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Abstract
Trapezoid graphs are the intersection graphs of trapezoids, where every trapezoid has a pair of
opposite sides lying on two parallel lines L1 and L2 of the plane. Strictly between permutation and
trapezoid graphs lie the simple-triangle graphs – also known as PI graphs (for Point-Interval) –
where the objects are triangles with one point of the triangle on L1 and the other two points
(i.e. interval) of the triangle on L2, and the triangle graphs – also known as PI∗ graphs – where
again the objects are triangles, but now there is no restriction on which line contains one point
of the triangle and which line contains the other two. The complexity status of both triangle and
simple-triangle recognition problems (namely, the problems of deciding whether a given graph is a
triangle or a simple-triangle graph, respectively) have been the most fundamental open problems
on these classes of graphs since their introduction two decades ago. Moreover, since triangle and
simple-triangle graphs lie naturally between permutation and trapezoid graphs, and since they
share a very similar structure with them, it was expected that the recognition of triangle and
simple-triangle graphs is polynomial, as it is also the case for permutation and trapezoid graphs.
In this article we surprisingly prove that the recognition of triangle graphs is NP-complete, even
in the case where the input graph is known to be a trapezoid graph.
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1 Introduction

A graph G = (V,E) with n vertices is the intersection graph of a family F = {S1, . . . , Sn}
of subsets of a set S if there exists a bijection µ : V → F such that for any two distinct
vertices u, v ∈ V , uv ∈ E if and only if µ(u)∩µ(v) 6= ∅. Then, F is called an intersection model
of G. Note that every graph has a trivial intersection model based on adjacency relations [18].
However, some intersection models provide a natural and intuitive understanding of the
structure of a class of graphs, and turn out to be very helpful to obtain structural results,
as well as to find efficient algorithms to solve optimization problems [18]. Many important
graph classes can be described as intersection graphs of set families that are derived from
some kind of geometric configuration.

Consider two parallel horizontal lines on the plane, L1 (the upper line) and L2 (the lower
line). Various intersection graphs can be defined on objects formed with respect to these
two lines. In particular, for permutation graphs, the objects are line segments that have one
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endpoint on L1 and the other one on L2. Generalizing to objects that are trapezoids with
one interval on L1 and the opposite interval on L2, trapezoid graphs have been introduced
independently in [5] and [6]. Given a trapezoid graph G, an intersection model of G with
trapezoids between L1 and L2 is called a trapezoid representation of G. Trapezoid graphs
are perfect graphs [3, 9] and generalize in a natural way both interval graphs (when the
trapezoids are rectangles) and permutation graphs (when the trapezoids are trivial, i.e. lines).
In particular, the main motivation for the introduction of trapezoid graphs was to generalize
some well known applications of interval and permutation graphs on channel routing in
integrated circuits [6].

Moreover, two interesting subclasses of trapezoid graphs have been introduced in [5]. A
trapezoid graph G is a simple-triangle graph if it admits a trapezoid representation, in which
every trapezoid is a triangle with one point on L1 and the other two points (i.e. interval)
on L2. Similarly, G is a triangle graph if it admits a trapezoid representation, in which every
trapezoid is a triangle, but now there is no restriction on which line between L1 and L2
contains one point of the triangle and which one contains the other two points (i.e. the interval)
of the triangle. Such an intersection model of a simple-triangle (resp. triangle) graph G with
triangles between L1 and L2 is called a simple-triangle (resp. triangle representation of G).
Simple-triangle and triangle graphs are also known as PI and PI∗ graphs, respectively [3–5,15],
where PI stands for “Point-Interval”; note that, using this notation, permutation graphs
are PP (for “Point-Point”) graphs, while trapezoid graphs are II (for “Interval-Interval”)
graphs [5]. In particular, both interval and permutation graphs are strictly contained in
simple-triangle graphs, which are strictly contained in triangle graphs, which are strictly
contained in trapezoid graphs [3, 5].

Due to both their interesting structure and their practical applications, trapezoid graphs
have attracted many research efforts. In particular, efficient algorithms for several opti-
mization problems that are NP-hard in general graphs have been designed for trapezoid
graphs [2, 7, 10, 12, 13, 16, 25], which also apply to triangle and simple-triangle graphs.
Furthermore, several efficient algorithms appeared for the recognition problems of both
permutation [9, 17] and trapezoid graphs [14,16,21]; see [26] for an overview.

In spite of this, the complexity status of both triangle and simple-triangle recognition
problems have been the most fundamental open problems on these classes of graphs since
their introduction two decades ago [3]. Since, on the one hand, very few subclasses of perfect
graphs are known to be NP-hard to recognize (for instance, perfectly orderable graphs [23],
EPT graphs [11], and recently tolerance and bounded tolerance graphs [22]) and, on the
other hand, triangle and simple-triangle graphs lie naturally between permutation and
trapezoid graphs, while they share a very similar structure with them, it was expected that
the recognition of triangle and simple-triangle graphs was polynomial.

Our contribution

In this article we establish the complexity of recognizing triangle graphs. Namely, we prove
that this problem is surprisingly NP-hard, by providing a reduction from the 3SAT problem.
Specifically, given a boolean formula formula φ in conjunctive normal form with three literals
in every clause (3-CNF), we construct a trapezoid graph Gφ, which is a triangle graph if and
only if φ is satisfiable. Therefore, as the recognition problems for both triangle and simple-
triangle graphs are in the complexity class NP, it follows in particular that the triangle graph
recognition problem is NP-complete. This complements the recent surprising result that the
recognition of parallelogram graphs (i.e. the intersection graphs of parallelograms between two
parallel lines L1 and L2), which coincides with bounded tolerance graphs, is NP-complete [22].
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Organization of the paper.

Background definitions and properties of trapezoid graphs and their representations are
presented in Section 2. In Section 3 we introduce the notion of a standard trapezoid
representation, the existence of which is a sufficient condition for a trapezoid graph to be a
triangle graph. In Sections 4 and 5, we investigate the structure of some specific trapezoid
and triangle graphs, respectively, and prove special properties of them. We use these graphs
as parts of the gadgets in our reduction of 3SAT to the recognition problem of triangle
graphs, which we present in Section 6. Finally, we discuss the presented results and further
research in Section 7. Due to space limitations, some proofs are omitted; a full version can
be found in [19].

2 Triangle and simple-triangle graphs

In this section we provide some notation and properties of trapezoid graphs and their
representations, which will be mainly applied in the sequel to triangle and simple-triangle
graphs.

Notation. We consider in this article simple undirected and directed graphs with no
loops or multiple edges. In an undirected graph G, the edge between vertices u and v

is denoted by uv, and in this case u and v are said to be adjacent in G. Given a graph
G = (V,E) and a subset S ⊆ V , G[S] denotes the induced subgraph of G on the vertices in S.
Furthermore, we denote for simplicity by G−S the induced subgraph G[V \S] of G. Moreover,
given a graph G, we denote its vertex set by V (G). A connected graph G = (V,E) is called
k-connected, where k ≥ 1, if k is the smallest number of vertices that have to be removed from
G such that the resulting graph is disconnected. Furthermore, a vertex v of a 1-connected
graph G is called a cut vertex of G, if G−{v} is disconnected. By possibly performing a small
shift of the endpoints, we assume throughout the article without loss of generality that all
endpoints of the trapezoids (resp. triangles) in a trapezoid (resp. triangle or simple-triangle)
representation are distinct [8, 10, 12]. Given a trapezoid (resp. triangle or simple-triangle)
graph G along with a trapezoid (resp. triangle or simple-triangle) representation R, we may
not distinguish in the following between a vertex of G and the corresponding trapezoid
(resp. triangle) in R, whenever it is clear from the context. Moreover, given an induced
subgraph H of G, we denote by R[H] the restriction of the representation R on the trapezoids
(resp. triangles) of H.

Consider a trapezoid graph G = (V,E) and a trapezoid representation R of G, where
for any vertex u ∈ V the trapezoid corresponding to u in R is denoted by Tu. Since
trapezoid graphs are also cocomparability graphs (there is a transitive orientation of the
complement) [9], we can define the partial order (V,�R), such that u�R v, or equivalently
Tu �R Tv, if and only if Tu lies completely to the left of Tv in R (and thus also uv /∈ E).
Otherwise, if neither Tu �R Tv nor Tv �R Tu, we will say that Tu intersects Tv in R (and
thus also uv ∈ E). Furthermore, we define the total order <R on the lines L1 and L2 in R as
follows. For two points a and b on L1 (resp. on L2), if a lies to the left of b on L1 (resp. on L2),
then we will write a <R b.

There are several trapezoid representations of a particular trapezoid graph G. For
instance, given one such representation R, we can obtain another one R′ by vertical axis
flipping of R, i.e. R′ is the mirror image of R along an imaginary line perpendicular to L1
and L2. Moreover, we can obtain another representation R′′ of G by horizontal axis flipping
of R, i.e. R′′ is the mirror image of R along an imaginary line parallel to L1 and L2. We will
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L1

L2

R1 :

(a)

L1

L2

R2 :

(b)

Figure 1 (a) A simple-triangle representation R1 and (b) a triangle representation R2.

use extensively these two basic operations throughout the article. For every trapezoid Tu
in R, where u ∈ V , we define by l(u) and r(u) (resp. L(u) and R(u)) the lower (resp. upper)
left and right endpoint of Tu, respectively (cf. the trapezoid Tv in Figure 2). Since every
triangle and simple-triangle representation is a special type of a trapezoid representation, all
the above notions can be also applied to triangle and simple-triangle graphs. Note here that,
if R is a simple-triangle representation of G = (V,E), then L(u) = R(u) for every u ∈ V ;
similarly, if R is a triangle representation of G, then L(u) = R(u) or l(u) = r(u) for every
u ∈ V . An example of a simple-triangle and a triangle representation is shown in Figure 1.

It can be easily seen that every triangle (resp. single-triangle) graph G has a triangle
(resp. single-triangle) representation of G, in which the endpoints of the triangles in both
lines L1 and L2 are integers. That is, every triangle (resp. single-triangle) graph G with n
vertices has a representation with size polynomial on n, and thus the recognition problems
of both both triangle and simple-triangle graphs are in NP, as the next observation states.

I Observation 1. The triangle and simple-triangle graph recognition problems are in the
complexity class NP.

3 Standard trapezoid representations

In this section we investigate several properties of trapezoid and triangle graphs and their
representations. In particular, we introduce the notion of a standard trapezoid representation.
We prove that a sufficient condition for a trapezoid graph G to be a triangle graph is that G
admits such a standard representation. These properties of trapezoid and triangle graphs, as
well as the notion of a standard trapezoid representation will then be used in our reduction for
the triangle graph recognition problem. In order to define the notion of a standard trapezoid
representation (cf. Definition 3), we first provide the following two definitions regarding an
arbitrary trapezoid Tv in a trapezoid representation.

I Definition 1. Let R be a trapezoid representation of a trapezoid graph G = (V,E) and
Tv be a trapezoid in R, where v ∈ V . Let R′ and R′′ be the representations obtained by
vertical axis flipping and by horizontal axis flipping of R, respectively. Then,

Tv is upper-right-closed in R if there exist two vertices u,w ∈ N(v), such that Tu �R Tw,
L(w) <R R(v), and r(v) <R l(w); otherwise Tv is upper-right-open in R,
Tv is upper-left-closed in R if Tv is upper-right-closed in R′; otherwise Tv is upper-left-open
in R,
Tv is lower-right-closed in R if Tv is upper-right-closed in R′′; otherwise Tv is lower-right-
open in R,
Tv is lower-left-closed in R if Tv is lower-right-closed in R′; otherwise Tv is lower-left-open
in R.
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I Definition 2. Let R be a trapezoid representation of a trapezoid graph G = (V,E) and
Tv be a trapezoid in R, where v ∈ V . Then,

Tv is right-closed in R if Tv is both upper-right-closed and lower-right-closed in R;
otherwise Tv is right-open in R,
Tv is left-closed in R if Tv is both upper-left-closed and lower-left-closed in R; otherwise Tv
is left-open in R,
Tv is closed in R if Tv is both right-closed and left-closed in R; otherwise Tv is open in R.

As an example for Definitions 1 and 2, consider the trapezoid representation R in Figure 2.
In this figure, the trapezoid Tv is upper-left-closed and lower-left-closed, as well as upper-
right-closed and lower-right-open. Therefore, Tv is left-closed and right-open in R, i.e. Tv
is open in R. For better visibility, we place in Figure 2 three bold bullets on the upper
right, upper left, and lower left endpoints of the trapezoid Tv, in order to indicate that Tv is
upper-right-closed, upper-left-closed, and lower-left-closed, respectively.

L1

L2

Tv
Tv1

Tv2

Tv3

Tv4

L(v) R(v)

l(v) r(v)

R :

Figure 2 A standard trapezoid representation R, in which the trapezoid Tv is left-closed, upper-
right-closed, and lower-right-open.

We are now ready to define the notion of a standard trapezoid representation.

I Definition 3. Let G = (V,E) be a trapezoid graph and R be a trapezoid representation
of G. If, for every v ∈ V , the trapezoid Tv is open in R or Tv is a triangle in R, then R is a
standard trapezoid representation.

For example, the trapezoid representation R in Figure 2 is a standard. Indeed, none of
the trapezoids Tv1 , Tv2 , Tv3 is right-closed or left-closed, while Tv is lower-right-open (and
therefore also right-open by Definition 2). Thus, each of the trapezoids Tv, Tv1 , Tv2 , and Tv3

is open in R. Moreover, Tv4 is a triangle in R.
Note that every triangle representation is a standard trapezoid representation by Defini-

tion 3. We now provide the main theorem of this section, which states a sufficient condition
for a trapezoid graph to be triangle.

I Theorem 4. Let G = (V,E) be a trapezoid graph. If there exists a standard trapezoid
representation of G, then G is a triangle graph.

4 Basic constructions of trapezoid graphs

In this section we investigate some small trapezoid graphs and prove special properties of
them. These graphs will then be used as parts of the gadgets in our reduction of 3SAT to
the recognition problem of triangle graphs in Section 6. For simplicity of the presentation,
we do not distinguish in the sequel of the article between a vertex v of a trapezoid graph G
and the trapezoid Tv of v in a trapezoid representation of G.
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I Lemma 5. Let G = (V,E) be the trapezoid graph induced by the trapezoid representation
of Figure 3a. Then, in any trapezoid representation R of G, such that v �R v

′,
v is upper-right-closed in R and v′ is lower-left-closed in R, or
v is lower-right-closed in R and v′ is upper-left-closed in R.

v′v

L1

L2

v1

v2
R1 :

(a)

v′v

L1

L2

v1
v2

R2 :

(b)

v′v

L1

L2

v1
v2 v3

v4
R3 :

(c)

v′v

L1

L2

v1
v2 v3

v4R4 :

(d)

v′v

L1

L2

v1

v2 v3
v4

v5

v6
R5 :

(e)

v′v

L1

L2

v1
v2 v3

v4 v5

v6

R6 :

(f)

Figure 3 Six basic trapezoid representations.

The next two lemmas concern similar properties of the graphs induced by the trapezoid
representations of Figures 3c and 3e, respectively.

I Lemma 6. Let G = (V,E) be the trapezoid graph induced by the trapezoid representation
of Figure 3c. Then, in any trapezoid representation R of G, such that v �R v

′,
v is upper-right-closed in R and v′ is upper-left-closed in R, or
v is lower-right-closed in R and v′ is lower-left-closed in R.

I Lemma 7. Let G = (V,E) be the trapezoid graph induced by the trapezoid representation
of Figure 3e. Then, in any trapezoid representation R of G, such that v �R v

′,
v is upper-right-closed in R and v′ is lower-left-closed in R, or
v is lower-right-closed in R and v′ is upper-left-closed in R.

5 Basic constructions of triangle graphs

In this section we investigate the structure of some specific triangle graphs and devise special
properties of them. As triangle graphs are also trapezoid graphs, in order to prove these
properties, we use some of the results provided in Section 4. Similarly to the trapezoid graphs
investigated in Section 4, also the investigated graphs of the present section will then be used
as gadgets in our reduction for the triangle graph recognition problem in Section 6. Before
investigating any specific triangle graph, we first provide in the next theorem a generic result
that concerns the triangle representations of the 1-connected triangle graphs.
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I Theorem 8. Let G = (V,E) be a 1-connected triangle graph and v ∈ V be a cut vertex
of G. Then, in any triangle representation R of G, the trapezoid of v is open in R.

We now use the generic Theorem 8, as well as the results of Section 4, in order to
prove some properties of the trapezoid representations of Figure 4. Note that, although the
representations of Figure 4 are not triangle representations, they are standard trapezoid
representations, and thus the graphs induced by these representations are triangle graphs by
Theorem 4.

I Lemma 9. Let G = (V,E) be the triangle graph induced by the trapezoid representation of
Figure 4a. Then, in any triangle representation R of G, such that a7 �R u, u is left-open
in R if and only if w is right-open in R.

Proof. Let R be a triangle representation of G, such that a7 �R u. Note that
G − {u,w} has the two connected components G1 = G[a1, a2, a3, a4, a5, a6, a7] and G2 =
G[v, b1, b2, b3, b4, b5, b6], and thus one of these two induced subgraphs of G lies completely
to the left of the other in R. If v �R a7 �R u, then a7 would intersect with a triangle
of G2, which is a contradiction, since a7 ∈ V (G1). Furthermore, if a7 �R v �R u, then
v would intersect with a triangle of G1, which is a contradiction, since v ∈ V (G2). There-
fore a7 �R u �R v; similarly, a7 �R w �R v. Therefore, every triangle of G1 must lie
completely to the left of every triangle of G2 in R.

(⇒) Suppose that u is left-open in R, i.e. u is upper-left-open or lower-left-open in R. By
possibly performing a horizontal axis flipping of R, we may assume without loss of generality
that u is lower-left-open in R. Consider the induced subgraphs H1 = G[{a7, a1, a2, u}]
and H2 = G[{a7, a1, a2, w}] of G. Note that both H1 and H2 are isomorphic to the graph
investigated in Lemma 5. Since u is assumed to be lower-left-open in R (and thus also in the
restriction R[H1] of the triangle representation R), Lemma 5 implies that u is upper-left-closed
and a7 is lower-right-closed in R[H1]. Therefore, a7 is lower-right-closed also in the restriction
R[H1 − {u}] = R[H2 − {w}] of R. Thus, Lemma 5 implies that a7 is lower-right-closed and
w is upper-left-closed in the restriction R[H2] of R, and thus w is upper-left-closed in R.

Consider now the induced subgraphs H3 = G[{a7, a3, a4, u}] and H4 =
G[{a7, a3, a4, a5, a6, w}] of G. Note that H3 is isomorphic to the graph investigated in
Lemma 5, while H4 is isomorphic to the graph investigated in Lemma 6. Since u is assumed
to be lower-left-open in R (and thus also in R[H3]), Lemma 5 implies that u is upper-
left-closed and a7 is lower-right-closed in R[H3]. Therefore, a7 is lower-right-closed also in
the restriction R[H3 − {u}] = R[H4 − {a5, a6, w}] of the triangle representation R. Thus,
Lemma 6 implies that a7 is lower-right-closed and w is lower-left-closed in the restriction
R[H4] of R, and thus w is lower-left-closed in R. Therefore, since w is also upper-left-closed
in R by the previous paragraph, it follows that w is left-closed in R.

Recall that R is a triangle representation by assumption, and thus the restric-
tion R[G− {u}] is also a triangle representation. Moreover, since w is left-closed in R,
it follows that w is also left-closed in R[G − {u}]. Note now that the connected graph
G − {u} satisfies the conditions of Theorem 8. Indeed, w is a cut vertex of G − {u} and
(G − {u}) − {w} has the two connected components G1 = G[a1, a2, a3, a4, a5, a6, a7] and
G2 = G[v, b1, b2, b3, b4, b5, b6]. Therefore, since w is left-closed in R[G − {u}], Theorem 8
implies that w is right-open in R[G− {u}], and thus also w is right-open in R.

(⇐) Consider the triangle representation R′ of G that is obtained by performing a vertical
axis flipping of R. Note that v �R′ w, since w �R v. Furthermore, note that there is
a trivial automorphism of G, which maps vertex u to w, vertex a7 to v, and the vertices
{a1, a2, a3, a4, a5, a6} to the vertices {b1, b2, b3, b4, b5, b6}. That is, the relation a7 �R u
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in the representation R is mapped by this automorphism to the relation v �R′ w in the
representation R′. It follows now directly by the necessity part (⇒) that, if w is left-open
in R′, then u is right-open in R′. That is, if w is right-open in R, then u is left-open in R. J

L1

L2

u

w

a7

a1 a2

a3 a4 a5 a6 b1 b2

v

b3 b4 b5 b6

(a)

L1

L2

u

w v

a7

a1 a2

a3 a4 a5 a6 b1 b2 b7 b8

b3 b4 b5 b6

(b)

Figure 4 Two basic trapezoid representations.

Now, using Lemma 9, we can prove the next two lemmas.

I Lemma 10. Let G = (V,E) be the triangle graph induced by the trapezoid representation
of Figure 4a. Then, in any triangle representation R of G, such that a7 �R u, u is left-open
in R if and only if v is left-open in R.

I Lemma 11. Let G = (V,E) be the triangle graph induced by the trapezoid representation
of Figure 4b. Then, in any triangle representation R of G, such that a7 �R u, u is left-open
in R if and only if v is left-closed in R.

6 The recognition of triangle graphs

In this section we provide a reduction from the three-satisfiability (3SAT) problem to the
problem of recognizing whether a given graph is a triangle graph. Given a boolean formula
φ in conjunctive normal form with three literals in each clause (3-CNF), φ is satisfiable if
there is a truth assignment of φ, such that every clause contains at least one true literal. The
problem of deciding whether a given 3-CNF formula φ is satisfiable is one of the most known
NP-complete problems. We can assume without loss of generality that each clause has literals
that correspond to three distinct variables. Given the formula φ, we construct in polynomial
time a trapezoid graph Gφ, such that Gφ is a triangle graph if and only if φ is satisfiable.
Before constructing the whole trapezoid graph Gφ, we construct first some smaller trapezoid
graphs for each clause and each variable that appears in the given formula φ.
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6.1 The construction for each clause

Consider a 3-CNF formula φ = α1 ∧ α2 ∧ . . . ∧ αk with k clauses α1, α2, . . . , αk and n

boolean variables x1, x2, . . . , xn, such that αi = (`i,1 ∨ `i,2 ∨ `i,3) for i = 1, 2, . . . , k. For
the literals `i,1, `i,2, `i,3 of the clause αi, let `i,1 ∈ {xri,1

, xri,1}, `i,2 ∈ {xri,2
, xri,2}, and

`i,3 ∈ {xri,3
, xri,3}, where 1 ≤ ri,1 < ri,2 < ri,3 ≤ n. Let L1 and L2 be two parallel lines

in the plane. For every clause αi, where i = 1, 2, . . . , k, we correspond the trapezoid repre-
sentation Rαi

with 7 trapezoids that is illustrated in Figure 5. Note that the trapezoid of
the vertex zi in Rαi

is trivial, i.e. line. In this construction, the trapezoids of the vertices
vi,1, vi,2, and vi,3 correspond to the literals `i,1, `i,2, and `i,3, respectively. Furthermore, by
the construction of Rαi

, the left line of vi,1 lies completely to the left of the left line of vi,2
in Rαi , while the left line of vi,2 lies completely to the left of the left line of vi,3 in Rαi .

L1

L2

zi
vi,1 vi,2 vi,3 v′i,1 v′i,2 v′i,3

Rαi
:

Figure 5 The construction Rαi that corresponds to the clause αi of the formula φ,
where i = 1, 2, . . . , k.

We prove now two basic properties of the construction Rαi
in Figure 5 for the clause αi

that will be then used in the proof of correctness of our reduction.

I Lemma 12. Let Gαi
be the trapezoid graph induced by the trapezoid representation Rαi

of Figure 5. Then, in any trapezoid representation R of Gαi , such that vi,1 �R zi, one of
vi,1, vi,2, vi,3 is right-closed in R.

I Corollary 13. Consider the trapezoid representation Rαi
of Figure 5. For every p ∈

{1, 2, 3}, we can locally change appropriately in Rαi the right lines of vi,1, vi,2, vi,3 and the
left lines of v′i,1, v′i,2, v′i,3, such that vi,p is right-closed and vi,p′ is right-open, for every
p′ ∈ {1, 2, 3} \ {p}.

6.2 The construction for each variable

Let xj be a variable of the formula φ, where 1 ≤ j ≤ n. Let xj appear in φ (either as xj or
negated as xj) in the mj clauses αij,1 , αij,2 , . . . , αij,mj

, where 1 ≤ ij,1< ij,2< . . . < ij,mj≤ k.
Then, we correspond to the variable xj the trapezoid representation Rxj

with 2mj + 7
trapezoids that is illustrated in Figure 6. In this construction, the trapezoids of the vertices
uj,t and wj,t, where 1 ≤ t ≤ mj , correspond to the appearance of the variable xj (either as xj
or negated as xj) in the clause αij,t

in φ. Note that the trapezoids of the vertices a1
j , a

2
j , . . . , a

7
j

are trivial, i.e. lines. By the construction of Rxj
, the right line of uj,t lies completely to the

left of the right line of wj,t for all values of j = 1, 2, . . . , n and t = 1, 2, . . . ,mj . Furthermore,
the right line of each of {uj,t, wj,t} lies completely to the left of the right line of each of
{uj,t′ , wj,t′} in Rxj

, whenever t < t′.
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L1

L2

a3j a4j a5j a6j

a1j a2j

. . .
a7j

uj,1

wj,1

uj,mj

wj,mj. . .

. . .

Rxj :

Figure 6 The construction Rxj that corresponds to the variable xj of the formula φ,
where j = 1, 2, . . . , n.

6.3 The construction the trapezoid graph Gφ

We construct now a trapezoid representation Rφ of the whole trapezoid graph Gφ, by
composing the constructions Rαi

and Rxj
presented in Sections 6.1 and 6.1, as follows.

First, we place in Rφ the k trapezoid representations Rαi , where i = 1, 2, . . . , k, between
the lines L1 and L2 such that, whenever i < i′, every trapezoid of Rαi

lies completely to
the left of every trapezoid of Rαi′ . Then, we place in Rφ the n trapezoid representations
Rxj , where j = 1, 2, . . . , n, between the lines L1 and L2 such that, whenever j < j′, the lines
of a1

j , a
2
j , . . . , a

7
j and the left lines of all uj,t, wj,t, lie completely to the left of the lines of

a1
j′ , a2

j′ , . . . , a7
j′ and the left lines of all uj′,t′ , wj′,t′ . Moreover, for every j, j′ = 1, 2, . . . , n, the

lines of a1
j , a

2
j , . . . , a

7
j and the left lines of all uj,t, wj,t, lie in Rφ completely to the left of the

right lines of all uj′,t′ , wj′,t′ . Thus, note in particular that every uj,t intersects every other
uj′,t′ and every wj′,t′ in Rφ.

Let j ∈ {1, 2, . . . , n} and t ∈ {1, 2, . . . ,mj}. Recall that, by the construction of Rxj
in

Section 6.2, the pair of trapezoids {uj,t, wj,t} corresponds to the appearance of the variable
xj in a clause αi of φ, where i = ij,t ∈ {1, 2, . . . , k}. That is, either `i,p = xj or `i,p = xj for
some p ∈ {1, 2, 3}, where αi = (`i,1 ∨ `i,2 ∨ `i,3). Then, we place in Rφ the right lines of the
trapezoids uj,t and wj,t directly before the left line of vi,p (i.e. no line of any other trapezoid
intersects with or lies between the right lines of uj,t and wj,t and the left line of vi,p).

In order to finalize the construction of Rφ, we distinguish now the two cases regarding the
literal `i,p of the clause αi, in which the variable xj appears. If `i,p = xj , then we add to Rφ
six trivial trapezoids (i.e. lines) {b1

j,t, b
2
j,t, . . . b

6
j,t}, as it is shown in Figure 7a. On the other

hand, if `i,p = xj , then we add to Rφ eight trivial trapezoids (i.e. lines) {b1
j,t, b

2
j,t, . . . , b

8
j,t}, as

it is shown in Figure 7b. In particular, we place these six (resp. eight) new lines in Rφ such
that they intersect only the right lines of uj,t and wj,t and the left line of vi,p in Rφ. Note that
the trapezoid graphs induced by the representations in Figures 7a and 7b are isomorphic to
the graphs investigated in Lemmas 10 and 11, respectively. This completes the construction
of the trapezoid representation Rφ, while Gφ is the trapezoid graph induced by Rφ.

It is now easy to verify that, by the construction of Rφ, all the trapezoids uj,t are
upper-left-closed and right-closed in Rφ, while all the trapezoids wj,t are lower-right-closed
and left-closed in Rφ. Furthermore, all the trapezoids uj,t are lower-left-open in Rφ and all
the trapezoids wj,t are upper-right-open in Rφ. Consider now a trapezoid vi,p in Rφ. If vi,p
corresponds to a positive literal `i,p = xj (for some variable xj), then vi,p is upper-left-closed
and lower-left-open in Rφ (cf. Figure 7a). On the other hand, if vi,p corresponds to a negative
literal `i,p = xj , then vi,p is left-closed in Rφ (cf. Figure 7b).

We can prove that the formula φ is satisfiable if and only if Gφ is a triangle graph, cf. [19].
Therefore, since 3SAT is NP-complete, it follows that the recognition of triangle graphs
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L1

L2

wj,t

uj,t

a3j a4j a5j a6j

a1j a2j

a7j

b3j,t b4j,t b5j,t b6j,t

b1j,t b2j,t

`i,p = xj :
vi,p

(a)

L1

L2

wj,t

uj,t

a3j a4j a5j a6j

a1j a2j

a7j

b3j,t b4j,t b5j,t b6j,t

b2j,t b7j,tb1j,t b8j,t

`i,p = xj :
vi,p

(b)

Figure 7 The composition of the trapezoids of Rxj with the trapezoid vi,p of Rαi , in the cases
where (a) `i,p = xj and (b) `i,p = xj .

is NP-hard. Moreover, since the recognition of triangle graphs lies in NP by Observation 1,
and since Gφ is a trapezoid graph, we can summarize our main result in the next theorem.

I Theorem 14. Given a graph G, it is NP-complete to decide whether G is a triangle graph.
The problem remains NP-complete even if the given graph G is known to be a trapezoid graph.

7 Concluding Remarks

In this article we proved that the triangle graph (known also as PI∗ graph) recognition
problem is NP-complete, by providing a reduction from the 3SAT problem, thus answering a
longstanding open question. Our reduction implies that this problem remains NP-complete
even in the case where the input graph is a trapezoid graph. The recognition of simple-
triangle graphs [3], as well as the recognition of the related classes of unit and proper tolerance
graphs [1,10] (these are subclasses of bounded tolerance, i.e. parallelogram, graphs [1]), proper
bitolerance graphs [2, 10] (they coincide with unit bitolerance graphs [2]), and multitolerance
graphs [20] (they naturally generalize trapezoid graphs [20, 24]) remain interesting open
problems for further research.
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