
Finding Sparser Directed Spanners∗

Piotr Berman1, Sofya Raskhodnikova1, and Ge Ruan1

1 Pennsylvania State University, USA
{berman,sofya,gur112}@cse.psu.edu

Abstract
A spanner of a graph is a sparse subgraph that approximately preserves distances in the original
graph. More precisely, a subgraph H = (V,EH) is a k-spanner of a graph G = (V,E) if for
every pair of vertices u, v ∈ V , the shortest path distance distH(u, v) from u to v in H is at
most k · distG(u, v). We focus on spanners of directed graphs and a related notion of transitive-
closure spanners. The latter captures the idea that a spanner should have a small diameter
but preserve the connectivity of the original graph. We study the computational problem of
finding the sparsest k-spanner (resp., k-TC-spanner) of a given directed graph, which we refer
to as Directed k-Spanner (resp., k-TC-Spanner). We improve all known approximation
algorithms for Directed k-Spanner and k-TC-Spanner for k ≥ 3. (For k = 2, the current
ratios are tight, assuming P 6=NP.) Along the way, we prove several structural results about the
size of the sparsest spanners of directed graphs.

Keywords and phrases Approximation algorithms, directed graphs, spanners

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.424

1 Introduction

A spanner of a graph is a sparse subgraph that approximately preserves distances in the
original graph.

I Definition 1.1 (k-spanner, [3, 24]). A subgraph H = (V,EH) is a k-spanner of a graph
G = (V,E) if for all vertices u, v ∈ V , the shortest path distance distH(u, v) from u to v in
H is at most k · distG(u, v). The parameter k is called the stretch.

Graph spanners have numerous applications, ranging from efficient routing [13, 14, 26, 31]
and simulating synchronized protocols in unsynchronized networks [25] to parallel and
distributed algorithms for approximating shortest paths [11, 12, 15] and algorithms for
distance oracles [5, 32].

We focus on spanners of directed graphs and a related notion of transitive-closure spanners
studied in [7, 28, 29, 30, 19, 8, 6]. The latter captures the idea that a spanner should have
a small diameter but preserve the connectivity of the original graph. The diameter here
means the largest distance between a pair (u, v) of nodes in a directed graph such that v is
reachable from u. Recall that the transitive closure of a graph G = (V,E), denoted TC(G),
is a graph (V,ETC) where (u, v) ∈ ETC if and only if G has a directed path from u to v.

I Definition 1.2 (k-TC-spanner, [7]). A directed graph H = (V,EH) is a k-transitive-
closure-spanner (k-TC-spanner) of a directed graph G = (V,E) if
1. EH is a subset of the edges in the transitive closure of G and

∗ S.R. was supported by National Science Foundation (NSF/CCF award 0729171 and NSF/CCF CAREER
award 0845701).

© Piotr Berman, Sofya Raskhodnikova, Ge Ruan;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 424–435

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.424
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

P. Berman, S. Raskhodnikova, G. Ruan 425

2. for all vertices u, v ∈ V , if distG(u, v) <∞, then distH(u, v) ≤ k.
The edges from the transitive closure of G that are added to G to obtain a TC-spanner are
called shortcuts.

Notice that a k-TC-spanner of G is a directed k-spanner of the transitive closure of G.
Nevertheless, TC-spanners are interesting in their own right due to the multiple TC-spanner-
specific applications, such as managing keys in access control hierarchies, data structures for
computing partial products in a semigroup, property testing and property reconstruction
(see the survey in [27] and references therein).

In this paper, we study the computational problem of finding the sparsest k-TC-spanner
(resp., k-spanner) of a given directed graph, which we refer to as k-TC-Spanner (resp.,
Directed k-Spanner).

1.1 Previous Work
To put the following results in proper context, observe that if a graph G has n vertices, every
k-spanner of G has O(n2) edges.

1.1.1 Computational Results
All algorithms for Directed k-Spanner immediately yield algorithms for k-TC-Spanner
with the same approximation ratio because k-TC-Spanner on input graph G is equivalent to
Directed k-Spanner on input TC(G). Elkin and Peleg [17] gave an O(logn)-approximation
algorithm for Directed 2-Spanner. Kortsarz [22] showed that the O(logn) approximation
ratio for Directed 2-Spanner cannot be improved unless P=NP, and [7] extended this
result to 2-TC-spanner. Thus, for k = 2 the ratio for both problems has been completely
resolved.

For k = 3, the first non-trivial approximation ratio for Directed k-Spanner was proved
by Elkin and Peleg [16] and slightly improved (by a factor polylogarithmic in n) by Bhat-
tacharyya et al. [7]. In general, for k ≥ 3, [7] gives an approximation ratio O((n logn)1−1/k).
For all δ, ε ∈ (0, 1) and 3 ≤ k ≤ n1−δ, it is impossible to approximate Directed k-Spanner
within a factor of 2log1−ε n in polynomial time, assuming NP 6⊆DTIME(npolylogn) [16, 18].
(DTIME(f(n)) denotes the class of languages decidable deterministically in time f(n).)
Thus, according to Arora and Lund’s classification [20] of NP-hard problems, Directed
k-Spanner is in class III, for k ∈ [3, n1−δ]. [7] extended this result to k-TC-Spanner for
constant k. [18] also showed that proving that Directed k-Spanner is in class IV, that is,
inapproximable within nδ for some δ ∈ (0, 1), would resolve a long standing open question
in complexity theory: namely, cause classes III and IV to collapse into a single class. Since
k-TC-Spanner is a special case of Directed k-Spanner, this statement also applies to
the former.

For the special case of k-TC-Spanner, [7] presented an O
(

n logn
k2+k logn

)
-approximation

algorithm. Observe that for large k, this is better than the inapproximability of Directed
k-Spanner, demonstrating that k-TC-Spanner is a strictly easier problem for this range of
parameters.

1.1.2 Structural Results
Unlike in the undirected setting, where for every k ≥ 1, all graphs on n vertices have (2k−1)-
spanners with O(n1+1/k) edges [2, 23, 32], sparsest TC-spanners (and hence, sparsest directed
spanners) can have Ω(n2) edges. An example of a graph with a sparsest 2-TC-spanner of

FSTTCS 2010

426 Finding Sparser Directed Spanners

Problem Stretch k Hardness Known Ratio Our Ratio

Directed span-
ner and
TC-spanner

2 Ω(logn) [22, 7] O(logn) [17] –

3 Ω(2log1−ε n) O((n logn)2/3)
O(
√
n logn)

[16, 18, 7] [16, 7]

Directed
Spanner

> 3 as above, for O((n logn)1−1/k)
O(k · n1−1/dk/2e logn)

k ≤ n1−δ [16, 18] [7]

TC-spanner
> 3 as above, for as above O(n1−1/dk/2e logn)

constant k [7]

Ω
(logn

loglogn

) (1 + δ), for
O
(

n logn
k2+k logn

)
[7] O

(
n
k2

)
k ≤ n1−δ [7]

Table 1 Summary of Results on Approximability of k-TC-Spanner and Directed k-Spanner

size Ω(n2) is the complete bipartite graph Kn
2 ,
n
2
with n/2 vertices in each part and all edges

directed from the first part to the second. Therefore, to the best of our knowledge, there are
no combinatorial results about the sizes of sparsest spanners for general directed graphs.

There are many combinatorial results on the sizes of the sparsest k-TC-spanners but, for
the reason mentioned above, almost all of them apply exclusively to special families of graphs:
directed lines and trees [10, 30], planar graphs [28], H-minor-free graphs [7], multi-dimensional
grids [6] and low-dimensional posets [9]. There are only two results that can be viewed as
structural results for general graphs. The first one is the TC-spanner-specific algorithm from
[7], which is obtained by showing that every graph can be turned into a k-TC-spanner by
adding O

(
n2 logn
k2+k logn

)
shortcut edges. The second one is a construction of Hesse [19] giving a

family of graphs with large TC-spanners and disproving Thorup’s conjecture [28] that all
directed graphs G on n nodes have TC-spanners with stretch polylogarithmic in n and size
at most 2|G|. (We use |G| to denoted the number of edges in G.) For all small ε > 0, Hesse
constructed a family of graphs with n1+ε edges for which all nε-TC-spanners require Ω(n2−ε)
edges.

1.2 Our Results and Techniques

1.2.1 Computational Results

Table 1 summarizes the best known results on approximability of k-TC-Spanner and
Directed k-Spanner, alongside with our results on these problems. We improve all known
approximation algorithms for Directed k-Spanner and k-TC-Spanner for k ≥ 3. (As
mentioned before, for k = 2, the current ratios are tight, assuming P 6=NP.)

First, we obtain O(k · n1−1/dk/2e logn)-approximation for Directed k-Spanner. In
particular, for both Directed k-Spanner and k-TC-Spanner, the best previously known
ratios were O((n logn)2/3) for k = 3 and O((n logn)3/4) for k = 4. Our algorithm improves
both of these ratios to O(

√
n logn). Second, we give a slightly better O(n1−1/dk/2e logn)-

approximation for k-TC-Spanner. Finally, we also present a O(n/k2)-approximation algo-
rithm for k-TC-Spanner, which outperforms our first algorithm for k = Ω(logn/ loglogn).

P. Berman, S. Raskhodnikova, G. Ruan 427

1.2.2 Our Techniques and Structural Results
The approach we take is very different from previous work. The best previously known
algorithm for small k > 2 from [7] (that works for k-TC-Spanner and Directed k-Spanner)
is based on solving a linear program and combining the solution with paths obtained by
random sampling. Our approximation algorithm for k-TC-Spanner for small k is based
on the following idea: since known approximation algorithms do much better for stretch
k = 2, we use a 2-TC-spanner produced by the approximation algorithm for 2-TC-spanner
to approximate the sparsest k-TC-spanner. To show that it provides a good approximation,
we prove that a k-TC-spanner of G cannot be much sparser than a 2-TC-spanner of G. More
precisely, we show how to transform a k-TC-spanner into a 2-TC-spanner while increasing
the number of edges by a factor of O(n1−1/dk/2e). These results are presented in Section 2.

In Section 3, we present our algorithm for Directed k-Spanner. First, we note that the
idea used to approximate k-TC-Spanner cannot be applied directly: as shown in Lemma 3.2,
there are directed graphs where the ratio between the sizes of the sparsest (k − 1)-spanner
and k-spanner is Ω(n). Instead, we build on the ideas of [21, 17] which use star graphs to
give an approximation algorithm for Directed 2-spanner. We generalize the notion of a
star to k-stars. Recall that stars contain a central node s and nodes of distance 1 from s.
Intuitively, k-stars also have a central node s and nodes of distance at most k from s. We
show that a k-spanner of a directed graph G can be approximated well by a collection of
k-stars such that each edge (u, v) of G is covered by some k-star in the collection—namely,
that k-star contains a path of length at most k from u to v. Then we use a greedy algorithm
to find such a collection of k-stars with nearly minimum cost, where the cost is the total
number of edges in all k-stars in the collection.

Our algorithm for Directed k-Spanner also works for stretch k = 2. Even though
an algorithm with the same (optimal) approximation ratio has already been presented by
Elkin and Peleg [17], our algorithm gives a unified treatment for all small k, including 2, and
is slightly simpler for the case of k = 2 than the algorithm in [17]. (Elkin and Peleg use
a slightly different greedy method to find stars. They categorize edges already covered by
selected stars into different types and calculate two types of density, ϕ-density and ρ-density,
to evaluate the benefit of adding a new star to the partial 2-spanner.)

In Section 4, we show that our transformation from a k-TC-spannner to a 2-TC-spanner
cannot be improved significantly. We show that this transformation is tight for k = 3 and
k = 4 by giving a simple example. For k ≥ 5, we prove that our transformation is nearly tight
by extending Hesse’s construction [19], which was originally devised to disprove Thorup’s
conjecture, as described above. For every sufficiently small positive ε, we exhibit graphs with
2k-TC-spanners of size n1+1/k and no 2-TC-spanners of size less than n2−ε.

Our approximation algorithm for k-TC-Spanner for large k, presented in Section 5, is
also based on a structural result. Namely, we show how to (efficiently) obtain a k-TC-spanner
of any graph by adding O(n2/k2) shortcut edges. This is based on a simple greedy procedure.
The algorithm for large stretch in [7] was based on random sampling.

1.3 Preliminaries
For a directed graph G, we denote the number of edges in G by |G| and the size of the
sparsest k-TC-spanner of G by Sk(G). (The size refers to the number of edges.) We say two
nodes in G are comparable if one of these nodes is reachable from the other.

A digraph G is weakly connected if replacing each directed edge in G with an undirected
edge results in a connected undirected graph. A digraph is strongly connected if each

FSTTCS 2010

428 Finding Sparser Directed Spanners

vertex in the graph is reachable from every other vertex via a directed path. The graph of
strongly connected components of a digraph G is the digraph obtained by contracting each
strongly connected component into one vertex, while maintaining all the edges between these
components.

A transitive reduction of G is a digraph G′ with the fewest edges for which TC(G′) =
TC(G). As shown by Aho et al. [1], a transitive reduction of a given graph can be computed
efficiently via a greedy algorithm. The algorithm contracts each strongly connected component
C to a vertex v(C) to get a supergraph H, obtains a supergraph H ′ by greedily removing
edges in H that do not change its transitive closure, and finally uncontracts v(C) to an
arbitrary directed cycle on vertices in C, choosing a representative vertex of C to be incident
to the edges incident to v(C) in H ′. Directed acyclic graphs have a unique transitive reduction.
We say G is transitively reduced if G is equal to its own transitive reduction.

2 Approximation Algorithm for k-TC-Spanner for small k

This section presents an approximation algorithm for k-TC-Spanner that provides the best
known ratio for all stretches k = O(logn/ loglogn).

I Theorem 2.1. k-TC-Spanner can be approximated with ratio O(n1−1/dk/2e logn) in
polynomial time.

The proof of this theorem appears at the end of this section. It relies on the following lemma
and corollary that relate Sk(G) and S2(G).

I Lemma 2.2. Let G be a directed graph of diameter at most k. Then one can efficiently con-
struct a 2-TC-spanner of G while increasing the number of edges by a factor of O(n1−1/dk/2e).

Proof. Let G be a directed graph on n nodes of diameter at most k. Set d = n1/dk/2e. We
call a vertex in G high-degree if its degree is at least d, and low-degree otherwise. (The degree
of a node counts both incoming and outgoing edges.)

Transformation from k-TC-spanners to 2-TC-spanners
Input: directed graph G = (V,E) of diameter k
1. Form graph H from G by adding shortcut edges as follows:

a. Connect every high-degree vertex u to all vertices comparable to u.
b. Consider the induced subgraph G′ of G containing only low-degree vertices.

Connect every vertex u in G′ to all vertices that are reachable from u by a
path of length at most dk/2e in G′.

2. Output H.

To see that the resulting graph H is a 2-TC-spanner, consider a pair of vertices (u, v)
with v reachable from u in G. Let P be a shortest path from u to v in G. If P contains a
high-degree vertex w then in step 1(a) of the transformation, u was connected to v by a path
of length at most 2 via w. Otherwise, all nodes in P are low-degree. Since G has diameter at
most k, path P contains a node w such that distG(u,w) ≤ dk/2e and distG(w, v) ≤ dk/2e.
Then in step 1(b) of the transformation, u was connected to v by a path of length at most 2
via w. Thus, every comparable pair of nodes in H is connected by a path of length 2 or 1.

Since the number of edges in a graph is 1/2 of the sum of its vertex degrees, to prove the
stated bound on |H|/|G|, it is enough to show that the degree of each vertex increases by a
factor of O(n1−1/dk/2e) when H is constructed from G. This holds for each high-degree node

P. Berman, S. Raskhodnikova, G. Ruan 429

because its degree increases from at least d = n1/dk/2e to at most 2(n− 1) (counting both
incoming and outgoing edges). Each low-degree vertex v of degree deg(v) connects to at most
deg(v) ·d vertices at distance 2, deg(v) ·d2 vertices at distance 3, . . ., deg(v) ·ddk/2e−1 vertices
at distance dk/2e. So, the degree of v in H is at most deg(v) · (ddk/2e − 1)/(d − 1), thus
increasing by a factor of O(ddk/2e−1) = O(n(dk/2e−1)/dk/2e) = O(n1−1/dk/2e), as desired. J

We obtain the following corollary by letting G in Lemma 2.2 be the sparsest k-TC-spanner
of a given graph.

I Corollary 2.3. S2(G)
Sk(G) = O(n1−1/dk/2e) for any digraph G. In particular, S2(G)

S3(G) = O(
√
n).

Proof of Theorem 2.1. Elkin and Peleg [17] gave an O(logn)-approximation algorithm
for Directed 2-spanner. Running this algorithm on the transitive closure of an input
graph G will yield an O(logn)-approximation to the sparsest 2-TC-spanner of G, which, by
Corollary 2.3, is a O(n1−1/dk/2e logn)-approximation to the sparsest k-TC-spanner of G. J

3 Approximation Algorithm for Directed k-Spanner

In this section, we present our approximation algorithm for Directed k-Spanner.

I Theorem 3.1. Directed k-Spanner can be approximated with ratio O(k ·n1−1/dk/2e logn)
in polynomial time.

The following lemma demonstrates that the idea of approximating a k-spanner with a
2-spanner does not work for Directed k-Spanner.

I Lemma 3.2. There is an infinite family of directed graphs G on n nodes for which every
2-spanner has Ω(n2) edges while there is a k-spanner with O(n) edges.

Proof. Let m be a parameter such that n = 2m+ 2. Our graph G has four layers of nodes,
L1, L2, L3 and L4, of sizes m, 1, 1, and m, respectively. All edges are directed from smaller to
larger layers. The following pairs of layers form complete bipartite graphs: (L1, L2), (L2, L3),
(L3, L4) and (L1, L4). This completes the description of G.

mm

G is the sparsest 2-spanner itself. It has m2 + 2m + 1 = Ω(n2) edges. To form a
3-spanner of G, we can delete all edges between layers L1 and L4. The resulting 3-spanner
has n− 1 = O(n) edges. By definition, a 3-spanner is also a k-spanner for all k ≥ 3. J

Thus, approximating the sparsest k-spanner with a sparse 2-spanner will give an Ω(n)
ratio in the worst case. Instead, we build on the ideas of [21, 17] which use star graphs to
give an approximation algorithm for Directed 2-spanner.
I Definition 3.3 (`-Star, full `-Star). For a digraph G, a 1-star is a complete 3-layered
subgraph of G where all edges are directed from smaller to larger layers and the 2nd layer
consists of a single node v. (Layers 1 and 3 can be empty.) More generally, an `-star Sv is
a (2` + 1)-layered subgraph of G where all edges start at some layer and end at the next

FSTTCS 2010

430 Finding Sparser Directed Spanners

layer, and the middle layer consists of a single node v, called the center. Moreover, nodes in
layers 1 to `+ 1 and edges between them form a shortest path tree (with respect to G) with
root v (and edges directed towards the root). Similarly, nodes in layers `+ 1 to 2`+ 1 and
edges between them form a shortest path tree with root v (and edges directed away from the
root). Some layers, can be empty, as long as the shortest path trees are valid. An `-star that
includes all vertices in G at distance at most ` from (to) the center is called full.

A full `-star with center v can be found by performing two breadth-first searches on G

starting from v (one on outgoing edges, another on incoming edges) and terminating both
when all nodes at distance at most ` from (to) v have been found. Note that `′-star is also
an `-star if `′ ≤ `. When ` is not specified or clear from the context, we omit it and call the
corresponding graph a star.

In the context of finding directed k-spanners, we say that a star S covers an edge (u, v)
of G if S contains a path of length at most k from u to v. A covering set C of stars is a set
of stars such that each edge in G is covered by at least one of the stars in C. The cost of a
set C of stars, denoted cost(C), is the sum of the sizes of stars in the set. Observe that by
taking all edges in the stars of a covering set C of stars, we obtain a directed k-spanner of
size at most cost(C).

Given a directed 2-spanner H of G, it is easy to construct a set C of 1-stars that cover
every edge in G with cost(C) ≤ 2|H|. E.g., we can include the full 1-star Sv with respect
to H for each node in H. Since H is a 2-spanner of G, each edge (u, v) in G has a path of
length at most 2 in H. This path is included in at least one of the stars in our set. Therefore,
each edge is covered by one of the stars in the set. Since each edge is included in at most 2
stars, cost(C) ≤ 2|H|.

The main idea of our algorithm for Directed k-Spanner is to cover all edges of G with
stars. The next lemma shows that a covering set of k-stars with relatively low cost always
exists.

I Lemma 3.4. Let G be a directed graph on n nodes, and H be a k-spanner of G. Then
there is a set C of k-stars that cover all edges in G with cost(C) = O(n1−1/dk/2e|H|).

Proof. We build on ideas in the proof of Lemma 2.2. As before, set d = n1/dk/2e. We call a
vertex high-degree if its degree in H is at least d, and low-degree otherwise.

Transformation from a k-spanner to a covering set of stars
Input: a k-spanner H of G
1. Form a collection C of stars as follows:

a. For every high-degree vertex u, add a full (with respect to H) k-star with
center u.

b. Consider the induced subgraph H ′ of H containing only low-degree vertices.
For every vertex u in H ′, add a dk/2e-star with center u containing all vertices
v with distH′(u, v) or distH′(v, u) at most dk/2e.

2. Output C.

First, we show that every edge (u, v) in G is covered by a star in C. Let P be a shortest
path (of length at most k) from u to v in H. If P contains a high-degree vertex w then in
step 1(a) of the transformation, a full k-star Sw with center w was added to C. By definition,
Sw must contain both u and v as well as shortest paths from u to w and from w to v. Since
w is on a shortest path u to v, it also contains a shortest path from u to v, and thus covers
(u, v).

P. Berman, S. Raskhodnikova, G. Ruan 431

Otherwise, all nodes on path P are low-degree. Let w be the "middle" node on path P :
that is, a node such that distP (u,w) ≤ dk/2e and distP (w, v) ≤ dk/2e. Then in step 1(b) of
the transformation, set C got a dk/2e-star Sw with center w containing all nodes on path P .
Since w is on a shortest path from u to v, this dk/2e-star contains a shortest path from u to
v via w. Thus, every edge in G is covered by a star in C.

Now we analyze cost(C). Let deg(u) denote the degree of node u in H. We add one star
Su to H for each node u. If u is a high-degree node, Su has at most 2n = O(n1−1/dk/2e)·deg(u)
edges. Each low-degree vertex u connects to at most deg(u) vertices at distance 1, deg(u) · d
vertices at distance 2, deg(u) · d2 vertices at distance 3, . . ., deg(u) · ddk/2e−1 vertices at
distance dk/2e. So, the number of edges in Su is O(ddk/2e−1) ·deg(v) = O(n1−1/dk/2e) ·deg(u).
Therefore, cost(C) =

∑
v in H

|Sv| = O(n1−1/dk/2e) ·
∑
v in H

deg(u) = O(n1−1/dk/2e|H|). J

Next we prove the main theorem of this section.

Proof of Theorem 3.1. Our algorithm for Directed k-Spanner works by greedily con-
structing a covering set C of stars for the input graph G. As we mentioned, such a set
easily yields a directed k-spanner of G of size cost(C). Observe that the problem of finding
a covering set of stars of minimum cost is a special case of Weighted Set Cover, where
edges of G correspond to elements to be covered, and each star with |S| edges corresponds to
a covering set of weight (or cost) |S|. There are too many possible stars to write down the
instance of Weighted Set Cover. However, recall that a simple greedy algorithm that
chooses the set with the smallest relative cost (i.e., the ratio of the cost of the set over the
number of new elements it covers) gives approximation ratio O(logn) to Weighted Set
Cover [33]. Therefore, if we had a subroutine that finds a star with the smallest relative cost
in polynomial time, we would have a O(logn)-approximation to our star covering problem.
Instead, we will give a subroutine that finds a k-approximation to a star with the smallest
relative cost, that is, it finds a star with relative cost at most k times the optimum. Then, the
standard analysis of the greedy algorithm for Weighted Set Cover yields approximation
ratio O(k logn).

It is not hard to see that a 1-star Sv with center v with smallest relative cost can be found
in polynomial time using flow techniques (e.g., Project Selection). By finding such a star
Sv for each v in G and selecting the best star, we can find the star with smallest relative cost.
Incidentally, together with Lemma 3.4 and the observations above about Weighted Set
Cover, this procedure gives a O(logn) approximation algorithm for Directed 2-Spanner.

Now let opt be the smallest relative cost of a k-star with center v. (Recall that an `-star
is also a k-star for ` ≤ k.) We will show how to find an k-star Sv with center v and relative
cost at most k · opt. Let G′ be a graph obtained from G by adding edges from v (resp., to v)
to all nodes reachable from v (resp., from all nodes from which v is reachable) at distance at
most k. We run the subroutine above for finding a 1-star with center v of smallest relative
cost on G′. It is guaranteed to output a 1-star of relative cost at most opt. This 1-star
corresponds to a k-star in G of relative cost at most k · opt, since the cost of adding each
node is at most k instead of 1. As before, we run this subroutine for all nodes v and select
the best star to obtain a k-approximation to a k-star with smallest relative cost.

We use the above subroutine to select k-stars for our collection C until all edges of G
are covered. Let OPT be the smallest cost of a covering set of k-stars. As we explained,
our algorithm will produce a covering set C of stars of cost O(OPT · k logn). Let H be a
sparsest k-spanner of G. By Lemma 3.4, there is a covering set C∗ of k-stars with cost(C∗) =
O(n1−1/dk/2e|H|). Therefore, cost(C) = O(cost(C∗) · k logn) = O(k · n1−1/dk/2e(logn)|H|),
as required. J

FSTTCS 2010

432 Finding Sparser Directed Spanners

4 Tightness of k-TC-spanner to 2-TC-spanner Transformation

In this section, we show that our transformation from a k-TC-spanner to a 2-TC-spanner
(specifically, Corollary 2.3) is nearly tight. The main result of this section, Theorem 4.1,
is proved by a construction that adapts ideas of Hesse [19]. At the end of the section, we
present a simple direct construction that gives a stronger result for k = 3 and k = 4: in
Lemma 4.5, we demonstrate that the transformation from a 3-TC-spanner to a 2-TC-spanner
is asymptotically tight. Since our transformation to 2-TC-spanners incurs the same increase
in the number of edges whether we start from 3- or 4-TC-spanners, and since S4(G) ≤ S3(G),
Lemma 4.5 also implies the tightness of the transformation from 4-TC-spanners.

I Theorem 4.1. For all k > 2 and ε > 0, there exists an infinite family of graphs G on n
nodes such that S2(G)/S2k(G) ≥ n1−1/k−ε.

Proof. The crux of our construction is the same as Hesse’s [19]. The main difference is that
he was trying to get an extreme example with a large number of layers, while our goal is
to keep the number of layers small. Consequently, Hesse did not analyze our variant of his
construction.

I Definition 4.2 (Sets Cr,d and Fr,d, [19]). blank
Cr,d is the set of vectors in Zd of Euclidean length at most r.
Fr,d is the set of extremal points, “corners”, of the convex hull of Cr,d.

Now we describe our graph, G = G(d, r, k). It has some similarity to the Butterfly
Network: in particular, its nodes are of the form (`, x1, . . . , xk) and its edges are of the form
((` − 1, x1, . . . , xk), (`, x′1, . . . , x′k)) where ` is the node level, an integer in the range from
0 to 2k. The remaining k coordinates are called data coordinates. Like in the Butterfly
network, only one data coordinate changes when an edge is traversed, as indicated by the
`-coordinate: namely, xi = x′i if i 6= ` and i 6= k + `. However, the range of data coordinates
and the allowed changes are different. In particular, before the first allowed change, each
data coordinate has range Cr,d, after the first change the allowed range is C2r,d and after the
second change, the range is C3r,d. The allowed change is x′i = xi + zi where zi ∈ Fr,d.

Observe that G is its own 2k-TC-spanner since every directed path has at most 2k edges.
That is, S2k(G) = |G|. One can also see that the out-degree of every node, except for nodes
in layer 2k, is |Fr,d|.

In the next lemma, we analyze paths between the first and the last layer of G.

I Lemma 4.3. For all x = (x1, . . . , xk) ∈ (Cr,d)k and all z = (z1, . . . , zk) ∈ (Fr,d)k, there
exists exactly one path from (0, x) to (2k, x+ 2z).

Proof. To analyze possible paths from (0, x) to (2k, x+ 2z), we will find all possible values
of each data coordinate in the node descriptions on that path. On a path from (0, x) to
(2k, x + 2z), we change the i-th data coordinate twice: when we go from layer i − 1 to i
and when we go from layer k + i− 1 to layer k + i. Thus, the only possible values of that
coordinate are the initial value xi, the final value xi + 2zi and the intermediate value, say,
xi + u. Let v = 2zi − u. Then u, v ∈ Fr,d and (u + v)/2 = zi. Because zi is a corner (an
extremal point) of the convex hull of Cr,d, this implies u = v = zi. Therefore, there is only
one possible value of each data coordinate for each node on such a path. J

We will call unique paths from (0, x) to (2k, x+ 2z), described in the lemma, straight paths.
Consider a 2-TC-spanner H. We say that an edge (u, v) ∈ H is long if the difference

between the level of v and the level of u is at least k. For every straight path P , say, starting

P. Berman, S. Raskhodnikova, G. Ruan 433

at some (0, x) and ending at some (2k, x+ 2z), there exists some (i, y) such that H contains
edges ((0, x), (i, y)) and ((i, y), (2k, x+ 2z)). We say that the path P is covered by these two
edges. One of the two edges must be long, and thus it uniquely determines x and z. That is,
a long edge can be used to cover at most one straight path. Therefore, H has to contain at
least as many long edges as there are straight paths.

Now we give bounds on the numbers n, |G| and s, where n is the number of nodes and s
is the number of straight paths in G. Recall that S2k(G) = |G| and that s is a lower bound
on S2(G). We use the following tight bound on the size of Fr,d by Bárány and Larman [4].

I Theorem 4.4. For every d ≥ 2 there exist constants c1(d), c2(d) such that

c1(d)rd
d−1
d+1 ≤ |Fr,d| ≤ c2(d)rd

d−1
d+1 .

Let c = |Cr,d|, a = |C3r,d|/|Cr,d| and f = |Fr,d|.
Note that each layer of G has more nodes than the previous. In particular, for sufficiently

large r, the size of layer 2k is at least (3/2)d times larger then the size of layer 2k− 1 because
the range of the last data coordinate is expanded from C2r,d to C3r,d, while the range of the
remaining data coordinates remains the same. Therefore, n equals the size of layer 2k times
a small constant factor, i.e., n ≈ (ac)k. Since the out-degree of each node in G is f or 0,
|G| < nf < nac ≈ n1+1/k.

The number of straight paths is s = (cf)k because a straight path can be specified using
any node in layer 0 (ck choices) and any sequence of the first k edges of the path (f choices
for each edge). We will show how to choose r and d, so that s ≥ n2−ε or, equivalently,
(cf)k ≥ (ac)k(2−ε). It is equivalent to cf ≥ (ac)2−ε, and finally to f ≥ a2−εc1−ε. Since a
does not increase with r while c does, we can guarantee a2 < cε/2 by choosing sufficiently
large r. By choosing d > 4/ε, we get f > c1−ε/2 (by Theorem 4.4). Thus, for sufficiently
large r and d, s ≥ n2−ε.

To summarize, S2(G)/S2k(G) ≥ s/|G| ≥ n2−ε/n1+1/k = n1−1/k−ε, as stated. J

For stretch k = 3 (and hence for stretch k = 4), a simple construction yields a stronger
(tight) lower bound.

I Lemma 4.5. There exists an infinite family of graphs G on n nodes with S2(G)/S3(G) =
Ω(
√
n).

Proof. For each m, we construct a 4-layered graph G with m2 nodes in layers 1 and 4 and
m nodes in layers 2 and 3, where the edges are directed from smaller to larger layers and are
formed as follows. There is a complete bipartite graph between layers 2 and 3. Each node in
layer 2 is connected to m nodes in layer 1, and each node in layer 1 has outdegree 1. The
edges between layers 3 and 4 are constructed in the same manner. The resulting graph has
3m2 edges and is a 3-TC-spanner. A 2-TC-spanner of this graph must connect m4 pairs of
vertices in layers 1 and 4 via paths of length at most 2. Each shortcut edge can be used by
at most m such pairs. Therefore, at least m3 shortcuts are required. Setting n = 2m2 + 2m,
we obtain a graph with a 3-TC-spanner of size O(n), for which every 2-TC-spanner requires
Ω(n3/2) edges. J

mm

m m m2m2

FSTTCS 2010

434 Finding Sparser Directed Spanners

5 Approximation Algorithm for k-TC-Spanner for large k

In this section, we present an algorithm for k-TC-Spanner that provides a better ratio than
the algorithm from Theorem 2.1 for stretch k = Ω(logn/ loglogn).

I Theorem 5.1. k-TC-Spanner can be approximated with ratio O(n/k2) in polynomial
time.

O(n/k2)-Approximation Algorithm for k-TC-Spanner
Input: directed graph G = (V,E), desired stretch k
1. Let H be a transitive reduction of G.
2. While H contains vertices u, v such that distH(u, v) > k

a. Let (v1 = u, v2, ..., vt = v) be the shortest path from u to v in H.
b. Add a shortcut edge (vbk/4c, vt−bk/4c) to H.

3. Output H.

Proof. To prove that the above algorithm has the desired approximation ratio, it is enough
to analyze it on each weakly connected component. Let OPT be the size of the sparsest
k-TC-spanner on a weakly connected component with n nodes. Then OPT ≥ TR(G) ≥ n−1
where TR(G) denotes the size of the transitive reduction of G. We will show that O(n2/k2)
shortcut edges are added to H, giving the desired ratio.

Observe that each shortcut edge decreases the distance from at least k/2 to less than
k/2 for Ω(k2) pairs of vertices (vi, vj) on the shortest path from u to v: namely, all pairs
for which i ≤ bk/4c and j ≥ t − bk/4c. Since initially there are O(n2) pairs of vertices at
distance larger than k/2, only O(n2/k2) shortcut with this property can be added. This
completes the proof of the lemma. J

References
1 Alfred V. Aho, M. R. Garey, and Jeffrey D. Ullman. The transitive reduction of a directed

graph. SIAM J. Comput., 1(2):131–137, 1972.
2 Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On sparse

spanners of weighted graphs. Discrete & Computational Geometry, 9(1):81–100, 1993.
3 Baruch Awerbuch. Communication-time trade-offs in network synchronization. In PODC,

pages 272–276, 1985.
4 Imre Bárány and David Larman. The convex hull of the integer points in a large ball.

Mathematische Annalen, 312:167–181, 1998.
5 Surender Baswana and Sandeep Sen. Approximate distance oracles for unweighted graphs

in expected Õ(n2) time. ACM Transactions on Algorithms, 2(4):557–577, 2006.
6 Arnab Bhattacharyya, Elena Grigorescu, Madhav Jha, Kyomin Jung, Sofya Raskhodnikova,

and David Woodruff. Lower bounds for local monotonicity reconstruction from transitive-
closure spanners. In RANDOM, pages 448–461, 2010.

7 Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David
Woodruff. Transitive-closure spanners. In SODA, pages 932–941, 2009.

8 Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David
Woodruff. Transitive-closure spanners of the hypercube and the hypergrid. ECCC Report
TR09-046, 2009.

9 Arnab Bhattacharyya, Elena Grigorescu, Sofya Raskhodnikova, and David Woodruff.
Steiner transitive-closure spanners of d-dimensional posets. Manuscript, 2010.

10 Hanls L. Bodlaender, Gerard Tel, and Nicola Santoro. Tradeoffs in non-reversing diameter.
Nordic Journal of Computing, 1(1):111 – 134, 1994.

P. Berman, S. Raskhodnikova, G. Ruan 435

11 Edith Cohen. Fast algorithms for constructing t-spanners and paths with stretch t. SIAM
J. Comput., 28(1):210–236, 1998.

12 Edith Cohen. Polylog-time and near-linear work approximation scheme for undirected
shortest paths. JACM, 47(1):132–166, 2000.

13 Lenore Cowen. Compact routing with minimum stretch. J. Algorithms, 38(1):170–183,
2001.

14 Lenore Cowen and Christopher G. Wagner. Compact roundtrip routing in directed networks.
J. Algorithms, 50(1):79–95, 2004.

15 M. Elkin. Computing almost shortest paths. In PODC, pages 53–62, 2001.
16 Michael Elkin and David Peleg. Strong inapproximability of the basic k-spanner problem.

In ICALP, pages 636–647, 2000.
17 Michael Elkin and David Peleg. The client-server 2-spanner problem with applications to

network design. In SIROCCO, pages 117–132, 2001.
18 Michael Elkin and David Peleg. The hardness of approximating spanner problems. Theory

Comput. Syst., 41(4):691–729, 2007.
19 William Hesse. Directed graphs requiring large numbers of shortcuts. In SODA, pages

665–669, 2003.
20 D. Hochbaum, editor. Approximation Algorithms for NP-hard Problems. PWS Publishing

Company, Boston, 1997.
21 G. Kortsarz and D. Peleg. Generating sparse 2-spanners. J. Algorithms, 17(2):222–236,

1994.
22 Guy Kortsarz. On the hardness of approximating spanners. Algorithmica, 30(3):432–450,

2001.
23 David Peleg. Distributed computing: a locality-sensitive approach. Society for Industrial

and Applied Mathematics, Philadelphia, PA, USA, 2000.
24 David Peleg and Alejandro A. Schäffer. Graph spanners. Journal of Graph Theory, 13(1):99–

116, 1989.
25 David Peleg and Jeffrey D. Ullman. An optimal synchronizer for the hypercube. SIAM J.

Comput., 18(4):740–747, 1989.
26 David Peleg and Eli Upfal. A trade-off between space and efficiency for routing tables.

JACM, 36(3):510–530, 1989.
27 Sofya Raskhodnikova. Transitive-closure spanners: a survey. In Oded Goldreich, editor,

Property Testing, volume LNCS 6390, pages 167–196. Springer, Heidelberg, 2010.
28 Mikkel Thorup. On shortcutting digraphs. In Graph-Theoretic Concepts in Computer

Science, volume 657, pages 205–211, 1993.
29 Mikkel Thorup. Shortcutting planar digraphs. Combinatorics, Probability & Computing,

4:287–315, 1995.
30 Mikkel Thorup. Parallel shortcutting of rooted trees. J. Algorithms, 23(1):139–159, 1997.
31 Mikkel Thorup and Uri Zwick. Compact routing schemes. In ACM Symposium on Parallel

Algorithms and Architectures, pages 1–10, 2001.
32 Mikkel Thorup and Uri Zwick. Approximate distance oracles. JACM, 52(1):1–24, 2005.
33 Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag, New York, NY, USA, 2007.

FSTTCS 2010

	Introduction
	Previous Work
	Computational Results
	Structural Results

	Our Results and Techniques
	Computational Results
	Our Techniques and Structural Results

	Preliminaries

	Approximation Algorithm for k-TC-Spanner for small k
	Approximation Algorithm for Directed k-Spanner
	Tightness of k-TC-spanner to 2-TC-spanner Transformation
	Approximation Algorithm for k-TC-Spanner for large k

