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Abstract
An elementary h-route flow, for an integer h ≥ 1, is a set of h edge-disjoint paths between a
source and a sink, each path carrying a unit of flow, and an h-route flow is a non-negative linear
combination of elementary h-route flows. An h-route cut is a set of edges whose removal decreases
the maximum h-route flow between a given source-sink pair (or between every source-sink pair
in the multicommodity setting) to zero. The main result of this paper is an approximate duality
theorem for multicommodity h-route cuts and flows, for h ≤ 3: The size of a minimum h-route
cut is at least f/h and at most O(log3 k ·f) where f is the size of the maximum h-route flow and k
is the number of commodities. The main step towards the proof of this duality is the design and
analysis of a polynomial-time approximation algorithm for the minimum h-route cut problem for
h = 3 that has an approximation ratio of O(log3 k). Previously, polylogarithmic approximation
was known only for h-route cuts for h ≤ 2. A key ingredient of our algorithm is a novel rounding
technique that we call multilevel ball-growing. Though the proof of the duality relies on this
algorithm, it is not a straightforward corollary of it as in the case of classical multicommodity
flows and cuts. Similar results are shown also for the sparsest multiroute cut problem.
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1 Introduction

The celebrated maximum-flow minimum-cut theorem of Ford and Fulkerson [5] is among
the most important results in combinatorial optimization. Its importance has influenced
the search for various generalizations. In the maximum multicommodity flow problem the
goal is to maximize the sum of flows between given source-sink pairs subject to capacity
constraints. In the dual problem, namely in the minimum multicut problem, the objective
is to find a subset of edges of minimum total capacity whose removal disconnects each of
the given source-sink pairs. Though an exact duality theorem does not apply to these two
problems, Garg et al. [6], building on an earlier work of Leighton and Rao [10] and of others,
proved an approximate max-flow min-cut theorem; the approximation factor is logarithmic
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in the number of commodities and is asymptotically optimal. The results are proved using
the ball-growing (also known as region-growing) technique that was introduced in the paper
of Leighton and Rao.

Multi-route flows and multi-route cuts generalize in a natural way the concept of classical
flows and cuts in graphs. An elementary h-route flow, for an integer h ≥ 1, is a set of h
edge-disjoint paths between a source and a sink, each path carrying a unit of flow, and an
h-route flow [8, 1] is a non-negative linear combination of elementary h-route flows. An
h-route cut is a set of edges whose removal disconnects a given source-sink pair with respect
to h-route flows (in the multicommodity setting, it disconnects every source-sink pair). In
other words, an h-route cut is a set of edges whose removal decreases the edge-connectivity
of a given source-sink pair (or of every given source-sink pair) below h. Note that for h = 1,
h-route flows and h-route cuts correspond to the classical flows and cuts.

1.1 Our results and techniques
The main result of this paper is an approximate duality theorem for multicommodity h-route
cuts and flows for h ≤ 3. In particular, we prove an upper bound of O(log3 k · f) on the
size of a minimum h-route cut where f is the size of a maximum h-route flow and k is the
number of source-sink pairs (or commodities); trivially, f/h is a lower bound.

A major step towards the proof of the duality in this paper is the design and analysis of
an approximation algorithm for the minimum 3-route cut problem. The approximation ratio
of our algorithm is O(log3 k). This provides a partial answer to open problems of several
papers (Bruhn et al. [3], Chekuri and Khanna [4] and Barman and Chawla [2]). The 3-route
cut problem is more complicated than the 1-route and 2-route cut problems: while 1-route
and 2-route cuts separate the graph into independent parts, h-route cuts do not have this
property for h > 2. For example, when providing a 2-route cut C for the commodity (s1, t1)
that partitions the graph into the node sets S1 and T1 with at most one remaining edge
between them, then the commodities that have both nodes in S1 or both in T1 can be treated
independently because no simple path can connect two nodes in S1 (resp. T1) via a path
through T1 (resp. S1). This is not the case for 3-route cuts where a simple path between
two nodes in S1 may very well pass through T1. A key ingredient to handle this problem in
our paper is a novel rounding technique, called multilevel ball-growing, a generalization of
the well-known ball growing argument that makes it possible to control the dependencies
between parts of the graph that are separated by 3-route cuts.

Though the proof of the duality relies on the approximation algorithm, it is not a
straightforward corollary of it as is the case for classical multicommodity flows and cuts. For
the duality proof we show a tight relationship between two different linear relaxations [4, 2]
of the h-route cut problem.

1.2 Other related results
The concept of multi-route flows was introduced by Kishimoto and Takeuchi [8]. As far as
we know, the problem of a minimum h-route cut, for h > 1, was first considered by Bruhn
et al. [3] in a paper dealing primarily with single source multi-route flows on graphs with
uniform capacities. In this particular setting they established an approximate max-flow
min-cut theorem and, as a corollary, described a (2h− 2)-approximation algorithm for the
minimum h-route cut problem, for any h > 1.

For graphs with non-uniform capacities, the first non-trivial approximation for multi-route
cuts was given by Chekuri and Khanna [4]. They dealt with the special case of h = 2 and
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provided an O(log2 n log k)-approximation for the 2-route cut problem where n is the number
of vertices in G. As their algorithm is based on an LP relaxation that is dual to the LP for
the maximum 2-route flow problem, an implicit corollary of their result is an approximate
duality of 2-route flows and 2-route cuts. The approximation factor for 2-route cuts was
recently improved by Barman and Chawla [2] who described an O(log2 k)-approximation
for the 2-route cut problem. Their algorithm is based on a different linear programming
relaxation that allows them to extend the classical (discrete) ball-growing (or region-growing)
technique (cf. [10, 6, 11]) to 2-route cuts. In a subsequent work [9], using a combination
of the multilevel ball-growing technique and other arguments, we proved an approximate
duality theorem for multicommodity h-route cuts and flows for any h, on uniform capacity
networks. A challenging open problem is to prove an analogous result for networks with
general capacities.

2 Minimum h-Route Cut Problem

Suppose that we are given a minimum h-route cut problem for the graph G = (V,E) with
edge capacities c : E → R+ and with commodities (s1, t1), . . . , (sk, tk). If F ⊆ E is an
h-route cut for the instance, then for every commodity there exists a set Fi of at most h− 1
edges such that F ∪ Fi is a classical cut for the commodity i. With this observation, the
integer LP for the minimum h-route cut problem can be stated as follows (by Pi we denote
the set of all edge-simple paths in G between si and ti):

min
∑
e∈E

c(e)x(e) (1)∑
e∈p

(x(e) + xi(e)) ≥ 1 ∀i ∈ [k], p ∈ Pi∑
e∈E

xi(e) ≤ h− 1 ∀i ∈ [k]

x(e) ∈ {0, 1} ∀e ∈ E
xi(e) ∈ {0, 1} ∀i ∈ [k],∀e ∈ E

In order to find a good approximate solution for this ILP, we will look at its LP relaxation
where x(e) ∈ {0, 1} is replaced by x(e) ≥ 0 and xi(e) ∈ {0, 1} is replaced by xi(e) ≥ 0. In
the following, let the x- and xi-values represent an optimal solution of this LP relaxation and
let φ =

∑
e∈E c(e)x(e). Our goal is to round these values to an integral solution with cost

at most O(φ log3 k) for h = 3. For this we will use a novel rounding technique that we call
multilevel ball-growing. At the heart of this (as well as the classical ball growing) technique
is the following lemma from elementary calculus.

I Lemma 1. Let [l1, r1], [l2, r2], . . . , [lz, rz] be internally disjoint intervals of real numbers
such that l1 < l2 < · · · < lz and let R =

⋃z
i=1[li, ri]. Assume that the following holds:

f is a nondecreasing function on R and f(l1) > 0,
f is differentiable on R, except for finitely many points,
g is a function on R such that ∀r ∈ R, g(r) ≤ f ′(r), except for finitely many points.

Let γ = f(rz)/f(l1). Then there exists r ∈ R such that g(r) ≤ 1
|R| log γ · f(r).

Proof. Assume, by contradiction, that for every r ∈ R we have g(r) > 1
|R| log γ · f(r). Then

log γ ≤
∫
r∈R

1
|R|

log γ dr <
∫
r∈R

g(r)
f(r) dr ≤

∫
r∈R

f ′(r)
f(r) dr ≤ log f(rz)

f(l1) = log γ ,

a contradiction. J
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132 Towards Duality of Multicommodity Multiroute Cuts and Flows

3 Single Source

Our algorithm for 3-route cuts works in iterations, and in iteration i some 3-route cut is found
for some commodity i that does not yet have a 3-route cut. These 3-route cuts are added up
to some final cut F ⊆ E. Our goal is to make sure that c(F ) = O(log3 k

∑
e c(e) · x(e)) =

O(φ log3 k). We start with some basic notation for iteration i.
We define dy(u) as the length of the shortest path from ti to the node u with respect

to the length function y : E → R≥0. For the definitions of the δ-sets in iteration i (see
below) we view every edge uv ∈ E as a segment consisting of two parts: an x-part of
length x(uv) followed (on the way from ti) by an xi-part of length xi(uv). Certainly,
x(uv) + xi(uv) ≥ |dx+xi

(v) − dx+xi
(u)| for every edge uv ∈ E but for the definition of

the δ-sets below it will be convenient to assume equality between the two quantities. To
ensure the equality, we perform a minor temporary modification of the x and xi values:
if x(uv) ≤ |dx+xi(v) − dx+xi(u)| then we reduce xi(uv) to |dx+xi(v) − dx+xi(u)| − x(uv),
otherwise we reduce x(uv) to |dx+xi

(v)− dx+xi
(u)| and set xi(uv) = 0. These adjustments

are only valid for the following definitions.
In iteration i, for any r ∈ [0, 1] we define

B(r) = {u ∈ V | dx+xi(u) ≤ r}
δ(r) = {uv ∈ E | dx+xi

(u) ≤ r < dx+xi
(v)}

δx(r) = {uv ∈ δ(r) | dx+xi
(u) ≤ r ≤ dx+xi

(u) + x(uv)}
δxi

(r) = {uv ∈ δ(r) | dx+xi
(v)− xi(uv) < r ≤ dx+xi

(v)}

In words, the set B(r), called a ball (or region) with center at ti and radius r, is the set
of nodes at distance at most r from ti (with respect to x+ xi); δ(r) is the set of edges in
the cut between B(r) and V \B(r), δx(r) is the subset of edges from the cut δ(r) that are
cut in their x-part, and δxi

(r) are those from δ(r) that are cut in their xi-part. Clearly,
δ(r) = δx(r) ∪ δxi(r). We denote by δ1(r) the set δ(r) without the most expensive edge (i.e.,
δ1(r) = δ(r) \ {argmaxe∈δ(r) c(e)}), and for l > 1 we denote by δl(r) the set δl−1(r) without
the most expensive edge (i.e., δl(r) = δl−1(r) \ {argmaxe∈δl−1(r) c(e)}). Note that for every
r ∈ [0, 1], the set δh−1(r) is an h-route cut between ti and s. For a set E′ ⊆ E of edges we
define c(E′) =

∑
e∈E′ c(e). For a graph (resp. node set) H, let V (H) be the set of nodes and

E(H) be the set of edges in H (resp. the set of edges in E that have both endpoints in H).

3.1 2-Route Cuts
To outline our general approach in a simple setting, we sketch in this subsection an alternative
proof of the known result for 2-route single-source cuts.

In iteration i we defineR = {r ∈ [0, 1] | |δxi
(r)| ≤ 1} and observe that the measure of this

set is at least 1/2. For r ∈ [0, 1], let f(r) = φ/k +
∫
ρ∈R∩[0,r] c(δx(ρ)) dρ and g(r) = c(δ1(r))

where φ denotes the optimal objective value of the LP relaxation. The functions f (volume)
and g (cut size) satisfy the assumptions of Lemma 1 and thus, there exists r ∈ R such that
c(δ1(r)) = O(log k)f(r). This is the key observation of Barman and Chawla [2] (proved in a
different way). We add the edges from δ1(r) to the 2-route cut that we construct, remove the
ball B(r) from the graph (observe that after the removal of δ1(r), no terminal tj in B(r) is
2-connected with s) and proceed with the next iteration. The relationship between c(δ1(r))
and f(r) makes it possible to charge the cost of the edges in δ1(r) to the volume f(r) of
the ball B(r) (cf. the analysis of the classical 1-route cut algorithm [11]). This immediately
yields the O(log k)-approximation for the 2-route single-source cut problem and, with some
effort, also the O(log2 k)-approximation for the general 2-route cut problem.
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3.2 3-Route Cuts
In contrast to the cases h ≤ 2, for h = 3 we will need to charge more than one cut to some
edges. In order to keep track of how many cuts were already charged to which edge, we
maintain for every edge e a counter called a level of an edge, denoted `(e), which represents
(an upper bound on) how many cuts were already charged to the edge e. The edges with
positive level are called restricted edges and are maintained in a set D. Initially, the level
of every edge is zero and D = ∅. Throughout the run of the algorithm, every edge e ∈ D
satisfies x(e) ≤ 1/(2h log k) and `(e) ≤ L, for L = log k.

Recall that F ⊆ E is the edge set in which we collect the edges for the final 3-route cut
output by the algorithm. Whenever we have a statement holding for any h-route cut, we use
the h instead of 3 so that it becomes clear which techniques only apply to h = 3 and which
techniques could also be applied to larger h-values.

Consider the iteration of the algorithm in which we deal with the terminal ti. For any
edge uv ∈ E let the distance of uv from ti be defined as d(uv) = min{dx+xi

(u), dx+xi
(v)}.

We partition the edges from D into two subsets, according to their levels and their distance
d from ti:

D1 = {e ∈ D | d(e) is minimal among all f ∈ D with `(f) = `(e)} and D2 = D \D1

Ties are broken arbitrarily to ensure that there is at most one edge per level in D1. Observe
that for every edge f ∈ D2 there exists an edge e ∈ D1 with `(e) = `(f).

A radius r ∈ [0, 1] is forbidden if |δxi(r)| > h− 1 or if there exists an edge e ∈ D1 such
that e ∈ δx(r). A radius r ∈ [0, 1] that is not forbidden is good. Let R denote the set of good
radii for the current iteration, that is, R = {r ∈ [0, 1] | δxi(r) ≤ h− 1 and δx(r) ∩D1 = ∅}.

I Lemma 2. The measure of the set R of good radii is at least 1/(2h).

Proof. Let µ be the measure of the set {r ∈ [0, 1] | |δxi
(r)| ≥ h}. Considering the constraint∑

e∈E xi(e) ≤ h− 1 we obtain an upper bound on µ: hµ ≤
∑
e∈E xi(e) ≤ h− 1, and thus,

µ ≤ 1− 1/h. Therefore the measure of the set {r ∈ [0, 1] | |δxi(r)| ≤ h− 1} is at least 1/h.
Since the number of edges in D1 is at most log k and since x(e) ≤ 1/(2h log k) for every
e ∈ D1, the measure of the set {r ∈ [0, 1] | δx(r) ∩ D1 6= ∅} is at most 1/(2h). Hence,
|R| ≥ 1/(2h). J

Recall that φ is the optimal value of the objective function. For r ∈ [0, 1], we define

V (r) = φ

k
+

∫
ρ∈R∩[0,r]

c(δx(ρ))dρ .

The value V (r) is called the volume of the ball B(r). Observe that only the x-parts of the
edges in the ball contribute to the volume and the x-parts of the edges from D1 do not
contribute.

Clearly, 2φ is an upper bound on any V (r). Since c(δx(r)) ≥ 0 and V (r) ≥ φ/k for all
r ∈ R and c(δx(r)) is a step function (i.e., a piece-wise constant function) on R with at most
2m jumps, where m = |E|, we obtain the following lemma.

I Lemma 3. The function V (r) satisfies the following properties:
V (r) is a nondecreasing piece-wise linear function on R and V (r) > 0 for all r ∈ R,
V (r) is differentiable on R, except for finitely many points,
for each r ∈ R, V ′(r) ≥ c(δh−1(r)), except for finitely many points,
the maximum ratio between two values of the function V (r) on R is at most 2k.

STACS’11



134 Towards Duality of Multicommodity Multiroute Cuts and Flows

Proof. Follows from the definitions of the set R and of the function V (r). J

I Lemma 4. There exists an r ∈ R such that c(δh−1(r)) ≤ 2h log(2k) ·V (r). Moreover, such
a radius can be computed in polynomial time.

Proof. By Lemma 2, we know that |R| ≥ 1/(2h). Lemma 3 guarantees that we can apply
Lemma 1 to the functions f(r) = V (r) and g(r) = c(δh−1(r)) on R. Thus, there is an r ∈ R
with c(δh−1(r)) ≤ 2h log(2k)V (r).

Since V (r) is a piece-wise linear function on R and c(δh−1(r)) is a piece-wise constant
function on R with at most 2m pieces, we can efficiently find the value r for which c(δh−1(r))/
V (r) is minimal, and by the first part of this lemma, this ratio is at most 2h log(2k). J

In the current iteration, we first compute the radius r from Lemma 4 and add the edges
from δ2(r) to F (our final cut). Similar to the case of 2-route cuts, the relation between
c(δ2(r)) and V (r) (Lemma 4) makes it possible to charge the cost of the cut δ2(r) to the
volume V (r) of the ball B(r). Note that nothing is charged to any edge e ∈ D1 since their
x-parts do not contribute to V (r). Before we proceed with the next iteration, we locally
modify the graph G as described in the rest of this section.

Consider the set of edges in δ(r) \ δ2(r) and let Z be the set of endpoints of these edges
that are not in B(r). If |Z| ≤ 1, we remove B(r) and E(B(r)) from G and proceed with the
next iteration. We can do so because for any tj ∈ B(r) we already constructed a 3-route cut,
and for any tj ∈ V \B(r) any path from tj to s that goes through B(r) can be reduced so that
it does not contain any node from B(r). If |Z| = 2, we define H to be a subgraph of G with
vertex set V (H) = B(r)∪Z and edge set E(H) = {xy ∈ E(G) | x, y ∈ B(r)}∪(δ(r)\δh−1(r)).
The two nodes in Z are called the entry nodes of H and the two edges in δ(r) \ δh−1(r) the
entry edges of H. Let vi, wi denote the two entry nodes of H, let dy(vi, wi, H) denote the
length of the shortest path (with respect to the length function y : E → R≥0) between vi
and wi in H and let mincut(vi, wi, H) denote the minimum cut between vi and wi in H. If
dx(vi, wi, H) > 1/(2h log k), we add the edges from mincut(vi, wi, H) to F , charge the cost of
this cut to the volume of H and remove the subgraph H from the current graph G (with the
same justification as for |Z| ≤ 1); by the volume of H we mean V̄ (r) =

∑
e∈E(H) c(e)x(e).

I Lemma 5. If dx(vi, wi, H) > 1/(2h log k) then c(mincut(vi, wi, H)) < 2h log k · V̄ (r).

Proof. Suppose that dx(vi, wi, H) > 1/(2h log k) and let γ = c(mincut(vi, wi, H)). Then it
holds for all ρ ∈ [0, dx(vi, wi)] that c(δ(vi, ρ)) > γ where δ(vi, ρ) is the set of edges crossing
distance ρ from vi in H. Therefore,

V̄ (r) ≥
∫ dx(vi,wi,H)

ρ=0
c(δ(vi, ρ)) ≥ γ · dx(vi, wi) > γ/(2h log k)

Hence, c(mincut(vi, wi, H))< 2h log k · V̄ (r). J

If dx(vi, wi, H) ≤ 1/(2h log k), we replace H in G by a new edge viwi and set

x(viwi) = dx(vi, wi, H) , (2)
xj(viwi) = dx+xj

(vi, wi, H)− dx(vi, wi, H) ,∀j > i,

c(vi, wi) = c(mincut(vi, wi, H)),
`(viwi) = max{`1, `2}

where `1 = 0 if E(H) ∩ D1 = ∅ and `1 = maxe∈E(H)∩D1 `(e) otherwise, and `2 = 0 if
E(H) ∩D2 = ∅ and `2 = 1 + maxe∈E(H)∩D2 `(e) otherwise.
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I Lemma 6. Replacing the subgraph H by the new edge viwi as described above does not
increase the total volume

∑
e x(e)c(e) of the system. Moreover, after the replacement all

constraints of the LP are satisfied.

Proof. The product dx(vi, wi, H) · c(mincut(vi, wi, H)) is a lower bound on the volume of
H. The claim about the LP constraints is clear from the description of the replacement. J

We say that the new edge viwi represents the edges in E(H) (to be more precise, viwi
represents all edges that were represented by edges in E(H); an edge from the original edge
set represents itself). The new edge viwi is added to the set D of restricted edges and all
edges in D that are incident to a node in B(r) are removed from D. When some cut is
charged later to this new edge viwi, then the charge is redistributed recursively to the edges
represented by viwi, proportionally to their volume. When the edge viwi is cut later, then
it means cutting all edges in mincut(vi, wi, H). With this convention, every 3-route cut in
the modified graph corresponds to a 3-route cut of the same cost in the original graph. We
observe several things.

I Lemma 7. For each e ∈ D, every edge represented by e was charged at most `(e) + 1 times
due to the δ2(r) cuts.

Proof. By construction, every time something is charged to an edge f of level `(f), either
the edge is removed from the graph, or the level of the new edge that represents f is set to
`(f) + 1 at least. J

I Lemma 8. For each e ∈ D, `(e) ≤ log k.

Proof. By construction, the only possibility for an increase of the maximum level of edges
in D is when the level of a new edge viwi is set to `2 ≥ 1, according to the definition (2).
Note that in this case, at least two edges of level `2 − 1 are removed from D (and from G).
Since for every commodity i we add at most one edge to D, the claim follows. J

I Lemma 9. For each e ∈ D, x(e) ≤ 1/(2h log k).

Proof. By the construction and the definition (2) of x(viwi). J

The lemmas above guarantee that the set D entering the next iteration satisfies our
assumptions listed at the beginning of this section.

I Theorem 10. The approximation ratio of the algorithm for the 3-route single-source cut
problem is O(log2 k).

Proof. First of all, notice that if some mincut(vi, wi, H) is charged to an edge e, then e will
be removed together with H from the system and never be charged again. Hence, Lemma 5
implies that the cost of the part of F that is due to mincuts is at most O(φ log k).

It remains to bound the cost of the h-route cuts. By the construction, the cost of every
h-route cut δ2(r) is charged to the volume V (r) of some ball B(r). By Lemmas 4, 6, 7 and 8,
the sum of volumes of all balls to which some h-route cut was charged is at most O(φ log k).
Thus, by Lemma 4 the total cost of the h-route cuts is at most O(φ log2 k). J

STACS’11



136 Towards Duality of Multicommodity Multiroute Cuts and Flows

4 Multiple Sources

The algorithm for multiple sources is an extension of the single-source algorithm for h = 3.
Again, it works in iterations. In iteration i the algorithm constructs the ball B around one of
the terminals si and ti. In contrast to the single-source problem, there might be commodities
with both terminals inside B. To deal with these pairs, the algorithm is recursively run in
the ball B, with levels re-initialized to 0. There are two main issues that must be addressed:
the number of recursive calls working with the same part of the original graph, and the
(in)dependence of the subproblems. A minor change from the single-source algorithm is that
now we require that x(e)%le1/(6h log k) for every e ∈ D.

4.1 Number of overlapping recursive calls.
There are two ways how two recursive calls may work in the same area of the original graph G:
(i) One of the two calls is invoked inside the other call. (ii) When the recursive call for B
is completed, B is replaced by an edge and the edge is later included in a new ball B′ for
which another recursive call is invoked.

To guarantee that the depth of the recursion is small, we ensure that every constructed
ball contains at most half of the remaining commodities. Then the depth of the recursion is
log k only. In this part of our algorithm and its analysis we use the ideas from the recent
paper by Barman and Chawla [2]. Lemma 11 deals with this problem.

To guarantee that there are not too many later recursive calls working in a particular
area of the original graph, we apply a lazy strategy: instead of invoking the recursive call
immediately after the ball B is defined, the algorithm postpones the call. If the algorithm
later defines another ball B′ in which the recursive call is to be run, and the ball B (the edge
created from B) is contained in B′, it is sufficient to perform only the recursive call for B′;
this call will take care also about all commodities inside B (note that every two balls are
either disjoint, or one of them is contained in the other).

Before we state and prove Lemma 11 we need a few more definitions. To simplify
them, in addition to the assumption made in the previous section (i.e., x(uv) + xi(uv) =
|dx+xi(v)−dx+xi(u)| for each uv ∈ E), we assume, without loss of generality, that dx+xi(si) =
1. Then, for r ∈ (0, 1) and z ∈ {si, ti} we define Bz(r) = {u ∈ V | dx+xi

(z, u) ≤ r},
δti(r) = δ(r), δsi(r) = δ(1− r), δtix (r) = δx(r), and δsi

xi
(r) = δxi(1− r) where for each u ∈ V ,

dx+xi
(ti, u) = dx+xi

(u) and dx+xi
(si, u) = 1 − dx+xi

(u). For z ∈ {si, ti} we also define
δz1(r) = δz(r) \ {argmaxe∈δz(r) c(e)}, δz2(r) = δz1(r) \ {argmaxe∈δz

1 (r) c(e)} and

Dz
1 = {uv ∈ D | `(uv) = −1 or d(z, uv) is minimal among all e ∈ D with `(e) = `(uv)} ,

Dz
2 = D \Dz

1 .

where d(ti, uv) = d(uv) and d(si, uv) = 1− d(ti, uv). Finally, for z ∈ {si, ti} and r ∈ [0, 1],
we define V (z, r) = φ/k +

∫
ρ∈Rz∩[0,r] c(δ

z
x(ρ))dρ, where Rz = {r ∈ [0, 1] | δxi

(r) ≤
h− 1, δzx(r) ∩Dz

1 = ∅}.

I Lemma 11. There exist good radii rs and rt such that rs + rt ≤ 1,

c(δh−1(si, rs)) ≤ 3h log(2k) · V (si, rs) and c(δh−1(ti, rt)) ≤ 3h log(2k) · V (ti, rt) .

Proof. From Lemma 2 it follows that the measure of the set {r ∈ [0, 1] | |δxi
(r)| ≤ h− 1} is

at least 1/h. Since the number of edges in D1 is at most 2 log k and x(e) ≤ 1/(6h log k) for
every e ∈ D1, the measure of the radii forbidden due to edges in D1 is at most 1/(3h). As
dx+xi

(ti, si) = 1, there is a radius r so that |Rsi∩[0, r]| ≥ 1/(3h) and |Rti∩[r, 1]| ≥ 1/(3h). It
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follows from Lemma 1 that there is an rs ∈ Rsi∩ [0, r] with c(δsi

h−1(rs)) ≤ 3h log(2k) ·V (si, rs)
and an rt ∈ Rti ∩ [r, 1] with c(δtih−1(rt)) ≤ 3h log(2k) · V (ti, rt). Since rs + rt ≤ 1, the lemma
follows. J

If rs and rt are the radii from Lemma 11 then the sets Bsi(rs) and Bti(rt) are disjoint;
thus at least one of them contains at most half of the remaining commodities. We always
pick such a ball in our algorithm.

I Corollary 12. The depth of the recursion is at most log k.

4.2 Independence of the Balls
Note that without some special care, the recursive subproblems are not independent as the
inner part of every ball B is connected to the outside part by two edges. This is in contrast
to the case h = 2 where the two parts of the graph are connected by a single edge and thus
can be treated independently in order to deal with those commodities with both terminals in
the same part of the graph. A new type of edges, forbidden edges, will help us to control the
dependencies.

In the algorithm for the single-source multi-route cut, the input for iteration i consists
not only of the current graph with the set of commodities and the corresponding fractional
solution of the linear program but also of the set of restricted edges inside of this graph,
which helps us to control the dependencies between the iterations. For multiple sources,
besides the restricted edges, we will also use the forbidden edges. Formally, they will be
part of the set of restricted edges but their level will be −1 and the restrictions imposed on
them are stronger: they are never cut (be it an h-route cut or a mincut) and they are never
charged for any cut.

Assume that we plan to invoke a recursive call for a ball built around the terminal
z ∈ {si, ti} with radius r. We distinguish two cases (as in the previous section, vi and wi
denote the two entry nodes of H):

If dx(vi, wi, G \Hz) ≤ 1/(6h log k), the recursive call is invoked for the subgraph Hz with
an extra edge viwi with x(viwi) = dx(vi, wi, G \Hz), c(viwi) = c(mincut(vi, wi, G \Hz))
and level −1. For each j > i we also set xj(viwi) = dx+xj

(vi, wi, G \Hz)− x(viwi). The
set of commodities consists of those with both terminals in Bz(r), and the set of restricted
edges is (D ∩E(Hz))∪ {viwi}. Since the x-length of the new edge is very short and each
recursion creates at most one such edge, it is possible to impose such restrictions.
If dx(vi, wi, G \Hz) > 1/(6h log k), for the recursive call we use the ball Bz(r)s. The set
of commodities consists again of those with both terminals in Bz(r), and the set of edges
with restriction is D ∩ E(Hz). The pair {vi, wi} is added to the set T . At the very end
of the algorithm, we disconnect all pairs that are in T .

4.3 Putting it Together
Similarly to the singe-source version of the algorithm, for every part of the set F that the
algorithm constructs, the ratio between the cost and the volume is bounded by O(log k), and
to each part of the volume we charge at most O(log k) times within each recursive call. The
only problem is that the set F that was constructed so far need not be a valid h-route cut.
The difficulty is with the recursion.

In the recursive calls, when the distance dx(vi, wi, G \Hz) was large (see the previous
subsection), we ignored the fact the vi and wi were possibly connected outside the ball Bz(r).
Thus, at this point we have no guarantee that the set F that we constructed so far is a
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3-route cut. To ensure that we do have a 3-route cut, we remove an additional set of edges
from the graph. To be more specific, it suffices to disconnect the pairs of vertices in T .

We proceed as follows. Consider the instance of the classical multicut problem consisting
of the graph G \D and of the set T that represents the commodities. By construction of
the set T , the x-distance between terminals of every pair in T is at least 1/(6h log k). Thus,
if we scale the x-values by 6h log k, we get a fractional solution for the multicut problem
for this instance. We apply the classical ball-growing rounding algorithm [6] to obtain an
O(log k)-approximation of the minimum multicut for this instance. Due to the scaling, the
cost of the obtained cut is upper-bounded by O(h log2(k) · φ). We add all edges from this
cut to the set F .

Considering the explanation at the beginning of this section and the bound from the
previous paragraph, the cost of the set F is O(log3 k · φ), and at this point, F is a valid
3-route cut. The main theorem follows.

I Theorem 13. The approximation ratio of the algorithm for the general 3-route cut problem
is O(log3 k).

5 Duality of Multicommodity Multiroute Flows and Cuts

Recall that an elementary h-flow between s and t is a set of h edge-disjoint paths between s
and t, each carrying a unit flow. Let Qi denote the set of all elementary h-flows between
si and ti and let Q =

⋃k
i=iQi. Then the problem of finding a maximum multicommodity

h-route flow has the following linear programming formulation; there is a non-negative
variable f(q) for every q ∈ Q where the value f(q) represents the total amount of flow sent
along the h-route flow q. On the right side of the page we state the dual linear program.

max
∑
q∈Q

f(q) (3)

∑
q∈Q:e∈q

f(q) ≤ h · c(e) ∀e ∈ E

f(q) ≥ 0 ∀q ∈ Q

min h ·
∑
e∈E

c(e) · x(e) (4)∑
e∈q

x(e) ≥ 1 ∀q ∈ Q

x(e) ≥ 0 ∀e ∈ E

Note that without the factor h in the objective function the linear program (4) is another
relaxation of the h-route cut problem (the approximation algorithm of Chekuri and Khanna [4]
for 2-route cuts is based on this relaxation). We will refer by (4’) to the linear program (4)
with the objective function scaled down to

∑
e∈E c(e) · x(e).

There are simple examples showing that the linear relaxation (4’) is by a factor of h
lower (asymptotically) than the linear relaxation of (1). Think about two vertices s and t
connected by M parallel edges. Then the fractional optimum for the linear program (4’)
is M/h (assign a value 1/h to every variable) while the fractional optimum of the linear
program (1) is M − h.

The main technical result of this section is that the gap between the two relaxations is
not more than h. A corollary of this result is an approximate duality theorem for multiroute
cuts and flows.

I Theorem 14. Given an instance of the h-route cut problem, let O1 denote the optimum
value of the linear program (1) and O2 the optimum value of the linear program (4’). Then
O2 ≤ O1 ≤ h ·O2, and the bound is tight.
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Proof. Since the first inequality is trivial, it suffices to prove the second one. Let x be
an optimum solution of the linear program (4’). We are going to derive from x a solution
x̄, x1, . . . , xk ∈ RE of the linear program (1) with the objective value being larger by a factor
of at most h (i.e.,

∑
e∈E c(e)x̄(e) ≤ h

∑
e∈E c(e)x(e)). For each e ∈ E, let x̄(e) = h · x(e). It

suffices to prove that for each i, the following linear program has a feasible solution xi. As
in Section 2, Pi denotes the set of all paths between si and ti.∑

e∈p
xi(e) ≥ 1−

∑
e∈p

x̄(e) ∀p ∈ Pi (5)

∑
e∈E

xi(e) ≤ h− 1 ∀e ∈ E

xi(e) ≥ 0 ∀e ∈ E

Assume, for a contradiction, that the linear program (5) does not have a feasible solution.
Then, by Farkas’ lemma, there exists a non-negative vector λ ∈ RPi and a non-negative
scalar γ such that∑

p∈Pi:e∈p
λ(p) ≤ 1 ∀e ∈ E (6)

∑
p∈Pi

λ(p)(1−
∑
e∈p

x̄(e)) > h− 1

(without loss of generality, we assume that γ = 1; note that every vector (λ, γ) obtained by
the application of the Farkas’ to the linear program (5) satisfies γ > 0 and thus, we can scale
the (λ, γ) to guarantee γ = 1). In the following discussion, among all vectors λ satisfying the
constraints (6) we fix the one for which

∑
p∈Pi

λ(p) is minimal.
Observe that λ corresponds to a feasible flow between si and ti in the graph G with all

edge capacities set to one; the size of the flow is at least h−1+
∑
p∈Pi

∑
e∈p λ(p)x̄(e) > h−1.

For each edge e ∈ E, let λ(e) =
∑
p:e∈p λ(p) and let E′ = {e ∈ E | λ(e) > 0} be the subset

of edges on which the flow λ is non-zero. Since the flow is realized in a graph with unit
capacities and the size of the flow is strictly larger than h− 1, by Mengers’ theorem there
exist h edge disjoint paths between si and ti in (V,E′); let q ∈ Qi denote the corresponding
elementary h-flow and λ(q) = mine∈q λ(e). Let λ′ ∈ RPi be (a path-decomposition of) the
flow obtained from the flow λ by subtracting λ(q) units of flow from every edge e ∈ q. Note
that

∑
p∈Pi

λ(p) >
∑
p∈Pi

λ′(p). Since we started with a feasible solution x of the linear
program (4’), from the definition of x̄ we know that

∑
e∈q x̄(e) ≥ h. Observing that∑

p∈Pi

λ(p)(1−
∑
e∈p

x̄(e)) =
∑
p∈Pi

λ′(p)(1−
∑
e∈p

x̄(e)) + λ(q)(h−
∑
e∈q

x̄(e)) ,

we conclude that
∑
p∈Pi

λ′(p)(1−
∑
e∈p x̄(e)) > h− 1. However, this is a contradiction with

the choice of λ: the flow λ′ also satisfies the constraints (6) and its size is smaller than the
size of λ. Thus, the linear program (5) has a feasible solution, for each i, and the proof is
completed. J

I Corollary 15 (Duality of multiroute multicommodity flows and cuts). For any instance with
k commodities, the cost of the minimum h-route cut for h ≤ 3 is at least a fraction 1/h of the
maximum h-route multicommodity flow, and is always at most O(h2 log3 k) times as much.

Proof. The first relation is trivial: one always has to block at least one of the h paths of
every elementary h-flow. The other relation follows from Theorem 14, the duality of the
linear programs (3) and (4), and Theorem 13 (the approximation algorithm). J
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5.1 Sparsest multiroute cut
The sparsest multiroute cut problem is a multiroute analog of the sparsest cut problem. By a
combination of standard [7, 11] and our techniques we obtain the following results.

I Theorem 16. The approximation ratio achievable in polynomial time for the multiroute
sparsest cut problem with h ≤ 3 is O(h2 log h log3 k logD) where D =

∑k
i=1 di.

I Corollary 17. For any instance with k commodities, the sparsest h-route cut for h ≤ 3 is
at least as large as the maximum concurrent h-route multicommodity flow, and is always at
most O(h2 log h log3 k logD) times larger.
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