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Abstract
In this paper, we present a parallel speed-up of a simple, yet significantly powerful, sequential
model by cellular automata. The simulated model is called oblivious multi-head finite automata
and is characterized by the fact that the trajectory of the heads only depends on the length of the
input word. While the original k-head finite automaton works in time O(nk), its corresponding
cellular automaton performs the same task in time O(nk−1 log(n)) and space O(nk−1).
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Introduction

Cellular automata (CA for short) are recognized as a major model of massively parallel
computation. Their simple and homogeneous description as well as their ability to distribute
and synchronize the information in a very efficient way contribute to their success. However,
to determine to what extent CA can fasten sequential computation is not a simple task.

As regards specific sequential problems, the gain in speed by the use of CA is manifest [1,
2, 3]. But when we try to get general simulations, we have to face the delicate question of
whether parallel algorithms are always faster than sequential ones. An inherent difficulty
arises from the fact that efficient parallel algorithms make often use of techniques radically
different from the sequential ones. Also there might exist a faster CA for each singular
sequential solution whereas no general simulation exists.

Hence, no surprise: for Turing machines, model of sequential computation, the known
simulations by CA provide no parallel speed-up. The early construction of Smith [9] simulates
one step of the Turing machine by one step of the CA. Furthermore, no faster simulations
have been reported yet even for restricted variants. In particular, we do not know whether
any finite automata with k heads can be simulated on CA in less than O(nk) steps, which is
the sequential time complexity.

In a step toward addressing such issues, we shall examine here a simple sequential model,
called data-independent multi-head finite automata. This device was introduced by Holzer
in [6] as multi-head finite automata with an additional constraint of obliviousness: the
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trajectory of the heads only depends on the length of the input word. As emphasized in [6],
such finite automata lead to significant computational power: they characterize parallel
complexity NC1 – which explains they can be efficiently parallelized. Their properties have
been further discussed in [7]. We propose below a simulation of these data-independent
multi-head finite automata by CA which gives rise to an efficient parallel speed-up.

This paper is organized as follows. The next section introduces the two models considered.
Section 2 displays some of their features and abilities. Section 3 presents the simulation
algorithm and its time and space cost.

1 Definitions

1.1 Multi-head finite automata
Given an integer k ≥ 1, a two-way k-head finite automaton is a finite automaton reading an
input word written between two end-markers using k heads that can move in any direction
provided they do not go beyond these markers.

I Definition 1. A (deterministic) two-way multi-head finite automaton (2DFA(k) for short)
is a tuple (Σ, Q,B,C, q0, qa, qr, k, δ), where Σ is a finite set of input symbols (or letters), Q
is a finite set of states, B 6= C /∈ Σ are the left and right end-markers, q0 ∈ Q is the initial
state, qa 6= qr ∈ Q are respectively the accepting state and the rejecting state, k ≥ 1 is the
number of heads and δ : Q× (Σ ∪ {B,C})k → Q× {−1, 0, 1}k the transition function; −1
means to move the head one letter to the left, 1 to move it one letter to the right and 0 to
keep it on its current letter. For the heads to be unable to move beyond the end-markers, we
require that if δ(q, a1, . . . , ak) = (q′,m1, . . . ,mk), then for any i ∈ J1, kK, ai = B⇒ mi ≥ 0
and symmetrically ai = C⇒ mi ≤ 0.

A configuration of a 2DFA(k) on an input word w at a certain time t ≥ 0 is a couple (p, q)
where p ∈ J0, |w|+ 1Kk is the position of the multi-head and q the current state.

The computation of a 2DFA(k) on an input word w ∈ Σn starts with all heads on the left
end-marker, and ends when the automaton reaches the accepting or the rejecting state. In
the former case, the word is said to be accepted, while in the latter it is rejected. For some
words, none of these cases happen and hence the automaton will enter a loop eventually.
The language L(F) recognized by a 2DFA(k) F is the set of the words accepted by F . One
can notice a 2DFA(k) necessarily enters a loop if it has not accepted nor rejected the input
at step |Q|(n+ 2)k steps, which is the number of configurations featuring w; so, we say the
computation is over if we reach this step (it may of course take less).

We will focus now on the data-independent 2DFA (2DIDFA), a particular class of 2DFA
for which the path followed by the heads only depends on the length of the input word, not
on the letters thereof.

I Definition 2. Given k ≥ 1, a 2DFA(k) F is said to be oblivious (or data-independent) if
there exists a function fF : N2 → Nk such that the position of its multi-head at time t ∈ N
on any input word w is fF (|w|, t).

1.2 Cellular automata
A cellular automaton is a parallel synchronous computing model consisting of an infinite
number of finite automata called cells which are distributed on Z and share the same
transition function, depending on the cell itself and its two neighbors.
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I Definition 3. A cellular automaton is a tuple (Σ, Q,#, qa, qr, δ), where Σ is the finite set
of input symbols (or letters), Q ⊃ Σ is the finite set of states and δ : Q3 → Q the transition
function. # ∈ Q \ Σ is a particular quiescent state, verifying δ(#,#,#) = #. qa 6= qr ∈ Q
are respectively the accepting state and the rejecting state. These are persistent, which means
that a cell in such a state will never switch to another state: for any q,q

′ ∈ Q, δ(q, qa, q
′) = qa

and δ(q, qr, q
′) = qr.

A configuration is a function C : Z → Q. A site is a cell at a certain time step of the
computation; 〈c, t〉 will denote the state of the site (c, t) ∈ Z × N. The computation of a
CA C on an input word w of size n ≥ 1 starts at time 0 with all cells in state # except
cells 1 to n where the letters of the word are written. This is the initial configuration Cw

associated to w. Then the cells update in parallel their respective states according to δ: for
all (c, t) ∈ Z× N, 〈c, t+ 1〉 = δ(〈c− 1, t〉, 〈c, t〉, 〈c+ 1, t〉).

The input word is accepted (resp. rejected) in time t ∈ N if and only if cell 1 enters the
accepting state qa (resp. the rejecting state qr) at time t (and hence at any time t′ ≥ t).
The language L(C) recognized by the automaton is the set of the words it eventually accepts.
L(C) is said to be recognized in time τ : N → N if and only if any word w is accepted or
rejected in time τ(|w|).

2 Preliminaries

Our concrete question is the following: How long does it take to simulate a data-independent
k-head finite automaton on CA? Regarding general multi-head finite automata, one can
recall that a 2DFA(k) can be simulated on a deterministic multi-tape Turing machine in
time O(nk), where n is the length of the input word [10]. Besides, it is well-known that CA
are able to simulate in real time any deterministic (even multi-tape) Turing machine [9, 4].
A simple simulation consists in representing each tape of the Turing machine by two stacks
– several stacks can be simulated simultaneously by a CA without loss of time. An upper
bound in O(nk) for the time required by a CA to simulate a 2DIDFA(k) follows immediately.
Now, how to reduce this time bound? As yet, no parallel speed-up is known to simulate
Turing machines on CA; and no faster simulation of DIDFA on Turing machines taking
the obliviousness constraint into account has been proposed. Here we will present a direct
simulation which will take advantage of the oblivious feature of the DFA and so allow us to
parallelize its computation.

2.1 Facts about multi-head finite automata
Let F = (Σ, Q,B,C, q0, qa, qr, k, δ) be a 2DIDFA, n ≥ 1 be an integer and w ∈ Σn be a word
of size n. Let us look at the computation of F on input word w. The multi-head (composed
of k heads) can be regarded as a device moving one point at a time in any direction within
the set W = J0, n+ 1Kk.

As F is data-independent, we can separate the path taken by the multi-head from the
consecutive states of the automaton (depending on the letters of w). In other words, we can
take a look at the path of the multi-head on an input word an, for any a ∈ Σ; it will be the
same for w. If all heads are around the middle of the input, they will read only a for a long
time and hence their movement will become periodic until one of them reaches an end-marker.
That implies that the path of the multi-head is very simple as long as it is not near the outer
edge O = {p ∈ W | ‖p− n+1

2 (1, . . . , 1)‖∞ = n+1
2 }. To be more accurate, we can be sure the

path has already become periodic precisely when the multi-head enters the central part of
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W by crossing the inner edge I = {p ∈ W | ‖p− n+1
2 (1, . . . , 1)‖∞ = n+1

2 − |Q| − 1} and it
remains periodic until reaching the outer edge O (cf. Fig. 1).

0

|Q|+ 1

n− |Q|

n+ 1

0 |Q|+ 1 n− |Q| n+ 1

p21

p22

p42

p43

p74

outer edge

inner edge

Figure 1 A representation of W for k = 2. The (beginning of the) path of the multi-head is
drawn with the periodic sections (jumps) crossing the central white square (delimited by the inner
edge I) in black. For each jump a period shape is indicated in bold. The first five key points pi that
begin or end a jump are displayed as black dots.

The simulation of a 2DIDFA F on an input word w will involve the storing of specific
configurations occurring in the run of F over the input word a|w| (see Fig. 1). We hence
define the sequence of key points (pi, ei, ti)i ∈ (W×Q×N)N where (pi, ei) is the configuration
at instant ti of F over a|w|, by p0 = (0, . . . , 0) ∈ O, e0 = q0, t0 = 0 and for all i > 0,

if pi ∈ I, pi+1 is the next position of O the multi-head encounters, at a certain time ti+1
with F in state ei+1; this point is called a jump (across a periodic section);
otherwise ti+1 = ti + 1 and (pi+1, ei+1) is the next configuration of F ; this point is called
a step.

Since the automaton is deterministic, any non-looping (accepting or rejecting) path cannot
go through twice the same position in the same state. Thus, we can bound the number of
jumps by |Q||I| ∼ 2|Q|knk−1. In the same way, as steps are located between the outer and
inner edges, their number is bounded by |Q|((n+ 2)k − (n− 2|Q|)k) ∼ 2|Q|(|Q|+ 1)knk−1.
The number of key points of a non-looping path is thus in O(nk−1). In particular, it is linear
when k = 2.

2.2 Basic techniques on cellular automata
A given computation of a CA can be easily represented by drawing successive configurations
each one above its predecessor, forming a space-time diagram.

We will often have to perform several rather independent computations at the same time;
this can easily be done by a “product” automaton which works with a finite number of
layers supporting each a specific computation. Although rather independent, the layers can
communicate between one another to exchange information, since any cell can see all layers.
Typically, cells may be waiting for a firing squad to end on a layer before changing their
behavior on another layer.
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In the remainder of this article, we will have to handle computations involving coordinates.
It is classical on CA to write integers in binary on segments of cells (one bit per cell) and
execute basic operations with them. Here, all integers will be spelled backward on cells, the
lowest bit being the leftmost one. For binary operators, we consider two integers superimposed
on the same segment of cells.

It is easy to see that arithmetical operation such as addition, subtraction or comparison
can be done in space and time linear in the number of bits of the operands. The same goes
for division by a fixed constant where we consider the result to be both the quotient and the
remainder.

Using the power of parallelism, it is also possible to achieve multiplication in linear space
and time (see [1]). Moreover, we shall also use implicitly the fact that it is possible to
synchronize any interval of cells in space and time linear in the size of this interval. This
problem is often referred to as the firing squad synchronization problem (see [3, 8]).

In our construction, we shall use another basic operation that we call selection. The
principle is the following: we fix an interval of cells of size n. Given an integer i (written
in binary) between 0 and l positioned at the left of our interval, we want to select the i-th
element of the interval and bring it at the right end of the interval (see Fig. 2).

i0

i1

0

0

O(`)

1 i0 i1 n

−→ t

Figure 2 Schematic space-time diagram of a selection. The time scale of the picture has been
compressed by factor 2, so that a signal of speed 1 (for instance, in red) seems to be of speed 2.

The basic principle of this operation is quite simple, we shift the integer i along the
interval and at each shift decrease its value by one. When reaching 0, we take the content of
the corresponding cell inside the interval and send it at maximal speed toward the end of
the interval [5]. Thus, the shift speed can be constant and the whole selection achieved in
linear time using as workspace only the constant logarithmic space that is required to write
the value l.

In addition, this operation can be pipelined. That is, if we suppose that for a fixed
interval, we have m integers written as `-bit strings at the beginning of the interval every
`′ = O(`) time steps, then the total time for achieving all the selections is m`′ + n.

STACS’11
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3 Simulation

I Theorem 4. Given k > 1, for any 2DIDFA(k) F recognizing a language L, there exists a
CA C recognizing L in time O(nk−1 log(n)) and space O(nk−1), where n is the size of the
input word.

The rest of this paper will be devoted to the proof of this theorem. We will only consider
the case k = 2 to alleviate the descriptions, but it should be straightforward to generalize
this proof.

We assume now that we have a 2DIDFA(2) F = (Σ, Q,B,C, q0, qa, qr, 2, δ). Let us
take an arbitrary input word w ∈ Σn, given an integer n ≥ 2|Q|. We will define a CA
C = (Σ, Q′,#, q′a, q′r, δ′) fulfilling the requirements of the theorem. Instead of giving the full
description of its state set and transition function, we will describe its behavior when given w
as input (the finite number of words that are too short are treated by the CA as a particular
case, we can hence forget them).

The execution of C on w involves coordinates. They all range from 0 to n+ 1, hence we
need `(n) = dlog2(n+ 2)e bits to be able to write any of them. We have to compute it, thus
the first thing C will do is to write n + 1 in binary on cells J1, `(n)K. This can be done in
time O(n).

3.1 Computation of the sequence of key points
We have, as defined previously, W = J0, n+ 1K2, O = ({0, n+ 1} × J0, n+ 1K) ∪ (J0, n+ 1K×
{0, n+1}), I = ({|Q|+1, n−|Q|}×J|Q|+1, n−|Q|K)∪ (J|Q|+1, n−|Q|K×{|Q|+1, n−|Q|})
and the sequence of key points (pi, ei, ti)i summing up the computation over an. What we
want to do now is to output these key points in order on the CA. Note that the coordinates
xi, yi of position pi, time ti, and index i are polynomial in n; thus, they can be encoded in
logarithmic space, while state ei lies in a finite set, only requiring a single cell. Each such
point will be written as superimposed `(n)-bit strings (for xi, yi, ti, and i) together with ei.

We will compute the sequence of key points iteratively:
1. The procedure is initiated from the first key point ((0, 0), q0, 0).
2. At the start of iteration i, key point (pi = (xi, yi), ei, ti) is given. First we determine if

pi ∈ I. It consists in checking whether at least one coordinate of pi is equal to |Q|+ 1 or
n− |Q|.

if pi /∈ I (case of a step). We check for each head whether it lies on the outer edge
(i.e., whether xi, yi ∈ {0, n + 1}). This indicates which letter is read (B,C or a).
According to this information, we mimic a single transition of the automaton. Namely,
we compute the coordinates of pi+1 and ti+1 by means of some increment or decrement,
along with the next state ei+1.
if pi ∈ I (case of a jump). Between pi and pi+1, the automaton follows a periodic
behavior that only depends on the current state ei. Such behavior can be specified by
finite parameters, namely its period ri = (ui, vi) ∈ J−|Q|, |Q|K2 and its shape si (i.e.,
the head’s sequence of moves in {−1, 0, 1}2, of length at most |Q|). Since the number
of states and so the number of distinct periodic behaviors are finite, we can assume
that ri and si are available in due time. Thus, we perform operations (n− xi)/ui and
(n−yi)/vi to get the respective quotients ai and bi and remainders hi and ki. We select
the smaller quotient ci ∈ {ai, bi} and then compute a′i = ui × ci and b′i = vi × ci. The
next key point is pi+1 = (xi +a′i, yi +b′i). To be accurate, we have to add the remainder
of the period depending on hi (if ci = ai) or ki (if ci = bi) and on the particular
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shape si of the period. Although this remainder can have negative coordinates in some
particular cases, their absolute values are always bounded by |Q|.

3. The procedure stops if either ei+1 ∈ {qa, qr} or a loop is detected. In this last case,
we check the number of key points already computed and the elapsed time. If i+ 1 =
|Q|((n+ 2)2 − (n− 2|Q| − 2)2) or ti+1 > |Q|(n+ 2)2, we know that the automaton has
entered a loop and we can thus definitely stop the simulation.

What is the cost of the whole iteration procedure? Each iteration performs only a finite
number of linear operations over integers of size `(n) = O(log(n)) and thus is done in space
and time O(log(n)). Since the number of key points for a non-looping computation is in
O(n), the whole procedure takes O(n log(n)) time steps. One can notice it is conducted very
slowly, with O(log(n)) time steps to get only one move of the multi-head in case of step
points. But we save a lot of time with every jump across a periodic section, computing O(n)
moves of the multi-head within O(log(n)) time steps of the CA.

3.2 Computation of the states
For the moment, we have computed the sequence of key positions (pi)i that the multi-head
would follow on input word w, but we still do not know its successive states (we have seen
only those corresponding to input word an). A fortiori we do not know whether w should be
accepted. We are now about to get past this lack. What we want to do is to compute, for
all key positions pi, the function δi ∈ QQ such that for all q ∈ Q, if at some time step t the
DFA is in state q (for input word w) with the multi-head on key position pi, then at time
t+ ti+1 − ti it is in state δi(q) with the multi-head on key position pi+1. One can notice that
this way δi(q) may be undefined if state q does not lead to the actual path between pi and
pi+1. If so, it is no problem, we just set δi(q) = • /∈ Q.

To compute these functions, we have two cases according to whether key position pi is in
I or not. If it is a step (pi /∈ I), its associated function δi only performs a single transition
of the DFA and so can be simply computed from the letter lying at this position. In case
of a jump (pi ∈ I), the problem is more complex, since the associated function mimics all
successive transitions performed from pi to pi+1. But, making use of the regularities of
oblivious computation, we can compute simultaneously all these jump functions in linear
time.

Pre-computation of all feasible jump functions
Each cell c ∈ {|Q|+ 1, n− |Q|} will compute the jump function associated to potential key
position p = (c, |Q|+ 1) (and at the same time (c, n− |Q|) and (|Q|+ 1, c) and (n− |Q|, c)).
First we will assume that the DFA is in some state q and that the forthcoming periodic
trajectory is of shape s.

Cell c plays the role of the multi-head. Once every two time steps, it will update the state
of the DFA according to the letters it reads and send two signals at speed 1, one toward the
left and one toward the right, to tell the rest of the cells supporting the input word what is
the next move of the multi-head. Two copies of the input word are shifted according to the
signals received and hence this cell has access to the letters encountered by the multi-head.
Because of the duration of the transmission of the order to shift, we need to have parts of
the copies provisionally compressed (two letters may lie on the same cell) or dilated, some
cells being empty (cf. Fig 3). This process (for particular values q and s) is conducted until
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an end-marker is fed to cell c, or until it realizes state q does not induce a period of shape s.
In both cases, if p = pi for some i, we have got δi(q) after O(n) time steps.

What we just described grants us state δi(q) only for the key positions at the four corners
of the inner edge. Anyway, there is a nice way to get all the other functions simultaneously.
Suppose pi is at a corner of I; how do we compute, for instance, δj(q) for pj = (xi +h, yi) ∈ I?
The two points share their first coordinate (every p ∈ I shares a coordinate with a corner),
thus for a same periodic behavior the two trajectories of the multi-head are identical, except
for the first head, which is shifted by h letters. δi(q) is computed on cell xi from some time
step t ∈ N; this cell will send each second-head letter it reads at speed 1 to the other cells.
Thus, from time step t + h, cell xi + h will receive the correct letters of the second head,
while the copy of the tape for the first head is shifted on this cell with the same delay of h
time steps (cf. Fig. 3). δj(q) can in this way be computed on cell xi + h.

This previous process is actually achieved simultaneously for every q ∈ Q. Finally, using
one layer for each possible shape, we can have all feasible jump functions written on segment
J|Q|+ 1, n− |Q|K in O(n) time steps.

Selecting the transition function associated to a key point
Suppose we are given all the feasible jump functions written on segment J|Q|+ 1, n− |Q|K,
a copy of the input written on cells J1, nK and a key point initially written in position
J−2`(n) + 1,−`(n)K. Using those data, we want to retrieve the function associated to the
key point. Two cases are considered depending on whether the function performs a single
transition or a jump transition of the DFA.

Case of step points: according to the coordinates of the step position, we collect the input
letters read by each head of the DFA and then deduce the proper function. This is done
in time and space O(n).
Case of jump points: making use of the operation of selection described in section 2.2, we
select the jump function written on cell c and layer l, where c is specified by the position
and l (depending on the period) by the state of the jump point. This is done in time and
space O(n).

3.3 Final stage
Compiling the previous procedures, the cellular automaton C works the following way:

First, C pre-computes all the feasible jump functions and writes them on cells J|Q| +
1, n− |Q|K. This is done in both space and time O(n).
Then, C generates the list of key points. This is done in time O(n log(n)) and space
O(log(n)).
As soon as one key point is written, C selects its associated function. Each selection is
done in time and space O(n).
Once a new selection is over, C updates the current state of the automaton F according
to the proper function. In case it is the accepting or the rejecting state, or if the time of
the last key point reaches the maximal number of moves the multi-head is supposed to
perform, C terminates its computation.

These methods obviously work in space O(n). In regard to the time, since the selections
are pipelined, the bound corresponds to the time required to generate all the key points plus
the time of the last selection. Hence the total running time is in O(n log(n)) +O(n), i.e. in
O(n log(n)), leading to the theorem. J
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Figure 3 Simulation of the multi-head from a corner of the inner edge. On the left we have two
portions of the path (a) and (b) that are translated copies of each other by h letters. Portion (a)
starts at corner (|Q| + 1, |Q| + 1) and is simulated by cell |Q| + 1 (the darkened one) by the CA (on
the right) with two layers, one by head. On each layer, according to the state of the DFA, the dark
cell may send signals telling the other cells to shift their letter to the left (blue signal) or to the right
(red signal). If they see no signal, the cells keep their letter, which are symbolized by dots, linked to
indicate where they are moved at each time step – end-markers are also represented by dots, linked
in black. As the shifted tapes on each layer cross the dark cell, the latter gets the appropriate letters
within two time steps to deduce the next move and state of the DFA. Cell |Q| + 1 + h simulates
portion (b) h time steps later. It sees directly the correct letters on the first layer while those for the
second head are sent by the dark cell.

Conclusion

We have presented an efficient construction that simulates oblivious k-head finite automata
on cellular automata in time O(nk−1 log(n)) and space O(nk−1). Such simulations achieving
parallel speed-up are scarce. The performance gain is in O(n/ log(n)) as regards the naïve
simulation without speed-up, which processes the same task in time O(nk).

Our result fully exploits the oblivious feature of the sequential computation. Now, it is
another challenge to achieve parallel speed-up for multi-head finite automata without the
constraint of data-independence.

STACS’11
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input

(δi)i q0

qt1

qt2

qt3

δ0

δ1

δ2

δ3

p0, e0, t0

p1, e1, t1

p2, e2, t2

p3, e3, t3

p4, e4, t4

O(n)

O(log(n))

−→ t

Figure 4 Global simulation. Light grey corresponds to the pre-computation of jumps functions,
dark grey to the computation of the sequence of key points, and the rest is the selection (here again,
the time scale is compressed by factor 2).
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