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Abstract
Most modern implementations of regular expression engines allow the use of variables (also called
back references). The resulting extended regular expressions (which, in the literature, are also
called practical regular expressions, rewbr, or regex) are able to express non-regular languages.

The present paper demonstrates that extended regular-expressions cannot be minimized ef-
fectively (neither with respect to length, nor number of variables), and that the tradeoff in size
between extended and “classical” regular expressions is not bounded by any recursive function.
In addition to this, we prove the undecidability of several decision problems (universality, equiv-
alence, inclusion, regularity, and cofiniteness) for extended regular expressions. Furthermore, we
show that all these results hold even if the extended regular expressions contain only a single
variable.
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1 Introduction

Since being introduced by Kleene [18] in 1956, regular expressions have developed into a
central device of theoretical and applied computer science. On one side, research into the
theoretical properties of regular expressions, in particular various aspects of their complexity,
is still a very active area of investigation (see Holzer and Kutrib [16] for a survey with
numerous recent references). On the other side, almost all modern programming languages
offer regular expression matching in their standard libraries or application frameworks, and
most text editors allow the use of regular expressions for search and replacement functionality.

But, due to practical considerations (cf. Friedl [13]), most modern matching engines have
evolved to use an extension to regular expressions that allows the user to specify non-regular
languages. In addition to the features of regular expressions as they are mostly studied
in theory (which we, from now on, call proper regular expressions), and apart from the
(regularity preserving) “syntactic sugar” that most implementations use, these extended
regular expressions contain back references, also called variables, which specify repetitions
that increase the expressive power beyond the class of regular languages. For example,
the (non-regular) language L =

{
ww | w ∈ {a, b}∗

}
is generated by the extended regular

expression α:=
(
(a | b)∗

)
%x x.

This expression can be understood as follows (for a more formal treatment, see Defi-
nition 3): For any expression β, (β)%x matches the same expression as β, and binds the
match to the variable x. In the case of this example, the subexpression

(
(a | b)∗

)
%x can be

matched to any word w ∈ {a, b}∗, and when it is matched to w, the variable x is assigned
the value w. Any further occurrence of x repeats w, leading to the language of all words of
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the form ww with w ∈ {a, b}∗. Analogously, the expression
(
(a | b)∗

)
%x xx generates the

language of all www with w ∈ {a, b}∗.
Although this ability to specify repetitions is used in almost every modern matching

engine (e. g., the programming languages PERL and Python), the implementations differ in
various details, even between two versions of the same implementation of a programming
language (for some examples, see Câmpeanu and Santean [6]). Nonetheless, there is a
common core to these variants, which was first formalized by Aho [1], and later by Câmpeanu,
Salomaa and Yu [5]. Still, theoretical investigation of extended regular expressions has been
comparatively rare (in particular when compared to their more prominent subclass); see e. g.,
Larsen [20], Della Penna et al. [12], Câmpeanu and Santean [6], Carle and Narendran [8],
and Reidenbach and Schmid [22].

In contrast to their widespread use in various applications, extended regular expressions
have some undesirable properties. Most importantly, their membership problem (the question
whether an expression matches a word) is NP-complete (cf. Aho [1]); the exponential
part in the best known upper bounds depends on the number of different variables in the
expression. Of course, this compares unfavorably to the efficiently decidable membership
problem of proper regular expressions (cf. Aho [1]). On the other hand, there are cases
where extended regular expressions express regular languages far more succinctly than proper
regular expressions. Consider the following example:

I Example 1. For n ≥ 1, let Ln:={www | w ∈ {a, b}+, |w| = n}. These languages Ln
are finite, and hence, regular. With some effort1, one can prove that every proper regular
expression for Ln is at least of length exponential in n. In contrast to this, Ln is generated
by the extended regular expression

αn:=((a | b) · · · (a | b)︸ ︷︷ ︸
n times (a | b)

)%x xx,

which is of a length that is linear in n. 3

Due to the repetitive nature of the words of languages Ln in Example 1, it is not surprising
that the use of variables provides a shorter description of Ln. The following example might
be considered less straightforward:

I Example 2. Consider the expression α:=(a | b)+((a | b)+)%xx(a | b)+. It is a well-known
fact that every word w ∈ {a, b}∗ with |w| ≥ 4 can be expressed in the form w = uxxv, with
u, v ∈ {a, b}∗ and x ∈ {a, b}+ (as is easily verified by examining all four letter words). Thus,
the expression α matches all but finitely many words; hence, its language L(α) is regular. 3

The phenomenon used in Example 2 is strongly related to the notion of avoidable patterns
(cf. Cassaigne [9]), and involves some very hard combinatorial questions. We observe that
extended regular expressions can be used to express regular languages more succinctly than
proper regular expressions do, and that it might be hard to convert an extended regular
expression into a proper regular expression for the same language.

The two central questions studied in the present paper are as follows: First, how hard
is it to minimize extended regular expressions (both with respect to their length, and with
respect to the number of variables they contain), and second, how succinctly can extended

1 One can show this by proving that every NFA for Ln requires at least O(2n) states, e. g., by using the
technique by Glaister and Shallit [14]. Due to the construction used in the proof of Theorem 2.3 in [17],
this also gives a lower bound on the length of the regular expressions for Ln.
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regular expressions describe regular languages? These natural questions are also motivated
by practical concerns: If a given application reuses an expression many times, it might pay
off to invest resources in the search for an expression that is shorter, or uses fewer variables,
and thus can be matched more efficiently.

We approach this question through related decidability problems (e. g., the universality
problem) and by studying lower bounds on the tradeoff between the size of extended regular
expressions and proper regular expressions.

The main contribution of the present paper is the proof that all these decision problems are
undecidable (some are not even semi-decidable), even for extended regular expressions that
use only a single variable. Thus, while bounding the number of variables in extended regular
expressions (or, more precisely, the number of variable bindings) reduces the complexity of the
membership problem from NP-complete to polynomial (cf. Aho [1]), we show that extending
proper regular expressions with only a single variable already results in undecidability of
various problems.

As a consequence, extended regular expressions cannot be minimized effectively, and the
tradeoff between extended and proper regular expressions is not bounded by any recursive
function (a so-called non-recursive tradeoff, cf. Kutrib [19]). Thus, although the use of the
“right” extended regular expression for a regular expression might offer arbitrary advantages
in size (and, hence, parsing speed), these optimal expressions cannot be found effectively.
These results highlight the power of the variable mechanism, and demonstrate that different
restrictions than the number of variables ought to be considered.

The structure of the further parts of the paper is as follows: In Section 2, we introduce
most of the technical details. Section 3 consists of Theorem 9 – the main undecidability
result – and its consequences, while Section 4 contains the proof of Theorem 9 and technical
groundwork needed for that proof. The paper is concluded by Section 5. Due to space
reasons, most technical details were omitted from the present version.

2 Preliminaries

This paper is largely self-contained. Unexplained notions can be found in Hopcroft and
Ullman [17], Cutland [11], and Minsky [21].

2.1 Basic Definitions

Let N be the set of natural numbers, including 0. The function div denotes integer division,
and mod denotes its remainder (e. g., 5 div 3 = 1 and 5 mod 3 = 2). We denote the empty
string by λ. For the concatenation of two strings w1 and w2, we write w1 · w2 or simply
w1w2. We say a string v ∈ A∗ is a factor of a string w ∈ A∗ if there are u1, u2 ∈ A∗ such
that w = u1vu2. The notation |K| stands for the size of a set K or the length of a string K.

If A is an alphabet, a (one-sided) infinite word over A is an infinite sequence w = (wi)∞i=0
with wi ∈ A for every i ≥ 0. We denote the set of all one-sided infinite words over A by
Aω and, for every a ∈ A, let aω denote the word w = (wi)∞i=0 with wi = a for every i ≥ 0.
We shall only deal with infinite words w ∈ Aω that have the form w = u aω with u ∈ A∗
and a ∈ A. Concatenation of words and infinite words is defined canonically: For every
u ∈ A∗ and every v ∈ Aω with v = (vi)∞i=0, u · v := w ∈ Aω, where w0 · . . . · w|u|−1 = u and
wi+|u| = vi for every i ≥ 0, while vu is undefined. In particular, note that a aω = aω for
every a ∈ A.

STACS’11
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2.2 Extended Regular Expressions
We now introduce syntax and semantics of extended regular expressions. Apart from some
changes in terminology, this formalization is due to Aho [1]:

I Definition 3. Let Σ be an infinite set of terminals, let X be an infinite set of variables,
and let the set of metacharacters consist of λ, (, ), |, ∗, and %, where all three sets are
pairwise disjoint. We define extended regular expressions inductively as follows:

1. Each a ∈ Σ ∪ {λ} is an extended regular expression that matches the word a.
2. Each x ∈ X is an extended regular expression that matches the word to which x is bound.
3. If α1 and α2 are extended regular expressions, then (α1 | α2) is an extended regular

expression that matches any word matched by α1 or by α2.
4. If α1 and α2 are extended regular expressions, then (α1α2) is an extended regular

expression that matches any word of the form vw, where v matches α1 and w matches
α2.

5. If α is an extended regular expression, then (α)∗ is an extended regular expression that
matches any word of the form w1 · · ·wn with n ≥ 0, where α matches each wi with
1 ≤ i ≤ n.

6. If α is an extended regular expression that matches a word w, and x ∈ X, then (α)%x is
an extended regular expression that matches the word w, and x is bound to the value w.

We denote the set of all extended regular expressions by RegEx. For every extended regular
expression α, we use L(α) to denote the set of all words that are matched by α, and call L(α)
the language generated by α. A proper regular expression is an extended regular expression
that contains neither %, nor any variable.

Note that, as in [1], some peculiarities of the semantics of extended regular expressions are
not addressed in this definition (some examples are mentioned further down). Câmpeanu et
al. [5] offer an alternative definition that explicitly deals with some technical peculiarities
that are omitted in Aho’s definition, and is closer to the syntax of the programming language
PERL. The proofs presented in this paper are not affected by these differences and can be
easily adapted to the definition of Câmpeanu et al., or any similar definition, like the models
proposed by Bordihn et al. [3], Câmpeanu and Yu [7].

We shall use the notation (α)+ as a shorthand for α(α)∗, and freely omit parentheses
whenever the meaning remains unambiguous. When doing this, we assume that there is
a precedence on the order of the applications of operations, with ∗ and + ranking over
concatenation ranking over the alternation operator |.

We illustrate the intended semantics of extended regular expressions using the following
examples in addition to the examples in Section 1:

I Example 4. Consider the following extended regular expressions:

α1:=
(
(a | b)∗

)
%x xx

(
(a | b)∗

)
%x x, α2:=

((
(a | b)∗

)
%x x

)+
.

These expressions generate the following languages:

L(α1) =
{
vvvww | v, w ∈ {a, b}∗

}
,

L(α2) =
{
w1w1 · · ·wnwn | n ≥ 1, wi ∈ {a, b}∗

}
.

Note that both expressions rely on the fact that variables can be bound multiple times, and
implicitly assume that we parse from left to right. 3
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From a formal point of view, the fact that variables have a scope and the possibility to rebind
variables (as in Example 4) can cause unexpected side effects and would normally require a
more formal definition of semantics, instead of our “definition by example”. Furthermore,
Aho’s definition does not deal with pathological cases in which some variables might be
unbound, e. g., like ((a)%x | b)x. Although the definition by Câmpeanu et al. [5] addresses
these problems, we still use Aho’s notation, because it is more convenient for the proof of
Theorem 19, the main technical tool of the present paper. As mentioned above, all proofs
can be easily adapted to the notation and semantics of Câmpeanu et al.

In general, the membership problem for RegEx is NP-complete, as shown in Theorem 6.2
in Aho [1]. As explained in that proof, this problem is solvable in polynomial-time if the
number of different variables is bounded. It is not clear how (or if) Aho’s reasoning applies
to expressions like α2 in our Example 4; therefore, we formalize a slightly stronger restriction
than Aho, and consider the following subclasses of RegEx:

I Definition 5. For k ≥ 0, let RegEx(k) denote the class of all extended regular expressions
α that satisfy the following properties:

1. α contains at most k occurrences of the metacharacter %,
2. if α contains a subexpression (β)∗, then the metacharacter % does not occur in β,
3. for every x ∈ X that occurs in α, α contains exactly one occurrence of %x.
Intuitively, these restrictions on extended regular expressions in RegEx(k) limit not only the
number of different variables, but also the total number of possible variable bindings, to at
most k.

Note that RegEx(0) is equivalent to the class of proper regular expressions; furthermore,
observe that RegEx(k) ⊂ RegEx(k + 1) for every k ≥ 0.

Referring to the extended regular expressions given in Example 4, we observe that, as
%x occurs twice in α1, α1 is not element of any RegEx(k) with k ≥ 0, but the extended
regular expression α′1:=

(
(a | b)∗

)
%x xx

(
(a | b)∗

)
%y y generates the same language as α1,

and α′1 ∈ (RegEx(2) \ RegEx(1)). In contrast to this, α2 /∈ RegEx(k) for all k ≥ 0, as %
occurs inside a ()∗ subexpression (as we defined + through ∗).

For any k ≥ 0, we say that a language L is a RegEx(k)-language if there is some
α ∈ RegEx(k) with L(α) = L.

We also consider the class FRegEx of all extended regular expressions that do not
use the operator ∗ (or +), and its subclasses FRegEx(k):= FRegEx∩RegEx(k) for k ≥ 0.
Thus, FRegEx contains exactly those expressions that generate finite (and, hence, regular)
languages. Analogously, for every k ≥ 0, we define a class CoFRegEx(k) as the class of all
α ∈ RegEx(k) such that L(α) is cofinite. Unlike the classes FRegEx(k), these classes have
no straightforward syntactic definition – as we shall prove in Theorem 9, cofiniteness is not
semi-decidable for RegEx(k) (if k ≥ 1).

2.3 Decision Problems and Descriptional Complexity
Most of the technical reasoning in the present paper is centered around the following decision
problems:

I Definition 6. Let Σ denote a fixed terminal alphabet. For all k, l ≥ 0, we define the
following decision problems for RegEx(k):
Universality Given α ∈ RegEx(k), is L(α) = Σ∗?
Cofiniteness Given α ∈ RegEx(k), is Σ∗ \ L(α) finite?
RegEx(l)-ity Given α ∈ RegEx(k), is there a β ∈ RegEx(l) with L(α) = L(β)?

STACS’11
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As we shall see, Theorem 9 – one of our main technical results – states that these problems
are undecidable (to various degrees). We use the undecidability of the universality problem
to show that there is no effective procedure that minimizes extended regular expressions
with respect to their length, and the undecidability of RegEx(l)-ity to conclude the same
for minimization with respect to the number of variables. Furthermore, cofiniteness and
RegEx(l)-ity help us to obtain various results on the relative succinctness of proper and
extended regular expressions.

By definition, RegEx(l)-ity holds trivially for all RegEx(k) with k ≤ l. If l = 0, we mostly
use the more convenient term regularity (for RegEx(k)), instead of RegEx(0)-ity. Note that,
even for RegEx(0), universality is already PSPACE-complete (see Aho et al. [2]).

In order to examine the relative succinctness of RegEx(1) in comparison to RegEx(0),
we use the following notion of complexity measures:

I Definition 7. Let R be a class of extended regular expressions. A complexity measure
for R is a total recursive function c : R → N such that, for every alphabet Σ, the set of all
α ∈ R with L(α) ⊆ Σ∗ 1. can be effectively enumerated in order of increasing c(α), and
2. does not contain infinitely many extended regular expressions with the same value c(α).

This definition includes the canonical concept of the length, as well as most of its natural
extensions (for example, in our context, one could define a complexity measure that gives
additional weight to the number or distance of occurrences of variables, or their nesting
level). Kutrib [19] provides more details on (and an extensive motivation of) complexity
measures. Using this definition, we are able to define the notion of tradeoffs between classes
of extended regular expressions:

I Definition 8. Let k > l ≥ 0 and let c be a complexity measure for RegEx(k) (and thereby
also for RegEx(l)). A recursive function fc : N→ N is said to be a recursive upper bound for
the tradeoff between RegEx(k) and RegEx(l) if, for all those α ∈ RegEx(k) for wich L(α) is
a RegEx(l)-language, there is a β ∈ RegEx(l) with L(β) = L(α) and c(β) ≤ fc(c(α)).

If no recursive upper bound for the tradeoff between RegEx(k) and RegEx(l) exists, we
say that the tradeoff between RegEx(k) and RegEx(l) is non-recursive.

There is a considerable amount of literature on a wide range of non-recursive tradeoffs
between various description mechanisms; for a survey, see Kutrib [19].

3 Main Results

As mentioned in Section 1, the central questions of the present paper are whether we
can minimize extended regular expressions (under any complexity measure as defined in
Definition 7, or with respect to the number variables), and whether there is a recursive upper
bound on the tradeoff between extended and proper regular expressions. We approach these
questions by proving various degrees of undecidability for the decision problems given in
Definition 6, as shown in the main theorem of this section:

I Theorem 9. For RegEx(1), universality is not semi-decidable; and regularity and cofinite-
ness are neither semi-decidable, nor co-semi-decidable.

The proof of Theorem 9 requires considerable technical preparation and can be found in
Section 4.

Of course, all these undecidability results also hold for every RegEx(k) with k ≥ 2, and
for the whole class RegEx of extended regular expressions (as RegEx(1) is contained in all
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these classes)2. Theorem 9 also demonstrates that inclusion and equivalence are undecidable
for RegEx(1) (and, hence, all of RegEx). We also see, as an immediate consequence to
Theorem 9, that there is no algorithm that minimizes the number of variables in an extended
regular expression, as such an algorithm could be used to decide regularity.

Note that in the proof of Theorem 9, the single variable x is bound only to words that
match the expression 0∗. This shows that the “negative” properties of extended regular
expressions we derive from Theorem 9 hold even if we restrict RegEx(1) by requiring that
the variable can only be bound to a very restricted proper regular expression. Furthermore,
the proof also applies to the extension of proper regular expressions through numerical
parameters that is proposed in Della Penna et al. [12]. In addition to this, the construction
from Theorem 19 (which we shall use to prove Theorem 9, and consequently, all other results
in the present paper) can be refined to also include bounds on the number of occurrences of
the single variable.

From the undecidability of universality, we can immediately conclude that RegEx(1)
cannot be minimized effectively:

I Corollary 10. Let c be a complexity measure for RegEx(1). Then there is no recursive
function mc that, given an expression α ∈ RegEx(1), returns an expression mc(α) ∈ RegEx(1)
with 1. L(mc(α)) = L(α), and 2. c(β) ≥ c(mc(α)) for every β ∈ RegEx(1) with L(β) = L(α).

Following the classic proof method of Hartmanis [15] (cf. Kutrib [19]), we can use the fact
that non-regularity is not semi-decidable to obtain a result on the relative succinctness of
extended and proper regular expressions:

I Corollary 11. There are non-recursive tradeoffs between RegEx(1) and RegEx(0). This
holds even if we consider only the tradeoffs between CoFRegEx(1) and CoFRegEx(0), using
a complexity measure for RegEx(1).

Thus, no matter which complexity measure and which computable upper bound we assume for
the tradeoff, there is always a regular language L that can be described by an extended regular
expression from RegEx(1) so much more succinctly that every proper regular expression for L
has to break that bound. Obviously, this has also implications for the complexity of matching
regular expressions: Although membership is “easier” for proper regular expressions than for
extended regular expressions, there are regular languages that can be expressed far more
efficiently through extended regular expressions than through proper regular expressions.

Recall Example 1, where we consider extended regular expressions that describe finite
languages. In this restricted case, there exists an effective conversion procedure – hence, the
tradeoffs are recursive:

I Lemma 12. For every k ≥ 1, the tradeoff between FRegEx(k) and FRegEx(0) is recursive
(even when considering complexity measures for RegEx(k) instead of FRegEx(k)).

Although the class of RegEx-languages is not closed under complementation (Lemma 2 in
Câmpeanu et al. [5]), there are languages L such that both L and its complement Σ∗ \ L are
RegEx-languages (e. g., all regular languages). Combining Lemma 12 and Corollary 11, we
can straightforwardly conclude that there are cases where it is far more efficient to describe
the complement of a RegEx(1)-language, as opposed to the language itself:

2 Note that cofiniteness for extended regular expressions is a more general case of the question whether a
pattern is avoidable over a fixed terminal alphabet, an important open problem in pattern avoidance
(cf. Currie [10]). Example 2 illustrates this connection for the pattern xx over a binary alphabet.

STACS’11
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I Corollary 13. Let Σ be a finite alphabet. Let c be a complexity measure for RegEx(1). For
any recursive function fc : N → N, there exists an α ∈ RegEx(1) such that Σ∗ \ L(α) is a
RegEx(1)-language, and for every β ∈ RegEx(1) with L(β) = Σ∗ \ L(α), c(β) ≥ fc(c(α)).

With some additional technical effort, we can extend the previous results on undecidability
of RegEx(l)-ity and on tradeoffs between RegEx(k) and RegEx(0) to arbitrary levels of the
hierarchy of RegEx(k)-languages:

I Lemma 14. Let k ≥ 1. For RegEx(k + 1), RegEx(k)-ity is neither semi-decidable, nor
co-semi-decidable.

In this proof, we concatenate the languages from the proof of Theorem 9 with languages that
are RegEx(k + 1)-languages, but not RegEx(k)-languages. Non-recursive tradeoffs between
RegEx(k + 1) and RegEx(k) for every k ≥ 1 follow immediately, using Hartmanis’ proof
technique as in the proof of Corollary 11.

4 Proof of Theorem 9

On a superficial level, we prove Theorem 9 by using Theorem 19 (which we introduce further
down in the present section) to reduce various undecidable decision problems for Turing
machines to appropriate problems for extended regular expressions (the problems from
Definition 6). This is done by giving an effective procedure that, given a Turing machineM,
returns an extended regular expression that generates the complement of a language that
encodes all accepting runs ofM.

On a less superficial level, this approach needs to deal with certain technical peculiarities
that make it preferable to study a variation of the Turing machine model. An extended
Turing machine is a 3-tuple X = (Q, q1, δ), where Q and q1 denote the state set and
the initial state. All extended Turing machines operate on the tape alphabet Γ:={0, 1}
and use 0 as the blank letter. The transition function δ is a function δ : Γ × Q →
(Γ× {L,R} ×Q) ∪ {HALT} ∪ ({CHECKR} ×Q). The movement instructions L and R and
the HALT-instruction are interpreted canonically – if δ(a, q) = (b,M, p) for someM ∈ {L,R}
(and a, b ∈ Γ, p, q ∈ Q), the machine replaces the symbol under the head (a) with b, moves the
head to the left if M = L (or to the right if M = R), and enters state p. If δ(a, q) = HALT,
the machine halts and accepts.

The command CHECKR works as follows: If δ(a, q) = (CHECKR, p) for some p ∈ Q, X
immediately checks (without moving the head) whether the right side of the tape (i. e., the
part of the tape that starts immediately to the right of the head) contains only the blank
symbol 0. If this is the case, X enters state p; but if the right side of the tape contains any
occurrence of 1, X stays in qi. As the tape is never changed during a CHECKR-instruction,
this leads X into an infinite loop, as it will always read a in qi, and will neither halt, nor
change its state, head symbol, or head position. Although it might seem counterintuitive to
include an instruction that allows our machines to search the whole infinite side of a tape in
a single step and without moving the head, this command is expressible in the construction
we use in the proof of Theorem 19, and it is needed for the intended behavior.

We partition the tape of an extended Turing machine X into three disjoint areas: The
head symbol, which is (naturally) the tape symbol at the position of the head, the right tape
side, which contains the tape word that starts immediately to the right of the head symbol
and extends rightward into infinity, and the left tape side, which starts immediately left to
the head symbol and extends infinitely to the left. When speaking of a configuration, we
denote the head symbol by a and refer to the contents of the left or right tape side as the left
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tape word tL or the right tape word tR, respectively. A configuration of an extended Turing
machine X = (Q, q1, δ) is a tuple (tL, tR, a, q), where tL, tR ∈ Γ∗0ω are the left and right tape
word, a ∈ Γ is the head symbol, and q ∈ Q denotes the current state. The symbol `X denotes
the successor relation on configurations of X , i. e., C `X C ′ if X enters C ′ immediately after
C.

We define domX(X ), the domain of an extended Turing machine X = (Q, q1, δ), to be
the set of all tape words tR ∈ Γ∗0ω such that X , if started in the configuration (0ω, tR, 0, q1),
halts after finitely many steps.

The definition of domX is motivated by the properties of the encoding that we shall use.
Usually, definitions of the domain of a Turing machine rely on the fact that the end of the
input is marked by a special letter $ or an encoding thereof (cf. Minsky [21]). As we shall see,
our use of extended regular expressions does not allow us to express the fact that every input
is ended by exactly one $ symbol. Without the CHECKR-instruction in an extended Turing
machine X , we then would have to deal with the unfortunate side effect that a nonempty
domX(X ) could never be finite: Assume w ∈ Γ∗ such that w 0ω ∈ domX(X ). The machine
can only see a finite part of the right side of the tape before accepting. Thus, there is a
v ∈ Γ∗ such that both wv1 0ω ∈ domX(X ) and wv0 0ω ∈ domX(X ), as X will not reach
the part where wv1 and wv0 differ. This observation leads to wvx 0ω ∈ domX(X ) for every
x ∈ Γ∗, and applies to various other extensions of the Turing machine model. As Lemma 18 –
and thereby most of the main results in Section 3 – crucially depends on the fact that there
are extended Turing machines with a finite domain, we use CHECKR to allow our machines
to perform additional sanity checks on the input and to overcome the limitations that arise
from the lack of the input markers ¢ and $.

Using a classical coding technique for two-symbol Turing machines (see Minsky [21]) and
the correspond undecidability results, we establish the following negative results on decision
problems for extended Turing machines:

I Lemma 15. Consider the following decision problems for extended Turing machines:
Emptiness Given an extended Turing machine X , is domX(X ) empty?
Finiteness Given an extended Turing machine X , is domX(X ) finite?
Then emptiness is not semi-decidable, and finiteness is neither semi-decidable, nor co-semi-
decidable.

In order to simplify some technical aspects of our further proofs below, we adopt the following
convention on extended Turing machines:

I Convention 16. Every extended Turing machine

1. has the state set Q = {q1, . . . , qν} for some ν ≥ 1, where q1 is the initial state,
2. has δ(0, q1) = (0, L, q2),
3. has δ(a, q) = HALT for at least one pair (a, q) ∈ Γ×Q.
Obviously, every extended Turing machine can be straightforwardly (and effectively) adapted
to satisfy these criteria.

As every tape word contains only finitely many occurrences of 1, we can interpret tape
sides as natural numbers in the following (canonical) way: For sequences t = (ti)∞i=0 over
Γ, define e(t):=

∑∞
i=0 2i e(ti), where e(0):=0 and e(1):=1. Most of the time, we will not

distinguish between single letters and their values under e, and simply write a instead of e(a)
for all a ∈ Γ. It is easily seen that e is a bijection between N and Γ∗0ω, the set of all tape
words over Γ. Intuitively, every tape word is read as a binary number, starting with the cell
closest to the head as the least significant bit, extending toward infinity.
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Expressing the three parts of the tape (left and right tape word and head symbol) as
natural numbers allows us to compute the tape parts of successor configurations using
elementary integer operations. The following straightforward observation shall be a very
important tool in the proof of Theorem 19:
I Observation 17. Assume that an extended Turing machine X = (Q, q1, δ) is in some
configuration C = (tL, tR, a, qi), and δ(a, qi) = (b,M, qj) for some b ∈ Γ, some M ∈ {L,R}
and some qj ∈ Q. For the (uniquely defined) successor configuration C ′ = (t′L, t′R, a′, qj) with
C `X C ′, the following holds:

If M = L: e(t′L) = e(tL) div 2, e(t′R) = 2 e(tR) + b, a′ = e(tL) mod 2,
if M = R: e(t′L) = 2 e(tL) + b, e(t′R) = e(tR) div 2, a′ = e(tR) mod 2.

These equations are fairly obvious – when moving the head in direction M , X turns the tape
cell that contained the least significant bit of e(tM ) into the new head symbol, while the
other tape side gains the tape cell containing the new letter b that was written over the head
symbol as new least significant bit.

Using the encoding e, we define an encoding enc of configurations of X by

enc (tL, tR, a, qi) :=00e(tL)#00e(tR)#00e(a)#0i

for every configuration (tL, tR, a, qi) of X . We extend enc to an encoding of finite sequences
C = (Ci)ni=1 (where every Ci is a configuration of X ) by

enc(C):=## enc(C1)## enc(C2)## · · · ## enc(Cn)##.

A valid computation of X is a sequence C = (Ci)ni=1 of configurations of X where C1 is an
initial configuration (i. e. some configuration (0ω, w, 0, q1) with w ∈ Γ∗0ω), Cn is a halting
configuration, and for every i < n, Ci `X Ci+1. Thus, let

VALC(X ) = {enc(C) | C is a valid computation of X} ,
INVALC(X ) = {0, #}∗ \VALC(X ).

The main part of the proof of Theorem 9 is Theorem 19 (still further down), which states
that, given an extended Turing machine X , one can effectively construct an expression from
RegEx(1) that generates INVALC(X ). Note that in enc(C), ## serves as a boundary between
the encodings of individual configurations, which will be of use in the proof of Theorem 19.
Building on Convention 16, we observe the following fact on the regularity of VALC(X ) for
a given extended Turing machine X :

I Lemma 18. For every extended Turing machine X , VALC(X ) is regular if and only if
domX(X ) is finite.

The if direction is obvious, the only if direction follows from Convention 16 and the
application of a generalized sequential machine. We are now ready to state the central part
of our proof of Theorem 9:

I Theorem 19. For every extended Turing machine X , one can effectively construct an
extended regular expression αX ∈ RegEx(1) such that L(αX ) = INVALC(X ).

In the present paper, we only sketch the proof of Theorem 19. Given an extended Turing
machine X , the expression αX can be assembled from various subexpressions that describe a
complete list of sufficient criteria for membership in INVALC(X ). Intuitively, every word
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in INVALC(X ) contains (at least) one error. We first consider so-called structural errors,
where a word is not an encoding of any sequence (Ci)ni=1 over configurations of X for some n,
or the word is such an encoding, but C1 is not an initial, or Cn is not a halting configuration.
These errors can be described by a proper regular expression, which can be straightforwardly
derived from the definition of X .

If a word in INVALC(X ) does not contain any structural errors, it is an encoding of some
sequence of configurations (Ci)ni=0 of X , but there is a configuration Ci with i < n such that
Ci `X Ci+1 does not hold. We call these types of errors behavioral errors, and distinguish
state, head, and tape side errors, depending on which part of the configuration contains an
error. We can describe state and head errors in words that do not contain structural errors
using proper regular expressions; the variable is only used in the description of tape side
errors. Here, Observation 17 allows us to specify all errors where the e-value of a left or right
tape side is too small or too large. Furthermore, all these subexpressions are in RegEx(1),
and start with #0(0∗)%x. This allows us to combine them into a single expression from
RegEx(1). Then the expressions for all types of error can be combined to a single expression
αX ∈ RegEx(1) with L(αX ) = INVALC(X ), which concludes the proof of Theorem 19.

Theorem 9 follows almost immediately from Theorem 19 and Lemmas 15 and 18. Note
that the encoding enc and various parts of the proof of Theorem 19 where inspired by
the author’s proof of a similar but more narrow result on pattern languages (Bremer and
Freydenberger [4]).

5 Conclusions

The present paper shows that extending regular expressions with only a single variable
already leads to an immense increase in succinctness and expressive power. The good part of
this news is that in certain applications, using the right extended regular expression instead
of a proper regular expression can lead to far more efficient running times, even with the
same matching engine. The bad part of this news is that this additional power can only
be harnessed in full if one is able to solve undecidable problems, which greatly diminishes
the usefulness of extended regular expressions as more efficient alternative to proper regular
expressions.

Due to underlying undecidable problems, some questions of designing optimal extended
regular expressions are of comparable difficulty to designing optimal programs. For applied
computer scientists, it could be worthwhile to develop heuristics and good practices to
identify cases where the non-conventional use of extended regular expressions might offer
unexpected speed advantages. For theoretical computer scientists, the results in the present
paper highlight the need for appropriate restrictions other than the number of variables;
restrictions that lead to large and natural subclasses with decidable decision problems. One
possible approach that does not extend the expressive power of proper regular expressions
beyond regular languages would be a restriction of the length of the words on which variables
can be bound. As the results in the present paper show, any extension of proper regular
expressions that includes some kind of repetition operator needs to be approached with
utmost care.
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