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Abstract
Locally decodable codes are error correcting codes with the extra property that, in order to
retrieve the correct value of just one position of the input with high probability, it is sufficient
to read a small number of positions of the corresponding, possibly corrupted codeword. A
breakthrough result by Yekhanin showed that 3-query linear locally decodable codes may have
subexponential length.

The construction of Yekhanin, and the three query constructions that followed, achieve cor-
rectness only up to a certain limit which is 1 − 3δ for nonbinary codes, where an adversary is
allowed to corrupt up to δ fraction of the codeword. The largest correctness for a subexponential
length 3-query binary code is achieved in a construction by Woodruff, and it is below 1− 3δ.

We show that achieving slightly larger correctness (as a function of δ) requires exponential
codeword length for 3-query codes. Previously, there were no larger than quadratic lower bounds
known for locally decodable codes with more than 2 queries, even in the case of 3-query linear
codes. Our results hold for linear codes over arbitrary finite fields and for binary nonlinear codes.

Considering larger number of queries, we obtain lower bounds for q-query codes for q > 3,
under certain assumptions on the decoding algorithm that have been commonly used in previous
constructions. We also prove bounds on the largest correctness achievable by these decoding
algorithms, regardless of the length of the code. Our results explain the limitations on correctness
in previous constructions using such decoding algorithms. In addition, our results imply tradeoffs
on the parameters of error correcting data structures.
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1 Introduction

Locally decodable codes are error correcting codes with the extra property that, in order to
retrieve the correct value of just one position of the input with high probability, it is sufficient
to read a sublinear or even just a constant number of positions of the corresponding, possibly
corrupted, codeword. The formal definition was given by Katz and Trevisan [9] in 2000.

I Definition 1.1. (Katz and Trevisan [9]) For reals δ and ε, and a natural number q, we say
that C: Σn → Γm is a (q, δ, ε)-Locally Decodable Code (LDC) if there exists a probabilistic
algorithm A such that: in every invocation, A reads at most q positions of y; and for every
x ∈ Σn and y ∈ Γm with d(y,C(x)) ≤ δm, and for every i ∈ [n], we have Pr [Ay(i) = xi] ≥
1
|Σ| + ε, where the probability is taken over the internal coin tosses of A.

We will refer to the value 1
|Σ|+ε in Definition 1.1 as the correctness of the given decoding

algorithm A, while ε can be thought of as the advantage over random guessing.
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674 Locally Decodable Codes

Locally decodable codes have interesting applications, both in complexity theory and in
practical areas. Locally decodable codes are especially useful in situations where we want
to encode large amounts of data to protect against errors, but need to be able to access
individual units; for example, individual patient records of a large hospital. Encoding each
unit separately would give less protection against errors, and encoding the whole data set
with a traditional error correcting code would require reading the whole encoded database
just to access small parts of it. Locally decodable codes are closely related to private
information retrieval: constructions of good locally decodable codes yield efficient protocols
for private information retrieval. Private information retrieval schemes allow users to retrieve
information from databases without revealing information about which data items the user is
retrieving. Other applications and related structures include self correcting computations,
random self-reducibility, probabilistically checkable proofs. See [15] for a survey. More
recently, [6] related LDCs to polynomial identity testing for arithmetic circuits, and [4] to
matrix rigidity and circuit lower bounds.

It is quite remarkable that such codes exist at all for constant number of queries. A
simple example is the Hadamard code, which has the property that any input bit can be
recovered with probability at least 1 − 2δ from codewords possibly corrupted in up to δm
positions, by a randomized algorithm that in every invocation reads no more than 2 bits of
the code. However, the code is very large: the length of the codewords is 2n for encoding n
bit inputs.

Of course it would be desirable to have much more efficient, in particular polynomial
length codes, but this seems to be currently out of reach for constant number of queries.
Efficient constructions are known for large number of queries. See [15] for a survey.

It is known that for large enough n, 1-query locally decodable codes (that read at most
one bit) cannot do better than random guessing [9].

For 2-query linear codes essentially tight bounds are known: Goldreich, Karloff, Schul-
man and Trevisan [8] proved exponential lower bounds for 2-query linear codes over finite
fields up to a certain field size. This was later extended by Dvir and Shpilka [6] to give ex-
ponential lower bounds for 2-query linear codes over arbitrary fields. Further improvements
for the 2-query linear case were given by [12, 14]. Shiowattana and Lokam [14] prove a lower
bound of Ω(24δn/(1−2ε)), which is tight within a constant factor, for 2-query binary linear
locally decodable codes.

Kerenidis and de Wolf [10] proved exponential lower bounds for arbitrary binary (not
necessarily linear) 2-query locally decodable codes, based on quantum arguments. They also
extended their lower bounds to codes over larger alphabets, but the bound decreases with
the alphabet size. The strongest lower bounds so far for nonlinear codes from {0, 1}n to
Σm = ({0, 1}`)m were proved by Wehner and de Wolf [16], and are of the form 2Ω(δε2n/(22`)).
A proof of the 2-query lower bound for binary codes is given in [3] without using quantum
arguments. It is still open to obtain nontrivial lower bounds for 2-query nonlinear codes
over alphabets of size Ω(

√
n).

For larger number of queries, there is still a huge gap between the known upper and lower
bounds, even for binary linear codes. For codes over small (constant size) alphabets Katz
and Trevisan in [9] gave a general lower bound that holds for any q showing that q-query
locally decodable codes must have length Ω(nq/(q−1)). This bound was slightly improved
by Kerenidis and de Wolf [10] to Ω((n/ logn)

q+1
q−1 ), and by Woodruff [18] to Ω(n

q+1
q−1 )/ logn.

Woodruff [20] proved Ω(n2) lower bounds on the length of 3-query linear codes over any
field. Prior to our work, no larger than n2 lower bound was known for locally decodable
codes that allow more than 2 queries, even in the case of 3-query linear codes.
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A breakthrough result of Yekhanin [21] showed that subexponential length 3-query lin-
ear locally decodable codes exist, under assumptions about the existence of infinitely many
Mersenne primes. Raghavendra [13] gave some simplifications to Yekhanin’s codes. Building
on these works, Efremenko [7] gave a construction of subexponential length 3-query linear
locally decodable codes without any unproven assumptions. All these constructions have a
limit on the correctness achieved by the algorithm as a function of δ where an adversary can
corrupt up to δ fraction of the codeword positions. Efremenko’s construction [7] gives 1−3δ
correctness for a 3-query nonbinary code. For 3-query binary codes, the best dependence
between the parameters is achieved in a paper by Woodruff [19], which yields 3-query binary
linear locally decodable codes with correctness close to, but still below, 1 − 3δ. Note that
these results do not provide correctness larger than 1/2, that is they do not give better
correctness than random guessing for binary codes, if the fraction of corrupted positions δ
is larger than 1/6. Recent results of Ben-Aroya, Efremenko, and Ta-Shma [2] give subexpo-
nential length locally decodable codes that can do better than random guessing for binary
codes for δ fraction of corruption up to δ = 1/2−α for any α > 0, but the number of queries
needed gets larger as δ gets closer to 1/2.

1.1 Three query codes
Our main results show that achieving slightly larger than 1 − 3δ correctness for 3-query
locally decodable codes requires exponential length. We prove this for arbitrary (possibly
nonlinear) binary codes and for linear codes over arbitrary finite fields. Note that larger,
e.g. 1− 2δ correctness can be achieved even by 2-query linear codes: the Hadamard code is
an example. With significantly larger number of queries, the correctness can be much higher
as a function of δ (of the form 1− δΩ(q)): again the Hadamard code is an example. But this
comes at the cost of having large length in the known constructions. Our results show that
for 3-query codes, this increase in length cannot be avoided.

Here we give a somewhat simplified statement of the result for binary codes, without
specifying the precise constants.

I Theorem 1.2. Let C: {0, 1}n → {0, 1}m be an arbitrary (possibly nonlinear) binary
(3, δ, ε)-LDC with a nonadaptive decoder, and n large enough. If 1

2 + ε > 1−3δ+6δ2−4δ3 +
φ(n) + µ, where φ(n) = O(1/n1/9), then m ≥ 2Ω(µn1/3).

We state the precise values hidden in the notation later in Theorem 3.1. We wanted to
start with a more compact statement of our bound, showing that as soon as the correctness
achieved by the code is above a certain threshold, the length of the codewords must be
exponential. For binary codes this threshold is around 1 − 3δ + 6δ2 − 4δ3, which is just
slightly larger than 1− 3δ for small values of δ. The value 1− 3δ is interesting, since there
are subexponential length constructions of 3-query linear LDCs that achieve correctness
1−3δ [7] and 3-query binary linear LDCs that achieve correctness slightly below 1−3δ [19].
The value 1 − 3δ + 6δ2 − 4δ3 corresponds to the probability that the number of corrupted
positions in a given triple is even, where the probability is over the distribution that corrupts
each bit independently with probability δ.

For linear codes over arbitrary finite fields, we obtain stronger lower bounds. In our
results for nonbinary codes, the value of the threshold is close to the threshold for the
binary case, but slightly depends on the field size. We obtain exponential lower bounds for
arbitrary finite fields, even if the field size depends on n.

We note that our bound holds for any δ ≥ 0 and any 0 < ε ≤ 1 − 1/|F |, where δ and ε
may be o(1). For the bound to be nontrivial, we need δ ≤ 1− 1/|F |, because of Observation
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676 Locally Decodable Codes

2.1. For n to be large enough for our purposes, it is sufficient if δ > Ω(1/n1/9) and ε > Ω( 1
n ).

1.2 Arbitrary number of queries
We obtain similar results for arbitrary number of queries, under some assumptions on the
decoding algorithm. We note that the types of decoding algorithms we consider have been
commonly used in recent constructions. Our results explain the limitations on correctness
of these constructions.

Unless otherwise noted, a q-query decoder is allowed to use less than q queries. So the
correctness thresholds for requiring exponential length for q-query codes are never going to
be smaller than the correctness thresholds for the same class of 3-query codes. In the special
cases below, we show that the same thresholds to require exponential length as for 3-query
codes also apply for arbitrary number of queries.

It remains open what is the correctness threshold (as a function of δ) to require expo-
nential length for general q-query codes. Note that it will have to be a value larger than the
threshold in our 3-query results: a q-query code for q > 3 can always do at least as well, as
a 3-query code. We will see below, that if we require the query sets to be exactly of size q,
then this is not necessarily the case.

1.2.1 Linear Decoders
One of the starting points of our approach was the observation that using larger number of
queries does not help to tolerate errors if the decoder returns a fixed linear combination of
the positions read. Moreover, the probability of error increases with the number of positions
used with nonzero coefficients by a linear decoder. We formalize these ideas in our results
about linear decoders.

I Definition 1.3. Let C: Fn → Fm be an arbitrary (possibly nonlinear) code. We say that
an algorithm A is a linear decoder for C if for any fixing of the outcomes of the coin flips of
A, the value it returns is a fixed linear combination of the codeword positions it reads.

We show that linear decoders that use exactly q positions cannot achieve larger cor-
rectness than 1 − qδ + o(δ) + O(1/n), regardless of the length of the code. Moreover, we
show that the correctness of any linear decoder, for any number of positions used, is at most
1−2δ+o(δ)+O(1/n). This holds for arbitrary (possibly nonlinear) codes and over any finite
field F . This implies that our exponential length lower bounds extend to linear decoders
with arbitrary number of queries, with the same correctness threshold as for 3-query codes.

Linear decoders are commonly used in the known constructions of locally decodable
codes. In fact it is noted for example in [10, 18] that any (possibly nonlinear) binary
(q, δ, ε)-LDC has a linear decoder that achieves correctness 1/2 + ε/2q.

In the case of linear smooth codes (see [9]), requiring the decoders to be linear is inconse-
quential: for linear codes, if any algorithm gives nontrivial advantage over random guessing
when querying a given set of codeword positions Q, then by Lemma 2.2, ei ∈ span(Q) must
hold. Thus, there is a fixed linear combination of the positions in Q that gives the correct
value of xi for any input x. Using the same procedure as the original decoder to choose
which positions to query and then returning this fixed linear combination (if it exists) cannot
violate the smoothness of the code.

However, for locally decodable codes (both linear and nonlinear), requiring to use only
linear decoders may significantly reduce the correctness associated with the code. For ex-
ample, taking majorities, one can obtain correctness of the from 1− δΩ(q). Our results show
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that in the recent results of [5, 2] obtaining subexponential length constructions with larger
than 1− qδ correctness for larger values of q, the use of nonlinear operations in the decoding
algorithm is important.

Our results on linear decoders imply that there is no significantly better general reduction
from smooth codes to locally decodable codes than the current bounds giving at most 1−qδ
correctness for q query locally decodable codes. The possibility of better reductions was
raised in [9].

1.2.2 Matching sum decoders

Matching sum decoders are a subclass of linear decoders, thus our results on linear decoders
immediately apply. However, for matching sum decoders we can prove stronger results.
In particular, we can replace the correctness bounds 1 − qδ + o(δ) + O(1/n), by simply
1 − qδ + O(1/n) for codes with q-query matching sum decoders regardless of the length of
the code, and prove exponential lower bounds on the length of LDCs with matching sum
decoders using any number of queries that achieve correctness larger than 1− 3δ +O(1/n).

Matching sum decoders were formally defined by Woodruff [19]. A q-query matching
sum decoder picks a set of size q uniformly at random from a collection of sets that form a
matching in the complete q-uniform hypergraph, whose vertices correspond to the positions
of the codeword. Then, the decoder reads the positions corresponding to the chosen set,
and returns the sum of the positions read. Most known constructions of locally decodable
codes have such decoders.

Woodruff [19] proved that LDCs with 2-query matching sum decoders must have expo-
nential length. We show that q-query matching sum decoders cannot achieve larger correct-
ness than 1−qδ+O(1/n), regardless of the length of the code. This holds for arbitrary codes
and over any field.

Considering matching sum decoders where the query size is not fixed, we show that for
any binary code (possibly nonlinear), and for linear codes over arbitrary finite fields, if a
matching sum decoder with query sets of size at most q achieves correctness more than
1− 3δ +O(1/n1/3), then the length of the code must be exponential.

1.2.3 Query sets with large rank

For linear codes our proofs also apply to arbitrary number of queries, and possibly nonlinear
decoders as long as the vectors corresponding to the positions queried are linearly indepen-
dent. This is a property that holds in some of the known constructions of linear locally
decodable codes. For such query sets, we show that if the correct value of xi is spanned by
q of the linearly independent vectors with nonzero coefficients, then the correctness of the
decoder cannot be larger than 1− qδ + o(δ) +O(1/n), regardless of the length of the code.

This implies, that for linear codes over arbitrary finite fields, if a q-query decoder (with
query sets of size at most q) queries only linearly independent positions of the code and
achieves correctness more than 1− 3δ + o(δ) +O(1/n1/3), then the length of the code must
be exponential. The exponential length lower bound extends to query sets that are not fully
independent, but have large rank, with a correctness threshold that depends on the rank of
the query sets. The results described for query sets with large rank are direct consequences
of our proofs for linear codes.
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1.3 Error Correcting Data Structures
Error correcting data structures were defined by de Wolf [17]. Such data structures are a
variation of the traditional bit-probe model (see e.g. [11]), where the algorithms answering
questions about the data are correct with probability at least 1/2 + ε, as long as at most δ
fraction of the database representing the data is corrupted, possibly by adversarial error. It
is noted in [17] that error correcting data structures for the membership problem yield locally
decodable codes, with the same parameters. [17] showed the existence of error correcting
data structures for the membership problem and some of its variants, assuming the existence
of locally decodable codes with given parameters. Because of the direct correspondence
between the two models, our results rule out the existence of error correcting data structures
for membership of subexponential size with larger correctness than our thresholds above,
for 3-probe algorithms, as well as for algorithms with arbitrary number of probes, assuming
the algorithm only uses linear operations.

1.4 Techniques
We start by noting why some hand waiving arguments and intuition based on smooth codes
would fail to explain our most general results. Smooth codes were defined by Katz and
Trevisan [9], who also gave reductions between smooth codes and locally decodable codes.
So up to changes in parameters, smooth codes and locally decodable codes are equivalent.
Most of the current lower bounds for locally decodable codes have been proved via proving
lower bounds for smooth codes, and the correctness of the known subexponential length
constructions of 3-query linear LDCs is analyzed based on their property of having smooth
decoders, that are correct with large probability if there is no error, and query each position of
the code with not too large probability. However, the current techniques to analyze smooth
decoders cannot imply larger than 1− qδ correctness for q-query locally decodable codes. In
fact we show that no significantly better general reduction is possible. If we consider larger
than 1 − qδ correctness, then the equivalence of smooth codes and locally decodable codes
starts to break down.

We elaborate on a few specific points below. One could try to argue that the probability
that the decoder does not query any corrupted positions is upper bounded by a function not
much larger than 1 − qδ, thus the decoder will have to read corrupted positions. However,
errors may cancel out, so the fact that some of the positions read by the decoder may contain
an error, in itself does not explain our lower bounds.

If the decoder was only working with query sets that form a matching, and the decoder
was linear (which is the case in several of the known constructions), then - as we show -
1 − qδ would in fact be a limit on correctness for decoders that query exactly q positions.
But these assumptions do not have to hold for every decoding algorithm, and our results
cannot be explained by this simplified view.

Our proofs of the 3-query lower bounds are based on a lemma that was central in obtain-
ing the exponential lower bounds for 2-query codes. However, we would like to emphasize
that we do not use 2-query lower bounds as a black box. We show that query sets that
provide large correctness must contain subsets of size at most 2 that give nontrivial cor-
relation with the input position we try to recover. But this does not imply that the code
somehow “reduces” to a 2-query code. Consider the following simple example (many other
examples are possible): query 3 positions such that each in itself has large correlation with
the position xi, and take the majority of the answers. Replacing this with reading only a
subset of the bits, would preserve the properties of a smooth decoder, but it would reduce
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the correctness of the decoding algorithm. Thus, the decoder cannot be simply replaced by
a 2-query decoder, if we want to preserve the correctness probabilities of the decoder.

Our approach can be summarized as follows: we show that in the case of 3-query codes, if
the code is small, we can “force” the decoder to only examine query sets that are vulnerable
to error. We achieve this by considering the algorithm’s performance over random input x
and a specially constructed distribution for the corruption caused by the adversary. We show
that over our distribution, the decoder cannot perform much better than a linear decoder.

In all of our results, the probability of error is estimated in terms of the probability - over
appropriate random corruption - of the event that the sum of the corruption in the positions
of a given query set is nonzero. Intuitively, this probability would indeed give a lower bound
on the error if the decoder always returned the sum (or a fixed linear combination) of the
positions read, and if this was equal to the correct answer for uncorrupted codewords. For
example, this would be the case for linear decoders of a linear code. However, we also
consider nonlinear codes, and arbitrary decoders that may involve nonlinear operations. In
fact, we do not claim that the probability of having nonzero sum of corruption in the query
set is a lower bound on the error in general. Instead, we lower bound the probability of error
by a different expression, and show that this expression is lower bounded by the probability
mentioned above in the case of random corruption according to our distribution.

A crucial point in our proofs for nonlinear decoders (for both linear and nonlinear codes)
is comparing the conditional probabilities of error of the decoder, conditioned on the sum of
the values in the corrupted positions. We show that - under appropriate assumptions on the
query sets for linear codes - the sum of these conditional probabilities of the decoder being
incorrect, is always |F | − 1. A subtle point of this argument is that the various events we
work with are not always independent. Our proof for nonlinear codes is based on a similar
property of conditioning on the number of corrupted positions being odd vs. even. However,
for nonlinear codes instead of directly considering the conditional probabilities of incorrect
decoding, we reduce estimating the probability of error to estimating the probability that
the sum of the positions read gives an incorrect answer. This analysis lets us estimate the
probability of incorrect decoding even if the decoding algorithm uses nonlinear operations.

2 Preliminaries

The definition of locally decodable codes allows the decoding algorithm to be adaptive.
Lower bounds for nonadaptive decoders can be translated to lower bounds for arbitrary
decoders with the same number of queries but larger correctness: it is noted in the paper by
Katz and Trevisan [9] that any adaptive (q, δ, ε) decoding algorithm for a code C: Σn → Γm,
can be transformed to a nonadaptive (q, δ, ε/|Γ|q−1) decoding algorithm for the same code.

We only consider nonadaptive decoding algorithms in the rest of the paper. We will refer
to the (at most q) positions the algorithm chooses to read in a given invocation as a query
set. In a nonadaptive algorithm, the choice of the query set only depends on the coin flips
of the algorithm.

The following simple observation means that for proving lower bounds we may assume
that δ < 1− 1

|Σ| , since otherwise, no algorithm can do better than random guessing for any
of the input positions.

I Observation 2.1. Let A be a decoding algorithm for any code C: Σn → Σm. If δ ≥ 1− 1
|Σ| ,

then for any i ∈ [n], minx∈Σn

(
miny∈Γm : d(y,C(x))≤δm Pr [Ay(i) = xi]

)
≤ 1
|Σ| .

For a linear code C: Fn → Fm, it is convenient to represent the function that determines
a given codeword position by a vector: for j ∈ [m], define aj ∈ Fn as the vector satisfying
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∀x ∈ Fn, Cj(x) = aj · x. For vectors a, x ∈ Fn, we use a · x to denote their inner product
over F . (We omit F from the notation.)

For a query set Q = {j1, . . . , jq} ⊂ [m], we use the notation span(Q) to represent the
linear span of the vectors aj1 , . . . , ajq corresponding to the positions in Q. We denote the
i’th unit vector with length n by ei. ei has 1 in its i-th coordinate and 0 everywhere else.

The following lemma was stated in [8] for two query binary linear codes. Its extension
to arbitrary fields and any number of queries is straightforward, but important for our
arguments.

I Lemma 2.2. (implicit in [8]) Let C: Fn → Fm be a linear code. Let i ∈ [n] and let Q =
{j1, j2, ...jq} ⊂ [m] be a query set that the algorithm A queries with nonzero probability when
trying to recover the value of input position i. Suppose PrxεUFn

[
AC(x)(i) = xi | A queries Q

]
>

1
|F | where the probability is taken over letting x be uniformly random from Fn and over the
internal coin tosses of A. Then ei ∈ span(Q) must hold.

We will use the following simple fact as well as Lemma 2.2 throughout our proof for
linear codes.

I Fact 2.3. (implicit in [1]) Let a1, . . . , at be vectors from Fn. For x uniformly random from
Fn, the corresponding random values a1 ·x, . . . , at ·x are t independent uniformly distributed
values from F , if and only if the vectors a1, . . . , at are linearly independent over F .

The following theorem of Goldreich, Karloff, Schulman and Trevisan [8] is a crucial
ingredient of our proofs.

I Theorem 2.4. [8] Let a1, ... am be a sequence of (not necessarily distinct) elements of
{0, 1}n such that for every i ∈ [n] there is a set Mi of disjoint pairs of indices {j1, j2} such
that ei = aj1 ⊕ aj2 . Then m ≥ 22αn, where α ,

∑n

i=1
|Mi|

nm .

This theorem was extended to arbitrary finite fields in [8]. The dependence on the field
size in the bound was removed by Dvir and Shpilka in [6]. We will use the following version
(see Corollary 2.9 in [6]).

I Theorem 2.5. [6] Let F be a field. Let a1, ... am be a sequence of (not necessarily
distinct) elements of Fn such that for every i ∈ [n] there is a set Mi of disjoint pairs of
indices {j1, j2} such that ei ∈ span(aj1 , aj2). Then m ≥ 2αn−1, where α ,

∑n

i=1
|Mi|

nm .

A version of the theorem applicable to binary nonlinear codes is given in the “non-
quantum” proof of the exponential lower bounds for 2-query binary nonlinear codes by
Ben-Aroya, Regev and de Wolf [3].

I Theorem 2.6. (implicit in Theorem 11 of [3]) Let 0 < ε, α < 1/2. Let a1, ... am be a
sequence of (not necessarily distinct) functions from {0, 1}n to {0, 1} such that for at least
τn indices i ∈ [n] there is a set Mi of disjoint pairs of indices {j1, j2} such that |Mi| ≥ αm
and

|Pr
x

[xi = aj1(x)⊕ aj2(x)]− Pr
x

[xi 6= aj1(x)⊕ aj2(x)] | ≥ ε

where the probability is over uniform x ∈ {0, 1}n. Then m ≥ 2τα2ε2n.

We also use the following theorem of Katz and Trevisan [9].

I Theorem 2.7. (Theorem 2 in [9]) Let C : {0, 1}n → R be a function. Assume there is
an algorithm A such that for every i ∈ [n], we have Prx [A(C(x), i) = xi] ≥ 1

2 + ε, where
the probability is taken over the internal coin tosses of A and uniform x ∈ {0, 1}n. Then
log |R| ≥ (1−H(1/2 + ε))n.



Anna Gál and Andrew Mills 681

2.1 Notation
Let F be an arbitrary finite field. We denote by F ∗ the set of nonzero elements of F .
Arithmetic operations involving field elements are over F . This should be clear from the
context, and will be omitted from the notation.

For a code C: Fn → Fm, we can represent any vector y ∈ Fm with d(y,C(x)) ≤ δm as
a sum of the form y = C(x) + B, where B ∈ Fm, such that the number of nonzero entries
in B is at most δm.

We will use the notation Prx,B,A to indicate probabilities over uniformly random input
x from Fn, B chosen at random from a given distribution for corruption, and the random
coin tosses of the given algorithm A.

Note that while in general the corruption may be produced by an arbitrary adversary,
we will only consider distributions for B that do not depend on the input x or on the
distribution for the coin tosses of the algorithm. This is sufficient for our purposes, since we
are proving lower bounds on the length of the code.

3 Lower Bounds for Three Query Codes

3.1 Lower Bounds for Three Query Binary Codes
We state the precise version of our lower bound for arbitrary (possibly nonlinear) binary
codes.

I Theorem 3.1. Let C: {0, 1}n → {0, 1}m be a (3, δ, ε)-LDC with a nonadaptive decoder, and
n large enough. Let α , δ−( 1

2−( ε4 )1/3)−(3/n1/3 + 36
n )1/3−ν, and ν , 10

n(1−H(1/2+1/n1/3)) =
O(1/n1/3). If α > 0, then m ≥ 20.225α2n1/3 .

I Remark. We will show that α > 0 when 1
2 + ε > 1 − 3δ + 6δ2 − 4δ3 + φ(n), where

φ(n) = 4((3/n1/3 + 36
n )1/3 +ν). Moreover, α > µ

4 when 1
2 + ε > µ+ 1−3δ+ 6δ2−4δ3 +φ(n)

for some µ ≥ 0. This implies the version of the bound stated in Theorem 1.2 for binary
codes. Note that we could also obtain a lower bound of the form 2Ω(n) by setting ε2 in
the proof to a constant, but then the correctness required for the bound would be larger,
roughly by 4(ε2)1/3.
Sketch of proof.

For the case of binary (possibly nonlinear) codes, using the Fourier representation of
Boolean functions, and properties of correlation, we show that for any decoding algorithm,
and for any query set Q, the advantage of the algorithm over random guessing when reading
the values of the query set Q is at most the sum of the advantages obtained by all possible
fixed linear functions over the given query set. This observation has been implicitly used also
in the arguments of [10] and [20] showing the existence of linear decoders with correctness
1/2 + ε/2q for any binary (q, δ, ε)-LDC.

In all our proofs, we use a distribution for the adversary that corrupts each codeword
position in a particular set S independently, and chooses the corruption over the remaining
set of positions so that the total fraction of corrupted positions is still below δ. We construct
the set S so that for query sets that do not intersect the set S, the contribution of sums over
subsets of size at most 2 towards the advantage over random guessing is small. However,
the size of S has to be small to keep the total fraction of corrupted positions below δ.

To achieve this, we first argue that in any LDC, the number of codeword positions that
have large correlation with a given input bit xi over random input x must be small for most
input positions i ∈ [n]. This is straightforward for linear codes. Note however that for
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nonlinear codes, it is possible that a given codeword position has significant correlation with
more than one input bit. We show the desired statement using Theorem 2.7.

Next we consider pairs of codeword positions, such that the sum of their values gives
large correlation with a given input bit xi over random input x. Using Theorem 2.6, we
show that if the length of the code is small, then for most i ∈ [n], all such pairs of positions
can be covered by a small number of codeword positions.

This allows us to conclude that if the length of the code is small, then for at least one
index i ∈ [n], there exist a set S of small size, such that for query sets that do not intersect
the set S, the contribution of sums over subsets of size at most 2 towards the advantage
over random guessing the bit xi is small.

We show that for any LDC with correctness 1/2 + ε, there is a decoding algorithm that
never reads any of the positions in S, but is correct with probability at least 1/2 + ε on
average over random input x, and the random corruption of the above distribution. Note
that the algorithm may not achieve the required correctness on every input and for every
string within distance δm of C(x). We only claim a bound on its probability of being correct
over uniformly random x and over random corruption according to our distribution.

This way we can argue that if the length of the code is small then there is a decoding
algorithm that only uses query sets that either provide only small advantage over random
guessing, or they involve 3 codeword positions, such that the sum of the 3 positions gives the
correct value of the input bit xi with large probability over random input and the random
corruption according to our distribution.

On the other hand, for this decoding algorithm we can lower bound the probability
of error by the probability that the sum of a given triple of codeword positions gives an
incorrect value over random input and the random corruption according to our distribution.

Please see the full version of the paper for a detailed proof of the theorem and for the
formal description of the distribution for the random corruption.

3.2 Lower Bounds for Three Query Linear Codes over Arbitrary Finite
Fields

For linear codes over arbitrary finite fields, we obtain stronger lower bounds than our bounds
for nonlinear codes.

Let F be an arbitrary finite field. We denote by F ∗ the set of nonzero elements of F . It
is convenient to state the threshold on correctness in our bounds in terms of the probability
of the event that a fixed linear combination of a given triple of coordinates of an appropriate
random corruption equals to 0. More precisely, let Q ⊆ [m] with |Q| = q be an arbitrary
fixed subset of the coordinates. Let cj ∈ F ∗, for j ∈ Q and let δ ≤ 1 − 1/|F |. For the
distributions we work with, the values of cj will not make a difference, as long as they are
all nonzero. Let P (δ, q, F ) , PrB

[
(
∑
j∈Q cjBj = 0)

]
, where the probability is over B ∈ Fm

randomly chosen according to a distribution that first chooses to corrupt each coordinate in
[m] independently with probability δ, and then uniformly and independently assigns a value
from F ∗ to each chosen coordinate of B. The remaining coordinates of B are set to 0. Note
that an adversary using this distribution would possibly corrupt more than δm positions
with nonzero probability, so this is not the distribution we use in our proofs. But it is
convenient to use the probability P (δ, q, F ) in the statement of our bounds, since P (δ, q, F )
only depends on δ, q and |F |, it does not depend on m. The theorem also holds using the
distribution that chooses δm positions uniformly (instead of independently corrupting the
positions). While it is well known that these probabilities are not too far from each other
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in the two distributions, for our purposes we need more precise estimates.
We start with a simplified statement of the result without specifying the precise constants.

I Theorem 3.2. Let C: Fn → Fm be a linear (3, δ, ε)-LDC with a nonadaptive decoder, and
n large enough. If 1

|F |+ε > P (δ, 3, F )+φ(n)+µ, where φ(n) = O(1/n1/3), then m ≥ 2Ω(µn).

We state the precise values hidden in the notation in Theorem 3.3.
For binary linear codes we present a slightly stronger bound in the next section.

I Theorem 3.3. Let C: Fn → Fm be a linear (q = 3, δ, ε)-LDC with a nonadaptive decoder,
δ ≤ 1 − 1

|F | , and n large enough. Then, m ≥ 2.45αn−1 where α , δ − (1 − 1
|F | − ε

1/3(1 −
1
|F | )

2/3)− ( 108
n )1/3 − 10

n .

I Remark. We will show that α > 0 when 1
|F | + ε > 1− 3δ(1− δ)2− (1− 1

|F |−1 )3δ2(1− δ)−
(1− 1

|F |−1 + 1
(|F |−1)2 )δ3 +φ(n), where φ(n) = 4((108/n)1/3 + 10/n). Moreover, α > µ

4 when
1
|F | + ε > µ + 1 − 3δ(1 − δ)2 − (1 − 1

|F |−1 )3δ2(1 − δ) − (1 − 1
|F |−1 + 1

(|F |−1)2 )δ3 + φ(n) for
some µ ≥ 0. This implies the version of the bound stated in Theorem 3.2.
Sketch of proof.

Similarly to the proof for binary codes, we construct the set S of positions that we corrupt
independently, so that for query sets that do not intersect the set S, the contribution of sums
(or linear combinations) over subsets of size at most 2 towards the advantage over random
guessing is small. Linear codes have the very strong property that linear combinations of
codeword positions are either exactly equal to a given input bit, or give no advantage over
random guessing towards recovering the given input bit (see Lemma 2.2). Thus, in the case
of linear codes, we can construct the distribution of the adversary so that the decoding
algorithm is left with query sets of size 3, such that no subsets of size at most 2 can give
any advantage over random guessing. All other query sets that the algorithm can read will
give no advantage over random guessing for a given input bit. Thus we don’t need the
part of the argument using Fourier representation of Boolean functions used in the binary
proof to reduce estimating the probability of error to estimating the error over query sets
of a special form. However, we still need to deal with the fact that the decoders can use
nonlinear operations. We achieve this by considering the conditional probabilities of error
of the decoder, conditioned on the sum (more precisely a fixed linear combination) of the
values in the corrupted positions. In addition, we show that in the query sets we are left
with the positions must correspond to linearly independent vectors in the generator matrix
of the code. Based on this, we show that the probability of error (on average using our
distribution) is lower bounded by |F | − 1 times the minimum over k ∈ F of the probability
that a fixed linear combination (with nonzero coefficients) of the corruption in the positions
of the query set equals k.

See the full version for a detailed proof of the Theorem.

3.3 Lower Bounds for Three Query Binary Linear Codes
For binary linear codes, we obtain a slightly stronger bound than what follows from the
lower bound for linear codes over arbitrary finite fields.

I Theorem 3.4. Let C: {0, 1}n → {0, 1}m be a linear (3, δ, ε)-LDC with a nonadaptive
decoder, and n large enough. Then, m ≥ 21.8αn where α , δ − ( 1

2 − ( ε4 )1/3)− ( 36
n )1/3 − 10

n .

I Remark. We will show that α > 0 when 1
2 + ε > 1 − 3δ + 6δ2 − 4δ3 + φ(n), where

φ(n) = 4((36/n)1/3 +10/n). Moreover, α > µ
4 when 1

2 + ε > µ+1−3δ+6δ2−4δ3 +φ(n) for
some µ ≥ 0. This implies the version of the bound stated in Theorem 3.2 for binary codes.
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The proof is almost identical to the proof in the previous section for arbitrary finite fields.
The improvement comes from using Theorem 2.4, and because in the case of binary linear
codes we can use a node cover of size |M1| instead of 2|M1| when defining the distribution.

Acknowledgements We thank David Woodruff for helpful conversations and for pointing
us to [3], and the anonymous referees for helpful comments.

References
1 N. Alon, L. Babai and A. Itai: A fast and simple randomized parallel algorithm for the

maximal independent set problem. Journal of Algorithms, Vol. 7, pp. 567 - 583, 1986.
2 A. Ben-Aroya, K. Efremenko, A. Ta-Shma: Local list-decoding with a constant number of

queries. ECCC Report No. 47, 2010.
3 A. Ben-Aroya, O. Regev and R. de Wolf: A hypercontractive inequality for matrix valued

functions with applications to quantum computing and LDCs. In Proceedings of FOCS
2008, pp. 477 - 486.

4 Z. Dvir: On matrix rigidity and locally self-correctable codes. ECCC Technical Report
No. 134, 2009.

5 Z. Dvir, P. Gopalan, S. Yekhanin: Matching Vector Codes. In Proceedings of FOCS 2010,
pp. 705 - 714.

6 Z. Dvir and A. Shpilka: Locally decodable codes with 2 queries and polynomial identity
testing for depth 3 circuits. In Proceedings of STOC 2005, pp. 592 - 601.

7 K. Efremenko: 3-query locally decodable codes of subexponential length. In Proceedings
of STOC 2009, pp. 39-44.

8 O. Goldreich, H. Karloff, L. Schulman and L. Trevisan: Lower bounds for linear locally
decodable codes and private information retrieval. Comput. Complex., 15(3):263–296, 2006.

9 J. Katz and L. Trevisan: On the efficiency of local decoding procedures for error-correcting
codes. In Proceedings of STOC 2000, pp. 80-86.

10 I. Kerenidis and R. de Wolf: Exponential lower bound for 2-query locally decodable codes
via a quantum argument. In Proceedings of STOC 2003, pp. 106-115.

11 P. Bro Miltersen: Cell probe complexity - a survey. In Advances in Data Structures
Workshop, 1999.

12 K. Obata: Optimal lower bounds for 2-query locally decodable linear codes. In Proceedings
of RANDOM 2002 pp. 39–50.

13 P. Raghavendra: A note on Yekhanin’s locally decodable codes. ECCC TR07-016, 2007.
14 D. Shiowattana and S. V. Lokam: An optimal lower bound for 2-query locally decodable

linear codes. Inf. Process. Lett., 97(6):244–250, 2006.
15 L. Trevisan: Some applications of coding theory in computational complexity. ECCC

TR04-043, 2004.
16 S. Wehner and R. de Wolf: Improved lower bounds for locally decodable codes and private

information retrieval. In Proceedings of ICALP 2005 Vol. 3580 of LNCS, pp. 1424 - 1436.
17 R. de Wolf: Error-correcting data structures In Proceedings of STACS 2009 pp. 313 - 324.
18 D. Woodruff: Some new lower bounds for general locally decodable codes. ECCC TR07-

006, 2006.
19 D. Woodruff: Corruption and recovery-efficient locally decodable codes. In Proceedings of

RANDOM 2008, pp. 584–595.
20 D. Woodruff: A Quadratic Lower Bound for Three-Query Linear Locally Decodable Codes

over Any Field. In Proceedings of RANDOM 2010.
21 S. Yekhanin: Towards 3-query locally decodable codes of subexponential length. In Pro-

ceedings of STOC 2007, pp. 266–274.


	Introduction
	Three query codes
	Arbitrary number of queries
	Linear Decoders
	Matching sum decoders
	Query sets with large rank

	Error Correcting Data Structures
	Techniques

	Preliminaries
	Notation

	Lower Bounds for Three Query Codes
	Lower Bounds for Three Query Binary Codes
	Lower Bounds for Three Query Linear Codes over Arbitrary Finite Fields
	Lower Bounds for Three Query Binary Linear Codes


