
Minimum s − t cut in undirected planar graphs
when the source and the sink are close∗

Haim Kaplan1 and Yahav Nussbaum1

1 The Blavatnik School of Computer Science,
Tel Aviv University, 69978 Tel Aviv, Israel
{haimk,yahav.nussbaum}@cs.tau.ac.il

Abstract
Consider the minimum s− t cut problem in an embedded undirected planar graph. Let p be the
minimum number of faces that a curve from s to t passes through. If p = 1, that is, the vertices
s and t are on the boundary of the same face, then the minimum cut can be found in O(n) time.
For general planar graphs this cut can be found in O(n log n) time. We unify these results and
give an O(n log p) time algorithm. We use cut-cycles to obtain the value of the minimum cut,
and study the structure of these cycles to get an efficient algorithm.

1998 ACM Subject Classification G.2.2 Graph algorithms; F.2.2 Computations on discrete
structures

Keywords and phrases planar graph; minimum cut; shortest path; cut cycle

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.117

1 Introduction

The minimum s− t cut problem is a well-studied problems with applications in many fields.
By the Max-Flow Min-Cut Theorem [4], the value of the minimum s − t cut is the same
as the value of the maximum s− t flow, and a minimum cut can be easily obtained from a
maximum flow.

A planar graph is a graph that has an embedding in the plane such that no pair of edges
cross each other. General maximum flow algorithms can solve the maximum flow and the
minimum cut problems on planar graphs with n vertices and O(n) edges in O(n2 log n) time.
On the other hand, algorithms that take advantage of the structure of the planar embedding
of the graph can find the minimum cut and the maximum flow in O(n log n) time (see below).
The history of the maximum problem on planar graphs is surveyed in [2]. In this paper we
focus on undirected planar graphs.

Itai and Shiloach [11] used the correspondence between an s− t cut and a cycle in the
dual planar graph (see Sect. 2) separating the dual face s∗ that correspond to s from the dual
face t∗ that corresponds to t. Such a cycle is called a cut-cycle. Itai and Shiloach gave an
O(n2 log n) time algorithm for finding a minimum cut using cut-cycles in undirected planar
graphs. Reif [18] improved the time bound of the algorithm to O(n log2 n) using a divide-
and-conquer approach. Frederickson [5] improved the time bound of the last algorithm to
O(n log n) by providing a faster shortest paths algorithm. Hassin and Johnson [8] completed
the picture by showing how to find also the maximum flow within the same time bound. The

∗ This research was partially supported by the United States - Israel Binational Science Foundation,
project number 2006204.

© Haim Kaplan and Yahav Nussbaum;
licensed under Creative Commons License NC-ND

28th Symposium on Theoretical Aspects of Computer Science (STACS’11).
Editors: Thomas Schwentick, Christoph Dürr; pp. 117–128

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2011.117
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

118 Minimum cut when the source and the sink are close

cut-cycle approach was also used by Johnson [13] to get a parallel algorithm for maximum
flow in directed planar graphs in O(log3 n) time using O(n4) processors or in O(log2 n) time
using O(n6) processors. However, the sequential time bound of [13] is not better than the
time bound of previous algorithms for the problem.

The O(n log n) time bound of [5, 8, 18] is the best time bound known for undirected
planar graphs. This bound was matched for directed planar graphs by the maximum flow
algorithm of Borradaile and Klein [2], using a different approach. The latter algorithm was
simplified by Schmidt et al. [17] and Erickson [3]. However, the asymptotic running time of
these simplified versions remains O(n log n).

Consider a planar graph embedded in the plane. Let p be the minimum number of faces
that a curve from s to t passes through (the curve might go through vertices and edges of G).
The graph is st-planar if and only if p = 1. This parameter p was first introduced by Itai and
Shiloach [11] who gave an O(np log n) time algorithm for maximum flow in directed planar
graphs if the value of the flow is known. Johnson and Venkatesan [14] gave an O(np log n)
algorithm, without knowing the value of the flow in advance. The algorithm of [14] has two
bottlenecks, the first one is the computation of maximum flow in st-planar graphs, and the
second is transforming a planar flow into an acyclic flow. The first bottleneck was addressed
by Henzinger et al. [9] and the second by Kaplan and Nussbaum [16]. Hence, we get an
O(np) time algorithm for flow in planar graphs, which is faster than the O(n log n) time
algorithm for p = o(log n).

There is a well-known algorithm (see for example [10, Chap. 10]) for the minimum cut
problem in directed st-planar graphs using a shortest path algorithm in the dual planar
graph. With the shortest path algorithm of [9] this takes O(n) time. Hassin [7] extended
this algorithm to a maximum flow algorithm with the same time bound.

Our main result in this paper is an O(n log p) algorithm for minimum s − t cut in
undirected planar graphs. This algorithm runs in O(n) time when the graph is st-planar
(p = 1), matching [7], and in O(n log n) time for general undirected planar graphs, matching
[5, 8, 18]. In general, p might be Θ(n), but p is small when s and t reside on the boundaries
of faces which are close to each other. Our algorithm is asymptotically faster than what was
previously known for any non-constant p = o(nε) (where ε > 0 is constant).

Another related topological parameter q, introduced by Frederickson [6], is the minimum
number of faces required to cover all vertices of the graph. It is always true that p = O(q).1
Arikati, Chaudhuri and Zaroliagis [1] gave an O(n + q log q) algorithm for the minimum s− t

cut problem in directed planar graphs.
We note that Janiga and Koubek [12] claimed an O(n log n log p/ log log n) algorithm

for finding the minimum cut-cycle in directed planar graphs. Erickson [3] states that the
algorithm of [12] can be implemented in O(n log n) time. However, in Appendix A we show
a flaw in this algorithm.

2 Preliminaries

Let G = (V, E) be an undirected simple planar graph with vertex set V and edge set E. Let
n = |V |. Since G is planar it follows from Euler’s formula that |E| = O(n). We denote an
edge between the vertices u and v by (u, v). We assume that the input graph is given with a

1 Consider a curve R from s to t, and a minimum set Q of faces that cover the vertices of G. We can
assume that R crosses the boundary of faces only at vertices. If two non-consecutive vertices in R are
on the boundary of the same face of Q, then we can make R shorter by routing it through this face.

H. Kaplan and Y. Nussbaum 119

fixed planar embedding, in other words G is a plane graph.
In the graph G there are two designated vertices, the source s, and the sink t. The

capacity function c assigns to every edge e a non-negative capacity c(e).
An s − t cut, or a cut for short, is a minimal set of edges S, whose removal from the

graph disconnects t from s. The value of S is the total capacity of its edges,
∑

e∈S c(e).
A path Q is a sequence of edges (e1, e2, . . . , ej) such that ei = (vi, vi+1). For 1 ≤ i ≤ j + 1

we say that the path Q contains the vertex vi. The path Q begins at v1 and ends at vj+1. A
path Q is simple if for every vertex v, there are at most two edges incident to v in Q. We
denote by |Q| the number of vertices in Q. We consider a single vertex to be a degenerate
path without edges. If lengths are associated with the edges then the length of Q is the sum
of the lengths of all the edges of Q (an edge that appears in Q multiple times contributes
its length to the sum the same number of times). The reverse of Q = (e1, e2, . . . , ej) is the
path Qr = (ej , ej−1, . . . , e1). For two paths Q = (e1, e2, . . . , ej) and R = (d1, d2, . . . , di) such
that the last vertex of Q is identical to the first vertex of R, we define Q ◦R to be the path
(e1, e2, . . . , ej , d1, d2, . . . di).

A path that begins and ends at the same vertex is a cycle. We say that two cycles are
identical, if they have the same sequence of edges, in the same cyclic order (it does not
matter which vertex we pick as the first/last).

A flower-cycle is a cycle with a special structure defined as follows. Let Q be a simple
path whose last vertex is w, let B be a simple cycle that begins and ends at w. Assume that
B and Q do not share any vertex except w. Then, the cycle C = Q ◦B ◦Qr is a flower-cycle.
We call the cycle B the blossom of the flower-cycle C, and we call the cycle S = Q ◦Qr the
stem of C.

For the plane graph G, the dual graph G∗ is defined in the following way. The vertex set
of G∗ is the set of faces of G. Two vertices of G∗ are adjacent if and only if the boundaries
of the corresponding faces share an edge. The graphs G and G∗ share an embedding in the
plane, such that for every vertex v of G there is a unique dual face v∗ in G∗ that contains v,
and for every vertex x∗ of G∗ the face x of G contains x∗. For an edge e of G, there is a
single dual edge e∗ that crosses e in the shared embedding of G and G∗. The capacity of an
edge e of G is interpreted in G∗ as the length of e∗. We fix our embedding such that s∗ is
the infinite face of G∗.2 (See Fig. 1).

Consider a simple cycle C in G∗. The cycle C separates the plane into two connected
regions. One of the regions, which contains s∗, is outside C and the other is inside C, the
edges and the vertices of C are contained in both regions. We say that an edge e or a vertex
v is strictly inside (resp. strictly outside) C, if it is inside (resp. outside) C, but does not
belong to C.

Let C be a simple cycle in G∗ such that the face t∗ is inside C. The face s∗ must be
strictly outside C, so the cycle separates s from t in the plane. We call such C a cut-cycle.
The edges of G that are crossed by the edges of C form an s− t cut. These edges are exactly
the edges whose duals are in C. The value of the cut is the same as the length of the cut-cycle
C. Therefore, we get that the value of the minimum cut is the same as the value of the
shortest cut-cycle [11]. (See Fig. 1).

Let Q be any path from a vertex on the boundary of s∗ to a vertex on the boundary of t∗.
Let x∗1, . . . , x∗q be the vertices of Q where x∗1 is incident to s∗ and x∗q is incident to t∗. We
say that an edge (x∗i , y∗) emanates left from Q at x∗i , if when traversing Q from x∗1 to x∗q ,

2 Most recent papers, e.g. [2, 3], fix t to be on the boundary of the infinite face of G, we choose to fix s
on the boundary of the infinite face to be consistent with the previous cut-cycle algorithms [8, 11, 18].

STACS’11

120 Minimum cut when the source and the sink are close

P
x∗
4

t s

x∗
2

x∗
1

x∗
3

Figure 1 A planar graph and its dual. The vertices of G are dots and its edges are solid. The
vertices of G∗ are circles and its edges are dashed. The infinite face of G∗ is s∗. The path P from s∗

to t∗ is shaded. The bold edges are an s − t cut in G, their dual edges are a cut-cycle that contains
one P -left edge incident to x∗1.

the edge is incident to x∗i on the left side of Q, this definition is applied to edges incident to
x∗1 and x∗q by adding two dummy vertices – x∗0 inside s∗ before x∗1, and x∗q+1 inside t∗ after
x∗q . We call an edge Q-left if it emanates left from Q at exactly one of its endpoint. In other
words, an edge that emanates left from Q is Q-left unless it is an edge of the form (x∗i , x∗j)
that emanates left from Q both at x∗i and at x∗j . Q-right edges are defined similarly.

Let P be a path in G∗ from a vertex on the boundary of s∗ to a vertex on the boundary
of t∗, with minimum number of vertices. We define p(G) to be the number of vertices on
P . In the introduction we defined the parameter p as the minimum number of faces that a
curve from s to t passes through. This parameter is equal to p(G) if the curve is not allowed
to go through vertices, because then every edge of P is dual to an edge that the curve from
s to t crosses.

Since we want to allow the curve to contain vertices, we change G such that in the
modified graph, G̃, there is a curve from s to t that passes through the smallest number of
faces and does not contain vertices. Furthermore, this curve in G̃ crosses the same number
of faces as the corresponding curve in G which may contain vertices. Also, the value of the
minimum s− t cut in G̃ is the same as in G. The advantage of this transformation is that in
G̃, p is equal to p(G̃) – the smallest number of vertices on a path from a vertex on s∗ to a
vertex on t∗ in G̃∗.

The construction of G̃ is as follows. We choose a curve R from s to t passing through p

faces such that R goes from a face x to a face y through a vertex v only when there is no edge
common to the boundaries of x and y. If R does not contain vertices then G̃ = G. Otherwise
we split every vertex on R as follows. Consider a vertex v of G that R passes through when
going from a face x to a face y. In G̃ we split v into two vertices v′ and v′′ and connect them
with a new edge e that separates between x and y. Every edge that was incident to v is now
incident either to v′ or to v′′, such that G remains planar. This transformation allows R to
cross the edge e instead of the vertex v. We give e a large capacity (larger than the sum of
all capacities in G), so that it does not change the minimum cut.

This transformation requires knowing the curve R. We can compute R by computing a
path P ′ from a vertex on the boundary of s∗ to a vertex on the boundary of t∗ with minimum
number of vertices in a graph which we construct from G∗ as follows. This construction is
similar to a construction of Khuller and Naor [15]. For every face v∗ in G∗, we add a new

H. Kaplan and Y. Nussbaum 121

vertex z∗ inside the face v∗ and connect z∗ with edges to every vertex on the boundary of
the face v∗. The new vertex z∗ inside v∗ allows the path P ′ to “jump over” the face v∗ from
one vertex on its boundary to another, which is equivalent to the case where the curve R

passes through the vertex v of G. We also remove all the original edges from G∗. This forces
R to cross edges only at incident vertices, which we can do without loss of generality. Let P ′

be a path with minimum number of vertices, in the graph that we constructed, from a vertex
on the boundary of s∗ to a vertex on the boundary of t∗. The path P ′ alternates between
vertices of G∗ and vertices that we added inside faces of G∗. For every pair of consecutive
edges (x∗, z∗) and (z∗, y∗) in P ′, the curve R goes from the face x of G to the face y of G. If
x and y share a common edge e on their boundaries in G, then R passes through e, otherwise
R passes through the vertex v such that z∗ is inside the face v∗.

In the rest of the paper we assume that G was preprocessed as described here (so in fact
we use G to refer to G̃ to simplify the notation), then p = p(G) is the minimum number of
vertices on a path from a vertex on the boundary of s∗ to a vertex on the boundary of t∗.
We will denote such a path by P , we can find P in linear time using a breadth-first search
on the graph G∗.

3 Finding a Minimum s− t Cut

3.1 Overview
Let Π be the shortest path (path of minimum length) from a vertex incident to s∗ to a vertex
incident to t∗, and let x∗1, . . . , x∗k be the vertices on Π. Itai and Shiloach [11] observed that
in an undirected planar graph, the shortest cut-cycle must cross the path Π exactly once.
To exploit this observation they defined x∗i -cycle to be a cycle containing exactly one Π-left
edge and one Π-right edge, such that the Π-left edge is incident to x∗i . Then, the minimum
cut-cycle is the minimum x∗i -cycle. Reif [18] later noticed that for every i < j there is a
minimum x∗j -cycle inside a minimum x∗i -cycle. He used this to speed up the computation
of the shortest cut-cycle to O(n log k) time, using a divide-and-conquer algorithm (this is
not the time bound stated by [18], but it can be obtained using techniques of [5] or the
shortest-path algorithm of [9]).

If we replace Π with a path Q from s∗ to t∗ that is not shortest, then a cut-cycle may
cross Q more than once. This makes the task of finding a shortest cut-cycle more difficult.
First, there may not be a shortest cut-cycle that contains x∗j inside a shortest cut-cycle that
contains x∗i for i < j, simply because x∗j may be outside this cycle. Second, finding the
shortest cut-cycle through a particular vertex is harder.

Johnson [13] showed that any cut-cycle crosses Q an odd number of times, and used this
to get the parallel algorithm that we mentioned. We use the observation of Johnson that the
number of crossings of a cut-cycle with Q is odd to extend the algorithm of [18] to work with
any path from s∗ to t∗. This way, if we take the path Q to be the path P that we defined in
Sect. 2 with the minimum number of vertices from a vertex on s∗ to a vertex on t∗, we get
the O(n log p) time bound (recall that p = |P |).

Let x∗1, . . . , x∗p be the vertices of P , where x∗1 is incident to s∗ and x∗p is incident to t∗.
First, we show how to find a shortest cut-cycle, by finding shortest simple cycles containing
x∗i that crosses P an odd number of times, for every 1 ≤ i ≤ p. We characterize the structure
of these cycles, and show that their structure still allows to find the shortest among them
efficiently by a divide-and-conquer algorithm. Then, we show how to efficiently find the
shortest cut-cycle through any particular vertex on P by computing a shortest path in a
related planar graph.

STACS’11

122 Minimum cut when the source and the sink are close

3.2 Structure of shortest cut-cycles containing particular vertices
We call a cycle C an odd-cycle if the number of P -left edges in C is odd. The following
lemma is a special case of a lemma of Johnson [13].

I Lemma 1. Let C be a simple cycle. Then C is a cut-cycle if and only if it is an odd-cycle.

Proof. Consider a simple cycle C and the path P . Suppose we extend P by a dummy vertex
x∗0 inside s∗ and by a dummy vertex x∗p+1 inside t∗. Assume that we walk on the plane from
x∗0 to x∗p+1, to the left of P and infinitesimally close to it. We start our walk outside of C

(since s∗ is outside of C). Each time we cross an edge of C we switch from being outside C

to being inside C or vice versa. If C is a cut-cycle then x∗p+1 is inside C so our walk ends
inside C and therefore must cross C an odd number of times. Similarly, if we cross C an odd
number of times then x∗p+1 must be inside C and therefore C is a cut-cycle. So we conclude
that C is a cut-cycle if and only if we cross C in our walk an odd number of times.

Each such crossing of the walk and C corresponds to an edge of C that emanates left
from P at one of its endpoints. P -left edges emanate left from P at exactly one of their
endpoints, while other edges do not emanate left from P at all, or emanate left from P at
both of their endpoints. It follows that C is a cut-cycle if and only if it contains an odd
number of P -left edges. J

We denote a shortest odd-cycle containing the vertex x∗ by C(x∗). For a specific vertex
x∗, the cycle C(x∗) may not be simple. However, since we can decompose any cycle into
simple cycles, there is a shortest odd-cycle that is simple. Moreover, any odd-cycle intersects
P , so the following corollary follows from Lemma 1.

I Corollary 2. The shortest cut-cycle is C(x∗i) for some xi ∈ P . J

Corollary 2 suggests that our definition of C(x∗i) generalizes Itai and Shiloach’s definition
of a minimum x∗i -cycle. This is essential since, as we mentioned, when we replace Π by the
path P , which is not a shortest path, there may be more than one P -left edge in a shortest
cut-cycle.

The next lemma allows us to assume that C(x∗) is a flower-cycle.

I Lemma 3. For any vertex x∗, there is a shortest odd-cycle containing x∗ that is a flower-
cycle.

Proof. The edge set of the cycle C(x∗) is a union of edge sets of simple cycles, at least one
of these simple cycles must be an odd-cycle. Let C be such a simple odd-cycle, and let y∗ be
the first vertex of C that we encounter when we traverse C(x∗), starting at an occurrence of
x∗.

We can decompose C(x∗) into Q ◦ C ◦Q′, where Q is a path from x∗ to y∗ and Q′ is a
path from y∗ to x∗. The length of Q must be equal to the length of Q′ since otherwise we
can replace the longer by the reverse of the shorter and get a shorter odd-cycle through x∗

(C is an odd-cycle and the sets of P -left edges of a path and its reverse are identical). Let
F = Q ◦C ◦Qr. The cycle F is a flower-cycle by its definition, it is also an odd-cycle, and it
has the same length as C(x∗). Therefore, F is a shortest odd-cycle containing x∗ which is a
flower-cycle. J

Recall that Reif [18] based his divide-and-conquer approach on the observation that inside
every minimum x∗i -cycle there is a minimum x∗j -cycle if i < j. The same claim is not always
true for C(x∗i) and C(x∗j). It might be possible that C(x∗i) is actually strictly inside C(x∗j).
(See Fig. 2). We develop an alternative similar divide-and-conquer approach for C(x∗i).

H. Kaplan and Y. Nussbaum 123

s∗
x∗
a x∗

c t∗
x∗
b x∗

d

Figure 2 Structure of the flowers-cycles. C(x∗a) has an empty stem, C(x∗b) has the same blossom
as C(x∗a) and stem inside the blossom, C(x∗c) has a stem outside its blossom. There are 3 P -left
edges in C(x∗a) and in C(x∗c), and 5 P -left edges in C(x∗b) (the edge of the stem is counted twice).
C(x∗b) is strictly inside C(x∗c) even though b < c. We do not have to compute any C(x∗i) for i < d

inside C(x∗b), even if one of them is a minimal cut-cycle we will find it for another value of i.

t∗
x∗
is∗

w∗
B′

C ′′x∗

y∗

B′′
C ′

Figure 3 The shortest cut-cycle C = C′◦C′′ is neither inside nor outside the blossom B = B′◦B′′.

I Lemma 4. Let B be the blossom of C(x∗i) for some i, and let S be the stem of C(x∗i).
There is a shortest cut-cycle that is either inside B, or outside B (if B is a shortest cut-cycle
then both hold).

Proof. Assume otherwise, then for every shortest cut-cycle C, there are edges of C strictly
inside B and edges of C strictly outside B.

Let w∗ be the vertex common to B and S. By the minimality of C(x∗i) we may assume
that C(w∗) = B.

Let C be a shortest cut-cycle maximizing the number of edges that it has in common
with B. Let C ′ be a maximal subpath of C strictly inside B. Let C ′′ be “the rest of C” –
that is, the path such that C = C ′ ◦C ′′. The path C ′ starts at a vertex x∗ on B and ends at
another vertex y∗ on B. We split B or Br into two parts, B′ and B′′, such that B′ is a path
from x∗ to y∗, and B′′ is a path from y∗ to x∗, and the cycle C ′ ◦B′′ is an odd-cycle. Since
both B and C are odd cycles, such a decomposition of B or of Br must exist. It follows that
both C ′ ◦B′′ and B′ ◦ C ′′ are odd-cycles. (See Fig. 3).

By our choice of C, we may assume that C ′ is shorter than B′, as otherwise B′ ◦C ′′ is not
longer than C, and has more edges in common with B, contradicting the choice of C. Also,
we may assume that C ′′ is shorter than B′′, as otherwise C ′ ◦B′′ is not longer than C, and
has more edges in common with B, again in contradiction to the choice of C. Therefore both
C ′ ◦B′′ and C ′′ ◦B′ are shorter than B. The vertex w∗ must be on one of the cycles C ′ ◦B′′

or B′ ◦ C ′′, contradicting the minimality of B = C(w∗). Hence the lemma follows. J

I Lemma 5. Let B be the blossom of C(x∗i) for some i, and let S be the stem of C(x∗i). If
B is not a shortest cut-cycle, then any shortest cut-cycle does not contain any edge incident

STACS’11

124 Minimum cut when the source and the sink are close

to a vertex of S.

Proof. Assume that B is not a shortest cut-cycle, and let C be a shortest cut-cycle, such
that there is a vertex x∗ that is common to S and C. Let Q be the shortest path from x∗i to
x∗. By its definition, the path Q is not longer than half of the cycle S.

The cycle Q ◦C ◦Qr is an odd-cycle since C is an odd cycle. The cycle C is shorter than
B, and the cycle Q ◦Qr is not longer than S, contradicting the minimality of C(x∗i). J

3.3 Divide-and-conquer algorithm
Lemma 4 gives a method for dividing the graph, in order to find a shortest cut-cycle. Consider
C(x∗i) with blossom B and stem S. If B is not a shortest cut-cycle then there is a shortest
cut-cycle C, such that C is either inside B or outside B. Thus, we can divide the graph into
two parts, Gin which is the part inside B, and Gout which is the part outside B, and search
in each of them separately. We also discard S from the subgraph containing it, which we can
do by Lemma 5. This will help us to bound the depth of the recursion.

It is simpler to describe how to obtain G∗in and G∗out from G∗, so we do this first. We
start by putting into G∗in every edge and vertex of G∗ that is inside B. The part of the plane
strictly outside B becomes the infinite face s∗in, we also set t∗in = t∗. The graph G∗out initially
contains every edge and vertex of G∗ that is outside B. (By our definitions of “outside” and
“inside” there is a copy of B in both graphs.) In G∗out we set s∗out = s∗ and the part of the
plane inside B becomes a single face which we denote by t∗out.

Assume that S is not empty. Since there is a single vertex w∗ that is common to S and
B, S is either entirely inside B or outside B. Assume that S is outside B. According to
Lemma 5 we may assume that if there is a vertex of S on a shortest cut-cycle, then it is w∗.
This happens only when B is a shortest cut-cycle, in this case B is contained also in G∗in.
Thus, we can remove the vertices of S and all the edges adjacent to them from G∗out without
losing the shortest cut-cycle. Symmetrically, if S is inside B, then we remove the vertices of
S and their adjacent edges from G∗in. This completes the definition of G∗in and G∗out.

The effect of this construction on the primal graph is as follows. Consider the common
embedding of G and G∗. The graph Gin contains all the vertices inside B and all edges with
both endpoints inside B. Similarly, Gout contains the vertices outside B and edges with
both endpoints outside B. Edges of G whose duals are in B are the edges with one endpoint
outside B and one endpoint inside B. We put a copy of these edges in both graphs as follows.
We add a vertex sin to Gin, which would be the source of Gin, and for every edge e = (u, v)
such that e∗ ∈ B with v inside B, we put the edge (sin, v) in Gin with the same capacity as
of e. Similarly, we add a vertex tout to Gout, which would be the sink of Gout, and for every
edge e = (u, v) such that e∗ ∈ B with u outside B, we put the edge (u, tout) in Gout with
the same capacity as of e. We set tin = t and sout = s.

If S is not empty, then we contract every edge e = (u, v) such that e∗ is incident to a
vertex of S, in the graph whose dual contains S. That is u and v become a single vertex,
and the incidence lists are concatenated (without e) in the appropriate cyclic order. Note
that the edges that we contract include all the edges on faces of G that correspond to the
vertices of S in G∗. The contraction eliminates all these faces.

It is possible that the new graphs Gin and Gout are not simple. We replace a set of
multiple edges of the form (sin, v) or (u, tout) by a single edge whose capacity is the sum of
all capacities of the multiple edges. We do so to ensure that Gin and Gout remain simple.
Two parallel edges e and d create a face x between them. In the dual graph, x∗ is a vertex
adjacent only to e∗ and d∗. The effect in the dual graph of merging e and d is the removal of

H. Kaplan and Y. Nussbaum 125

x∗, and replacement of e∗ and d∗ by a single edge whose length is the sum of lengths of both
dual edges.

Note that every vertex of G has a single copy, either in Gin or in Gout, while edges and
faces of G whose duals are in B might have copies in both graphs. When we construct Gin
and Gout from G, every edge of G is mapped to a single edge of Gin or Gout. However, a
single edge of Gin or Gout might be mapped to more than one edge of G (due to merge of
parallel edges). When we return a cut in Gin or Gout as an answer to the minimum cut
problem on G, we replace every edge of Gin or Gout with all the edges of G that were mapped
to it.

Now we have all the definitions required to present the divide-and-conquer algorithm for
finding a minimum s− t cut:

1. Find P , the path with minimum number of vertices from a vertex on the face s∗ to a
vertex on the face t∗. Let p = p(G) = |P |.

2. If 1 ≤ p ≤ 2, find C(x∗i) for every 1 ≤ i ≤ p, and return the shortest.
3. Otherwise, let i = bp/2c+ 1.
4. Find C(x∗i).
5. Construct Gin, Gout and apply the algorithm recursively to them.
6. Return the smaller between the minimum sin− tin cut in Gin and the minimum sout− tout

cut in Gout that were computed in the previous step.

We already pointed out two differences between our algorithm and these of Reif [18] and
Hassin and Johnson [8], namely using the path P instead of the shortest path Π and finding
a cut-cycle that is a C(x∗i) cycle instead of a minimum x∗i -cycle.3 Another difference is that
we do not compute C(x∗i) for every x∗i in the original path P from s∗ to t∗. Since C(x∗i)
may cross P multiple number of times it is possible, for example, that for some j > i, x∗j is
on the boundary of s∗in, and so we do not need to apply our algorithm in Gin for x∗i′ such
that i′ < j (see Fig. 2). A symmetric claim is true for Gout. For this reason, we compute the
path P in the first step of each recursive call. This is easy to do in time linear in the size of
the input graph, by using breadth-first search on the dual graph.

The correctness of our algorithm follows from Lemma 4 and Lemma 5. In order to get
the desired O(n log p) time bound, we show that the depth of the recursion is dlog pe+ 1 and
that it is possible to find C(x∗i) in O(n) time.

To bound the depth of the recursion we show that p(Gin), p(Gout) ≤ bp/2c+ 1.4
First, assume that S is empty, that is, x∗i ∈ B. The copy of the vertex x∗i in the graph

G∗in is on the boundary of s∗in. The subpath (x∗i , x∗i+1, . . . , x∗p) of P is not necessarily in G∗in,
but G∗in must contain a suffix of this subpath that starts with some x∗j , j ≥ i, that is on the
boundary of s∗in. This implies that p(Gin) ≤ bp/2c+ 1. Similarly, the copy of the vertex x∗i
in G∗out is on the boundary of t∗out so there is a prefix (x∗1, . . . , x∗j′−1, x∗j′), j′ ≤ i of P , such
that x∗j′ is on the boundary of t∗out in G∗out. This shows that p(Gout) ≤ bp/2c+ 1.

Now assume that S is not empty and that it is outside B. Let w∗ be the vertex common
to S and B. Since B is an odd-cycle it must contain a P -left edge. Since x∗i is outside B, at

3 Another minor change from the algorithm of [18] is in the base of the recursion (Step 2), this correction
was suggested by [8].

4 Consider a binary representation b of p. We obtain a binary representation of an upper bound on the
new value of p following a recursive call, by shifting b one position to the right and adding one to the
result. It follows that the number of bits in the representation of the upper bound decreases by one
every step but can increase by one at most once, so the depth of the recursion is at most the number of
bits in b plus one.

STACS’11

126 Minimum cut when the source and the sink are close

least one P -left edge of B is incident to x∗j for some j ≥ i, so the proof that p(Gin) ≤ bp/2c+1
does not change. We removed the vertices of S and their incident edges from G∗out. Before
this removal, w∗ was on the boundary of t∗out, so after the removal, every vertex that was
adjacent to a vertex of S, is on the boundary of t∗out. The vertex x∗i is in S, so there must
be a vertex x∗i′ with i′ < i that was adjacent to vertex in S, and is now on the boundary of
t∗out. We get that there is a prefix (x∗1, . . . , x∗j′−1, x∗j′), j′ ≤ i′, of P in G∗out which shows that
p(Gout) ≤ bp/2c. The proof for the case where S is inside B is symmetric.

We conclude that the depth of the recursion is at most dlog pe+ 1.

3.4 Finding a shortest odd-cycle containing a particular vertex

Now we show how to find C(x∗i), a shortest odd-cycle that is a flower-cycle containing a
specific vertex x∗i of P . We do so in O(n) time using the following construction.

We create a new planar graph H that contains two modified copies of G∗ as follows. For
every vertex x∗ in G∗ we create two copies in H, x0 and x1. For every edge (x∗, y∗) that
is not a P -left edge we create two copies (x0, y0) and (x1, y1) in H. Last, for every P -left
edge (x∗j , y∗) we create two copies (x0

j , y1) and (x1
j , y0). We denote the set that contains the

vertices x0, the edges (x0, y0) and the edges (x0
j , y1) by H0, and the set of other vertices and

edges by H1. A path from x∗ to y∗ in G∗ corresponds to a path from x0 to y0 or a path
from x0 to y1 in H. We denote the image in H of a path Q in G∗ by h(Q).

Let Q be a cycle in G∗, fix x∗ to be the first vertex of Q. The image h(Q) begins with x0,
which is in H0. Assume that we traverse h(Q), starting at x0. Every time that h(Q) goes
through an image of a P -left edge, it jumps from H0 to H1 or vice versa. Therefore, Q is an
odd-cycle if and only if h(Q) ends at x1.

For a vertex x∗i of P , we find a shortest odd-cycle through x∗i by finding a shortest path
R from x0

i to x1
i in H. The cycle h−1(R) is a shortest odd-cycle containing x∗i .

Although by Lemma 3 there is a shortest odd cycle through x∗i which is a flower-cycle
the cycle h−1(R) may not be a flower-cycle. We can convert it to a flower-cycle as suggested
by the proof of Lemma 3. Let y∗ the first vertex that repeats twice on h−1(R), and let C

be the path in h−1(R) between the first two occurrences of y∗. If C is not and odd-cycle
(this may happen only if the length of C is 0), then remove the edges of C from h−1(R) and
repeat the process until a simple odd-cycle is found. Let Q be the prefix of h−1(R) that ends
at y∗. Finally, let C(x∗i) = Q ◦ C ◦Qr.

The construction of H takes O(n) time, and finding R takes O(n) time using the algorithm
of Henzinger et al. [9]. Replacing h−1(R) with a flower-cycle takes O(n) time as well. We
conclude that a single recursive application of our algorithm is linear in the size of the graph
it works on.

3.5 Running time

The running time analysis for our main algorithm is similar to that of Reif [18] or Hassin
and Johnson [8], we use here the one of [8]. As we showed, the depth of the recursion tree is
at most dlog pe+ 1. In each recursive call, when we split G into Gin and Gout, we add two
vertices to the graphs. Therefore, at the `th level of the recursion we have at most n + 2`

vertices. The time bound at each level of the recursion is linear in the number of vertices at
the level so the total running time of our algorithm is O

(∑dlog pe
`=0

(
n + 2`

))
= O(n log p).

H. Kaplan and Y. Nussbaum 127

s∗ t∗

Figure 4 Counterexample to the algorithm of [12] (see [13, Fig. 7]). The directed cycle contains
three P -left arcs (bold), such that the arc farthest from t∗ is oriented away from P . However, the
cycle is not simple and it wraps around t∗ in the wrong direction. The direction of the primal arcs
that correspond to the cycle is indicated with dashed arrows.

A The Algorithm of [12]

Janiga and Koubek [12] presented an O(n log n log p/ log log n) algorithm for the minimum
s− t cut problem in directed planar graphs, based on the cut-cycles approach. Erickson [3]
states that this algorithm can be implemented in O(n log n) time. In this appendix we show
that there is a mistake in the algorithm of [12].

To deal with directed graphs we have to extend the definitions from Sect. 2. First, in a
directed graph, two anti-parallel arcs, (u → v) and (v → u) may have different capacities.
Second, the dual graph G∗ is also directed. The dual of an arc d = (u→ v) is the arc in G∗

which is directed from the dual vertex of the face on the right side of d to the dual vertex of
the face on the left side of d.5 The path P that the algorithm of [12] uses is a directed path
with minimum number of vertices from a vertex on the boundary of s∗ to a vertex on the
boundary of t∗.

In the directed graph G∗, a cut-cycle is dual to a cut in G, if and only if it is oriented
clockwise around t∗ in the shared embedding of G and G∗ in the plane [13].

Janiga and Koubek [12, Sect. 3] look for the minimum cut by computing the shortest
cycle in G∗ that its P -left arc farthest from t∗ is oriented away from P (that is, the P -left
arc which is adjacent to x∗i for the minimum i is oriented (x∗i → y)), and that crosses P an
odd number of times. If this shortest cycle is simple, then it is a cut-cycle oriented clockwise
around t∗ [13] (the proof is similar to Lemma 1). However, it is possible that the shortest
cycle that fulfills these requirements is not simple. In this case, the cycle may be oriented
counterclockwise around t∗, and therefore it would not be dual to a cut. Figure 4 shows an
example of such case, which was given by Johnson [13, Fig. 7]. Since algorithm Cycle2 of
[12, p. 43] fails to check whether the path it finds it simple or not, the algorithm of [12] will
not find a correct solution in this case.

References
1 Arikati, S.R., Chaudhuri, S., Zaroliagis, C.D.: All-pairs min-cut in sparse networks. J.

Algorithms 29, 82–100 (1998)
2 Borradaile, G., Klein, P.: An O(n log n) algorithm for maximum st-flow in a directed planar

graph. J. ACM 56, 1–30 (2009)

5 Some papers, e.g. [2, 3], use the opposite orientation.

STACS’11

128 Minimum cut when the source and the sink are close

3 Erickson, J.: Maximum flows and parametric shortest paths in planar graphs. In: Pro-
ceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 794–804
(2010)

4 Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, New Jersey
(1962)

5 Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs, with applications.
SIAM J. Comput. 16, 1004–1022 (1987)

6 Frederickson, G.N.: Using cellular graph embeddings in solving all pairs shortest path
problems. J. Algorithms 19, 45–85 (1995)

7 Hassin, R.: Maximum flow in (s, t) planar networks. Information Processing Letters 13,
107 (1981)

8 Hassin, R., Johnson, D.B.: An O(n log2 n) algorithm for maximum flow in undirected
planar networks. SIAM J. Comput. 14, 612–624 (1985)

9 Henzinger, M.R., Klein, P., Rao, S., Subramania, S.: Faster shortest-path algorithms for
planar graphs. J. Comput. Syst. Sci. 55, 3–23 (1997)

10 Hu, T.C.: Integer Programming and Network Flows. Addison-Wesley, MA (1969)
11 Itai, A., Shiloach, Y.: Maximum flow in planar networks. SIAM J. Comput. 8, 135–150

(1979)
12 Janiga, L., Koubek, V.: Minimum cut in directed planar networks. Kybernetika 28, 37–49

(1992)
13 Johnson, D.B.: Parallel algorithms for minimum cuts and maximum flows in planar net-

works. J. ACM 34, 950–967 (1987)
14 Johnson, D.B., Venkatesan, S.M.: Partition of Planar Flow Networks. In: Proceedings of

the 24th Annual Symposium on Foundations of Computer Science, pp. 259–264 (1983)
15 Khuller, S., Naor, J.: Flow in planar graphs with vertex capacities. Algorithmica 11,

200–225 (1994)
16 Kaplan, H., Nussbaum, Y.: Maximum flow in directed planar graphs with vertex capacities.

Algorithmica, in press
17 Schmidt, F.R., Toppe, E., Cremers, D.: Efficient planar graph cuts with applications in

Computer Vision. In: IEEE Conference on Computer Vision and Pattern Recognition,
pp. 351–356 (2009)

18 Reif, J.H.: Minimum s-t cut of a planar undirected network in O(n log2(n)) time. SIAM
J. Comput. 12, 71–81 (1983)

	Introduction
	Preliminaries
	Finding a Minimum s-t Cut
	Overview
	Structure of shortest cut-cycles containing particular vertices
	Divide-and-conquer algorithm
	Finding a shortest odd-cycle containing a particular vertex
	Running time

	The Algorithm of JK92

