjectures

We begin with some fundamental inequalities. For two subsets A,B of Rn, their Minkowski
sum is

A+B = {x+ y : x ∈ A, y ∈ B}.

The Brunn-Minkowski inequality says that if A,B and A + B are measurable, compact
subsets of Rn, then

vol(A+B) 1
n ≥ vol(A) 1

n + vol(B) 1
n . (3)

The following extension is the Prékopa-Leindler inequality: for any three functions
f, g, h : Rn → R+, satisfying

h(λx+ (1− λ)y) ≥ f(x)λg(x)1−λ

for every λ ∈ [0, 1],∫
Rn

h(x) dx ≥
(∫

Rn

f(x) dx
)λ(∫

Rn

g(x) dx
)1−λ

. (4)

The product and the minimum of two logconcave functions are also logconcave. We also
have the following fundamental properties [12, 39, 55, 56].

I Theorem 1. All marginals and the distribution function of a logconcave function are
logconcave. The convolution of two logconcave functions is logconcave.
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48 Algorithmic Convex Geometry

In the rest of this section, we describe inequalities about rounding, concentration of mass
and isoperimetry. These inequalities play an important role in the analysis of algorithms
for our focus problems. Many of the inequalities apply to logconcave functions. The latter
represent the limit to which methods that work for convex bodies can be extended. This is
true for all the algorithms we will see with a few exceptions, e.g., an extension of isoperimetry
and sampling to star-shaped bodies. We note here that Milman [50] has shown a general
approximate equivalence between concentration and isoperimetry over convex domains.

3.1 Rounding
We next describe a set of properties related to affine transformations. The first one below is
from [27].

I Theorem 2. [27] Let K be a convex body in Rn in isotropic position. Then,√
n+ 1
n

Bn ⊆ K ⊆
√
n(n+ 1)Bn.

Thus, in terms of the exact sandwiching condition (1), isotropic position achieves a factor
of n, and this ratio of the radii of the outer and inner ball, n, is the best possible as shown
by the n-dimensional simplex. A bound of O(n) was earlier established by Milman and Pajor
[51].

Sandwiching was extended to logconcave functions in [48] as follows.

I Theorem 3. [48] Let f be a logconcave density in isotropic position. Then for any t > 0,
the level set L(t) = {x : f(x) ≥ t} contains a ball of radius πf (L(t))/e. Also, the point
z = arg max f satisfies ‖z‖ ≤ n+ 1.

For general densities, it is convenient to define a rounding parameter as follows. For a
density function f , let R2 = Ef (‖X −EX‖2) and r be the radius of the largest ball contained
in the level set of f of measure 1/8. Then R/r is the rounding parameter and we say a
function is well-rounded if R/r = O(

√
n). By the above theorem, any logconcave density in

isotropic position is well-rounded.
An isotropic transformation can be estimated for any logconcave function using random

samples drawn from the density proportional to f . In fact, following the work of Bourgain
[8] and Rudelson [57], Adamczak et al [1] showed that O(n) random points suffice to achieve,
say, 2-isotropic position with high probability.

I Theorem 4. [1] Let x1, . . . xm be random points drawn from an isotropic logconcave density
f . Then for any ε ∈ (0, 1), t ≥ 1, there exists C(ε, t) such that if m ≥ C(ε, t)n,∥∥∥∥∥ 1

m

m∑
i=1

xix
T
i − I

∥∥∥∥∥
2

≤ ε

with probability at least 1− e−ct
√
n. Moreover,

C(ε, t) = C
t4

ε2 log2 2t2

ε2

for absolute constants c, C suffices.

The following conjecture was alluded to in [44].
I Conjecture 5. There exists a constant C such that for any convex body K in Rn, there
exists an ellipsoid E that satisfies approximate sandwiching:

vol(E ∩K) ≥ 1
2vol(E); vol(K ∩ C lognE) ≥ 1

2vol(K).
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3.2 Measure and concentration
The next inequality was proved by Grünbaum [22] (for the special case of the uniform density
over a convex body).

I Lemma 6. [22] Let f : Rn → R+ be a logconcave density function, and let H be any
halfspace containing its centroid. Then∫

H

f(x) dx ≥ 1
e
.

This was extended to hyperplanes that come close to the centroid in [6, 48].

I Lemma 7. [6, 48] Let f : Rn → R+ be an isotropic logconcave density function, and let
H be any halfspace within distance t from its centroid. Then∫

H

f(x) dx ≥ 1
e
− t.

The above lemma easily implies a useful concentration result.

I Theorem 8. Let f be a logconcave density in Rn and z be the average of m random points
from πf . If H is a halfspace containing z,

E (πf (H)) ≥
(

1
e
−
√
n

m

)
.

A strong radial concentration result was shown by Paouris [54].

I Lemma 9. [54] Let K be an isotropic convex body. Then, for any t ≥ 1,

P(‖X‖ ≥ ct
√
n) ≤ e−t

√
n

where c is an absolute constant.

This implies that all but an exponentially small fraction of the mass of an isotropic convex
body lies in a ball of radius O(

√
n).

The next inequality is a special case of a more general inequality due to Brascamp and
Lieb. It also falls in a family called Poincaré-type inequalities. Recall that Varµ(f) denote
the variance of a real-valued function f w.r.t. a density function µ.

I Theorem 10. Let γ be the standard Gaussian density in Rn. Let f : Rn → R be a smooth
function. Then

Varγ(f) ≤
∫
Rn

‖∇f‖2 dγ.

A smooth function here is one that is locally Lipschitz.
An extension of this inequality to logconcave restrictions was developed in [63], eliminating

the need for smoothness and deriving a quantitative bound. In particular, the lemma shows
how variances go down when the standard Gaussian is restricted to a convex set.

I Theorem 11. [63] Let g be the standard Gaussian density function in Rn and f : Rn → R+
be any logconcave function. Define the function h to be the density proportional to their
product, i.e.,

h(x) = f(x)g(x)∫
Rn f(x)g(x) dx

.
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50 Algorithmic Convex Geometry

Then, for any unit vector u ∈ Rn,

Varh(u · x) ≤ 1− e−b
2

2π

where the support of f along u is [a0, a1] and b = min{|a0|, |a1|}.

The next conjecture is called the variance hypothesis or thin shell conjecture.
I Conjecture 12 (Thin shell). For X drawn from a logconcave isotropic density f in Rn,

Varf (‖X‖2) ≤ Cn

We note here that for an isotropic logconcave density,

σ2
n = Ef ((‖X‖ −

√
n)2) ≤ 1

n
Varf (‖X‖2) ≤ Cσ2

n,

i.e., the deviation of ‖X‖ from
√
n and the deviation of ‖X‖2 from E(‖X‖2) = n are closely

related. Thus, the conjecture implies that most of the mass of a logconcave distribution lies
in shell of constant thickness.

A bound of σn ≤
√
n is easy to establish for any isotropic logconcave density. Klartag

showed that σn = o(
√
n) [36, 37], a result that can be interpreted as a central limit theorem

(since the standard deviation is now a smaller order term than the expectation). The current
best bound on σn is due to Fleury [19] who showed that σn ≤ n3/8. We state his result
below.

I Lemma 13. [19] For any isotropic logconcave measure µ,

P
(
|‖x‖ −

√
n| ≥ tn 3

8

)
≤ Ce−ct.

where c, C are constants.

3.3 Isoperimetry
The following theorem is from [14], improving on a theorem in [43] by a factor of 2. For two
subsets S1, S2 of Rn, we let d(S1, S2) denote the minimum Euclidean distance between them.

I Theorem 14. [14] Let S1, S2, S3 be a partition into measurable sets of a convex body K of
diameter D. Then,

vol(S3) ≥ 2d(S1, S2)
D

min{vol(S1), vol(S2)}.

A limiting (and equivalent) version of this inequality is the following: Let ∂S ∩K denote
the interior boundary of S w.r.t. K. For any subset S of a convex body of diameter D,

voln−1(∂S ∩K) ≥ 2
D

min{vol(S), vol(K \ S)},

i.e., the surface area of S inside K is large compared to the volumes of S and K \ S. This
is in direct analogy with the classical isoperimetric inequality, which says that the surface
area to volume ratio of any measurable set is at least the ratio for a ball. Henceforth, for a
density function f , we use Φf (S) to denote the isoperimetric ratio of a subset S, i.e.,

Φf (S) = πf (∂S)
min{πf (S), 1− πf (S)}
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and

Φf = inf
S⊆Rn

φ(S).

Theorem 14 can be generalized to arbitrary logconcave measures.

I Theorem 15. Let f : Rn → R+ be a logconcave function whose support has diameter
D and let πf be the induced measure. Then for any partition of Rn into measurable sets
S1, S2, S3,

πf (S3) ≥ 2d(S1, S2)
D

min{πf (S1), πf (S2)}.

The conclusion can be equivalently stated as Φf ≥ 2/D. For Euclidean distance this latter
statement, applied to the subset S1 essentially recovers the above lower bound on πf (S3).

Next we ask if logconcave functions are the limit of such isoperimetry. Theorem 15 can
be extended to s-concave functions in Rn for s ≥ −1/(n− 1) with only a loss of a factor of 2
[10]. A nonnegative function f is s-concave if f(x)s is a concave function of s. Logconcave
functions correspond to s→ 0. The only change in the conclusion is by a factor of 2 on the
RHS.

I Theorem 16. [10] Let f : Rn → R+ be an s-concave function with s ≥ −1/(n − 1) and
with support of diameter D and let πf be the induced measure. Then for any partition of Rn
into measurable sets S1, S2, S3,

πf (S3) ≥ d(S1, S2)
D

min{πf (S1), πf (S2)}.

This theorem is tight, in that there exist s-concave functions for s ≤ −1/(n− 1− ε) for any
ε > 0 whose isoperimetric ratio is exponentially small in εn.

Logconcave and s-concave functions are natural extensions of convex bodies. It is natural
to ask what classes of nonconvex sets/functions might have good isoperimetry. In recent
work [9], the isoperimetry of star-shaped bodies was studied. A star-shaped set S is one that
contains at least one point x such that for any y ∈ S, the segment [x, y] is also in S. The set
of all such points x for which lines through x have convex intersections with S is called its
kernel KS . The kernel is always a convex set.

I Theorem 17. [9] Let S1, S2, S3 be a partition into measurable sets of a star-shaped body S
of diameter D. Let η = vol(KS)/vol(S). Then,

vol(S3) ≥ d(S1, S2)
4ηD min{vol(S1), vol(S2)}.

In terms of diameter, Theorem 14 is the best possible, as shown by a cylinder. A more
refined inequality is obtained in [27, 48] using the average distance of a point to the center of
gravity (in place of diameter). It is possible for a convex body to have much larger diameter
than average distance to its centroid (e.g., a cone). In such cases, the next theorem provides
a better bound.

I Theorem 18. [27] Let f be a logconcave density in Rn and πf be the corresponding measure.
Let zf be the centroid of f and define M(f) = Ef (|x− zf |). Then, for any partition of Rn
into measurable sets S1, S2, S3,

πf (S3) ≥ ln 2
M(f)d(S1, S2)πf (S1)πf (S2).
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52 Algorithmic Convex Geometry

For an isotropic density, M(f)2 ≤ Ef (|x − zf |2) = n and so M(f) ≤
√
n. The diameter

could be unbounded (e.g., an isotropic Gaussian). Thus, if Af is the covariance matrix of
the logconcave density f , the inequality can be re-stated as:

πf (S3) ≥ c√
Tr(Af )

d(S1, S2)πf (S1)πf (S2).

A further refinement is called the KLS hyperplane conjecture [27]. Let λ1(A) be the
largest eigenvalue of a symmetric matrix A.

I Conjecture 19 (KLS). Let f be a logconcave density in Rn. There is an absolute constant
c such that

Φf ≥
c√

λ1(Af )
.

The KLS conjecture implies the thin shell conjecture (Conj. 12). Even the thin shell
conjecture would improve the known isoperimetry of isotropic logconcave densities due to
the following result of Bobkov [7].

I Theorem 20. [7] For any logconcave density function f in Rn,

Φf ≥
c

Var(‖X‖2)1/4 .

Combining this with Fleury’s bound 13, we get that for an isotropic logconcave function in
Rn,

Φf ≥ cn−7/16. (5)

This is slightly better than the bound of cn−1/2 implied by Theorem 18 since E(‖X‖2) = n

for an isotropic density.
The next conjecture is perhaps the most well-known in convex geometry, and is called

the slicing problem, the isotropic constant or simply the hyperplane conjecture.

I Conjecture 21 (Slicing). There exists a constant C, such that for an isotropic logconcave
density f in Rn,

f(0) ≤ Cn.

In fact, a result of Ball [4] shows that it suffices to prove such a bound for the case of f
being the uniform density over an isotropic convex body. In this case, the conjecture says
the volume of an isotropic convex body in Rn is at least cn for some constant c. The current
best bound on Ln = supf f(0)1/n is O(n1/4) [8, 35].

Recently, Eldan and Klartag [18] have shown that the slicing conjecture is implied by the
thin shell conjecture (and therefore by the KLS conjecture as well, a result that was earlier
shown by Ball).

I Theorem 22. [18] There exists a constant C such that

Ln = sup
f
f(0)1/n ≤ Cσn = C sup

f

√
Ef ((‖X‖ −

√
n)2)

where the suprema range over isotropic logconcave density functions.
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We conclude this section with a discussion of another direction in which classical isoperime-
try has been extended. The cross-ratio distance (also called Hilbert metric) between two
points u, v in a convex body K is computed as follows: Let p, q be the endpoints of the chord
in K through u and v such that the points occur in the order p, u, v, q. Then

dK(u, v) = |u− v||p− q|
|p− u||v − q|

= (p : v : u : q).

where (p : v : u : q) denotes the classical cross-ratio. We can now define the cross-ratio
distance between two sets S1, S2 as

dK(S1, S2) = min{dK(u, v) : u ∈ S1, v ∈ S2}.

The next theorem was proved in [42] for convex bodies and extended to logconcave densities
in [47].

I Theorem 23. [42] Let f be a logconcave density in Rn whose support is a convex body
K and let πf be the induced measure. Then for any partition of Rn into measurable sets
S1, S2, S3,

πf (S3) ≥ dK(S1, S2)πf (S1)πf (S2).

All the inequalities so far are based on defining the distance between S1 and S2 by the
minimum over pairs of some notion of pairwise distance. It is reasonable to think that
perhaps a much sharper inequality can be obtained by using some average distance between
S1 and S2. Such an inequality was proved in [46], leading to a substantial improvement in
the analysis of hit-and-run.

I Theorem 24. [46] Let K be a convex body in Rn. Let f : K → R+ be a logconcave density
with corresponding measure πf and h : K → R+, an arbitrary function. Let S1, S2, S3 be
any partition of K into measurable sets. Suppose that for any pair of points u ∈ S1 and
v ∈ S2 and any point x on the chord of K through u and v,

h(x) ≤ 1
3 min(1, dK(u, v)).

Then

πf (S3) ≥ Ef (h(x)) min{πf (S1), πf (S2)}.

The coefficient on the RHS has changed from a “minimum” to an “average”. The weight
h(x) at a point x is restricted only by the minimum cross-ratio distance between pairs u, v
from S1, S2 respectively, such that x lies on the line between them (previously it was the
overall minimum). In general, it can be much higher than the minimum cross-ratio distance
between S1 and S2.

3.4 Localization
Most of the known isoperimetry theorems can be proved using the localization lemma of
Lovász and Simonovits [44, 27]. It reduces inequalities in high dimension to 1-dimensional
inequalities by a sequence of bisections and a limit argument. To prove that an inequality is
true, one assumes it is false and derives a contradiction in the 1-dimensional case.
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I Lemma 25. [44] Let g, h : Rn → R be lower semi-continuous integrable functions such
that∫

Rn

g(x) dx > 0 and
∫
Rn

h(x) dx > 0.

Then there exist two points a, b ∈ Rn and a linear function ` : [0, 1]→ R+ such that∫ 1

0
`(t)n−1g((1− t)a+ tb) dt > 0 and

∫ 1

0
`(t)n−1h((1− t)a+ tb) dt > 0.

The points a, b represent an interval A and one may think of l(t)n−1dA as the cross-
sectional area of an infinitesimal cone with base area dA. The lemma says that over this cone
truncated at a and b, the integrals of g and h are positive. Also, without loss of generality,
we can assume that a, b are in the union of the supports of g and h.

A variant of localization was used in [9], where instead of proving an inequality for every
needle, one instead averages over the set of needles produced by the localization procedure.
Indeed, each step of localization is a bisection with a hyperplane and for an inequality to
hold for the original set, it often suffices for it hold “on average" over the partition produced
rather than for both parts separately. This approach can be used to prove isoperimetry for
star-shaped sets (Theorem 17) or to recover Bobkov’s isoperimetric inequality (Lemma 20).

We state here a strong version of a conjecture related to localization, which if true implies
the KLS hyperplane conjecture.
I Conjecture 26. Let f be a logconcave density function and P be any partition of Rn such
that each part is convex. Then there exists a constant C such that∑

P
σf (P )2πf (P ) ≤ Cσ2

f

where σ2
f is the largest variance of f along any direction and σf (P )2 is the largest variance

of f restricted to the set P .
We have already seen that the conjecture holds when f is a Gaussian with C = 1 (Theorem
11).

4 Algorithms

In this section, we describe the current best algorithms for the five focus problems and several
open questions. These algorithms are related to each other, e.g., the current best algorithms
for integration and optimization (in the membership oracle model) are based on sampling,
the current best algorithms for sampling and rounding proceed in tandem etc.

In fact, all five problems have an intimate relationship with random sampling. Integration
(volume estimation), optimization and rounding are solved by reductions to random sampling;
in the case of integration, this is the only known efficient approach. For rounding, the
sampling approach gives a better bound than the current best alternatives. As for the
learning problem, its input is a random sample.

The Ellipsoid method has played a central role in the development of algorithmic convex
geometry. Following Khachiyan’s polynomial bound for linear programs [34], the general-
ization to convex optimization [21, 53, 32] has been a powerful theoretical tool. Besides
optimization, the method also gave an efficient rounding algorithm [41] achieving a sand-
wiching ratio of n1.5, and a polynomial-time algorithm for PAC-learning linear threshold
functions. It is a major open problem to PAC-learn an intersection of two halfspaces.
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Several polynomial-time algorithms have been proposed for linear programming and
convex optimization, including: Karmarkar’s algorithm [31] for linear programming, interior-
point methods for convex optimization over sets with self-concordant barriers [52], polynomial
implementation of the perceptron algorithm for linear [13] and conic program [5], simplex-
with-rescaling for linear programs [33] and the random walk method [6] that requires only
membership oracle access to the convex set. The field of convex optimization continues to
be very active, both because of its many applications but also due to the search for more
practical algorithms that work on larger inputs.

One common aspect of all the known polynomial-time algorithms is that they use use
some type of repeated rescaling of space to effectively make the convex set “more round",
leading to a complexity that depends on the accuracy to which the output is computed. In
principle, such a dependence can be avoided for linear programming and it is a major open
problem to find a strongly polynomial algorithm for solving linear programs.

We note here that although there have been many developments in continuous optimiza-
tion algorithms in the decades since the ellipsoid method, and in applications to combinatorial
problems, there has been little progress in the past two decades on general integer program-
ming, with the current best complexity being nO(n) from Kannan’s improvement [26] of
Lenstra’s algorithm [40].

4.1 Geometric random walks
Sampling is achieved by rapidly mixing geometric random walks. For an in-depth survey
of this topic, up-to-date till 2005, the reader is referred to [62]. Here we outline the main
results, including developments since then.

To sample from a density proportional to a function f : Rn → R+, we set up a Markov
chain whose state space is Rn and stationary distribution has density proportional to f .
At a point x, one step of the chain picks a neighbor y of x from some distribution Px that
depends only on x, where Px is defined in some efficiently sampleable manner, and then we
move to y with some probability or stay at x. For example, for uniformly sampling a convex
body K, the ball walk defines the neighbors of x as all points within a fixed distance δ from
x, and a random neighbor y is accepted as long as y is also in K. For sampling a general
density, one could use the same neighbor set, and modify the probability of transition to
min{1, f(y)/f(x)}. This rejection mechanism is called the Metropolis filter and the Markov
chain itself is the ball walk with a Metropolis filter.

Another Markov chain that has been successfully analyzed is called hit-and-run. At
a point x, we pick a uniform random line l passing x, then a random point on the line l
according to the density induced by the target distribution along l. In the case of uniformly
sampling a convex body, this latter distribution is simply the uniform distribution on a
chord; for a logconcave function it is the one-dimensional density proportional to the target
density f along the chosen line l. This process has the advantage of not needing a step-size
parameter δ.

For ease of analysis, we typically assume that the Markov chain is lazy, i.e., it stays
put with probability 1/2 and attempts a move with probability 1/2. Then, it follows
that the distribution of the current point converges to a unique stationary distribution
assuming the conductance of the Markov chain is nonzero. The rate of convergence is
approximately determined by the conductance as given by the following theorem due to
Lovász and Simonovits [44], extending earlier work by Diaconis and Stroock [11], Alon [2]
and Jerrum and Sinclair [58].
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I Theorem 27. [44] Let Q be the stationary distribution of a lazy Markov chain with Q0
being its starting distribution and Qt the distribution of the current point after t steps.
a. Let M = supAQ0(A)/Q(A). Then,

dtv(Qt, Q) ≤
√
M

(
1− φ2

2

)t
.

b. Let 0 < s ≤ 1
2 and Hs = sup{|Q0(A)−Q(A)| : Q(A) ≤ s}. Then,

dtv(Qt, Q) ≤ Hs + Hs

s

(
1− φ2

s

2

)t
.

c. For any ε > 0,

dtv(Qt, Q) ≤ ε+
√
χ2(Q0, Q) + 1

ε

(
1− φ2

2

)t
.

Thus the main quantity to analyze in order to bound the mixing time is the conductance.

Ball walk. The following bound holds on the conductance of the ball walk [28].

I Theorem 28. For any 0 ≤ s ≤ 1, we can choose the step-size δ for the ball walk in a
convex body K of diameter D so that

φs ≥
s

200nD.

The proof of this inequality is the heart of understanding the convergence. Examining the
definitions of the conductance φ and the isoperimetric ratio ΦQ of the stationary distribution,
one sees that they are quite similar. In fact, the main difference is the following: in defining
conductance, the weight between two points x and y depends on the probability density
of stepping from x to y in one step; for the isoperimetric ratio, the distance is a geometric
notion such as Euclidean distance. Connecting these two notions — geometric distance and
probabilistic distance — along with isoperimetry bounds leads to the conductance bound
above. This is the generic line of proof with each of these components chosen based on the
Markov chain being analyzed. For a detailed description, we refer to [62].

Using Theorem 27(b), we conclude that from an M -warm start, the variation distance of
Qt and Q is smaller than ε after

t ≥ CM
2

ε2 n2D2 ln
(

2M
ε

)
(6)

steps, for some absolute constant C.
The bound of O(n2D2) on the mixing rate is the best possible in terms of the diameter,

as shown by a cylinder. Here D2 can be replaced by E(‖X − EX‖2) using the isoperimetric
inequality given by Theorem 18. For an isotropic convex body this gives a mixing rate of
O(n3). The current best isoperimetry for convex bodies (5) gives a bound of O(n2.875). The
KLS conjecture (19) implies a mixing rate of O(n2), which matches the best possible for the
ball walk, as shown for example by an isotropic cube.
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Hit-and-run. For hit-and-run, one obtains a qualitatively better bound in the following
sense. In the case of the ball walk, the starting distribution heaving affects the mixing rate.
It is possible to start at points close to the boundary with very small local conductance,
necessitating many attempts to make a single step. Hit-and-run does not have this problem
and manages to exponentially accelerate out of any corner. This is captured in the next
theorem, using the isoperimetric inequality given by Theorem 24.

I Theorem 29. [46] The conductance of hit-and-run in a convex body of diameter D is
Ω(1/nD).

I Theorem 30. [46] Let K be a convex body that contains a unit ball and has centroid zK .
Suppose that EK(|x− zK |2) ≤ R2 and χ2(Q0, Q) ≤M . Then after

t ≥ Cn2R2 ln3 M

ε
,

steps, where C is an absolute constant, we have d(Qt, Q)tv ≤ ε.

The theorem improves on the bound for the ball walk (6) by reducing the dependence
on M and ε from polynomial (which is unavoidable for the ball walk) to logarithmic, while
maintaining the (optimal) dependence on R and n. For a body in near-isotropic position,
R = O(

√
n) and so the mixing time is O∗(n3). One also gets a polynomial bound starting

from any single interior point. If x is at distance d from the boundary, then the distribution
obtained after one step from x has χ2(Q1, Q) ≤ (n/d)n and so applying the above theorem,
the mixing time is O(n4 ln3(n/dε)).

Theorems 29 and 30 have been extended in [45] to arbitrary logconcave functions.

I Theorem 31. [45] Let f be a logconcave density function with support of diameter D and
assume that the level set of measure 1/8 contains a unit ball. Then,

φs ≥
c

nD ln(nD/s)

where c is a constant.

This implies a mixing rate that nearly matches the bound for convex bodies.

Affine-invariant walks. In both cases above, the reader will notice the dependence on
rounding parameters and the improvement achieved by assuming isotropic position. As we
will see in the next section, efficient rounding can be achieved by interlacing with sampling.
Here we mention two random walks which achieve the rounding “implicitly" by being affine
invariant. The first is a multi-point variant of hit-and-run that can be applied to sampling
any density function. It maintains m points x1, . . . , xm. For each xj , it picks a random
combination of the current points,

y =
m∑
i=1

αi(xi − x)

where the αi are drawn from N(0, 1); the chosen point xj is replaced by a random point
along this line through xj in the direction of y. This process in affine invariant and hence one
can effectively assume that the underlying distribution is isotropic. The walk was analyzed
in [6] assuming a warm start. It is open to analyze the rate of convergence from a general
starting distribution.
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For polytopes whose facets are given explicitly, Kannan and Narayanan [29] analyzed
an affine-invariant process called the Dikin walk. At each step, the Dikin walk computes an
ellipsoid based on the current point (and the full polytope) and moves to a random point in
this ellipsoid. The Dikin ellipsoid at a point x in a polytope Ax ≤ 1 with m inequalities is
defined as:

Dx = {z ∈ Rn : (x− z)T
m∑
i=1

aia
T
i

(1− aTi x)2 (x− z) ≤ 1}.

At x, a new point y is sampled from a Dikin ellipsoid and the walk moves to y with prob

min
{

1, vol(Dy)
vol(Dx)

}
.

For polytopes with few facets, this process uses fewer arithmetic operations than the current
best bounds for the ball walk or hit-and-run.

Open problems. One open problem for both hit-and-run and the ball walk is to find a
single starting point that is as good a start as a warm start. E.g., does one of these walks
started at the centroid converge at the same rate as starting from a random point?

The random walks we have considered so far for general convex bodies and density
functions rely only on membership oracles or function oracles. Can one do better using a
separation oracle? When presented with a point x such an oracle either declares the point
is in the convex set K or gives a hyperplane that separates x from K. At least for convex
bodies, such an oracle is typically realizable in the same complexity as a membership oracle.

One attractive process based on a separation oracle is the following reflection walk with
parameter δ: At a point x, we pick a random point y in the ball of radius δ. We move along
the straight line from x to y either reaching y or encountering a hyperplane H that separates
y from K; in the latter case, we reflect y about H and continue moving towards y.

It is possible that for this process, the number of oracle calls (not the number of Markov
chain steps) is only O∗(nD) rather than O∗(n2D2), and even O∗(n) for isotropic bodies. It
is a very interesting open problem to analyze the reflection walk.

Our next open problem is to understand classes of distributions that can be efficiently
sampled by random walks. A recent extension of the convex setting is to sampling star-shaped
bodies [9], and this strongly suggests that the full picture is far from clear. One necessary
property is good isoperimetry. Can one provide a sufficient condition that depends on
isoperimetry and some local property of the density to be sampled? More concretely, for
what manifolds with nonnegative curvature (for which isoperimetry is known) can an efficient
sampling process be defined?

Our final question in this section is about sampling a discrete subset of a convex body,
namely the set of lattice points that lie in the body. In [30], it is shown that this problem
can be solved if the body contains a sufficiently large ball, by a reduction to the continuous
sampling problem. The idea is that, under this condition, the volume of the body is roughly
the same as the number of lattice points and thus sampling the body and rounding to a
nearby lattice point is effective. Can this condition be improved substantially? E.g., can
one sample lattice points of a near-isotropic convex body? Or lattice points of a body that
contains at least half of a ball of radius O(

√
n)?

4.2 Annealing
Rounding, optimization and integration can all be achieved by variants of the same algorithmic
technique that one might call annealing. The method starts at an “easy" distribution F0 and



Santosh S. Vempala 59

goes through a sequence of distributions F1, . . . , Fm where the Fi are chosen so that moving
from Fi−1 to Fi is efficient and Fm is a target distribution. This approach can be traced
back to [43]. It was analyzed for linear optimization over convex sets in [25], for volume
computation and rounding convex sets in [47] and extended to integration, rounding and
maximization of logconcave functions in [45].

For example, in the case of convex optimization, the distribution Fm is chosen so that
most of its mass on points whose objective value is at least (1 − ε) times the maximum.
Sampling directly from this distribution could be difficult since one begins at an arbitrary
point.

For integration of logconcave functions, we define a series of functions, with the final
function being the one we wish to integrate and the initial one being a function that is easy
to integrate. The distribution in each phase has density proportional to the corresponding
function. We use samples from the current distribution to estimate the ratios of integrals of
consecutive functions. Multiplying all these ratios and the integral of the initial function
gives the estimate for the integral of the target function.

For rounding a logconcave density, as shown by Theorem 4, we need O(n) random samples.
Generating these directly from the target density could be expensive since sampling (using a
random walk) takes time that depends heavily on how well-rounded the density function is.
Instead, we consider again a sequence of distributions, where the first distribution in the
sequence is chosen to be easy to sample and consecutive distributions have the property
that if Fi is isotropic, then Fi+1 is near-isotropic. We then sample Fi+1 efficiently, apply an
isotropic transformation and proceed to the next phase.

For both optimization and integration, this rounding procedure is incorporated into the
main algorithm to keep the sampling efficient. All three cases are captured in the generic
description below.

Annealing

1. For i = 0, . . . ,m, define

ai = b

(
1 + 1√

n

)i
and fi(x) = f(x)ai .

2. Let X1
0 , . . . , X

k
0 be independent random points with density

proportional to f0.
3. For i = 0, . . . ,m − 1: starting with X1

i , . . . , X
k
i , generate random

points Xi+1 = {X1
i+1, . . . , X

k
i+1}; update a running estimate g based

on these samples; update the isotropy transformation using the
samples.

4. Output the final estimate of g.

For optimization, the function fm is set to be a sufficiently high power of f , the function
to be maximized while g is simply the maximum objective value so far. For integration
and rounding fm = f , the target function to be integrated or rounded. For integration, the
function g starts out as the integral of f0 and is multiplied by the ratio of

∫
fi+1/

∫
fi in

each step. For rounding, g is simply the estimate of the isotropic transformation for the
current function.

We now state the known guarantees for this algorithm [45]. The complexity improves on
the original O∗(n10) algorithm of Applegate and Kannan [3].
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I Theorem 32. [45] Let f be a well-rounded logconcave function. Given ε, δ > 0, we can
compute a number A such that with probability at least 1− δ,

(1− ε)
∫
Rn

f(x) dx ≤ A ≤ (1 + ε)
∫
Rn

f(x) dx

and the number of function calls is

O
(
n4 logc n

εδ

)
= O∗(n4)

where c is an absolute constant.

Any logconcave function can be put in near-isotropic position in time O∗(n4) steps, given
a point that maximizes f . Near-isotropic position guarantees that f is well-rounded as
remarked earlier. When the maximum of f is not known in advance or computable quickly,
the complexity is a bit higher and is the same as that of maximization.

I Theorem 33. [45] For any well-rounded logconcave function f , given ε, δ > 0 and a point
x0 with f(x0) ≥ βmax f , the annealing algorithm finds a point x in O∗(n4.5) oracle calls
such that with probability at least 1− δ, f(x) ≥ (1− ε) max f and the dependence on ε, δ and
β is bounded by a polynomial in ln(1/εδβ).

This improves significantly on the complexity of the Ellipsoid method in the memebership
oracle model (the latter being Ω(n10)). We observe here that in this general oracle model, the
upper bound on the complexity of optimization is higher than that of integration. The gap
gets considerably higher when we move to star-shaped sets. Integration remains O∗(n4/η2)
where η is the relative measure of the kernel of the star-shaped set, while linear optimization,
even approximately is NP-hard. The hardness holds for star-shaped sets with η being any
constant [9], i.e., the convex kernel takes up any constant fraction of the set. At one level,
this is not so surprising since finding a maximum could require zooming in to a small hidden
portion of the set while integration is a more global property. On the other hand, historically,
efficient integration algorithms came later than optimization algorithms even for convex
bodies and were considerably more challenging to analyze.

The known analysis of sampling-based methods for optimization rely on the current point
being nearly random from a suitable distribution, with the distribution modified appropriately
at each step. It is conceivable that a random walk type method can be substantially faster if
its goal is optimization and its analysis directly measures progress on some distance function,
rather than relying on the intermediate step of producing a random sample.

The modern era of volume algorithms began when Lovász asked the question of whether
the volume of convex body can be estimated from a random sample (unlike annealing in
which the sampling distribution is modified several times). Eldan [17] has shown that this
could require a superpolynomial number of points for general convex bodies. On the other
hand, it remains open to efficiently compute the volume from a random sample for polytopes
with a bounded number of facets.

Annealing has been used to speed up the reduction from counting to sampling for discrete
sets as well [59]. Here the traditional reduction with overhead linear in the underlying
dimension [24] is improved to one that is roughly the square root of the dimension for
estimating a wide class of partition functions. The annealing algorithm as described above
has to be extended to be nonadaptive, i.e., the exponents used change in an adaptive manner
rather than according to a schedule fixed in advance.



Santosh S. Vempala 61

4.3 PCA
The method we discuss in this section is classical, namely Principal Component Analysis
(PCA). For a given set of points or a distribution in Rn, PCA identifies a sequence of
orthonormal vectors such that for any k ≤ n, the span of the first k vectors in this sequence
is the subspace that minimizes the expected squared distance to the given point set or
distribution (among all k-dimensional subsets). The vectors can be found using the Singular
Value Decomposition (SVD), which can be viewed as a greedy algorithm that finds one vector
at a time. More precisely, given a distribution D in Rn, with ED(X) = 0, the top principal
component or singular vector is a unit vector that maximizes E((vTx)2). For 2 ≤ i ≤ n,
the i’th principal component is a unit vector that maximizes the same function among
all unit vectors that are orthogonal to the first i− 1 principal components. For a general
Gaussian, the principal components are exactly the directions along which the component
1-dimensional Gaussians are generated. Besides the regression property for subspaces, PCA
is attractive because it can be computed efficiently by simple, iterative algorithms. Replacing
the expected squared distance by a different power leads to an intractable problem. We have
already seen one application of PCA, namely to rounding via the isotropic position. Here
we take the principal components of the covariance matrix and apply a transformation to
make their corresponding singular values all equal to one (and therefore the variance in any
direction is the same). The principal components are the unit vectors along the axes of the
inertial ellipsoid corresponding to the covariance matrix of a distribution.

We next discuss the application of PCA to the problem of learning an intersection of k
halfpsaces in Rn. As remarked earlier, this is an open problem even for k = 2. We make
two assumptions. First, k is small compared to n and so algorithms that are exponential
in k but not n might be tolerable. Second, instead of learning such an intersection from
an arbitrary distribution on examples, we assume the distribution is an unknown Gaussian.
This setting was considered by Vempala [61, 64] and by Klivans et al [38]. The first
algorithm learns an intersection of k halfspaces from any logconcave input distribution using
an intersection of O(k) halfspaces and has complexity (n/ε)O(k). The second learns an
intersection of k halfspaces from any Gaussian distribution using a polynomial threshold
function of degree O(log k/ε4) and therefore has complexity nO(log k/ε4). Neither of these
algorithms is polynomial when k grows with n.

In recent work [63], PCA is used to give an algorithm whose complexity is poly(n, k, 1/ε)+
C(k, 1/ε) where C(.) is the complexity of learning an intersection of k halfspaces in Rk. Thus
one can bound this using prior results as at most

min
{
kO(log k/ε4), (k/ε)O(k)

}
.

For fixed ε, the algorithm is polynomial for k up to 2O(
√

logn). The algorithm is straight-
forward: first put the full distribution in isotropic position (using a sample), effectively
making the input distribution a standard Gaussian; then compute the smallest k principal
components of the examples that lie in the intersection of the unknown halfspaces. The main
claim in the analysis is that this latter subspace must be close to the span of the normals
to the unknown halfspaces. This is essentially due to Lemma 11, which guarantees that
the smallest k principal components are in the subspace spanned by the normals, while
orthogonal to this subspace, all variances are equal to that of the standard Gaussian. The
algorithm and its analysis can be extended to arbitrary convex sets whose normals lie in an
unknown k-dimensional subspace. The complexity remains a fixed polynomial in n times an
exponential in k.
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For general convex bodies, given positive and negative examples from an unknown
Gaussian distribution, it is shown in [38] that the complexity is 2Õ(

√
n) (ignoring the

dependence on ε, along with a nearly matching lower bound. A similar lower bound of
2Ω(
√
n) holds for learning a convex body given only random points from the body [20]. These

constructions are similar to Eldan’s [17] and use polytopes with an exponential number
of facets. Thus an interesting open problem is to learn a polytope in Rn with m facets
given either uniform random points from it or from a Gaussian. It is conceivable that the
complexity is poly(m,n, 1/ε). The general theory of VC-dimension already tells us that
O(mn) samples suffice. Such an algorithm would of course also give us an algorithm for
estimating the volume of a polytope from a set of random points and not require samples
from a sequence of distributions.

Acknowledgements. The author is grateful to Daniel Dadush, Elena Grigorescu, Ravi
Kannan, Jinwoo Shin and Ying Xiao for helpful comments.

References
1 R. Adamczak, A. Litvak, A. Pajor, and N. Tomczak-Jaegermann. Quantitative estimates

of the convergence of the empirical covariance matrix in log-concave ensembles. J. Amer.
Math. Soc., 23:535–561, 2010.

2 N. Alon. Eigenvalues and expanders. Combinatorica, 6:83–96, 1986.
3 D. Applegate and R. Kannan. Sampling and integration of near log-concave functions. In

STOC ’91: Proceedings of the twenty-third annual ACM symposium on Theory of comput-
ing, pages 156–163, New York, NY, USA, 1991. ACM.

4 K. M. Ball. Logarithmically concave functions and sections of convex sets in rn. Studia
Mathematica, 88:69–84, 1988.

5 A. Belloni, R. M. Freund, and S. Vempala. An efficient rescaled perceptron algorithm for
conic systems. Math. Oper. Res., 34(3):621–641, 2009.

6 D. Bertsimas and S. Vempala. Solving convex programs by random walks. J. ACM,
51(4):540–556, 2004.

7 S. Bobkov. On isoperimetric constants for log-concave probability distributions. Geometric
aspects of functional analysis, Lect. notes in Math., 1910:81–88, 2007.

8 J. Bourgain. Random points in isotropic convex sets. Convex geometric analysis, 34:53–58,
1996.

9 K. Chandrasekaran, D. Dadush, and S. Vempala. Thin partitions: Isoperimetric inequalities
and a sampling algorithm for star shaped bodies. In SODA, pages 1630–1645, 2010.

10 K. Chandrasekaran, A. Deshpande, and S. Vempala. Sampling s-concave functions: The
limit of convexity based isoperimetry. In APPROX-RANDOM, pages 420–433, 2009.

11 P. Diaconis and D. Stroock. Geometric bounds for eigenvalues of markov chains. Ann.
Appl. Probab., 1(1):36–61, 1991.

12 A. Dinghas. Uber eine klasse superadditiver mengenfunktionale vonbrunn-minkowski-
lusternik-schem typus. Math. Zeitschr., 68:111–125, 1957.

13 J. Dunagan and S. Vempala. A simple polynomial-time rescaling algorithm for solving
linear programs. Math. Prog., 114(1):101–114, 2008.

14 M. E. Dyer and A. M. Frieze. Computing the volume of a convex body: a case where
randomness provably helps. In Proc. of AMS Symposium on Probabilistic Combinatorics
and Its Applications, pages 123–170, 1991.

15 M. E. Dyer, A. M. Frieze, and R. Kannan. A random polynomial time algorithm for
approximating the volume of convex bodies. In STOC, pages 375–381, 1989.



Santosh S. Vempala 63

16 M. E. Dyer, A. M. Frieze, and R. Kannan. A random polynomial-time algorithm for
approximating the volume of convex bodies. J. ACM, 38(1):1–17, 1991.

17 R. Eldan. A polynomial number of random points does not determine the volume of a
convex body. http://arxiv.org/abs/0903.2634, 2009.

18 R. Eldan and B. Klartag. Approximately gaussian marginals and the hyperplane conjecture.
http://arxiv.org/abs/1001.0875, 2010.

19 B. Fleury. Concentration in a thin euclidean shell for log-concave measures. J. Funct. Anal.,
259(4):832–841, 2010.

20 N. Goyal and L. Rademacher. Learning convex bodies is hard. In COLT, 2009.
21 M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Opti-

mization. Springer, 1988.
22 B. Grunbaum. Partitions of mass-distributions and convex bodies by hyperplanes. Pacific

J. Math., 10:1257–1261, 1960.
23 M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm for

the permanent of a matrix with nonnegative entries. J. ACM, 51(4):671–697, 2004.
24 M. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of combinatorial struc-

tures from a uniform distribution. Theor. Comput. Sci., 43:169–188, 1986.
25 A. T. Kalai and S. Vempala. Simulated annealing for convex optimization. Math. Oper.

Res., 31(2):253–266, 2006.
26 R. Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper.

Res., 12(3):415–440, 1987.
27 R. Kannan, L. Lovász, and M. Simonovits. Isoperimetric problems for convex bodies and

a localization lemama. Discrete & Computational Geometry, 13:541–559, 1995.
28 R. Kannan, L. Lovász, and M. Simonovits. Random walks and an O∗(n5) volume algorithm

for convex bodies. Random Structures and Algorithms, 11:1–50, 1997.
29 R. Kannan and H. Narayanan. Random walks on polytopes and an affine interior point

method for linear programming. In STOC, pages 561–570, 2009.
30 R. Kannan and S. Vempala. Sampling lattice points. In STOC, pages 696–700, 1997.
31 N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,

4(4):373–396, 1984.
32 R. M. Karp and C. H. Papadimitriou. On linear characterization of combinatorial opti-

mization problems. SIAM J. Comp., 11:620–632, 1982.
33 J. A. Kelner and D. A. Spielman. A randomized polynomial-time simplex algorithm for

linear programming. In STOC, pages 51–60, 2006.
34 L. G. Khachiyan. Polynomial algorithms in linear programming. USSR Computational

Mathematics and Mathematical Physics, 20:53–72, 1980.
35 B. Klartag. On convex perturbations with a bounded isotropic constant. Geom. and Funct.

Anal., 16(6):1274–1290, 2006.
36 B. Klartag. A central limit theorem for convex sets. Invent. Math., 168:91–131, 2007.
37 B. Klartag. Power-law estimates for the central limit theorem for convex sets. J. Funct.

Anal., 245:284–310, 2007.
38 A. R. Klivans, Ryan O’Donnell, and R. A. Servedio. Learning geometric concepts via

gaussian surface area. In FOCS, pages 541–550, 2008.
39 L. Leindler. On a certain converse of Hölder’s inequality ii. Acta Sci. Math. Szeged, 33:217–

223, 1972.
40 H. W. Lenstra. Integer programming with a fixed number of variables. Math. of Oper. Res.,

8(4):538–548, 1983.
41 L. Lovász. An Algorithmic Theory of Numbers, Graphs and Convexity, volume 50 of CBMS-

NSF Conference Series. SIAM, 1986.
42 L. Lovász. Hit-and-run mixes fast. Math. Prog., 86:443–461, 1998.

FSTTCS 2010



64 Algorithmic Convex Geometry

43 L. Lovász and M. Simonovits. On the randomized complexity of volume and diameter. In
Proc. 33rd IEEE Annual Symp. on Found. of Comp. Sci., pages 482–491, 1992.

44 L. Lovász and M. Simonovits. Random walks in a convex body and an improved volume
algorithm. In Random Structures and Alg., volume 4, pages 359–412, 1993.

45 L. Lovász and S. Vempala. Fast algorithms for logconcave functions: Sampling, rounding,
integration and optimization. In FOCS, pages 57–68, 2006.

46 L. Lovász and S. Vempala. Hit-and-run from a corner. SIAM J. Computing, 35:985–1005,
2006.

47 L. Lovász and S. Vempala. Simulated annealing in convex bodies and an O∗(n4) volume
algorithm. J. Comput. Syst. Sci., 72(2):392–417, 2006.

48 L. Lovász and S. Vempala. The geometry of logconcave functions and sampling algorithms.
Random Structures and Algorithms, 30(3):307–358, 2007.

49 J. Luedtke, S. Ahmed, and G. L. Nemhauser. An integer programming approach for linear
programs with probabilistic constraints. Math. Program., 122(2):247–272, 2010.

50 E. Milman. On the role of convexity in isoperimetry, spectral gap and concentration. Invent.
Math., 177(1):1–43, 2009.

51 V. Milman and A. Pajor. Isotropic position and inertia ellipsoids and zonoids of the unit
ball of a normed n-dimensional space. Geometric aspects of Functional Analysis, Lect. notes
in Math., pages 64–104, 1989.

52 Yu. Nesterov and A. Nemirovski. Interior-Point Polynomial Algorithms in Convex Pro-
gramming. Studies in Applied Mathematics. SIAM, 1994.

53 M. W. Padberg and M. R. Rao. The russian method for linear programming iii: Bounded
integer programming. NYU Research Report, 1981.

54 G. Paouris. Concentration of mass on convex bodies. Geometric and Functional Analysis,
16:1021–1049, 2006.

55 A. Prekopa. Logarithmic concave measures and functions. Acta Sci. Math. Szeged, 34:335–
343, 1973.

56 A. Prekopa. On logarithmic concave measures with applications to stochastic programming.
Acta Sci. Math. Szeged, 32:301–316, 1973.

57 M. Rudelson. Random vectors in the isotropic position. Journal of Functional Analysis,
164:60–72, 1999.

58 A. Sinclair and M. Jerrum. Approximate counting, uniform generation and rapidly mixing
markov chains. Information and Computation, 82:93–133, 1989.

59 D. Stefankovic, S. Vempala, and E. Vigoda. Adaptive simulated annealing: A near-optimal
connection between sampling and counting. In FOCS, pages 183–193, Washington, DC,
USA, 2007. IEEE Computer Society.

60 P. M. Vaidya. A new algorithm for minimizing convex functions over convex sets. Math.
Prog., 73:291–341, 1996.

61 S. Vempala. A random sampling based algorithm for learning the intersection of half-spaces.
In FOCS, pages 508–513, 1997.

62 S. Vempala. Geometric random walks: A survey. MSRI Combinatorial and Computational
Geometry, 52:573–612, 2005.

63 S. Vempala. Learning convex concepts from gaussian distributions with PCA. In FOCS,
2010.

64 S. Vempala. A random sampling based algorithm for learning the intersection of half-spaces.
JACM, to appear, 2010.

65 D. B. Yudin and A. S. Nemirovski. Evaluation of the information complexity of mathemati-
cal programming problems (in russian). Ekonomika i Matematicheskie Metody, 13(2):3–45,
1976.


	Introduction
	Basic definitions

	Problems
	Optimization 
	Integration/Counting
	Learning
	Sampling
	Rounding.

	Geometric inequalities and conjectures
	Rounding
	Measure and concentration
	Isoperimetry
	Localization

	Algorithms
	Geometric random walks
	Annealing
	PCA


