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Abstract
We deploy algebraic complexity theoretic techniques for constructing symmetric determinantal
representations of weakly-skew circuits, which include formulas. Our representations produce
matrices of much smaller dimensions than those given in the convex geometry literature when
applied to polynomials having a concise representation (as a sum of monomials, or more generally
as an arithmetic formula or a weakly-skew circuit). These representations are valid in any field of
characteristic different from 2. In characteristic 2 we are led to an almost complete solution to a
question of Bürgisser on the VNP-completeness of the partial permanent. In particular, we show
that the partial permanent cannot be VNP-complete in a finite field of characteristic 2 unless the
polynomial hierarchy collapses.
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1 Introduction

1.1 Motivation
A linear matrix expression (symmetric linear matrix form, affine symmetric matrix pencil) is
a symmetric matrix with the entries being linear forms in the variables x1, . . . , xn and real
number coefficients:

A(x1, . . . , xn) = A0 + x1A1 + · · ·+ xnAn, Ai symmetric in Rt×t. (1)

A linear matrix inequality (LMI) restricts to those values ξi ∈ R of the xi such that
A(ξ1, . . . , ξn) � 0, i.e., is positive semidefinite. The set of all such values defines a spectrahe-
dron.
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A real zero polynomial is a polynomial p with real coefficients such that for every x ∈ Rn
and every µ ∈ C, p(µx) = 0 implies µ ∈ R. The Lax conjecture and generalized Lax
conjecture seek for representations of real zero polynomials f(x1, . . ., xn) (1) with f = det(A)
and A0 � 0. This is in fact an equivalent formulation of the original Lax conjecture which
was stated in terms of hyperbolic polynomials (see [11] for this equivalence). Furthermore,
the matrices are required to have dimension d where d is the degree of the polynomial.
For n = 2 such representations always exist while a counting argument shows that this is
impossible for n > 2 [8] (actually, the authors of [11] give the first proof of the Lax conjecture
in its original form based on the results of [8]). Two generalizations have been suggested to
avoid this counting argument: first, it was suggested to remove the dimension constraint and
allow for bigger matrices, and second, to permit representations of some power of the input
polynomial. Counterexamples to both generalizations have recently been constructed [3].

Another relaxation is to drop the condition A0 � 0 and represent any f as det(A) [7, 16].
However, the purely algebraic construction of [16] leads to exponential matrix dimensions
t. Here we continue the line of work initiated by [7, 16] but we proceed differently by
symmetrizing the complexity theoretic construction by Valiant [18]. Our construction yields
smaller dimensional matrices not only for polynomials represented as sums of monomials but
also for polynomials represented by formulas and weakly-skew circuits [14, 9]. Even though
in the most general case the bounds we obtained are slightly worse than Quarez’s [16], in a
lot of interesting cases such as polynomials with a polynomial size formula or weakly-skew
circuit, or in the case of the permanent, our constructions yield much smaller matrices [5,
Section 4].

Our constructions are valid for any field of characteristic different from 2. For fields of
characteristic 2, it can be shown that some polynomials (such as e.g. the polynomial xy + z)
cannot be represented as determinants of symmetric matrices [6]. Note as a result that the
2-dimensional permanent xw + yz cannot be “symmetrized” over characteristic 2 with any
dimension. It would be interesting to exactly characterize which polynomials admit such a
representation in characteristic 2. For the polynomial x+ y, we have

x+ y = det(


0 x 0 y −1
x 0 1 0 0
0 1 0 −1 0
y 0 −1 0 1/2
−1 0 0 1/2 0

) = det(


x 0 0 1
0 y 0 1
0 0 1 0
1 1 0 0

),

where the first matrix is derived from our construction, but the second is valid over any
commutative ring. It is easily shown that for every polynomial p, p2 admits a symmetric
determinantal representation in characteristic 2. This is related to a question of Bürgisser [4]:
Is the partial permanent VNP-complete over fields of characteristic 2? We give an almost
complete negative answer to this question.

Our results give as a by-product an interesting result, which was not known to the
authors’ knowledge: Let A be an (n × n) matrix with indeterminate coefficients (ranging
over a field of characteristic different from 2); then there exists a symmetric matrix B of size
0(n5) whose entries are the indeterminates from A and constants from the field such that
detA = detB. This relies on the existence of a size-O(n5) weakly-skew circuit to compute
the determinant of an (n× n) matrix [2, 14]. The size of B can be reduced to O(n4) if we
replace the weakly-skew circuits from [2, 14] by the skew circuits of size O(n4) constructed
by Mahajan and Vinay [13]. These authors construct an arithmetic branching program for
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the determinant with O(n4) edges,1 and the arithmetic branching program can be evaluated
by a skew circuit of size O(n4). After learning of our result, Meena Mahajan and Prajakta
Nimbhorkar have noticed that the arithmetic branching program for the determinant can be
transformed directly into a symmetric determinant of size O(n3) with techniques similar to
the ones used in this paper. A detailed proof will appear in the full version of this paper.

Acknowledgments: We learned of the symmetric representation problem from Markus
Schweighofer’s ISSAC 2009 Tutorial
http://www.math.uni-konstanz.de/~schweigh/presentations/dcssblmi.pdf.

We thank Meena Mahajan for pointing out [13] and sketching the construction of a
symmetric determinant of size O(n3) from a determinant of size n.

1.2 Known results and definitions
In his seminal paper Valiant [18] expressed the polynomial computed by an arithmetic
formula as the determinant of a matrix whose entries are constants or variables. If we define
the skinny size e of the formula as its number of arithmetic operations then the size of the
matrix is at most e+ 2. The proof uses a weighted digraph construction where the formula
is encoded into paths from a source vertex to a target, sometimes known as an Algebraic or
Arithmetic Branching Program [15, 1]. This theorem shows that every polynomial with a
sub-exponential size formula can be expressed as a determinant with sub-exponential size
formula, enhancing the prominence of linear algebra. A slight variation of the theorem is
also used to prove the universality of the permanent for formulas which is one of the steps in
the proof of its VNP-completeness. In a tutorial, von zur Gathen [21] gives another way to
express a formula as a determinant: his proof does not use digraphs and his bound is 2e+ 2.
Refining von zur Gathen’s techniques, Liu and Regan [12] gave a construction leading to a
e+ 1 bound and an extra property: multiplications by constant are not counted in e.

In [17, 14], results of the same flavor were proved for a more general class of circuits, namely
the weakly-skew circuits. Malod and Portier [14] can deduce from those results a fairly simple
proof of the VQP-completeness of the determinant (under qp-projection). Moreover, they
define a new class VPws of polynomials represented by polynomial-size weakly-skew circuits
(with no explicit restriction on the degree of the polynomials) for which the determinant is
complete under p-projection. (See [4, 14] for the definitions.) A formula is a circuit in which
every vertex has out-degree 1 (but the output). This means in particular that the underlying
digraph is a tree. A weakly-skew circuit is a kind of generalization of a formula, with a
less constrained structure on the underlying digraph. For an arithmetic circuit, the only
restriction on the digraph is the absence of directed cycles (that is the underlying digraph is
a directed acyclic graph). A circuit is said weakly-skew if every multiplication gate α has the
following property: the sub-circuit associated with one of its arguments β is connected to
the rest of the circuit only by the arrow going from β to α. This means that the underlying
digraph is disconnected as soon as the multiplication gate α is removed. In a sense, one of
the arguments of the multiplication gate was separately computed for this gate.

Toda [17] proved that the polynomial computed by a weakly-skew circuit of skinny size e
can be represented by the determinant of a matrix of size (2e+ 2). This result was improved
by Malod and Portier [14]: The construction leads to a matrix of size (m+ 1) where m is
the fat size of the circuit (i.e. its total number of gates, including the input nodes). Note
that for a circuit in general and for a weakly-skew circuit in particular m ≤ 2e + 1. The

1 This bound can be found on p.11 of their paper.
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latter construction uses negated variables in the matrix. It is actually possible to get rid
of them [9]. Although the skinny size is well suited for the formulas, the fat size appears
more appropriate for weakly-skew circuits. In Section 2, we symmetrize this construction so
that a polynomial expressed by a weakly-skew circuit equals the determinant of a symmetric
matrix. Our construction yields a size-(2m+ 1) symmetric matrix.

Let us now give some formal definitions of the arithmetic circuits and related notions.

I Definition 1. An arithmetic circuit is a directed acyclic graph with vertices of in-degree 0
or 2 and exactly one vertex of out-degree 0. Vertices of in-degree 0 are called inputs and
labelled by a constant or a variable. The other vertices, of in-degree 2, are labeled by × or +
and called computation gates. The vertex of out-degree 0 is called the output. The vertices
of a circuit are commonly called arithmetic gates and its arcs arrows.

A (division-free) arithmetic circuit with constants in a field k and input variables x1, . . . , xn
naturally computes a polynomial f ∈ k[x1, . . . , xn].

If α is a gate of a circuit C, the sub-circuit associated to α is the subgraph of C made of
all the gates β such that there exists a oriented path from β to α in C, including α. The
gates β and γ are called the arguments of α.

An arithmetic circuit is said weakly-skew if for any multiplication gate α, the sub-circuit
associated to one of its arguments β is only connected to the rest of the circuit by the arrow
going from β to α: it is called the closed sub-circuit of α. A gate which does not belong to
a closed sub-circuit of C is said to be reusable in C. The reusability of a gate depends, of
course, on the considered circuit C.

In our constructions, we shall use graphs and digraphs. In order to avoid any confusion
between directed and undirected graphs, we shall exclusively use the term graph for undirected
ones, and otherwise use the term digraph. It is well-known that cycle covers in digraphs
are in one-to-one correspondence with permutations of the vertices and therefore that the
permanent of the adjacency matrix of a digraph can be defined in terms of cycle covers of
the graph. Let us now give some definitions for those facts, and see how it can be extended
to graphs.

I Definition 2. A cycle cover of a digraph G = (V,A) is a set of cycles such that each vertex
appears in exactly one cycle. The weight of a cycle cover is defined to be the product of
the weights of the arcs used in the cover. Let the sign of a vertex cover be the sign of the
corresponding permutation of the vertices, that is (−1)N where N is the number of even
cycles. Finally, let the signed weight of a cycle cover be the product of its weight and sign.

For a graph G = (V,E), let Gd = (V,A) be the corresponding symmetric digraph. Then
a cycle cover of G is a cycle cover of Gd, and the definitions of weight and sign are extended
to this case. In particular, if there is a cycle cover of G with a cycle C = (u1, . . . , uk), then a
new cycle cover is defined if C is replaced by the cycle (uk, . . . , u1). Those two cycle covers
are considered as different cycle covers of G.

I Definition 3. Let G be a digraph. Its adjacency matrix is the (n× n) matrix A such that
Ai,j is equal to the weight of the arc from i to j (Ai,j = 0 is there is no such arc). The
definition is extended to the case of graphs, seen as symmetric digraphs. In particular, the
adjacency matrix of a graph is symmetric.

I Lemma 4. Let G be a (di)graph, and A its adjacency matrix. Then the permanent of A
equals the sum of the weights of all the cycle covers of G, and the determinant of A is equal
to the sum of the signed weights of all the cycle covers of G.
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Proof. The cycle covers are obviously in one-to-one correspondence with the permutations
of the set of vertices, and the sign of a cycle cover is defined to match the sign of the
corresponding permutation. Suppose that the vertices of V are {1, . . . , n} and let Ai,j be
the weight of the arc (i, j) in G. Let C a cycle cover and σ the corresponding permutation.
Then it is clear that the weight of C is A1,σ(1) · · ·An,σ(n), hence the result. J

The validity of this proof for graphs follows from the definition of the cycle covers of a
graph in terms of the cycle covers of the corresponding symmetric digraph. In the following,
the notion of perfect matching is used. A perfect matching in a graph G is a set M of edges
of G such that every vertex is incident to exactly one edge of M . The weight of a perfect
matching is defined in this paper as the weight of the corresponding cycle cover (with length-2
cycles). This means that it is the product of the weights of the arcs it uses, or equivalently it
is the square of the product of the weights of the edges it uses. Note that this is the square
of the usual definition.

A path P in a digraph is a subset of vertices {u1, . . . , uk} such that for 1 ≤ i ≤ k − 1,
there exists an arc from ui to ui+1 with nonzero weight. The size |P | of such a path is k.

2 Weakly-skew circuits

In this section, we extend the construction of [14] to the case of symmetric matrices: given
a weakly-skew circuit computing a polynomial p, a symmetric matrix M which entries
are variables and constants is built such that p = detM . Malod and Portier [14] express
a polynomial as a determinant of a non-symmetric matrix. Their construction relies on
the construction of a digraph whereas ours relies on the construction of a (non-directed)
graph. Recall that a weakly-skew circuit has several reusable gates. This means that when a
weakly-skew circuit is recursively turned into a (di)graph, some vertices have to be reusable.
This is ensured in [14] by the property that the digraph is acyclic. As we are dealing with a
graph instead of a digraph, this cannot be used anymore. A solution to this problem is given
in Lemma 6 by introducing the notion of acceptable paths: A path P in a graph G is said
acceptable if G \ P admits a cycle cover.

As in [14], the size bounds of the constructed matrix and graph are given in terms of
the fat size of the weakly-skew circuit: the fat size of a circuit is its total number of gates,
including the input gates. Note that one can refine these bounds using the notion of green
size defined in the long version of this paper [5, Section 3.2]. Furthermore, if the polynomial
is given as a formula instead of a weakly-skew circuit, it is possible to get tighter bounds [5,
Section 2].

Let us fix a field k of characteristic different from 2 and a countable set x̄ = {x1, x2, . . . }
of variables. The circuits we consider are supposed to have inputs in k ∪ x̄.

I Theorem 5. Let f be a polynomial computable by a weakly-skew circuit of fat size m.
Then there exists a symmetric matrix A of size at most 2m+ 1 whose entries are inputs of
the circuit and elements from {0, 1,−1, 1/2} such that f = detA.

The proof relies on the following lemma. It applies to so-called multiple-output weakly-
skew circuits. This generalization just consists in circuits for which there exist several
out-degree-0 gates.

I Lemma 6. Let C be a multiple-output weakly-skew circuit of fat size m. There exists a
graph G with at most 2m+ 1 vertices and a distinguished vertex s such that |G| is odd, every
cycle in G is even, and for every reusable gate α ∈ C there exists a vertex tα ∈ G such that

STACS’11
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1. Every s-tα-path (whether acceptable or not) has an odd number of vertices;
2. For every acceptable s-tα-path P in G, the subgraph G\P is either empty or has a unique

cycle cover, which is a perfect matching of weight 1;
3. The following equality holds in G:∑

acceptable
s-tα-path P

(−1)
|P |−1

2 w(P ) = fα (2)

where fα is the polynomial computed by the gate α.
Furthermore, the graph G \ {s} has a unique cycle cover which is a perfect matching of weight
1.

Proof sketch. The graph G is built by induction on the (fat) size of the circuit. We only
sketch here its construction. For a proof that G satisfies the conditions of the lemma, refer
to [5, Lemma 4]. If α is a reusable gate of C, then tα is said to be a reusable vertex of G.

A size-1 circuit is an input gate α with label x. The corresponding graph G has three
vertices: s, tα and an additional vertex vα. There is an edge between s and vα of weight x,
and an edge between vα and tα of weight −1.

Let m > 1 and suppose that the lemma holds for any multiple-output weakly-skew circuit
of size less than m. Let C be a multiple output weakly-skew circuit of size m, and α be any
of its outputs.

If α is an input gate with label x, let C ′ = C \ {α} and G′ the corresponding graph with
a distinguished vertex s. The graph G is obtained from G′ by adding two new vertices vα
and tα, an edge of weight x between s and vα and an edge of weight −1 between vα and tα
(see Fig. 1). The vertex s is the distinguished vertex of G.

If α is an addition gate, let C ′ = C \ {α} and suppose that α receives arrows from gates
β and γ. Note that β and γ are reusable. Let G′ be the graph corresponding to C ′, and
s be its distinguished vertex. G′ contains two reusable vertices tβ and tγ . The graph G is
obtained by adding two vertices vα and tα, and the following edges: tβvα and tγvα of weight
1, and vαtα of weight −1 (see Fig. 3). If β = γ, then G′ contains a vertex tβ , and we merge
the two edges adjacent to tβ and tγ into an edge tβvα of weight 2.

If α is a multiplication gate, α receives arrows from two distinct gates β and γ. Exactly
one of those gates, say β, is not reusable and removing the gate α yields two disjoint circuits
C1 and C2 (say β belongs to C1 and γ to C2). Let G1 and G2 be the respective graphs
obtained by induction from C1 and C2, with distinguished vertices s1 and s2 respectively.
The graph G is obtained as in Fig. 2 as the union of G1 and G2 where tγ and s1 are merged,
the distinguished vertex s of G being the distinguished vertex s2 of G2, and tα being equal
to tβ . J

x C ′

s
x

vα

−1 G′

tα

Figure 1 Input gate

β

C1

s

γ tγ

G1

tα = tβ

C2
G2

Figure 2 Multiplication gate
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β

C ′

s

γ tγ
G′

tα

C ′

G′
β

s

tβ tβ

tα

vα vα−1 −1
2

Figure 3 Both cases for an addition gate

Proof of Theorem 5. Let C be a weakly-skew circuit computing the polynomial f , and G
be the graph built from C in Lemma 6. The circuit C has a unique output, and there exists
in G a vertex t corresponding to this output. Let G′ be the graph obtained from G by adding
an edge between t and s of weight 1

2 (−1)
|G|−1

2 .
There is no cycle cover of G′ containing the 2-cycle st. Indeed, |G′ \ {s, t}| is odd and

G contains only even cycles. This means that a cycle cover of G′ contains a cycle made of
a s-t-path plus (t, s) or a t-s-path plus (s, t). Let P be such a path. Then G′ \ P = G \ P .
Hence, by Lemma 6, there is exactly one cycle cover of G′ \ P and it is a perfect matching of
weight 1. This means that there is a one-to-one correspondence between the cycle covers
of G′ and the paths from s to t or from t to s. There is also a one-to-one correspondence
between the paths from s to t and the paths from t to s.

Let us recall that the sign of a cycle cover is the sign of the underlying permutation and
its signed weight is the product of its sign and weight. Let C be a cycle cover of G′ involving
the s-t-path P . The previous paragraph shows that the weight of C equals 1

2 (−1)
|G|−1

2 w(P ).
As C has an odd cycle and a perfect matching, its sign is (−1)|G\P |/2, that is the number of
couples in the perfect matching. The inverse cycle cover C̄ of G′ has the same signed weight
as C. Hence the sum of the signed weights of all cycle covers of G′ equals twice the sum over
all s-t-paths P of 1

2 (−1)
|G|−1

2 (−1)
|G\P |

2 w(P ) = 1
2 (−1)

|P |−1
2 w(P ). By Lemma 6, this equals f

and Lemma 4 concludes the proof.
J

3 Characteristic 2

In characteristic 2, the construction of Section 2 fails because of the scalar 1/2 it uses.
Nevertheless, for a polynomial computable by a weakly-skew circuit, it is possible to represent,
by the usual symmetrization, its square as the determinant of a symmetric matrix. On the
other hand, as pointed out in the introduction representing the polynomial itself is not always
possible. Related to these problems, the VNP-completeness of the partial permanent is also
studied. Actually, we give an almost complete answer to an open question of Bürgisser [4,
Problem 3.1] showing that if the partial permanent is complete in finite fields of characteristic
2, then the (boolean) polynomial hierarchy collapses. For any field of characteristic 2 (finite
or infinite), we show that the VNP-completeness of this family would imply that every VNP
family of polynomials has its square in VPws. This also seems unlikely to happen unless
VPws = VNP.

Let G be an edge-weighted graph with vertices {v1, . . . , vn}. Recall that the adjacency
matrix A of G is the (n× n) symmetric matrix defined by Aij = Aji = wij where wij is the
weight of the edge vivj . Suppose now that G is bipartite with two independent sets of vertices
Vr and Vc of cardinality m and n respectively. Let Vr = {r1, . . . , rm} and Vc = {c1, . . . , cn}.

STACS’11
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The biadjacency matrix of G (also known as the bipartite adjacency matrix) is the (m× n)
matrix B such that Bij is the weight of the edge between ri and cj . This means that the
rows of B are indexed by Vr and its columns by Vc. For a bipartite graph G of adjacency
and biadjacency matrices A and B respectively,

A =
(

0 B

Bt 0

)
.

Throughout this section, we shall use the usual definition of the weight of a partial
matching: it is the product of the weights of the edges it uses.

3.1 Symmetric determinantal representation of the square of a
polynomial

I Lemma 7. Let G be an edge-weighted graph and A its adjacency matrix. In characteristic
2, the determinant of A is the sum of the weights of the cycle covers with cycles of length at
most 2.

Proof. Let us consider G as a symmetric digraph (that is an edge uv is seen as both arcs
(u, v) and (v, u)). In Lemma 4, the signs of the cycle covers are considered. In characteristic
2, this is irrelevant. Therefore, the determinant of A is the sum of the weights of the cycle
covers of G.

Let C be a cycle cover of G containing a (directed) cycle of length at least 3 denoted by
(v1, v2, . . . , vk, v1). One can change the direction of this cycle (as G is symmetric) and obtain
a new cycle cover C ′ containing the same cycles as C, but (vk, vk−1, . . . , v1, vk) instead of
(v1, v2, . . . , vk, v1). Clearly, the weights of C and C ′ are the same as the graph is symmetric.
Therefore, when the determinant of A is computed in characteristic 2, the contributions of
those two cycle covers to the sum cancel out. This shows that the determinant of a matrix in
characteristic two is obtained as the sum of the weights of cycle covers with cycles of length
1 (loops) or 2. J

I Proposition 8. Let p be a polynomial over a field of characteristic 2, represented by a
weakly-skew circuit of fat size m. Then there exists a symmetric matrix A of size (2m+ 2)
such that p2 = det(A).

Proof. Let C be a weakly-skew circuit representing a polynomial p over a field of characteristic
2. Let M be the matrix obtained by Malod and Portier’s construction [14] such that
p = det(M). Let G be the digraph represented by M , and let G′ be the bipartite graph
obtained from G by the two following operations: Each vertex v of G is turned into two
vertices vs and vt in G′, and each arc (u, v) is turned into the edge {us, vt}. A loop on a
vertex u is simply represented as the edge {us, ut}. Let A be the symmetric adjacency matrix
of G′ (when the vertices are ordered vs0, vs1, . . . , vsm, vt0, . . . , vtm).

It is well-known that cycle covers of G and perfect matchings of G′ are in one-to-one
correspondence. This one-to-one correspondence shows that the determinant of M equals the
sum of the weights of the perfect matchings in G′. If a perfect matching in G′ is considered
as a cycle cover with length-2 cycles, the weight of the cycle cover is the square of the weight
of the perfect matching. Indeed, in the cycle cover, all the arcs of the length-2 cycles have to
be considered, that is each edge contributes twice to the product. Lemma 7 and the fact
that there is no loop in G′ show that

det(A) =
∑
µ

w(µ)2 =
(∑

µ

w(µ)
)2
,
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where µ ranges over all perfect matchings of G′ and w(µ) is the weight of the perfect matching
µ. The second equality holds as the field has characteristic 2.

Finally, it is shown in [14] that p = det(M), and we showed that det(M) =
∑
µ w(µ) and

det(A) =
(∑

µ w(µ)
)2. Therefore, det(A) = det(M)2 = p2. J

This proposition raises the following question: Let f be a family of polynomials such
that f2 ∈ VPws. Does f belong to VPws? This question is discussed with more details in
the next section.

3.2 Is the partial permanent complete in characteristic 2?
I Definition 9. Let X = (Xij) be an (n×n) matrix. The partial permanent of X, as defined
by Bürgisser [4], is

per∗(X) =
∑
π

∏
i∈def(π)

Xiπ(i),

where the sum ranges over the injective partial maps from [n] = {1, . . . , n} to [n] and def(π)
is the domain of the partial map π.

The family (PER∗n) is the family of polynomials such that PER∗n is the partial permanent
of the (n× n) matrix whose coefficients are the indeterminates Xij .

I Lemma 10. Let G be the complete bipartite graph with two independent sets of vertices Vr
and Vc such that the edge between ri and cj is labelled by Bij (the matrix B is the biadjacency
matrix of G). Then the partial permanent of B is equal to the sum of the weights of the
partial matchings of G.

A partial matching in a graph G is a set of pairs of vertices connected by an edge such
that no vertex appears in more than a pair. Equivalently, a partial matching can be seen as
a set of disjoint edges. The weight of a partial matching is the product of the weights of its
edges.

The proof of the lemma is quite straightforward as a injective partial map π from [n] to
[n] exactly defines a partial matching in G such that for i ∈ def(π), ri is matched with cπ(i).

I Lemma 11. Let G be the complete bipartite graph with two independent sets of vertices Vr
and Vc such that the edge between ri and cj is labelled by Bij (the matrix B is the biadjacency
matrix of G). Let A be its adjacency matrix. Then in characteristic 2,

det(A+ I2n) = (per∗(B))2,

where I2n is the identity matrix of size 2n.

Proof. By Lemma 7, to compute a determinant in characteristic 2, one can focus only on
cycles of length at most 2. A cycle cover with such cycles actually is a partial matching
when the graph is symmetric (length-2 cycles define the pairs of vertices, and length-1 cycles
are isolated vertices). Considering G as a symmetric digraph, the weight of a cycle cover is
equal to the product of the weights of its loops and the square of the weights of the edges it
uses (a length-2 cycle corresponds to an edge).

Consider the graph G′ obtained from G by adding weight-1 loops on all its vertices. In
other words, G′ is the graph whose adjacency matrix is A+ I2n. By the previous remark,
and by the fact that the loops have weight 1, the determinant of A+ I2n is

det(A+ I2n) =
∑
µ

w(µ)2 =
(∑

µ

w(µ)
)2
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where µ ranges over the partial matchings of G′ and w(µ) is the weight of the partial matching
µ. The second equality is true as the characteristic of the field is 2.

Recall now that G is bipartite. Of course, the partial matchings of G and G′ are the
same. So

per∗(B) =
∑
µ

w(µ),

where µ ranges over the partial matchings of G. This proves the lemma. J

This lemma shows in particular that for computing the parity of the number of partial
matchings in a bipartite graph, it is sufficient to compute a determinant (this is the case
where G is not edge-weighted). Therefore, this problem is solvable in polynomial time. This
was already mentioned by Valiant [19] but without any proof or reference.

I Theorem 12. In characteristic 2, the family ((PER∗)2
n) is in VPws.

Proof. The previous lemma shows that the polynomial (PER∗)2
n is a p-projection of DET2n

in characteristic 2. Thus, ((PER∗)2
n) is in VPws as (DETn) ∈ VPws [14]. J

Suppose that (PER∗n) is VNP-complete. Then every VNP family (fn) is a p-projection of
(PER∗n), and thus (f2

n) is a p-projection of ((PER∗)2
n). Let VNP2 = {(f2

n) : (fn) ∈ VNP} be
the class of squares of VNP families. This implies the following corollary of the theorem:

I Corollary 13. In any field of characteristic 2, if (PER∗n) is VNP-complete, then VNP2 ⊆
VPws.

This situation is unlikely to happen. In particular, it would be interesting to investigate
whether this inclusion implies that VPws = VNP in characteristic 2. Let us now give another
consequence of (PER∗n) being VNP-complete. This only holds for finite fields of characteristic
2 but may give a stronger evidence that (PER∗n) is unlikely to be VNP-complete.

I Theorem 14. If the partial permanent family is VNP-complete in a finite field of charac-
teristic 2, then ⊕P/poly = NC2/poly, and the polynomial hierarchy collapses to the second
level.

The proof of this theorem uses the boolean parts of Valiant’s complexity classes defined
in [4]. In the context of finite fields of characteristic 2, the boolean part of a family (fn) of
polynomials with coefficients in the ground field F2 is the function bpf : {0, 1}∗ → {0, 1}
such that for x ∈ {0, 1}n, bpf (x) = fn(x) (mod 2). The boolean part BP(C) of a Valiant’s
class C is the set of boolean parts of all f ∈ C.

Proof. Let (fn) be a VNP family and (ϕn) its boolean part. As ϕn(x) ∈ {0, 1} for all
x ∈ {0, 1}n, (ϕn) is the boolean part of (f2

n) too. This shows that BP(VNP) ⊆ BP(VNP2).
By Corollary 13, VNP2 ⊆ VPws ⊆ VP. Thus, BP(VNP) ⊆ BP(VNP2) ⊆ BP(VP) and as
VP ⊆ VNP

BP(VP) = BP(VNP).

Bürgisser [4] shows that in a finite field of characteristic 2, ⊕P/poly = BP(VNP), and
BP(VP) ⊆ NC2/poly. Hence, ⊕P/poly ⊆ NC2/poly. Moreover, NC2/poly ⊆ P/poly ⊆
⊕P/poly hence we conclude that

⊕P/poly = NC2/poly.
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The collapse of the polynomial hierarchy follows from a non uniform version of the Valiant-
Vazirani Theorem [20]: Theorem 4.10 in [4] states that NP/poly ⊆ ⊕P/poly. Therefore,

NC2/poly ⊆ NP/poly ⊆ ⊕P/poly = NC2/poly.

In particular, P/poly = NP/poly and Karp and Lipton [10] showed that this implies the
collapse of the polynomial hierarchy to the second level. J

4 Conclusion

As was already mentioned, our results can be refined by using a modified version of the
skinny size in which multiplications by constants do not count (this is the size considered in
[12]). Let us call green size this variant. Furthermore, if the polynomial is given as a formula
rather than as a weakly-skew circuits, some better bounds can be obtained. These two
improvements are detailed in [5, Sections 2 and 3]. Table 1 compares the results obtained, in
this paper and in previous ones. The bounds are given for a formula of green size e and for a
weakly-skew circuit of green size e with i input gates labelled by a variable, and take into
account the improvements explained in the long version.

Non-symmetric Symmetric
matrix matrix

Formula e + 1 2e + 1a

Weakly-skew circuit (e + i) + 1 2(e + i) + 1

a The bound is achieved if and only if the entries can be complex numbers. Else, the bound is 2e + 2.
Table 1 Bounds for determinantal representations of formulas and weakly-skew circuits. The

bounds for symmetric representations are new, and the bound for a non-symmetric representation of
a weakly-skew circuit is a slight improvement of known bounds.

The (e + 1) bound for the representation of a formula by a (non-symmetric) matrix
determinant was given in [12] by a method purely based on matrices. We show in [5,
Section 2.1] that this bound can also be obtained directly from Valiant’s original proof [18].
Along the way, we show that Valiant’s proof contained a little flaw that was surprisingly
never pointed out in the literature (and is present in more recent texts such as [4]). The
(e+ i+ 1) bound for the representation of a polynomial computed by a weakly-skew circuit
can be obtained from the (m+ 1) bound (where m is the fat size of the circuit) obtained
in [14] if we use our minimization lemma [5, Lemma 15] as well as a similar trick as in the
proof of [5, Theorem 5]. Both bounds for the symmetric cases are given in the long version
of this paper.

All of these results are valid for any field of characteristic different from 2. We showed
that there are some important differences in fields of characteristic 2 for the complexity of
polynomials. The open question of characterizing which polynomials can be represented as
determinants of symmetric matrices is quite intriguing. Note that a lot of variants of the
irreprensentable polynomial xy+ z (such as xy+ z+xyz+ 1 and xy+ 1) do admit symmetric
determinantal representations.
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