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Abstract
We study the connection between the rate at which a rumor spreads throughout a graph and
the conductance of the graph—a standard measure of a graph’s expansion properties. We show
that for any n-node graph with conductance φ, the classical PUSH-PULL algorithm distributes
a rumor to all nodes of the graph in O(φ−1 logn) rounds with high probability (w.h.p.). This
bound improves a recent result of Chierichetti, Lattanzi, and Panconesi [6], and it is tight in
the sense that there exist graphs where Ω(φ−1 logn) rounds of the PUSH-PULL algorithm are
required to distribute a rumor w.h.p.

We also explore the PUSH and the PULL algorithms, and derive conditions that are both
necessary and sufficient for the above upper bound to hold for those algorithms as well. An
interesting finding is that every graph contains a node such that the PULL algorithm takes
O(φ−1 logn) rounds w.h.p. to distribute a rumor started at that node. In contrast, there are
graphs where the PUSH algorithm requires significantly more rounds for any start node.

1998 ACM Subject Classification G.3 [Mathematics of Computing]: Probability and Statistics

Keywords and phrases Conductance, rumor spreading

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.57

1 Introduction

Gossip-based algorithms have become a prominent paradigm for designing simple, efficient,
and robust protocols for disseminating information in large networks. Perhaps the most
basic and most well-studied example of a gossip-based information-dissemination algorithm is
the, so-called, rumor-spreading model. The algorithm proceeds in a sequence of synchronous
rounds. Initially, in round 0, an arbitrary start node receives a piece of information, called the
rumor. This rumor is then spread iteratively to other nodes: In each round, every informed
node (i.e., every node that received the rumor in a previous round) chooses a random neighbor
to which it transmits the rumor. This is the PUSH version of the rumor-spreading model.
The PULL version is symmetric: In each round, every uninformed node chooses a random
neighbor, and if that neighbor knows the rumor it transmits it to the uniformed node. Finally,
the PUSH-PULL algorithm is the combination of both strategies: In each round, every node
chooses a random neighbor to transmit the rumor to, if the node knows the rumor, or to
request the rumor from, otherwise.

The above three rumor-spreading algorithms were proposed in [8], in the context of
maintaining distributed replicated database systems. Subsequently, these algorithms (and
variations of them) have been used in various applications, such as failure detection [27],
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resource discovery [21], and data aggregation [3]. Also, their performance has been studied
theoretically for several classes of networks (see the Related Work Section).

In this paper, we investigate the relationship between the performance of rumor spreading
in an arbitrary connected network (represented by an undirected graph), and the expansion
properties of the network. More precisely, we look at the broadcast time of the above
rumor-spreading algorithms, i.e., the number of rounds until all nodes get informed—a
primary measure for rumor spreading. And we study its connection to the conductance of
the network—one of the most studied measures of graph expansion. Roughly speaking, the
conductance of a connected graph is a value φ in the range 0 < φ ≤ 1, which is large for
graphs that are well connected (e.g., the complete graph), and small for graphs that are not
(e.g., graphs with communication bottlenecks).

A connection between broadcast time and conductance has been observed in several
works, e.g., in [23, 25, 1, 10], where upper bounds on the broadcast time were obtained
for various graph topologies based, essentially, on lower bounds on the conductance. In [5],
Chierichetti, Lattanzi, and Panconesi posed the question whether rumor spreading is fast in
all graphs with high conductance. For the PUSH and the PULL algorithms the answer is
negative; as observed in [6], a star with n vertices has constant conductance but the expected
broadcast time for a random start node is Ω(n) rounds. For the PUSH-PULL algorithm,
however, the answer to the above question is positive. In [7], it was shown that for any
graph and any start node, the broadcast time of the PUSH-PULL algorithm is O(φ−2 logn)
rounds, with high probability (w.h.p.).1 It was also noted in [7] that this result suggests a
justification as to why rumors spread quickly among humans, since experimental studies
have shown that social networks have high conductance. The above bound was subsequently
improved to O

(
(log φ−1)2φ−1 logn

)
rounds w.h.p., in [6]. Further, it was shown there that

this bound is by at most a (log φ−1)2-factor larger than the optimal bound. More precisely,
it was shown that for any φ ≥ 1/n1−ε, there are n-node graphs with conductance at least φ
and diameter Ω(φ−1 logn). Finally, the authors of [6] provided a sufficient condition for their
upper bound to hold for the PUSH and the PULL algorithms as well. This condition states
that for any edge, the ratio of the degrees of its two endpoints is bounded by a constant.

Two other important measures of a graph’s expansion properties are edge and vertex
expansion. The authors of [5] described a graph with constant edge expansion in which the
expected broadcast time of the PUSH-PULL algorithm for a random start node is Ω(

√
n).

The question whether high vertex expansion yields fast rumor spreading (also posed in [5]) is
largely open; in a very recent work [26], it was shown that for regular graphs this is true.

Our Contributions. We saw that an upper bound of O
(
(log φ−1)2φ−1 logn

)
rounds w.h.p.

is known for the broadcast time of the PUSH-PULL algorithm in any graph; and Ω(φ−1 logn)
rounds are required for some graph with n nodes and conductance φ, for any n and φ ≥ 1/n1−ε.
Our first contribution is the following result, which closes the gap between these two bounds.

I Theorem 1. For any graph on n vertices and any start vertex, the broadcast time of the
PUSH-PULL algorithm is O(φ−1 logn) rounds w.h.p.

We also show that Theorem 1 is tight for φ = Ω(1/n)—not just for φ ≥ 1/n1−ε as it was
previously known. Clearly, the theorem is not tight for φ = o(1/n), since the broadcast time
of the PUSH algorithm is known to be O(n logn) rounds w.h.p. for any graph [16].

1 By “with high probability” we mean with probability 1 − O(n−c), for an arbitrary constant c > 0.
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The proof of Theorem 1 is based on an analysis of the PUSH and the PULL algorithms.
We show that in any graph, the broadcast time of the PULL algorithm is O(φ−1 logn) rounds
w.h.p., if the start node has degree ∆, the maximum degree of the graph. Also, based on
the symmetry between the PULL and the PUSH algorithms, we show that for any start
node, the PUSH algorithm takes O(φ−1 logn) rounds w.h.p. to inform a node of degree ∆.
Therefore, w.h.p. the PUSH-PULL algorithm takes O(φ−1 logn) rounds to inform a node of
degree ∆, and O(φ−1 logn) additional rounds to inform the remaining nodes.

Our analysis is different than previous approaches. Specifically, the proof in [7] is based
on a connection between rumor spreading and a spectral sparsification process; and the proof
in [6] analyzes the PUSH-PULL process directly. Still, our analysis uses some ideas from [6].

Recall that high conductance does not always yield short broadcast times for the PUSH
and the PULL algorithms. Our second contribution is that we derive conditions guaranteing
a broadcast time of O(φ−1 logn) rounds w.h.p for those algorithms. As mentioned above, in
the proof of Theorem 1 we show that one such condition for the PULL algorithm is that
the start node have degree ∆. We extend this result as follows. Let δ denote the minimum
degree of the graph.

I Theorem 2. (a) For any graph on n vertices and any start vertex with degree Ω(∆(φ+δ−1)),
the broadcast time of the PULL algorithm is O(φ−1 logn) rounds w.h.p. (b) If, in particular,
∆ = O(1/φ) then the above bound on the broadcast time holds for any start vertex.

Further, we show that the conditions specified in Theorem 2 are optimal, in the sense
that for any given φ, δ, ∆, d with ∆ = ω(1/φ) and d = o(∆(φ+ δ−1)), there is a graph with
those φ, δ, ∆, and with a start node of degree d such that the broadcast time of the PULL
algorithm is ω(φ−1 logn) with non-negligible probability (i.e., with probability n−o(1)).

Note that Theorem 2(a) does not hold for the PUSH algorithm: a star on n vertices has
constant conductance, but the broadcast time of the PUSH algorithm is at least n− 1.

From Theorem 2(a) it follows that if δ = Ω(∆(φ+ δ−1)) then the broadcast time of the
PULL algorithm is O(φ−1 logn) w.h.p. for all start nodes. This, and Theorem 2(b), are also
true for the PUSH algorithm, by the symmetry argument used in the proof of Theorem 1.

Finally, we also tighten the result of [6] for the PUSH and the PULL algorithms. We
show that if, for any edge, the ratio of the degrees of its endpoints is bounded, then the
broadcast time of those algorithms is O(φ−1 logn) rounds w.h.p., for any start node.

Related Work. The broadcast time of the PUSH algorithm has been analyzed for various
graph topologies, including the complete graph [19, 24], the hypercube and random graphs [16],
star and Cayley graphs [12, 13], regular graphs [15], and random regular graphs [17].

Besides the broadcast time, another performance measure of interest is the total number
of transmissions of the rumor. Fewer transmissions are typically achieved using the PUSH-
PULL algorithm. The broadcast time and the number of transmissions of the PUSH-PULL
algorithm (and variations of it) have been analyzed for the complete graph [22], random
graphs [11, 14], and random regular graphs [1]. The problem of minimizing the total
communication complexity (i.e., the total number of bits transmitted) was studied in [18] for
the complete graph.

A quasi-random variant of the rumor-spreading model was proposed in [9], as a means to
reduce the amount of randomness. In the quasi-random model, each node has a (cyclic) list
of its neighbors in which it just chooses a random starting position—instead of choosing a
new random position in each round. This model was shown to be at least as efficient as the
classical rumor-spreading model for several families of graphs [9, 10]. The problem of further
reducing the amount of randomness was studied in [20].

STACS’11



60 Tight bounds for rumor spreading in graphs of a given conductance

The problem of rumor spreading in arbitrary graphs and its connection to the graph’s
expansion properties were also studied in [3, 23], in the context of gossip-based data aggre-
gation. In both papers, the data-aggregation protocols proposed employ generalizations of
the PUSH-PULL algorithm with non-uniform selection probabilities: in each round, node
v chooses its neighbor u with probability pv,u. Under certain symmetry conditions for the
matrix of pv,u, upper bounds on the broadcast time were established, as a function of certain
measures of this matrix that resemble graph conductance. These results, however, are not
directly comparable to our results. In particular, as observed in [6], there are graphs with
high conductance for which the above approaches yield large bounds for the broadcast time.

The problem of partial rumor spreading, where it suffices that the rumor be spread to a
constant fraction of the nodes, was studied in [4]. There, a refinement of graph conductance,
called weak conductance, was introduced, and it was shown that high weak conductance
always implies fast partial rumor spreading (using the PUSH-PULL algorithm), even if the
(standard) conductance is small.

Paper organization. We begin with some definitions and notations, in Section 2. Section 3,
which constitutes the largest part of the paper, contains the analysis of the PULL algorithm,
including the proof of Theorem 2. In Section 4, we provide a result on the symmetry between
the PUSH and PULL algorithms, which allows us to derive the properties of the PUSH
algorithm from the analysis of the PULL algorithm. Finally, in Section 5, we analyze the
PUSH-PULL algorithm and prove Theorem 1 using results from Sections 3 and 4.

2 Preliminaries

We consider an arbitrary connected network, represented by an undirected graph G = (V,E).
The degree of a vertex v ∈ V is denoted d(v). By ∆ we denote the maximum degree of
G, ∆ = maxv∈V d(v), and by δ we denote the minimum degree. The volume of a subset of
vertices S ⊆ V is the sum of the degrees of the vertices in S, vol(S) =

∑
v∈S d(v). Note that

vol(V ) = 2|E|. By cut(S, V −S) we denote the set of edges crossing the partition {S, V −S}
of V , i.e., cut(S, V − S) = {{v, u} ∈ E : v ∈ S, u ∈ V − S}. The conductance φ of G is
defined as

φ = min
S⊆V, vol(S)≤|E|

| cut(S, V − S)|
vol(S) .

It is easy to see that 0 < φ ≤ 1. (It is φ 6= 0 because graph G is connected.) Also,

I Observation 3. For any S ⊆ V , | cut(S, V − S)| ≥ dφ ·min{vol(S), vol(V − S)}e.

We will denote by Si the set of informed vertices at the end of round i of the rumor-
spreading algorithm, and by Ui the set of uninformed vertices at that time, Ui = V − Si. S0
and U0 denote the corresponding sets initially. To simplify notation, we will assume that S0
can be any non-empty subset of vertices—we do not require that |S0| = 1.

3 PULL Algorithm

In Section 3.1, we establish a general upper bound on the broadcast time of the PULL
algorithm, for any initial set of informed vertices. In Section 3.2, we build upon and refine
this result to derive conditions that guarantee broadcast times of O(φ−1 logn) rounds. More
precisely, we prove Theorem 2 and demonstrate its optimality, and we show that a condition
proposed in [6] also achieves the above broadcast time.
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3.1 An Upper Bound on the Broadcast Time

The main result of this section is the following high-probability bound on the broadcast time
for an arbitrary initial set of informed vertices. Recall that ∆ is the maximum degree of G.

I Lemma 4. For any initial set of informed vertices S0 ⊆ V and any fixed β > 0, all vertices
get informed in at most 50(β + 2) logn

(
φ−1 + ∆/dφ vol(S0)e

)
rounds of the PULL algorithm,

with probability 1−O(n−β).

Note that if ∆/dφ vol(S0)e = O(1/φ) then the broadcast time is O(φ−1 logn) w.h.p.
To prove Lemma 4 we divide the execution of the algorithm into three phases: The first

phase lasts until the total volume of informed vertices becomes at least ∆; the second lasts
until this volume exceeds |E|, i.e., it exceeds one half of the total volume of the graph; and
the third lasts until all vertices get informed. We measure progress in the first two phases by
the increase in the volume of informed vertices; and in the third phase by the decrease in the
volume of uninformed vertices. For each phase, the next lemma gives upper bounds on the
number of rounds until “significant” progress is made with constant probability.

I Lemma 5.
(a) If vol(S0) < ∆ then Pr

(
vol(Si) ≥ ∆

)
≥ 1/2, for i ≥ 4∆/dφ vol(S0)e.

(b) If ∆ ≤ vol(S0) ≤ |E| then Pr
(

vol(Si) ≥ min{2 vol(S0), |E|+ 1}
)
≥ 1/2, for i ≥ 4/φ.

(c) If vol(S0) > |E| then Pr
(

vol(Ui) ≤ vol(U0)/2
)
≥ 1/2, for i ≥ 6/φ.

The proof of Lemma 5 proceeds as follows. Consider part (a)—for parts (b) and (c) the
reasoning is similar. Consider round i. At the beginning of the round there are at least
φ vol(Si−1) ≥ φ vol(S0) edges between informed and uninformed vertices. We fix dφ vol(S0)e
of these edges arbitrarily before round i is executed, and then count the total volume Li of
the vertices that get informed in round i due to the rumor being transmitted through those
edges. Clearly, Li is a lower bound on the total volume of the vertices informed in round i.
Thus, to prove (a) it suffices to show that

∑
k≤i Lk ≥ ∆− vol(S0) with probability at least

1/2. By employing a martingale argument we compute the expectation and the variance of∑
k≤i Lk, and then we bound

∑
k≤i Lk using Chebyshev’s inequality.

The approach used to prove Lemma 5 is at the heart of our analysis, and it is also used
to prove analogous results in Section 3.2.

Proof of Lemma 5. (a) Let L1, L2, . . . be a sequence of random variables with Li, for i ≥ 1,
be defined as follows. We distinguish two cases:

If vol(Si−1) ≤ |E|, then, by Observation 3, | cut(Si−1, Ui−1)| ≥ dφ vol(Si−1)e ≥ dφ vol(S0)e.
Let Ei be an arbitrary subset of cut(Si−1, Ui−1) consisting of M = dφ vol(S0)e edges.
Set Ei is (arbitrarily) fixed at the beginning of round i—before the round is executed.
Then Li is the total volume of the vertices that get informed in round i as a result of the
rumor being transmitted through edges in Ei. Formally, for each vertex u ∈ Ui−1, let
Li,u be the 0/1 random variable with Li,u = 1 if and only if in round i vertex u receives
the rumor through some edge in Ei. Then, Li =

∑
u∈Ui−1

Li,ud(u).
If vol(Si−1) > |E|, then Li = M .

We will show the following results for the expectation and the variance of the sum of Li.

I Claim 6. E[
∑
k≤i Lk] = iM and Var(

∑
k≤i Lk) ≤ iM∆.

STACS’11



62 Tight bounds for rumor spreading in graphs of a given conductance

Using this claim, the lemma follows by Chebyshev’s inequality: Let µ = E[
∑
k≤i Lk] = iM .

Note that for i ≥ 4∆/M , µ > ∆. So,

Pr
(∑
k≤i

Lk < ∆
)
≤ Pr

(∣∣∣∑
k≤i

Lk − µ
∣∣∣ > µ−∆

)
≤

Var(
∑
k≤i Lk)

(µ−∆)2 ≤ iM∆
(iM −∆)2 < 1/2, (1)

for i ≥ 4∆/M . Note that if vol(Si) < ∆ then
∑
k≤i Lk < ∆, because

∑
k≤i Lk cannot be

larger than the total volume of all vertices informed since round 1 and thus
∑
k≤i Lk ≤

vol(Si)− vol(S0) < ∆. Hence, Pr(vol(Si) < ∆) ≤ Pr(
∑
k≤i Lk < ∆) < 1/2, for i ≥ 4∆/M .

To complete the proof of part (a) it remains to show Claim 6, which we do next.

Expectation of the Sum of Li: For i ≥ 0, define Li =
∑
k≤i(Lk −M). Let Fi be the

σ-algebra generated by all the choices of the algorithm in the first i rounds. It is easy to see
that the sequence L0,L1, . . . is a martingale with respect to the filter F0 ⊆ F1 ⊆ . . . :

If vol(Si−1) ≤ |E|,

E[Li − Li−1 | Fi−1] = E[Li −M | Fi−1] = E
[ ∑
u∈Ui−1

Li,ud(u)
∣∣∣Fi−1

]
−M

=
∑

u∈Ui−1

E[Li,u | Fi−1] · d(u)−M,

where the last relation holds because Ui−1 is Fi−1-measurable. For any u ∈ Ui−1,

E[Li,u | Fi−1] = Pr(Li,u = 1 | Fi−1) = gi(u)/d(u), (2)

where gi(u) is the number of edges in Ei that are incident to u. Note that∑
u∈Ui−1

gi(u) = |Ei| = M, (3)

since each edge in Ei is incident to exactly one u ∈ Ui−1. Combining the above yields
E[Li − Li−1 | Fi−1] =

∑
u∈Ui−1

gi(u)−M = M −M = 0.
If vol(Si−1) > |E|, then Li − Li−1 = Li −M = M −M = 0.

So, in both cases, E[Li − Li−1 | Fi−1] = 0, which yields E[Li] = E[L0] = 0. Substituting to
this the definition of Li, we obtain the desired formula for the expectation, E[

∑
k≤i Lk] = iM .

Variance of the Sum of Li:

E[L2
i | Fi−1] = E[((Li − Li−1) + Li−1)2 | Fi−1]

= E[(Li − Li−1)2 | Fi−1] + L2
i−1 + 2E[Li − Li−1 | Fi−1] · Li−1

= E[(Li −M)2 | Fi−1] + L2
i−1, (4)

since E[Li − Li−1 | Fi−1] = 0. We bound E[(Li −M)2 | Fi−1] as follows:
If vol(Si−1) ≤ |E|, then, by the definition of Li and Equation (3),

E[(Li −M)2 | Fi−1] = E
[( ∑

u∈Ui−1

(
Li,ud(u)− gi(u)

))2 ∣∣∣Fi−1

]
=

∑
u∈Ui−1

E[(Li,ud(u)− gi(u))2 | Fi−1],

where the last relation holds because E
[
(Li,ud(u)− gi(u))(Li,u′d(u′)− gi(u′))

∣∣Fi−1
]

=
0, for any u, u′ ∈ Ui−1 with u 6= u′. This last statement is true because, by (2),
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E[Li,ud(u) − gi(u) | Fi−1] = 0, and because the random variables Li,u, u ∈ Ui−1, are
mutually independent conditionally on Fi−1. Using again (2) and (3), we get∑

u∈Ui−1

E[(Li,ud(u)− gi(u))2 | Fi−1] =
∑

u∈Ui−1

(
E[L2

i,u(d(u))2 | Fi−1]− (gi(u))2)
≤

∑
u∈Ui−1

E[L2
i,u(d(u))2 | Fi−1] =

∑
u∈Ui−1

E[Li,u | Fi−1] · (d(u))2

=
∑

u∈Ui−1

gi(u)d(u) ≤
∑

u∈Ui−1

gi(u)∆ = M∆.

Therefore, E[(Li −M)2 | Fi−1] ≤M∆.
If vol(Si−1) > |E|, the last inequality is still true, since Li = M .

By applying the above to (4) yields E[L2
i | Fi−1] ≤ M∆ + L2

i−1, and recursively we ob-
tain E[L2

i ] ≤ iM∆. The desired bound for Var(
∑
k≤i Lk) then follows by observing that

Var(
∑
k≤i Lk) = E[L2

i ]. This completes the proof of Claim 6, and of Lemma 5(a).

(b) We consider the same sequence of random variables L1, L2, . . . as in part (a). Similarly
to (1), by using Claim 6 and Chebyshev’s inequality we obtain that

Pr
(∑
k≤i

Lk < vol(S0)
)
≤ iM∆

(iM − vol(S0))2 ≤
iM vol(S0)

(iM − vol(S0))2 < 1/2,

for i ≥ 4 vol(S0)/M , and thus, for i ≥ 4/φ. Part (b) then follows by observing that if
vol(Si) < min{2 vol(S0), |E| + 1} then

∑
k≤i Lk ≤ vol(Si) − vol(S0) < vol(S0), and thus,

Pr
(

vol(Si) < min{2 vol(S0), |E|+ 1}
)
≤ Pr

(∑
k≤i Lk < vol(S0)

)
.

(c) Unlike in parts (a) and (b), the set of uninformed vertices has now a smaller volume than
the set of informed vertices. So, by Observation 3, | cut(Si, Ui)| ≥ dφ vol(Ui)e. We consider
the sequence L1, L2, . . . of random variables, with Li defined as follows:

If vol(Ui−1) > vol(U0)/2, we let Ei be an arbitrary subset of cut(Si−1, Ui−1) consisting
of M = dφ vol(U0)/2e edges. (Ei is fixed at the beginning of round i.) As before, Li is
the total volume of the vertices that get informed in round i as a result of the rumor
being transmitted through edges in Ei.
If vol(Ui−1) ≤ vol(U0)/2, then Li = M .

Similarly to Claim 6, we can show that E[
∑
k≤i Lk] = iM and Var(

∑
k≤i Lk) ≤ iM vol(U0).

For the latter we use the fact that the degree of any uninformed vertex is at most vol(U0).
As before, by Chebyshev’s inequality, we can show that Pr

(∑
k≤i Lk < vol(U0)/2

)
< 1/2,

for i ≥ 6/φ. Part (c) then follows by observing that if vol(Ui) > vol(U0)/2 then
∑
k≤i Lk ≤

vol(U0)− vol(Ui) < vol(U0)/2. J

Using the bounds of Lemma 5, Lemma 4 follows easily:

Proof of Lemma 4. By Lemma 5(a), if vol(Si) < ∆ then, with probability 1/2, it takes at
most d4∆/dφ vol(Si)ee ≤ 5∆/dφ vol(Si)e additional rounds until the total volume of informed
vertices becomes at least ∆. Thus, if vol(S0) < ∆, the probability that vol(St) < ∆ for
t = 2β lnn · (5∆/dφ vol(S0)e) is at most (1− 1/2)2β lnn ≤ e−2β lnn/2 = n−β .

By Lemma 5(b), if ∆ ≤ vol(Si) ≤ |E| then, with probability 1/2, it takes at most d4/φe
rounds until the total volume of informed vertices is increased to at least min{2 vol(Si), |E|+
1}. Now, divide the execution of the algorithm into phases of d4/φe rounds each, starting
from the end of the first round i with vol(Si) ≥ ∆. A phase is successful if the total volume

STACS’11



64 Tight bounds for rumor spreading in graphs of a given conductance

of informed vertices at the end of the phase is at least min{2 vol(S), |E|+ 1}, where S is
the set of informed vertices at the beginning of the phase. (Note that if vol(S) ≥ |E| + 1
then the phase is always successful.) Then, for any k, the probability that the k-th phase
is successful is at least 1/2, regardless of the outcome of the previous k − 1 phases. From
this (and a simple coupling argument), the number of successful phases among the first k
phases is (stochastically) greater or equal to the binomial random variable B(k, 1/2). So,
by Chernoff bounds, the probability that fewer than m = log |E| of the first k = (2β + 4)m
phases are successful is at most equal to

Pr(B(k, 1/2) < m) = Pr(k/2−B(k, 1/2) > k/2−m) ≤ e−2(k/2−m)2/k ≤ e−βm = O(n−β),

since |E| ≥ n− 1. And since at most m successful phases are required until the total volume
of informed vertices exceeds |E|, it follows that with probability 1−O(n−β) the number of
rounds required is at most kd4/φe = (2β + 4) log(|E|)d4/φe ≤ (2β + 4)(2 logn)(5/φ).

Finally, by Lemma 5(c), if vol(Si) > |E| then, with probability 1/2, it takes at most
d6/φe rounds until the total volume of uninformed vertices is halved. By similar reasoning
as before, we can show that once the volume of informed vertices has exceeded |E|, then
(2β + 4)(2 logn)(7/φ) rounds suffice to inform all nodes with probability 1−O(nβ).

Combing all the above and applying the union bound, we obtain that with probability
1−O(nβ) all vertices get informed within 50(β + 2) logn

(
φ−1 + ∆/dφ vol(S0)e

)
rounds. J

3.2 Conditions for Rumor Spreading in O(φ−1 logn) Rounds
3.2.1 Derivation of Theorem 2
Lemma 4 implies that if ∆/dφ vol(S0)e = O(1/φ), the broadcast time is O(φ−1 logn) rounds
w.h.p. Theorem 2(b) follows then directly, since ∆/dφ vol(S0)e ≤ ∆, for any S0. Also, the
following weaker version of Theorem 2(a) is immediate, because if the degree of the start
vertex is Ω(∆) then vol(S0) = Ω(∆) and ∆/dφ vol(S0)e ≤ ∆/φ vol(S0) = O(1/φ).

I Corollary 7. For any start vertex of degree Ω(∆), the broadcast time of the PULL algorithm
is O(φ−1 logn) rounds w.h.p.

This result is weaker than Theorem 2(a) because φ+ δ−1 = O(1). However, it will suffice
for the purposes of proving Theorem 1 (in Section 5).

Next we describe the proof of Theorem 2(a). Recall that Lemma 4, on which the proof of
Corollary 7 was based, assumes that S0 may be any subset of vertices. Under this assumption,
the size of cut(S0, U0) can be as small as dφ vol(S0)e. However, if S0 consists of a single
vertex, then | cut(S0, U0)| = vol(S0), which can be significantly larger than dφ vol(S0)e. This
observation is a key ingredient in our proof.

We begin by observing that if S0 consists of a single vertex, then the size of cut(Si, Ui)
remains Ω(vol(S0)) until vol(Si) increases to at least Ω(δ vol(S0)). More precisely, suppose
that S0 = {v}; so, vol(S0) = | cut(S0, U0)| = d(v). Then, | cut(Si, Ui)| ≥ vol(S0)− |Si|+ 1,
because all the vol(S0) edges of the start vertex v are initially incident to uniformed vertices;
and each new vertex that gets informed is incident to at most one of those edges. Also, clearly,
vol(Si) ≥ |Si| · δ, thus, |Si| ≤ vol(Si)/δ. Therefore, | cut(Si, Ui)| ≥ vol(S0)− vol(Si)/δ. So,

I Observation 8. If |S0| = 1 and vol(Si) ≤ δ vol(S0)/2 then | cut(Si, Ui)| ≥ vol(S0)/2.

We use this result in the proof of the next lemma, which is similar to Lemma 5(a).

I Lemma 9. Let D = min{∆, δ vol(S0)/2}. If |S0| = 1 then Pr
(

vol(Sj+i) ≥ D
∣∣Sj) ≥ 1/2,

for i ≥ 8∆/ vol(S0).
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Proof. Fix the set Sj arbitrarily. As in the proof of Lemma 5(a), we consider a sequence
L1, L2, . . . of random variables, where Li is as follows:

If vol(Sj+i−1) ≤ D, let Ei be an arbitrary subset of cut(Sj+i−1, Uj+i−1) of size M =
dvol(S0)/2e, fixed before round j + i. (By Observation 8, | cut(Sj+i−1, Uj+i−1)| ≥ M .)
Then Li is the total volume of the vertices informed in round j + i through edges in Ei.
If vol(Sj+i−1) > D, then Li = M .

Similarly to Claim 6, E[
∑
k≤i Lk] = iM and Var(

∑
k≤i Lk) ≤ iM∆. And, similarly to (1),

Pr
(∑

k≤i Lk < D
)
≤ iM∆/(iM −D)2 < 1/2, for i ≥ 2(∆ + D)/M . Since vol(Sj+i) < D

implies
∑
k≤i Lk < D, and since 2(∆ +D)/M ≤ 8∆/ vol(S0), the lemma follows. J

We can now derive Theorem 2(a) similarly to Lemma 4.

Proof of Theorem 2(a). Let d = vol(S0) be the degree of the start vertex. By Lemma 9,
the probability that the total volume of informed vertices is smaller than D = min{∆, δd/2}
after c lnnd8∆/de rounds is at most (1− 1/2)c lnn ≤ n−c/2. The above number of rounds is
O(φ−1 lnn), since d = Ω(∆(φ+ δ−1)) = Ω(φ∆). Thus, w.h.p., it takes O(φ−1 lnn) rounds
until the total volume of informed vertices becomes at least D.

Since d = Ω(∆(φ+δ−1)) = Ω(∆/δ), we haveD = Ω(∆). Thus, by Lemma 4, once the total
volume of informed vertices is at least D, it takes O

(
logn(φ−1 + ∆/dφDe)

)
= O(φ−1 lnn)

additional rounds until all vertices get informed w.h.p. J

The following direct corollary of Theorem 2(a) gives a condition for rumor spreading in
O(φ−1 logn) rounds for any start vertex.

I Corollary 10. If δ = Ω(∆(φ + δ−1)), or, equivalently, δ = Ω(φ∆ +
√

∆) then, for any
start vertex, the broadcast time of the PULL algorithm is O(φ−1 logn) rounds w.h.p.

3.2.2 Optimality of Theorem 2
The conditions described in Theorem 2, that the degree of the start vertex be d = Ω(∆(φ+
δ−1)) or the maximum degree be ∆ = O(1/φ), are optimal in the following sense.

I Theorem 11. For any φ, δ,∆, d with δ ≤ d = o(∆(φ+ δ−1)) and ∆ = ω(1/φ), there exists
an infinite sequence of graphs G1, G2, . . . such that Gn has Θ(n) vertices, conductance Θ(φ),
and maximum (minimum) degree Θ(∆) (Θ(δ)), and it contains a start vertex of degree Θ(d)
such that ω(φ−1 logn) rounds of the PULL algorithm are required to inform all vertices w.h.p.

Proof. First we consider the case of d = o(φ∆). Construct the following graph: Take a
∆-regular graph R∆ on n vertices with edge expansion ξ = Θ(∆). Such a graph exists since
the edge expansion of a random ∆-regular graph is Θ(∆) w.h.p. [2]. The conductance of
R∆ is obviously ξ/∆ = Θ(1). Add a vertex s of degree d and a vertex vmin of degree δ,
choosing their neighbors arbitrarily among the vertices of R∆. Vertex s will be the start
vertex, while vmin is added just to have minimum degree δ. Next we add a component to
achieve conductance φ: Take the complete graph on ∆ vertices K∆. Let A be an arbitrary
subset of the vertices of R∆ of size |A| = bφ∆c. (It is |A| > 0 since 1 ≤ d = o(φ∆)). Draw
edges between each vertex of K∆ and each vertex in A. It is not hard to see that the resulting
graph has the desired number of vertices, maximum and minimum degrees, and conductance.
Also, since d = o(φ∆), the probability that no neighbor of s receives the rumor from s in
k = bφ−1 lnn · (2/3)

√
φ∆/dc = ω(φ−1 lnn) rounds is at least

(1− 1/∆)kd ≥ e−3kd/2∆ ≥ e− lnn
√
d/φ∆ = n−o(1),
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where for the first inequality we used the fact that 1− x ≥ e−3x/2, for 0 ≤ x ≤ 1/2. So, with
probability n−o(1), no vertex learns a rumor started at s in O(φ−1 lnn) rounds.

Next we consider the complementary case, d = Ω(φ∆). Since d = o(∆(φ+ δ−1)), we have
φ = o(1/δ) and d = o(∆/δ). Consider the following graph: Take the graph we constructed
before and remove vertex s together with its incident edges. Take also dd/δe copies ofKδ. Add
a vertex s′ of degree Θ(d) with neighbors the vertices of the dd/δe δ-cliques, plus the elements
of an arbitrary subset B of the vertices of R∆, with |B| = dφdδe. (It is |B| = O(d) since
φ = o(1/δ) as we saw above.) It is not hard to see that the resulting graph has the desired
number of vertices, maximum and minimum degrees, and conductance. Also, with probability
n−o(1), no vertex in B learns a rumor started at s′ in O(φ−1 lnn) rounds: Since d = o(∆/δ)
and ∆ = ω(1/φ), we have |B| ≤ φdδ+ 1 = o(φ∆) + 1 = o(φ∆). Thus, the probability that no
neighbor of s′ in B receives the rumor from s′ in k = bφ−1 lnn ·(2/3)

√
φ∆/|B|c = ω(φ−1 lnn)

rounds is at least (1− 1/∆)k|B| ≥ e−3k|B|/2∆ ≥ e− lnn
√
|B|/φ∆ = n−o(1). J

3.2.3 Bounded Ratio of the Degrees of Adjacent Vertices
It was shown in [6] that if the ratio of the degrees of any two adjacent vertices is bounded
by a constant, then the broadcast time of the PULL algorithm is O

(
(log φ−1)2φ−1 logn

)
rounds w.h.p., for any start vertex. By similar reasoning as in the proofs of Lemma 4 and
Theorem 2(a), we can show that, in fact, the above condition yields a broadcast time of
O(φ−1 logn) rounds. The proof is omitted due to space limitations.

I Theorem 12. If, for every edge {v, u}, d(v)/d(u) = Θ(1) then, the broadcast time of the
PULL algorithm is O(φ−1 logn) rounds w.h.p., for any start vertex.

4 PUSH Algorithm

The analysis of the PUSH algorithm can be reduced to that of the PULL algorithm, by
exploiting a symmetry between the two algorithms, described in the following result. This
result is similar to Lemma 3 in [6]. Its proof is omitted due to space limitations.

I Lemma 13. Let EPUSH(v, u, t) denote the event that the PUSH algorithm spreads to vertex
u a rumor started at vertex v in at most t rounds; and let EPULL(v, u, t) be defined similarly.
Then, Pr(EPUSH(v, u, t)) = Pr(EPULL(u, v, t)).

Suppose that for any vertex u, the PULL algorithm distributes a rumor started at u to
all vertices in at most t rounds with probability at least 1 − q. Then, by Lemma 13, for
any vertex v, the PUSH algorithm spreads to a given u a rumor started at v in at most
t rounds with probability at least 1 − q; and, by the union bound, if q ≤ 1/(n − 1), the
rumor started at v is spread to all vertices in at most t rounds with probability at least
1 − (n − 1)q. Thus, if the broadcast time of the PULL algorithm is O(φ−1 logn) rounds
w.h.p. for any start vertex, then the same is true for the PUSH algorithm, as well. Hence,
the conditions described in Section 3 guaranteing a broadcast time of O(φ−1 logn) rounds
w.h.p. for any start vertex, apply to the PUSH algorithm as well; specifically, Theorem 2(b),
Corollary 10, and Theorem 12. Finally, Theorem 11 is also true for the PUSH algorithm for
d = δ. (For, otherwise, by the same reasoning as above, with the roles of the PUSH and the
PULL algorithms switched, we would contradict Theorem 11.)

5 PUSH-PULL Algorithm

We prove Theorem 1, which gives a bound of O(φ−1 logn) rounds w.h.p. on the broadcast
time of the PUSH-PULL algorithm, and argue that this bound is tight.
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Proof of Theorem 1. Fix a vertex v and let vmax be a vertex of maximum degree. By
Corollary 7, we have that: (A) The PULL algorithm distributes a rumor from vmax to all
other vertices (and thus to v) in O(φ−1 logn) rounds w.h.p. Combining this with Lemma 13
yields: (B) The PUSH algorithm spreads to vmax a rumor started at v in O(φ−1 logn)
rounds w.h.p. The theorem now follows easily: Statement (B) implies (a fortiori) that the
PUSH-PULL algorithm spreads to vmax a rumor started at v in O(φ−1 logn) rounds w.h.p.;
and, once vmax is informed, Statement (A) implies that from vmax the PUSH-PULL algorithm
spreads the rumor to all vertices in O(φ−1 logn) additional rounds w.h.p. J

The following result was shown in [6].

I Lemma 14. For any φ ≥ 1/n1−ε, for a fixed ε > 0, there exists an infinite sequence of graphs
G1, G2, . . . such that Gn has Θ(n) vertices, conductance Θ(φ), and diameter Ω(φ−1 logn).

From this, it is immediate that rumor spreading requires Ω(φ−1 logn) rounds, if φ ≥
1/n1−ε. Thus, the bound of Theorem 1 is asymptotically tight for φ ≥ 1/n1−ε. The next
result shows this is in fact true for all φ = Ω(1/n).

I Lemma 15. For any φ with 2/(n+2) ≤ φ ≤ 1/2, there exists an infinite sequence of graphs
G1, G2, . . . such that Gn has n vertices and conductance Θ(φ), and, for any start vertex,
Ω(φ−1 logn) rounds of the PUSH-PULL algorithm are required to inform all vertices w.h.p.

Proof. Consider the n-vertex graph obtained by taking two stars, one with dφ−1e vertices
and another with n− dφ−1e vertices, and connecting their centers with an edge. It is easy to
see that the resulting graph has conductance Θ(φ). We now show that for any start vertex
and any constant c > 0, at least c lnn/3φ rounds are required to inform all vertices with
probability 1− n−c. Let v and v′ be the centers of the two stars, where v is the center of the
star containing the start vertex. Let j be the round when v gets informed. (If v is the start
vertex then j = 0.) The probability that v′ is not informed by the end of round j + i, which
happens if the rumor is not transmitted from v to v′ via a PUSH or PULL operation in any
of the rounds j + 1, . . . , j + i, is clearly(

1− 1/dφ−1e
)i(1− 1/(n− dφ−1e)

)i ≥ (1− 1/dφ−1e
)2i ≥ (1− φ)2i ≥ e−3iφ,

where for the first inequality we used the fact that φ ≥ 2/(n+ 2), that for the last the fact
that 1 − x ≥ e−3x/2, for 0 ≤ x ≤ 1/2. For i < c lnn/3φ, it is e−3iφ > n−c. Thus, at least
c lnn/3φ rounds are required to inform all vertices with probability 1− n−c. J
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