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Foreword

The Symposium on Theoretical Aspects of Computer Science (STACS) is held alternately
in France and in Germany. The conference of March 10-12, 2011, held in Dortmund, is the
28th in this series. Previous meetings took place in Paris (1984), Saarbrücken (1985), Orsay
(1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen (1990), Hamburg (1991),
Cachan (1992), Würzburg (1993), Caen (1994), München (1995), Grenoble (1996), Lübeck
(1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002), Berlin (2003),
Montpellier (2004), Stuttgart (2005), Marseille (2006), Aachen (2007), Bordeaux (2008),
Freiburg (2009), and Nancy (2010).

The interest in STACS has remained at a high level over the past years. The STACS
2011 call for papers led to 271 submissions from 45 countries. Each paper was assigned to
three program committee members. The committee selected 54 papers during a two-week
electronic meeting held in November. As co-chairs of the program committee, we would like
to sincerely thank its members and the many external referees for their valuable work. In
particular, there were intense and interesting discussions. The overall very high quality of
the submissions made the selection a difficult task.

We would like to express our thanks to the three invited speakers, Susanne Albers,
Véronique Cortier, and Georg Gottlob. Special thanks go to Andrei Voronkov for his
EasyChair software (www.easychair.org). Moreover, we would like to warmly thank Matthias
Niewerth for preparing the conference proceedings.

For the fourth time, this year’s STACS proceedings are published in electronic form. A
printed version was also available at the conference, by request. The electronic proceedings
are available through several portals, and in particular through LIPIcs and HAL series. The
proceedings of the Symposium, which are published electronically in the LIPIcs (Leibniz
International Proceedings in Informatics) series, are available through Dagstuhl’s website.
The LIPIcs series provides an ISBN for the proceedings volume and manages the indexing
issues. HAL is an electronic repository managed by several French research agencies. Both,
HAL and LIPIcs, guarantee perennial, free and easy electronic access, while the authors
will retain the rights over their work. The rights on the articles in the proceedings are kept
with the authors and the papers are available freely, under a Creative Commons license (see
www.stacs-conf.org/faq.html for more details).
STACS 2011 received funds from Deutsche Forschungsgemeinschaft (DFG) and from TU
Dortmund. We thank them for their support!

February 2011 Thomas Schwentick and Christoph Dürr

28th International Symposium on Theoretical Aspects of Computer Science (STACS’11).
Editors: Thomas Schwentick, Christoph Dürr

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/




Conference Organization

Program Comittee

Dietmar Berwanger ENS Cachan
Patrick Briest Paderborn University
Christian Choffrut LIAFA , Université Denis Diderot
Benjamin Doerr MPI Saarbrücken
Christoph Dürr Ecole Polytechnique (co-chair)
Leah Epstein University of Haifa
Thomas Erlebach University of Leicester
Michele Flammini University of L’Aquila
Nicolas Hanusse LaBRI Bordeaux
Markus Holzer Gießen University
Dániel Marx Tel Aviv University
Claire Mathieu Brown University
Colin McDiarmid Oxford University
Rolf Niedermeier TU Berlin
Nicolas Ollinger Aix-Marseille Universitié
Marco Pellegrini CNR Pisa
Jean-Francois Raskin Université Libre de Bruxelles
Thomas Schwentick TU Dortmund (co-chair)
Jeffrey Shallit University of Waterloo
Till Tantau University of Lübeck
Sophie Tison Université de Lille
Ronald de Wolf CWI Amsterdam

Local Organization Comittee

Markus Brinkmann TU Dortmund
Daniela Huvermann TU Dortmund
Ahmet Kara TU Dortmund
Katja Losemann TU Dortmund
Wim Martens TU Dortmund
Matthias Niewerth TU Dortmund
Silvia Röse TU Dortmund
Thomas Schwentick TU Dortmund (chair)
Matthias Thimm TU Dortmund
Thomas Zeume TU Dortmund

28th International Symposium on Theoretical Aspects of Computer Science (STACS’11).
Editors: Thomas Schwentick, Christoph Dürr

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/




External Reviewers

Marcel R. Ackermann
Krook Jin Ahn
Cyril Allauzen
Jean-Paul Allouche
Helmut Alt
Klaus Ambos-Spies
Pierre-Yves Angrand
Elliot Anshelevich
Adam Antonik
Pierre Arnoux
James Aspnes
Mohamed Faouzi Atig
John Augustine
Chen Avin
Eric Bach
Olivier Bailleux
Evangelos Bampas
Nikhil Bansal
Vince Bárány
Jérémie Barbay
Laurent Bartholdi
Luca Beccetti
Florent Becker
Eli Ben-Sasson
Alberto Bertoni
Nathalie Bertrand
Nadja Betzler
Olaf Beyersdorff
Laurent Bienvenu
Davide Bilò
Vittorio Bilò
Henrik Björklund
Francine Blanchet-Sadri
Michael Blondin
Achim Blumensath
Manuel Bodirsky
Andrej Bogdanov
Mikołaj Bojańczyk
Benedikt Bollig
Nicolas Bonichon
Henning Bordihn
Prosenjit K. Bose
Yacine Boufkhad
Pierre Boulet
Olivier Bournez
Andreas Brandstädt
Robert Bredereck

Jop Briët
Dimo Brockhoff
Véronique Bruyère
Andrei A. Bulatov
Jonathan F. Buss
Sergio Cabello
Olivier Carton
Didier Caucal
Julien Cervelle
Rohit Chadha
Amit Chakrabarti
Sourav Chakraborty
Tanmoy Chakraborty
Jérémie Chalopin
Pierre Charbit
Krishnendu Chatterjee
Yijia Chen
Yu-Fang Chen
Flavio Chierichetti
Marek Chrobak
Jacek Chrza̧szcz
Javier Cilleruelo
Ştefan Ciobâcă
Francisco Claude
Johanne Cohen
Amin Coja-Oghlan
Thomas Colcombet
Sébastien Collette
Colin Cooper
David Coudert
Bruno Courcelle
Maxime Crochemore
Aiswarya Cyriac
Flavio D’Alessandro
Anuj Dawar
Bastian Degener
Aldric Degorre
Bilel Derbel
Ziadi Djelloul
Shahar Dobzinski
Shlomi Dolev
Mike Domaratzki
Rob Downey
Laurent Doyen
Arnaud Durand
Martin Dyer
Rachid Echahed

Khaled Elbassioni
Michael Elberfeld
Amr Elmasry
Robert Elsässer
Matthias Englert
Lionel Eyraud-Dubois
Angelo Fanelli
Germain Faure
Lene M. Favrholdt
Sándor Fekete
Henning Fernau
Pascal Ferraro
Santiago Figueira
Emmanuel Filiot
Felix Fischer
Matthias Fitzi
Fedor V. Fomin
Enrico Formenti
Nikolaos Fountoulakis
Pierre Fraignaud
Blanchard François
Anna E. Frid
Tobias Friedrich
Henryk Fukś
Martin Fürer
Péter Gács
Pierre Ganty
Jane Gao
Yong Gao
Jugal Garg
Cyril Gavoille
Hugo Gimbert
Mathieu Giraud
Amy Glen
Leslie Ann Goldberg
Laure Gonnord
Laurent Gourvès
Serge Grigorieff
Luciano Gualà
Irène Guessarian
Pierre Guillon
Jiong Guo
Venkatesan Guruswami
Dan Gutfreund
Serge Haddad
Rolf Haenni
Matthew Hague

28th International Symposium on Theoretical Aspects of Computer Science (STACS’11).
Editors: Thomas Schwentick, Christoph Dürr

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/


x External Reviewers

Magnus M. Halldorsson
Sean Hallgren
Peter Hancock
Sariel Har-Peled
Sepp Hartung
Meng He
Brett Hemenway
Danny Hermelin
Markus Hinkelmann
Denis R. Hirschfeldt
Mika Hirvensalo
John Hitchcock
Martin Hoefer
Michael Hoffmann
Hendrik Jan Hoogeboom
Chien-Chung Huang
Falk Hüffner
Anna Huber
Paul Hunter
David Ilcinkas
Lucian Ilie
Csanád Imreh
Piotr Indyk
Kazuo Iwama
Sebastian Jakobi
Andreas Jakoby
Bart M. P. Jansen
Emmanuel Jeandel
Claude-Pierre Jeannerod
Mark Jerrum
Colette Johnen
Peter Jonsson
Hossein Jowhari
Jacques Justin
Frank Kammer
Christos A. Kapoutsis
Ahmet Kara
Jarkko J. Kari
Andreas Karrenbauer
Michael Kaufmann
Hans Kellerer
Barbara Kempkes
Iordanis Kerenidis
Yusik Kim
Daniel Kirsten
Ralf Klasing
Philip N. Klein
Peter Kling
Johannes Köbler
Christian Komusiewicz

Guy Kortsarz
Adrian Kosowski
Ioannis Koutis
Stefan Kratsch
Matthias Krause
Andreas Krebs
Steve Kremer
Stephan Kreutzer
Marcin Kubica
Antonín Kučera
Gregory Kucherov
Raghav Kulkarni
Dietrich Kuske
Martin Kutrib
Arnaud Labourel
James Laird
Stefan Langerman
Hubert Larchevêque
Machel Latteux
Massimo Lauria
François Le Gall
Christophe Lecoutre
Thierry Lecroq
Dimitri Leemans
Stephan Lemkens
Alex Leong
Martin Leucker
Debbie Leung
Peter Leupold
Florence Levé
Asaf Levin
Lionel Levine
Nutan Limaye
Maciej Liśkiewicz
Kamal Lodaya
Christof Löding
Markus Lohrey
Daniel Lokshtanov
Shachar Lovett
Hsueh-I Lu
Anna Lubiw
Dorel Lucanu
Bin Ma
Sofian Maabout
Frédéric Magniez
Ridha Mahjoub
Jean Mairesse
Andreas Malcher
Andreas Maletti
Guillaume Malod

Loris Marchal
Maurice Margenstern
Jean-Yves Marion
Nicolas Markey
Wim Martens
Barnaby Martin
Thierry Massart
Bodo Mathey
Jiri Matousek
Elvira Mayordomo
Frédéric Mazoit
Bertrand Mazure
Andrew McGregor
Jan Mehler
Giovanna Melideo
Stefan Mengel
Carlo Mereghetti
Julián Mestre
Yves Métivier
Mehdi Mhalla
Jakub Michaliszyn
Joseph S. Miller
Ioannis Millis
Nikola Milosavljevic
Neeldhara Misra
Rasmus Ejlers Møgelberg
Gianpiero Monaco
Mickaël Montassier
Nelma Moreira
Pat Morin
Rémi Morin
Luca Moscardelli
Dana Moshkovitz
Shay Mozes
Haiko Müller
Markus Müller-Olm
Ian Munro
Reza Naserasr
Alfredo Navarra
Alantha Newman
André Nichterlein
Joachim Niehren
André Nies
Damian Niwinski
Dirk Nowotka
Jan Obdržálek
Alexander Okhotin
Frédéric Olive
Svetlana Olonetsky
Jörg Olschewski



External Reviewers xi

Krzysztof Onak
Friedrich Otto
Sang-il Oum
Konstantinos Panagiotou
Andrea Papst
Daniel Paulusma
Arnaud Pêcher
Xavier Pérez-Giménez
Sylvain Perifel
Seth Pettie
Thi Ha Duong Phan
Matthieu Picantin
Krzysztof Pietrzak
Peter Pietrzyk
Giovanni Pighizzini
Jean-Éric Pin
Ely Porat
Natacha Portier
Philippe Preux
Guido Proietti
Kirk Pruhs
Gabriele Puppis
Harald Räcke
Christophe Raffalli
Sergio Rajsbaum
Rajeev Raman
R. Ramanujam
Narad Rampersad
Mickaël Randour
Dror Rawitz
Igor Razgon
Mireille Régnier
Klaus Reinhardt
Rogério Reis
Rüdiger Reischuk
Gaétan Richard
Dan Roche
Heiko Röglin
Andrei E. Romashchenko
Peter Rossmanith
Kunihiko Sadakane
Chandan Saha
Lakhdar Sais
Hiroshi Sakamoto
Thomas Sauerwald
Saket Saurabh
Nitin Saxena

Nicolas Schabanel
Gilles Schaeffer
Guido Schäfer
Dominik Scheder
Christian Scheideler
Sven Schewe
Ildikó Schlotter
Heinz Schmitz
Sylvain Schmitz
Henning Schnoor
Ilka Schnoor
Pierre-Yves Schobbens
Lutz Schr"oder
Pascal Schweitzer
Stefan Schwwon
Hans Georg Seeding
Danny Segev
Frank Sehnke
Pranab Sen
Olivier Serre
Frédéric Servais
Mordechai Shalom
Yaoyun Shi
Amir Shpilka
Pedro V. Silva
Hnas Simon
Patrice Skéébold
Alexander Skopalik
Martin Skutella
William F. Smyth
Christian Sohler
Alexander Souza
Reto Spöhel
Anand Srivastav
Angelika Steger
Frank Stephan
Klaus Sutner
Wojciech Szpankowski
Siamak Taati
Michael Tautschnig
Kavitha Telikepalli
Jan Arne Telle
Véronique Terrier
Johannes Textor
Nguyen Kim Thang
Guillaume Theyssier
Dimitrios M. Thilikos

John Thistle
Stéphan Thomassé
Ioan Todinca
Marc Tommasi
Jacobo Torán
Szymon Toruńczyk
Corentin Travers
Kai Trojahner
Kostas Tsichlas
Dan Turetsky
Johannes Uhlmann
Vladimir V’yugin
René van Bevern
Rob van Stee
Pascal Vanier
Martin Vatshelle
Carmine Ventre
Nikolai Vereshchagin
Adrian R. Vetta
Antoine Vigneron
Goyal Vineet
Emanuele Viola
Mikhail V. Volkov
Heribert Vollmer
Fabian Wagner
Klaus Wagner
Markus Wagner
Magnus Wahlström
John Watrous
Oren Weimann
Steve Weis
Mathias Weller
Matthias Westermann
Thomas Wilke
Ryan Williams
Carola Winzen
Gerhard J. Woeginger
Prudence W. H. Wong
David Woodruff
Sergey Yekhanin
Raphael Yuster
Thomas Zeugmann
Thomas Zeume
Binhai Zhu
Sandra Zilles
Marius Zimand

STACS’11





Table of Contents

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Conference Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
External Reviewers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Invited Papers

Algorithms for Dynamic Speed Scaling
Susanne Albers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Structural Decomposition Methods and What They are Good For
Markus Aschinger, Conrad Drescher, Georg Gottlob, Peter Jeavons, and
Evgenij Thorstensen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

How to prove security of communication protocols? A discussion on the soundness
of formal models w.r.t. computational ones.

Hubert Comon-Lundh and Véronique Cortier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Session 2A: Distributed and Fault–Tolerant Computing

Local dependency dynamic programming in the presence of memory faults
Saverio Caminiti, Irene Finocchi, and Emanuele G. Fusco . . . . . . . . . . . . . . . . . . . . . . . 45

Tight bounds for rumor spreading in graphs of a given conductance
George Giakkoupis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Tight Bounds For Distributed MST Verification
Liah Kor, Amos Korman, and David Peleg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Session 2B: Data Words and Data Trees

Automata based verification over linearly ordered data domains
Luc Segoufin and Szymon Toruńczyk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Bottom-up automata on data trees and vertical XPath
Diego Figueira and Luc Segoufin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Data Monoids
M. Bojańczyk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Session 3A: Cuts and Flows

Minimum s − t cut in undirected planar graphs when the source and the sink are close
Haim Kaplan and Yahav Nussbaum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Towards Duality of Multicommodity Multiroute Cuts and Flows:
Multilevel Ball-Growing

Petr Kolman and Christian Scheideler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
28th International Symposium on Theoretical Aspects of Computer Science (STACS’11).
Editors: Thomas Schwentick, Christoph Dürr

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/


xiv Table of Contents

Session 3B: Computational Geometry

Compact Visibility Representation of Plane Graphs
Jiun-Jie Wang and Xin He . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Telling convex from reflex allows to map a polygon
Jérémie Chalopin, Shantanu Das, Yann Disser, Matúš Mihalák, and
Peter Widmayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Session 4A: Kernelization

Cross-Composition: A New Technique for Kernelization Lower Bounds
Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch . . . . . . . . . . . . . . . . . . . . 165

Vertex Cover Kernelization Revisited: Upper and Lower Bounds for a Refined
Parameter

Bart M. P. Jansen and Hans L. Bodlaender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Hitting forbidden minors: Approximation and Kernelization
Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip, and
Saket Saurabh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Session 4B: Morphisms, Words, Bio Computing

Self-Assembly of Arbitrary Shapes Using RNAse Enzymes: Meeting the Kolmogorov
Bound with Small Scale Factor (extended abstract)

Erik D. Demaine, Matthew J. Patitz, Robert T. Schweller, and Scott M. Summers 201

Weakly Unambiguous Morphisms
Dominik D. Freydenberger, Hossein Nevisi, and Daniel Reidenbach . . . . . . . . . . . . . . . 213

On Minimal Sturmian Partial Words
F. Blanchet-Sadri and John Lensmire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Session 5A: SAT & CSP

Improving PPSZ for 3-SAT using Critical Variables
Timon Hertli, Robin A. Moser, and Dominik Scheder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

The Complexity of Weighted Boolean #CSP Modulo k

Heng Guo, Sangxia Huang, Pinyan Lu, and Mingji Xia . . . . . . . . . . . . . . . . . . . . . . . . . . 249

The #CSP Dichotomy is Decidable
Martin Dyer and David Richerby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Session 5B: Cellular Automata

A speed-up of oblivious multi-head finite automata by cellular automata
Alex Borello, Gaétan Richard, and Véronique Terrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273



Table of Contents xv

Stochastic Cellular Automata Solve the Density Classification Problem with an
Arbitrary Precision

Nazim Fatès . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Probabilistic cellular automata, invariant measures, and perfect sampling
Ana Bušić, Jean Mairesse, and Irène Marcovici . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

Session 7A: Clustering and Learning

Analysis of Agglomerative Clustering
Marcel R. Ackermann, Johannes Blömer, Daniel Kuntze, and Christian Sohler . . . 308

Measuring Learning Complexitywith Criteria Epitomizers
John Case and Timo Kötzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

On Parsimonious Explanations For 2-D Tree- and Linearly-Ordered Data
Howard Karloff, Flip Korn, Konstantin Makarychev, and Yuval Rabani . . . . . . . . . . . 332

Session 7B: Logic

Unary negation
Balder ten Cate and Luc Segoufin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

First-order Fragments with Successor over Infinite Words
Jakub Kallas, Manfred Kufleitner, and Alexander Lauser . . . . . . . . . . . . . . . . . . . . . . . . . 356

The model checking problem for propositional intuitionistic logic with one variable
is AC1-complete

Martin Mundhenk and Felix Weiß . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

Session 8A: Scheduling 1

A Fast Algorithm for Multi-Machine Scheduling Problems with Jobs of Equal
Processing Times

Alejandro López-Ortiz and Claude-Guy Quimper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

Scheduling for Weighted Flow Time and Energy with Rejection Penalty
Sze-Hang Chan, Tak-Wah Lam, and Lap-Kei Lee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

Session 8B: Graph Decomposition

Clique-width: When Hard Does Not Mean Impossible
Robert Ganian, Petr Hliněný, and Jan Obdržálek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

From Pathwidth to Connected Pathwidth
Dariusz Dereniowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

STACS’11



xvi Table of Contents

Session 9A: Streaming

Polynomial Fitting of Data Streams with Applications to Codeword Testing
Andrew McGregor, Atri Rudra, and Steve Uurtamo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

Spectral Sparsification in the Semi-Streaming Setting
Jonathan A. Kelner and Alex Levin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

Session 9B: Recursion Theory

Solovay functions and K-triviality
Laurent Bienvenu, Wolfgang Merkle, and André Nies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

Everywhere complex sequences and the probabilistic method
Andrey Yu. Rumyantsev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

Session 10A: Scheduling 2

Online Scheduling with Interval Conflicts
Magnús M. Halldórsson, Boaz Patt-Shamir, and Dror Rawitz . . . . . . . . . . . . . . . . . . . . 472

Analysis of multi-stage open shop processing systems
Christian E.J. Eggermont, Alexander Schrijver, and Gerhard J. Woeginger . . . . . . . 484

Session 10B: Regular Expressions

Graphs Encoded by Regular Expressions
Stefan Gulan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

Extended Regular Expressions: Succinctness and Decidability
Dominik D. Freydenberger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

Session 11A: Graph Algorithms

New Exact and Approximation Algorithms for the Star Packing Problem in
Undirected Graphs

Maxim Babenko and Alexey Gusakov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

Balanced Interval Coloring
Antonios Antoniadis, Falk Hüffner, Pascal Lenzner, Carsten Moldenhauer, and
Alexander Souza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

Session 11B: Algebra & Complexity

Symmetric Determinantal Representation of Weakly-Skew Circuits
Bruno Grenet, Erich L. Kaltofen, Pascal Koiran, and Natacha Portier . . . . . . . . . . . 543

Randomness Efficient Testing of Sparse Black Box Identities of Unbounded Degree
over the Reals

Markus Bläser and Christian Engels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555



Table of Contents xvii

Session 13A: Complexity of Graph & Group Problems

On Isomorphism Testing of Groups with Normal Hall Subgroups
Youming Qiao, Jayalal Sarma M.N., and Bangsheng Tang . . . . . . . . . . . . . . . . . . . . . . . 567

Space Complexity of Perfect Matching in Bounded Genus Bipartite Graphs
Samir Datta, Raghav Kulkarni, Raghunath Tewari, and N. V. Vinodchandran . . . . 579

The Recognition of Triangle Graphs
George B. Mertzios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591

Session 13B: Verification

Collapse Operation Increases Expressive Power of Deterministic Higher Order
Pushdown Automata

Paweł Parys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603

Temporal Synthesis for Bounded Systems and Environments
Orna Kupferman, Yoad Lustig, Moshe Y. Vardi, and Mihalis Yannakakis . . . . . . . . 615

Linear temporal logic for regular cost functions
Denis Kuperberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627

Session 14A: Geometry and Complexity

Bounds on the maximum multiplicity of some common geometric graphs
Adrian Dumitrescu, André Schulz, Adam Sheffer, and Csaba D. Tóth . . . . . . . . . . . . 637

On the computational complexity of Ham-Sandwich cuts, Helly sets, and related
problems

Christian Knauer, Hans Raj Tiwary, and Daniel Werner . . . . . . . . . . . . . . . . . . . . . . . . . 649

Session 14B: Query Complexity

Quantum query complexity of minor-closed graph properties
Andrew M. Childs and Robin Kothari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661

Three Query Locally Decodable Codes with Higher Correctness Require
Exponential Length

Anna Gál and Andrew Mills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673

Index of Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685

STACS’11



Algorithms for Dynamic Speed Scaling ∗

Susanne Albers1

1 Humboldt-Universität zu Berlin
Department of Computer Science
Unter den Linden 6, 10099 Berlin, Germany
albers@informatik.hu-berlin.de
http://www2.informatik.hu-berlin.de/˜albers/

Abstract
Many modern microprocessors allow the speed/frequency to be set dynamically. The general
goal is to execute a sequence of jobs on a variable-speed processor so as to minimize energy
consumption. This paper surveys algorithmic results on dynamic speed scaling. We address
settings where (1) jobs have strict deadlines and (2) job flow times are to be minimized.
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1 Introduction

Energy has become a scarce and expensive resource. There is a growing awareness in society
that energy conservation and an efficient energy use are important issues. Power dissipa-
tion is also critical in computer systems. Electricity costs impose a substantial strain on
the budget of data and computing centers. Google representatives report that if power
consumption continues to grow, power costs can easily overtake hardware costs by a large
margin [11]. In this context engineers are interested in low power rather than speed [30].
Moreover, energy-efficiency is a concern in portable and battery-operated devices that have
proliferated in recent years. An effective energy use can considerably prolong the lifetime of
a battery and hence the availability of a system.

A relatively new and very promising technique to save energy in computer systems is
dynamic speed scaling. Chip manufacturers such as Intel, AMD and IBM produce mi-
croprocessors that can run at variable speed. Examples are the Intel SpeedStep and the
AMD PowerNow. High speeds result in high performance but also high energy consump-
tion. Lower speeds save energy but performance degrades. In dynamic speed scaling the
processor speed is adjusted based on demand and performance constraints. The goal is to
minimize energy consumption, while still providing a desired quality of service. The past
years have witnessed considerable research interest in dynamic speed scaling. In this paper
we survey results that have been developed in the algorithms community.

The well-known cube-root rule for CMOS devices states that the speed s of a device is
proportional to the cube-root of the power or, equivalently, that power is proportional to s3.
The algorithms literature considers a generalization of this rule. If a processor runs at speed
s, then the required power is P (s) = sα, where α > 1 is a constant. Most algorithms papers
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2 Algorithms for Dynamic Speed Scaling

consider this power function P (s); some even work with more generalized convex functions.
Obviously, energy consumption is power integrated over time.

Dynamic speed scaling leads to many challenging scheduling problems. The general
goal is to execute a sequence of jobs on a variable-speed processor so as to optimize energy
consumption and, possibly, a second objective. However, problems in speed scaling are more
complex than those in standard scheduling: At any time a scheduler has to decide not only
which job to execute but also which speed to use.

There has recently been considerable research interest in the design and analysis of
dynamic speed scaling algorithms. The algorithms literature so far focuses mostly on two
scenarios. In a first scenario jobs have strict deadlines and a scheduler has to construct
feasible schedules minimizing energy consumption. We review important results for this
setting in Section 2. In a second scenario jobs have no deadlines but their response times
or flow times are to be minimized, measuring the responsiveness of a system. Here one has
to combine energy minimization and flow time minimization. We present results for this
scenario in Section 3.

For the various scenarios, two problem settings are of interest. In the offline setting all
jobs to be processed are known in advance. Here one is interested in complexity results
and fast polynomial time algorithms for computing optimal or nearly optimal schedules.
In the online setting jobs arrive over time and an algorithm, at any time, has to make
scheduling decisions without knowledge of any future jobs. Online strategies are evaluated
using competitive analysis [33]. An online algorithm ALG is called c-competitive if for
every input, i.e. for any job sequence, the objective function value (typically the energy
consumption) of ALG is within c times the value of an optimal solution for that input.

2 Scheduling with deadlines

In a seminal paper, initiating the algorithmic study of speed scaling, Yao, Demers and
Shenker [34] investigated a scheduling problem with strict job deadlines. It is by far the
most extensively studied speed scaling problem.

Consider n jobs J1, . . . Jn that have to be processed on a variable-speed processor. Each
job Ji is specified by a release time ri, a deadline di and a processing volume wi. The
release time and the deadline specify the time interval [ri, di] during which the job must be
executed. The job may not be started before ri and must be finished until di. The processing
volume wi is the amount of work that must be completed to finish the job. Intuitively wi
can be viewed as the total number of CPU cycles required by the job. The processing time
of the job depends on the processor speed. If Ji is executed at speed s, then it takes wi/s
time units to finish the task. Preemption of jobs is allowed, i.e. the processing of a job may
be stopped and resumed later. The goal is to construct a feasible schedule minimizing the
total energy consumption

Yao, Demers and Shenker [34] make two simplifying assumptions. (1) There is no upper
bound on the allowed processor speed. Hence a feasible schedule always exists. (2) The
processor has a continuous spectrum of speeds. In the following we will present algorithms
for this enhanced model. Then we will discuss how to relax the assumptions.

2.1 Basic algorithms
Yao et al. [34] developed elegant online and offline algorithms. We first present the offline
strategy, which knows all the jobs along with their characteristics in advance. The algorithm
is known as YDS , referring to the initials of the authors. Algorithm YDS computes a
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minimum energy schedule for a given job set in a series of rounds. In each round the
algorithm identifies an interval of maximum density and computes a corresponding partial
schedule for that interval. The density ∆I of a time interval I = [t, t′] is the total processing
volume to be completed in I divided by the length of I. More formally, let SI be the set of
jobs Ji that must be processed in I, i.e. that satisfy [ri, di] ⊆ I. Then

∆I = 1
|I|

∑
Ji∈SI

wi.

Intuitively, ∆I is the minimum average speed necessary to complete all jobs that must be
scheduled in I.

In each round, YDS determines the interval I of maximum density. In I the algorithm
schedules the jobs of SI at speed ∆I according to Earliest Deadline First (EDF). The EDF
policy always processes the job having the earliest deadline among the available unfinished
jobs. Then YDS removes the set SI as well as the time interval I from the problem instance.
More specifically, for any unscheduled job Ji with di ∈ I, the new deadline is set to di := t.
For any unscheduled Ji with ri ∈ I, the new release time is ri := t′. Time interval I is
discarded. A summary of YDS in pseudo-code is given below.
Algorithm YDS: Initially J := {J1, . . . , Jn}. While J 6= ∅, execute the following two
steps. (1) Determine the interval I of maximum density. In I process the jobs of SI at
speed ∆I according to EDF . (2) Set J := J \ SI . Remove I from the time horizon and
update the release times and deadlines of unscheduled jobs accordingly.

The algorithm computes optimal schedules.

I Theorem 2.1. [34] For any job instance, YDS computes an optimal schedule minimizing
the total energy consumption.

Obviously, the running time of YDS is polynomial. When identifying intervals of max-
imum density, the algorithm only has to consider intervals whose boundaries are equal to
the release times and deadlines of the jobs. Hence, a straightforward implementation of the
algorithm has a running time of O(n3). Li et al. [29] showed that the time can be reduced
to O(n2 logn). Further improvements are possible if the job execution intervals form a tree
structure [27].

In the online version of the problem, the jobs J1, . . . , Jn arrive over time. A job Ji
becomes known only at its arrival time ri. At that time the deadline di and the processing
volume wi are also revealed. Recall that an online algorithm ALG is c-competitive if, for
any job sequence, the total energy consumption of ALG is at most c times that of an optimal
offline algorithm OPT .

Yao et al. [34] devised two online algorithms, called Average Rate and Optimal Available.
For any incoming job Ji, Average Rate considers the density δi = wi/(di − ri), which is the
minimum average speed necessary to complete the job in time if no other jobs were present.
At any time t the speed s(t) is set to the accumulated density of jobs active at time t. A
job Ji is active at time t if t ∈ [ri, di]. Available jobs are scheduled according to the EDF
policy.
Algorithm Average Rate: At any time t the processor uses a speed of s(t) =

∑
Ji:t∈[ri,di] δi.

Available unfinished jobs are scheduled using EDF .
Yao et al. [34] proved an upper bound on the competitiveness.

I Theorem 2.2. [34] The competitive ratio of Average Rate is at most 2α−1αα, for any
α ≥ 2.
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4 Algorithms for Dynamic Speed Scaling

Bansal et al. [3] demonstrated that the analysis is essentially tight by giving a nearly
matching lower bound.

I Theorem 2.3. [3] The competitive ratio of Average Rate is at least ((2− δ)α)α/2, where
δ is a function of α that approaches zero as α tends to infinity.

The second strategy Optimal Available is computationally more expensive than Average
Rate. It always computes an optimal schedule for the currently available work load. This
can be done using YDS .
Algorithm Optimal Available: Whenever a new job arrives, compute an optimal schedule
for the currently available unfinished jobs.

Bansal, Kimbrel and Pruhs [7] analyzed the above algorithm and proved the following
result.

I Theorem 2.4. [7] The competitive ratio of Optimal Available is exactly αα.

The above theorem implies that in terms of competitiveness, Optimal Available is better
than Average Rate. Bansal et al. [7] also developed a new online algorithm, called BKP
according to the initials of the authors, that approximates the optimal speeds of YDS by
considering interval densities. For times t, t1 and t2 with t1 < t ≤ t2, let w(t, t1, t2) be the
total processing volume of jobs that are active at time t, have a release time of at least t1
and a deadline of at most t2.
Algorithm BKP: At any time t use a speed of

s(t) = max
t′>t

w(t, et− (e− 1)t′, t′)
t′ − t

.

Available unfinished jobs are processed using EDF .

I Theorem 2.5. [7] Algorithm BKP achieves a competitive ratio of 2( α
α−1 )αeα.

For large values of α, the competitiveness of BKP is better than that of Optimal Available.
Bansal et al. [6] gave an algorithm that achieves further improved bounds for small values
of α, i.e. α = 2 and α = 3.

All the above online algorithms attain constant competitive ratios that depend on α but
no other problem parameter. The dependence on α is exponential. For small values of α,
which occur in practice, the competitive ratios are reasonably small. Moreover, results by
Bansal et al. [6, 7] imply that the exponential dependence on α is inherent to the problem.

I Theorem 2.6. [6] Any deterministic online algorithm has a competitiveness of at least
eα−1/α.

Even randomized online algorithms have a competitive ratio of Ω((4/3)α), see [7]. An
interesting open problem is to determine the best competitiveness that can be achieved by
online algorithms.

2.2 Speed-bounded processors
The algorithms presented in the last section are designed for processors having available a
continuous, unbounded spectrum of speeds. However, in practice a processor is equipped
with only a finite set of discrete speed levels s1 < s2 < . . . < sd. The offline algorithm YDS
can be modified easily to handle feasible job instances, i.e. inputs for which feasible schedules
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exist using the restricted set of speeds. Feasibility can be checked easily by always using
the maximum speed sd and scheduling available jobs according to the EDF policy. Given a
feasible job instance the modification of YDS is as follows. We first construct the schedule
according to YDS . For each identified interval I of maximum density we approximate the
desired speed ∆I by the two adjacent speed levels sk and sk+1, such that sk < ∆I < sk+1.
Speed sk+1 is used first for some δ time units and sk is used for the last |I|− δ time units in
I, where δ is chosen such that the total work completed in I is equal to the original amount
of |I|∆I . An algorithm with an improved running time of O(dn logn) was presented by Li
and Yao [28].

If the given job instance is not feasible, it is impossible to complete all the jobs. Here
the goal is to design algorithms that achieve good throughput, which is the total processing
volume of jobs finished by their deadline, and at the same time optimize energy consumption.
Papers [4, 15] present algorithms that even work online. At any time the strategies maintain
a pool of jobs they intend to complete. Newly arriving jobs may be admitted to this pool. If
the pool contains too large a processing volume, jobs are expelled such that the throughput is
not diminished significantly. The algorithm with the best competitiveness currently known
is due to Bansal et al. [4]. The algorithm, called Slow-D, is 4-competitive in terms of
throughput and constant competitive with respect to energy consumption. We describe the
strategy.

Slow-D assumes that the processor has a continuous speed spectrum that is upper
bounded by a maximum speed smax. The algorithm always keeps track of the speeds that
Optimal Available would use for the workload currently available. At any time t Slow-D
uses the speed that Optimal Available would set at time t provided that this speed does not
exceed smax; otherwise Slow-D uses smax. The algorithm also considers scheduling times
that are critical in terms of speed. For any t, down-time(t) is the latest time t′ ≥ t in the
future schedule such that the speed of Optimal Available is at least smax. If no such time
exists, down-time(t) is set to the most recent time when smax was used or to 0 if this has
never been the case. Using this definition, jobs are labeled as urgent or slack. These labels
may change over time. A job Ji is called t-urgent if di ≤ down-time(t); otherwise it is called
t-slack. Additionally, Slow-D maintains two queues Qwork and Qwait of jobs it intends to
process. The status of Qwork defines urgent periods. An urgent period starts at the release
time ri of a job Ji if Qwork contained no urgent job right before ri and Ji is an urgent job
admitted to Qwork at time ri. An urgent period ends at time t if Qwork contains no more
t-urgent jobs. Slow-D works as follows.

Algorithm Slow-D: Job arrival: A job Ji arriving at time ri is admitted to Qwork if it
is ri-slack or if Ji and all the remaining work of ri-urgent jobs in Qwork can be completed
using smax. Otherwise Ji is appended to Qwait.
Job interrupt: Whenever a job Ji in Qwait reaches its last starting time t = di−wi/smax,
it raises an interrupt. At this time the algorithm is in an urgent period. Let Jk be the last
job transfered from Qwait to Qwork in the current period. If no such job exists, let Jk be a
dummy job of processing volume zero transfered just before the current period started. Let
W be the total original work of jobs ever admitted to Qwork that have become urgent after
Jk was transfered to Qwork. If wi > 2(wk + W ), then remove all t-urgent jobs from Qwork
and admit Ji; otherwise discard Ji.
Job completion: Whenever a job is completed, it is removed from Qwork.

Bansal et al. [4] analyzed the above algorithm and proved the following result.
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6 Algorithms for Dynamic Speed Scaling

I Theorem 2.7. [4] Slow-D is 4-competitive with respect to throughput and (αα + α24α)-
competitive with respect to energy.

Interestingly, the competitiveness of 4 is best possible, even if energy is ignored, see [12].

2.3 Problem extensions
We consider further extensions of the classical deadline-based scheduling setting.

Sleep states: Irani et al. [22] investigate an extended scenario where a variable-speed
processor may be transitioned into a sleep state. In the sleep state, the energy consumption
is 0 while in the active state even at speed 0 some non-negative amount of energy is consumed.
Hence [22] combines speed scaling with power-down mechanisms. In the standard setting
without sleep state, algorithms tend to use low speed levels subject to release time and
deadline constraints. In contrast, in the setting with sleep state it can be beneficial to speed
up a job so as to generate idle times in which the processor can be transitioned to the sleep
mode. Irani et al. [22] develop online and offline algorithms for this extended setting. For
the online setting an algorithm with an improved competitiveness was presented by Han et
al. [21]; their strategy achieves a competitiveness of αα + 2. Baptiste [9], Baptiste et al. [10]
and Demaine et al. [18] also study scheduling problems where a processor may be set asleep,
albeit in a setting without speed scaling.

Parallel processors: The results presented so far address single-processor architectures.
However, energy consumption is also a major concern in multi-processor environments. Con-
sider a setting with m identical parallel processors. As usual the processing of a jobs may
be preempted at any time. We distinguish two problem variants depending on whether or
not job migration is allowed. If job migration is feasible, then whenever a job is preempted
it may be moved to another processor. In some applications job migration can be an ex-
pensive or undesirable operation, and thus might be infeasible. In any case the goal is to
minimize the total energy consumption on all the processors. Bingham and Greenstreet [13]
showed that if job migration is allowed, the offline problem is polynomially solvable. How-
ever the corresponding algorithm relies on linear programming and, as the authors mention,
the complexity of the algorithm might be too high for most practical applications.

Albers et al. [2] assume that job migration is not allowed. They show that the of-
fline problem is NP-hard, even for unit-size jobs. Albers et al. [2] then develop polynomial
time offline algorithms that achieve constant factor approximations, i.e. for any input the
consumed energy is within a constant factor of the true optimum. They also devise on-
line algorithms attaining constant competitive ratios. Greiner et al. [19] gave a strategy
that converts a c-approximation algorithm for a single processor into a randomized cBα-
approximation algorithm for multiple processors. Here Bα is the α-th Bell number. A
corresponding statement holds for online algorithms.

Lam et al. [24] study deadline-based scheduling on two speed-bounded processors. They
present a strategy that is constant competitive in terms of throughput maximization and
energy minimization.

3 Minimizing flow times

A classical objective in scheduling is the minimization of response times. A user releasing a
task to a system would like to receive feedback, say the result of a computation, as quickly
as possible. User satisfaction often depends on how fast a device reacts. Unfortunately, re-
sponse time minimization and energy minimization are contradicting objectives. To achieve
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fast response times a system must usually use high processor speeds, which lead to high
energy consumption. On the other hand, to save energy low speeds should be used, which
result in high response times. Hence one has to find ways to integrate both objectives.

Consider n jobs J1, . . . , Jn that have to be scheduled on a variable-speed processor. Each
job Ji is specified by a release time ri and a processing volume wi. When a job arrives, its
processing volume is known. Preemption of jobs is allowed. In the scheduling literature,
response time is referred to as flow time. The flow time fi of a job Ji is the length of the time
interval between release time and completion time of the job. We seek schedules minimizing
the total flow time

∑n
i=1 fi.

3.1 Energy plus flow
Albers and Fujiwara [1] proposed the following approach to integrate energy and flow time
minimization. They consider a combined objective function that simply adds the two costs.
Let E denote the energy consumption of a schedule. We wish to minimize g = E+

∑n
i=1 fi.

By multiplying either the energy or the flow time by a scalar, we can also consider a weighted
combination of the two costs, expressing the relative value of the two terms in the total cost.
Albers and Fujiwara [1] concentrate on the setting where all jobs have the same processing
volume. By scaling, one can assume that all jobs have unit-size. They show that opti-
mal offline schedules can be constructed in polynomial time using a dynamic programming
approach.

Most of [1] is concerned with the online setting where jobs arrive over time. Albers and
Fujiwara present a simple online strategy that processes jobs in batches and achieves a con-
stant competitive ratio. Batched processing allows one to make scheduling decisions, which
are computationally expensive, only every once in a while. This is certainly an advantage in
low-power computing environments. Nonetheless, Albers and Fujiwara conjectured that the
following algorithm achieves a better performance with respect to the minimization of g: At
any time, if there are ` active jobs, use speed α

√
`. A job is active if it has been released but

is still unfinished. Intuitively, this is a reasonable strategy because, in each time unit, the
incurred energy of ( α

√
`)α = ` is equal to the additional flow time accumulated by the ` jobs

during that time unit. Hence, both energy and flow time contribute the same value to the
objective function. The algorithm and variants thereof have been the subject of extensive
analyses [4, 5, 8, 26], not only for unit-size jobs but also for arbitrary size jobs. Moreover,
unweighted and weighted flow times have been considered.

The currently best result is due to Bansal et al. [5]. They modify the above algorithm
slightly by using a speed of α

√
`+ 1 whenever ` jobs are active. Inspired by a paper of Lam et

al. [26] they apply the Shortest Remaining Processing Time (SRPT) policy to the available
jobs. More precisely, at any time among the active jobs, the one with the least remaining
work is scheduled.
Algorithm Job Count: At any time if there are ` ≥ 1 active jobs, use speed α

√
`+ 1. If

no job is available, use speed 0. Always schedule the job with the least remaining unfinished
work.

I Theorem 3.1. [5] Job Count is 3-competitive for arbitrary size jobs.

The above result even holds for a very general class of convex power functions. Bansal et
al. [5, 8] study a generalized setting where each job Ji has a weight βi associated with it and
in objective function g the total flow time is replaced by the weighted flow time

∑n
i=1 βifi.

The proposed algorithms rely on the Highest Density First (HDF) policy, i.e. at any time
among the available unfinished jobs the one with the highest density is processed. The
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density of a job Ji is the ratio βi/wi of its weight to its work. Bansal et al. [8] introduced a
relaxed objective function consisting of energy plus the fractional weighted flow time of the
jobs. In the fractional weighted flow time measure, at any time a job contributes its weight
times the percentage of unfinished work to the objective. In their first paper Bansal et al. [8]
gave a constant competitive online algorithm for minimizing energy plus fractional weighted
flow. An algorithm achieving a small constant competitive ratio of 2 was shown in the second
paper [5]. This algorithm always applies HDF for job selection and sets the processor power
equal to the total fractional weight of the unfinished jobs. A constant competitive algorithm
for the original objective function of energy plus (integral) weighted flow was shown in [8].

Bansal et al. [4] and Lam et al. [26] propose algorithms for the setting that there is an
upper bound on the maximum processor speed. All the results mentioned so far assume
that when a job arrives, its processing volume is known. Articles [16, 26] investigate the
harder case that this information is not available.

3.2 Problem extensions and modifications

Sleep states: Lam et al. [23] study an extended setting where a variable-speed processor is
equipped with one or several sleep states. The processing time of incoming jobs may or may
not be known. The authors devise online algorithms achieving constant competitive ratios
for minimizing energy plus flow.

Parallel processors: Lam et al. [25] and Gupta et al. [20] investigate scenarios with m

parallel processors. Both articles assume that job migration is not allowed. For identical
processors Lam et al. [25] present a constant competitive online algorithm for minimizing
energy plus flow. The performance ratio even holds against migratory offline schedules.
The corresponding algorithm classifies jobs according to their processing volumes and was
originally proposed by Albers et al. [2]. Gupta et al. [20] consider heterogeneous processors
and study the effect of resource augmentation: If an offline algorithm can run a processor
at speed s and power P (s), then an online algorithm is able to run the processor at speed
(1 + ε)s and power P (s), for any given ε > 0. Gupta et al. present an online algorithm that
is scalable for minimizing energy plus weighted flow. Here scalable means that the online
cost is upper bounded by O(f(ε)) time the optimum cost, where f is a polynomial function
of small degree. Again the result holds for a very general class of power functions. If the
power functions of all the processors are of the form Pi(s) = sαi , 1 ≤ i ≤ m, Gupta et al.
show a O(α2)-competitive algorithm, where α = maxi αi. Hence resource augmentation is
not needed. Chan et al. [17] investigate parallel processor scheduling assuming that jobs
have varying degrees of parallelizability and their processing times are initially unknown.

Limited energy: Pruhs et al. [31] consider another approach to integrate energy and flow
time minimization. More specifically they study a problem where a fixed energy volume E is
given and the goal is to minimize the total flow time of the jobs. Pruhs et al. [31] assume that
all jobs have unit-size. They consider the offline scenario and show that optimal schedules
can be computed in polynomial time. Bunde [14] extends the result to parallel processor
environments and gives an arbitrarily-good approximation for scheduling unit-size jobs. He
also shows that the optimal flow time value cannot be exactly computed on a machine
supporting exact real arithmetic, including the extraction of roots. We remark that in the
framework with a limited energy volume it is hard to construct good online algorithms. If
future jobs are unknown, it is unclear how much energy to invest for the currently available
tasks.
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4 Conclusions

In this paper we have surveyed algorithmic results on dynamic speed scaling, focusing on
settings with strict job deadlines and on the minimization of job flow times. Various papers
have also addressed other scenarios. A basic objective function in scheduling is makespan
minimization, i.e. the minimization of the point in time when the entire schedule ends.
Bunde [9] develops algorithms for single and multi-processor environments. Pruhs et al. [32]
consider tasks having precedence constraints defined between them. They devise algorithms
for parallel processors given a fixed energy volume. In summary, practical applications
motivate the investigation of many further settings and we expect that dynamic speed scaling
continues to be an active area of research.
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Abstract
This paper reviews structural problem decomposition methods, such as tree and path decompo-
sitions. It is argued that these notions can be applied in two distinct ways: Either to show that a
problem is efficiently solvable when a width parameter is fixed, or to prove that the unrestricted
(or some width-parameter free) version of a problem is tractable by using a width-notion as a
mathematical tool for directly solving the problem at hand. Examples are given for both cases.
As a new showcase for the latter usage, we report some recent results on the Partner Units
Problem, a form of configuration problem arising in an industrial context. We use the notion
of a path decomposition to identify and solve a tractable class of instances of this problem with
practical relevance.

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.12

1 Introduction: Treewidth and Other Notions of Width

Tree decompositions [52, 6] and their variants and generalizations [44] constitute a significant
success story of Theoretical Computer Science. In fact, tree decompositions and polynomial
algorithms for bounded treewidth constitute one of the most effective weapons to attack NP
hard problems, namely, by recognizing and efficiently solving large classes of tractable problem
instances. Structural problem decompositions such as treewidth are thus closely related to fixed-
parameter tractability [19, 37].

Tree and Path Decompositions. Formally, a tree decomposition of a graph G = (V,E) is a
pair P = (T, χ) such that T = (W,F ) is a tree or forest, and where the function χ associates to
every w ∈W a subset B ⊆ V such that

(1) for every vertex v in V there is a vertex w ∈W with v ∈ χ(w);
(2) for every edge (v1, v2) in E there is a vertex w ∈W with {v1, v2} ⊆ χ(w); and
(3) for every vertex v in V the set {w ∈W | v ∈ χ(w)} induces a subtree of T .
Condition (3) is called the connectedness condition. The subsets B associated with the vertices
of W are called bags. The width of a tree decomposition is maxw∈W (|χ(w)| − 1). The treewidth
tw(G) of G is the minimum width over all its tree decompositions.

A path decomposition of a graph is a tree decomposition where T = (W,F ) actually consists
of a simple root-leaf path. The pathwidth pw(G) of a graph is the minimum width over all its
path decompositions.

Several variants and generalizations of treewidth have been introduced, for an overview
see [44]. For example, the notion of treewidth is easily generalized from graphs to finite structures.
A finite structure A consists of a domain A, and relations R1, . . . , Rk of arities a1, . . . , ak, respec-
tively. Each such relation Ri consists of a set of tuples (r1, . . . , rai ) ∈ R where r1, ..., rai ∈ A.
A graph G = (V,E) corresponds to a finite structure whose domain is V , with a binary relation
E encoding the edges. If G is undirected, then E contains both pairs (v, w) and (w, v) for each
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edge {v, w} of G. Undirected graphs are thus represented as special cases of arbitrary (possibly
directed) graphs. The Gaifman graph of a structure A, is the undirected graph G(A) whose set
of vertices is the domain A of A and where there is an edge {a, b} iff a, b ∈ A and a 6= b, and there
exists a tuple in one of the relations of A in which a and b occur jointly. A tree decomposition
of the structure A is a tree decomposition for the Gaifman graph, G(A). The treewidth tw(A) of
a structure A is defined accordingly, i.e., tw(A) = tw(G(A)). Similarly, the pathwidth pw(A) is
defined as pw(G(A). The treewidth tw(C) (pathwidth pw(C)) of a class C of finite structures is
the maximum over all tw(A) ( pw(A)) for A ∈ C. A tree decomposition of a hypergraph H is
a tree decomposition of the primal graph G(H) of H, which has the same vertices as H and an
edge between each pair of vertices that jointly occur in a hyperedge of H.

It is NP hard to determine the treewidth of a structure A. However, for each fixed k,
checking whether tw(A) ≤ k, and if so, computing a tree decomposition for A of optimal width,
is achievable in linear time [5], and was recently shown to be achievable in logarithmic space [20].
Even though the multiplicative constant factor of Bodlander’s linear algorithm [5] is exponential
in k, there are algorithms that find exact tree decompositions in reasonable time or good upper
approximations in many cases of practical relevance, see for example [7, 8] and the references
therein.

The treewidth of a graph or relational structure is an invariant that can be used as a param-
eter to define infinite classes of graphs (or structures) related to problem instances. Many NP
hard problems of practical relevance can be solved in polynomial time on instances of bounded
treewidth and some are actually fixed-parameter tractable with respect to treewidth. Given
that bounded pathwidth implies bounded treewidth, these results hold a fortiori for bounded
pathwidth. The notion of treewidth is at the base of strong meta-theorems such as Courcelle’s
Theorem [13], which states that any problem expressible in monadic second-order logic (MSO)
over structures of bounded treewidth can be solved in linear time (or, by a recent result, in log-
arithmic space [20]). Many problems, e.g. the 3-colorability of graphs, are very easily expressed
in terms of MSO, and thus Courcelle’s theorem turns out to be a very effective tool for obtaining
tractability results.

Hypergraph Decompositions The structure of a computational problem is sometimes better
described by a hypergraph than by a graph. Therefore, various width-notions for hypergraphs
have been defined and studied, and often these are more effective than simply considering the
associated primal graph. In particular, the notion of hypertree width, which is based on hypertree
decompositions [24, 31, 1], is an appropriate measure for the degree of acyclicity of a hyper-
graph. Bounded hypertree width generalizes the concept of α-acyclic hypergraphs developed by
Fagin [21]. In essence, a hypertree decomposition of width k for a hypergraph H can be obtained
from a suitable tree decomposition of G(H) by covering each bag with at most k hyperedges of H.
However, under this definition, which actually defines the concept of generalized hypertree width,
ghw(H), of a hypergraph H, it is unfortunately NP-hard to determine whether a hypergraph
has width ≤ k for k = 3 [32]. Therefore, to define the actual concept of hypertree width, an
additional condition is imposed that ensures the tractability of computing hypertree decomposi-
tions of low width (for details, see [24]). Bounded hypertree width is strictly more general than
bounded treewidth because there exist families of hypergraphs with bounded hypertree width
whose treewidth is unbounded.

A number of practically relevant problems become tractable for instances whose associ-
ated hypergraphs have low hypertree width. Examples are constraint satisfaction problems
(CSPs) [16, 29], see Section 3.1 for a definition, and combinatorial auctions [26]. Very roughly,
CSPs of bounded hypertree-width are loosely constrained and therefore tractable. CSPs may
also become tractable because their associated hypergraphs are –in a precise sense– tightly con-
strained. Formally this was captured by the entropy-based measure of fractional edge cover [39].
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CSPs whose associated hypergraphs are of bounded fractional edge cover number are tightly
constrained and can be solved in polynomial time. Combining hypertree decomposition with
fractional edge covers yields fractional hypertree decompositions [39], a decomposition method
that is more general than both hypertree decompositions and fractional edge covers. While hy-
pertree decompositions will be considered again in Section 3.1, this paper mainly deals with tree
and path decompositions.

Structure of the Paper. The rest of the paper is structured as follows. In the next section,
we present a taxonomy of the main uses of tree decomposition in Computer Science. We will
distinguish between two main categories (categories 1 and 2) and four sub-categories (1.a, 1.b,
2.a, and 2.b) of applications of tree decompositions. In Section 3, we give examples of problems
that fall into the categories 1.a, 1.b, and 2.a, respectively. In section 4, we describe a relevant
version of the Partner Unit Problem (Pup) and report about our recent result [3] showing that
the problem falls in category 2.b and is therefore tractable.

2 Taxonomy of Main Uses of Tree Decompositions

One may distinguish between two main usages of tree decompositions, each of which can be
subdivided in turn into two sub-cases. The following taxonomy will be illustrated with concrete
examples in the next sections. When we speak about the treewidth of a problem instance, we
mean the treewidth of some graph associated with the instance. Obviously, for each concrete
problem, one has to indicate what this graph is, and, whenever necessary, how it can be obtained
from the instance.

1. Proving a problem tractable for instances of bounded treewidth. This is probably the main
use of treewidth. The idea is that many practically relevant classes of inputs actually have
bounded treewidth, and that for such classes, a polynomial algorithm can be designed. We
distinguish between general tractability results and fixed-parameter tractability (FPT) re-
sults:
1.a General tractability results. We are able to show that the problem becomes tractable, but

the best known polynomial algorithms are of complexity Ω(nf(k)), where limk→∞ f(k) =
∞. In many such cases it can actually be proven that the problem is fixed-parameter
intractable with respect to the treewidth parameter k. A typical problem in this category,
is the CSP problem, which we will discuss in more detail in the next section.

1.b Fixed-parameter tractability results. This is the case if there exists a function f such that
the problem is solvable in time f(k)×nO(1) on instances of treewidth ≤ k. If the problem
is actually solvable in time f(k)×O(n), then we speak about fixed-parameter linearity. In
particular, fixed-parameter linearity results can be obtained whenever Courcelle’s Theorem
can be applied. To illustrate this, we will discus the Multicut problem in the next section.

2. Using treewidth as a tool for proving a problem to be generally tractable (on all instances).
There are a number of cases where treewidth is used as a tool in general tractability proofs.
Again, we may distinguish between two sub-cases:
2.a Proving that a problem is tractable both for small and large treewidth. For some problems

having some associated implicit or explicit parameter c, it can be shown that there exists
a function f such that the problem is tractable both for instances having treewidth ≤ f(c)
and also for instances having treewidth > f(c). The tractability proof for low treewidth is
usually completely different from the tractability proof for high treewidth. As an example
for this category, we will review the problem of checking whether a loop-free undirected
graph has a cycle of length 0 mod c, where c is a fixed constant. This problem was shown
to be tractable by Thomassen [53].
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2.b Proving that all yes-instances of a problem have bounded treewidth and that the problem is
tractable for this reason. Here, for some explicit or implicit constant parameter c associated
with the problem, one is able to find a function t, such that all yes-instances of the problem
must have treewidth ≤ t(c). Moreover, one shows that for instances of bounded treewidth
the problem is polynomially solvable. Note that this is actually a very special case of
Case 2.a. In fact, this means that the high-treewidth case is trivially tractable, because
all instances of high treewidth are no-instances. As an example for this category, we will
report in Section 4 about a new result related to the Partner Unit Problem (Pup), a
problem of industrial relevance [22].

3 Examples for Tractability Results Based on Bounded Treewidth

As announced, this section contains examples for the usages of bounded treewidth as described
under categories 1.a, 1.b, and 2.a. We start with a very brief review of the Constraint Satisfaction
Problem (CSP) in Section 3.1. We then describe the Multicut problem and illustrate how a nice
generalization of Courcelle’s Theorem can be used to show that Multicut is FPT on instances
of bounded treewidth. Finally, in Section 3.3 we review Thomassen’s famous result stating that
it can be determined in polynomial time whether a graph has an even cycle, and more generally,
whether a graph has a cycle of length 0 mod c where c is a fixed constant. Our presentation
of all these problems and results is necessarily very brief, but we include references to literature
containing a full treatment and many more results.

3.1 The Constraint Satisfaction Problem
The efficient solution of Constraint Satisfaction Problems (CSPs) has for many years been an
important goal of AI research and of related disciplines, in particular, Operations Research and
Database Theory.

An instance of a constraint satisfaction problem (CSP) (also constraint network) is a triple
I = (Var, U, C), where Var is a finite set of variables, U is a finite domain of values, and C =
{C1, C2, . . . , Cq} is a finite set of constraints. Each constraint Ci is a pair (Si, ri), where Si is
a list of variables of length mi called the constraint scope, and ri is an mi-ary relation over U ,
called the constraint relation. (The tuples of ri indicate the allowed combinations of simultaneous
values for the variables Si). A solution to a CSP instance is a substitution θ : Var −→ U , such
that for each 1 ≤ i ≤ q, Siθ ∈ ri. The problem of deciding whether a CSP instance has any
solution is called constraint satisfiability (CS). Many well-known problems in Computer Science
and Mathematics can be formulated as CSPs. For example, the famous problem of graph three-
colorability (3COL), i.e., deciding whether the vertices of a graph G = 〈Vertices,Edges〉 can be
colored by three colors (say: red, green, blue) such that no edge links two vertices having the
same color, can be formulated as a CSP as follows. The set Var contains a variable Xv for
each vertex v ∈ Vertices. For each edge e = 〈v, w〉 ∈ Edges, the set C contains a constraint
Ce = (Se, re), where Se = 〈Xv, Xw〉 and re is the relation r6= consisting of all pairs of different
colors, i.e., r6= = {〈red, green〉, 〈red, blue〉, 〈green, red〉, 〈green, blue〉, 〈blue, red〉, 〈blue, green〉}.

It is well-known, and easy to see, that Constraint Satisfiability is an NP-complete problem.
Membership in NP is obvious. NP-hardness follows immediately, e.g. from the NP hardness of
3COL. It is also well-known [4, 43, 15] that the CSP is equivalent to various database problems,
e.g., to the problem of evaluating Boolean conjunctive queries over a relational database.

To any CSP instance I = (V ar, U, C), we associate a hypergraph H(I) = (V,H), where
V = V ar, and H = {var(S) | C = (S, r) ∈ C}, where var(S) denotes the set of variables in the
scope S of the constraint C. The graph G(I) associated with a CSP is the primal graph G(H(I))
of the hypergraph H(I). Note that if all constraints of a CSP instance I are binary, then its
associated hypergraph H(I) is identical to its graph G(I).
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The following result (for treewidth) was implicit in work of Dechter and Pearl [17] based on
Freuder (see [29] for clarifications). It was explicitly stated by Kolaitis and Vardi (Theorem 5.4
in [46]) and, by Chekuri and Rajaraman[12], who considered a slightly different graph associated
to a CSP-instance I. The more general version for bounded hypertree width was proven in [24].

I Theorem 1. CSPs of bounded treewidth and CSPs of bounded hypertree width are tractable.

Since bounded treewidth implies bounded hypertree width [24, 29], it is sufficient to consider
the proof for bounded hypertree width. A detailed exposition is given in the proof of Theorem 21
of [46]. Essentially it is shown that a CSP instance I of hypertree width k can be transformed in
time O(nk) into an instance I∗ of size nk, where n is the size of I, whose associated hypergraph
is acyclic. I∗ can then be solved by using Yannakakis’ well-known method for answering acyclic
queries [54]. The total time for solving I is shown to be nk+1 logn.

It is natural to ask whether we could achieve fixed-parameter tractability (FPT) by finding
a better algorithm which would allow us to get rid of the constant k in the exponent of n, and
thus to replace the runtime bound by some expression f(k)× nc for a function f and a constant
c independent of k. Unfortunately, this appears to be very unlikely. In fact, the problem of
evaluating Boolean conjunctive queries, which is identical to the CSP problem, is easily shown to
be fixed-parameter intractable (more precisely, W [1]-hard) with respect to either parameter, the
query size or the number of variables [50], see also [38, 18]. It is therefore a fortiori FP-intractable
with respect to the treewidth parameter, given that any k-variable CSP has treewidth at most
k − 1. This makes the CSP a prime example for a problem in category 1.a of our classification.

The precise complexity of solving CSPs (or answering conjunctive queries) of bounded treewidth,
or hypertree width, is as follows [30, 24]:

I Theorem 2. Deciding satisfiability for CSP instances of bounded treewidth or bounded hypertree
width is LOGCFL-complete.

Given that LOGCFL is a class of highly parallelizable problems included in the well-known
very low classes AC1 and NC2, this shows that even though FP-intractable in case of bounded
treewidth, the problem is efficiently parallelizable. A concrete parallel algorithm can be obtained
by combining the transformation of the original CSP instance of bounded treewidth, I, into an
acyclic CSP instance I ′ (see [29]) (which is an AC0-reduction) with the Db-Shunt algorithm
described in [30].

By results of Grohe, Schwentick, and Segoufin [40], for CSPs of bounded arity (i.e., whose
constraint scopes and relations are of bounded arity, but otherwise unrestricted), it was shown
that bounded treewidth is actually the best possible tractability criterion: a class of CSP in-
stances of bounded arity is tractable if and only if it has bounded treewidth. However, when the
constraints can have unbounded arity, bounded treewidth is a sub-optimal tractability criterion
and is dramatically outperformed by bounded hypertree width. But, as already alluded to in the
introduction, there are yet more powerful decomposition methods, such as fractional hypertree
decompositions [39]. Even bounded fractional hypertree width does not seem to be an optimal
structural tractability criterion. An optimal criterion was very recently established by Marx
in [48], however, this criterion imposes conditions not only on the constraint scopes, but also on
the constraint relations, and is thus of a different, less "structural" type. Finally, let us observe
that it may be useful to consider hypertree decompositions or their generalizations, rather than
just tree decompositions, even in the case of bounded arities. In fact, in Theorem 16 of [33] it
was shown that each CSP instance I having n variables is of hypertree width ≤ bn/2c+ 1, while
its treewidth may actually be n− 1.
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3.2 Network Multicut Problems
We now illustrate category 1.b of our taxonomy by a number of variants of the well-known
Multicut problem.
Multicut problems and their complexity. Multicut problems are highly relevant to the
field of network design. The smallest size of a multicut reveals the robustness and stability of a
network with multicommodity flows. Given a set H ⊆ V 2 of pairs of terminal vertices of a graph
G = (V,E), several forms of Multicut have been considered and have given rise to complexity
studies [9, 14, 23, 42, 41, 47, 49].

A large part of the literature deals with the Edge Multicut variant in which the solution
is a set of edges E′ ⊆ E that, if removed, separate every terminal pair. Variants in which sets
of vertices are removed, such as Unrestricted Vertex Multicut, wherein any vertices can
appear in the solution set V ′, and Restricted Vertex Multicut, wherein no terminal vertices
can appear in the solution set, have also been studied [9]. Formal definitions of these versions of
Multicut are given below.

In 2006, Guo et al. [41] present an algorithm which solves all three of the variants of the
problem in polynomial time given two constant parameters, the cardinality of the set of terminal
pairs, |H|, and the treewidth ω of G.

In [28], Gottlob and Tien Lee introduced a new single parameter for which all variants of
Multicut are FPT. This unique parameter is the treewidth ω∗ of the input structure A =
(V,E,H), which is equal to the treewidth of the graph (V,E ∪ H). These more recent FPT-
results are proved by using a powerful extended version of Courcelle’s theorem due to Arnborg,
Lagergren, and Seese [2]. By formulating Multicut in such an extended MSO, the considered
Multicut problems are shown to be FPT with respect to ω∗. Note that if the input graph has
bounded treewidth, and if H has bounded cardinality, then, obviously, the entire input structure
A = (V,E,H) also has bounded treewidth ω∗. However, ω∗ can be bounded even in cases where
G has bounded treewidth but H has unbounded cardinality. The FPT results for bounded ω∗
are thus a strict generalization of the results by Guo et al. [41]. These findings demonstrate that
powerful logical tools such as the extended version of Courcelle’s master theorem by Arnborg,
Lagergren, and Seese [2] can be applied to advance the state of the art in network multicut theory
and can help identify parameters of interest in complexity analysis.
Formal definitions of multicut problems. We now define the various different versions of
the MULTICUT problem mentioned earlier. The Edge Multicut problem is formally defined
as follows:

I Definition 3. Edge Multicut (EMC)

Input: An undirected graph G = (V,E), and H ⊆ V ×V a collection of pairs of vertices.
Task: Find a minimal cardinality set E′ ⊆ E whose removal disconnects each pair in H.

The vertex variants of the problem were identified by Calinescu et al. [9] and they are defined as:

I Definition 4. Unrestricted Vertex Multicut (UVMC)

Input: An undirected graph G = (V,E), and H ⊆ V ×V a collection of pairs of vertices.
Task: Find a minimal cardinality set V ′ ⊆ V whose removal disconnects each pair in H.

If H is a set of pairs of elements, we denote by H0 the set of all elements occurring in some pair
of H, i.e., H0 = {x|∃y : (x, y) ∈ H ∨ (y, x) ∈ H}.

I Definition 5. Restricted Vertex Multicut (RVMC)

Input: An undirected graph G = (V,E), and H ⊆ V ×V , a collection of pairs of vertices.
Task: Find a minimal cardinality subset V ′ ⊆ V where V ′ ∩H0 = ∅ and whose removal
disconnects each pair of vertices in H.
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It has been shown that all three forms of the problem are NP-complete for general graphs [14, 9]
and remain hard even for graphs with bounded treewidth [23, 9].

A strong master theorem by Arnborg, Lagergren, and Seese. Before showing that
the problems become FPT for inputs of bounded treewidth ω∗, we present a strong and most
useful generalization of Courcelle’s Theorem by Arnborg, Lagergren, and Seese [2]. Let us refer
to the version of MSO where second-order quantification is restricted to sets of domain elements
(e.g., sets of vertices of the input graph) as MSO1. Note that Courcelle [13] and other authors
considered an extended version of MSO called MSO2 which extends MSO1 by the possibility of
quantifying over subsets of any relation of the input structure, e.g., sets of edges of an input
graph. Thus, for example, if a relational symbol R is part of the problem signature, then a
subformula (∃X ⊆ R)ϕ(X), expressing that there exists a subset X of the relation R such that
ϕ(X) holds for some formula ϕ, could be part of an MSO2 formula. Courcelle’s Theorem is
actually valid for MSO2 (and thus, in particular, for MSO1). Arnborg, Lagergren and Seese [2]
considered an important extension of MSO2, called extended MSO that can be used to formulate
optimization and counting problems. They proved that solving problems expressible in this form
over input structures is FPT with respect to the treewidth of these input structures.

While in the original setting in [2], extended MSO properties were defined in a much more
general context, it is sufficient for our purposes to state a drastically simplified definition and,
accordingly, a simplified master theorem (Theorem 7). By optimization we here understand the
search for a minimum or maximum solution according to some cardinality criteria. The solution
itself is an “optimal” assignment of sets to second-order variables that freely occur in some MSO
formula, such that the formula is satisfied over a given input structure. More precisely:

I Definition 6 (simplified version of a definition in [2]). An optimization problem is an extended
MSO cardinality optimization problem if it can be expressed in the following form. The input of
the problem is a a structure A = (V,E,H), where V is a set (the universe of A), and E and
H are binary relations over elements of V . Let ϕ(X) be a fixed MSO1 or MSO2 formula over
A, where X is either a free set variable ranging over subsets of V , or a binary relation variable
ranging over subsets of E. The task is to find an assignment1 among all possible assignments z′
to the variable X such that:

|z(X)| = opt{|z′(X)| : (A, z′) |= ϕ(X)}

where opt is either min or max. A suitable assignment z is called a solution to the extended
MSO cardinality optimization problem.

Using this definition, Arnborg, Lagergren and Seese found the following important fixed-
parameter tractability result [2]:

I Theorem 7. Solving extended MSO cardinality problems is fixed-parameter tractable w.r.t. the
treewidth of the input structure. In particular, for a fixed extended MSO cardinality optimization
problem P , and a class C of input structures whose treewidth is bounded by some constant, the
following can be done in linear time:

Determine whether P has a solution for an input from C.
Compute a solution for an input from C, if one exists.

Applying the master theorem to multicut problems. We first define a useful formula that
states that two vertices x and y are connected by a path that lies entirely in a set S of vertices.

1 An assignment z to the variable X is an interpretation of X that maps X to a subset z(X) of V if X
is unary and a subset of E if X is binary.



M. Aschinger, C. Drescher, G. Gottlob, P. Jeavons, E. Thorstensen 19

I Definition 8. On structures A = (V,E,H) as above, let connects(S, x, y) be defined as follows:

S(x) ∧ S(y) ∧ ∀P((P (x) ∧ ¬P (y))→ (∃v∃w (S(v) ∧ S(w) ∧ P (v) ∧ ¬P (w) ∧ E(v, w)))).
I Lemma 9 ([28]). Over a structure A = (V,E,H) as above, the formula connects(S, x, y) states
that there is a path in (V,E) that connects vertex x to vertex y, and this path lies entirely in S.
In particular, this is also true for directed graphs.

I Theorem 10 ([28]). The problems UVMC, RVMC, and EMC are fixed parameter linear with
respect to the treewidth ω∗ of the input structure (V,E,H).

Proof. (Sketch.) We outline the proof for UVMC. The problem UVMC can in fact be expressed
as an extended MSO cardinality optimization problem in the following way: Find an assignment
z ⊆ V to set variable X such that |z(X)| = min{|z′(X)| : 〈V,E,H, z′〉 |= uvmc(X)}, where
uvmc(X) is an MSO1 expression defined as:

uvmc(X) ≡ ∀x∀y(H(x, y)→ ∀S(connects(S, x, y)→ ∃v(X(v) ∧ S(v)))).
In words, the formula uvmc(X) defines X to be such that for each pair (x, y) ∈ H (i.e., for
each pair (x, y) that must be disconnected), whenever there is a set S of vertices from V that
contains a path from x to y, then X must intersect S, i.e. contain some vertex from S. In [28] it is
formally proven that uvmc(X) is true iff the set X is an unrestricted vertex multicut of (V,E,H).
The theorem then follows immediately from Theorem 7. Slight variants of this proof yield the
corresponding FPT results for RVMC and EMC. For EMC, quantification over subsets of the
edge relation is used. For details, see [28]. J

Master theorems such as Courcelle’s and the one of Arnborg, Lagergren and Seese are con-
structive and can be used for the implementation of model-checking tools such as MONA [45]
that directly interpret an MSO-formulation of a problem, or directly compile an MSO-formula
into a solution algorithm. However, in order to obtain more efficient algorithms and better upper
bounds it is currently still advisable to attempt a more detailed ad hoc analysis of the problem
at hand, once the master theorems show us they are FPT. The above FPT-results, for example,
were used by Pichler, Rümmele and Woltran [51] as a starting point for the design of very effec-
tive algorithms and for the derivation of rather low complexity bounds for Multicut problems
on inputs of low treewidth. In the future we may expect new tools that are able to automatically
compile algorithms and bounds of a similar quality. As an intermediate step, we believe that it
is rewarding to replace MSO by equally expressive but much simpler (and better optimizable)
languages for expressing a problem. One such candidate is the monadic fragment of the well-
known Datalog language [11, 10]. It was recently shown in [35] that over structures of bounded
treewidth, when a tree decomposition is provided, monadic Datalog is exactly as expressive as
MSO. As illustrated in [34, 36], many problems of practical relevance can be easily encoded in
monadic Datalog, and special interpreters that execute monadic Datalog programs over struc-
tures of bounded treewidth turned out to be much more efficient than MONA fed with the MSO
formulas that are logically equivalent to those Datalog programs. For a further discussion, see
Section 5 of [34].

3.3 The Even Cycle Problem
The EVEN CYCLE PROBLEM (ECP) is the problem of determining whether a loop-free
undirected graph has an even cycle. The tractability of ECP was open for a long time, until
Carsten Thomassen proved it polynomial [53]. Actually, Thomassen proved the following more
general result regarding the problems mCP of whether a loop-free undirected graph has a cycle
of length 0 modulo m, where m is a fixed positive integer.
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I Theorem 11 ([53]). For each integer m > 0, mCP is decidable in polynomial time.

As the following proof outline shows, the proof is according to the pattern of Case 2.a in our
taxonomy.

Proof. (Outline.) First it is shown that on graphs G = (V,E) of bounded treewidth, mCP is
tractable. With Courcelle’s theorem this is very easy; it is sufficient to note that mCP can be
expressed in MSO. (Given that Courcelle’s Theorem was not known, Thomassen gave a slightly
more involved ad hoc proof.)

The second part deals with input graphs of "large" treewidth. It is proven that for each fixed
m, a number t(m) can be determined, such that all graphs of treewidth > t(m) must actually
have a cycle whose length is a multiple of m. Thus, for the specific problem mCP, all instances
of "high" treewidth are actually yes-instances. In particular, it is shown by using Robertson’s and
Seymour’s result [52] that t(m) can always be chosen large enough such that G must contain a
subdivision of a grid H, which, in turn, must contain a cycle whose length is a multiple of m. J

In a similar fashion, while classifying the complexity of model checking for all prefix-classes
of existential second-order logic (ESO) over graphs, it was shown in [27] that evaluating fixed
closed formulas of type ∃R1, . . . Rk ∀x∃y φ(V,E,R1, . . . , Rk, x, y) over a loop-free undirected
input graph (V,E), where R1 . . . , Rk are existentially quantified relation symbols of arbitrary
arity, and where φ(V,E,R1, . . . , Rk, x, y) is a quantifier-free first order formula, is feasible in
polynomial time. Note that this generalizes Thomassen’s theorem, given that for each m, the
problem mCP can be expressed by an ESO formula of this type.

4 The Partner Units Problem

In this section, we describe the Partner Units Problem (Pup). First, in Section 4.1, a general
version of the problem is given, which is, however, intractable. In Section 4.2 we describe a special
version of the Pup which is of particular industrial relevance. It is for this special case that we
were able to establish tractability by exploiting the result that all yes-instances must necessarily
have bounded pathwidth (and thus bounded treewidth). It is thus the special case which serves
as a paradigmatic example of a problem in category 2.b of our taxonomy. In Section 4.2.4 we then
report on a prototypical implementation for the special case that already could solve benchmark
instances beyond the reach of the heuristic methods and "engineering approaches" previously used
to solve this problem. This section gives only a short summary; the original work underlying this
section, as well as detailed proofs can be found in [3].

4.1 Definition of the Partner Units Problem and Basic Facts
The Partner Units Problem (Pup) has recently been proposed as a new benchmark configuration
problem [22]. It captures the essence of a specific type of configuration problem that frequently
occurs in industry.

Informally it can be described as follows: Consider a set of sensors that are grouped into
zones. A zone may contain many sensors, and a sensor may be attached to more than one zone.
The Pup consists of connecting the sensors and zones to control units. These control units can
be connected to the same fixed maximum number UnitCap of zones and sensors.2 Moreover, if a
sensor is attached to a zone, but the sensor and the zone are assigned to different control units,

2 For ease of presentation we assume that UnitCap is the same for zones and sensors.
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then the two control units in question have to be (directly) connected. However, a control unit
cannot be connected to more than InterUnitCap other control units (the partner units).

The Pup occurs e.g. in the following application domain: Consider a museum where we want
to keep track of the number of visitors that populate certain parts (zones) of the museum. To
this end the doors leading from one zone to another are equipped with sensors. To keep track of
the visitors the zones and sensors are attached to control units; the adjacency constraints on the
control units ensure that communication between control units can be kept simple. It is worth
pointing out that the Pup is not limited to this application domain: It occurs whenever sensors
that are grouped into zones have to be attached to control units, and communication between
units should be kept simple.

Figure 1 shows a Pup instance and a solution for the case UnitCap = InterUnitCap = 2 —
six sensors (left) and six zones (right) which are completely inter-connected are partitioned into
units (shown as squares) respecting the adjacency constraints. Note that for the given parameters
this is a maximal solvable instance; it is not possible to connect a new zone or sensor to any of
the existing ones.

Figure 1 Solving a K6,6 Partner Units Instance — Partitioning Sensors and Zones into Units

More formally, the Pup consists of partitioning the vertices of a bipartite graphG = (V1, V2, E)
into a set U of bags such that each bag

contains at most UnitCap vertices from V1 and at most UnitCap vertices from V2; and
has at most InterUnitCap adjacent bags where the bags U1 and U2 are adjacent whenever
vi ∈ U1 and vj ∈ U2 and (vi, vj) ∈ E.

To every solution of the Pup we can associate a solution graph. For this we associate to every
bag u ∈ U a vertex u′ ∈ U ′. Then the solution graph G∗ has the vertex set V1 ∪ V2 ∪U ′ and the
set of edges {(v, u′) | v ∈ u ∧ u ∈ U} ∪ {(u′i, u′j) | ui and uj are adjacent.}. In the following we
will refer to the subgraph of the solution graph induced by the u′ as the unit graph.

The reasoning tasks for Pup instances that we consider in this paper are the following:
Decide whether there is a solution (Pudp).
Find a solution (Pusp).
Find an optimal solution; i.e. one that uses the minimal number of control units (Puop).

The rationale behind the optimization version is that (a) units are expensive, and (b) connections
are cheap. Especially the case where the maximum number InterUnitCap of connections between
units is limited to two is of great interest for our partners in industry.
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By a reduction from BinPacking it can be shown that Puop is NP-complete [3] when
InterUnitCap = 0, and UnitCap is part of the input. We also observe [3] that a Pup instance has
no solution if it containsK1,n orKn,1 as a subgraph, where n = ((InterUnitCap+1)∗UnitCap)+1.

4.2 A Special Case: InterUnitCap = 2
We now turn to the announced special case, which consists of Pups where InterUnitCap = 2, i.e.
the number of neighbors of any given unit in a solution is bounded by 2. This special version of
the Pup, which is of high industrial relevance, can be directly tackled. We will do this by giving
an algorithm that decides this version of the Pup in NLogSpace by exploiting the notion of a
path decomposition of a given graph.

For ease of presentation in the sequel we make the simplifying assumption that the underlying
bipartite graph is connected. This does not affect solutions of the Pudp and the Pusp, where
the connected components can be tackled independently. For optimal solutions, however, the
connected components of an underlying graph will have to be considered simultaneously; cf. the
discussion in section 4.2.3.

4.2.1 Basic Properties of the Pup (Special Case)
We proceed by identifying basic properties of the Pup in the special case. The key observation
is that the units and their interconnections form a special kind of unit graph in any solution:
either a simple path, or a simple cycle. This holds because each unit is connected to at most two
partner units. Moreover, cycles are more general unit graphs than paths: Every solution can be
extended to a cyclic solution; hence in the sequel we only consider cyclic solutions.

Exploiting this observation we can transform the Pup into the problem of finding a suitable
path decomposition P of the zones-and-sensors-graph G:

I Theorem 12 (Pup is Path-Decomposable). Assume a Pup instance given by a graph G =
(V1, V2, E) is solvable with a solution graph G∗ with |U | = n. Let f be the unit function that
associates vertices from G to U . Then there is a path decomposition P = (P, χ) of G of pathwidth
≤ (3 ∗ 2 ∗UnitCap)− 1, with the following special properties:

(a) The length of P is n− 1; P = w1, . . . wn−1.
(b) There are sets S1 ⊆ V1, S2 ⊆ V2 with |Si| ≤ UnitCap such that S1∪S2 are in every bag of P.
(c) Apart from S1 ∪ S2 each bag contains at most 2 ∗ UnitCap elements from V1 (or V2, respec-

tively).
(d) For any vertex v ∈ V1 ∪V2 all neighbors of v appear in three consecutive bags of P (assuming

the first and last bag to be connected).
(e) For each bag χ(wi) of P it holds χ(wi) = f−1(U1) ∪ f−1(Ui) ∪ f−1(Ui+1) for 1 ≤ i ≤ n− 1.
(f) S1 = f−1(U1) ∩ V1 and S2 = f−1(U1) ∩ V2.

Proof. If G is solvable then there is a solution G∗ whose unit graph is a cycle U1, . . . , Un, U1.
Consider P = (P = w1, . . . , wn−1, χ) where χ(wi) = f−1(U1) ∪ f−1(Ui) ∪ f−1(Ui+1). This P is
indeed a path decomposition:

Every edge (v1, v2) is in some bag. Assume v1 and v2 are assigned to two different connected
units Ui and Ui+1. Then {v1, v2} ⊆ χ(wi).
The connectedness condition is satisfied: For the vertices connected to unit U1 the induced
subgraph is P . All other vertices occur in at most two consecutive bags.
Every bag in P contains ≤ (3 ∗ 2 ∗UnitCap) elements; hence pw(P) ≤ (3 ∗ 2 ∗UnitCap)− 1.

An optimal path decomposition of the complete bipartite graph Kn,n with n = 3 ∗UnitCap has
width (3 ∗ 2 ∗ UnitCap) − 1; cf. figure 1. Hence the bound is tight. The conditions (a − f) are
easily seen to hold for the path decomposition P constructed above. J
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Intuitively, the vertices in the sets S1 and S2 from condition (b) above are those that close
the cycle (i.e. that are connected to unit U1). These have to be in every bag as some of their
neighbors might only appear on the last unit Un.

4.2.2 An Algorithm for the Special Case

By Theorem 12 we know that if a Pup instance is solvable then there is a path decomposition with
specific properties. But we still need an algorithm for finding such suitable path decompositions.
Many algorithms for finding path decompositions of bounded width have been proposed in the
literature. But for the Pup we want to find path decompositions P with specific properties:

The paths should be short (the number of bags reflects the number of units); and hence,

The bags should be rather full (in "good" solutions the units will be filled up).

The construction of the bags must be interleaved with checking the additional constraints.

Below we introduce a novel algorithm that fits the bill; it is inspired by the algorithm for
finding hypertree decompositions from [24]. This non-deterministic algorithm does the following:
The bags on the path decomposition are guessed. The initial bag partitions the graph into a set of
remaining components that are recursively processed simultaneously. A single bag suffices to re-
member which part of the graph has already been processed; the bag separates the processed part
of the graph from the remaining components. Consequently, the current bag and the remaining
components can be stored in in logarithmic space, and the algorithm runs in NLogSpace. In
addition to the bags the unit function is guessed, too. According to condition (2d) of Theorem 12
all neighbors of any vertex in G occur in three consecutive bags in P. Hence, for checking locally
that the unit function is correct it suffices to remember three bags at each step.

A closer look reveals that it actually is enough to remember only U1 and two "first" and
"second" units Ui−1 and Ui. At each step the current bag’s content is then given by the union
of U1 with Ui−1 ∪ Ui. For the next step a third unit Ui+1 is guessed. All neighbors of vertices
assigned to the current second unit Ui are guaranteed to appear in Ui−1 ∪ Ui ∪ Ui+1. For the
current first unit Ui−1 this will already have been established (if i > 2); hence, in the next step
the new current first and second unit Ui and Ui+1 together with U1 are again a proper separator.
The neighbors of U1, however, are only guaranteed to appear somewhere on the first, second, or
last unit. Upon termination the current "second" unit is the last unit in the cycle. But in addition
to the first unit U1 the second unit U2 has to be stored throughout a run of the algorithm, too:

DecidePup(G)
1 Guess disjoint non-empty U1, U2 ⊆ V (G) with |Ui ∩ V1| ≤ UnitCap ≥ |Ui ∩ V2|
2 CR ← G \ (U1 ∪ U2)
3 if DecidePup (CR, 〈U1, U2〉, 〈U1, U2〉)
4 then ACCEPT
5 else REJECT
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DecidePup(CR, 〈U1, U2〉, 〈Ui−1, Ui〉)
1 if CR = ∅
2 then
3 if ∀v ∈ U1 nb(v) ⊆ U1 ∪ U2 ∪ Ui and

∀v ∈ Ui nb(v) ⊆ Ui−1 ∪ Ui ∪ U1
4 then ACCEPT
5 else REJECT
6 else
7 Guess non-empty Ui+1 ⊆ V (

⋃
CR) with |Ui+1 ∩ V1| ≤ UnitCap ≥ |Ui+1 ∩ V2|

8 For v ∈ Ui check nb(v) ⊆ (Ui−1 ∪ Ui ∪ Ui+1)
9 C ′R ← (CR \ Ui+1)

10 DecidePup (C ′R, 〈U1, U2〉, 〈Ui, Ui+1〉)

Using this algorithm in [3] we show the following:

I Theorem 13 (Tractability of Pudp). The decision problem for the Pup is solvable by the algo-
rithm DecidePup in NLogSpace for InterUnitCap = 2 and any given fixed value of UnitCap.

Answer Extraction

For actually obtaining a solution to a Pup instance we face the following problem: In general
it is not possible to remember the contents of all the bags in logarithmic space. Theoretically
this problem can be solved as follows: On a first accepting run of DecidePup we clearly can
remember the first bag’s contents in logarithmic space. We can then run DecidePup again with
a fixed first bag, and so forth. Hence the following holds:

I Theorem 14 (Tractability of Pusp). The problem of finding a solution to the Pup is solvable
in NLogSpace for InterUnitCap = 2 and any given fixed value of UnitCap.

Note that the problem of answer extraction disappears when actually implementing the non-
deterministic algorithm on a deterministic computer; cf. section 4.2.4.

Towards an Efficient Algorithm

We next make a number of observations that can be exploited to turn DecidePup into a prac-
tically efficient algorithm.
Guiding the Guessing Not all zones and sensors assigned to units have to be chosen randomly.
At most UnitCap neighbors of sensors and zones on the first unit can be assigned to the last
unit. Hence the following holds:3

|nbs(U1) \ (U1 ∪ U2)| ≤ UnitCap ≥ |nbz(U1) \ (U1 ∪ U2)|.

Moreover, the neighbors of U1 not assigned to U1 or U2 may only be guessed in the last step,
where the number of unprocessed sensors (or zones) is at most UnitCap.

Starting from i ≥ 2 we have the stronger:

(nbs(Ui) \ (Ui ∪ Ui−1)) ⊆ Ui+1 ⊇ (nbz(Ui) \ (Ui ∪ Ui−1)).

Finding Optimal Solutions First Next recall that "good" solutions correspond to short path
decompositions with filled-up bags. Moreover, the number of units used in the solution of a

3 We denote by nbs(U) the set of sensors adjacent to vertices in U .
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Pup instance G = (V1, V2, E) can always be bounded by lb = dmax (|V1|,|V2|)
UnitCap e from below and

ub = max (|V1|, |V2|) from above [3]. Hence we can apply iterative deepening search: First, try
to find a solution with lb units; if that fails increase lb by one. This has the effect that the first
solution found will be optimal. This yields the following:

I Corollary 15 (Tractability of Puop). On connected input graphs the optimization problem for
the Pup is solvable in NLogSpace.

In this context let us point out that branch-and-bound-search (on the number of units used)
does not work: E.g. a K6,6 graph does not admit solutions with more than three units.
Symmetry BreakingWe already observed that cycles are more general unit graphs than paths.
But with cycles for unit graphs there is rotational symmetry: For a solution with unit graph
U1, . . . , Un, U1 there is a solution U2, . . . , Un, U1, U2, etc.. We can break this symmetry without
additional computational cost by requiring that

the first sensor is assigned to unit U1; and
the second sensor appears somewhere on the first half of the cycle.

4.2.3 Puop and Multiple Connected Components
Next let us discuss the problem of finding optimal solutions when the input graph consists of more
than one connected component. Here, part of the problem is that any two connected components
may either have to be assigned to the same, or to two distinct unit graph(s). A priori it is unclear
which of the two choices leads to better results. E.g. if we assume that UnitCap = 2 then two
K3,3 should be placed on one cyclic unit graph, while two K6,6 must stand alone. In [3] we are
able to show the following:

I Theorem 16 (Tractability of Puop on Multiple Connected Components). For InterUnitCap = 2
and any given value of UnitCap the optimization problem for the Pup on multiple connected com-
ponents is solvable in NLogSpace if there are only logarithmically many connected components
in the input graph.

4.2.4 Implementation and Evaluation
We prototypically implemented the DecidePup algorithm in Java, replacing the non-determinism
by a backtracking search mechanism. A detailed description of the procedure is beyond the scope
of this paper. However, in [25] a deterministic backtracking version of the non-deterministic hy-
pertree decomposition algorithm from [24] is described, and the issues we face when making
DecidePup deterministic are very similar. Suffice it to say the following: To avoid repeated
sub-computations we store those pairs of bags and remaining components (represented by unas-
signed neighbors) that could not be decomposed. We don’t store successful pairs — the first such
pair occurs when finding a solution. As there are only polynomially many such pairs the overall
runtime of the algorithm is polynomial [3]. Finally observe that for the backtracking search we
have to store the choices made, and hence answer extraction is easy.

We have evaluated our algorithm on a set of benchmark instances that we received from our
partners in industry. Using our prototypical implementation we could solve many instances that
were beyond the reach of the previously used heuristic methods and engineering approaches [3].

5 Conclusion

In this work we have reviewed structural problem decomposition methods, such as path-, tree-,
and hypertree decompositions. We have introduced a taxonomy of usages of treewidth for proving
tractability results, and illustrated each category by an example. In particular, we have shown
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that treewidth (or pathwidth) can be applied in two distinct main ways: Either to show that a
problem is efficiently solvable when a width parameter is fixed, or to prove that the unrestricted
(or some width-parameter free) version of a problem is tractable by using a width-notion as a
mathematical tool for directly solving the problem at hand.

As a show case for the latter usage we have reported on some recent results concerning
the Partner Units Problem, a type of configuration problem that was proposed to us by an
industrial partner. We have shown that, while the Pup is intractable in general, the notion of a
path decomposition can be used to obtain a polynomial algorithm for a highly relevant special
case. Our prototypical implementation of the respective DecidePup algorithm could solve many
previously unsolvable problem instances.

There is still significant work to be done on the Pup:
We need to analyze the cases with InterUnitCap = k and UnitCap = m for fixed constants
k > 2,m.
We would like to find better algorithms for the NP-hard general case (when InterUnitCap
and UnitCap are unbounded).
We have not yet exploited heuristics for the search.
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How to prove security of communication
protocols?
A discussion on the soundness of formal models
w.r.t. computational ones.∗
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Abstract
Security protocols are short programs that aim at securing communication over a public network.
Their design is known to be error-prone with flaws found years later. That is why they deserve
a careful security analysis, with rigorous proofs. Two main lines of research have been (indepen-
dently) developed to analyse the security of protocols. On the one hand, formal methods provide
with symbolic models and often automatic proofs. On the other hand, cryptographic models
propose a tighter modeling but proofs are more difficult to write and to check. An approach
developed during the last decade consists in bridging the two approaches, showing that sym-
bolic models are sound w.r.t. symbolic ones, yielding strong security guarantees using automatic
tools. These results have been developed for several cryptographic primitives (e.g. symmetric
and asymmetric encryption, signatures, hash) and security properties.

While proving soundness of symbolic models is a very promising approach, several technical
details are often not satisfactory. Focusing on symmetric encryption, we describe the difficulties
and limitations of the available results.
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1 Introduction

Security protocols aim at securing communications over public networks. They are typically
designed for bank transfers over the Internet, establishing private channels, or authenticat-
ing remote sites. They are also used in more recent applications such as e-voting procedures.
Depending on the application, they are supposed to ensure security properties such as confi-
dentiality, privacy or authentication, even when the network is (at least partially) controlled
by malicious users, who may intercept, forge and send new messages. While the specifi-
cation of such protocols is usually short and rather natural, designing a secure protocol is
notoriously difficult and flaws may be found several years later. A famous example is the
“man-in-the-middle” attack found by G. Lowe against the Needham-Schroder public key
protocol [41]. A more recent example is the flaw discovered in Gmail (and now fixed) by
Armando et. al. [9].
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During the two last decades, formal methods have demonstrated their usefulness when
designing and analyzing security protocols. They indeed provide with rigorous frameworks
and techniques that allow to discover new flaws. For instance, the two previously mentioned
flaws have been discovered while trying to prove the security of the protocol in a formal
setting. Following the seminal work of Dolev and Yao [33], many techniques have been
developed for analysing the security of protocols, often automatically. For example, the
AVISPA platform [8] and the ProVerif tool [20] are both efficient and practical tools for
automatically proving security properties or finding bugs if any. The security of protocols
is undecidable in general [34]. Checking the secrecy and authentication-like properties is
however NP-complete when the number of sessions is fixed [44]. Several extensions have been
designed, considering more security properties or more security primitives [2, 25, 28, 24, 37].
Bruno Blanchet has developed an (incomplete) procedure based on clause resolution [19] for
analyzing protocols for an unbounded number of sessions. All these approaches rely on a
common representation for messages: they are symbolically modeled by terms where each
function symbol represents a cryptographic primitive, some of their algebraic properties
being reflected in an equational theory. Then protocols are modeled using or adapting
existing frameworks such as fragments of logic, process algebras or constraint systems.

While the symbolic approaches were successful in finding attacks, the security proofs
in these models are questionable, because of the level of abstraction: most cryptographic
details are ignored. This might be a problem: for instance, it is shown in [45] that a protocol
can be proved in a formal, symbolic, model, while there is an attack, that also exploits
some finer details of the actual implementation of the encryption scheme. In contrast,
cryptographic models are more accurate: the security of protocols is based on the security
of the underlying primitives, which in turn is proved assuming the hardness of various
computational tasks such as factoring or computing discrete logarithms. The messages are
bitstrings. The proofs in the computational model imply strong guarantees (security holds
in the presence of an arbitrary probabilistic polynomial-time adversary). However, security
reductions for even moderately-sized protocols become extremely long, difficult, and tedious.
Recently, a significant research effort [6, 43, 13, 15, 11, 26] has been directed towards bridging
the gap between the symbolic and the cryptographic approaches. Such soundness results
typically show that, under reasonable cryptographic assumptions such as IND-CCA2 for the
encryption scheme, proofs in symbolic models directly imply proofs in the more detailed
cryptographic models. These approaches are very promising: they allow to reconcile two
distinct and independently developed views for modeling and analysing security protocols.
Second and more importantly, they allow to obtain the best of the two worlds: strong
security guarantees through the simpler symbolic models, that are amenable to automatic
proofs.

However, such soundness results also assume many other properties regarding the imple-
mentation or even regarding the key infrastructure. In this paper, we discuss these usually
under-looked assumptions, pointing the limitations of current results. In particular, we pro-
vide with several protocols (counter) examples, for which IND-CCA2 does not imply the
security, as soon as a malicious user may chose its own keys at its will. These examples
show that standard symbolic models are not sound w.r.t. cryptographic ones when using
symmetric encryption. We also discuss how to symbolically represent the length of mes-
sages and what are the implications on the implementation. All these examples will be
discussed within the the applied-pi calculus [3], but the counter-examples do not depend on
this particular process algebra: the discussion will stay at a rather informal level and can
be understood without familiarity with the applied-pi calculus.
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Related work. Many soundness results have been established in various settings. We
discuss some of them in Section 3. Fewer works are dedicated to the limitations. Backes
and Pfitzmann have shown that primitives such as Exclusive Or or hash functions cannot
be soundly abstracted in their simulatability library [14]. This is related to the impossibility
of constructing some universally composable primitives [40]. This witnesses the difficulty of
designing sound and accurate models for some primitives. [1] compares CryptoVerif [21], an
automatic tool designed for performing proofs directly in the cryptographic model, and the
use of soundness results, emphasizing the current limitations of the latter.

2 Setting

We recall here briefly part of the syntax and the operational semantics of the applied π-
calculus of [3]. We are going to use a small fragment of this calculus for the formal definition
of the protocols.

2.1 Syntax
In any symbolic model for security protocols, messages are modeled by terms, which are built
on a set of function symbols Σ, that represent the cryptographic primitives (e.g. encryption,
pairing, decryption). Given an infinite set N of names and an infinite set X of variables,
T (N ,X ) is the set of terms:

s, t, u ::= terms
x, y, z variable
a, b, c, k, n, r name
f(s1, . . . , sk) function application f ∈ Σ and k is the arity of f .

Terms represent messages and names stand for (randomly) generated data. We assume
the existence of a length function l, which is a Σ-morphism from T (N ) to N.

In what follows, we will consider symmetric encryption and pairing. Let Σ0 consist of
the binary pairing < ·, · >, the two associated projections π1, π2, the binary decryption dec
and the ternary symbol {·}·· for symmetric encryption: {x}rk stands for the encryption of x
with the key k and the random r. Σ0 also contains constants, in particular a constant 0l of
length l for every l.

The syntax of processes is displayed in Figure 1. In what follows, we restrict ourselves
to processes with public channels: there is no restriction on name channel. We assume
a set P of predicate symbols with an arity. Such a definition, as well as its operational
semantics coincides with [3], except for one minor point introduced in [26]: we consider
conditionals with arbitrary predicates. This leaves some flexibility in modeling various levels
of assumptions on the cryptographic primitives.

In what follows, we may use expressions of the form let . . . in . . . as a syntactic sugar
to help readability.

2.2 Operational semantics
We briefly recall the operational semantics of the applied pi-calculus (see [3, 26] for details).
E is a set of equations on the signature Σ, defining an equivalence relation =E on T (N ),
which is closed under context. =E is meant to capture several representations of the same
message. This yields a quotient algebra T (N )/ =E , representing the messages. Predicate
symbols are interpreted as relations over T (N )/ =E . This yields a structureM.
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Φ1,Φ2 ::= conditions
p(s1, . . . , sn) predicate application
Φ1 ∧ Φ2 conjunction

P,Q,R ::= processes
c(x).P input
c(s).P output
0 terminated process
P ‖Q parallel composition
!P replication
(να)P restriction
if Φ then P else Q conditional

Figure 1 Syntax of processes

In what follows, we will consider the equational theory E0 on Σ0 defined by the equations
corresponding to encryption and pairing:

dec({x}zy, y) = x π1(< x, y >) = x π2(< x, y >) = y

These equations can be oriented, yielding a convergent rewrite system: every term s has
a unique normal form s ↓.

We also consider the following predicates introduced in [26].

M checks that a term is well formed. Formally, M is unary and holds on a (ground)
term s iff s ↓ does not contain any projection nor decryption symbols and for any {u}rv
subterm of s, v and r must be names. This forbids compound keys for instance.
EQ checks the equality of well-formed terms. EQ is binary and holds on s, t iffM(s),M(t)
and s ↓= t ↓: this is a strict interpretation of equality.
Psamekey is binary and holds on ciphertexts using the same encryption key: M |= Psamekey(s, t)
iff ∃k, u, v, r, r′.EQ(s, {u}rk) ∧ EQ(t, {v}r′

k ).
EL is binary and holds on s, t iff M(s),M(t) and s, t have the same length.

I Example 2.1. The Wide Mouth Frog [22] is a simple protocol where a server transmits a
session key Kab from an agent A to an agent B. This toy example is also used in [1] as a
case study for both CryptoVerif and soundness techniques. For the sake of illustration, we
propose here a flawed version of this protocol.

A→ S : A,B, {Na,Kab}Kas
S → B : A, {Ns,Kab}Kbs

The server is assumed to share long-term secret keys with each agent. For example, Kas

denotes the long-term key between A and the server. In this protocol, the agent A establishes
a freshly generated key Kab with B, using the server for securely transmitting the key to B.

A session la of role A played by agent a with key kas can be modeled by the process

A(a, b, kas, la) def= (νr, na) cout(< la, < a,< b, {< na, kab >}rkas >>>) · 0
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Similarly a session of role S played for agents a, b with corresponding keys kas and kbs, can
be modeled by

S(a, b, kas, kbs, ls)
def= (νns, r) cin(x). if EQ(π1(x), ls) then let y = π2(dec(π2(π2(π2(x))), kas)) in

if π1(π2(x)) = a ∧ π1(π2(π2(x)) = b ∧ M(y) then

cout(< ls, < a, {< ns, y >}rkbs > >) · 0
else cout(⊥) · 0 else cout(⊥) · 0

where ls is the session identifier of the process.
Then an unbounded number of sessions of this protocol, in which A plays a (with b) and

s plays S (with a, b and also with b, c) can be represented by the following process

Pex = ν(kas, kbs) ( !((νkab, la)cout(la).A(a, b, kas, la, r))
‖ !((νls)cout(ls).S(a, b, kas, kbs, ls)) ‖ !((νls)cout(ls).S(a, c, kas, kcs, ls)) )

To reflect the fact that c is a dishonest identity, its long-term key kcs shared with the server
does not appear under a restriction and is therefore known to an attacker.

The environment is modeled through evaluation context, that is a process C = (να)([·]‖P )
where P is a process. We write C[Q] for (να)(Q ‖ P ). A context (resp. a process) C is
closed when it has no free variables (there might be free names).

Possible evolutions of processes are captured by the relation →, which is the smallest
relation, compatible with the process algebra and such that:

(Com) c(x).P ‖ c(s).Q → {x 7→ s} ‖ P ‖Q
(Cond1) if Φ then P else Q → P ifM |= Φ
(Cond2) if Φ then P else Q → Q ifM 6|= Φ

∗−→ is the smallest transitive relation on processes containing −→ and some struc-
tural equivalence (e.g. reflecting the associativity and commutativity of the composition
operator ‖) and closed by application of contexts.

I Example 2.2. Continuing Example 2.1, we show an attack, that allows an attacker to
learn kab, the key exchanged between a and b. Indeed, an attacker can listen to the first
message < la, < a,< b, {< na, kab >}r1

kas
>>> and replace it with < la, < a,< c, {<

na, kab >}r1
kas

>>>. Thus the server would think that a wishes to transmit her key kab to
c. Therefore it would reply with < a, {< ns, kab >}r2

kcs
>. The attacker can then very easily

decrypt the message and learn Kab. This attack corresponds to the context

Cattack
def= [·] ‖ cout(xla).cout(xls).cout(xma). //listens to sessions ids and the first message

let y = π2(π2(xma)) in
cin(< xls , < a,< c, y >>>). //replays the message, with b replaced by c
cout(xms). //listens to the server’s reply

let y′ = dec(π2(π2(xms)), kcs) in cin(π2(y′)).0 //outputs the secret

Then the attack is reflected by the transitions Cattack[Pex] ∗−→ cout(kab) ‖ Q for some process
Q, yielding the publication of the confidential key kab.
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2.3 Observational equivalence
Observational equivalence is useful to describe many properties such as confidentiality or
authentication as exemplified in [5]. It is also crucial for specifying privacy related properties
as needed in the context of electronic voting protocols [32].

I Definition 2.3. The observational equivalence relation ∼o is the largest symmetric relation
S on closed extended processes such that ASB implies:

1. if, for some context C, term s and process A′,
A
∗−→ C[c(s) ·A′] then for some context C ′, term s′ and process B′, B ∗−→ C ′[c(s′) ·B′].

2. if A ∗−→ A′ then, for some B′, B ∗−→ B′ and A′SB′

3. C[A]SC[B] for all closed evaluation contexts C

I Example 2.4 (Group signature). The security of group signature has been defined in [7].
It intuitively ensures that an attacker should not be able to distinguish two signatures per-
formed with two distinct identities when they belong to the same group. It can be modeled
as observational equivalence as follows. Let P (x, i) be the protocol for signing message x
with identity i. Let P0 = c(y).P (π1(y), π1(π2(y))) and P1 = c(y).P (π1(y), π2(π2(y))). In-
tuitively, the adversary will send < m,< i0, i1 >> where m is a message to be signed and
i0, i1 are two identities. P0 signs m with i0 while P1 signs m with i1. Then P preserves
anonymity iff P0 ∼o P1.

2.4 Computational interpretation
We assume given an encryption scheme (G, E ,D) where G is the generating function for
keys, E is the encryption function and D the decryption function. We also assume given a
pairing function. The encryption, decryption, and pairing functions and their corresponding
projectors form respectively the computational interpretation of the symbols {·}, dec, <,>
, π1, π2. We assume that the decryption and projection functions return an error message ⊥
when they fail. Then, given an interpretation τ of names as bitstrings, [[·]]τ is the (unique)
Σ-morphism extending τ to T (N ); [[t]]τ is the computational interpretation of t. When τ is
randomly drawn, according to a distribution that depends on a security parameter η, we
may write [[t]]η for the corresponding distribution and [[t]] for the corresponding family of
distributions. Then here are possible interpretations of the predicates:

[[M ]] is the set of bitstrings, which are distinct from ⊥. Intuitively [[M ]] implements M
if the encryption scheme is confusion-free (a consequence of INT-CTXT [42]).
[[EQ]] is the set of pairs of identical bitstrings, which are distinct from ⊥. It is an
implementation of EQ as soon as [[M ]] implements M .
[[Psamekey]] is the set of pairs of bitstrings that have the same encryption tag.
[[EL]] is the set of pairs of bitstrings of same length.

Processes can also be interpreted as communicating Turing machines. Such machines
have been introduced in [16, 38] for modeling communicating systems. They are probabilistic
Turing machines with input/output tapes. Those tapes are intuitively used for reading and
sending messages. We will not describe them here and we refer to [26] for more details.

Now, given a process P without replication, one can interpret it as a (polynomial time)
communicating Turing machine. The computational interpretation of P is denoted by [[P ]]
and is intuitively defined by applying the computational counterpart of each function and
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predicate symbols. Then the replicated process !P can also be interpreted by letting the
adversary play with as many copies of [[P ]] as he wants.

Indistinguishability. In computational models, security properties are often stated as in-
distinguishability of games. Two families of machines are indistinguishable if an adversary
cannot tell them apart except with non negligible probability.

A function f : N → N is negligible if, for every polynomial P , ∃N ∈ N,∀η > N, f(η) <
1

P (η) . We write Pr{x : P (x)} the probability of event P (x) when the sample x is drawn
according to an appropriate distribution (the key distribution or the uniform distribution;
this is kept implicit).

I Definition 2.5. Two environments F and F ′ are indistinguishable, denoted by F ≈ F ′,
if, for every polynomial time communicating Turing Machine A (i.e. for any attacker),

|Pr{r, r : (F(r) ‖A(r))(0η) = 1} − Pr{r, r : (F ′(r) ‖A(r))(0η) = 1}|

is negligible. r is the sequence of random inputs of the machines in F (resp. F ′), including
keys. r is the random input of the attacker.

For example, anonymity of group signatures as discussed in Example 2.4 is defined in [7]
through the following game: the adversary chooses a message m and two identities i0 and
i1. Then in F0, the machines sign m with identity i0 while in F1, the machines sign m with
identity i1. Then the anonymity is defined by F0 ≈ F1. Note that, for i = 1, 2, Fi can be
defined as [[Pi]], implementation of the process Pi of the Example 2.4.

More generally, security properties can be defined by specifying the ideal behavior Pideal of
a protocol P and requiring that the two protocols are indistinguishable. For example, in [4],
authenticity is defined through the specification of a process where the party B magically
received the message sent by the party A. This process should be indistinguishable from the
initial one.

3 Soundness results

Computational models are much more detailed than symbolic ones. In particular, the adver-
sary is very general as it can be any (polynomial) communicating Turing machine. Despite
the important difference between symbolic and computational models, it is possible to show
that symbolic models are sound w.r.t. computational ones.

3.1 A brief survey
There is a huge amount of work on simulatability/universal composability, especially the
work of Backes et. al. and Canetti [23, 13, 15, 11]. When the ideal functionality is the
symbolic version of the protocol, then the black-box simulatability implies the trace mapping
property [11], therefore showing a safe abstraction. Such results can be applied to trace
properties such as authentication but not to indistinguishability. In a recent paper [12],
Backes and Unruh show that the whole applied-pi calculus can be embedded in CoSP, a
framework in which they prove soundness of public-key encryption and digital signatures,
again for trace properties.

Besides [26], which we discuss in more detail below, one of the only results that prove
soundness for indistinguishability properties is [39], for some specific properties (see the end
of section 4 for more details).
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In a series of papers starting with Micciancio and Warinschi [43] and continued with e.g.
[31, 36], the authors show trace mapping properties: for some selected primitives (public-key
encryption and signatures in the above-cited papers) they show that a computational trace
is an instance of a symbolic trace, with overwhelming probability. But, again, this does not
show that indistinguishability properties can be soundly abstracted, except for the special
case of computational secrecy that can be handled in [31] and also in [29] for hash functions
in the random oracle model.

We refer to [30] for a more complete survey of soundness results.

3.2 Observational equivalence implies indistinguishability
The main result of [26] consists in establishing that observational equivalence implies indis-
tinguishability:

I Theorem 3.1. Let P1 and P2 be two simple processes such that each Pi admits a key
hierarchy. Assume that the encryption scheme is joint IND-CPA and INT-CTXT. Then
P1 ∼o P2 implies that [[P1]] ≈ [[P2]].

This result assumes some hypotheses, some of which are explicitly stated above and
informally discussed below (the reader is referred to [26] for the full details). There are
additional assumptions, that are discussed in more details in the next section.

Simple processes are a fragment (introduced in [26]) of the applied-pi calculus. It intuitively
consists of parallel composition of (possibly replicated) basic processes, that do not involve
replication, parallel composition or else branches. Simple processes capture most protocols
without else branch, for an unbounded number of sessions. For example, the process Pex
introduced in Example 2.1 is a basic process.

The most annoying restriction is the absence of conditional branching. Ongoing works
should overcome this limitation, at the price of some additional computational assumptions.
But the extension to the full applied π-calculus is really challenging, because of possible
restrictions on channel names. Such restrictions indeed allow “private” computations, of
which an attacker only observes the computing time (which is not part of the model).

Key hierarchy ensures that no key cycles can be produced on honest keys, even with the
interaction of the adversary. This hypothesis is needed because current security assumptions
such as IND-CPA do not support key cycles (most encryption schemes are not provably
secure in the presence of key cycles). In [26], it is assumed that there exists a strict ordering
on key such that no key encrypts a greater key.

Checking such conditions, for any possible interaction with the attacker, is in general
undecidable, though a proof can be found in many practical cases. (And it becomes decid-
able when there is no replication [27]).

No dynamic corruption assumes that keys are either immediately revealed (e.g. corrupted
keys) or remain secret. Showing a soundness result in case of dynamic key corruption is
a challenging open question, that might require stronger assumptions on the encryption
scheme.

IND-CPA and INT-CTXT are standard security assumptions on encryption schemes. The
IND-CPA assumption intuitively ensures that an attacker cannot distinguish the encryption
of any message with an encryption of zeros of the same length. INT-CTXT ensures that an
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adversary cannot produce a valid ciphertext without having the encryption key. IND-CPA
and INT-CTXT are standard security assumptions [18].

4 Current limitations

We discuss in this section the additional assumptions of Theorem 3.1. Let us emphasize
that such assumptions are not specific to this result: other soundness results have similar
restrictions and/or provide with a weaker result.

4.1 Parsing
Parsing the bitstrings into terms is used in the proof of the soundness results; this function
has actually to computable in polynomial time, since this is part the construction of a
Turing machine used in a reduction. Therefore, Theorem 3.1 assumes that the pairing, key
generation and encryption functions add a typing tag (which can be changed by the attacker),
that indicates which operator has been used and further includes which key is used in case of
encryption. This can be achieved by assuming that a symmetric key k consists of two parts
(k1, k2), k1 being generated by some standard key generation algorithm and k2 selected at
random. Then one encrypts with k1 and tags the ciphertext with k2.

These parsing assumptions are easy to implement and do not restrict the computational
power of an adversary. Adding tags can only add more security to the protocol. However,
current implementations of protocols do not follow these typing hypotheses, in particular
regarding the encryption. Therefore Theorem 3.1 requires a reasonable but non standard
and slightly heavy implementation in order to be applicable.

The parsing assumption might be not necessary. There are ongoing works trying to drop
it.

4.2 Length function
As explained in Section 2, Theorem 3.1 assumes the existence of a length function l, which
is a morphism from T (N ) to N. This length function is needed to distinguish between
ciphertexts of different lengths. For example, the two ciphertext {< n1, n2 >}k and {n1}k
should be distinguishable while {< n1, n2 >}k and {< n1, n1 >}k should not. There are
however cases where it is unclear whether the ciphertexts should be distinguishable or not:

νk.cout({< n1, n2 >}k) ?∼o νk.cout({{n1}k}k).

Whether these two ciphertexts are distinguishable typically depends on the implementation
and the security parameter: their implementation may (or not) yield bitstrings of equal
length. However, for a soundness result, we need to distinguish (or not) these ciphertexts
independently of the implementation.
In other words, if we let length be the length of a bitstring, we (roughly) need the equivalence:

l(s) = l(t) iff ∀τ. length([[s]]τ ) = length([[t]]τ )

This requires some length-regularity of the cryptographic primitives. But even more,
this requires length to be homogenous w.r.t. the security parameter η. To see this, consider
the case where length is an affine morphism:

length([[{t1}rk]]τ ) = length([[t1]]τ ) + γ × η + α

length([[< t1, t2 >]]τ ) = length([[t1]]τ ) + length([[t2]]τ ) + β

length(τ(n)) = δ × η
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where β cannot be null since some bits are needed to mark the separators between the two
strings [[t1]] and [[t2]]. (Also, γ, δ > 0.)

Now, if we consider an arbitrary term t, length([[t]]τ ) = n1×γ×η+n1×α+n2×β+n3×δ×η.
length([[s]]τ )
length([[t]]τ ) must be independent of η, hence there must exist α′, β′ ∈ N, β′ > 0 such that
α = α′ × η and β = β′ × η .

This implies in particular that the pairing function always adds η bits (or a greater
multiple of η) to the bitstrings. Similarly, a ciphertext should be the size of its plaintext
plus a number of bits which is the a multiple of η.

While it is possible to design an implementation that achieves such constraints, this is
not always the case in practice and it may yield a heavy implementation, in particular in
conjunction with the parsing assumptions. Moreover, on the symbolic side, adding a length
function raises non trivial decidability issues.

Adding a symbolic length function is needed for proving indistinguishability as illustrated
by the former examples. It is worth noticing that several soundness results such as [13, 15,
31, 29, 12] do not need to consider a length function. The reason is that they focus on
trace properties such as authentication but they cannot considered indistinguishability-based
properties (except computational secrecy for some of them).

4.3 Dishonest keys
Theorem 3.1 assumes the adversary only uses correctly generated keys. In particular, the
adversary cannot choose his keys at its will, depending on the observed messages. The
parties are supposed to check that the keys they are using have been properly generated.
The assumption could be achieved by assuming that keys are provided by a trusted server
that properly generates keys together with a certificate. Then when a party receives a key,
it would check that it comes with a valid certificate, guaranteeing that the key has been
issued by the server. Of course, the adversary could obtain from the server as many valid
keys as he wants.

However, this assumption is strong compared to usual implementation of symmetric keys
and it is probably the less realistic assumptions among those needed for Theorem 3.1. We
discuss alternative assumptions at the end of this section. It is worth noticing that in all
soundness results for asymmetric encryption, it is also assumed that the adversary only uses
correctly generated keys. Such an assumption is more realistic in an asymmetric setting as a
server could certify public keys. However, this does not reflect most current implementations
for public key infrastructure, where agents generate their keys on their own.

We now explain why such an assumption is needed to obtain soundness.The intuitive
reason is that IND-CCA does not provide any guarantee on the encryption scheme when
keys are dishonestly generated.

I Example 4.1. Consider the following protocol. A sends out a message of the form {c}Kab
where c is a constant. This can be formally represented by the process

A = (νr)cout(< c, {c}rkab >).0

Then B expects a key y and a message of the form {{b}y}Kab where b is the identity of B,
in which case, it sends out a secret s (or goes in a bad state).

A → B : (νr) c, {c}rKab
B : k, {{b}k}Kab → A : s
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This can be formally modeled by the process

B = cin(z). if EQ(b, dec(dec(π2(z), kab), π1(z)) then cout(s) else 0

Then symbolically, the process (νkab)(νs)A‖B never emits s. However, a computational
adversary can forge a key k such that any bitstring can be successfully decrypted to b

using k. In particular, at the computational level, we have dec(c, k) = b. Thus by sending
< k, {c}rkab > to B, the adversary would obtain the secret s.

This is due to the fact that security of encryption schemes only provides guarantees on
properly generated keys. More precisely, given an IND-CCA2 (authenticated) encryption
scheme (G, E ,D), it is easy to build another IND-CCA2 (authenticated) encryption scheme
(G′, E ′,D′), which allows to mount the previous attack: consider G′ = 0 · G (all honest keys
begin with the bit 0), E ′(m, i.k) = E(m, k) for i ∈ {0, 1} and D′ defined as follows:
D′(c, k) = D(c, k′) if k = 0 · k′
D′(c, k) = k′ if k = 1 · k′

It is easy to check that (G′, E ′,D′) remains IND-CCA2 and allows an adversary to choose a
key that decrypts to anything he wants.

To capture this kind of computational attacks, an idea (from M. Backes [10]) is to enrich
the symbolic setting with a rule that allows an intruder, given a ciphertext c and a message
m, to forge a key such that c decrypts to m. This could be modeled e.g. by adding a
functional symbol fakekey of arity 2 together with the equation

dec(x, fakekey(x, y)) = y

Going back to Example 4.1, this would allow a symbolic intruder to send the message
< fakekey(c, b), {c}rkab > to the B process and the process (νkab)(νs)A‖B would emit s.

This solution appears however to be insufficient to cover the next examples.

I Example 4.2 (hidden cyphertext). The same kind of attacks can be mounted even when
the ciphertext is unknown to the adversary. We consider a protocol where A sends <<
A, k >, {{k′}r′

k }rkab > where k and k′ are freshly generated keys. B recovers k′ and sends it
encrypted with kab. In case A receives her name encrypted with kab, A emits a secret s.

A → B : (νk, k′, r1, r2) A, k, {{k′}r1
k }

r2
Kab

B → A : (νr3) {k′}r3
Kab

A : {A}Kab → B : s

Then symbolically, the process (νkab)(νs)A‖B would never emit s while again, a com-
putational adversary can forge a key k such that any bitstring can be successfully decrypted
to a using k.

This attack could be captured, allowing the forged key to be independent of the cipher-
text. This can be modeled by the equation

dec(x, fakekey(y)) = y

where fakekey is now a primitive of arity 1. Some attacks may however require the decryption
to depend from the cyphertext as shown in the next example.

I Example 4.3 (simultaneous cyphertexts). Consider the following protocol where A sends to
B p cyphertexts c1, . . . , cp. Then B encrypts all ciphertexts with a shared key kab together

STACS’11



40 How to prove security of communication protocols?

with a fresh value nb and commits to p other nonces N1, . . . , Np. Then A simply forwards
the cyphertext together with a fresh key k. Then B checks whether each cyphertext ci
decrypts to Ni using the key k received from A, in which case he sends out a secret s.

A → B : c1, . . . , cp

B → A : {Nb, c1, . . . , cp}Kab , N1, . . . , Np

A → B : {Nb, c1, . . . , cp}Kab , k
B : {Nb, {N1}k, . . . , {Np}k}Kab , k → A : s

Then symbolically, the process (νkab)(νs)A‖B would never emit s since the Ni are gener-
ated after having received the ci and the nonce Nb protects the protocol from replay attacks.
However, having seen the ci and the Ni, a computational adversary can forge a key k such
that each bitstring ci can be successfully decrypted to Ni using k. More precisely, given an
IND-CCA2 (authenticated) encryption scheme (G, E ,D), it is easy to build another IND-
CCA2 (authenticated) encryption scheme (G′, E ′,D′), which allows to mount the previous
attack. Indeed, consider G′ = 0·G (all honest keys begin with the bit 0), E ′(m, i.k) = E(m, k)
for i ∈ {0, 1} and D′ defined as follows:
D′(c, k) = D(c, k′) if k = 0 · k′
D′(c, k) = n if k = 1 · c1, n1, · · · c, n · · · cp, np
D′(c, k) = ⊥ otherwise

For dishonest keys, the decryption function D′(c, k) searches for c in k and outputs the
following component when c is found in k. It is easy to check that (G′, E ′,D′) remains IND-
CCA2 and allows an adversary to chose a key that decrypts to anything he wants, but with
different possible outputs depending on the ciphertext.

To capture this attack, we need to consider a symbol of arity 2p for any p and an equation
of the form

dec(xi, fakekey(x1, . . . , xp, y1, . . . , yp)) = yi

But this is still not be sufficient as the outcome may also depend on the ciphertext that is
under decryption and on public data. Intuitively, decrypting with an adversarial key may
produce a function depending on the underlying plaintext and on any previously known
data.
Related work. To our best understanding of [13], these examples seem to form counter-
examples of the soundness results for symmetric encryption as presented in [13]. An implicit
assumption that solves this issue [10] consists in forbidding dishonest keys to be used for
encryption or decryption (the simulator would stop as soon as it received a dishonest keys).
As a consequence, only protocols using keys as nonces could be proved secure.

The only work overcoming this limitation in a realistic way is the work of Kuesters
and Tuengerthal [39] where the authors show computational soundness for key exchange
protocols with symmetric encryption, without restricting key generation for the adversary.
Instead, they assume that sessions identifiers are added to plaintexts before encryption. This
assumption is non standard but achievable. It would however not be sufficient in general
as shown by the examples. In their case, such an assumption suffices because the result is
tailored to key exchange protocols and realization of a certain key exchange functionality.

5 Conclusion

Among all the limitations we discuss in this paper, the main one is to consider only honestly
generated keys (or a certifying infrastructure), which is completely unrealistic. There are
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(at least) two main ways to overcome this assumption. A first possibility, already sketched
in the paper, consists in enriching the symbolic model by letting the adversary create new
symbolic equalities when building new (dishonest) keys. In this way, many protocols should
still be provably secure under the IND-CCA assumption, yet benefiting from a symbolic
setting for writing the proof.

A second option is to seek for stronger security assumptions by further requesting non-
malleability. The idea is that a ciphertext should not be opened to a different plaintext,
even when using dishonest keys. This could be achieved by adding a commitment to the
encryption scheme [35].

However all these limitations also demonstrate that it is difficult to make symbolic and
computational models coincide. Even for standard security primitives, soundness results
are very strong since they provide with a generic security proof for any possible protocol
(contrary to CryptoVerif). For primitives with many algebraic properties like Exclusive Or
or modular exponentiation, the gap between symbolic and computation models is even larger
and would require a lot of efforts.

We still believe that computational proofs could benefit from the simplicity of symbolic
models, yielding automated proofs. An alternative approach to soundness results could
consist in computing, out of a given protocol, the minimal computational hypotheses needed
for its security. This is for example the approach explored in [17], though the symbolic model
is still very complex.
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Abstract
We investigate the design of dynamic programming algorithms in unreliable memories, i.e., in
the presence of faults that may arbitrarily corrupt memory locations during the algorithm exe-
cution. As a main result, we devise a general resilient framework that can be applied to all local
dependency dynamic programming problems, where updates to entries in the auxiliary table are
determined by the contents of neighboring cells. Consider, as an example, the computation of
the edit distance between two strings of length n and m. We prove that, for any arbitrarily small
constant ε ∈ (0, 1] and n ≥ m, this problem can be solved correctly with high probability in
O
(
nm+ αδ1+ε) worst-case time and O(nm + nδ) space, when up to δ memory faults can be

inserted by an adversary with unbounded computational power and α ≤ δ is the actual number
of faults occurring during the computation. We also show that an optimal edit sequence can be
constructed in additional time O

(
nδ + αδ1+ε). It follows that our resilient algorithms match

the running time and space usage of the standard non-resilient implementations while tolerating
almost linearly-many faults.

1998 ACM Subject Classification B.8 [Performance and reliability]; F.2 [Analysis of algorithms
and problem complexity]; I.2.8 [Dynamic programming].

Keywords and phrases Unreliable memories, fault-tolerant algorithms, local dependency dy-
namic programming, edit distance.
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1 Introduction

Dynamic random access memories (DRAM) are susceptible to errors, where the logical state
of one or multiple bits is read differently from how it was last written. Such errors may be due
either to hardware problems or to transient electronic noises [14]. A recent large-scale study
of DRAM memory errors reports data collected in the field from Google’s server fleet over a
period of nearly 2.5 years [20] observing DRAM error rates that are orders of magnitude
higher than previously reported in laboratory conditions. As an example, a cluster of 1000
computers with 4 gigabytes per node can experience one bit error every three seconds, with
each node experiencing an error every 40 minutes. If errors are not corrected, they can lead
to a machine crash or to applications using corrupted data. Silent data corruptions are a
major concern in the reliability of modern storage systems, since even a few of them may be
harmful to the correctness and performance of software. To cope with this, a recent trend
is to design applications that are more tolerant to faults: this “robustification” of software
involves re-writing it so that dealing with faults simply causes the execution to take longer.
Unfortunately, most algorithms and data structures are far from being robust: since the
contents of memory locations are supposed not to change throughout the execution unless
they are explicitly written by the program, wrong steps may be taken upon reading corrupted
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values, yielding unpredictable results. Coping with memory faults appears to be of particular
importance for all those applications handling massive data sets, for long-living processes,
for safety critical applications in avionics systems, and for cryptographic protocols, that can
be compromised by fault-based attacks that work by inducing very timing-precise bit flips.

Related work. Algorithmic research related to memory errors spans more than thirty
years. Starting from the “twenty questions game” posed by Rényi and Ulam in the late 70’s,
many results have been obtained in the liar model: see, e.g., the extensive survey in [18].
More recently, sorting and selection have been studied in the “just noticeable difference
model”, where the outcome of comparisons is unpredictable if the compared values are
within a fixed threshold [1]. All these works typically assume transient comparator failures,
but no corruption of data. Destructive faults have been first investigated in the context
of fault-tolerant sorting networks [17], and many subsequent works have focused on the
design of resilient data structures in a variety of (hardly comparable) models. Pointer-based
data structures are the subject of [2] and error-correcting data structures for fundamental
problems related to membership have been presented in [7, 9]. The more restrictive problem
of checking (but not recovering) the behavior of large data structures that reside in an
unreliable memory has also received considerable attention [3, 8].

A variety of resilient algorithms have been designed in the faulty-memory random access
machine (faulty RAM) introduced in [12], where an adversary can corrupt at most δ memory
cells of a large unreliable memory during the execution of an algorithm. The algorithms can
exploit knowledge of δ, which is a parameter of the model, and the existence of a constant
number of incorruptible registers, but do not require error detection capabilities. Resiliency
is achieved if a problem is solved correctly (at least) on the set of uncorrupted values. This
relaxed definition of correctness fits naturally sorting and searching problems addressed so far
in this model [10], as well as the design of resilient data structures such as dictionaries [11]
and priority queues [15]. As an example, given a set of n values, it is possible to sort correctly
the subset of uncorrupted values in a comparison-based model using optimal Θ(n logn) time
when δ = O(

√
n) [10]. Resilient counters in the faulty RAM model are described in [6],

showing different tradeoffs between the time for incrementing a counter and its additive error.
Motivated by the impact of memory errors on applications operating with massive data sets,
the connection between fault-tolerance and I/O-efficiency is investigated in [5], providing the
first external-memory algorithms resilient to memory faults.

Our results. In spite of the wealth of results summarized above, it remains an open question
whether powerful algorithmic techniques such as those based on dynamic programming can
be made to work in the presence of faults. This has been regarded as an elusive goal
for many years in a variety of faulty memory models. In this paper we provide the first
positive answers to this question by showing how to implement a large class of dynamic
programming algorithms resiliently in unreliable memories. We consider the faulty RAM
model introduced in [12] and we illustrate our techniques using as a case study the problem of
computing the edit distance between two strings of length n and m. A simple-minded resilient
implementation of the standard dynamic programming algorithm for edit distance could be
based on replicating all data (string symbols and table values) 2δ + 1 times. By applying
majority techniques, this would allow to tolerate up to δ faults at the cost of a multiplicative
Θ(δ) overhead on both space usage and running time. Hence, only a constant number of
faults could be tolerated while maintaining the standard O(nm) time bound. In contrast, we
devise algorithms that preserve this bound while tolerating, with high probability, up to an
almost linear number of faults. We will prove that this is nearly optimal. More formally, we
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show that the edit distance between two strings of length n and m can be correctly computed,
with high probability, in O

(
nm+ αδ1+ε) worst-case time and O(nm + nδ) space, when

α ≤ δ faults occur during the computation, n ≥ m, and ε is an arbitrarily small constant in
(0, 1]. Our algorithms exploit knowledge of δ and only a constant number of private memory
words. If the private memory can be enlarged to O(log δ) words, the fault-dependent additive
term in the running time becomes O(αδ). The framework we provide is general enough
to be applied to all local dependency dynamic programming problems, where updates to
entries in the auxiliary table are determined by the contents of neighboring cells: this is
a significant class of problems that includes, e.g., longest common subsequence and many
sequence alignment problems in bioinformatics. Our framework can be made deterministic,
yielding an algorithm that tolerates a logarithmic number of faults, and can be extended
to incorporate well-known optimizations of dynamic programming, such as Hirschberg’s
space-saving technique [13] and Ukkonen’s distance-sensitive algorithm [21]. Due to the lack
of space, some proofs and details are omitted.

Techniques. Our resilient implementation does not rely on any cryptographic assumption.
Instead, it hinges upon a novel combination of majority techniques (which are a typical but
expensive error correction method), read and write Karp-Rabin fingerprints (to detect faults),
and an asymmetric, hierarchical decomposition of the dynamic programming table into
rectangular slices of height δ and decreasing width (to bound the cost of error recovery). We
remark that, although fingerprints have been successfully used in the context of checking the
correctness of data structures, they alone are not powerful enough in the faulty RAM model,
where the goal is to recover the computation when a fault is detected without restarting it
from scratch. Hence, to obtain the O

(
αδ1+ε) additive term in the running time, we exploit

as a main ingredient a hierarchy of O(1/ε) levels of data replication. At all levels, except
for the last one, data are stored semi-resiliently in the unreliable memory, by replicating
each variable o(δ) times. Notice that semi-resilient data could be corrupted by the adversary,
but at the cost of a large number of faults: this will allow us to amortize the cost of a slice
recomputation (semi-resilient variables need to be appropriately “refreshed” upon detection
of faults, so that the cost of a slice recomputation can always be charged to distinct faults).
O(1/ε) long-distance fingerprints stored in safe memory make it possible to backtrack the
computation, at any time, to a checkpoint that is safe with high probability. Combining
semi-resiliency with refreshing and long-distance fingerprints allows us to guarantee the
correctness of the table computation while bounding the error recovery cost.

A different technique must be used during the traceback process that computes an
optimal solution from its optimal value: at this point, long-distance fingerprints are no
longer available, and thus we have no guarantee that semi-resilient variables are correct.
To overcome this issue, we proceed incrementally in O(1/ε) passes: at each pass, either we
increase our confidence that the computed path is correct, or we are guaranteed that the
adversary has introduced a large number of faults.

2 Preliminaries

We assume a unit cost RAM with wordsize w. We distinguish between unreliable, safe, and
private memory. Up to δ unreliable memory words may be corrupted during the execution
of an algorithm by an adaptive adversary with unlimited computational power. We denote
by α ≤ δ the actual number of faults occurring during the computation. No error-detection
mechanism is provided. We have O(1) safe memory words that the adversary can read but
not overwrite: without this assumption, no reliable computation would be possible [12].
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Similarly to [3, 10, 11], we also assume O(1) private memory words, that the adversary
cannot even read: this is necessary to prevent the adversary from discovering random bits
used by the algorithms.

Resilient variables. A resilient variable x consists of 2δ + 1 copies of a standard
variable [11]. A reliable write operation on x means assigning the same value to each copy.
Similarly, a reliable read means calculating the majority value, which is correct since at most
δ copies can be corrupted. This can be done in Θ(δ) time with the majority algorithm in [4],
which scans the 2δ + 1 values keeping a single majority candidate and a counter in safe
memory. Throughout the paper we will also make use of r-resilient variables (with r < δ),
which consist of 2r + 1 copies of a standard variable. A r-resilient read operation on an
(at least) r-resilient variable is obtained by computing the majority value on 2r + 1 copies.
Notice that a r-resilient variable can be corrupted by the adversary, but at the cost of at
least r + 1 faults.

Generation of random primes. Random primes are usually generated by selecting a
number uniformly at random and testing it for primality with, e.g., the Miller-Rabin test [19].
If the test is successful, the selected number is returned, otherwise a new candidate is selected
and the process is iterated. The Miller-Rabin test has one-sided error: it can output prime
for a composite number with a provably small probability. We keep this scheme almost
unchanged, except for bounding the number of iterations so as to avoid having an expected
running time. Although the probability of failure in our case does not uniquely depend on
the Miller-Rabin test, it is not difficult to prove that this probability remains small and that
the algorithm can be executed in our model:

I Lemma 1. For any constants γ, c > 0, it is possible to independently select α (not
necessarily distinct) prime numbers in I = [nc−1, nc], uniformly at random, with error
probability bounded by α/nγ . Each prime selection requires time polylogarithmic in n using a
constant number of memory words.

3 An O (nm+ αδ2) algorithm for edit distance

Given two strings X = x1 · · · xn and Y = y1 · · · ym over a finite alphabet Σ, the edit distance
(a.k.a. Levenshtein distance) between X and Y is the number of edit operations (insertions,
deletions, or character substitutions) required to transform X into Y . Let ei,j , for 0 ≤ i ≤ n
and 0 ≤ j ≤ m, be the edit distance between prefix x1 · · · xi of string X and prefix y1 · · · yj
of string Y (the prefix is empty if i = 0 or j = 0). Values ei,j are defined as follows:

ei,j :=
{
ei−1,j−1 if i, j > 0 and xi = yj
1 + min {ei−1,j , ei,j−1, ei−1,j−1} if i, j > 0 and xi 6= yj

(1)

where ei,0 = i, e0,j = j, and en,m represents the edit distance of X and Y . The standard
dynamic programming algorithm stores values ei,j , for i, j > 0, in a n×m table M whose
entries can be computed, e.g., in column-major order in Θ(nm) time. While calculating the
edit distance only requires to keep in memory two table columns, an optimal edit sequence
can be obtained by a tracing back process that reads table M backward: in this case, the
space usage of the standard implementation is Θ(nm).

When executed in faulty memories, such a dynamic programming algorithm could provide
a wrong result, since undetected memory faults could corrupt either the input strings or
the values stored in table M and could be easily propagated to M [n,m]. In the rest of
this section we describe a basic resilient edit distance algorithm (RED) with running time
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(a) (b) (c)

Figure 1 a) Table decomposition and resilient block boundaries (gray color) when n ≥ m ≥ δ ;
b) block computation with unreliable input; c) hierarchical table decomposition for k = 3.

O(nm+ αδ2). In Section 4 we will show how to decrease the fault-dependent additive term
in the running time. W.l.o.g., throughout the paper we assume that n ≥ m; we also assume
that n and |Σ| fit into a memory word of size w.

Algorithm RED mimics the behavior of the standard non-resilient dynamic programming
approach, performing additional work in order to cope with memory faults. During the
computation of table M , we compute fingerprints that allow us to determine whether some
memory fault occurred in a given set of memory words. Once detected, a fault should not
force us to recompute the entire table: this would result in a Θ(δ) multiplicative overhead
on the running time in the worst case. Hence, we divide the table in blocks and we write the
boundaries of the blocks reliably in the unreliable memory. Upon detection of a failure, we
recompute only the current block. We now describe the table decomposition into blocks, the
computation of each block, and the usage of fingerprints to detect faults. We also describe
how to handle faulty input strings.

Table decomposition. The n ×m table M is split into square blocks of side length δ

(see Figure 1a). Algorithm RED populates table M block by block, considering blocks in
column-major order. The last row and column of each block are written reliably in the
unreliable memory, using 2δ + 1 memory words for each value as described in Section 2. It
follows that each block of δ2 values takes roughly 5δ2 memory words. Blocks are smaller
(and not necessarily square) on the boundaries, whenever n or m are not divisible by δ: in
this case the last row and/or column may not be written reliably.

Block computation. Let Bi,j be an internal block (boundary blocks can be treated
similarly). Entries of Bi,j are processed in column-major order. The first column of Bi,j is
computed reliably: this is possible because row δ of block Bi−1,j , column δ of Bi,j−1, and
entry Bi−1,j−1[δ, δ] are written reliably in the unreliable memory. During the computation
of column 1, a fingerprint ϕ1 is calculated (details are given below). Let us now consider a
generic column k, for k > 1. Each value v1, . . . , vδ in column k is written unreliably in the
faulty memory as soon as it is computed, except for the values in row δ and in column δ
that are written reliably. While scanning column k top-down, the algorithm also computes
two fingerprints: a fingerprint ϕk that is a function of values v1, . . . , vδ written to column
k, and a fingerprint ϕk−1 that is a function of values read from column k − 1. The two
fingerprints, together with the fingerprint ϕk−1 previously computed during the calculation
of column k − 1, are stored in the private memory. When column k is completed, algorithm
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RED compares fingerprints ϕk−1 and ϕk−1: we call this a fingerprint test. If the fingerprints
match, both of them are discarded and the computation of column k + 1 begins. Otherwise,
a memory fault has been detected: in this case the computation of the block is restarted.

Fault detection. We use Karp-Rabin fingerprints [16] to detect faults. The fingerprint
for column k is defined as ϕk = v1 ◦ v2 ◦ . . . ◦ vδmod p, where the δ values vh of column
k are considered as bit strings of length equal to the word size w and symbol ◦ denotes
string concatenation. The concatenation v1 ◦ v2 ◦ . . . ◦ vδ is thus an integer, upper bounded
by 2wδ, corresponding to the binary representation of the entire column k. Number p is a
sufficiently large prime, chosen uniformly at random at the beginning of the execution of
the algorithm and after each fault detection. Using logical shifts and Horner’s rule, each
fingerprint can be incrementally computed while generating the values vh in time Θ(δ). All
computations related to the fingerprints are performed in O(1) private memory words, so
that no information regarding the prime number p is revealed to the adversary.

Handling the input strings. We assume each symbol in strings X and Y to be written
reliably in the unreliable memory after its first reading (it is clearly impossible to detect a
fault corrupting an input symbol before it is read for the first time). In order to compute
matrix M in O(nm) time, each comparison of the input symbols required by Equation 1
must be performed in constant (amortized) time. Let Bi,j be a δ × δ block. The input
values involved in the computation of Bi,j are xiδ+1, . . . , x(i+1)δ and yjδ+1, . . . , y(j+1)δ (see
Figure 1b). Consider a column k of block Bi,j . Character yjδ+k is the only character of
string Y needed to compute the values in column k: we read yjδ+k reliably and amortize this
Θ(δ) operation on the cost of computing the δ values of column k. Conversely, all characters
xiδ+1, . . . , x(i+1)δ are required to compute each column of Bi,j , and we cannot afford reading
each of them reliably δ times. These input characters are thus read reliably once, while
computing the first column of the block, producing a fingerprint ϕx that is kept in the private
memory. While processing a column k > 1, values xiδ+1, . . . , x(i+1)δ are read unreliably (i.e.,
considering only one copy) and a fingerprint ϕx,k is computed. If fingerprint ϕx,k is different
from ϕx, a memory fault has been detected: the resilient variables xiδ+1, . . . , x(i+1)δ are
refreshed and the entire block is recomputed from scratch.

We now analyze algorithm RED, focusing first on correctness.

I Lemma 2. For any constant β > 0, algorithm RED is correct with probability larger than
1− 1/nβ, when the upper bound δ on the number of memory faults is polynomial in n.

Proof. Assume that the algorithm fails either when a composite number is generated instead
of a prime, or when a fingerprint test does not detect a memory fault. This is an overestimation
of the actual probability of error. Let B be a block that gets corrupted during its own
computation. Assume for the time being that values in the boundaries of its neighboring
blocks are correct. Then, the values written to column 1 of block B are also correct, because
the neighboring entries used to compute column 1 and all input symbols involved are read
reliably. By applying standard techniques, it is possible to prove that the probability that
a fingerprint test does not detect a memory fault during the computation of B is at most
(logn)/(σnc−1) < 1/(σnc−2), for some constant σ > 0.

Now consider a game with two players. The game is divided into rounds. At each round
player 1 (the algorithm) chooses uniformly at random a prime p ∈ I and player 2 (the
adversary) chooses a number µ ≤ 2wd. If p divides µ, then player 2 wins, otherwise the next
round begins. Player 1 wins if player 2 does not win in α rounds. This game models the
behavior of algorithm RED, provided that no composite number is generated instead of a



Saverio Caminiti, Irene Finocchi, and Emanuele G. Fusco 51

prime. Namely, the probability for algorithm RED of being correct is lower bounded by the
probability for player 1 of winning the game.

Let pi and µi be the numbers chosen by the two players at round i. Let Di be the
event “player 2 does not win at round i”. If player 2 did not win in rounds 1, . . . , i− 1, the
probability of Di equals the probability that pi does not divide µi. From the discussion above,
we have Pr

{
Di|

⋂i−1
j=1 Dj

}
≥ 1− 1/(σnc−2). The probability that player 1 wins is equal to

Pr {
⋂α
i=1 Di}, which is at least 1− α/(σnc−2) by the chain rule of conditional probability.

We conclude by taking into account the probability for algorithm RED of generating at
some round a composite number instead of a prime. By Lemma 1, the probability that all
the α numbers are prime is at least 1− α/nγ , for any constant γ > 0. Hence, algorithm RED
is correct with probability larger than or equal to (1− α/(σnc−2))(1− α/nγ). Since α ≤ δ is
polynomial in n, by appropriately choosing values c and γ the correctness probability can be
made larger than 1− 1/nβ , for any constant β > 0. J

It is not difficult to see that the space usage of algorithm RED is Θ(nm) when m = Ω(δ),
and Θ(nδ) otherwise. Lemma 3 addresses the running time of the algorithm.

I Lemma 3. The worst-case running time of algorithm RED is O(nm+ αδ2), where α ≤ δ
is the actual number of memory faults occurring during the execution.

Proof. Let us distinguish between successful and unsuccessful block computations. Unsuc-
cessful block computations account for the time spent by the algorithm computing blocks
that are then discarded due to the detection of a memory fault. This time also includes the
generation of random primes, except for the first one. Successful block computations account
for the remaining time, including the calculation of fingerprints.
Successful computations. Computing the first column of a block requires constantly-many
reliable reads for each entry, i.e., O(δ2) time. The same bound holds for the last column, that
is written reliably. Computing any internal column requires instead O(δ) time, including the
time to compute fingerprints incrementally. Since there are O(δ) columns in a block, the
total time spent in a block is O(δ2). The overall time for successful block computations is
thus O(nm), because the number of blocks is dn/δe × dm/δe.
Unsuccessful computations. Each block recomputation is due to a fingerprint mismatch, that
can only be caused by a memory fault (either in the matrix cells or in some input symbol
from string X). Since all block cells are recomputed and, if necessary, the input symbols
are refreshed reading their values reliably, each block recomputation can be charged to a
distinct memory fault. It follows that at most α block computations can be discarded during
the entire execution of algorithm RED. Refreshing δ input values and computing the block
take time O(δ2), which implies an overall time O(αδ2) for unsuccessful computations. The
generation of (at most α) prime numbers does not affect this asymptotic running time (see
Lemma 1). J

4 Error recovery via long distance fingerprints

Using a one-level decomposition of the dynamic programming table M into squares of side
length δ yields an algorithm with an additive term O(αδ2) in the running time, due to
recovery from errors (a single error determines the complete recomputation of a δ × δ block).
In this section we show how to decrease this time to O(αδ1+ε), for any arbitrarily small
constant ε ∈ (0, 1]. The improved algorithm uses an asymmetric decomposition (see Figure 1c)
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and k = d1/εe different resiliency levels. At each level i ∈ [1, k], it relies on dδi/ke-resilient
variables. To simplify the notation, we define δi = dδi/ke.

Consider a given δ × δ block B. Every δi columns, we write a δi-resilient column (and
all δj-resilient versions of this column for j < i). In particular, the last column of each
internal block is written at all resiliency levels. The non-resilient columns of matrix M are
regarded as having resiliency level 0. During the computation of block B, for each resiliency
level i we keep (in the private memory) the fingerprint of the last δi-resilient column. These
long distance fingerprints, similarly to those described in Section 3, are computed while
writing column values. For each resiliency level, we independently select a prime number for
computing the fingerprints.

Upon detection of a fault, error recovery is done starting from the last δ1-resilient column.
Values in this column are read by majority; read values are used to recompute the fingerprint
at level 1 which is then compared with the one stored in the private memory. If these
fingerprints do not match, the recovery starts again from resiliency level 2, i.e., from the last
δ2-resilient column. In general, a level i fingerprint mismatch induces a recovery starting
from the last δi+1-resilient column. When a fingerprint mismatch arises at resiliency level
i, we generate a new random prime for level i, we read by majority all values of the last
δi+1-resilient column (i.e., we perform δ read operations at resiliency level i+ 1), and we use
these values to refresh all δj-resilient versions of this column, for j ≤ i, recomputing their
respective fingerprints.

Now consider the input symbols. As in Section 3, symbols from string Y are always
read reliably, while symbols from X are read reliably only once, at the beginning of a block
computation, and then verified by means of fingerprints. We store δi-resilient copies of the
symbols in X at all resiliency levels. During the computation of a block, for each resiliency
level (including level 0), we keep one fingerprint for the segment of X of length δ involved in
that computation. All these fingerprints are obtained using independently selected prime
numbers and are computed at the beginning of the block computation by reading reliably
the input segment. Once a fingerprint mismatch on the input symbols is detected at level i,
the δi+1-resilient copy of the input segment is used to refresh all copies at level j ≤ i (the
previously computed fingerprint for resiliency level i+ 1 allows it to check the correctness
of the read values). A new random prime for level i is then selected and the fingerprints
for all refreshed levels are recomputed. Notice that a fingerprint mismatch at level 0 may
arise during block computation, while a mismatch at level i > 0 can only arise during error
recovery. Once the input symbols are correctly refreshed, normal computation is resumed by
recomputing the current column.

I Theorem 4. Let ε be an arbitrarily small constant in (0, 1]. The edit distance between two
strings of length n and m, with n ≥ m, can be correctly computed, with high probability, in
O
(
nm+ αδ1+ε) worst-case time and O(nm+ nδ) space, when δ is polynomial in n.

Proof. The correctness of the improved version of algorithm RED follows from Lemma 2
(details are deferred to the extended version of this paper). Similarly to the proof of
Lemma 3, we analyze the running time by distinguishing between successful and unsuccessful
computations. The asymptotic running time of successful computations is not affected by the
additional O(1/ε) fingerprints and by the δi-resilient columns. Now consider the unsuccessful
computations. Recovery at resiliency level i discards at most δ × δi/k entries of table M
and requires computing O(δ) majority values. Each δi-resilient read takes time O(δi/k), thus
yielding total O(δ1+i/k) time. A recovery at resiliency level i is due to at least δ(i−1)/k + 1
errors, either on the input symbols or in table M . Errors can be propagated by the algorithm
(during both refresh operations and forward block computations) only if a fingerprint test
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fails, which is a low probability event. Hence, a fingerprint mismatch at resiliency level i− 1
may only arise if the majority value of some δi−1-resilient cell or input symbol has been
corrupted by the adversary. This gives an amortized time per fault of O(δ1+1/k), which
proves the theorem since k = d1/εe. J

Theorem 4 implies that, whenever m = Θ(n), algorithm RED matches the time and space
complexity of the standard non-resilient implementation while tolerating almost linearly-many
memory faults; specifically, up to δ = O

(
n2/(2+ε)) faults. Notice that saving reliably the

input strings requires time and space Ω(nδ). Hence, any resilient algorithm which tolerates
δ = ω(n) memory faults must have time and space complexity ω(n2). Hence, under the
assumption that the time and space complexity of the standard non-resilient implementation
cannot be exceeded, algorithm RED tolerates an almost optimal number of faults. If O(log δ)
private memory words are available (similarly to [3, 8]), the time bound given in Theorem 4
drops to O(nm+ αδ), thus allowing to tolerate an optimal linear number of faults.

5 Resilient traceback

Once table M has been computed, an optimal edit sequence transforming string X into
string Y can be obtained by computing a traceback path from entry M [n,m] to M [0, 0]. The
predecessor of an entry M [i, j] on the traceback path can be any of the neighboring entries
M [i− 1, j], M [i, j − 1], and M [i− 1, j − 1], satisfying Equation 1. It will be convenient to
assume that there is an arc from M [i, j] to its predecessor: the cost of the arc is 0 if xi = yj ,
and 1 otherwise. We define the cost of a traceback path as the sum of the costs of its arcs:
this corresponds to the edit distance of X and Y . We now describe how the traceback process
can be made resilient.

The computation proceeds backward block by block, starting from cell M [n,m]. Within
each block traversed by the traceback path, we compute the corresponding subsequence S of
the whole edit sequence, writing it reliably. Data replication on the resilient block boundaries
and on the input symbols allows, once S is computed, to check whether some error occurred
during the backward computation. In order to recover from an error at this point, we could
recompute first the block involved (by applying algorithm RED), and then subsequence S.
This would result in an additive overhead O(αδ2) on the total running time. To bound
this cost by O(αδ1+ε), we do not stick at computing each subsequence S reliably since the
beginning, but proceed incrementally starting from resiliency level 1 up to k = d1/εe. To this
aim, we exploit the δi-resilient columns written during the forward computation of matrix
M . The fact that column fingerprints are no longer available makes the task harder.

We regard each subsequence S as being divided into (at most) δ1/k segments, computed
at resiliency level k − 1. This subdivision proceeds hierarchically, down to resiliency level
1. As a base step, segments at resiliency level 0 are computed from the cells of matrix M :
these segments correspond to single arcs of the traceback path. A segment Si, at resiliency
level i, spans two δi-resilient columns (the right/left column, in some cases, can be replaced
by the bottom/top resilient row of the block). Si is computed by combining all the δ1/k

sub-segments at resiliency level i − 1 in which Si is logically divided. Sub-segments are
read, proceeding right to left, δi−1-resiliently, and their soundness is verified against the
corresponding input symbols, which are read δi-resiliently: we call this a consistency check
(the δi-resilient reads on the input symbols from string Y are performed on the first 2δi + 1
elements of the δ-resilient copy of Y ). During this process, Si is also written δi-resiliently.

If a consistency check fails at a given cell c, the input symbols corresponding to the
row and column of c are refreshed and, if either endpoint of S lies on a resilient row, the
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corresponding cell is also refreshed. The recovery then starts from the closest δi-resilient
column to the left of c: all δj-resilient versions of this column, for j < i, are refreshed from
the δi-resilient values (read by majority) and the block slice is recomputed by applying the
improved version of algorithm RED. At the end of the slice computation, we check if the new
values stored on the closest δi-resilient column to the right of c match the old ones: if this is
not the case, recovery restarts at resiliency level i+ 1. At the end of the recovery phase, the
computation of Si restarts from sub-segments at resiliency level 1.

When the computation of a segment Si is completed, the algorithm checks if the cost
of the segment matches the difference between the cell values in matrix M corresponding
to its endpoints. These cells lie on δi-resilient columns (or on resilient rows on the block
boundaries) and their values are read δi-resiliently. Apart from refreshing the input values,
upon detection of a mismatch in the edit sequence cost, recovery is performed as described
above.

I Theorem 5. Given table M computed by algorithm RED, an edit sequence of cost M [n,m],
if any, can be computed with high probability in time O

(
nδ + αδ1+ε).

Proof. The correctness of all edit operations is verified at all resiliency levels by consistency
checks. Moreover, the edit cost of each segment is always verified against the edit distance.
Memory faults from any resiliency level i are never propagated to higher levels of resiliency.
Indeed, during error recovery, no δi+j-resilient value is modified starting from δi-resilient
reads, for any j ≥ 0. This implies that a segment at resiliency level i may be wrong
only if at least δi/k + 1 memory faults occurred. Since the adversary can insert at most δ
faults, the δ-resilient edit sequence, if constructed, is correct and has cost M [n,m]. This
sequence may not be optimal or the traceback algorithm may not be able to reconstruct it
only if a fingerprint test failed to detect a memory fault, which is a low probability event
(see Lemma 2). We now focus on the running time, distinguishing between successful and
unsuccessful segment computations.
Successful computation. The time spent to combine all δk−1-resilient segments is asymptoti-
cally higher than the time spent at all lower resiliency levels. This time is O(nδ), because
the edit sequence traverses O((n+m)/δ) blocks, and each block costs time O(δ2).
Unsuccessful computation. Consider a consistency check failure arising while computing a
segment at resiliency level i+ 1. Such a failure is due to at least δi/k + 1 faults and costs
O(δ1+(i+1)/k) time for recomputing δ×δ(i+1)/k matrix cells. If the δi+1-resilient column used
for recovery was correct, detected errors are removed from the matrix with high probability,
with an amortized O(δ1+1/k) cost per memory fault. If the δi+1-resilient column used for
recovery was corrupted, the adversary must have inserted at least δ(i+1)/k + 1 faults and the
recomputed cells of the matrix may still contain incorrect values after recovery. Two cases
may happen: either the forward recomputation of the matrix slice finds an inconsistency
with the following δi+1-resilient column, or no inconsistency is detected and a possibly wrong
δi+1-resilient segment is computed. In both cases, the number of memory faults inserted by
the adversary is large enough to obtain an amortized O(δ1+1/k) cost per fault, with recovery
done at a higher resiliency level. J

6 Extensions

Reducing space. Hirschberg proposed a technique to compute an optimal edit sequence
in time O(nm) using only linear space [13]. In our model, Ω(nδ) space is required for storing
the input reliably. This is better than Θ(nm) when δ = o(m). We now show that this bound
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can be achieved by adapting Hirschberg’s technique to work in faulty memories. Hirschberg’s
algorithm is recursive. In the first step, it computes the edit distances between the first half
of string X and all prefixes of string Y , and between the remaining half of X reversed and
all prefixes of Y reversed. It then finds an optimal point to split Y , constructs a segment of
the optimal edit sequence, and recursively solves two smaller subproblems. We use algorithm
RED to obtain the edit distances on the forward and reversed substrings: since no traceback
is required, we discard a block as soon as all its neighboring blocks have been processed. The
space usage is thus O(nδ). The split point can be computed reliably in O(mδ) time. Each
recursive call pushes on the stack only O(1) variables, that are stored and reloaded reliably.
We end each branch of the recursion when the subproblem matrix has size bounded by δ × δ,
i.e., fits in a single block. It can be proved that this algorithm computes an optimal edit
sequence resiliently in time O(nm+ αδ1+ε) and optimal space Θ(nδ).

Taking advantage of string similarity. Ukkonen proved that an optimal edit sequence
can be computed in time and space O(emin{m,n}), where e is the edit distance between the
input strings [21]. Since e ≥ n−m, this improves over the standard dynamic programming
algorithm only when m = n− o(n), which implies min{m,n} = m = Θ(n). The main idea is
to assume that the edit distance e is upper bounded by a small value k and to compute only
Θ(k) diagonals of matrix M . If no edit sequence of cost ≤ k exists, k is doubled and the
computation is repeated. In the resilient implementation, we avoid considering blocks that
have empty intersection with the set of diagonals that have to be computed in the current
iteration. This results in a time and space complexity O(nmax{e, δ}), matching the result
from Ukkonen when δ = O(e). If δ = ω(e), the O(nδ) time and space bounds match those
required to handle the input reliably.

Local dependency dynamic programming. In the description of algorithm RED we
exploit no specific properties of the edit distance problem. Instead, the analysis benefits
from a few structural properties of the dynamic programming recurrence relation, that are
also typical of many other problems. The techniques described in this paper can be applied
to a variety of problems that can be solved via dynamic programming and, in particular, to
local dependency dynamic programming problems, where each update to an entry in the
auxiliary table is determined by the contents of the neighboring cells. The framework in
which our technique can be applied successfully can be described as follows.

Let us consider a generic d-dimensional dynamic programming algorithm, for any constant
d ≥ 2. Assume that the problem input consist of d sequences S1, . . . , Sd, each of length
n. The sequences are not necessarily distinct and the description can be easily generalized
to deal with different lengths. The algorithm computes an auxiliary table M of dimension
(n + 1)d. Each cell M [i1, . . . , id], with 0 ≤ i1, . . . , id ≤ n, is computed using a recurrence
relation. In particular, if any index is equal to 0, then M [i1, . . . , id] is initialized with a value
that depends only on i1, . . . , id. Otherwise, M [i1, . . . , id] is recursively computed from the
values of the 2d− 1 neighboring cells, where a cell M [j1, . . . , jd] is a neighbor of a distinct cell
M [i1, . . . , id] if, for each dimension h, either jh = ih − 1 or jh = ih. Besides the neighboring
cells, the computation of M [i1, . . . , id] can also use d input symbols, i.e., the ih-th symbol
from sequence Sh for 1 ≤ h ≤ d. We assume that the table is computed according to a fixed
regular pattern (e.g., along rows, columns, or diagonals when d = 2), and that M [n, . . . , n]
contains the solution. Using blocks of dimension δd, we can generalize our approach obtaining
the following result:

I Theorem 6. Let ε be an arbitrarily small constant in (0, 1]. A d-dimensional local
dependency dynamic programming table M of size nd can be correctly computed, with high
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probability, in O(nd + αδd−1+ε) worst-case time and O(nd + nδ) space, when δ is polynomial
in n. Tracing back can be done with high probability in additional time O(nδ + αδd−1+ε).

This yields resilient algorithms for d-dimensional problems that have the same running
time as the non-resilient implementations and can tolerate with high probability O(nd/(d+ε))
memory faults.
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Tight bounds for rumor spreading in graphs of a
given conductance∗
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Abstract
We study the connection between the rate at which a rumor spreads throughout a graph and
the conductance of the graph—a standard measure of a graph’s expansion properties. We show
that for any n-node graph with conductance φ, the classical PUSH-PULL algorithm distributes
a rumor to all nodes of the graph in O(φ−1 logn) rounds with high probability (w.h.p.). This
bound improves a recent result of Chierichetti, Lattanzi, and Panconesi [6], and it is tight in
the sense that there exist graphs where Ω(φ−1 logn) rounds of the PUSH-PULL algorithm are
required to distribute a rumor w.h.p.

We also explore the PUSH and the PULL algorithms, and derive conditions that are both
necessary and sufficient for the above upper bound to hold for those algorithms as well. An
interesting finding is that every graph contains a node such that the PULL algorithm takes
O(φ−1 logn) rounds w.h.p. to distribute a rumor started at that node. In contrast, there are
graphs where the PUSH algorithm requires significantly more rounds for any start node.
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1 Introduction

Gossip-based algorithms have become a prominent paradigm for designing simple, efficient,
and robust protocols for disseminating information in large networks. Perhaps the most
basic and most well-studied example of a gossip-based information-dissemination algorithm is
the, so-called, rumor-spreading model. The algorithm proceeds in a sequence of synchronous
rounds. Initially, in round 0, an arbitrary start node receives a piece of information, called the
rumor. This rumor is then spread iteratively to other nodes: In each round, every informed
node (i.e., every node that received the rumor in a previous round) chooses a random neighbor
to which it transmits the rumor. This is the PUSH version of the rumor-spreading model.
The PULL version is symmetric: In each round, every uninformed node chooses a random
neighbor, and if that neighbor knows the rumor it transmits it to the uniformed node. Finally,
the PUSH-PULL algorithm is the combination of both strategies: In each round, every node
chooses a random neighbor to transmit the rumor to, if the node knows the rumor, or to
request the rumor from, otherwise.

The above three rumor-spreading algorithms were proposed in [8], in the context of
maintaining distributed replicated database systems. Subsequently, these algorithms (and
variations of them) have been used in various applications, such as failure detection [27],
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resource discovery [21], and data aggregation [3]. Also, their performance has been studied
theoretically for several classes of networks (see the Related Work Section).

In this paper, we investigate the relationship between the performance of rumor spreading
in an arbitrary connected network (represented by an undirected graph), and the expansion
properties of the network. More precisely, we look at the broadcast time of the above
rumor-spreading algorithms, i.e., the number of rounds until all nodes get informed—a
primary measure for rumor spreading. And we study its connection to the conductance of
the network—one of the most studied measures of graph expansion. Roughly speaking, the
conductance of a connected graph is a value φ in the range 0 < φ ≤ 1, which is large for
graphs that are well connected (e.g., the complete graph), and small for graphs that are not
(e.g., graphs with communication bottlenecks).

A connection between broadcast time and conductance has been observed in several
works, e.g., in [23, 25, 1, 10], where upper bounds on the broadcast time were obtained
for various graph topologies based, essentially, on lower bounds on the conductance. In [5],
Chierichetti, Lattanzi, and Panconesi posed the question whether rumor spreading is fast in
all graphs with high conductance. For the PUSH and the PULL algorithms the answer is
negative; as observed in [6], a star with n vertices has constant conductance but the expected
broadcast time for a random start node is Ω(n) rounds. For the PUSH-PULL algorithm,
however, the answer to the above question is positive. In [7], it was shown that for any
graph and any start node, the broadcast time of the PUSH-PULL algorithm is O(φ−2 logn)
rounds, with high probability (w.h.p.).1 It was also noted in [7] that this result suggests a
justification as to why rumors spread quickly among humans, since experimental studies
have shown that social networks have high conductance. The above bound was subsequently
improved to O

(
(log φ−1)2φ−1 logn

)
rounds w.h.p., in [6]. Further, it was shown there that

this bound is by at most a (log φ−1)2-factor larger than the optimal bound. More precisely,
it was shown that for any φ ≥ 1/n1−ε, there are n-node graphs with conductance at least φ
and diameter Ω(φ−1 logn). Finally, the authors of [6] provided a sufficient condition for their
upper bound to hold for the PUSH and the PULL algorithms as well. This condition states
that for any edge, the ratio of the degrees of its two endpoints is bounded by a constant.

Two other important measures of a graph’s expansion properties are edge and vertex
expansion. The authors of [5] described a graph with constant edge expansion in which the
expected broadcast time of the PUSH-PULL algorithm for a random start node is Ω(

√
n).

The question whether high vertex expansion yields fast rumor spreading (also posed in [5]) is
largely open; in a very recent work [26], it was shown that for regular graphs this is true.

Our Contributions. We saw that an upper bound of O
(
(log φ−1)2φ−1 logn

)
rounds w.h.p.

is known for the broadcast time of the PUSH-PULL algorithm in any graph; and Ω(φ−1 logn)
rounds are required for some graph with n nodes and conductance φ, for any n and φ ≥ 1/n1−ε.
Our first contribution is the following result, which closes the gap between these two bounds.

I Theorem 1. For any graph on n vertices and any start vertex, the broadcast time of the
PUSH-PULL algorithm is O(φ−1 logn) rounds w.h.p.

We also show that Theorem 1 is tight for φ = Ω(1/n)—not just for φ ≥ 1/n1−ε as it was
previously known. Clearly, the theorem is not tight for φ = o(1/n), since the broadcast time
of the PUSH algorithm is known to be O(n logn) rounds w.h.p. for any graph [16].

1 By “with high probability” we mean with probability 1 − O(n−c), for an arbitrary constant c > 0.



George Giakkoupis 59

The proof of Theorem 1 is based on an analysis of the PUSH and the PULL algorithms.
We show that in any graph, the broadcast time of the PULL algorithm is O(φ−1 logn) rounds
w.h.p., if the start node has degree ∆, the maximum degree of the graph. Also, based on
the symmetry between the PULL and the PUSH algorithms, we show that for any start
node, the PUSH algorithm takes O(φ−1 logn) rounds w.h.p. to inform a node of degree ∆.
Therefore, w.h.p. the PUSH-PULL algorithm takes O(φ−1 logn) rounds to inform a node of
degree ∆, and O(φ−1 logn) additional rounds to inform the remaining nodes.

Our analysis is different than previous approaches. Specifically, the proof in [7] is based
on a connection between rumor spreading and a spectral sparsification process; and the proof
in [6] analyzes the PUSH-PULL process directly. Still, our analysis uses some ideas from [6].

Recall that high conductance does not always yield short broadcast times for the PUSH
and the PULL algorithms. Our second contribution is that we derive conditions guaranteing
a broadcast time of O(φ−1 logn) rounds w.h.p for those algorithms. As mentioned above, in
the proof of Theorem 1 we show that one such condition for the PULL algorithm is that
the start node have degree ∆. We extend this result as follows. Let δ denote the minimum
degree of the graph.

I Theorem 2. (a) For any graph on n vertices and any start vertex with degree Ω(∆(φ+δ−1)),
the broadcast time of the PULL algorithm is O(φ−1 logn) rounds w.h.p. (b) If, in particular,
∆ = O(1/φ) then the above bound on the broadcast time holds for any start vertex.

Further, we show that the conditions specified in Theorem 2 are optimal, in the sense
that for any given φ, δ, ∆, d with ∆ = ω(1/φ) and d = o(∆(φ+ δ−1)), there is a graph with
those φ, δ, ∆, and with a start node of degree d such that the broadcast time of the PULL
algorithm is ω(φ−1 logn) with non-negligible probability (i.e., with probability n−o(1)).

Note that Theorem 2(a) does not hold for the PUSH algorithm: a star on n vertices has
constant conductance, but the broadcast time of the PUSH algorithm is at least n− 1.

From Theorem 2(a) it follows that if δ = Ω(∆(φ+ δ−1)) then the broadcast time of the
PULL algorithm is O(φ−1 logn) w.h.p. for all start nodes. This, and Theorem 2(b), are also
true for the PUSH algorithm, by the symmetry argument used in the proof of Theorem 1.

Finally, we also tighten the result of [6] for the PUSH and the PULL algorithms. We
show that if, for any edge, the ratio of the degrees of its endpoints is bounded, then the
broadcast time of those algorithms is O(φ−1 logn) rounds w.h.p., for any start node.

Related Work. The broadcast time of the PUSH algorithm has been analyzed for various
graph topologies, including the complete graph [19, 24], the hypercube and random graphs [16],
star and Cayley graphs [12, 13], regular graphs [15], and random regular graphs [17].

Besides the broadcast time, another performance measure of interest is the total number
of transmissions of the rumor. Fewer transmissions are typically achieved using the PUSH-
PULL algorithm. The broadcast time and the number of transmissions of the PUSH-PULL
algorithm (and variations of it) have been analyzed for the complete graph [22], random
graphs [11, 14], and random regular graphs [1]. The problem of minimizing the total
communication complexity (i.e., the total number of bits transmitted) was studied in [18] for
the complete graph.

A quasi-random variant of the rumor-spreading model was proposed in [9], as a means to
reduce the amount of randomness. In the quasi-random model, each node has a (cyclic) list
of its neighbors in which it just chooses a random starting position—instead of choosing a
new random position in each round. This model was shown to be at least as efficient as the
classical rumor-spreading model for several families of graphs [9, 10]. The problem of further
reducing the amount of randomness was studied in [20].
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The problem of rumor spreading in arbitrary graphs and its connection to the graph’s
expansion properties were also studied in [3, 23], in the context of gossip-based data aggre-
gation. In both papers, the data-aggregation protocols proposed employ generalizations of
the PUSH-PULL algorithm with non-uniform selection probabilities: in each round, node
v chooses its neighbor u with probability pv,u. Under certain symmetry conditions for the
matrix of pv,u, upper bounds on the broadcast time were established, as a function of certain
measures of this matrix that resemble graph conductance. These results, however, are not
directly comparable to our results. In particular, as observed in [6], there are graphs with
high conductance for which the above approaches yield large bounds for the broadcast time.

The problem of partial rumor spreading, where it suffices that the rumor be spread to a
constant fraction of the nodes, was studied in [4]. There, a refinement of graph conductance,
called weak conductance, was introduced, and it was shown that high weak conductance
always implies fast partial rumor spreading (using the PUSH-PULL algorithm), even if the
(standard) conductance is small.

Paper organization. We begin with some definitions and notations, in Section 2. Section 3,
which constitutes the largest part of the paper, contains the analysis of the PULL algorithm,
including the proof of Theorem 2. In Section 4, we provide a result on the symmetry between
the PUSH and PULL algorithms, which allows us to derive the properties of the PUSH
algorithm from the analysis of the PULL algorithm. Finally, in Section 5, we analyze the
PUSH-PULL algorithm and prove Theorem 1 using results from Sections 3 and 4.

2 Preliminaries

We consider an arbitrary connected network, represented by an undirected graph G = (V,E).
The degree of a vertex v ∈ V is denoted d(v). By ∆ we denote the maximum degree of
G, ∆ = maxv∈V d(v), and by δ we denote the minimum degree. The volume of a subset of
vertices S ⊆ V is the sum of the degrees of the vertices in S, vol(S) =

∑
v∈S d(v). Note that

vol(V ) = 2|E|. By cut(S, V −S) we denote the set of edges crossing the partition {S, V −S}
of V , i.e., cut(S, V − S) = {{v, u} ∈ E : v ∈ S, u ∈ V − S}. The conductance φ of G is
defined as

φ = min
S⊆V, vol(S)≤|E|

| cut(S, V − S)|
vol(S) .

It is easy to see that 0 < φ ≤ 1. (It is φ 6= 0 because graph G is connected.) Also,

I Observation 3. For any S ⊆ V , | cut(S, V − S)| ≥ dφ ·min{vol(S), vol(V − S)}e.

We will denote by Si the set of informed vertices at the end of round i of the rumor-
spreading algorithm, and by Ui the set of uninformed vertices at that time, Ui = V − Si. S0
and U0 denote the corresponding sets initially. To simplify notation, we will assume that S0
can be any non-empty subset of vertices—we do not require that |S0| = 1.

3 PULL Algorithm

In Section 3.1, we establish a general upper bound on the broadcast time of the PULL
algorithm, for any initial set of informed vertices. In Section 3.2, we build upon and refine
this result to derive conditions that guarantee broadcast times of O(φ−1 logn) rounds. More
precisely, we prove Theorem 2 and demonstrate its optimality, and we show that a condition
proposed in [6] also achieves the above broadcast time.
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3.1 An Upper Bound on the Broadcast Time

The main result of this section is the following high-probability bound on the broadcast time
for an arbitrary initial set of informed vertices. Recall that ∆ is the maximum degree of G.

I Lemma 4. For any initial set of informed vertices S0 ⊆ V and any fixed β > 0, all vertices
get informed in at most 50(β + 2) logn

(
φ−1 + ∆/dφ vol(S0)e

)
rounds of the PULL algorithm,

with probability 1−O(n−β).

Note that if ∆/dφ vol(S0)e = O(1/φ) then the broadcast time is O(φ−1 logn) w.h.p.
To prove Lemma 4 we divide the execution of the algorithm into three phases: The first

phase lasts until the total volume of informed vertices becomes at least ∆; the second lasts
until this volume exceeds |E|, i.e., it exceeds one half of the total volume of the graph; and
the third lasts until all vertices get informed. We measure progress in the first two phases by
the increase in the volume of informed vertices; and in the third phase by the decrease in the
volume of uninformed vertices. For each phase, the next lemma gives upper bounds on the
number of rounds until “significant” progress is made with constant probability.

I Lemma 5.
(a) If vol(S0) < ∆ then Pr

(
vol(Si) ≥ ∆

)
≥ 1/2, for i ≥ 4∆/dφ vol(S0)e.

(b) If ∆ ≤ vol(S0) ≤ |E| then Pr
(

vol(Si) ≥ min{2 vol(S0), |E|+ 1}
)
≥ 1/2, for i ≥ 4/φ.

(c) If vol(S0) > |E| then Pr
(

vol(Ui) ≤ vol(U0)/2
)
≥ 1/2, for i ≥ 6/φ.

The proof of Lemma 5 proceeds as follows. Consider part (a)—for parts (b) and (c) the
reasoning is similar. Consider round i. At the beginning of the round there are at least
φ vol(Si−1) ≥ φ vol(S0) edges between informed and uninformed vertices. We fix dφ vol(S0)e
of these edges arbitrarily before round i is executed, and then count the total volume Li of
the vertices that get informed in round i due to the rumor being transmitted through those
edges. Clearly, Li is a lower bound on the total volume of the vertices informed in round i.
Thus, to prove (a) it suffices to show that

∑
k≤i Lk ≥ ∆− vol(S0) with probability at least

1/2. By employing a martingale argument we compute the expectation and the variance of∑
k≤i Lk, and then we bound

∑
k≤i Lk using Chebyshev’s inequality.

The approach used to prove Lemma 5 is at the heart of our analysis, and it is also used
to prove analogous results in Section 3.2.

Proof of Lemma 5. (a) Let L1, L2, . . . be a sequence of random variables with Li, for i ≥ 1,
be defined as follows. We distinguish two cases:

If vol(Si−1) ≤ |E|, then, by Observation 3, | cut(Si−1, Ui−1)| ≥ dφ vol(Si−1)e ≥ dφ vol(S0)e.
Let Ei be an arbitrary subset of cut(Si−1, Ui−1) consisting of M = dφ vol(S0)e edges.
Set Ei is (arbitrarily) fixed at the beginning of round i—before the round is executed.
Then Li is the total volume of the vertices that get informed in round i as a result of the
rumor being transmitted through edges in Ei. Formally, for each vertex u ∈ Ui−1, let
Li,u be the 0/1 random variable with Li,u = 1 if and only if in round i vertex u receives
the rumor through some edge in Ei. Then, Li =

∑
u∈Ui−1

Li,ud(u).
If vol(Si−1) > |E|, then Li = M .

We will show the following results for the expectation and the variance of the sum of Li.

I Claim 6. E[
∑
k≤i Lk] = iM and Var(

∑
k≤i Lk) ≤ iM∆.
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Using this claim, the lemma follows by Chebyshev’s inequality: Let µ = E[
∑
k≤i Lk] = iM .

Note that for i ≥ 4∆/M , µ > ∆. So,

Pr
(∑
k≤i

Lk < ∆
)
≤ Pr

(∣∣∣∑
k≤i

Lk − µ
∣∣∣ > µ−∆

)
≤

Var(
∑
k≤i Lk)

(µ−∆)2 ≤ iM∆
(iM −∆)2 < 1/2, (1)

for i ≥ 4∆/M . Note that if vol(Si) < ∆ then
∑
k≤i Lk < ∆, because

∑
k≤i Lk cannot be

larger than the total volume of all vertices informed since round 1 and thus
∑
k≤i Lk ≤

vol(Si)− vol(S0) < ∆. Hence, Pr(vol(Si) < ∆) ≤ Pr(
∑
k≤i Lk < ∆) < 1/2, for i ≥ 4∆/M .

To complete the proof of part (a) it remains to show Claim 6, which we do next.

Expectation of the Sum of Li: For i ≥ 0, define Li =
∑
k≤i(Lk −M). Let Fi be the

σ-algebra generated by all the choices of the algorithm in the first i rounds. It is easy to see
that the sequence L0,L1, . . . is a martingale with respect to the filter F0 ⊆ F1 ⊆ . . . :

If vol(Si−1) ≤ |E|,

E[Li − Li−1 | Fi−1] = E[Li −M | Fi−1] = E
[ ∑
u∈Ui−1

Li,ud(u)
∣∣∣Fi−1

]
−M

=
∑

u∈Ui−1

E[Li,u | Fi−1] · d(u)−M,

where the last relation holds because Ui−1 is Fi−1-measurable. For any u ∈ Ui−1,

E[Li,u | Fi−1] = Pr(Li,u = 1 | Fi−1) = gi(u)/d(u), (2)

where gi(u) is the number of edges in Ei that are incident to u. Note that∑
u∈Ui−1

gi(u) = |Ei| = M, (3)

since each edge in Ei is incident to exactly one u ∈ Ui−1. Combining the above yields
E[Li − Li−1 | Fi−1] =

∑
u∈Ui−1

gi(u)−M = M −M = 0.
If vol(Si−1) > |E|, then Li − Li−1 = Li −M = M −M = 0.

So, in both cases, E[Li − Li−1 | Fi−1] = 0, which yields E[Li] = E[L0] = 0. Substituting to
this the definition of Li, we obtain the desired formula for the expectation, E[

∑
k≤i Lk] = iM .

Variance of the Sum of Li:

E[L2
i | Fi−1] = E[((Li − Li−1) + Li−1)2 | Fi−1]

= E[(Li − Li−1)2 | Fi−1] + L2
i−1 + 2E[Li − Li−1 | Fi−1] · Li−1

= E[(Li −M)2 | Fi−1] + L2
i−1, (4)

since E[Li − Li−1 | Fi−1] = 0. We bound E[(Li −M)2 | Fi−1] as follows:
If vol(Si−1) ≤ |E|, then, by the definition of Li and Equation (3),

E[(Li −M)2 | Fi−1] = E
[( ∑

u∈Ui−1

(
Li,ud(u)− gi(u)

))2 ∣∣∣Fi−1

]
=

∑
u∈Ui−1

E[(Li,ud(u)− gi(u))2 | Fi−1],

where the last relation holds because E
[
(Li,ud(u)− gi(u))(Li,u′d(u′)− gi(u′))

∣∣Fi−1
]

=
0, for any u, u′ ∈ Ui−1 with u 6= u′. This last statement is true because, by (2),
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E[Li,ud(u) − gi(u) | Fi−1] = 0, and because the random variables Li,u, u ∈ Ui−1, are
mutually independent conditionally on Fi−1. Using again (2) and (3), we get∑

u∈Ui−1

E[(Li,ud(u)− gi(u))2 | Fi−1] =
∑

u∈Ui−1

(
E[L2

i,u(d(u))2 | Fi−1]− (gi(u))2)
≤

∑
u∈Ui−1

E[L2
i,u(d(u))2 | Fi−1] =

∑
u∈Ui−1

E[Li,u | Fi−1] · (d(u))2

=
∑

u∈Ui−1

gi(u)d(u) ≤
∑

u∈Ui−1

gi(u)∆ = M∆.

Therefore, E[(Li −M)2 | Fi−1] ≤M∆.
If vol(Si−1) > |E|, the last inequality is still true, since Li = M .

By applying the above to (4) yields E[L2
i | Fi−1] ≤ M∆ + L2

i−1, and recursively we ob-
tain E[L2

i ] ≤ iM∆. The desired bound for Var(
∑
k≤i Lk) then follows by observing that

Var(
∑
k≤i Lk) = E[L2

i ]. This completes the proof of Claim 6, and of Lemma 5(a).

(b) We consider the same sequence of random variables L1, L2, . . . as in part (a). Similarly
to (1), by using Claim 6 and Chebyshev’s inequality we obtain that

Pr
(∑
k≤i

Lk < vol(S0)
)
≤ iM∆

(iM − vol(S0))2 ≤
iM vol(S0)

(iM − vol(S0))2 < 1/2,

for i ≥ 4 vol(S0)/M , and thus, for i ≥ 4/φ. Part (b) then follows by observing that if
vol(Si) < min{2 vol(S0), |E| + 1} then

∑
k≤i Lk ≤ vol(Si) − vol(S0) < vol(S0), and thus,

Pr
(

vol(Si) < min{2 vol(S0), |E|+ 1}
)
≤ Pr

(∑
k≤i Lk < vol(S0)

)
.

(c) Unlike in parts (a) and (b), the set of uninformed vertices has now a smaller volume than
the set of informed vertices. So, by Observation 3, | cut(Si, Ui)| ≥ dφ vol(Ui)e. We consider
the sequence L1, L2, . . . of random variables, with Li defined as follows:

If vol(Ui−1) > vol(U0)/2, we let Ei be an arbitrary subset of cut(Si−1, Ui−1) consisting
of M = dφ vol(U0)/2e edges. (Ei is fixed at the beginning of round i.) As before, Li is
the total volume of the vertices that get informed in round i as a result of the rumor
being transmitted through edges in Ei.
If vol(Ui−1) ≤ vol(U0)/2, then Li = M .

Similarly to Claim 6, we can show that E[
∑
k≤i Lk] = iM and Var(

∑
k≤i Lk) ≤ iM vol(U0).

For the latter we use the fact that the degree of any uninformed vertex is at most vol(U0).
As before, by Chebyshev’s inequality, we can show that Pr

(∑
k≤i Lk < vol(U0)/2

)
< 1/2,

for i ≥ 6/φ. Part (c) then follows by observing that if vol(Ui) > vol(U0)/2 then
∑
k≤i Lk ≤

vol(U0)− vol(Ui) < vol(U0)/2. J

Using the bounds of Lemma 5, Lemma 4 follows easily:

Proof of Lemma 4. By Lemma 5(a), if vol(Si) < ∆ then, with probability 1/2, it takes at
most d4∆/dφ vol(Si)ee ≤ 5∆/dφ vol(Si)e additional rounds until the total volume of informed
vertices becomes at least ∆. Thus, if vol(S0) < ∆, the probability that vol(St) < ∆ for
t = 2β lnn · (5∆/dφ vol(S0)e) is at most (1− 1/2)2β lnn ≤ e−2β lnn/2 = n−β .

By Lemma 5(b), if ∆ ≤ vol(Si) ≤ |E| then, with probability 1/2, it takes at most d4/φe
rounds until the total volume of informed vertices is increased to at least min{2 vol(Si), |E|+
1}. Now, divide the execution of the algorithm into phases of d4/φe rounds each, starting
from the end of the first round i with vol(Si) ≥ ∆. A phase is successful if the total volume
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of informed vertices at the end of the phase is at least min{2 vol(S), |E|+ 1}, where S is
the set of informed vertices at the beginning of the phase. (Note that if vol(S) ≥ |E| + 1
then the phase is always successful.) Then, for any k, the probability that the k-th phase
is successful is at least 1/2, regardless of the outcome of the previous k − 1 phases. From
this (and a simple coupling argument), the number of successful phases among the first k
phases is (stochastically) greater or equal to the binomial random variable B(k, 1/2). So,
by Chernoff bounds, the probability that fewer than m = log |E| of the first k = (2β + 4)m
phases are successful is at most equal to

Pr(B(k, 1/2) < m) = Pr(k/2−B(k, 1/2) > k/2−m) ≤ e−2(k/2−m)2/k ≤ e−βm = O(n−β),

since |E| ≥ n− 1. And since at most m successful phases are required until the total volume
of informed vertices exceeds |E|, it follows that with probability 1−O(n−β) the number of
rounds required is at most kd4/φe = (2β + 4) log(|E|)d4/φe ≤ (2β + 4)(2 logn)(5/φ).

Finally, by Lemma 5(c), if vol(Si) > |E| then, with probability 1/2, it takes at most
d6/φe rounds until the total volume of uninformed vertices is halved. By similar reasoning
as before, we can show that once the volume of informed vertices has exceeded |E|, then
(2β + 4)(2 logn)(7/φ) rounds suffice to inform all nodes with probability 1−O(nβ).

Combing all the above and applying the union bound, we obtain that with probability
1−O(nβ) all vertices get informed within 50(β + 2) logn

(
φ−1 + ∆/dφ vol(S0)e

)
rounds. J

3.2 Conditions for Rumor Spreading in O(φ−1 logn) Rounds
3.2.1 Derivation of Theorem 2
Lemma 4 implies that if ∆/dφ vol(S0)e = O(1/φ), the broadcast time is O(φ−1 logn) rounds
w.h.p. Theorem 2(b) follows then directly, since ∆/dφ vol(S0)e ≤ ∆, for any S0. Also, the
following weaker version of Theorem 2(a) is immediate, because if the degree of the start
vertex is Ω(∆) then vol(S0) = Ω(∆) and ∆/dφ vol(S0)e ≤ ∆/φ vol(S0) = O(1/φ).

I Corollary 7. For any start vertex of degree Ω(∆), the broadcast time of the PULL algorithm
is O(φ−1 logn) rounds w.h.p.

This result is weaker than Theorem 2(a) because φ+ δ−1 = O(1). However, it will suffice
for the purposes of proving Theorem 1 (in Section 5).

Next we describe the proof of Theorem 2(a). Recall that Lemma 4, on which the proof of
Corollary 7 was based, assumes that S0 may be any subset of vertices. Under this assumption,
the size of cut(S0, U0) can be as small as dφ vol(S0)e. However, if S0 consists of a single
vertex, then | cut(S0, U0)| = vol(S0), which can be significantly larger than dφ vol(S0)e. This
observation is a key ingredient in our proof.

We begin by observing that if S0 consists of a single vertex, then the size of cut(Si, Ui)
remains Ω(vol(S0)) until vol(Si) increases to at least Ω(δ vol(S0)). More precisely, suppose
that S0 = {v}; so, vol(S0) = | cut(S0, U0)| = d(v). Then, | cut(Si, Ui)| ≥ vol(S0)− |Si|+ 1,
because all the vol(S0) edges of the start vertex v are initially incident to uniformed vertices;
and each new vertex that gets informed is incident to at most one of those edges. Also, clearly,
vol(Si) ≥ |Si| · δ, thus, |Si| ≤ vol(Si)/δ. Therefore, | cut(Si, Ui)| ≥ vol(S0)− vol(Si)/δ. So,

I Observation 8. If |S0| = 1 and vol(Si) ≤ δ vol(S0)/2 then | cut(Si, Ui)| ≥ vol(S0)/2.

We use this result in the proof of the next lemma, which is similar to Lemma 5(a).

I Lemma 9. Let D = min{∆, δ vol(S0)/2}. If |S0| = 1 then Pr
(

vol(Sj+i) ≥ D
∣∣Sj) ≥ 1/2,

for i ≥ 8∆/ vol(S0).
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Proof. Fix the set Sj arbitrarily. As in the proof of Lemma 5(a), we consider a sequence
L1, L2, . . . of random variables, where Li is as follows:

If vol(Sj+i−1) ≤ D, let Ei be an arbitrary subset of cut(Sj+i−1, Uj+i−1) of size M =
dvol(S0)/2e, fixed before round j + i. (By Observation 8, | cut(Sj+i−1, Uj+i−1)| ≥ M .)
Then Li is the total volume of the vertices informed in round j + i through edges in Ei.
If vol(Sj+i−1) > D, then Li = M .

Similarly to Claim 6, E[
∑
k≤i Lk] = iM and Var(

∑
k≤i Lk) ≤ iM∆. And, similarly to (1),

Pr
(∑

k≤i Lk < D
)
≤ iM∆/(iM −D)2 < 1/2, for i ≥ 2(∆ + D)/M . Since vol(Sj+i) < D

implies
∑
k≤i Lk < D, and since 2(∆ +D)/M ≤ 8∆/ vol(S0), the lemma follows. J

We can now derive Theorem 2(a) similarly to Lemma 4.

Proof of Theorem 2(a). Let d = vol(S0) be the degree of the start vertex. By Lemma 9,
the probability that the total volume of informed vertices is smaller than D = min{∆, δd/2}
after c lnnd8∆/de rounds is at most (1− 1/2)c lnn ≤ n−c/2. The above number of rounds is
O(φ−1 lnn), since d = Ω(∆(φ+ δ−1)) = Ω(φ∆). Thus, w.h.p., it takes O(φ−1 lnn) rounds
until the total volume of informed vertices becomes at least D.

Since d = Ω(∆(φ+δ−1)) = Ω(∆/δ), we haveD = Ω(∆). Thus, by Lemma 4, once the total
volume of informed vertices is at least D, it takes O

(
logn(φ−1 + ∆/dφDe)

)
= O(φ−1 lnn)

additional rounds until all vertices get informed w.h.p. J

The following direct corollary of Theorem 2(a) gives a condition for rumor spreading in
O(φ−1 logn) rounds for any start vertex.

I Corollary 10. If δ = Ω(∆(φ + δ−1)), or, equivalently, δ = Ω(φ∆ +
√

∆) then, for any
start vertex, the broadcast time of the PULL algorithm is O(φ−1 logn) rounds w.h.p.

3.2.2 Optimality of Theorem 2
The conditions described in Theorem 2, that the degree of the start vertex be d = Ω(∆(φ+
δ−1)) or the maximum degree be ∆ = O(1/φ), are optimal in the following sense.

I Theorem 11. For any φ, δ,∆, d with δ ≤ d = o(∆(φ+ δ−1)) and ∆ = ω(1/φ), there exists
an infinite sequence of graphs G1, G2, . . . such that Gn has Θ(n) vertices, conductance Θ(φ),
and maximum (minimum) degree Θ(∆) (Θ(δ)), and it contains a start vertex of degree Θ(d)
such that ω(φ−1 logn) rounds of the PULL algorithm are required to inform all vertices w.h.p.

Proof. First we consider the case of d = o(φ∆). Construct the following graph: Take a
∆-regular graph R∆ on n vertices with edge expansion ξ = Θ(∆). Such a graph exists since
the edge expansion of a random ∆-regular graph is Θ(∆) w.h.p. [2]. The conductance of
R∆ is obviously ξ/∆ = Θ(1). Add a vertex s of degree d and a vertex vmin of degree δ,
choosing their neighbors arbitrarily among the vertices of R∆. Vertex s will be the start
vertex, while vmin is added just to have minimum degree δ. Next we add a component to
achieve conductance φ: Take the complete graph on ∆ vertices K∆. Let A be an arbitrary
subset of the vertices of R∆ of size |A| = bφ∆c. (It is |A| > 0 since 1 ≤ d = o(φ∆)). Draw
edges between each vertex of K∆ and each vertex in A. It is not hard to see that the resulting
graph has the desired number of vertices, maximum and minimum degrees, and conductance.
Also, since d = o(φ∆), the probability that no neighbor of s receives the rumor from s in
k = bφ−1 lnn · (2/3)

√
φ∆/dc = ω(φ−1 lnn) rounds is at least

(1− 1/∆)kd ≥ e−3kd/2∆ ≥ e− lnn
√
d/φ∆ = n−o(1),
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where for the first inequality we used the fact that 1− x ≥ e−3x/2, for 0 ≤ x ≤ 1/2. So, with
probability n−o(1), no vertex learns a rumor started at s in O(φ−1 lnn) rounds.

Next we consider the complementary case, d = Ω(φ∆). Since d = o(∆(φ+ δ−1)), we have
φ = o(1/δ) and d = o(∆/δ). Consider the following graph: Take the graph we constructed
before and remove vertex s together with its incident edges. Take also dd/δe copies ofKδ. Add
a vertex s′ of degree Θ(d) with neighbors the vertices of the dd/δe δ-cliques, plus the elements
of an arbitrary subset B of the vertices of R∆, with |B| = dφdδe. (It is |B| = O(d) since
φ = o(1/δ) as we saw above.) It is not hard to see that the resulting graph has the desired
number of vertices, maximum and minimum degrees, and conductance. Also, with probability
n−o(1), no vertex in B learns a rumor started at s′ in O(φ−1 lnn) rounds: Since d = o(∆/δ)
and ∆ = ω(1/φ), we have |B| ≤ φdδ+ 1 = o(φ∆) + 1 = o(φ∆). Thus, the probability that no
neighbor of s′ in B receives the rumor from s′ in k = bφ−1 lnn ·(2/3)

√
φ∆/|B|c = ω(φ−1 lnn)

rounds is at least (1− 1/∆)k|B| ≥ e−3k|B|/2∆ ≥ e− lnn
√
|B|/φ∆ = n−o(1). J

3.2.3 Bounded Ratio of the Degrees of Adjacent Vertices
It was shown in [6] that if the ratio of the degrees of any two adjacent vertices is bounded
by a constant, then the broadcast time of the PULL algorithm is O

(
(log φ−1)2φ−1 logn

)
rounds w.h.p., for any start vertex. By similar reasoning as in the proofs of Lemma 4 and
Theorem 2(a), we can show that, in fact, the above condition yields a broadcast time of
O(φ−1 logn) rounds. The proof is omitted due to space limitations.

I Theorem 12. If, for every edge {v, u}, d(v)/d(u) = Θ(1) then, the broadcast time of the
PULL algorithm is O(φ−1 logn) rounds w.h.p., for any start vertex.

4 PUSH Algorithm

The analysis of the PUSH algorithm can be reduced to that of the PULL algorithm, by
exploiting a symmetry between the two algorithms, described in the following result. This
result is similar to Lemma 3 in [6]. Its proof is omitted due to space limitations.

I Lemma 13. Let EPUSH(v, u, t) denote the event that the PUSH algorithm spreads to vertex
u a rumor started at vertex v in at most t rounds; and let EPULL(v, u, t) be defined similarly.
Then, Pr(EPUSH(v, u, t)) = Pr(EPULL(u, v, t)).

Suppose that for any vertex u, the PULL algorithm distributes a rumor started at u to
all vertices in at most t rounds with probability at least 1 − q. Then, by Lemma 13, for
any vertex v, the PUSH algorithm spreads to a given u a rumor started at v in at most
t rounds with probability at least 1 − q; and, by the union bound, if q ≤ 1/(n − 1), the
rumor started at v is spread to all vertices in at most t rounds with probability at least
1 − (n − 1)q. Thus, if the broadcast time of the PULL algorithm is O(φ−1 logn) rounds
w.h.p. for any start vertex, then the same is true for the PUSH algorithm, as well. Hence,
the conditions described in Section 3 guaranteing a broadcast time of O(φ−1 logn) rounds
w.h.p. for any start vertex, apply to the PUSH algorithm as well; specifically, Theorem 2(b),
Corollary 10, and Theorem 12. Finally, Theorem 11 is also true for the PUSH algorithm for
d = δ. (For, otherwise, by the same reasoning as above, with the roles of the PUSH and the
PULL algorithms switched, we would contradict Theorem 11.)

5 PUSH-PULL Algorithm

We prove Theorem 1, which gives a bound of O(φ−1 logn) rounds w.h.p. on the broadcast
time of the PUSH-PULL algorithm, and argue that this bound is tight.
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Proof of Theorem 1. Fix a vertex v and let vmax be a vertex of maximum degree. By
Corollary 7, we have that: (A) The PULL algorithm distributes a rumor from vmax to all
other vertices (and thus to v) in O(φ−1 logn) rounds w.h.p. Combining this with Lemma 13
yields: (B) The PUSH algorithm spreads to vmax a rumor started at v in O(φ−1 logn)
rounds w.h.p. The theorem now follows easily: Statement (B) implies (a fortiori) that the
PUSH-PULL algorithm spreads to vmax a rumor started at v in O(φ−1 logn) rounds w.h.p.;
and, once vmax is informed, Statement (A) implies that from vmax the PUSH-PULL algorithm
spreads the rumor to all vertices in O(φ−1 logn) additional rounds w.h.p. J

The following result was shown in [6].

I Lemma 14. For any φ ≥ 1/n1−ε, for a fixed ε > 0, there exists an infinite sequence of graphs
G1, G2, . . . such that Gn has Θ(n) vertices, conductance Θ(φ), and diameter Ω(φ−1 logn).

From this, it is immediate that rumor spreading requires Ω(φ−1 logn) rounds, if φ ≥
1/n1−ε. Thus, the bound of Theorem 1 is asymptotically tight for φ ≥ 1/n1−ε. The next
result shows this is in fact true for all φ = Ω(1/n).

I Lemma 15. For any φ with 2/(n+2) ≤ φ ≤ 1/2, there exists an infinite sequence of graphs
G1, G2, . . . such that Gn has n vertices and conductance Θ(φ), and, for any start vertex,
Ω(φ−1 logn) rounds of the PUSH-PULL algorithm are required to inform all vertices w.h.p.

Proof. Consider the n-vertex graph obtained by taking two stars, one with dφ−1e vertices
and another with n− dφ−1e vertices, and connecting their centers with an edge. It is easy to
see that the resulting graph has conductance Θ(φ). We now show that for any start vertex
and any constant c > 0, at least c lnn/3φ rounds are required to inform all vertices with
probability 1− n−c. Let v and v′ be the centers of the two stars, where v is the center of the
star containing the start vertex. Let j be the round when v gets informed. (If v is the start
vertex then j = 0.) The probability that v′ is not informed by the end of round j + i, which
happens if the rumor is not transmitted from v to v′ via a PUSH or PULL operation in any
of the rounds j + 1, . . . , j + i, is clearly(

1− 1/dφ−1e
)i(1− 1/(n− dφ−1e)

)i ≥ (1− 1/dφ−1e
)2i ≥ (1− φ)2i ≥ e−3iφ,

where for the first inequality we used the fact that φ ≥ 2/(n+ 2), that for the last the fact
that 1 − x ≥ e−3x/2, for 0 ≤ x ≤ 1/2. For i < c lnn/3φ, it is e−3iφ > n−c. Thus, at least
c lnn/3φ rounds are required to inform all vertices with probability 1− n−c. J
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Abstract
This paper establishes tight bounds for the Minimum-weight Spanning Tree (MST) verification
problem in the distributed setting. Specifically, we provide an MST verification algorithm that
achieves simultaneously Õ(|E|) messages and Õ(

√
n+D) time, where |E| is the number of edges

in the given graph G and D is G’s diameter. On the negative side, we show that any MST
verification algorithm must send Ω(|E|) messages and incur Ω̃(

√
n+D) time in worst case.

Our upper bound result appears to indicate that the verification of an MST may be easier
than its construction, since for MST construction, both lower bounds of Ω(|E|) messages and
Ω(
√
n+D) time hold, but at the moment there is no known distributed algorithm that constructs

an MST and achieves simultaneously Õ(|E|) messages and Õ(
√
n+D) time. Specifically, the best

known time-optimal algorithm (using Õ(
√
n + D) time) requires O(|E| + n3/2) messages, and

the best known message-optimal algorithm (using Õ(|E|) messages) requires O(n) time. On the
other hand, our lower bound results indicate that the verification of an MST is not significantly
easier than its construction.
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1 Introduction

1.1 Background and Motivation
The problem of efficiently computing a Minimum-weight Spanning Tree (MST) of a given
weighted graph has been studied extensively in the centralized, parallel and distributed
settings. Reviews on the problem in the centralized setting can be found, e.g., in the survey
paper by Graham and Hell [17] or in the book by Tarjan [32] (Chapter 6). The fastest
known algorithm for finding an MST is that of Pettie and Ramachandran [29], which runs
in O(|E| · α(|E|, n)) time, where α is the inverse Ackermann function, n is the number of
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vertices and |E| is the number of edges in the graph. Unfortunately, a linear (in the number
of edges) time algorithm for computing an MST is known only in certain cases, or by using
randomization [14, 19].

The separation between computation and verification, and specifically, the question of
whether verification is easier than computation, is a central issue of profound impact on the
theory of computer science. In the context of MST, the verification problem (introduced
by Tarjan [31]) is the following: given a weighted graph, together with a subgraph, it is
required to decide whether this subgraph forms an MST of the graph. At the time it was
published, the running time of the MST verification algorithm of [31] was indeed superior to
the best known bound on the computational problem. Improved verification algorithms in
different centralized models were then given by Harel [18], Komlòs [23], and Dixon, Rauch,
and Tarjan [9], and parallel algorithms were presented by Dixon and Tarjan [10] and by
King, Poon, Ramachandran, and Sinha [22]. Though it is not known whether there exists
a deterministic algorithm that computes an MST in O(|E|) time, the verification algorithm
of [9] is in fact linear, i.e., runs in time O(|E|) (the same result with a simpler algorithm
was later presented by King [21] and by Buchsbaum [5]). For the centralized setting, this
may indicate that the verification of an MST is indeed easier than its computation.

The problem of computing an MST received considerable attention in the distributed
setting as well. Constructing such a tree distributively requires a collaborative computa-
tional effort by all the network vertices, and involves sending messages to remote vertices
and waiting for their replies. The main measures considered for evaluating a distributed
MST protocol are the message complexity, namely, the maximum number of messages sent
in the worst case scenario, and the time complexity, namely, the maximum number of com-
munication rounds required for the protocol’s execution in the worst case scenario. The line
of research on the distributed MST computation problem was initiated by the seminal work
of Gallager, Humblet, and Spira [15] and culminated in the O(n) time and O(|E|+ n logn)
messages algorithm by Awerbuch [2]. As pointed out in [2], the results of [4, 6, 13] establish
an Ω(|E| + n logn) lower bound on the number of messages required to construct a MST.
Thus, the algorithm of [2] is essentially optimal.

This was the state of affairs until the mid-nineties when Garay, Kutten, and Peleg [16]
initiated the analysis of the time complexity of MST construction as a function of additional
parameters (other than n), and gave the first sublinear time distributed algorithm for the
MST problem, running in time O(D+n0.614), where D is the diameter of the network. This
result was later improved to O(D +

√
n log∗ n) by Kutten and Peleg [26]. The tightness

of this latter bound was shown by Peleg and Rubinovich [28] who proved that Ω̃(
√
n) is

essentially1 a lower bound on the time for constructing MST on graphs with diameter
Ω(logn). This result was complemented by the work of Lotker, Patt-Shamir and Peleg [27]
that showed an Ω̃( 3

√
n) lower bound on the time required for MST construction on graphs

with small diameter. Note, however, that the time-efficient algorithms of [16, 26] are not
message-optimal, i.e., they take asymptotically much more than O(|E|+ n logn) messages.
For example, the time-optimal protocol of [26] requires sending O(|E|+n3/2) messages. The
question of whether there exists an optimal distributed algorithm for MST construction that
achieves simultaneously Õ(|E|) messages and Õ(

√
n+D) time remains open.

This paper addresses the MST verification problem in the distributed setting. Here,
a subgraph is given in a distributed manner, namely, some of the edges incident to every
vertex are locally marked, and the collection of marked edges at all the vertices defines the

1 Ω̃ (respectively, Õ) is a relaxed variant of the Ω (rep., O) notation that ignores polylog factors.
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subgraph; see, e.g., [7, 15, 24, 25]. The verification task requires checking distributively
whether the marked subgraph is indeed an MST of the given graph. Similarly to the cent-
ralized setting, one of our major motivations is to investigate the relationships between the
MST construction problem and the related verification problem. Moreover, from an applic-
ative point of view, since faults are much more likely to occur in the distributed setting,
the verification task in the distributed setting is more practically significant than in the
centralized setting. Finally, we note that generally, investigating the “simpler” verification
problem may lead to breakthroughs in the efforts for solving the corresponding construction
problem. This was indeed useful in the centralized setting, where the verification algorithm
of [9], that determines for each edge whether it “improves” a given MST candidate, was used
as a subroutine for the subsequent MST construction algorithms of [19, 29].

In this paper, we present an MST verification algorithm that achieves simultaneously
Õ(|E|) messages and Õ(

√
n+D) time. This result appears to indicate that MST verification

may be easier than MST construction. Conversely, we show that the verification problem is
not much easier, by proving that the known lower bounds for MST construction also hold
for the verification problem. Specifically, we show that Ω(|E|) messages must be sent in
worst case by any MST verification algorithm, and that Ω̃(

√
n+D) communication rounds

are also required.
Our Ω(|E|) lower bound on the number of messages is fairly straightforward. The

Ω̃(
√
n + D) time lower bound is achieved by a (somewhat involved) modification of the

corresponding lower bound for the computational task [28]. Our verification algorithm
builds upon techniques taken from the time optimal MST construction paper [26], and from
the papers on labeling schemes [20, 24]2. More specifically, after collecting some topological
structure at some central vertex (in a way inspired by [26]), the algorithm avoids spreading
all this information to all vertices, in order to save on messages. Instead, it carefully divides
this information into pieces using the flow labeling scheme of [20, 24] and sends one piece
of information to each vertex. This distribution of information is done in such a way that
allows the verification to carry on using these pieces of information only.

1.2 The Model
A point-to-point communication network is modeled as an undirected graph G(V,E), where
the vertices in V represent the network processors and the edges in E represent the com-
munication links connecting them. The length of a path in G is the number of edges it
contains. The distance between two vertices u and v is the length of the shortest path con-
necting them. The diameter of G, denoted D, is the maximum distance between any two
vertices of G.

Vertices are assumed to have unique identifiers, and each vertex knows its own identifier.
The vertices do not know the topology or the edge weights of the entire network, but
they know the weights of the edges incident to them. More precisely, a weight function
ω : E → N associated with the graph assigns a nonnegative integer weight ω(e) to each edge
e = (u, v) ∈ E. The weight ω(e) is known to the adjacent vertices, u and v. We assume
that the edge weights are bounded by a polynomial in n (the number of vertices). The

2 The MST verification problem is considered in [24] from a different angle, closer to the notions of local
checking [1, 3] or computation with advice [8, 11, 12]. Specifically, the focus therein is on the minimum
size of a label (i.e., amount of information stored at a vertex) needed to allow verification of an MST in
a single round, by exchanging the labels between neighboring vertices. The complexity of computing
these labels are not in the scope of that paper.
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vertices can communicate only by sending and receiving messages over the communication
links. Each vertex can distinguish between its incident edges. Moreover, if vertex v sends
a message to vertex u along the edge e = (v, u), then upon receiving the message, vertex u
knows that the message was delivered over the edge e.

Similarly to [16, 26], we assume that the communication is carried out in a synchronous
manner, i.e., all the vertices are driven by a global clock. Messages are sent at the beginning
of each round, and are received at the end of the round. (Clearly, our lower bounds hold
for asynchronous networks as well.) At most one B-bit message can be sent on each link in
each direction on every round. Similarly to previous work, we assume that B = O(logn).
The model also allows vertices to detect the absence of a message on a link at a given round,
which can be used to convey information. Hence at each communication round, a link can
be at one of 2B + 1 possible states, i.e., it can either transmit any of 2B possible messages,
or remain silent.

1.3 The distributed MST Verification problem
Formally, the minimum-weight spanning tree (MST) verification problem can be stated as
follows. Given a graph G(V,E), a weight function ω on the edges, and a subset of edges
T ⊆ E, referred as the MST candidate, it is required to decide whether T forms a minimum
spanning tree onG, i.e., a spanning tree whose total weight w(T ) =

∑
e∈T ω(e) is minimal. In

the distributed model, the input and output of the MST verification problem are represented
as follows. Each vertex knows the weights of the edges connected to its immediate neighbors.
A degree-d vertex v ∈ V with neighbors u1, . . . , ud has d weight variables W v

1 , . . . ,W
v
d , with

W v
i containing the weight of the edge connecting v to ui, i.e., W v

i = ω(v, ui), and d boolean
indicator variables Y v

1 , . . . , Y
v

d indicating which of the edges adjacent to v participate in the
MST candidate that we wish to verify. The indicator variables must be consistent, namely,
for every edge (u, v), the indicator variables stored at u and v for this edge must agree (this
is easy to verify locally). Similarly to previous work on MST construction, we assume that
the verification algorithm is initiated by a designated source node. Let TY be the set of
edges marked by the indicator variables (i.e., all edges for which the indicator variable is set
to 1). The output of the algorithm at each vertex v is an assignment to a (boolean) output
variable Av that must satisfy Av = 1 if TY is an MST of G(V,E, ω), and Av = 0 otherwise.

1.4 Our Results
We establish asymptotically tight bounds for the time and message complexities of the MST
verification problem. Specifically, in the positive direction we show the following:

I Theorem 1.1. There exists a distributed MST verification algorithm that uses Õ(
√
n+D)

time and Õ(|E|) messages.

This upper bound is complemented by two lower bounds.

I Theorem 1.2. Any distributed algorithm for MST verification requires Ω(|E|) messages.

I Theorem 1.3. Any distributed algorithm for MST verification requires Ω̃(
√
n+D) time.

Theorem 1.2 is proved (in a rather straightforward manner) assuming that a vertex knows
only its own identifier. We note, however, that it can be generalized to the model where
each vertex knows also the identifiers of its neighbors, yielding Ω(|E|) lower bounds similar
to those of [4]. Due to lack of space, the proof of Theorem 1.3 is deferred to the full paper.
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2 An MST Verification Algorithm

2.1 Definitions and Notations
Following are some definitions and notations used in the description of the algorithm. For
a graph G = (V,E,w), an edge e is said to be cycle-heavy if there exists a cycle C in G that
contains e, and e has the heaviest weight in C. For a graph G = (V,E,w), a set of edges
F ⊆ E is said to be an MST fragment of G if there exists a minimum spanning tree T of G
such that F is a subtree of T (i.e., F ⊆ T and F is a tree). Similarly, a collection F of edge
sets is referred to as an MST fragment collection of G if there exists an MST T of G such
that (1) Fi is a subtree of T for every Fi ∈ F , (2) ∪

Fi∈F
V (Fi) = V , and (3) V (Fi)∩V (Fj) = ∅

for every Fi, Fj ∈ F .
Consider a graph G = (V,E,w), an MST fragment collection F , a subgraph T of G

and a vertex v in G. The fragment graph of G, denoted GF , is defined as a graph whose
vertices are the MST fragments Fi ∈ F , and whose edge set contains an edge (Fi, Fj) iff
there exist vertices u ∈ V (Fi) and v ∈ V (Fj) such that (u, v) ∈ E. The fragment graph
induced by T , denoted TF , is defined as a graph whose vertices are the MST fragments
Fi ∈ F , and whose edge set contains an edge (Fi, Fj) iff there exist vertices u ∈ V (Fi)
and v ∈ V (Fj) such that (u, v) ∈ T . The edges of TF are also referred to as the inter-
cluster edges induced by T . For each fragment Fi ∈ F , the set of fragment internal edges
induced by T , denoted T i

I , consists of all edges of T with both endpoints in V (Fi), i.e.,
T i

I = {e | e = (u, v) ∈ T and u, v ∈ V (Fi)}. The fragment of v, denoted by F(v), is the
fragment Fi ∈ F such that v ∈ V (Fi). Denote by EF (v) the set of fragment internal edges
that are incident to v (i.e., EF (v) = {e| e = (u, v) ∈ E and u ∈ V (F(v))}). Similarly,
denote by ETI

(v) the set of fragment internal edges induced by T and incident to v.
Throughout the description of the verification algorithm we assume that the edge weights

are distinct. Having distinct edge weights simplifies our arguments since it guarantees the
uniqueness of the MST. Yet, this assumption is not essential. Alternatively, in case the graph
is not guaranteed to have distinct edge weights, we may use a modified weight function ω′(e),
which orders edge weights lexicographically: first, by their original weight ω(e), then, by the
indicator variable of the edge, and finally, by the identifiers of the edge endpoints. Under
the weight function ω′(e), edges with indicator variable set to “true” will have lighter weight
than edges with the same weight under ω(e) but with indicator variable set to “false” (i.e.,
for edges e1 ∈ T and e2 /∈ T such that w(e1) = w(e2), we have w′(e1) < w′(e2)). It follows
that the given subgraph T is an MST of G(V,E, ω) iff T is an MST of G(V,E, ω′). Moreover,
since ω′(·) takes into account the unique vertex identifiers, it assigns distinct edge weights.

The MST verification algorithm makes use of Procedures DOM_Part and MAX_Label,
presented in [26] and [20] respectively. The distributed Procedure DOM_Part, used in [26],
partitions a given graph into an MST fragment collection (MFC) F , where each fragment
is of size at least k + 1 and depth O(k), for a specified parameter k. A fragment leader
vertex is associated with each constructed fragment (the identifier of the fragment is the
identifier of the fragment’s leader). After Procedure DOM_Part is completed, each vertex v
knows the identifier of the fragment to which it belongs and v’s incident edges that belong
to the fragment. (To abide by the assumption of [26] that each vertex knows the identifi-
ers of its neighbors, before applying Procedure DOM_Part, the algorithm performs a single
communication round that exchanges vertex identifiers between neighboring vertices.)

The labeling scheme MAX_Label of [20] which is designed for the family of weighted trees
constructs an encoder algorithm E and a decoder algorithm D that satisfy the following:
1. Given a weighted tree T , the encoder algorithm E assigns a label L(v) to each vertex v of T .
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2. Given two labels L(u), L(v) assigned by E to two vertices u and v in some weighted tree
T , the decoder algorithm D outputs MAX(u, v), which is the maximum weight of an edge
on the path connecting u and v in T . (The decoder algorithm D bases its answer on the pair
of labels L(u), L(v) only, without knowing any additional information regarding the tree T .)
The labeling scheme MAX_Label produces O(logn logW )-bit labels, where W is the largest
weight of an edge. Since W is assumed to be polynomial in n, the label size is O(log2 n) bit.

2.2 The algorithm
The algorithm consists of three phases. The first phase starts by running the distributed
Procedure DOM_Part of [26], which constructs an MST fragment collection (MFC) F for a
fixed parameter k that will be specified later. The algorithm verifies that the set of edges
contained in the constructed MFC is equal to the set of fragment internal edges induced by
the MST candidate T , namely, ∪

Fi∈F
Fi = ∪

Fi∈F
T i

I (note that this is a necessary condition for
correctness since the graph is assumed to have a unique MST).

In the second and third phases, the algorithm verifies that all remaining edges of T form
an MST on the fragment graph GF . Let TF be the fragment graph induced by T with
respect to the MFC F found in the previous phase. In order to verify that TF forms an
MST on the fragment graph GF , it suffices to verify that TF is a tree and that none of the
edges of TF is a cycle heavy edge in GF . The above is done by using the labeling scheme
(E ,D) of [20] (or [24]) on TF . Informally, the algorithm assigns a label L(Fi) to each vertex
Fi of TF using the encoder algorithm E applied on TF . The label L(Fi) is then efficiently
delivered to each vertex in Fi. Recall, that given the labels of two fragments L(Fi), L(Fj)
it is now possible to compute the weight of the heaviest edge on the path connecting the
fragments in TF by applying the decoder algorithm D. Once all vertices obtain the labels of
their corresponding fragments, each vertex of G can verify (using the decoder D) that each
inter fragment edge incident to it and not participating in TF forms a cycle when added
to TF for which it is a cycle heavy edge. Following is a more detailed description of the
algorithm.

1. a. The source vertex s (that initiates the algorithm) constructs a BFS tree rooted at s,
computes the values n and D and broadcasts a signal on the BFS tree instructing
each vertex to send its identifier to all its neighbors.

b. Perform Procedure DOM_Part(k), where k is specified later. (The result is an MFC F ,
where each fragment F ∈ F is of size |V (F )| > k and depth O(k), having a fragment
leader and a distinct fragment identifier known to all vertices in the fragment).

c. Each vertex sends its fragment identifier to all its neighbors.
d. Each vertex v identifies the sets of edges EF (v) and ETI

(v).
e. Verify that ∪

Fi∈F
Fi = ∪

Fi∈F
T i

I by verifying at each vertex v that EF (v) ⊆ T and
ETI

(v) ⊆ F(v). (Else return “T is not an MST”.)
2. a. Vertex s counts the number of fragments by performing a convergecast on the BFS

tree (only fragment leader vertices increase the counter of the convergecast). Let f
be the number of fragments.

b. Vertex s counts the number of inter fragment edges induced by T (i.e., the number of
edges in TF ) by performing a convergecast on the BFS tree. Then, Vertex s verifies
that the number of edges is equal to f − 1. (Else return “T is not an MST”.)

c. All vertices send the description of all edges in TF to s, by performing an upcast on
the BFS tree. (The edges of TF are all edges of T that connect vertices from different
fragments.)
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d. Vertex s verifies that TF is a tree. (Else return “T is not an MST”.)
3. a. Each fragment leader sends a message to vertex s over the BFS tree. Following these

messages, all vertices save routing information regarding the fragment leaders. I.e., if
v is a fragment leader and v is a descendant of some other vertex u in the BFS tree,
then, after this step is applied, vertex u knows which of its children is on the path
connecting it to the fragment leader v.

b. Vertex s computes the labels L(Fi) for all vertices Fi in TF (i.e., assigns a label to
each of the fragments) using the encoder algorithm E . Subsequently, vertex s sends
to each fragment leader its fragment label (the label of each fragment is sent to the
fragment leader over the BFS tree using the routing information established in Step
3a above). Recall, each label is encoded using O(log2 n) bits.

c. Each fragment leader broadcasts its fragment label to all vertices in the fragment.
The broadcast is done over the fragment edges.

d. Each vertex sends its fragment label to all its neighbors.
e. Each vertex v verifies for every neighbor u not belonging to v′s fragment, and s.t.

(u, v) /∈ T , that w(v, u) ≥ MAX(F(v),F(u)) (the value MAX(F (v), F (u)) is com-
puted by applying the decoder algorithm D on labels L(F(v)), L(F(u))). (Else return
“T is not an MST”.)

2.3 Complexity

Steps 1a and 1c clearly take O(D) time and O(|E|) messages. Step 1b, i.e., the execution of
Procedure DOM_Part, requires O(k·log∗ n) time and O(E ·log k+n·log∗ n·log k) messages. (A
full analysis appears in [30].) The remaining steps of the first phase are local computations
performed by all vertices. Thus, the first phase of the MST verification algorithm requires
O(D + k · log∗ n) time and O(E · log k + n · log∗ n · log k) messages.

Since the fragments are disjoint and each fragment contains at least k vertices, the
number of MST fragments constructed during the first phase of the algorithm is f ≤ n/k.
The table below summarizes the time and message complexities of the second and third
phases of the algorithm.

Step Description Time Messages

2a,2b BFS convergecast O(D) O(|E|)
3d Communication between neighbors O(log n) O(log n · |E|)
2d,3e Local computation 0 none
2c,3a BFS upcast of f messages O(D + f) O(f ·D)
3b BFS downcast of f messages (each of size log2 n) O(D + f · log n) O(f · log n ·D)
3c Broadcast in each of the MST fragments O(k + log n) O(log n · n)

Combining the above arguments, we get that the algorithm requires time O( n
k · logn + k ·

log∗ n+D) and O(E ·logn+n·log∗ n·log k+ n
k ·logn·D+n·logn) messages. Recall that after

Step 1a is applied, the source vertex s knows the number of nodes n and the diameter D.
By choosing k =

√
n in case D <

√
n and k = D otherwise, we get the following, implying

Theorem 1.1.

I Lemma 2.1. The MST verification algorithm requires O(
√
n · logn+D) time and (|E| ·

logn) messages.

STACS’11



76 Tight Bounds For Distributed MST Verification

2.4 Correctness
We now show that our MST verification algorithm correctly identifies whether the given tree
T is an MST. We begin with the following claim.
I Claim 2.2. Let T be a spanning tree of G such that T contains all edges of the MFC F
and TF forms an MST on the fragment graph of G (with respect to the MFC F). Then T
is an MST on G.

Proof. Since F is an MST Fragment collection, there exists an MST T ′ of G such that T ′
contains all edges of F . Due to the minimality of T ′, the fragment graph T ′F induced by T ′
necessarily forms an MST on the fragment graph of G (with respect to the MFC F). Hence
we get that w(T ) = w(T ′), thus T is an MST of G. J

Due to the assumption that edge weights are distinct, we get:
I Observation 2.3. The MST of G is unique.
By combining Claim 2.2 and Observation 2.3 we get the following.
I Claim 2.4. A spanning tree T of G is an MST if and only if T contains all edges of the
MFC F and TF forms an MST on the fragment graph of G (with respect to the MFC F)

I Lemma 2.5. The MST verification algorithm correctly identifies whether the given tree T
is an MST of the graph G.

Proof. By Claim 2.4, to prove the correctness of the algorithm it suffices to show that given
an MST candidate T , the algorithm verifies that:
(1) T is a spanning tree of G,
(2) T contains all edges of F , and
(3) TF forms an MST on the fragment graph of G with respect to the MFC F .

Since F as constructed by Procedure DOM_Part in the first phase is an MFC, it spans
all vertices of G. Step 1e verifies that ∪

Fi∈F
Fi = ∪

Fi∈F
T i

I , thus after this step, it is verified
that T does not contain a cycle that is fully contained in some fragment Fi ∈ F (since every
Fi ∈ F is a tree). On the other hand, step 2d verifies that T does not contain a cycle that
contains vertices from different fragments. Hence, the algorithm indeed verifies that T is
a spanning tree of G, and Property (1) follows. Property (2) is clearly verified by step 1e
of the algorithm. Finally, to verify that TF forms an MST on the fragment graph of G it
suffices to verify that inter-fragment edges not in TF are cycle heavy, which is done in step
3e. Property (3) follows. J

3 Message Complexity Lower Bound

We prove a message complexity lower bound of Ω(|E|) on the Spanning Tree (ST) verification
problem, which is a relaxed version of the MST verification problem defined as follows. Given
a graph G = (V,E, ω) and a subgraph T (referred to as the ST candidate), we wish to decide
whether T is a spanning tree of G (not necessarily of minimal weight). Clearly, a lower bound
on ST verification problem also applies to the MST verification problem. Since spanning
tree verification is independent of the edge weights, for convenience we consider unweighted
networks throughout the lower bound proof.

We begin with a few definitions. A protocol is a local program executed by all vertices in
the network. In every step, each processor performs local computations, sends and receives
messages, and changes its state according to the instructions of the protocol. A protocol
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achieving a given task should work on every network G and every ST candidate T . Fol-
lowing [4], we denote the execution of protocol Π on network G(V,E) with ST candidate T
by EX(Π, G, T ). The message history of an execution EX = EX(Π, G, T ) is a sequence
describing the messages sent during the execution EX. Consider a protocol Π, two graphs
G0(V,E0) and G1(V,E1) over the same set of vertices V , and two ST candidates T0 and T1
for G0 and G1 respectively, and the corresponding executions EX0 = EX(Π, G0, T0) and
EX1 = EX(Π, G0, T1). We say that the executions are similar if their message history is
identical.

Let G = (V,E) be a graph (together with an assignment of vertex identifiers), T be a
subgraph and e = (u, v) be one of its edges. Let G′ = (V ′, E′) be some copy of G = (V,E),
where the identifiers of the vertices in V ′ are not only pairwise distinct but also distinct from
the given identifiers on V . Consider the following graphs G2 and Ge and the subgraph T 2.
• Graph G2 is simply G2 = (V 2, E2) = G ∪G′ = (V ∪ V ′, E ∪E′). The subgraph T 2 of G2

is defined as the union of the two copies of T , one in G and the other in G′.
• The graph Ge is a “cross-wired” version of G2. Formally, Ge = (V 2, Ee), where Ee =
E2 r {(u, v), (u′, v′)} ∪ {(u, v′), (u′, v)}. (Observe, for e /∈ T , T 2 is also a subgraph of Ge.)

Let Π be a protocol that correctly solves ST verification problem. Fix G to be some
arbitrary graph, fix a copy G′ of G, fix a spanning tree T of G, and fix a source vertex s ∈ V
initiating the execution of Π on either of the graphs G,G2 and Ge with the ST candidates
T, T 2 and T 2, respectively. We stress that G2 (with candidate T 2) is not a valid input for
the ST (or the MST) verification problem since it is not connected. Still, we can consider
the execution EX(Π, G2, T 2), without requiring anything from its output.

I Lemma 3.1. Let e ∈ E \ E(T ), such that no message is sent over the edges e and e′ in
execution EX(Π, G2, T 2). Then executions EX(Π, G2, T 2) and EX(Π, Ge, T 2) are similar.

Proof. Proof Sketch of lemma 3.1. We show that in both executions each vertex sends and
receives identical sequences of messages in each communication round of the protocol. Note
that at each round the messages sent by some vertex w is dependent on w’s topological view
(neighbors of w), w′s initial input (the indicator variables of the edges incident to w), and
the set of messages sent and received by w in previous communication rounds. Denote by
EX2 and EXe executions EX(Π, G2, T 2) and EX(Π, Ge, T 2) respectively. Note that any
vertex w ∈ V 2 r {u, v, u′, v′} has identical topological view and identical initial input in
both executions. Vertex u has identical initial input and identical number of neighbors in
both executions. Though the communication link connecting u to v in G2 connects u to v′
in Ge, vertex u is initially unaware of this difference between the executions since it does
not know the identifiers of its neighbors. (Same holds for vertices v, u′ and v′.) The proof
is by induction on r, the number of communication rounds of protocol Π.
Induction base: For r = 0. In the first communication round, the messages sent by each
vertex depend solely on its topological view and initial input. Let us analyze the sequence
of messages sent by vertices in V (the vertices of graphs G2 and Ge that belong to the first
copy of G). Following are the possible cases.
Vertex w /∈ {u, v}: Vertex w has identical topological view and identical initial input in both
execution, thus it sends identical sequence of messages in the first round of both executions.
Vertex u: As mentioned above, although in execution EXe vertex u is connected to v′

instead of v, it has no knowledge of this difference. Thus u sends identical sequence of
messages over each of its communication links. The fact that no messages are sent over edge
e in execution EX2, implies that in execution EXe no message is sent by u to its neighbor
v′. Thus, u sends identical sequence of messages in the first communication round of both
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executions.
Vertex v: can be analyzed in the same manner as vertex u.
The above shows that vertices in V send the same sequence of messages in the first commu-
nication round of both executions. The induction base claim follows by applying the same
argument on vertices of V ′.

Inductive step: Can be shown using a similar case analysis as in the induction base. J

Theorem 1.2 follows as a consequence of the following Lemma.

I Lemma 3.2. Execution EX(Π, G2, T 2) requires Ω(|E2 r T 2|) messages.

Proof. Assume, towards contradiction, that there exists a protocol Π that correctly solves
the ST verification problem for every graph G and ST candidate T , such that execution
EX(Π, G, T ) sends fewer than |E r T |/2 messages over edges from E r T .

For the rest of the proof we fix G = (V,E) to be an arbitrary connected graph and denote
the ST candidate by T . We take T to be a spanning tree and not just any subgraph. (See
Figure 1).

e

u

v

Figure 1 Graph G with ST candidate T (the bold edges belong to T )

Consider the graph G2 as previously defined with ST candidate T 2 = {e ∈ T}∪{(u′, v′) :
e = (u, v) ∈ T} (See Figure 2).

e’e

v’

u’u

v

Figure 2 Graph G2 with ST candidate T 2 (the bold edges belong to T 2)

Then by the assumption on Π, execution EX2 = EX(Π, G2, T 2) sends fewer than |E2 r
T 2|/2 messages over edges from E2 r T 2. Hence there exist e = (u, v) and e′ = (u′, v′) such
that e, e′ ∈ E2 r T 2 and no message is sent over e and e′ in execution EX2. Consider the
graph Ge with ST candidate T 2 as previously defined (See Figure 3).

By Lemma 3.1, executions EX2 and EXe = EX(Π, Ge, T 2) are similar. Note that
e, e′ /∈ T 2, thus T 2 is not a spanning tree of Ge (since the two copies of G contained in Ge
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v’

u’u

v

Figure 3 Graph Ge with ST candidate T 2 (the bold edges belong to T 2)

are connected solely by edges e and e′). Since Π correctly solves the ST verification problem,
the output of all vertices in EXe is “0” (i.e., the given ST candidate T 2 is not a spanning
tree of the graph Ge). On the other hand, consider the execution EX = (Π, G, T ) with ST
candidate T . Note that EX is exactly the restriction of EX2 on the first copy of G contained
in G2. Since G2 contains two disconnected copies of G the output of all vertices in execution
EX2 will be identical to the output of the same vertices in EX (since in both executions
the vertices have identical topological view and the input variables contain identical values).
Since executions EX2 and EXe are similar, the output of EX is “0”, in contradiction to
the correctness of Π. J
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over linearly ordered data domains∗
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Abstract
In this paper we work over linearly ordered data domains equipped with finitely many unary
predicates and constants. We consider nondeterministic automata processing words and storing
finitely many variables ranging over the domain. During a transition, these automata can compare
the data values of the current configuration with those of the previous configuration using the
linear order, the unary predicates and the constants.

We show that emptiness for such automata is decidable, both over finite and infinite words,
under reasonable computability assumptions on the linear order.

Finally, we show how our automata model can be used for verifying properties of workflow
specifications in the presence of an underlying database.
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1 Introduction

System verification often requires dealing with infinite state systems. There are many sources
of infinity, one of them being the presence of variables ranging over an infinite set of data
values and this is the focus of this paper.

There exist several decidable models of automata and logics that explicitly manipulate
data values and that can be used for verification. In order to achieve decidability there is
a necessary trade-off between the permitted operations on data and the allowed recursion.
For instance, many models consider only equality tests between data values [3, 10, 14], or
limit the recursion or the expressive power [4, 5, 8, 9], or only apply over specific data
domains [11, 7, 8, 9, 6, 1].

In terms of possible operation on data values, equality tests permit already a wide range
of recursion schemes and the corresponding decidability results can be used for modeling a
variety of applications. However it has been advocated in [11] that comparisons based on a
linear order over the data values could be useful in many scenarios, including data centric
applications built on top of a database. They propose a model for specifying “artifact centric
workflows” in the presence of a database and prove that temporal properties can be verified
in PSpace, if the data domain is the set of rational numbers.

In this paper, we consider automata over words which are equipped with a finite set of
variables, ranging over a linearly ordered structure. Transitions of the automaton are based
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on constraints on the variables using the vocabulary of the structure. We present a method
for analyzing emptiness of such automata over finite and infinite words, independently of
the linearly ordered structure. We derive from it several useful decidability results. Below
we describe these contributions in more details.
The setting. We consider arbitrary linearly ordered structures. Apart for a linearly ordered
set, the structure may be equipped with finitely many unary predicates and constants. Over
the integers, typical unary predicates might denote the set of primes or the set of numbers
divisible by a fixed constant.
Automata. We present a model of automata (either for finite or infinite words) over such
linearly ordered structures. A configuration of the automaton is a tuple of data values of a
fixed arity. A transition constrains the values of the next configuration relative to the values
of the current one by a Boolean combination of predicates in the vocabulary of the structure.
The initial and accepting configurations are also specified using similar constraints.
The potential. Our main contribution is a generic toolbox for the described model of
automata, which is applicable to all linearly ordered structures. It is based on the notions of
potential and saturation. Intuitively, saturation1 transforms a linearly ordered structure by
inserting finitely many new constants until all intervals between two consecutive constants
contain infinitely many or no points of a certain property. Once the structure is saturated,
it admits a potential. One can think of the potential as of a measure of how generic a
configuration is; the main property is that an automaton may choose the next configuration
to be sufficiently generic, provided the previous configuration was also generic. The rest of
the paper can be seen as applications of these notions.
Main results. As a first application of our toolbox, we show that over any linearly ordered
structure our automata can be simulated by finite state automata. This implies that empti-
ness for our automata model is decidable for finite and infinite runs, if the structure satisfies
reasonable complexity assumptions, typically being able to test for satisfiability of a set of
constraints expressed using the predicates of the structure. This yields PSpace decision
procedures for many linearly ordered structures, in particular integers and rationals.

We also present a variant of LTL, where Boolean predicates are replaced with constraints
using the predicates of the structure, and which works over words extended by tuples of
data values. This logic can be translated into our automata model. Combining this with
the emptiness test mentioned above, we obtain decidability results concerning this logic and
PSpace complexity in most important cases. As our automata are closed under intersection,
this allows to test LTL properties on the runs of a given automata.

Finally, our last result shows how our toolbox can be used for dealing with automata
that moreover have the possibility of consulting a finite database in order to constrain their
transitions. This method works for all linearly ordered structures, giving an alternative
proof of the result of [11] over rationals but also solving the case of integers, which was
posed as an open problem.
Related work. Our automata model is very close to the one used in [7] over integer data
values. Čerāns solved the decidability of the emptiness problem using Dickson’s lemma. The
obtained decision algorithm is therefore non-primitive recursive. That proof does not apply
to dense linear orders and it’s not clear how it can be extended to incorporate the presence
of an underlying database. These issues are solved in this paper.

Our model of automata generalizes the register automata studied in [6, 14] – indeed,

1 Our notion of saturation differs from the usual logical one in two important ways: it considers only
existential types and it is constructive.
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a configuration can be seen as a valuation of the registers and additionally of the current
datum of the input word. Our model is more expressive as we can compare data values
using a linear order and unary predicates. Our setting also generalizes the model of [1] for
verifying properties of programs working on arrays. Their model allows for linear tests but
is specific to integers and finite runs.

Our notion of potential uses a partitioning of the space into cells. Similar techniques were
developed for timed automata or over dense linearly ordered structures. See for instance [12].
Over dense linearly ordered structures, register automata generalize the notion of timed
automata in a sense explained in [13]. Our notion of potential hence generalizes these ideas
even for discrete linearly ordered structures.

The work of [11] considers specification and verification of workflows over finite databases
whose underlying domain is the set of rationals. In fact, over the rationals, our model of
automata can be viewed as a simplification of the elaborate formalism used in [11], necessary
for the specific application targeted therein. As is shown in that paper, LTL formulas can
be checked in PSpace assuming a fixed database schema, ExpSpace otherwise. We obtain
similar results but our proof also applies for other linearly ordered structures, in particular
over the integers, settling an open problem raised in [11].

There exist many extensions of LTL with several kinds of constraints over various data
domains. Decidable fragments can compare data values using their relative order or their
value modulo some constant. The complexity of satisfiability is shown to be PSpace-
complete, see [8] for a survey. This also follows from our results.
Due to space limitations many proofs are omitted or only sketched. They will appear in the
journal version of this paper. We thank the anonymous referees for the useful comments.

2 Preliminaries

Linearly ordered structures. By a linearly ordered structure we refer to a structure of the
form D = 〈D,<,P1, P2, . . . , Pl, c1, c2, . . . , cm〉, where D is the domain of the structure, < is
a linear order on D, P1, . . . , Pl are unary predicates denoting subsets of D and c1, . . . , cm are
constants. Typical examples are 〈Z, <, 0, 1〉, 〈Q, <, 0〉, 〈{a, b}∗, <lex, Pa, Pb, ε〉 where <lex is
the lexicographical order and Pa, Pb are unary predicates indicating the last letter of a word.
But we also consider more elaborate linear orders such as 〈Q, <, Peven, Podd, Pprime〉, where
the three predicates correspond to even integers, odd integers and prime integers.
Formulas and cells. We now assume a fixed linearly ordered structure D and dimension
k. We consider k-ary relations over the domain of D definable by a Boolean combination of
atoms built from the symbols of D using k variables. Each set of this form will be called a
region in Dk. A region that corresponds to a maximal consistent conjunction of atoms or
negated atoms is called a cell in Dk. Note that there are finitely many cells and any region
is a disjoint union of cells. For instance, over D = 〈Z, <, 0〉, x < y defines a region of D2

which is the disjoint union of 5 cells: x < y < 0, x < y = 0, x < 0 < y, x = 0 < y and
0 < x < y. A tuple x̄ ∈ Dk will be also called a point in Dk. For each such x̄ we denote by
〈x̄〉 the unique cell in Dk containing x̄.

We fix a finite alphabet A. A D-automaton A of dimension k is a tuple ((δa)a∈A, τI , τF )
described as follows. For each letter a∈A, δa is a region in Dk×Dk=D2k, representing the
allowed transitions of A when reading the letter a; τI and τF are regions in Dk denoting the
initial and accepting configurations of A.

The configurations of A are points in Dk. Let w = a1a2 . . . an be a finite word. A run
ρ of A on w is a sequence of configurations x̄0, x̄1, . . . , x̄n ∈ Dk such that x̄0 ∈ τI and
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for each i ∈ {1, . . . , n}, the pair (x̄i−1, x̄i) lies in the region δai
. The run ρ is accepting

if the sequence terminates in a configuration x̄n ∈ τF . The language recognized by the
D-automaton A is the set of words for which there is an accepting run. In Section 4 we will
consider automata over infinite words, but right now we focus on finite words. As usual, we
are mostly interested in determining emptiness of such automata.

I Example 1. We define a D-automaton A of dimension 2, where D = 〈Q, <, 0〉 or D =
〈N, <, 0〉 and A = {a, b}. The regions τI , τF are both described by x1 ≥ 0 ∧ x2 ≥ 0. The
region δb is the set of points (x1, x2, y1, y2) such that y2 = x2 ∧ x1 < y1 < x2 and δa is
specified by y2 = x2 ∧ y1 = 0. The language recognized by A is (b∗a)∗.

I Remark. It is often convenient to equip D-automata with states. This does not change
the expressive power as states can be simulated using extra dimensions.
I Remark. Since one can construct Cartesian products of D-automata, the languages they
recognize are closed under union and intersection.
I Remark. We could also use existential formulas for defining the transitions of the auto-
maton. This would not affect decidability nor expressiveness. However, if we allowed a
logic which can define the successor relation (such as first-order logic, when working over
the naturals), we would easily encode a Minsky machine into the model, resulting in an
undecidable emptiness problem.
Results. In the next section we develop a framework for manipulating D-automata based
on the notions of potential and saturation. We illustrate the use of these notions by proving
that for any linearly ordered structure D and D-automaton A, the language recognized by
A is regular by exhibiting an equivalent finite state automaton, yielding:

I Theorem 2. For any linearly ordered structure D, D-automata recognize precisely the
class of regular languages.

We will see in Section 3.4 that our proof is actually constructive assuming that a reasonable
amount of computation can be performed on D. Our construction brings a PSpace com-
plexity for the emptiness problem for all linearly ordered structures used in the literature.

An analogue of Theorem 2 for infinite words no longer holds. However, with further
computational assumptions, we will extend the decidability of emptiness to the infinite
setting in Section 4. In Section 5 we show how LTL formulas using constraints expressible
over D can be translated into D-automata. Finally in Section 6 we show how our framework
can also be used to solve the case where an underlying finite database is present.

3 Finite words

3.1 Cell automata
In this section we fix a linearly ordered structure D and a D-automaton A of dimension k,
described by the tuple ((δa)a∈A, τI , τF ). We construct a finite nondeterministic automaton
A′, called the cell automaton, targeted at simulating the runs of A.

The states of A′ are the cells of Dk. The automaton A′ has a transition from the state τ
to the state τ ′ labeled by the input letter a if and only if there exist x̄ ∈ τ and ȳ ∈ τ ′ such
that (x̄, ȳ) ∈ δa. The initial states of A′ are those cells τ for which τ ⊆ τI . The accepting
states are those cells τ for which τ ⊆ τF . The following proposition is rather immediate:

I Proposition 3. The language recognized by A is included in the language recognized by A′.
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The converse inclusion does not always hold, as shown in the following example.

I Example 4. Let D = 〈Z, <, 0, 3〉 and let A be the D-automaton of dimension 1 described
as follows. The region δa is the subset of D2 given by the condition 0 < x < y < 3; the initial
and final regions are defined by 0 < x < 3. A accepts {ε, a}. However, the cell automaton
A′ corresponding to A has a self-loop in the state corresponding to the cell 0 < x < 3 and
therefore recognizes the language a∗.

3.2 Potential
We can prove the correctness of the cell construction if Dk is equipped with a sort of inductive
measure called the potential which tells, roughly, given a point x̄ ∈ Dk, how long runs of the
cell automaton can be lifted to runs of the original automaton, starting from the point x̄.
Formally, a function E : Dk → N ∪ {∞} is called a potential for Dk if it satisfies the following
conditions.

1. Cells have unbounded potential: For any cell θ ⊆ Dk and any number s ≥ 0 there exists
a point x̄ ∈ θ such that E(x̄) ≥ s.

2. Transitions decrease the potential by at most 1 : Let τ, τ ′ ⊆ Dk, δ ⊆ D2k be cells such
that there exists (x̄0, ȳ0) ∈ δ with x̄0 ∈ τ and ȳ0 ∈ τ ′. Then, if x̄ ∈ τ is such that
E(x̄) ≥ s + 1 for some s ≥ 0, there exists a point ȳ ∈ τ ′ such that (x̄, ȳ) ∈ δ and
E(ȳ) ≥ s.

I Example 5. If D = 〈Q, <, 0, 3〉, the mapping constantly equal to ∞ is a potential for Dn,
for any n ∈ N. This follows easily from the fact that Q is a dense linear order.

On the other hand, if D = 〈Z, <, 0, 3〉 as in Example 4, then D1 cannot be equipped with
a potential. Indeed, the cell τ : 0 < x < 3 contains only two points, x̄0 = 1 and ȳ0 = 2.
By using the second axiom, it is not difficult to prove that both points in τ must have a
potential smaller than 2, contradicting the first axiom of the potential.

However, if D = 〈Z, <, 0, 1, 2, 3〉, there is a potential for D1 which assigns to a point
x the value ∞ if x ∈ {0, 1, 2, 3} and the distance from x to the “critical set” {0, 1, 2, 3}
otherwise. Intuitively, a cell in D2, seen as a transition, either sets the value of the variable
to some constant, or allows the variable to attain a value arbitrarily far from the critical set,
or requires the variable to get closer by at least one to the critical set. In any case, taking
a point x ∈ Z with potential at least s, we can follow any transition and guarantee to end
up in a point with potential at least s− 1.

Finally, consider D2, where D = 〈Z, <, 0, 1, 2, 3〉. Then D2 can also be equipped with a
potential which, roughly, to a given point (x, y) assigns a value which depends on how far
the variables x, y are from the constants 0, 1, 2, 3 and from each other. Such a potential is
constructed in the next section.

In the presence of a potential, runs of the cell automaton induce corresponding runs
of the original D-automaton. This is phrased in the following proposition, whose proof is
obtained from the definition by an easy induction.

I Proposition 6. Let Dk be equipped with a potential E, let A be a D-automaton of dimen-
sion k and let A′ be the cell automaton corresponding to A. Let τ0 → τ1 → · · · → τn be a
run of the cell automaton over a word a1a2 . . . an. Then, for all numbers s ≥ 0 and for all
points x̄0 ∈ τ0 such that E(x̄0) ≥ s+ n there exists a sequence of points x̄1, x̄2, . . . , x̄n ∈ Dk
such that x̄i ∈ τi, E(x̄i) ≥ s+ i and (xi−1, xi) ∈ δai

for all i = 1, . . . n.
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In the above proposition, accepting runs of A′ clearly induce accepting runs of A. There-
fore, we immediately obtain the following.

I Theorem 7. Assume that there is a potential E for Dk. Then, for any D-automaton of
dimension k, the corresponding cell automaton A′ recognizes the same language as A.

3.3 Constructing the potential and saturation
When D cannot be equipped with a potential, we show how to extend D to a structure
which is saturated. For such structures, we are always able to define a potential. Altogether,
this will prove Theorem 2. In Example 4 the saturation process will add the constants 1, 2
to the structure, allowing the new cell automaton to count up to 3.

Let D be a linear order. A virtual element of D is a subset S of D which is downward
closed (i.e. x ∈ S ∧ y ≤ x =⇒ y ∈ S), but is not of the form {y | y < x} or {y | y ≤ x} for
some x ∈ D. For an element x ∈ D and a virtual element S, we will write x < S if x ∈ S,
and x > S otherwise. Also, for two virtual elements S, S′ we can write S < S′ if S ( S′. We
denote by D̄ the set of elements and virtual elements of D, linearly ordered by < (known as
the Dedekind completion, modulo the elements ∅, D which are normally not considered in
D̄). Note that D̄ has a smallest and largest element, denoted c−∞ and c∞, respectively.

In a linearly ordered structure D we distinguish between two kinds of unary predicates.
We denote those that correspond to virtual elements, as they play a crucial role in our proofs,
as virtual constant and we treat them as constants. In particular we will use symbols c, d
for both virtual and real constants. As an example, consider the linearly ordered structure
〈Q, <, e〉 where e is a virtual constant corresponding to the set {x ∈ Q | x < 2.718 . . .}.

For a point x ∈ D, we define its type, denoted t(x) as the set of unary predicates
(including virtual constants) it satisfies and constants which it is equal to.

To simplify the following definitions, we will assume that c−∞ and c∞ are (possibly
virtual) constants of D. Let w = t1, . . . , tn be a sequence of types. We say that a sequence
of points x1 < . . . < xn realizes w if t(xi) = ti for all i. For an interval I, we say that w is
realizable in I if some sequence x1 < . . . < xn of elements of I realizes w.

We construct a function, called quasi-potential, qE : D∗ → N ∪ {∞}, defined on all tuples
of elements of D. It will give raise to a potential defined on Dk, for all k. Intuitively, x̄ has
high potential if long sequences of types can be realized in between any two coordinates of
x̄ or between a coordinate of x̄ and a constant. The precise definition is given below.

Let x̄ be a point in Dk. Let {u1, u2, . . . , us} be the union of the set of coordinates of x̄
and of the set of constants and virtual constants of D. We assume that u1 < u2 < . . . < us.
For x ∈ D̄ let c(x) be the largest (virtual) constant c such that c ≤ x and c(x) be the
smallest (virtual) constant c such that x ≤ c. For 1 ≤ i < s, let Ti be the set of types
occurring in ]c(ui), c(ui+1)[. For each 0 ≤ i < s, the capacity of the interval ]ui, ui+1[ is the
length of the shortest sequence of elements of Ti which is not realizable in ]ui, ui+1[ or as ∞
if all such sequences are realizable. Finally, we define

qE(x̄) = min{capacity of ]ui, ui+1[ | 1 ≤ i < s}.

In the case where k = 0, D0 contains only one element – the empty tuple ε. We say that
D is saturated if qE(ε) = ∞. In other words, for any two consecutive (virtual) constants
c, d, any sequence of types which occur between c and d is realizable between c and d. Any
linearly ordered structure can be transformed into a saturated one:

I Theorem 8. Let D be a linearly ordered structure. It is possible to expand D with a finite
set of constants and virtual constants to obtain a saturated structure D̂.
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Proof. We say that a linear order D is complete if any subset of D has its supremum, i.e.
a least upper bound (again, this deviates slightly from the standard notion of completeness
by the least and smallest elements). Examples of complete linear orders are N ∪ {∞},R ∪
{−∞,+∞} but not Q∪{−∞,+∞} nor R. The following lemma solves the case of complete
linear orders.

I Lemma 9. Let D be a complete linear order. Let a < b be two points in D and let
t : ]a, b[→ T be a function with |T | = n <∞. Then there exist a = d0 < d1 < . . . < dm = b

such that for any interval I =]di, di+1[ and w ∈ (t(I))∗, the sequence w is realizable in I.

Proof. We prove the claim by induction on n. If n = |T | = 0 there is nothing to prove. Let
us assume that we have proved the proposition for all |T | < n. Let s denote the length of
the shortest sequence w ∈ T ∗ which is not realizable in the interval ]a, b[. We do a nested
induction on s. If s = 1, there is a u ∈ T which does not occur in ]a, b[, so we may reduce
the set T to T \ {u} with less than n elements. Let us assume that s ≥ 2.

Let w = t1, . . . , ts ∈ T ∗ be the sequence of length s which is not realizable in the interval
]a, b[. We will define an element c such that for both open intervals ]a, c[ and ]c, b[, there is
a non-realizable sequence of length smaller than s.

If s > 2 then the sequence t1, ts is realizable in ]a, b[, so let x < y realize it. Let c = x.
Then the sequence t1, t2, . . . , ts−1 is not realizable in the interval ]a, c[ and the sequence
t2, t3, . . . , ts is not realizable in the interval ]c, b[.

If s = 2, the sequence t1, t2 is not realizable in ]a, b[. Let us consider the supremum c of
all possible x with t(x) = t2. Then, t2 is not realizable in the interval ]c, b[. Moreover, t1 is
not realizable in the interval ]a, c[ — otherwise, t1, t2 would be realizable in ]a, b[.

We apply the inductive assumption to ]a, c[ and ]c, b[ obtaining sequences a = d0 < d1 <

. . . < dm = c and c = dm < dm+1 . . . < dm′ = b such that for any interval I =]di, di+1[ and
w ∈ (t(I))∗, the sequence w is realizable in I. This ends the inductive proof of the lemma. J

Let D = 〈D,<,P1, P2, . . . , Pl, c1, c2, . . . , cm〉 be an arbitrary linearly ordered structure.
It is well known that 〈D̄,<〉 is a complete linear order. Let us consider the structure

D̄ = 〈D̄,<, P0, P1, P2, . . . , Pl, c1, c2, . . . , cm〉,

where P0 is the unary predicate corresponding to the set D ⊆ D̄. Let t : D̄ → T be the
function which assigns to an element of D̄ its type, i.e. the set of unary predicates it satisfies
and constants equal to it. We apply Lemma 9 to D̄ and the points c−∞ < c∞. We obtain
a sequence of elements d0 < d1 < . . . < dm′ such that for any interval I =]di, di+1[ and w ∈
(t(I))∗, the sequence w is realizable in I. We define D̂ as the extension of D by the (possibly
virtual) elements d0, . . . , dm′ as constants. It is easy to verify that D̂ is saturated. J

I Example 10. We apply the procedure of Theorem 8 to D = 〈Z, <, 0, 3〉 of Example 4.
The only relevant interval is ]0, 3[. There is only one type t in ]0, 3[ and ttt is not realized.
Since tt is realized by 1 < 2, we are in the first case and the constant 1 is added to D. In the
next step, the relevant interval is ]1, 3[ and tt is not realized in it. Adding the supremum of
all elements of type t in ]1, 3[, i.e. the constant 2, yields a saturated structure.

To see why we might need to also add a virtual constant, consider the linearly ordered
structure D = 〈Q, <, 0, 3, P,Q〉 where P = {(1−1/n)n|n ∈ N} and Q = {(1+1/n)−n|n ∈ N}.
Consider the interval ]0, 3[. As P ∩ Q = ∅ there are three types occurring in this interval:
t1 = {P}, t2 = {Q}, t3 = ∅. Since t1t2 is not realized in ]0, 3[, the procedure of Theorem 8
introduces the supremum of all elements of type t2 in this interval, i.e. the virtual constant e.
The reader can verify that the resulting structure D̂ = 〈Q, <, 0, 3, e, P,Q〉 is saturated.
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I Theorem 11. If D is a saturated linearly ordered structure and k ≥ 0 then there is a
potential E for Dk, given by E(x̄) = blog3k (qE(x̄))c.

Proof sketch. First we show that if x̄ ∈ Dk has qE(x̄) ≥ s for some large s, then we can
extend it to a point (x̄, y1) laying in a prescribed cell τ1 in Dk+1, and with qE(x̄, y1) ≥ s′ for
some still large s′. We need to assume that τ1 is a “reasonable” cell – i.e. the projection of
τ1 onto the first k coordinates contains the point x̄. The cell then τ1 typically requires that
y1 lays in the interval between some two coordinates of x̄, and moreover is of some type t.
The idea is to choose y1 to lie “in the middle” of the prescribed interval, obtaining a point
with quasi-potential larger than a third of s. Iterating this process, we insert k coordinates,
getting a point (x̄, ȳ) which lays in a prescribed cell τ in D2k with qE(x̄, ȳ) ≥ s

3k . We conclude
that qE(ȳ) ≥ s

3k . By taking the appropriate logarithm, we construct the actual potential.
To show that qE is unbounded on all cells, we reuse the above reasoning: we start with the
empty tuple ε with qE(ε) ≥ s for all s by saturation, and insert coordinates one after the
other, preserving high qE-value, and finally obtaining a point in the desired cell. J

3.4 Computability and Complexity issues
We now turn to the complexity analysis. In practical applications, a base linearly ordered
structure D is fixed and new constants come with the description of the automaton. Here,
and in other sections, for a finite set C ⊆ D, we denote by D[C] the structure D extended
by the constants in C. The above motivation leads to the following decision problem, which
we call emptiness of D[C]-automata. Input: 1) A set C of elements of D, encoded in some
specified presentation 2) A description of a D[C]-automaton A. Decide: is A empty?

Our decision algorithm essentially works as follows: We first compute a saturated ex-
pansion D̂ of the structure D[C]. We then compute in D̂ the cell automaton A′ associated
to A and check its emptiness. The correctness of this algorithm follows from the results of
the previous sections. In order to decrease the complexity, we materialize neither D̂ nor A′
but compute them on the fly. For D̂ we need to know the new (virtual) constants that were
introduced together with their type. For A′ we essentially need to know the possible types
that may occur in the interval between any two successive (virtual) constants of D̂. We
therefore need to assume that D is equipped with an algorithm giving us this information.
This is formalized as follows.

A sequence s : t0T1t1T2 · · · tn−1Tntn where t0, t1, . . . , tn−1, tn are types and T1, T2, . . . , Tn
are sets of types of D is called a saturator. Given two elements x and y of D, we say that a
sequence c0 < c1 < . . . < cn of (possibly virtual) elements of D matches s in [x, y] if c0 = x,
cn = y, ci is of type ti and T ∗i are precisely the sequences of types realizable in ]ci−1, ci[.

I Example 12. Over 〈Z, <, 0〉, the saturator t∅Tεt0Tεt∅Tεt∅, where t∅ is the empty type, t0
is the type of 0 and Tε = {}, is matched in [−1, 2] by the sequence −1 < 0 < 1 < 2.

I Example 13. Over 〈Q, <, 0, P 〉, where P = {(1 + 1/n)n | n ∈ N+}, the sequence −100 <
0 < 2 < e < 100 matches the saturator t∅T∅t0T∅tPTP t∅T∅t∅ in [−100, 100] where tP is the
type P , TP = {t∅, tP }, T∅ = {t∅}, while t0 and t∅ are as before.

A saturator is realizable in [x, y] if there is a sequence which matches it in [x, y]. A linearly
ordered structure D is said to be computable if there is an algorithm that given any two
elements x, y of D replies the length of a saturator s realizable in [x, y], and afterwards, when
given a number i as input, returns the ith element of the sequence s. When this algorithm
works in PTime, we say that D is P-computable. Note that for integers or rationals, an
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obvious saturator algorithm runs in PTime, even if the numbers are coded in binary. By a
careful analysis of the proof of Theorem 2 we obtain the following.

I Theorem 14. If D is P-computable (respectively, computable) the emptiness problem of
D[C]-automata is in PSpace (respectively, decidable).

Sketch. Assume D is P-computable. Let A be a D[C]-automaton. For each pair of con-
secutive elements in C, we invoke the saturator algorithm. Let l be maximal of the lengths
of the saturators as returned by the saturator algorithm. Since l has polynomial size, each
(virtual) constant in the saturated expansion D̂ of D[C] for that interval has a polynomial
size presentation. Hence, in the end, each cell of D̂ has a polynomial size representation.
Given two cells, it can be checked in polynomial time whether there is a transition in the
cell automaton associated to A. This is because D̂ is saturated, so only local consistency
needs to be checked – namely, whether the type associated with each variable is indeed a
possible type in the interval where this variable must be realized – and this information is
also provided by the saturator algorithm. Decidability then follows by guessing on the fly
the appropriate sequence of cells. J

4 Infinite words

We now consider infinite words. Recall that a D-automaton A of dimension k consists of
the transition regions (δa)a∈A, an initial region τI ⊆ Dk and an accepting region τF ⊆ Dk.
A Büchi D-automaton is an automaton over infinite words, in which a run ρ is declared
accepting if it visits infinitely often the region2 τF .

The following example shows that Theorem 2 does not directly extend to infinite words.

I Example 15. An infinite sequence of numbers n1, n2, . . . induces an infinite word bn1abn2 . . .

Let L be the language of words which are induced by bounded sequences. Then L is recog-
nized by the Büchi D-automaton A described in Example 1, where D = 〈N, <, 0〉.

The language (b∗a)ω \L does not contain any ultimately periodic word. In particular, L
cannot be ω-regular. We will see that also nonempty Büchi D-automata must accept some
ultimately periodic word, so we deduce that they are not closed under complementation.

Although Büchi D-automata are more expressive than Büchi automata, we show that
emptiness can be reduced to the finite case, under additional computability assumptions
concerning D. We need the following notions. For a type t, we say that a (virtual) element
x of D is a left t-limit if for every y ∈ D such that y < x, the type t occurs between y

and x. A right t-limit is defined dually. The ω-type of a point x ∈ D̄ is its type extended
by the specification, for all types t, whether it is a left or right t-limit or none. An ω-
saturator is a sequence of the form t0T1t1T2 · · ·Tntn where each ti is an ω-type and each
Ti is a set of ω-types. We extend the notion of matching to the case of ω-saturators in an
obvious way. Next, we define (P-)ω-computability analogously to (P-)computability, where,
for given x, y ∈ D the algorithm should calculate an ω-saturator realizable in [x, y] treated
as a subset of D̄. Note that the structures considered earlier are P-ω-computable.

I Theorem 16. For a P-ω-computable (resp. ω-computable) linearly ordered structure D,
emptiness of Büchi D[C]-automata is in PSpace (resp. decidable).

2 An acceptance condition requiring that ρ visits infinitely often a point x̄ ∈ τF yields a weaker model.
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It appears that D-automata are related with ωB-automata, a model defined in [2]. In-
formally, an ωB-automaton is a nondeterministic automaton equipped with counters which
can be incremented and reset, but not tested during the run. The acceptance condition of
the automaton, apart from a Büchi condition, requires that the counters remain bounded
when processing the infinite input word. We call a language recognized by a D-automaton
(resp. ωB-automaton) a D-regular (resp. ωB-regular) language.

I Theorem 17. If D = 〈Q, <, c1, c2, . . . , cm〉 then the classes of D-regular languages and
ω-regular languages coincide. If D = 〈N, <, c1, c2, . . . , cm〉 then the classes of D-regular
languages and ωB-regular languages coincide. Moreover, all translations are effective.

It appears that the above dichotomy is valid for all linearly ordered structures D, depending
on whether a discrete set is definable in D (this can be formalized). The general result will
appear in the journal version of this paper.

As a conclusion from the strong complementation result of [2], we obtain:

I Corollary 18. Let A be a finite alphabet and D be as in the above theorem. It is decidable
whether a Boolean combination of languages accepted by D-automata over A is empty.

5 Temporal logic

We fix a linearly ordered structure D. We consider a variant of LTL where each atomic
predicate is replaced by a proposition comparing the current configuration with the next
one. We denote this logic by LTL(D). Its syntax is given by the following grammar:

ϕ :: ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ | ψ
ψ :: ψ ∧ ψ | ψ ∨ ψ | ¬ψ | a | P (α) | α = α | α < α

α :: x | Xx | c

where x ∈ {x1, x2, . . .} are variables, a ∈ A letters, c ∈ D, and P unary predicates of D.
The semantics of a formula ϕ ∈ LTL(D) is defined on sequences of elements in A×Dk,

where k is the maximal number such that xk appears in ϕ. Let w = (a1, z̄1)(a2, z̄2) . . . be
such a sequence. Let ψ be a proposition as described by the grammar above and let n be a
position of w. We write (w, n) |= ψ if from ψ we obtain a sentence which is valid in D after
replacing the terms of the form xi by the ith coordinate of z̄n, and terms of the form Xxi by
the ith coordinate of z̄n+1. Using the classical semantics of LTL, we extend this notation to
all formulas ϕ of LTL(D), and say that w is accepted by ϕ if (w, 1) |= ϕ.

The following result can be established along the same lines as in the classical translation
of LTL formulas into automata. Cϕ denotes the set of values which appear in the formula ϕ.

I Theorem 19. For any LTL(D) formula ϕ there exists a D[Cϕ]-automaton Aϕ whose runs
are exactly the sequences accepted by ϕ.

I Remark. In [8] terms of the form Xjx were allowed, enabling to compare the data value
with one that will occur j steps later. This can be simulated by a formula of LTL(D) after
adding new dimensions used to guess in advance the values that will appear in the following
j steps. The consistency of the guesses can be enforced at each step by a formula of LTL(D).
I Remark. It is tempting to consider other temporal formalisms. One could define a vari-
ant of µ-calculus analogously to the extension LTL(D) described above, and our model of
automata still can simulate such formulas. However, as noticed by [7, 11, 8] over various
domains, CTL(D) is undecidable.
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6 Databases

Following [11] we apply in this section the results of the previous sections in the context
where a finite database is present. For this, we fix a relational schema σ and a linearly
ordered structure D. A database over σ is then, for each relation symbol of σ, a finite
relation of the appropriate arity over the domain of D.

A (D, σ)-automaton A of dimension k is described as follows. As before, the configura-
tions of A are points in the space Dk. We assume an initial region τI ⊆ Dk and an accepting
region τF ⊆ Dk. For each a ∈ A, the transition δa is a set of pairs of the form (τ, ϕ), where
τ is a region in Dk × Dk, while ϕ is a propositional formula over σ with 2k free variables.
Given a finite database M over the schema σ and two points x̄, ȳ ∈ Dk, we write x̄ a→M ȳ

iff there is a pair (τ, ϕ) ∈ δa with (x̄, ȳ) ∈ τ and M |= ϕ(x̄, ȳ). A run ρ of A on w = a1a2 . . .

over M , is a sequence of configurations x̄0, x̄1, . . . ∈ Dk such that x̄0 ∈ τI and for each n > 0,
x̄n−1

an→M x̄n. Acceptance conditions are defined as before, for finite or infinite runs.

I Example 20. We fix D = 〈Q, <, 0〉 and σ = {P} where P is unary. Consider the (D, σ)-
automaton A of dimension 1, where τI , τF are both described by x = 0. The region τb
is the set of points (x, y) such that x < y and δb is the pair (τb, P (y)) while δa is just
specified by the region y = 0. Hence, the length of any sequence of b’s is bounded by the
size of the database, so the infinite words w for which there exists a database M and a run
of A consistent with w and M are exactly the bounded sequences of Example 15. Recall
from Theorem 17 that without the underlying database D-automata would only recognize
ω-regular languages.

Our goal is to decide whether, for a given (D, σ)-automaton A, there exists a finite database
M such that A has an accepting run over M .
I Remark. A more general setting would allow the database constraints ϕ to be existential
queries with 2k free variables. This setting can be easily reduced to the one above, by having
the automaton A guess the values for the quantified variables using extra dimensions.

It appears that adding the database does not influence the decidability results obtained
in Theorem 14 and Theorem 16 for finite and infinite words, respectively. We state the
result in the database setting.

I Theorem 21. Let D be a computable (resp. ω-computable) linearly ordered structure.
Given a (D[C], σ)-automaton A, it is decidable whether there exists a finite database M and
a finite (resp. infinite) word w such that there is an accepting run of A on w over M .
Moreover if D is P-computable (resp. P-ω-computable) then the complexity is PSpace for
a fixed schema, ExpSpace otherwise.

Sketch. We only sketch here the ideas for the case of finite words. The case of infinite runs
is done by a reduction to the finite one in a way similar to the proof of Theorem 16. We tem-
porarily treat A as a D[C]-automaton, for each a merging into one all regions appearing in
the transition δa. Let A′ be the corresponding cell automaton, over the saturated expansion
D̂ of D[C]. A run π′ of A′ is lifted to a run π of A inductively, assuring that in each step we
obtain a configuration with a big potential. The key observation is that the new configura-
tion can be chosen so that it does not use values which appeared in previous configurations,
unless it is explicitly required by the transition. Hence it is enough to guess the database
relations for the constants D̂ (this is exponential in the maximal arity of a relation in σ,
hence the complexity becomes ExpSpace unless this arity is fixed) and maintain locally, by
adding states to A′, the consistency of the database. Each time a new configuration reuses
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some data values, this is enforced by the transition and hence consistency can be tested by
A′ at the time of the transition. Otherwise, as we observed, fresh data values can always be
chosen and consistency with the previous constraints is immediate. J
Logic. The logic LTL(D) described in Section 5 can be extended to a logic LTL(D, σ) by
adding, for each symbol E in σ of arity k, a production ψ :: E(α, α, . . . , α), in which the right-
hand side has k arguments. Atoms of the form E(x,Xy), F (x, y,Xx) etc. represent database
queries. Just as before, the logic LTL(D, σ) can be transformed into (D, σ)-automata, and
thus can be effectively verified. We omit the details in this abstract.

7 Conclusions

We have introduced an automata model capable of storing values from a linearly ordered
set, additionally equipped with constants and unary predicates. We have shown how to
simulate runs of such automata by finite state automata. This translation is effective as
soon as the structure has some reasonable computational properties. This provides a uniform
presentation for results concerning specific data domains that were disseminated in various
papers. Moreover this sometimes decreases the known complexity or solves open questions.

It would be interesting to see whether our work can be extended to other structures. We
leave this for future work.
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Bottom-up automata on data trees
and vertical XPath∗
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Abstract
A data tree is a tree whose every node carries a label from a finite alphabet and a datum from
some infinite domain. We introduce a new model of automata over unranked data trees with
a decidable emptiness problem. It is essentially a bottom-up alternating automaton with one
register, enriched with epsilon-transitions that perform tests on the data values of the subtree.
We show that it captures the expressive power of the vertical fragment of XPath —containing
the child, descendant, parent and ancestor axes— obtaining thus a decision procedure for its
satisfiability problem.
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1 Introduction

We study formalisms for data trees. A data tree is a tree where each position carries a
label from a finite alphabet and a datum from some infinite domain. This structure has
been considered in the realm of semistructured data, timed automata, program verification,
and generally in systems manipulating data values. Finding decidable logics or automaton
models over data trees is an important quest when studying data-driven systems.

A data tree can model an xml document. One wants to decide, for example, if two
properties of xml documents expressed in some formalism are equivalent. This problem is
usually equivalent to the satisfiability problem. One such formalism to express properties
of xml documents is the logic XPath. Although satisfiability of XPath in the presence of
data values is undecidable, there are some known decidable data-aware fragments [4, 5, 1, 3].
Here, we investigate a rather big fragment that nonetheless is decidable. Vertical-XPath is
the fragment that contains all downward and upward axes, but no horizontal axis is allowed.

We introduce a novel automaton model that captures vertical-XPath. We show that the
automaton has a decidable emptiness problem and therefore that the satisfiability problem
of vertical-XPath is decidable. The Bottom-Up Data Automata (or BUDA) are bottom-up
alternating tree automata with one register to store and compare data values. Further, these
automata can compare the data value currently stored in the register with the data value of
a descendant node, reached by a downward path satisfying a given regular property. Hence,
in some sense, it has a two-way behavior. However, they cannot test horizontal properties
on the siblings of the tree, like “the root has exactly three children”.

Our main technical result shows the decidability of the emptiness problem of this au-
tomaton model. We show this through a reduction to the the coverability problem of a
well-structured transition system (wsts [8]). Each BUDA automaton is associated with a
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transition system, in such a way that a derivation in this transition system corresponds to a
run of the automaton, and vice-versa. The domain of the transition system consists in the
abstract configurations of the automaton, which contains all the information necessary to
preserve from a (partial) bottom-up run of the automaton in a subtree in order to continue
the simulation of the run from there. On the one hand we show that BUDA can be sim-
ulated using an appropriate transition relation on sets of abstract configurations. On the
other hand, we exhibit a well-quasi-order (wqo) on those abstract configurations and show
that the transition relation is “monotone” relative to this wqo. This makes the coverability
problem (and hence the emptiness problem) decidable [8].

In terms of expressive power, we show that BUDA can express any node expression of the
vertical fragment of XPath. Core-XPath (term coined in [10]) is the fragment of XPath 1.0
that captures its navigational behavior, but cannot express any property involving data. It
is easily shown to be decidable. The extension of this language with the possibility to make
equality and inequality tests between data values is named Core-Data-XPath in [3], and it
has an undecidable satisfiability problem [9]. By “vertical XPath” we denote the fragment
of Core-Data-XPath that can only use the downward axes child and descendant and the
upward axes parent and ancestor (no navigation among siblings is allowed). It follows
that vertical XPath is decidable, settling an open question [2, Question 5.10].
Related work. A model of top-down tree automata with one register and alternating
control (ATRA) is introduced in [12], where the decidability of its emptiness problem is
proved. ATRA are used to show the decidability of temporal logics extended with a “freeze”
operator. This model of automata was extended in [5] with the name ATRA(guess, spread)
in order to prove the decidability of the forward fragment of XPath, allowing only axes nav-
igating downward or rightward (next-sibling and following-sibling). The two models
of automata are incomparable: ATRA can express all regular tree languages while BUDA can
express unary inclusion dependency properties (like “the data values labeled by a is a subset
of those labeled by b”). In order to capture vertical XPath, the switch from top-down to
bottom-up seems necessary to express formulas with upward navigation, and this also makes
the decidability of the emptiness problem significantly more difficult. In [5], the decidability
of the forward fragment of XPath is also obtained using a wsts. This wsts relies on a wqo
over configurations. As our automaton model is bottom-up we have to work with sets of
configurations and had to invoke the theory of ω2-quasi-orderings [11, 13] in order to derive
our wqo. The paper [2] contains a comprehensive survey of the known decidability results
for various fragments of XPath, most of which cannot access data values. In the presence of
data values, the notable new results since the publication of [2] are the downward [4] and
the forward [5] fragments, as well as the fragment containing only the successor axis [3] (the
latter closely related to first-order logic with two variables). As already mentioned, this
paper solves one of the remaining open problems of [2].
Organization. In Section 3 we introduce the BUDA model and we show that it captures
vertical XPath. The associated well-structured transition system and the outline of the proof
to show the decidability of its reachability is in Section 4. Due to space limitations many
proofs are omitted or only sketched. We refer the reader to [6, Chapter 7] for detailed proofs.

2 Preliminaries

Basic notation. Let ℘(S) denote the set of subsets of S, and ℘<∞(S) be the set of finite
subsets of S. Let N = {0, 1, 2, . . . }, N+ = {1, 2, 3, . . . }, and let [n] := {1, . . . , n} for any
n ∈ N+. We fix once and for all D to be any infinite domain of data values; for simplicity
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in our examples we will consider D = N. In general we use letters A, B for finite alphabets,
the letter D for an infinite alphabet and the letters E and F for any kind of alphabet. By
E∗ we denote the set of finite sequences over E, by E+ the set of finite sequences with at
least one element over E, and by Eω the set of infinite sequences over E. We write ε for the
empty sequence and ‘·’ as the concatenation operator between sequences. We write |S| to
denote the length of S (if S is a finite sequence), or its cardinality (if S is a set).
Regular languages. We make use of the many characterizations of regular languages over
a finite alphabet A. In particular, we use that a word language L ⊆ A∗ is regular iff there is
a finite semigroup (S, ·) with a distinguished subset T ⊆ S, and a semigroup homomorphism
h : A∗ → S such that for all w with |w| > 0, w ∈ L iff h(w) ∈ T .
Unranked finite trees. By Trees(E) we denote the set of finite ordered and unranked
trees over an alphabet E. We view each position in a tree as an element of (N+)∗. Formally,
we define POS ⊆ ℘<∞((N+)∗) as the set of sets of finite tree positions, such that: X ∈ POS
iff (a) X ⊆ (N+)∗, |X| < ∞; (b) X is prefix-closed; and (c) if n·(i + 1) ∈ X for i ∈ N+,
then n·i ∈ X. A tree is then a mapping from a set of positions to letters of the alphabet
Trees(E) := {t : P → E | P ∈ POS}. By t|x(y) we denote the subtree of t at position x:
t|x(y) = t(x·y). The root’s position is the empty string and we denote it by ‘ε’. The position
of any other node in the tree is the concatenation of the position of its parent and the node’s
index in the ordered list of siblings. Along this work we use x, y, z, w, v as variables for
positions, and i, j, k, l,m, n as variables for numbers. For example, x·i is a position which is
not the root, that has x as parent position, and that has i− 1 siblings to the left.

Given a tree t ∈ Trees(E), pos(t) denotes the domain of t, which consists of the set of
positions of the tree, and alph(t) = E denotes the alphabet of the tree. From now on, we
informally refer by ‘node’ to a position x together with the value t(x).

Given two trees t1 ∈ Trees(E), t2 ∈ Trees(F) such that pos(t1) = pos(t2) = P , we define
t1 ⊗ t2 : P → (E×F) as (t1 ⊗ t2)(x) = (t1(x), t2(x)).

The set of data trees over a finite alphabet A and an infinitea, 2

a, 2 b, 2

b, 9 b, 5 b, 3

a, 2 b, 1 b, 2

Figure 1 A data tree.

domain D is defined as Trees(A×D). Note that every tree t ∈
Trees(A×D) can be decomposed into two trees a ∈ Trees(A) and
d ∈ Trees(D) such that t = a ⊗ d. Figure 1 shows an example
of a data tree. The notation for the set of data values used in
a data tree is data(a ⊗ d) := {d(x) | x ∈ pos(d)}. With an
abuse of notation we write data(X) to denote all the elements of
D contained in X, for whatever object X may be.

XPath on data trees. Next we define vertical XPath, the fragment of XPath where no
horizontal navigation is allowed. We actually consider an extension of XPath allowing the
Kleene star on any path expression and we denote it by regXPath. Although we define
this logic over data trees, our decidability result also holds for the class of xml documents
through a standard reduction.

Vertical regXPath is a two-sorted language, with path expressions (that we write α, β, γ)
and node expressions (ϕ,ψ, η). Path expressions are binary relations resulting from com-
posing the child and parent relations (which are denoted respectively by ↓ and ↑), and node
expressions. Node expressions are boolean formulas that test a property of a node, like for
example, that is has a certain label, or that it has a child labeled a with the same data value
as an ancestor labeled b, which is expressed by 〈↓[a] = ↑∗[b]〉. We write regXPath(V,=) to
denote this logic. A formula of regXPath(V,=) is either a node expression or a path expres-
sion of the logic. Its syntax and semantics are defined in Figure 2. As another example,
we can select the nodes that have a descendant labeled b with two children also labeled by
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α, β ::= o | α[ϕ] | [ϕ]α | αβ | α ∪ β | α∗ o ∈ {ε, ↓, ↑} ,
ϕ, ψ ::= a | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉 | 〈α = β〉 | 〈α 6= β〉 a ∈ A .

[[↓]]t = {(x, x·i) | x·i ∈ pos(t)} [[↑]]t = {(x·i, x) | x·i ∈ pos(t)}
[[[ϕ]]]t = {(x, x) ∈| x ∈ pos(t), x ∈ [[ϕ]]t} [[α∗]]t = the reflexive transitive closure of [[α]]t

[[ε]]t = {(x, x) | x ∈ pos(t)} [[αβ]]t = {(x, z) | there exists y such that
[[α ∪ β]]t = [[α]]t ∪ [[β]]t (x, y) ∈ [[α]]t

, (y, z) ∈ [[β]]t}
[[a]]t = {x ∈ pos(t) | a(x) = a} [[〈α〉]]t = {x ∈ pos(t) | ∃y.(x, y) ∈ [[α]]t}

[[¬ϕ]]t = pos(t) \ [[ϕ]]t [[ϕ ∧ ψ]]t = [[ϕ]]t ∩ [[ψ]]t

[[〈α=β〉]]t = {x ∈ pos(t) | ∃y,z (x, y) ∈ [[α]]t
, [[〈α6=β〉]]t = {x ∈ pos(t) | ∃y,z (x, y) ∈ [[α]]t

,

(x, z) ∈ [[β]]t
,d(y) = d(z)} (x, z) ∈ [[β]]t

,d(y) 6= d(z)}

Figure 2 The syntax of XPath(V, =); and its semantics for a data tree t = a ⊗ d.

b with different data value by a formula ϕ = 〈↓∗ [ b ∧ 〈↓ [b] 6=↓ [b]〉 ]〉. Given a tree t as in
Figure 1, we have [[ϕ]]t = {ε, 1, 12}.

The satisfiability problem for regXPath(V,=) is the problem of, given a formula ϕ, wether
there exists a data tree t such that [[ϕ]]t 6= ∅. Our main result on XPath is the following.

I Theorem 1. The satisfiability problem for regXPath(V,=) is decidable.

Well-structured transition systems. The proof of Theorem 1 relies on a translation
to an automaton model defined in the next section whose emptiness problem is decidable.
This is showed through methods from the theory of well-structured transition systems, or
wsts for short [8]. The emptiness test of our model of automata is obtained by interpreting
its execution using a transition system compatible with some well-quasi-ordering (wqo). We
reproduce here only the result of the theory of wsts that we will need.

A quasi-order ≤ (i.e., a reflexive and transitive relation) over a set S is said to be a
well-quasi-order (wqo) iff for every infinite sequence s1 s2 · · · ∈ Sω there are two indices
i < j such that si ≤ sj . Given a wqo (S,≤) and T ⊆ S, we define the downward closure of
T as ↓T := {s ∈ S | ∃ t ∈ T, s ≤ t} and T is downward closed if ↓T = T .

Given a transition system (S,→), and T ⊆ S we define Succ(T ) := {s ∈ S | ∃ t ∈
T with t → s}, and Succ∗ as its reflexive-transitive closure. We say that (S,→) is finitely
branching iff Succ({s}) is finite for all s ∈ S. If Succ({s}) is also effectively computable for
all s, we say that (S,→) is effective.

We adapt some results and definitions of [8, §5] of what is there called reflexive com-
patibility (i.e., compatibility in zero or one steps) to extend them to N -compatibility (i.e.,
compatibility in at most N steps). Given a binary relation R ⊆ S × S and K ⊆ S, let us
write R≤n for Id ∪ R ∪ R2 ∪ · · · ∪ Rn, where Id is the identity relation and Ri is the i-fold
composition of R. Given N ∈ N+, a transition system (S,→) is N-downward compatible
with respect to a wqo (S,≤) iff for every s1, s2, s

′
1 ∈ S such that s′1 ≤ s1 and s1 → s2, there

exists s′2 ∈ S such that s′2 ≤ s2 and s′1 (→)≤N s′2. In some sense any behavior from the
bigger element s1 can be simulated by the smaller element s′1. In truth, s′1 may need several
transitions, but not more than N . Hereafter we use the term ‘wsts’ to refer to any wqo
and transition system N -downward compatible. A simple adaptation of [8, §5] yields the
following proposition, what will be used to show decidability for BUDA.

I Proposition 1. If (S,≤) is a wqo and (S,→) a transition system such that (1) it is N -
downwards compatible for some fixed N , (2) it is effective, and (3) ≤ is decidable, V ⊆ S

is a recursive downward-closed set and, T ⊆ S is a finite set; then the problem of whether
there exist t ∈ T and v ∈ V such that t→∗ v is decidable.
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In the above statement one must think of S as the configurations of an automaton, T as
its initial configurations, → as the relation defined by the run, and ≤ as a suitable relation
between configurations such that the set of accepting configurations V is downward-closed.

3 The automaton model

In this section we introduce the BUDA model. It is essentially a bottom-up tree automaton
with one register to store a data value and an alternating control. We show that these
automata are at least as expressive as vertical regXPath. In Section 4 we will show that
their emptiness problem is decidable. Theorem 1 then follows immediately.

An automaton A ∈ BUDA that runs over data trees of Trees(A×D) is defined as a tuple
A = (A,B, Q, q0, δε, δup,S, h) where A is the finite alphabet of the tree, B is an internal finite
alphabet of the automaton (whose purpose will be clear later), Q is a finite set of states, q0
is the initial state, S is a finite semigroup, h is a semigroup homomorphism from (A× B)+

to S, δε is the ε-transition function of A , and δup is the up-transition function of A .
δup is a partial function from states to formulas. For q ∈ Q, δup(q) is either undefined or

a formula consisting in a disjunction of conjunctions of states. δε is also a partial function
from states to disjunctions of conjunctions of ‘atoms’ of one of the following forms:

p | guess(p) | univ(p) | store(p) | eq | eq |
| 〈µ〉= | 〈µ〉6= | 〈µ〉= | 〈µ〉6= | root | root | leaf | leaf | a | ā | b | b̄

where µ ∈ S, p ∈ Q, a ∈ A, b ∈ B.
Before we present the precise semantics of our automaton model, here is the intuition.

The automaton’s control is nondeterministic and alternating, as reflected by the disjunctions
and conjunctions in the formulæ specifying the transition functions. Hence, at any node
several threads of the automaton run in parallel. Each thread consists of a state and a
data value stored in the register. At every node of the tree, the automaton guesses a finite
internal label of B and all threads can share access to this finite information. At any node
of the tree, the automaton can perform some actions depending on the result of local tests.

We first describe the battery of tests the automata can perform. All these tests are
explicitly closed under negation, denoted with the · notation, and of course they are also
closed under intersection and union using the alternating and nondeterministic control of
the automata. The automata can test the label and internal label of the current node and
also whether the current node is the root, a leaf or an internal node. The automata can test
(in)equality of the current data value with the one stored in the register (eq and eq). Finally
the automata can test the existence of some downward path, starting from the current node
and leading to a node whose data value is (or is not) equal to the one currently stored in the
register, such that the path satisfies some regular property on the labels. These properties
are specified using the finite semigroup S and the morphism h : (A × B)+ → S over the
words made of the label of the tree and the internal label. For example, 〈µ〉= tests for the
existence of a path that evaluates to µ via h, which starts at the current node and leads to
a node whose data value matches the one currently stored in the register. Similarly, 〈µ〉 6=
tests that it leads to a data value different from the one currently in the register. Observe
that we could have used finite automata, or regular expressions instead of finite semigroup
homomorphisms. We take this approach because it simplifies the notation.

Based on the result of these tests, the automata can perform the following actions. They
can change state, store the current data value in the register (store(p)), or store an arbitrary
data value nondeterministically chosen (guess(p)). Finally, a transition can demand to start
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a new thread in state p for every data value of the subtree with the operation univ(p). The
automata can also decide to move up in the tree according to the up-transition.

Before we move on to the formal definition, we stress that the automaton model is
not closed under complementation because its set of actions are not closed under comple-
mentation: guess is a form of existential quantification while univ is a form of universal
quantification, but they are not dual. Actually, we will show in the journal version of this
paper that adding any of their dual would yield undecidability of the model.

We now turn to the formal definition. A data tree a⊗d ∈ Trees(A× D) is accepted by
A iff there exists an internal labeling b ∈ Trees(B) with pos(b) = pos(a⊗d) such that there
is an accepting run on a⊗b⊗d. We focus now on the definition of a run.

A configuration of a BUDA A is a set C of threads, viewed as a finite subset of Q×D.
A configuration C is said to be initial iff it is of the form {(q0, e)} for some e ∈ D. A
configuration C is accepting iff it is empty.
ε-transitions. Let t = a⊗b⊗d and x ∈ pos(t). Given two configurations C and C′ of
A , we say that there is an ε-transition of A at x between C and C′, denoted (x, C) �ε

(x, C′) (assuming A and t are understood from the context) if the following holds: there
is a thread with state q and with a data value d (i.e., (q, d) ∈ C) where δε(q) =

∨
i∈I γi.

Each γi is a conjunction of atoms, and there must be one i ∈ I with γi =
∧
j∈J αj and

C′ = (C \ {(q, d)}) ∪ Ĉ such that the following holds for all j ∈ J :
If αj is one of the tests a, b, root, leaf, eq or its negations, it must be true with the
obvious semantics as described above.
If αj is 〈µ〉= then there is a downward path in t starting at x and ending at some
descendant position y with d(y) = d, such that the sequence of labels in A × B read
while going from x to y along this path (including the endpoints) evaluates to µ via h.
The case of 〈µ〉 6= is treated similarly replacing d(y) = d by d(y) 6= d. The tests 〈µ〉=
and 〈µ〉6= correspond to the negation of these tests.
If αj is p for some p ∈ Q, then (p, d) ∈ Ĉ,
if αj is store(p) then (p,d(x)) ∈ Ĉ,
if αj is guess(p) then (p, d′) ∈ Ĉ for some d′ ∈ D,
if αj is univ(p), then for all d′ ∈ data(t|x), (p, d′) ∈ Ĉ,
nothing else is in Ĉ.

The ε-closure of a pair (x, C) is defined as the reflexive transitive closure of�ε, i.e. the
set of configurations reachable from (x, C) by a finite sequence of ε-transitions.
up-transitions. We say that a configuration C is moving iff for all (q, d) ∈ C, δup(q) is
defined. Given two configurations C and C′ of A , we say that there is an up-transition of A
between C and C′, denoted C �up C′ (assuming A is understood from the context) if the
following conditions hold:
C is moving,
for all (q, d) ∈ C, if δup(q) =

∨
i∈I
∧
j∈J pi,j then there is i ∈ I such that for all j ∈ J ,

(pi,j , d) ∈ C′,
nothing else is in C′.

I Remark. In the definition of the run the automaton behaves synchronously: all threads
move up at the same time. This is only for convenience of presentation. Since all the threads
are independent, one can also define a run in which each thread moves independently. This
alternative definition would be equivalent to the current one.
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Runs. We are now ready to define a run ρ of A on t = a⊗b⊗d. It is a function
associating a configuration to any node x of t such that

1. for any leaf x of t, ρ(x) = {(q0,d(x))},
2. for any inner position x of t whose children are x·1, . . . , x·n, then there are configura-

tions C′1, · · · , C′n and C′′1 , · · · , C′′n such that for all i ∈ [n], (x·i, C′′i ) is in the ε-closure of
(x·i, ρ(x·i)), C′′i �up C′i, and ρ(x) =

⋃
i∈[n] C′i.

The run ρ is accepting if moreover at the root (i.e., for the position ε), the ε-closure of ρ(ε)
contains an accepting configuration.
BUDA and vertical regXPath. Given a formula η of regXPath(V,=), we say that a BUDA
A is equivalent to η if a data tree t is accepted by A iff [[η]]t 6= ∅.

I Proposition 2. For every η ∈ regXPath(V,=) there exists an equivalent A ∈ BUDA
computable from η.

Proof idea. It is easy to simulate any positive test 〈α = β〉 or 〈α 6= β〉 of vertical regXPath
by a BUDA using guess, 〈µ〉= and 〈µ〉6=. For example, consider the property 〈↓∗[a] 6= ↑↓[b]〉,
which states that there is a descendant labeled a with a different data value than a sibling
labeled b. A BUDA automaton can test this property as follows.

1. It guesses a data value d and stores it in the register.
2. It tests that d can be reached by ↓∗[a] with a test 〈µ〉= for a suitable µ.
3. It moves up to its parent.
4. It tests that a different value than d can be reached in one of its children labeled with b,

using the test 〈µ〉6= for a suitable µ.

The simulation of negative tests (¬〈α = β〉 or ¬〈α 6= β〉) is more tedious as BUDA
is not closed under complementation. Nevertheless, the automaton has enough universal
quantifications (in the operations univ, 〈µ〉= and 〈µ〉6=) in order to do the job. Consider for
example the formula ¬〈↑∗[b]↓[a] = ↓∗[c]〉, that states that no data value is shared between a
descendant labeled c and an a-child of a b-ancestor. The automaton behaves as follows.

1. It creates one thread in state q for every data value in the subtree, using univ(q).
2. q tests whether the data value of the register is reachable by ↓∗[c], using a test 〈µ〉=. If

it is, it changes to state p.
3. p moves up towards the root, and each time it finds a b, it tests that the currently stored

data value cannot be reached by ↓[a]. This is done with a test of the kind 〈µ〉=. J

Therefore, in order to conclude the proof of Theorem 1, it remains to show that the
emptiness problem of BUDA is decidable. This is the goal of Section 4.
Automata normal form. We now present a normal form of BUDA, removing all the
redundancy in its definition. This normal form simplifies the technical details in the proof
of decidability presented in the next section.

(NF1) The semigroup S and morphism h have the following property. For all w ∈ (A×B)+

and c ∈ A× B, h(w) = h(c) iff w = c.
(NF2) In the definition of δup of A , there is exactly one disjunct that contains exactly one

conjunct. That is, for all q ∈ Q, δup(q) is undefined or δup(q) = p for some p ∈ Q.
(NF3) For all q ∈ Q, δε(q) is defined either as an atom, as p ∧ p′ or as p ∨ p′ for some

p, p′ ∈ Q.
(NF4) For all q ∈ Q, δε(q) does not contain tests for labels (a, ā, b, b̄), eq, eq, store, leaf or

leaf.

STACS’11



100 Bottom-up automata on data trees and vertical XPath
Diego Figueira and Luc Segoufin 11

1. θ1
grow−−→ θ2. Given two abstract configurations θ1 and θ2 as above, we say θ1

grow−−→ θ2 if
r1 = m1 = false, and for all (q, d) ∈ ∆1, δup(q) is defined and θ2 is such that m2 = true,
∆1 �up ∆2, and Γ2 = {(µ�, e) : (µ, e) ∈ Γ1, µ

� = h(c)·µ}∪ {(h(c), d)}, for some c ∈ A × B
and d ∈ D. Notice that c and d are then the label and data value of θ2. As a consequence
of the normal form (NF1) of the semigroup, this operation preserves property (�).

2. θ1, θ2
merge−−−→ θ0. Given 3 abstract configurations θ1 = (∆1,Γ1, r1,m1), θ2 = (∆2,Γ2, r2,m2),

θ0 = (∆0,Γ0, r0,m0) we define θ1, θ2
merge−−−→ θ0 if they all have the same label and data

value, m1 = m2 = true, r1 = r2 = r0, ∆0 = ∆1 ∪ ∆2, and Γ0 = Γ1 ∪ Γ2. Notice that this
operation preserves property (�).

� Remark. inc(S, χ)−−−−−→ can be seen as a kind of merge−−−→ which preserves the truth of tests.

� Definition 5. We define that Θ1 ⇒ Θ0 if one the following conditions holds:

1. There is θ1 ∈ Θ1 and θ�
1 ∼ θ1 such that θ�

1 →� θ0 or θ�
1

inc(S, χ)−−−−−→ θ0 or θ�
1

grow−−→ θ0, for some
θ0, χ, and Θ0 = Θ1 ∪ {θ0}.

2. There are θ1, θ2 ∈ Θ1 and θ�
1 ∼ θ1, θ�

2 ∼ θ2 such that θ�
1, θ

�
2

merge−−−→ θ0 for some θ0, and
Θ0 = Θ1 ∪ {θ0}.
In the definition of the transition system, the m flag is simply used to constrain the

transition system to have all its merge−−−→ operations right before grow−−→. Thus, if we take a
derivation and examine the kind of → transitions that originated each ⇒ transition, we
obtain a word described by the following regular expression

�
(→� | inc(S, χ)−−−−−→)∗( merge−−−→)∗ grow−−→

�∗(→� | inc(S, χ)−−−−−→)∗( merge−−−→)∗. (†)

4.4 Compatibility
We now show that all the previous definitions were chosen appropriately and that the trans-
ition system defined in Section 4.3 is compatible with the wqo defined in Section 4.2. The
proof of this result is very technical and consists in a case analysis over each possible kind of
transition. In this proof, the operation inc(S, χ)−−−−−→ becomes crucial to show that the downwards
compatibility can always be done in a bounded amount of N steps. The detailed proof will
appear in the journal version of this paper.

� Theorem 6. (℘<∞(AC),⇒) is N-downward compatible with respect to (℘<∞(AC),≤min),
for N := 2.(|S|.|Q|)2 + 1.

Let ≡ be the equivalence relation over ℘<∞(AC) such that Θ ≡ Θ� iff Θ ≤min Θ� and
Θ� ≤min Θ. Given a BUDA A , the wsts (℘<∞(AC)/≡,⇒,≤min) as built in the previous
section is called the wsts associated to A . From Theorem 6 and Proposition 1 we obtain:

� Corollary 7. Given a BUDA A, it is decidable whether the wsts associated to A can reach
an accepting abstract configuration from its initial abstract configuration.

As shown next, this implies the decidability for the emptiness problem for BUDA.

4.5 From BUDA to its abstract configurations
As expected, the wsts associated to a BUDA A reflects its behavior. That is, reachability of
one corresponds exactly to accessibility of the other. One direction is easy as the transition
system can easily simulate A . The other direction requires more care. As evidenced in (†),
the wsts may perform a inc(S, χ)−−−−−→ transition anytime. However, BUDA can only make the
tree grow in width when moving up in the tree. This issue is solved by showing that all
other transitions commute with inc(S, χ)−−−−−→. Finally we obtain the following.
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Figure 3 The grow and merge operations.

An automaton A ∈ BUDA is said to be in normal form if it satisfies (NF1), (NF2), (NF3)
and (NF4). Notice that once (NF1) holds, then any test concerning a label (a, ā, b, or b̄)
can be simulated using tests of the form 〈µ〉 for some appropriate µ. Using similar ideas, it
is not hard to check that:

I Proposition 3. For any A ∈ BUDA, there is an equivalent A ′ ∈ BUDA in normal form
that can be effectively obtained.

4 The emptiness problem for BUDA

The goal of this section is to show:

I Theorem 2. The emptiness problem for BUDA is decidable.

In order to achieve this, we associate with each BUDA a wsts that simulates its runs. The
transition system works on sets of abstract configurations. Given an automaton, an abstract
configuration consists of all the information of the run that is necessary to maintain at the
root of a given subtree in order to continue the simulation of the automaton from there.
The aforesaid transition system works with sets of such abstract configurations in order
to capture the bottom-up behavior of the automaton on unranked trees. The transition
relation of the wsts essentially corresponds to the transitions of the automaton except for
the up-transition. An up-transition of the automaton is simulated by a succession of two
types of transitions of the wsts, called grow and merge. The object of doing this is to avoid
having transitions that take an unbounded number of arguments (as the up relation in the
run of the automaton does). The grow transition adds a node on top of the current root, and
the merge transition identifies the roots of two abstract configurations. Intuitively, these
transitions correspond to the operations on trees of Figure 3. This is necessary because we
do not know in advance the arity of the tree and therefore the transition system has to build
one subtree at a time. We then exhibit a wqo on abstract configurations and show that
the transition system is N -downward compatible with respect to this wqo for some N that
depends on the automaton. Decidability will then follow from Proposition 1.

In the sequel we implicitly assume that all our BUDA are in normal form.

4.1 Abstract configurations
Given a BUDA A = (A,B, Q, q0, δε, δup,S, h), we start the definition of its associated wsts
by defining its universe: finite sets of abstract configurations of A .

An abstract configuration of A is a tuple (∆,Γ, r,m) where r and m are either true
or false, ∆ is a finite subset of Q× D and Γ is a finite subset of S × D such that

Γ contains exactly one pair of the form (h(c), d) with c ∈ A× B. (?)

This unique element of A× B is denoted as the label of the abstract configuration and the
unique associated data value is denoted as the data value of the abstract configuration.
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Intuitively r says whether the current node should be treated as the root or not, m
says whether we are in a phase of merging configurations or not (a notion that will become
clear when we introduce our transition system later on), ∆ is the set of ongoing threads
(corresponding to the configuration of the automaton) and a pair (µ, d) ∈ Γ simulates the
existence of a downward path evaluating to µ and whose last element carries the datum d.

In the sequel we will use the following notation: ∆(d) = {q | (q, d) ∈ ∆}, Γ(d) = {µ |
(µ, d) ∈ Γ}, ∆(q) = {d | (q, d) ∈ ∆}, Γ(µ) = {d | (µ, d) ∈ Γ}. We also use the notation
∆⊗Γ : D → ℘(Q) × ℘(S) with (∆⊗Γ)(d) = (∆(d),Γ(d)). Given a data value d and an
abstract configuration θ, (∆⊗Γ)(d) is also denoted as the type of d in θ. We use the letter
θ to denote an abstract configuration and we write AC to denote the set of all abstract
configurations. Similarly, we use Θ to denote a finite set of abstract configurations and
℘<∞(AC) for the set of finite sets of abstract configurations.

An abstract configuration θ = (∆,Γ, r,m) is said to be initial if it corresponds to a leaf
node, i.e., is such that ∆ = {(q0, d)} and Γ = {(h(a), d)} for some d ∈ D and a ∈ A× B. It
is said to be accepting if ∆ is empty and r is true.

Two configurations θ1 and θ2 are said to be equivalent if there is a bijection f : D→ D
such that f(θ1) = θ2 (with some abuse of notation). In this case we note θ1 ∼ θ2.

Finally, we write ΘI to denote the set of all initial abstract configurations modulo ∼
(i.e., a set containing at most one element for each ∼ equivalence class). Note that ΘI is
finite and effective. A set of abstract configurations is said to be accepting iff it contains
an accepting abstract configuration.

4.2 Well-quasi-orders
We now equip ℘<∞(AC) with a well-quasi-order (℘<∞(AC),≤min). The order ≤min builds
upon a wqo (AC,-) over abstract configurations. Let us define these orderings precisely.

The profile of an abstract configuration θ = (∆,Γ, r,m), denoted by profile(θ), is
profile(θ) = ( A0, A1, r, m ) with Ai = {(S, χ) ∈ ℘(Q)× ℘(S) : |(∆⊗Γ)−1(S, χ)| = i}.

We first define the quasi-order � over abstract configurations, and then we define the
order (AC,-) as (AC,�) modulo ∼. Given two abstract configurations θ1 = (∆1,Γ1, r1,m1)
and θ2 = (∆2,Γ2, r2,m2), we denote by θ1 � θ2 the fact that

profile(θ1) = profile(θ2), and
(∆1⊗Γ1) ⊆ (∆2⊗Γ2).

I Remark. Notice that due to condition (?), θ1 � θ2 implies that θ1 and θ2 have the same
label and same data value.
We now define - as: θ1 - θ2 iff θ′1 � θ2 for some θ′1 ∼ θ1.

We are now ready to define our wqo over ℘<∞(AC). Given Θ1 and Θ2 in ℘<∞(AC) we
define ≤min as: Θ1 ≤min Θ2 iff for all θ2 ∈ Θ2 there is θ1 ∈ Θ1 such that θ1 - θ2. That is,
every element from Θ2 is minorized by an element of Θ1.

The following is a key observation:

I Lemma 3. (℘<∞(AC),≤min) is a wqo.

Finally, the following obvious lemma will be necessary to apply Proposition 1.

I Lemma 4. {Θ ∈ ℘<∞(AC) | Θ is accepting} is downward closed for (℘<∞(AC),≤min).

4.3 Transition system
We now equip ℘<∞(AC) with a transition relation⇒. This transition relation is built upon
a transition relation → over AC.
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Let us first define → over AC. It is specified so that it reflects the transitions of A . For
each possible test of the automaton there is a transition that simulates this test by using the
information contained in Γ, and removes the corresponding in ∆. And for every operation
store, guess, univ there is a transition that modifies ∆. We call the ε-transitions of →, that
we note→ε. On the other hand, any up transition of A is decomposed into transitions merge−−−→
and grow−−→ that modify not only ∆ but also Γ accordingly.

We start with ε-transitions. Given two abstract configurations θ1 = (∆1,Γ1, r1, m1) and
θ2 = (∆2,Γ2, r2,m2), we say that θ1 →ε θ2 if m1 = m2 = false (the merge information is
used for simulating an up-transition as will be explained later), r2 = r1 (whether the current
node is the root or not should not change), θ1 and θ2 have the same label and data value,
Γ2 = Γ1 (the tree is not affected by an ε-transition) and, furthermore, one of the following
conditions holds:

1. θ1
univ−−→ θ2. This transition can happen if there is (q, d) ∈ ∆1 with δε(q) = univ(p) for some

p, q ∈ Q. In this case θ2 is such that ∆2 = (∆1 \ {(q, d)}) ∪ {(p, e) : ∃µ . (µ, e) ∈ Γ1}.
2. θ1

guess−−→ θ2. This transition can happen if there is (q, d) ∈ ∆1 with δε(q) = guess(p) for
some p, q ∈ Q. In this case θ2 is such that ∆2 = (∆1 \{(q, d)})∪{(p, d′)} for some d′ ∈ D.

3. θ1
〈µ〉=−−−→ θ2 (resp. θ1

〈µ〉6=−−−→ θ2). This transition can happen if there is (q, d) ∈ ∆1 with
δε(q) = 〈µ〉= (resp. δε(q) = 〈µ〉6=) for some q ∈ Q, µ ∈ S, and µ ∈ Γ1(d) (resp. there
exists e ∈ D, e 6= d such that µ ∈ Γ1(e)). In this case θ2 is such that ∆2 = (∆1 \{(q, d)}).
The negation of these tests 〈µ〉=−−−→ and 〈µ〉6=−−−→ are defined in a similar way.

4. θ1
root−−→ θ2 (resp. θ1

root−−→ θ2). This transition can happen if there is (q, d) ∈ ∆ with
δε(q) = root and r1 = true (resp. δε(q) = root and r1 = false). In this case θ2 is such
that ∆2 = (∆1 \ {(q, d)}).

5. θ1
∧−→ θ2. This transition can happen if there is (q, d) ∈ ∆1 with δε(q) = p ∧ p′ for some

p, p′, q ∈ Q. In this case θ2 is such that ∆2 = (∆1 \ {(q, d)}) ∪ {(p, d), (p′, d)}.
6. θ1

∨−→ θ2. This transition can happen if there is (q, d) ∈ ∆1 with δε(q) = p ∨ p′ for some
p, p′, q ∈ Q. In this case θ2 is such that ∆2 = (∆1 \ {(q, d)}) ∪ A, for A = {(p, d)} or
A = {(p′, d)}.

Note that by (NF3) and (NF4) for every possible definition of δε(q) there is one transition
that simulates it. To simulate δup, it turns out that we will need one extra ε-transition that
makes our trees fatter. This transition assumes the same constraints as for →ε except that
we no longer have Γ2 = Γ1. The idea is that this transition corresponds to duplicating all
the immediate subtrees of the root. For example, if the root has t1 and t2 as subtrees,
consider the operation of now having t1 t2 t′1 t′2 as subtrees, where t′1 and t′2 are identical to
t1 and t2 except for one data value with profile (S, χ) that in t′1 and t′2 is replaced by a fresh
data value. Here is the definition that follows this idea in terms of our transition system.
We say that θ1

inc(S, χ)−−−−−→ θ2 for some pair (S, χ) ∈ ℘(Q)×℘(S) if |(∆1⊗Γ1)−1(S, χ)| ≥ 1 and,
either χ = ∅ or |(Γ1)−1(χ)| ≥ 2. Then θ2 is such that data(θ2) = data(θ1) ∪ {e} for some
e 6∈ data(θ1), (∆2⊗Γ2)(e) = (S, χ), and for all d 6= e, (∆2⊗Γ2)(d) = (∆1⊗Γ1)(d). Observe
that inc(S, χ)−−−−−→ does not change the truth value of any test. Indeed, any test (〈µ〉=, 〈µ〉=, eq,
etc.) that is true in θ, continues to be true after a inc(S, χ)−−−−−→ transition, and vice-versa.

We define the transitions of the wsts that correspond to up-transitions in the automaton.
We split them into two phases: adding a new root symbol and merging the roots.

1. θ1
grow−−→ θ2. Given two abstract configurations θ1 and θ2 as above, we say θ1

grow−−→ θ2 if
r1 = m1 = false, and for all (q, d) ∈ ∆1, δup(q) is defined and θ2 is such that ∆1 �up ∆2,
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and Γ2 = {(µ′, e) : (µ, e) ∈ Γ1, µ
′ = h(c)·µ} ∪ {(h(c), d)}, for some c ∈ A× B and d ∈ D.

Notice that c and d are then the label and data value of θ2. As a consequence of the
normal form (NF1) of the semigroup, this operation preserves property (?).

2. θ1, θ2
merge−−−→ θ0. Given 3 abstract configurations θ1 = (∆1,Γ1, r1,m1), θ2 = (∆2,Γ2, r2,m2),

θ0 = (∆0,Γ0, r0,m0) we define θ1, θ2
merge−−−→ θ0 if they all have the same label and data

value, m1 = m2 = true, r1 = r2 = r0, ∆0 = ∆1 ∪∆2, and Γ0 = Γ1 ∪ Γ2. Notice that this
operation preserves property (?).

I Remark. inc(S, χ)−−−−−→ can be seen as a kind of merge−−−→ which preserves the truth of tests.

We are now ready to define the transition relation over ℘<∞(AC).

I Definition 5. We define that Θ1 ⇒ Θ0 if one the following conditions holds:

1. There is θ1 ∈ Θ1 and θ′1 ∼ θ1 such that θ′1 →ε θ0 or θ′1
inc(S, χ)−−−−−→ θ0 or θ′1

grow−−→ θ0, for some
θ0, χ, and Θ0 = Θ1 ∪ {θ0}.

2. There are θ1, θ2 ∈ Θ1 and θ′1 ∼ θ1, θ′2 ∼ θ2 such that θ′1, θ′2
merge−−−→ θ0 for some θ0, and

Θ0 = Θ1 ∪ {θ0}.
In the definition of the transition system, the m flag is simply used to constrain the

transition system to have all its merge−−−→ operations right after grow−−→ and before any→ε. Thus,
if we take a derivation and examine the kind of → transitions that originated each ⇒
transition, we obtain a word described by the following regular expression
(
(→ε | inc(S, χ)−−−−−→)∗ grow−−→ ( merge−−−→)∗

)∗(→ε | inc(S, χ)−−−−−→)∗ . (†)

4.4 Compatibility
We now show that all the previous definitions were chosen appropriately and that the tran-
sition system defined in Section 4.3 is compatible with the wqo defined in Section 4.2. The
proof of this result is very technical and consists in a case analysis over each possible kind of
transition. In this proof, the operation inc(S, χ)−−−−−→ becomes crucial to show that the downwards
compatibility can always be done in a bounded amount of N steps. The detailed proof will
appear in the journal version of this paper.

I Proposition 4. The transition system (℘<∞(AC),⇒) is N-downward compatible with
respect to (℘<∞(AC),≤min), for N := 2 · (|S| · |Q|)2 + 1.

Let ≡ be the equivalence relation over ℘<∞(AC) such that Θ ≡ Θ′ iff Θ ≤min Θ′ and
Θ′ ≤min Θ. Given a BUDA A , the wsts (℘<∞(AC)/≡,⇒,≤min) as built in the previous
section is called the wsts associated with A . From Proposition 1 and 4 we obtain:

I Corollary 6. Given a BUDA A, it is decidable whether the wsts associated with A can
reach an accepting abstract configuration from its initial abstract configuration.

As shown next, this implies the decidability for the emptiness problem for BUDA.

4.5 From BUDA to its abstract configurations
As expected, the wsts associated with a BUDA A reflects its behavior. That is, reachability
of one corresponds exactly to accessibility of the other. One direction is easy as the transition
system can easily simulate A . The other direction requires more care. As evidenced in (†),
the wsts may perform a inc(S, χ)−−−−−→ transition anytime. However, BUDA can only make the
tree grow in width when moving up in the tree. This issue is solved by showing that all
other transitions commute with inc(S, χ)−−−−−→. Finally we obtain the following.
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I Proposition 5. Let A be a BUDA. Let W be the wsts associated with A. Then A has
an accepting run iff W can reach an accepting set of abstract configurations from the initial
set of abstract configurations.

Hence, combining Proposition 5 and Corollary 6 we prove Theorem 2.

5 Concluding remarks

We have exhibited a decidable class of automata over data trees. This automaton model is
powerful enough to code node expressions of regXPath(V,=). Therefore, since these expres-
sions are closed under negation, we have shown decidability of the satisfiability, inclusion
and equivalence problems for node expressions of regXPath(V,=).

Notice that if our result implies also the decidability of the emptiness problem for path
expressions of regXPath(V,=), those being not closed under complementation it is not clear
that their inclusion or equivalence problem remains decidable.

Our decision algorithm relies heavily on the fact that we work with unranked data
trees. As already shown in [7] without this assumption XPath(V,=) would be undecidable.
In particular if we further impose the presence of a DTD, XPath(V,=) becomes undecidable.

Finally we remark that our decision algorithm is not primitive recursive. But as shown
in [7] there cannot be a primitive recursive decision algorithm for XPath(V,=).
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Abstract
We develop an algebraic theory for languages of data words. We prove that, under certain
conditions, a language of data words is definable in first-order logic if and only if its syntactic
monoid is aperiodic.
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1 Introduction

This paper is an attempt to combine two fields.
The first field is the algebraic theory of regular languages. In this theory, a regular lan-

guage is represented by its syntactic monoid, which is a finite monoid. It turns out that many
important properties of the language are reflected in the structure of its syntactic monoid.
One particularly beautiful result is the Schützenberger-McNaughton-Papert theorem, which
describes the expressive power of first-order logic.

Let L ⊆ A∗ be a regular language. Then L is definable in first-order logic if and
only if its syntactic monoid ML is aperiodic.

For instance, the language “words where there exists a position with label a” is defined by
the first-order logic formula (this example does not even use the order on positions <, which
is also allowed in general)

∃x. a(x).

The syntactic monoid of this language is isomorphic to {0, 1} with multiplication, where 0
corresponds to the words that satisfy the formula, and 1 to the words that do not. Clearly,
this monoid does not contain any non-trivial group. There are many results similar to
theorem above, each one providing a connection between seemingly unrelated concepts of
logic and algebra, see e.g. the book [8].

The second field is the study of languages over infinite alphabets, commonly called lan-
guages of data words. Regular languages are usually considered for finite alphabets. Many
current motivations, including XML and verification, require the use of infinite alphabets.
In this paper, we use the following definition of data words. We fix for the rest of the paper
a single infinite alphabet D, and study words and languages over D. A typical language,
which we use as our running example, is “some two consecutive positions have the same
letter”, i.e.

Ldd =
⋃

d∈D

D∗ddD∗ = {d1 · · · dn ∈ D∗ : di = di+1 for some i ∈ {1, . . . , n− 1}}.
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106 Data Monoids

A number of automata models have been developed for such languages. The general theme
is that there is a tradeoff between the following three properties: expressivity, good closure
properties, and decidable (or even efficiently decidable) emptiness. The existing models
strike different balances in this tradeoff, and it is not clear which balance, if any, should
deserve the name of “regular language”. Also, logics have been developed to express prop-
erties of data words. For more information on automata and logics for data words, see the
survey [7].

The motivation of this paper is to combine the two fields, and prove a theorem that is
analogous to the Schützenberger-McNaughton-Papert characterization theorem, but talks
about languages of data words. If we want an analogue, we need to choose the notion of
regular language for data words, the definition of first-order logic for data words, and then
find the property corresponding to aperiodicity.

For first-order logic over data words we use a notion that has been established in the
literature. Formulas are evaluated in data words. The quantifiers quantify over positions
of the data word, we allow two binary predicates: x < y for order on positions, and x ∼ y

for having the same data value. An example formula of a formula of first-order logic is the
formula

∃x∃y x < y ∧ x ∼ y ∧ ¬(∃z x < z ∧ z < y),

which defines the language Ldd in the running example.
As for the notion of regular language, we use the monoid approach. For languages of

data words, we use the syntactic monoid, defined in the same way as it is for words over
finite alphabets. That is, elements of the syntactic monoid are equivalence classes of the
two-sided Myhill-Nerode congruence. When the alphabet is infinite, the syntactic monoid is
infinite for every language of data words, except those that depend only on the length of the
word. For instance, in the case of the running example language Ldd, two words w,w′ ∈ D∗
are equivalent if and only if: either both belong to Ldd, or both have the same first and last
letters. Since there are infinitely many letters, there are infinitely many equivalence classes.

Instead of studying finite monoids, we study something called orbit finite monoids. Intu-
itively speaking, two elements of a syntactic monoid are considered to be in the same orbit
if there is a renaming of data values that maps one element to the other1. For instance,
in the running example Ldd, the elements of the syntactic monoid that correspond to the
words 1 ·7 and 2 ·3 ·4 ·8 are not equal, but they are in the same orbit, because the renaming
i 7→ i+ 1 maps 1 · 7 to 2 · 8, which corresponds to the same element of the syntactic monoid
as 2 ·3 ·4 ·8. It is not difficult to see that the syntactic monoid of Ldd has four orbits: one for
the empty word, one for words inside Ldd, one for words outside Ldd where the first and last
letters are equal, and one for words outside Ldd where the first and last letters are different.

The contribution of this paper is a study of orbit finite data monoids. We develop the
algebraic theory of orbit finite data monoids, and show that it resembles the theory of finite
monoids. The main result of the paper is Theorem 11, which shows that the Schützenberger-
McNaughton-Papert characterization also holds for languages of data words with orbit finite
syntactic data monoids:

Let L ⊆ D∗ be a language whose syntactic data monoid ML is orbit finite. Then
L is definable in first-order logic if and only if ML is aperiodic.

1 This is related to Proposition 3 in [6]
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Related work. The idea to present effective characterizations of logics on data words was
proposed by Benedikt, Ley and Puppis. In [1], they show that definability in first-order logic
is undecidable if the input is a nondeterministic register automaton. Also, they provide some
decidable characterizations, including a characterization of first-order logic with local data
comparisons within the class of languages recognized by deterministic register automata.
(This result is incomparable the one in this paper.)

The key property of data monoids, namely that elements of the monoid are acted on
by permutations of data values, appears in the nominal sets of Gabbay and Pitts [5]. The
connections with the literature on nominal sets are still relatively unexplored.

There are two papers on algebra for languages over infinite alphabets. One approach
is described by Bouyer, Petit and Thérien [3]. Their monoids are different from ours in
the following ways: the definition of a monoid explicitly talks about registers, there is
no syntactic monoid, monoids have undecidable emptiness (not mention questions such as
aperiodicity or first-order definability). Our setting is closer to the approach of Francez
and Kaminski from [4], but the latter talks about automata and not monoids, and does not
study the connection with logics.

Acknowledgments. I would like to thank Clemens Ley for introducing me to the subject,
Sławomir Lasota for suggesting the key idea of orbits, and Bartek Klin for pointing out the
connection to nominal sets. I would also like to thank Michael Kaminski and the anonymous
referees for their many helpful comments.

2 Myhill-Nerode equivalence

We start out with an investigation of the Myhill-Nerode syntactic congruence, in the case
of data words.

We fix for the rest of this paper an infinite set of data values D. One can think of D
as being the natural numbers, but all the structure of natural numbers (such as order) is
not going to play a role. Data words are words in D∗. Inside D, we will distinguish a finite
subset C ⊆ D of constants. Although D is fixed, the constants will vary. The constants are
introduced for two purposes. First, interpreting a finite alphabet as a set of constants, one
recovers the traditional theory of regular languages in this setting. Second, constants are
useful in the proofs. All definitions will use the set of constant as a parameter.

We use the term data renaming (with constants C) for a bijection on the alphabet that
is the identity function on C.2 To simplify proofs, we require a data renaming to be the
identity on all but finitely many data values3. We write ΓC for the set of all data renamings
with constants C. This set has a group structure. We write π, τ, σ for data renamings.
When we apply a data renaming π to a data value d, we skip the brackets and write πd
instead of π(d).

A data renaming π is naturally extended to a homomorphism [π] : D∗ → D∗ of data
words. For a fixed set of constants C, we study only languages that are invariant under data
renaming, i.e. languages such that [π]L = L for any data renaming π ∈ ΓC .4

Suppose that L ⊆ D∗ is a language that is invariant under data renamings. We define
two equivalence relations on D∗.

2 This is called C-preservation in Definition 3 of [4].
3 The same results hold when all bijections are allowed, including the Memory Theorem.
4 These languages are called co-C-invariant languages in Definition 8 of [4].
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The first equivalence relation is the two-sided Myhill-Nerode equivalence relation:

w ≡L v if for all u1, u2 ∈ D∗, u1wu2 ∈ L⇔ u1vu2 ∈ L.

We also use the name syntactic congruence for this relation. If L uses only constants,
i.e. L ⊆ C∗, then this equivalence relation has finitely many equivalence classes. However,
for any language that uses non-constants in a nontrivial way, this equivalence relation will
have infinitely many equivalence classes. The problem is that the relation really cares about
specific data values.

This problem is fixed by the second equivalence relation:

w 'L v if for some data renaming τ ∈ ΓC , [τ ]w ≡L v.

As discussed in the introduction, in the running example Ldd this equivalence relation has
four equivalence classes. On the other hand, some reasonable languages have infinitely many
equivalence classes in 'L. An example of such an L is “the first letter also appears one some
other position”. This language is recognized by a left-to-right register automaton with three
states. Nevertheless, an equivalence class of a word w under ≡L is determined by the first
letter of w and the set of distinct letters in w. Consequently, any two words with a different
number of distinct letters are not equivalent under 'L. (This problem disappears when one
uses the one-sided Myhill-Nerode equivalence.)

Despite the limitations, we will be studying languages that have finitely many equivalence
classes for 'L, because they yield a monoid structure.

3 Data monoids

Fix a finite set of constants C ⊆ D. We want to define something like a monoid for data
languages. We want there to be a “free object”, which should describe D∗. We want each
language to have its syntactic object, which should be finite in many interesting cases, and
be somehow optimal for all other objects capturing the language. These goals are achieved
by the notion of a data monoid, as defined below.

Definition of a data monoid. A data monoid (with constants C) is a monoidM , which is
acted upon by data renamings (with constants C). That is, for every data renaming τ ∈ ΓC ,
there is an associated monoid automorphism [τ ] : M → M . The mapping τ 7→ [τ ] should
be a group action, namely [τ ◦ σ] = [τ ] ◦ [σ], and the identity renaming should be associated
to the identity automorphism. There are two key examples:

The free data monoid. The monoid is D∗, while the action is defined by

[τ ](d1 · · · fn) = τ(d1) · · · τ(dn) for d1, . . . , dn ∈ D.

The syntactic data monoid of a language L ⊆ D∗, which we denote ML. The monoid
is the quotient of D∗ under the Myhill-Nerode equivalence ≡L. This is a well defined
monoid, since ≡L is a monoid congruence (unlike 'L). The action is defined by

[τ ]([w]/≡L
) = [[τ ](w)]/≡L

.

In Lemma 1, we show that this action is well defined and does not depend on w.

In the sequel, we will drop the brackets [τ ] and simply write τ , when the context indicates
if τ is treated as function on data values, or on elements of the monoid. Note that for two
renamings τ, σ and an element m of the monoid, the notation τσm is unambiguous, since
we are dealing with an action.
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Finite support axiom. We say that a set X ⊆ D of data values supports an element m
of a data monoid, if τm = m holds for every data renaming in τ ∈ ΓX . We require an
additional property from a data monoid, called the finite support axiom: for any element m
of the data monoid, there is a finite support.

Both examples above satisfy the finite support axiom. The axiom is violated by some
data monoids, even finite ones, as shown in the following example, due to Szymon Toruńczyk.
Let Z2 be the two element group, with additive notation. Let h : Γ∅ → Z2 assign 0 to even
permutations and 1 to odd permutations. The monoid M is also Z2; the action is defined
by τm = m+ h(τ). The finite support axiom fails, since odd permutations can involve any
pair of data values.

Nevertheless, all data monoids in this paper are homomorphic images (see below) of the
free data monoid, which guarantees the finite support axiom.

Congruences of data monoids. A congruence of a data monoid is an equivalence relation
' on the underlying monoid that is compatible with concatenation:

m1 ' n1 and m2 ' n2 implies m1n1 ' m2n2 (1)

and which is also compatible with every data renaming τ ∈ ΓC :

m ' n implies τm ' τn (2)

Note that the notion of congruence depends implicitly on the set C of constants, since the
set of constants indicates which functions τ are data renamings. It might be the case that
a relation is a congruence for a set of constants C, but it is no longer a congruence for a
smaller set of constants E ( C.

I Lemma 1. For a data language L ⊆ D∗ that is closed under data renamings, the syntactic
equivalence ≡L is a congruence of the free data monoid D∗.

Proof. The syntactic equivalence satisfies (1), as it does for any language L ⊆ D∗, not only
those closed under data renamings. We use the closure under data renamings to prove (2).
Let w and w′ be ≡L-equivalent data words. We need to show that for any data renaming
τ , also τw and τw′ are ≡L-equivalent. In other words, we need to show that

u(τw)v ∈ L ⇔ u(τw′)v ∈ L for any u, v ∈ D∗. (3)

Since τ−1 induces an bijection on data words, we have

u(τw)v ∈ L ⇔ τ−1(u(τw)v) ∈ τ−1L.

Because concatenating words commutes with data renamings,

τ−1(u(τw)v) = (τ−1u)w(τ−1v).

By the assumption on L being closed under data renamings, L = τ−1L. It follows that the
left side of the equivalence (3) is equivalent to

(τ−1u)w(τ−1v) ∈ L.

Likewise, the right side of the equivalence (3) becomes

(τ−1u)w′(τ−1v) ∈ L.

Both sides are equivalent, because w ≡L w′. J
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Homomorphisms of data monoids. Suppose that M and N are data monoids, with
constants C. A data monoid homomorphism h : M → N is defined to be a monoid homo-
morphism of the underlying monoids that commutes with the action of data renamings

h(τs) = τ(h(s)) for all τ ∈ ΓC .

In the literature on nominal sets, a monoid homomorphism that satisfies the commuting
condition above is called equivariant.

A congruence gives rise to a homomorphism, in the usual way. It follows that the function
that maps a word w to its equivalence class under ≡L, is a data monoid homomorphism.
This function is called the syntactic morphism. The target of the syntactic morphism is
called the syntactic data monoid of L, and denoted ML.

Note that data monoid homomorphisms preserve the finite support axiom. Therefore,
all the syntactic monoids we will study, as images of the free data monoid, will satisfy the
finite support axiom.

We say that a data monoid homomorphism h : D∗ → M recognizes a data language
L if membership w ∈ L is uniquely determined by the image h(w) ∈ M . In other words,
L = h−1(h(L)). Clearly, the syntactic morphism of L recognizes L. The following lemma
shows that the syntactic morphism is the “best” morphism recognizing L.

I Lemma 2. Consider a data language L ⊆ D∗. Any surjective data monoid homomorphism
that recognizes L can be uniquely extended to the syntactic data monoid homomorphism.

Proof. Let α : D∗ →M be a surjective data monoid homomorphism that recognizes L.
We claim that α(w) = α(w′) implies w ≡L w′. If the contrary were true, we would have

two words w,w′ with the same image under α, and some words v, u such that exactly one
of the two words vwu, vw′u would belong to L. This would contradict the assumption on α
recognizing L, since vwu, vw′u would have the same image under α.

From the claim, it follows that for every elementm ∈M , all words in α−1(m) are mapped
by the syntactic monoid homomorphism to the same equivalence class, call itWm. Therefore,
the function m 7→Wm extends α to the syntactic data monoid homomorphism. J

The following lemma justifies the use of the name “free data monoid”.

I Lemma 3. Let M be a data monoid, and let h : D → M be a function that commutes
with data renamings (i.e. an equivariant function). This function can be uniquely extended
to a data monoid homomorphism [h] : D∗ →M .

Orbits. A syntactic data monoid usually has an infinite carrier. This is not a problem,
because what really interests us in a data monoid is not the elements, but their orbits.
Formally, the orbit of an element m of a data monoid M is the set

ΓC ·m = {τm : τ ∈ ΓC}.

Note how the set of constants influences the notion of orbit.
Consider the syntactic data monoid and the syntactic data monoid homomorphism of a

data language L ⊆ D∗. As elements of the monoid are to equivalence classes of ≡L, orbits
are to equivalence classes of 'L. More formally, for two words w, v ∈ D∗, the orbits of
hL(w) and hL(v) are equal if and only if w 'L v. Suppose that a language L ⊆ D∗ is closed
under data renamings. If this language is recognized by a data monoid homomorphism h,
then the image h(L) is necessarily a union of orbits.
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A data monoid is called orbit finite if it has finitely many distinct orbits. We are interested
in languages whose syntactic data monoids are orbit finite. As far as this paper is concerned,
these are the “regular” languages of data words.

This completes the definition of data monoids and their basic properties.

4 Memory

As usual, the definition of data monoids attempts to use the least amount of primitive
concepts. We now show how other natural concepts can be derived from these primitives.

Consider the running example language Ldd. Let Mdd be the syntactic monoid of this
language. Formally speaking, elements of Mdd are equivalence classes of data words. The
equivalence class of a data word d1 · · · dn 6∈ Ldd can be identified with the ordered first/last
letter pair (d1, dn). Intuitively speaking, the data values d1 and dn are “important” for
this equivalence class (monoid element), while the other data values d2, . . . , dn−1 are not
“important”. Below we present a definition, called memory, which automatically extracts
the “important” data values from an element of a data monoid, and uses only the primitive
concepts of a data monoid. This definition is inspired by the notion of memory from [2].

Let m be an element of a data monoid. We write stabm for the subgroup of data
renamings τ that satisfy τm = m. In other words, stabm = ΓC∪{m}. In the running
example, when m is the equivalence class of a word d1 . . . dn 6∈ Ldd, then stabm is the set of
data renamings that have both d1 and dn as fixpoints. (When m is the equivalence class of a
word w ∈ Ldd, or m is the identity, then stabm contains all data renamings.) For each data
value d ∈ D, we define its data orbit with respect to m as the following set of data values

{τd : τ ∈ stabm} = stabm(d).

In the running example, when m is the equivalence class of d1 . . . dn 6∈ Ldd, the data orbit
of d1 with respect to m is {d1}, for dn the data orbit is {dn}, and for any other data value
it is D − {d1, dn}.

The following theorem gives a more precise interpretation of the finite support axiom.
It says that an element does not care about what happens when data values in its unique
infinite data orbit are swapped around.

I Theorem 4 (Memory Theorem). Every elementm of an orbit finite data monoid has finitely
many data orbits, of which exactly one is infinite. Furthermore, if mem(m) is defined as the
union of the finite data orbits, then stabm contains all data renamings that are the identity
on mem(m), i.e. Γmem(m) ⊆ stabm.

Note that mem(m) includes all constants, since they have one element data orbits.
The result above only refers to the set structure of a data monoid, i.e. the group action

on its elements. It does not refer to the monoid structure, i.e. the multiplication operation
and the neutral element. Therefore, it is a result about nominal sets, as in [5]. The Memory
Theorem is a corollary of Proposition 3.4 from [5], which says that an elementm of a nominal
set M is supported by the intersection of all sets of data values that support it.

I Corollary 5. For m,n in a data monoid, mem(mn) ⊆ mem(m) ∪mem(n).

Proof. Let d, e be elements outside mem(m) ∪mem(n). Let τ be the data renaming that
swaps d, e. By the Memory Theorem, τ ∈ stabm ∩ stabn. It follows that τ(mn) = τm ·
τn = mn, and therefore τ ∈ stabmn. We have shown that any two elements outside
mem(m) ∪mem(n) are in the same data orbit for mn. Since there is only one infinite data
orbit, it follows that they are not in mem(mn). J
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5 Algebraic properties of data monoids

In this section we develop the algebraic theory of data monoids.

Local finiteness. Recall that a monoid is called locally finite if all of its finitely generated
submonoids are finite. Much of Green theory works for locally finite monoids, which makes
the following theorem important.

I Theorem 6. Every orbit finite data monoid is locally finite.

Preliminary work indicates that local finiteness holds under much weaker conditions than
being orbit finite. Namely, for every language of data words that is defined in monadic
second-order logic with order and data equality, the syntactic monoid is locally finite. This
covers, for instance, languages recognized by nondeterministic register automata.

Green’s relations. Suppose that M is a data monoid. Using the underlying monoid, one
can define Green’s relations on elements m,n ∈M .

m ≤L n if Mm ⊆Mn

m ≤R n if mM ⊆ nM
m ≤J n if MmM ⊆MnM

We sometimes say that n is a suffix of m instead of writing m ≤L n. Likewise for prefix and
infix, and the relations ≤R and ≤J . Finally, we use the name extension for the converse of
infix. Like in any monoid, these relations are transitive and reflexive, so one can talk about
their induced equivalence relations ∼L, ∼R and ∼J . Equivalence classes of these relations
are called L-classes, R-classes and J -classes. An H-class is defined to be the intersection of
an L-class and an R-class.

In data monoids, we add a new relation, by lifting the order ≤J to orbits. One could do
the same for R and L, but in our application of data monoids to characterize of first-order
logic, we only use the case for J . We write m ≤O n if there is some data renaming τ such
that τm ≤J n. The letter O stands for orbit. In terms of ideals, τ(MmM) ⊆ MnM , or
equivalently M · τm ·M ⊆MnM , or also equivalently m ∈M · τn ·M .

I Lemma 7. In any data monoid, the relation ≤O is transitive.

Proof. Suppose that x ≥O y ≥O z holds. This means that z can be written as τ(pyq)
and y can be written as σ(mxn), for some data renamings τ, σ and data monoid elements
p, q,m, n. Combining the two, we get

z = τ(p · σ(mxn) · q) = τ(p · σm · x · σn · q) ∈M · τx ·M.

J

Of course, in an orbit finite data monoid there are finitely many O-classes, since each is
a union of orbits.

J -classes. We present a version of the Memory Theorem for J -classes. For a J -class J ,
we define its memory as

mem(J) =
⋂

m∈J

mem(m).

Clearly this set is finite, as an intersection of finite sets.

I Theorem 8 (Memory Theorem for J -classes.). Let J be a J -class. Any data renaming τ
that is the identity on mem(J) satisfies τJ = J .
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Quotient under a J -class. Suppose that J is a J -class in a data monoid. Let 'J be the
equivalence relation on the data monoid defined by:

m '/J n if m = n or neither of m,n is an infix of some element of J.

I Lemma 9. The relation '/J is a congruence of data monoids, assuming the constants are
mem(J). Consequently, the quotient function denoted h/J , is a data monoid homomorphism,
with constants mem(J).

Orbit-equivalent J -classes. We say that two J -classes J,K ⊆ M of a data monoid are
orbit-equivalent if there is some data renaming τ such that τJ = K.

I Lemma 10. Orbit-equivalent J -classes form antichains in the order ≤J .

6 First-order logic

We test the algebra on first-order logic, yielding the main result of the paper, Theorem 11.
We extend first-order logic, as described in the introduction, by a unary predicate d(x) for
every data value d, which selects positions with data value d. A predicate d(x) is called
a data predicate. Any formula uses a finite number of data predicates, and its language is
invariant under data renamings that preserve the data values of the data predicates it uses.
The formulas produced below will use data predicates only for the constants.

I Theorem 11. Let L be a data language whose syntactic data monoid ML is orbit finite.
Then L is definable in first-order logic if and only if ML is aperiodic.

The implication from first-order definable to aperiodic is proved in the same way as
usual, e.g. using an Ehrenfeucht-Fraïssé game. We focus on the more difficult implication.
The proof is an induction, which needs a more detailed statement, as presented below.

I Proposition 12. Let L be a data language recognized by a data monoid homomorphism
h : D∗ → M into a data monoid that is orbit finite and aperiodic. For every m ∈ M , the
language h−1(m) can be defined by a sentence ϕm of FO that uses data predicates for data
values in mem(m).

Note that in Theorem 11 and Proposition 12, there is an implicit set of constants C ⊆ D,
which influences the definitions of data language, data monoid, and homomorphism.

Before we prove Proposition 12, we show how it implies Theorem 11. The language L is
a union of orbits. Let m1, . . . ,mn be chosen representatives of these orbits. We know that
L is the same as the union

ΓC ·m1 ∪ · · · ∪ ΓC ·mn.

Each of the languages in the finite union above can be defined in first-order logic, thanks to
Proposition 12 and the following lemma.

I Lemma 13. Suppose that L is a language defined by a formula of first-order logic with
data predicates A. For any B ⊆ A, the language

ΓBL = {τw : τ ∈ ΓB , w ∈ L}

is defined by a formula of first-order logic with data predicates B.
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We now proceed with the proof of Proposition 12. The proof is by induction on two
parameters, ordered lexicographically. The first, and more important, parameter is the
number of orbits in the data monoid M . The second parameter is the position of the O-
class of m in the (inverse of the) order ≤O. We begin with the O-class of the empty word,
and proceed to bigger words, the idea being that it is easier to write formulas for infixes
than extensions.

The induction base is done the same way as the induction step, so we omit it, and only
do the induction step. Let O be the O-class of m. By induction assumption, we can use
formulas for elements with strictly bigger O-classes, which correspond to infixes of m. There
are two cases two consider, depending on whether O is a J -class, or not. The case when O
is a J -class is more similar to the proof for finite alphabets.

O is not a J -class. Let J ( O be the J -class that contains m. Let us expand the set of
constants from C to mem(J). Consider the data monoid homomorphism

h/J : M →M/J

which squashes all elements that are not infixes of J into a single element, as in Lemma 9.
Recall the data monoid homomorphism h that recognizes L. It is easy to see that the
composition g = hJ ◦ h recognizes h−1(m), since g maps the same elements to m as h.

I Lemma 14. M/J has fewer orbits than M .

Thanks to the above lemma, we can use the induction assumption to produce the formula
for m. This finishes the case when O is not a J -class.

O is a J -class. For n ∈M , define Kn to be the set of data words that have image n under
h, but all of their proper infixes have image in a strictly bigger O-class than O. Using the
induction assumption, we prove the following lemma.

I Lemma 15. For each n ∈M , the language Kn can be defined by a formula of first-order
logic with data predicates mem(n).

I Lemma 16. There are finitely many elements m1, . . . ,mk and a subset B ⊆ mem(m)
such that for every n ∈M ,

n ∼R m iff n ∈ ΓB{m1, . . . ,mk}.

By combining Lemmas 15, 13 and 16, we get the following lemma.

I Lemma 17. The infinite union of languages Kn, ranging over n ∼R m, can be defined by
a formula of first-order logic with data predicates mem(m).

Using Lemma 17 and its symmetric variant for L-classes, we can write a formula of first-
order logic, with data predicates mem(m), which describes the set, call it Lm, of elements
that have a prefix in the R-class of m, and a suffix in the L-class of m:

Lm =
⋃
n

n∼Rm

KnD
∗ ∩

⋃
n

n∼Lm

D∗Kn.

If a word w belongs to Lm, then its image n = h(w) satisfies n ≤R m, likewise for ≤L.
By the following lemma, if we additionally assume that n ∼J m, then also n ∼L m and
n ∼R m, and hence n ∼H m.
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I Lemma 18. In a locally finite monoid, m ∼J n and m ≤R n imply m ∼R n. Likewise
for L.

In other words, if a word belongs to Lm and has the same J -class as m, then its image is in
the H-class of m. In a locally finite aperiodic monoid, this means that its image is simply
m:

I Lemma 19. In a locally finite aperiodic monoid, all H-classes are singletons.

Above we have shown that a word in Lm has image m, using the assumption that its
image is in the same J -class as m. Therefore, a word has image m if and only if it belongs
to language Lm, which is definable in first-order logic, and its J -class is O. Let K be the
set of data words that have an infix in O, but are not in O. As argued before, a word has
image m if and only if it belongs to the difference Lm −K. Therefore, to conclude we only
need the following lemma.

I Lemma 20. The language K can be defined in first-order logic.

Proof. When does a word w belong to K? Consider the smallest infix of w that belongs to
K. Cutting off the first or last letter of that infix leads to a word in O. Therefore:

K = D∗ ·
( ⋃

d∈D,n∈O
h(d)·n 6∈O

d · h−1(n) ∪
⋃

d∈D,n∈O
n·h(d) 6∈O

h−1(n) · d
)
·D∗

The important observation is that it does no harm to replace h−1(n) by the language Ln

defined above. This is because Ln contains h−1(n) and is contained in h−1(n)∪K. Therefore,

K = D∗ ·
( ⋃

d∈D,n∈O
h(d)·n6∈O

d · Ln ∪
⋃

d∈D,n∈O
n·h(d)6∈O

Ln · d
)
·D∗

We deal with the infinite union using Lemma 13. J

7 Further work

Characterize other logics. It is natural to extend the characterization of first-order logic
to other logics. Candidates that come to mind include first-order logic with two variables,
or various logics inspired by XPath, or piecewise testable languages. Also, it would be
interesting to see the expressive power of languages recognized by orbit-finite data monoids.
This class of languages is incomparable in expressive power to first-order logic, e.g. the first-
order definable language “some data value appears twice” is not recognized by an orbit-finite
data monoid. It would be nice to see a logic, maybe a variant of monadic second-order logic,
with the same expressive power as orbit-finite data monoids.

More structure on the data values. In this paper, we study languages that are closed
under arbitrary renamings of data values. One could be interested in weaker requirements,
that give more general language classes. For instance, consider languages L ⊆ R∗ that
are closed under order-preserving renamings. Another, very interesting example, concerns
languages of timed automata.

Use mechanisms more powerful than monoids. Even if we are interested in languages
that are preserved under arbitrary data renamings, orbit finite data monoids have weak
expressive power. Contrary to the case of finite alphabets, over infinite alphabets, (orbit
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finite) data monoids are strictly less expressive than the natural automaton counterpart5. If
we only require the syntactic left-to-right automaton to be orbit finite, we get a larger class
of languages. This larger class includes the language “the first letter in the word appears
also on some other position”, which has a syntactic monoid with infinitely many orbits.
Therefore, one can ask: is it decidable if an orbit finite automaton recognizes a language
that can be defined in first-order logic? We conjecture that this problem is decidable, and
even that a necessary and sufficient condition is aperiodicity of the syntactic monoid (which
need not be orbit finite). Aperiodicity is not, in general, the right condition for first-order
logic, as witnessed by the language “words with an even number of distinct letters”, which
has an aperiodic syntactic monoid (sic!), but is not definable in first-order logic.
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Minimum s − t cut in undirected planar graphs
when the source and the sink are close∗
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Abstract
Consider the minimum s− t cut problem in an embedded undirected planar graph. Let p be the
minimum number of faces that a curve from s to t passes through. If p = 1, that is, the vertices
s and t are on the boundary of the same face, then the minimum cut can be found in O(n) time.
For general planar graphs this cut can be found in O(n log n) time. We unify these results and
give an O(n log p) time algorithm. We use cut-cycles to obtain the value of the minimum cut,
and study the structure of these cycles to get an efficient algorithm.

1998 ACM Subject Classification G.2.2 Graph algorithms; F.2.2 Computations on discrete
structures

Keywords and phrases planar graph; minimum cut; shortest path; cut cycle

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.117

1 Introduction

The minimum s− t cut problem is a well-studied problems with applications in many fields.
By the Max-Flow Min-Cut Theorem [4], the value of the minimum s − t cut is the same
as the value of the maximum s− t flow, and a minimum cut can be easily obtained from a
maximum flow.

A planar graph is a graph that has an embedding in the plane such that no pair of edges
cross each other. General maximum flow algorithms can solve the maximum flow and the
minimum cut problems on planar graphs with n vertices and O(n) edges in O(n2 log n) time.
On the other hand, algorithms that take advantage of the structure of the planar embedding
of the graph can find the minimum cut and the maximum flow in O(n log n) time (see below).
The history of the maximum problem on planar graphs is surveyed in [2]. In this paper we
focus on undirected planar graphs.

Itai and Shiloach [11] used the correspondence between an s− t cut and a cycle in the
dual planar graph (see Sect. 2) separating the dual face s∗ that correspond to s from the dual
face t∗ that corresponds to t. Such a cycle is called a cut-cycle. Itai and Shiloach gave an
O(n2 log n) time algorithm for finding a minimum cut using cut-cycles in undirected planar
graphs. Reif [18] improved the time bound of the algorithm to O(n log2 n) using a divide-
and-conquer approach. Frederickson [5] improved the time bound of the last algorithm to
O(n log n) by providing a faster shortest paths algorithm. Hassin and Johnson [8] completed
the picture by showing how to find also the maximum flow within the same time bound. The
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cut-cycle approach was also used by Johnson [13] to get a parallel algorithm for maximum
flow in directed planar graphs in O(log3 n) time using O(n4) processors or in O(log2 n) time
using O(n6) processors. However, the sequential time bound of [13] is not better than the
time bound of previous algorithms for the problem.

The O(n log n) time bound of [5, 8, 18] is the best time bound known for undirected
planar graphs. This bound was matched for directed planar graphs by the maximum flow
algorithm of Borradaile and Klein [2], using a different approach. The latter algorithm was
simplified by Schmidt et al. [17] and Erickson [3]. However, the asymptotic running time of
these simplified versions remains O(n log n).

Consider a planar graph embedded in the plane. Let p be the minimum number of faces
that a curve from s to t passes through (the curve might go through vertices and edges of G).
The graph is st-planar if and only if p = 1. This parameter p was first introduced by Itai and
Shiloach [11] who gave an O(np log n) time algorithm for maximum flow in directed planar
graphs if the value of the flow is known. Johnson and Venkatesan [14] gave an O(np log n)
algorithm, without knowing the value of the flow in advance. The algorithm of [14] has two
bottlenecks, the first one is the computation of maximum flow in st-planar graphs, and the
second is transforming a planar flow into an acyclic flow. The first bottleneck was addressed
by Henzinger et al. [9] and the second by Kaplan and Nussbaum [16]. Hence, we get an
O(np) time algorithm for flow in planar graphs, which is faster than the O(n log n) time
algorithm for p = o(log n).

There is a well-known algorithm (see for example [10, Chap. 10]) for the minimum cut
problem in directed st-planar graphs using a shortest path algorithm in the dual planar
graph. With the shortest path algorithm of [9] this takes O(n) time. Hassin [7] extended
this algorithm to a maximum flow algorithm with the same time bound.

Our main result in this paper is an O(n log p) algorithm for minimum s − t cut in
undirected planar graphs. This algorithm runs in O(n) time when the graph is st-planar
(p = 1), matching [7], and in O(n log n) time for general undirected planar graphs, matching
[5, 8, 18]. In general, p might be Θ(n), but p is small when s and t reside on the boundaries
of faces which are close to each other. Our algorithm is asymptotically faster than what was
previously known for any non-constant p = o(nε) (where ε > 0 is constant).

Another related topological parameter q, introduced by Frederickson [6], is the minimum
number of faces required to cover all vertices of the graph. It is always true that p = O(q).1
Arikati, Chaudhuri and Zaroliagis [1] gave an O(n + q log q) algorithm for the minimum s− t

cut problem in directed planar graphs.
We note that Janiga and Koubek [12] claimed an O(n log n log p/ log log n) algorithm

for finding the minimum cut-cycle in directed planar graphs. Erickson [3] states that the
algorithm of [12] can be implemented in O(n log n) time. However, in Appendix A we show
a flaw in this algorithm.

2 Preliminaries

Let G = (V, E) be an undirected simple planar graph with vertex set V and edge set E. Let
n = |V |. Since G is planar it follows from Euler’s formula that |E| = O(n). We denote an
edge between the vertices u and v by (u, v). We assume that the input graph is given with a

1 Consider a curve R from s to t, and a minimum set Q of faces that cover the vertices of G. We can
assume that R crosses the boundary of faces only at vertices. If two non-consecutive vertices in R are
on the boundary of the same face of Q, then we can make R shorter by routing it through this face.
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fixed planar embedding, in other words G is a plane graph.
In the graph G there are two designated vertices, the source s, and the sink t. The

capacity function c assigns to every edge e a non-negative capacity c(e).
An s − t cut, or a cut for short, is a minimal set of edges S, whose removal from the

graph disconnects t from s. The value of S is the total capacity of its edges,
∑

e∈S c(e).
A path Q is a sequence of edges (e1, e2, . . . , ej) such that ei = (vi, vi+1). For 1 ≤ i ≤ j + 1

we say that the path Q contains the vertex vi. The path Q begins at v1 and ends at vj+1. A
path Q is simple if for every vertex v, there are at most two edges incident to v in Q. We
denote by |Q| the number of vertices in Q. We consider a single vertex to be a degenerate
path without edges. If lengths are associated with the edges then the length of Q is the sum
of the lengths of all the edges of Q (an edge that appears in Q multiple times contributes
its length to the sum the same number of times). The reverse of Q = (e1, e2, . . . , ej) is the
path Qr = (ej , ej−1, . . . , e1). For two paths Q = (e1, e2, . . . , ej) and R = (d1, d2, . . . , di) such
that the last vertex of Q is identical to the first vertex of R, we define Q ◦R to be the path
(e1, e2, . . . , ej , d1, d2, . . . di).

A path that begins and ends at the same vertex is a cycle. We say that two cycles are
identical, if they have the same sequence of edges, in the same cyclic order (it does not
matter which vertex we pick as the first/last).

A flower-cycle is a cycle with a special structure defined as follows. Let Q be a simple
path whose last vertex is w, let B be a simple cycle that begins and ends at w. Assume that
B and Q do not share any vertex except w. Then, the cycle C = Q ◦B ◦Qr is a flower-cycle.
We call the cycle B the blossom of the flower-cycle C, and we call the cycle S = Q ◦Qr the
stem of C.

For the plane graph G, the dual graph G∗ is defined in the following way. The vertex set
of G∗ is the set of faces of G. Two vertices of G∗ are adjacent if and only if the boundaries
of the corresponding faces share an edge. The graphs G and G∗ share an embedding in the
plane, such that for every vertex v of G there is a unique dual face v∗ in G∗ that contains v,
and for every vertex x∗ of G∗ the face x of G contains x∗. For an edge e of G, there is a
single dual edge e∗ that crosses e in the shared embedding of G and G∗. The capacity of an
edge e of G is interpreted in G∗ as the length of e∗. We fix our embedding such that s∗ is
the infinite face of G∗.2 (See Fig. 1).

Consider a simple cycle C in G∗. The cycle C separates the plane into two connected
regions. One of the regions, which contains s∗, is outside C and the other is inside C, the
edges and the vertices of C are contained in both regions. We say that an edge e or a vertex
v is strictly inside (resp. strictly outside) C, if it is inside (resp. outside) C, but does not
belong to C.

Let C be a simple cycle in G∗ such that the face t∗ is inside C. The face s∗ must be
strictly outside C, so the cycle separates s from t in the plane. We call such C a cut-cycle.
The edges of G that are crossed by the edges of C form an s− t cut. These edges are exactly
the edges whose duals are in C. The value of the cut is the same as the length of the cut-cycle
C. Therefore, we get that the value of the minimum cut is the same as the value of the
shortest cut-cycle [11]. (See Fig. 1).

Let Q be any path from a vertex on the boundary of s∗ to a vertex on the boundary of t∗.
Let x∗1, . . . , x∗q be the vertices of Q where x∗1 is incident to s∗ and x∗q is incident to t∗. We
say that an edge (x∗i , y∗) emanates left from Q at x∗i , if when traversing Q from x∗1 to x∗q ,

2 Most recent papers, e.g. [2, 3], fix t to be on the boundary of the infinite face of G, we choose to fix s
on the boundary of the infinite face to be consistent with the previous cut-cycle algorithms [8, 11, 18].
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P
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Figure 1 A planar graph and its dual. The vertices of G are dots and its edges are solid. The
vertices of G∗ are circles and its edges are dashed. The infinite face of G∗ is s∗. The path P from s∗

to t∗ is shaded. The bold edges are an s − t cut in G, their dual edges are a cut-cycle that contains
one P -left edge incident to x∗1.

the edge is incident to x∗i on the left side of Q, this definition is applied to edges incident to
x∗1 and x∗q by adding two dummy vertices – x∗0 inside s∗ before x∗1, and x∗q+1 inside t∗ after
x∗q . We call an edge Q-left if it emanates left from Q at exactly one of its endpoint. In other
words, an edge that emanates left from Q is Q-left unless it is an edge of the form (x∗i , x∗j )
that emanates left from Q both at x∗i and at x∗j . Q-right edges are defined similarly.

Let P be a path in G∗ from a vertex on the boundary of s∗ to a vertex on the boundary
of t∗, with minimum number of vertices. We define p(G) to be the number of vertices on
P . In the introduction we defined the parameter p as the minimum number of faces that a
curve from s to t passes through. This parameter is equal to p(G) if the curve is not allowed
to go through vertices, because then every edge of P is dual to an edge that the curve from
s to t crosses.

Since we want to allow the curve to contain vertices, we change G such that in the
modified graph, G̃, there is a curve from s to t that passes through the smallest number of
faces and does not contain vertices. Furthermore, this curve in G̃ crosses the same number
of faces as the corresponding curve in G which may contain vertices. Also, the value of the
minimum s− t cut in G̃ is the same as in G. The advantage of this transformation is that in
G̃, p is equal to p(G̃) – the smallest number of vertices on a path from a vertex on s∗ to a
vertex on t∗ in G̃∗.

The construction of G̃ is as follows. We choose a curve R from s to t passing through p

faces such that R goes from a face x to a face y through a vertex v only when there is no edge
common to the boundaries of x and y. If R does not contain vertices then G̃ = G. Otherwise
we split every vertex on R as follows. Consider a vertex v of G that R passes through when
going from a face x to a face y. In G̃ we split v into two vertices v′ and v′′ and connect them
with a new edge e that separates between x and y. Every edge that was incident to v is now
incident either to v′ or to v′′, such that G remains planar. This transformation allows R to
cross the edge e instead of the vertex v. We give e a large capacity (larger than the sum of
all capacities in G), so that it does not change the minimum cut.

This transformation requires knowing the curve R. We can compute R by computing a
path P ′ from a vertex on the boundary of s∗ to a vertex on the boundary of t∗ with minimum
number of vertices in a graph which we construct from G∗ as follows. This construction is
similar to a construction of Khuller and Naor [15]. For every face v∗ in G∗, we add a new
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vertex z∗ inside the face v∗ and connect z∗ with edges to every vertex on the boundary of
the face v∗. The new vertex z∗ inside v∗ allows the path P ′ to “jump over” the face v∗ from
one vertex on its boundary to another, which is equivalent to the case where the curve R

passes through the vertex v of G. We also remove all the original edges from G∗. This forces
R to cross edges only at incident vertices, which we can do without loss of generality. Let P ′

be a path with minimum number of vertices, in the graph that we constructed, from a vertex
on the boundary of s∗ to a vertex on the boundary of t∗. The path P ′ alternates between
vertices of G∗ and vertices that we added inside faces of G∗. For every pair of consecutive
edges (x∗, z∗) and (z∗, y∗) in P ′, the curve R goes from the face x of G to the face y of G. If
x and y share a common edge e on their boundaries in G, then R passes through e, otherwise
R passes through the vertex v such that z∗ is inside the face v∗.

In the rest of the paper we assume that G was preprocessed as described here (so in fact
we use G to refer to G̃ to simplify the notation), then p = p(G) is the minimum number of
vertices on a path from a vertex on the boundary of s∗ to a vertex on the boundary of t∗.
We will denote such a path by P , we can find P in linear time using a breadth-first search
on the graph G∗.

3 Finding a Minimum s− t Cut

3.1 Overview
Let Π be the shortest path (path of minimum length) from a vertex incident to s∗ to a vertex
incident to t∗, and let x∗1, . . . , x∗k be the vertices on Π. Itai and Shiloach [11] observed that
in an undirected planar graph, the shortest cut-cycle must cross the path Π exactly once.
To exploit this observation they defined x∗i -cycle to be a cycle containing exactly one Π-left
edge and one Π-right edge, such that the Π-left edge is incident to x∗i . Then, the minimum
cut-cycle is the minimum x∗i -cycle. Reif [18] later noticed that for every i < j there is a
minimum x∗j -cycle inside a minimum x∗i -cycle. He used this to speed up the computation
of the shortest cut-cycle to O(n log k) time, using a divide-and-conquer algorithm (this is
not the time bound stated by [18], but it can be obtained using techniques of [5] or the
shortest-path algorithm of [9]).

If we replace Π with a path Q from s∗ to t∗ that is not shortest, then a cut-cycle may
cross Q more than once. This makes the task of finding a shortest cut-cycle more difficult.
First, there may not be a shortest cut-cycle that contains x∗j inside a shortest cut-cycle that
contains x∗i for i < j, simply because x∗j may be outside this cycle. Second, finding the
shortest cut-cycle through a particular vertex is harder.

Johnson [13] showed that any cut-cycle crosses Q an odd number of times, and used this
to get the parallel algorithm that we mentioned. We use the observation of Johnson that the
number of crossings of a cut-cycle with Q is odd to extend the algorithm of [18] to work with
any path from s∗ to t∗. This way, if we take the path Q to be the path P that we defined in
Sect. 2 with the minimum number of vertices from a vertex on s∗ to a vertex on t∗, we get
the O(n log p) time bound (recall that p = |P |).

Let x∗1, . . . , x∗p be the vertices of P , where x∗1 is incident to s∗ and x∗p is incident to t∗.
First, we show how to find a shortest cut-cycle, by finding shortest simple cycles containing
x∗i that crosses P an odd number of times, for every 1 ≤ i ≤ p. We characterize the structure
of these cycles, and show that their structure still allows to find the shortest among them
efficiently by a divide-and-conquer algorithm. Then, we show how to efficiently find the
shortest cut-cycle through any particular vertex on P by computing a shortest path in a
related planar graph.
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3.2 Structure of shortest cut-cycles containing particular vertices
We call a cycle C an odd-cycle if the number of P -left edges in C is odd. The following
lemma is a special case of a lemma of Johnson [13].

I Lemma 1. Let C be a simple cycle. Then C is a cut-cycle if and only if it is an odd-cycle.

Proof. Consider a simple cycle C and the path P . Suppose we extend P by a dummy vertex
x∗0 inside s∗ and by a dummy vertex x∗p+1 inside t∗. Assume that we walk on the plane from
x∗0 to x∗p+1, to the left of P and infinitesimally close to it. We start our walk outside of C

(since s∗ is outside of C). Each time we cross an edge of C we switch from being outside C

to being inside C or vice versa. If C is a cut-cycle then x∗p+1 is inside C so our walk ends
inside C and therefore must cross C an odd number of times. Similarly, if we cross C an odd
number of times then x∗p+1 must be inside C and therefore C is a cut-cycle. So we conclude
that C is a cut-cycle if and only if we cross C in our walk an odd number of times.

Each such crossing of the walk and C corresponds to an edge of C that emanates left
from P at one of its endpoints. P -left edges emanate left from P at exactly one of their
endpoints, while other edges do not emanate left from P at all, or emanate left from P at
both of their endpoints. It follows that C is a cut-cycle if and only if it contains an odd
number of P -left edges. J

We denote a shortest odd-cycle containing the vertex x∗ by C(x∗). For a specific vertex
x∗, the cycle C(x∗) may not be simple. However, since we can decompose any cycle into
simple cycles, there is a shortest odd-cycle that is simple. Moreover, any odd-cycle intersects
P , so the following corollary follows from Lemma 1.

I Corollary 2. The shortest cut-cycle is C(x∗i ) for some xi ∈ P . J

Corollary 2 suggests that our definition of C(x∗i ) generalizes Itai and Shiloach’s definition
of a minimum x∗i -cycle. This is essential since, as we mentioned, when we replace Π by the
path P , which is not a shortest path, there may be more than one P -left edge in a shortest
cut-cycle.

The next lemma allows us to assume that C(x∗) is a flower-cycle.

I Lemma 3. For any vertex x∗, there is a shortest odd-cycle containing x∗ that is a flower-
cycle.

Proof. The edge set of the cycle C(x∗) is a union of edge sets of simple cycles, at least one
of these simple cycles must be an odd-cycle. Let C be such a simple odd-cycle, and let y∗ be
the first vertex of C that we encounter when we traverse C(x∗), starting at an occurrence of
x∗.

We can decompose C(x∗) into Q ◦ C ◦Q′, where Q is a path from x∗ to y∗ and Q′ is a
path from y∗ to x∗. The length of Q must be equal to the length of Q′ since otherwise we
can replace the longer by the reverse of the shorter and get a shorter odd-cycle through x∗

(C is an odd-cycle and the sets of P -left edges of a path and its reverse are identical). Let
F = Q ◦C ◦Qr. The cycle F is a flower-cycle by its definition, it is also an odd-cycle, and it
has the same length as C(x∗). Therefore, F is a shortest odd-cycle containing x∗ which is a
flower-cycle. J

Recall that Reif [18] based his divide-and-conquer approach on the observation that inside
every minimum x∗i -cycle there is a minimum x∗j -cycle if i < j. The same claim is not always
true for C(x∗i ) and C(x∗j ). It might be possible that C(x∗i ) is actually strictly inside C(x∗j ).
(See Fig. 2). We develop an alternative similar divide-and-conquer approach for C(x∗i ).
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s∗
x∗
a x∗

c t∗
x∗
b x∗

d

Figure 2 Structure of the flowers-cycles. C(x∗a) has an empty stem, C(x∗b ) has the same blossom
as C(x∗a) and stem inside the blossom, C(x∗c) has a stem outside its blossom. There are 3 P -left
edges in C(x∗a) and in C(x∗c), and 5 P -left edges in C(x∗b) (the edge of the stem is counted twice).
C(x∗b) is strictly inside C(x∗c) even though b < c. We do not have to compute any C(x∗i ) for i < d

inside C(x∗b), even if one of them is a minimal cut-cycle we will find it for another value of i.

t∗
x∗
is∗

w∗
B′

C ′′x∗

y∗

B′′
C ′

Figure 3 The shortest cut-cycle C = C′◦C′′ is neither inside nor outside the blossom B = B′◦B′′.

I Lemma 4. Let B be the blossom of C(x∗i ) for some i, and let S be the stem of C(x∗i ).
There is a shortest cut-cycle that is either inside B, or outside B (if B is a shortest cut-cycle
then both hold).

Proof. Assume otherwise, then for every shortest cut-cycle C, there are edges of C strictly
inside B and edges of C strictly outside B.

Let w∗ be the vertex common to B and S. By the minimality of C(x∗i ) we may assume
that C(w∗) = B.

Let C be a shortest cut-cycle maximizing the number of edges that it has in common
with B. Let C ′ be a maximal subpath of C strictly inside B. Let C ′′ be “the rest of C” –
that is, the path such that C = C ′ ◦C ′′. The path C ′ starts at a vertex x∗ on B and ends at
another vertex y∗ on B. We split B or Br into two parts, B′ and B′′, such that B′ is a path
from x∗ to y∗, and B′′ is a path from y∗ to x∗, and the cycle C ′ ◦B′′ is an odd-cycle. Since
both B and C are odd cycles, such a decomposition of B or of Br must exist. It follows that
both C ′ ◦B′′ and B′ ◦ C ′′ are odd-cycles. (See Fig. 3).

By our choice of C, we may assume that C ′ is shorter than B′, as otherwise B′ ◦C ′′ is not
longer than C, and has more edges in common with B, contradicting the choice of C. Also,
we may assume that C ′′ is shorter than B′′, as otherwise C ′ ◦B′′ is not longer than C, and
has more edges in common with B, again in contradiction to the choice of C. Therefore both
C ′ ◦B′′ and C ′′ ◦B′ are shorter than B. The vertex w∗ must be on one of the cycles C ′ ◦B′′

or B′ ◦ C ′′, contradicting the minimality of B = C(w∗). Hence the lemma follows. J

I Lemma 5. Let B be the blossom of C(x∗i ) for some i, and let S be the stem of C(x∗i ). If
B is not a shortest cut-cycle, then any shortest cut-cycle does not contain any edge incident
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to a vertex of S.

Proof. Assume that B is not a shortest cut-cycle, and let C be a shortest cut-cycle, such
that there is a vertex x∗ that is common to S and C. Let Q be the shortest path from x∗i to
x∗. By its definition, the path Q is not longer than half of the cycle S.

The cycle Q ◦C ◦Qr is an odd-cycle since C is an odd cycle. The cycle C is shorter than
B, and the cycle Q ◦Qr is not longer than S, contradicting the minimality of C(x∗i ). J

3.3 Divide-and-conquer algorithm
Lemma 4 gives a method for dividing the graph, in order to find a shortest cut-cycle. Consider
C(x∗i ) with blossom B and stem S. If B is not a shortest cut-cycle then there is a shortest
cut-cycle C, such that C is either inside B or outside B. Thus, we can divide the graph into
two parts, Gin which is the part inside B, and Gout which is the part outside B, and search
in each of them separately. We also discard S from the subgraph containing it, which we can
do by Lemma 5. This will help us to bound the depth of the recursion.

It is simpler to describe how to obtain G∗in and G∗out from G∗, so we do this first. We
start by putting into G∗in every edge and vertex of G∗ that is inside B. The part of the plane
strictly outside B becomes the infinite face s∗in, we also set t∗in = t∗. The graph G∗out initially
contains every edge and vertex of G∗ that is outside B. (By our definitions of “outside” and
“inside” there is a copy of B in both graphs.) In G∗out we set s∗out = s∗ and the part of the
plane inside B becomes a single face which we denote by t∗out.

Assume that S is not empty. Since there is a single vertex w∗ that is common to S and
B, S is either entirely inside B or outside B. Assume that S is outside B. According to
Lemma 5 we may assume that if there is a vertex of S on a shortest cut-cycle, then it is w∗.
This happens only when B is a shortest cut-cycle, in this case B is contained also in G∗in.
Thus, we can remove the vertices of S and all the edges adjacent to them from G∗out without
losing the shortest cut-cycle. Symmetrically, if S is inside B, then we remove the vertices of
S and their adjacent edges from G∗in. This completes the definition of G∗in and G∗out.

The effect of this construction on the primal graph is as follows. Consider the common
embedding of G and G∗. The graph Gin contains all the vertices inside B and all edges with
both endpoints inside B. Similarly, Gout contains the vertices outside B and edges with
both endpoints outside B. Edges of G whose duals are in B are the edges with one endpoint
outside B and one endpoint inside B. We put a copy of these edges in both graphs as follows.
We add a vertex sin to Gin, which would be the source of Gin, and for every edge e = (u, v)
such that e∗ ∈ B with v inside B, we put the edge (sin, v) in Gin with the same capacity as
of e. Similarly, we add a vertex tout to Gout, which would be the sink of Gout, and for every
edge e = (u, v) such that e∗ ∈ B with u outside B, we put the edge (u, tout) in Gout with
the same capacity as of e. We set tin = t and sout = s.

If S is not empty, then we contract every edge e = (u, v) such that e∗ is incident to a
vertex of S, in the graph whose dual contains S. That is u and v become a single vertex,
and the incidence lists are concatenated (without e) in the appropriate cyclic order. Note
that the edges that we contract include all the edges on faces of G that correspond to the
vertices of S in G∗. The contraction eliminates all these faces.

It is possible that the new graphs Gin and Gout are not simple. We replace a set of
multiple edges of the form (sin, v) or (u, tout) by a single edge whose capacity is the sum of
all capacities of the multiple edges. We do so to ensure that Gin and Gout remain simple.
Two parallel edges e and d create a face x between them. In the dual graph, x∗ is a vertex
adjacent only to e∗ and d∗. The effect in the dual graph of merging e and d is the removal of
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x∗, and replacement of e∗ and d∗ by a single edge whose length is the sum of lengths of both
dual edges.

Note that every vertex of G has a single copy, either in Gin or in Gout, while edges and
faces of G whose duals are in B might have copies in both graphs. When we construct Gin
and Gout from G, every edge of G is mapped to a single edge of Gin or Gout. However, a
single edge of Gin or Gout might be mapped to more than one edge of G (due to merge of
parallel edges). When we return a cut in Gin or Gout as an answer to the minimum cut
problem on G, we replace every edge of Gin or Gout with all the edges of G that were mapped
to it.

Now we have all the definitions required to present the divide-and-conquer algorithm for
finding a minimum s− t cut:

1. Find P , the path with minimum number of vertices from a vertex on the face s∗ to a
vertex on the face t∗. Let p = p(G) = |P |.

2. If 1 ≤ p ≤ 2, find C(x∗i ) for every 1 ≤ i ≤ p, and return the shortest.
3. Otherwise, let i = bp/2c+ 1.
4. Find C(x∗i ).
5. Construct Gin, Gout and apply the algorithm recursively to them.
6. Return the smaller between the minimum sin− tin cut in Gin and the minimum sout− tout

cut in Gout that were computed in the previous step.

We already pointed out two differences between our algorithm and these of Reif [18] and
Hassin and Johnson [8], namely using the path P instead of the shortest path Π and finding
a cut-cycle that is a C(x∗i ) cycle instead of a minimum x∗i -cycle.3 Another difference is that
we do not compute C(x∗i ) for every x∗i in the original path P from s∗ to t∗. Since C(x∗i )
may cross P multiple number of times it is possible, for example, that for some j > i, x∗j is
on the boundary of s∗in, and so we do not need to apply our algorithm in Gin for x∗i′ such
that i′ < j (see Fig. 2). A symmetric claim is true for Gout. For this reason, we compute the
path P in the first step of each recursive call. This is easy to do in time linear in the size of
the input graph, by using breadth-first search on the dual graph.

The correctness of our algorithm follows from Lemma 4 and Lemma 5. In order to get
the desired O(n log p) time bound, we show that the depth of the recursion is dlog pe+ 1 and
that it is possible to find C(x∗i ) in O(n) time.

To bound the depth of the recursion we show that p(Gin), p(Gout) ≤ bp/2c+ 1.4
First, assume that S is empty, that is, x∗i ∈ B. The copy of the vertex x∗i in the graph

G∗in is on the boundary of s∗in. The subpath (x∗i , x∗i+1, . . . , x∗p) of P is not necessarily in G∗in,
but G∗in must contain a suffix of this subpath that starts with some x∗j , j ≥ i, that is on the
boundary of s∗in. This implies that p(Gin) ≤ bp/2c+ 1. Similarly, the copy of the vertex x∗i
in G∗out is on the boundary of t∗out so there is a prefix (x∗1, . . . , x∗j′−1, x∗j′), j′ ≤ i of P , such
that x∗j′ is on the boundary of t∗out in G∗out. This shows that p(Gout) ≤ bp/2c+ 1.

Now assume that S is not empty and that it is outside B. Let w∗ be the vertex common
to S and B. Since B is an odd-cycle it must contain a P -left edge. Since x∗i is outside B, at

3 Another minor change from the algorithm of [18] is in the base of the recursion (Step 2), this correction
was suggested by [8].

4 Consider a binary representation b of p. We obtain a binary representation of an upper bound on the
new value of p following a recursive call, by shifting b one position to the right and adding one to the
result. It follows that the number of bits in the representation of the upper bound decreases by one
every step but can increase by one at most once, so the depth of the recursion is at most the number of
bits in b plus one.
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least one P -left edge of B is incident to x∗j for some j ≥ i, so the proof that p(Gin) ≤ bp/2c+1
does not change. We removed the vertices of S and their incident edges from G∗out. Before
this removal, w∗ was on the boundary of t∗out, so after the removal, every vertex that was
adjacent to a vertex of S, is on the boundary of t∗out. The vertex x∗i is in S, so there must
be a vertex x∗i′ with i′ < i that was adjacent to vertex in S, and is now on the boundary of
t∗out. We get that there is a prefix (x∗1, . . . , x∗j′−1, x∗j′), j′ ≤ i′, of P in G∗out which shows that
p(Gout) ≤ bp/2c. The proof for the case where S is inside B is symmetric.

We conclude that the depth of the recursion is at most dlog pe+ 1.

3.4 Finding a shortest odd-cycle containing a particular vertex

Now we show how to find C(x∗i ), a shortest odd-cycle that is a flower-cycle containing a
specific vertex x∗i of P . We do so in O(n) time using the following construction.

We create a new planar graph H that contains two modified copies of G∗ as follows. For
every vertex x∗ in G∗ we create two copies in H, x0 and x1. For every edge (x∗, y∗) that
is not a P -left edge we create two copies (x0, y0) and (x1, y1) in H. Last, for every P -left
edge (x∗j , y∗) we create two copies (x0

j , y1) and (x1
j , y0). We denote the set that contains the

vertices x0, the edges (x0, y0) and the edges (x0
j , y1) by H0, and the set of other vertices and

edges by H1. A path from x∗ to y∗ in G∗ corresponds to a path from x0 to y0 or a path
from x0 to y1 in H. We denote the image in H of a path Q in G∗ by h(Q).

Let Q be a cycle in G∗, fix x∗ to be the first vertex of Q. The image h(Q) begins with x0,
which is in H0. Assume that we traverse h(Q), starting at x0. Every time that h(Q) goes
through an image of a P -left edge, it jumps from H0 to H1 or vice versa. Therefore, Q is an
odd-cycle if and only if h(Q) ends at x1.

For a vertex x∗i of P , we find a shortest odd-cycle through x∗i by finding a shortest path
R from x0

i to x1
i in H. The cycle h−1(R) is a shortest odd-cycle containing x∗i .

Although by Lemma 3 there is a shortest odd cycle through x∗i which is a flower-cycle
the cycle h−1(R) may not be a flower-cycle. We can convert it to a flower-cycle as suggested
by the proof of Lemma 3. Let y∗ the first vertex that repeats twice on h−1(R), and let C

be the path in h−1(R) between the first two occurrences of y∗. If C is not and odd-cycle
(this may happen only if the length of C is 0), then remove the edges of C from h−1(R) and
repeat the process until a simple odd-cycle is found. Let Q be the prefix of h−1(R) that ends
at y∗. Finally, let C(x∗i ) = Q ◦ C ◦Qr.

The construction of H takes O(n) time, and finding R takes O(n) time using the algorithm
of Henzinger et al. [9]. Replacing h−1(R) with a flower-cycle takes O(n) time as well. We
conclude that a single recursive application of our algorithm is linear in the size of the graph
it works on.

3.5 Running time

The running time analysis for our main algorithm is similar to that of Reif [18] or Hassin
and Johnson [8], we use here the one of [8]. As we showed, the depth of the recursion tree is
at most dlog pe+ 1. In each recursive call, when we split G into Gin and Gout, we add two
vertices to the graphs. Therefore, at the `th level of the recursion we have at most n + 2`

vertices. The time bound at each level of the recursion is linear in the number of vertices at
the level so the total running time of our algorithm is O

(∑dlog pe
`=0

(
n + 2`

))
= O(n log p).
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s∗ t∗

Figure 4 Counterexample to the algorithm of [12] (see [13, Fig. 7]). The directed cycle contains
three P -left arcs (bold), such that the arc farthest from t∗ is oriented away from P . However, the
cycle is not simple and it wraps around t∗ in the wrong direction. The direction of the primal arcs
that correspond to the cycle is indicated with dashed arrows.

A The Algorithm of [12]

Janiga and Koubek [12] presented an O(n log n log p/ log log n) algorithm for the minimum
s− t cut problem in directed planar graphs, based on the cut-cycles approach. Erickson [3]
states that this algorithm can be implemented in O(n log n) time. In this appendix we show
that there is a mistake in the algorithm of [12].

To deal with directed graphs we have to extend the definitions from Sect. 2. First, in a
directed graph, two anti-parallel arcs, (u → v) and (v → u) may have different capacities.
Second, the dual graph G∗ is also directed. The dual of an arc d = (u→ v) is the arc in G∗

which is directed from the dual vertex of the face on the right side of d to the dual vertex of
the face on the left side of d.5 The path P that the algorithm of [12] uses is a directed path
with minimum number of vertices from a vertex on the boundary of s∗ to a vertex on the
boundary of t∗.

In the directed graph G∗, a cut-cycle is dual to a cut in G, if and only if it is oriented
clockwise around t∗ in the shared embedding of G and G∗ in the plane [13].

Janiga and Koubek [12, Sect. 3] look for the minimum cut by computing the shortest
cycle in G∗ that its P -left arc farthest from t∗ is oriented away from P (that is, the P -left
arc which is adjacent to x∗i for the minimum i is oriented (x∗i → y)), and that crosses P an
odd number of times. If this shortest cycle is simple, then it is a cut-cycle oriented clockwise
around t∗ [13] (the proof is similar to Lemma 1). However, it is possible that the shortest
cycle that fulfills these requirements is not simple. In this case, the cycle may be oriented
counterclockwise around t∗, and therefore it would not be dual to a cut. Figure 4 shows an
example of such case, which was given by Johnson [13, Fig. 7]. Since algorithm Cycle2 of
[12, p. 43] fails to check whether the path it finds it simple or not, the algorithm of [12] will
not find a correct solution in this case.
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Abstract
An elementary h-route flow, for an integer h ≥ 1, is a set of h edge-disjoint paths between a
source and a sink, each path carrying a unit of flow, and an h-route flow is a non-negative linear
combination of elementary h-route flows. An h-route cut is a set of edges whose removal decreases
the maximum h-route flow between a given source-sink pair (or between every source-sink pair
in the multicommodity setting) to zero. The main result of this paper is an approximate duality
theorem for multicommodity h-route cuts and flows, for h ≤ 3: The size of a minimum h-route
cut is at least f/h and at most O(log3 k ·f) where f is the size of the maximum h-route flow and k
is the number of commodities. The main step towards the proof of this duality is the design and
analysis of a polynomial-time approximation algorithm for the minimum h-route cut problem for
h = 3 that has an approximation ratio of O(log3 k). Previously, polylogarithmic approximation
was known only for h-route cuts for h ≤ 2. A key ingredient of our algorithm is a novel rounding
technique that we call multilevel ball-growing. Though the proof of the duality relies on this
algorithm, it is not a straightforward corollary of it as in the case of classical multicommodity
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in the number of commodities and is asymptotically optimal. The results are proved using
the ball-growing (also known as region-growing) technique that was introduced in the paper
of Leighton and Rao.

Multi-route flows and multi-route cuts generalize in a natural way the concept of classical
flows and cuts in graphs. An elementary h-route flow, for an integer h ≥ 1, is a set of h
edge-disjoint paths between a source and a sink, each path carrying a unit of flow, and an
h-route flow [8, 1] is a non-negative linear combination of elementary h-route flows. An
h-route cut is a set of edges whose removal disconnects a given source-sink pair with respect
to h-route flows (in the multicommodity setting, it disconnects every source-sink pair). In
other words, an h-route cut is a set of edges whose removal decreases the edge-connectivity
of a given source-sink pair (or of every given source-sink pair) below h. Note that for h = 1,
h-route flows and h-route cuts correspond to the classical flows and cuts.

1.1 Our results and techniques
The main result of this paper is an approximate duality theorem for multicommodity h-route
cuts and flows for h ≤ 3. In particular, we prove an upper bound of O(log3 k · f) on the
size of a minimum h-route cut where f is the size of a maximum h-route flow and k is the
number of source-sink pairs (or commodities); trivially, f/h is a lower bound.

A major step towards the proof of the duality in this paper is the design and analysis of
an approximation algorithm for the minimum 3-route cut problem. The approximation ratio
of our algorithm is O(log3 k). This provides a partial answer to open problems of several
papers (Bruhn et al. [3], Chekuri and Khanna [4] and Barman and Chawla [2]). The 3-route
cut problem is more complicated than the 1-route and 2-route cut problems: while 1-route
and 2-route cuts separate the graph into independent parts, h-route cuts do not have this
property for h > 2. For example, when providing a 2-route cut C for the commodity (s1, t1)
that partitions the graph into the node sets S1 and T1 with at most one remaining edge
between them, then the commodities that have both nodes in S1 or both in T1 can be treated
independently because no simple path can connect two nodes in S1 (resp. T1) via a path
through T1 (resp. S1). This is not the case for 3-route cuts where a simple path between
two nodes in S1 may very well pass through T1. A key ingredient to handle this problem in
our paper is a novel rounding technique, called multilevel ball-growing, a generalization of
the well-known ball growing argument that makes it possible to control the dependencies
between parts of the graph that are separated by 3-route cuts.

Though the proof of the duality relies on the approximation algorithm, it is not a
straightforward corollary of it as is the case for classical multicommodity flows and cuts. For
the duality proof we show a tight relationship between two different linear relaxations [4, 2]
of the h-route cut problem.

1.2 Other related results
The concept of multi-route flows was introduced by Kishimoto and Takeuchi [8]. As far as
we know, the problem of a minimum h-route cut, for h > 1, was first considered by Bruhn
et al. [3] in a paper dealing primarily with single source multi-route flows on graphs with
uniform capacities. In this particular setting they established an approximate max-flow
min-cut theorem and, as a corollary, described a (2h− 2)-approximation algorithm for the
minimum h-route cut problem, for any h > 1.

For graphs with non-uniform capacities, the first non-trivial approximation for multi-route
cuts was given by Chekuri and Khanna [4]. They dealt with the special case of h = 2 and
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provided an O(log2 n log k)-approximation for the 2-route cut problem where n is the number
of vertices in G. As their algorithm is based on an LP relaxation that is dual to the LP for
the maximum 2-route flow problem, an implicit corollary of their result is an approximate
duality of 2-route flows and 2-route cuts. The approximation factor for 2-route cuts was
recently improved by Barman and Chawla [2] who described an O(log2 k)-approximation
for the 2-route cut problem. Their algorithm is based on a different linear programming
relaxation that allows them to extend the classical (discrete) ball-growing (or region-growing)
technique (cf. [10, 6, 11]) to 2-route cuts. In a subsequent work [9], using a combination
of the multilevel ball-growing technique and other arguments, we proved an approximate
duality theorem for multicommodity h-route cuts and flows for any h, on uniform capacity
networks. A challenging open problem is to prove an analogous result for networks with
general capacities.

2 Minimum h-Route Cut Problem

Suppose that we are given a minimum h-route cut problem for the graph G = (V,E) with
edge capacities c : E → R+ and with commodities (s1, t1), . . . , (sk, tk). If F ⊆ E is an
h-route cut for the instance, then for every commodity there exists a set Fi of at most h− 1
edges such that F ∪ Fi is a classical cut for the commodity i. With this observation, the
integer LP for the minimum h-route cut problem can be stated as follows (by Pi we denote
the set of all edge-simple paths in G between si and ti):

min
∑
e∈E

c(e)x(e) (1)∑
e∈p

(x(e) + xi(e)) ≥ 1 ∀i ∈ [k], p ∈ Pi∑
e∈E

xi(e) ≤ h− 1 ∀i ∈ [k]

x(e) ∈ {0, 1} ∀e ∈ E
xi(e) ∈ {0, 1} ∀i ∈ [k],∀e ∈ E

In order to find a good approximate solution for this ILP, we will look at its LP relaxation
where x(e) ∈ {0, 1} is replaced by x(e) ≥ 0 and xi(e) ∈ {0, 1} is replaced by xi(e) ≥ 0. In
the following, let the x- and xi-values represent an optimal solution of this LP relaxation and
let φ =

∑
e∈E c(e)x(e). Our goal is to round these values to an integral solution with cost

at most O(φ log3 k) for h = 3. For this we will use a novel rounding technique that we call
multilevel ball-growing. At the heart of this (as well as the classical ball growing) technique
is the following lemma from elementary calculus.

I Lemma 1. Let [l1, r1], [l2, r2], . . . , [lz, rz] be internally disjoint intervals of real numbers
such that l1 < l2 < · · · < lz and let R =

⋃z
i=1[li, ri]. Assume that the following holds:

f is a nondecreasing function on R and f(l1) > 0,
f is differentiable on R, except for finitely many points,
g is a function on R such that ∀r ∈ R, g(r) ≤ f ′(r), except for finitely many points.

Let γ = f(rz)/f(l1). Then there exists r ∈ R such that g(r) ≤ 1
|R| log γ · f(r).

Proof. Assume, by contradiction, that for every r ∈ R we have g(r) > 1
|R| log γ · f(r). Then

log γ ≤
∫
r∈R

1
|R|

log γ dr <
∫
r∈R

g(r)
f(r) dr ≤

∫
r∈R

f ′(r)
f(r) dr ≤ log f(rz)

f(l1) = log γ ,

a contradiction. J
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3 Single Source

Our algorithm for 3-route cuts works in iterations, and in iteration i some 3-route cut is found
for some commodity i that does not yet have a 3-route cut. These 3-route cuts are added up
to some final cut F ⊆ E. Our goal is to make sure that c(F ) = O(log3 k

∑
e c(e) · x(e)) =

O(φ log3 k). We start with some basic notation for iteration i.
We define dy(u) as the length of the shortest path from ti to the node u with respect

to the length function y : E → R≥0. For the definitions of the δ-sets in iteration i (see
below) we view every edge uv ∈ E as a segment consisting of two parts: an x-part of
length x(uv) followed (on the way from ti) by an xi-part of length xi(uv). Certainly,
x(uv) + xi(uv) ≥ |dx+xi

(v) − dx+xi
(u)| for every edge uv ∈ E but for the definition of

the δ-sets below it will be convenient to assume equality between the two quantities. To
ensure the equality, we perform a minor temporary modification of the x and xi values:
if x(uv) ≤ |dx+xi(v) − dx+xi(u)| then we reduce xi(uv) to |dx+xi(v) − dx+xi(u)| − x(uv),
otherwise we reduce x(uv) to |dx+xi

(v)− dx+xi
(u)| and set xi(uv) = 0. These adjustments

are only valid for the following definitions.
In iteration i, for any r ∈ [0, 1] we define

B(r) = {u ∈ V | dx+xi(u) ≤ r}
δ(r) = {uv ∈ E | dx+xi

(u) ≤ r < dx+xi
(v)}

δx(r) = {uv ∈ δ(r) | dx+xi
(u) ≤ r ≤ dx+xi

(u) + x(uv)}
δxi

(r) = {uv ∈ δ(r) | dx+xi
(v)− xi(uv) < r ≤ dx+xi

(v)}

In words, the set B(r), called a ball (or region) with center at ti and radius r, is the set
of nodes at distance at most r from ti (with respect to x+ xi); δ(r) is the set of edges in
the cut between B(r) and V \B(r), δx(r) is the subset of edges from the cut δ(r) that are
cut in their x-part, and δxi

(r) are those from δ(r) that are cut in their xi-part. Clearly,
δ(r) = δx(r) ∪ δxi(r). We denote by δ1(r) the set δ(r) without the most expensive edge (i.e.,
δ1(r) = δ(r) \ {argmaxe∈δ(r) c(e)}), and for l > 1 we denote by δl(r) the set δl−1(r) without
the most expensive edge (i.e., δl(r) = δl−1(r) \ {argmaxe∈δl−1(r) c(e)}). Note that for every
r ∈ [0, 1], the set δh−1(r) is an h-route cut between ti and s. For a set E′ ⊆ E of edges we
define c(E′) =

∑
e∈E′ c(e). For a graph (resp. node set) H, let V (H) be the set of nodes and

E(H) be the set of edges in H (resp. the set of edges in E that have both endpoints in H).

3.1 2-Route Cuts
To outline our general approach in a simple setting, we sketch in this subsection an alternative
proof of the known result for 2-route single-source cuts.

In iteration i we defineR = {r ∈ [0, 1] | |δxi
(r)| ≤ 1} and observe that the measure of this

set is at least 1/2. For r ∈ [0, 1], let f(r) = φ/k +
∫
ρ∈R∩[0,r] c(δx(ρ)) dρ and g(r) = c(δ1(r))

where φ denotes the optimal objective value of the LP relaxation. The functions f (volume)
and g (cut size) satisfy the assumptions of Lemma 1 and thus, there exists r ∈ R such that
c(δ1(r)) = O(log k)f(r). This is the key observation of Barman and Chawla [2] (proved in a
different way). We add the edges from δ1(r) to the 2-route cut that we construct, remove the
ball B(r) from the graph (observe that after the removal of δ1(r), no terminal tj in B(r) is
2-connected with s) and proceed with the next iteration. The relationship between c(δ1(r))
and f(r) makes it possible to charge the cost of the edges in δ1(r) to the volume f(r) of
the ball B(r) (cf. the analysis of the classical 1-route cut algorithm [11]). This immediately
yields the O(log k)-approximation for the 2-route single-source cut problem and, with some
effort, also the O(log2 k)-approximation for the general 2-route cut problem.
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3.2 3-Route Cuts
In contrast to the cases h ≤ 2, for h = 3 we will need to charge more than one cut to some
edges. In order to keep track of how many cuts were already charged to which edge, we
maintain for every edge e a counter called a level of an edge, denoted `(e), which represents
(an upper bound on) how many cuts were already charged to the edge e. The edges with
positive level are called restricted edges and are maintained in a set D. Initially, the level
of every edge is zero and D = ∅. Throughout the run of the algorithm, every edge e ∈ D
satisfies x(e) ≤ 1/(2h log k) and `(e) ≤ L, for L = log k.

Recall that F ⊆ E is the edge set in which we collect the edges for the final 3-route cut
output by the algorithm. Whenever we have a statement holding for any h-route cut, we use
the h instead of 3 so that it becomes clear which techniques only apply to h = 3 and which
techniques could also be applied to larger h-values.

Consider the iteration of the algorithm in which we deal with the terminal ti. For any
edge uv ∈ E let the distance of uv from ti be defined as d(uv) = min{dx+xi

(u), dx+xi
(v)}.

We partition the edges from D into two subsets, according to their levels and their distance
d from ti:

D1 = {e ∈ D | d(e) is minimal among all f ∈ D with `(f) = `(e)} and D2 = D \D1

Ties are broken arbitrarily to ensure that there is at most one edge per level in D1. Observe
that for every edge f ∈ D2 there exists an edge e ∈ D1 with `(e) = `(f).

A radius r ∈ [0, 1] is forbidden if |δxi(r)| > h− 1 or if there exists an edge e ∈ D1 such
that e ∈ δx(r). A radius r ∈ [0, 1] that is not forbidden is good. Let R denote the set of good
radii for the current iteration, that is, R = {r ∈ [0, 1] | δxi(r) ≤ h− 1 and δx(r) ∩D1 = ∅}.

I Lemma 2. The measure of the set R of good radii is at least 1/(2h).

Proof. Let µ be the measure of the set {r ∈ [0, 1] | |δxi
(r)| ≥ h}. Considering the constraint∑

e∈E xi(e) ≤ h− 1 we obtain an upper bound on µ: hµ ≤
∑
e∈E xi(e) ≤ h− 1, and thus,

µ ≤ 1− 1/h. Therefore the measure of the set {r ∈ [0, 1] | |δxi(r)| ≤ h− 1} is at least 1/h.
Since the number of edges in D1 is at most log k and since x(e) ≤ 1/(2h log k) for every
e ∈ D1, the measure of the set {r ∈ [0, 1] | δx(r) ∩ D1 6= ∅} is at most 1/(2h). Hence,
|R| ≥ 1/(2h). J

Recall that φ is the optimal value of the objective function. For r ∈ [0, 1], we define

V (r) = φ

k
+

∫
ρ∈R∩[0,r]

c(δx(ρ))dρ .

The value V (r) is called the volume of the ball B(r). Observe that only the x-parts of the
edges in the ball contribute to the volume and the x-parts of the edges from D1 do not
contribute.

Clearly, 2φ is an upper bound on any V (r). Since c(δx(r)) ≥ 0 and V (r) ≥ φ/k for all
r ∈ R and c(δx(r)) is a step function (i.e., a piece-wise constant function) on R with at most
2m jumps, where m = |E|, we obtain the following lemma.

I Lemma 3. The function V (r) satisfies the following properties:
V (r) is a nondecreasing piece-wise linear function on R and V (r) > 0 for all r ∈ R,
V (r) is differentiable on R, except for finitely many points,
for each r ∈ R, V ′(r) ≥ c(δh−1(r)), except for finitely many points,
the maximum ratio between two values of the function V (r) on R is at most 2k.
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Proof. Follows from the definitions of the set R and of the function V (r). J

I Lemma 4. There exists an r ∈ R such that c(δh−1(r)) ≤ 2h log(2k) ·V (r). Moreover, such
a radius can be computed in polynomial time.

Proof. By Lemma 2, we know that |R| ≥ 1/(2h). Lemma 3 guarantees that we can apply
Lemma 1 to the functions f(r) = V (r) and g(r) = c(δh−1(r)) on R. Thus, there is an r ∈ R
with c(δh−1(r)) ≤ 2h log(2k)V (r).

Since V (r) is a piece-wise linear function on R and c(δh−1(r)) is a piece-wise constant
function on R with at most 2m pieces, we can efficiently find the value r for which c(δh−1(r))/
V (r) is minimal, and by the first part of this lemma, this ratio is at most 2h log(2k). J

In the current iteration, we first compute the radius r from Lemma 4 and add the edges
from δ2(r) to F (our final cut). Similar to the case of 2-route cuts, the relation between
c(δ2(r)) and V (r) (Lemma 4) makes it possible to charge the cost of the cut δ2(r) to the
volume V (r) of the ball B(r). Note that nothing is charged to any edge e ∈ D1 since their
x-parts do not contribute to V (r). Before we proceed with the next iteration, we locally
modify the graph G as described in the rest of this section.

Consider the set of edges in δ(r) \ δ2(r) and let Z be the set of endpoints of these edges
that are not in B(r). If |Z| ≤ 1, we remove B(r) and E(B(r)) from G and proceed with the
next iteration. We can do so because for any tj ∈ B(r) we already constructed a 3-route cut,
and for any tj ∈ V \B(r) any path from tj to s that goes through B(r) can be reduced so that
it does not contain any node from B(r). If |Z| = 2, we define H to be a subgraph of G with
vertex set V (H) = B(r)∪Z and edge set E(H) = {xy ∈ E(G) | x, y ∈ B(r)}∪(δ(r)\δh−1(r)).
The two nodes in Z are called the entry nodes of H and the two edges in δ(r) \ δh−1(r) the
entry edges of H. Let vi, wi denote the two entry nodes of H, let dy(vi, wi, H) denote the
length of the shortest path (with respect to the length function y : E → R≥0) between vi
and wi in H and let mincut(vi, wi, H) denote the minimum cut between vi and wi in H. If
dx(vi, wi, H) > 1/(2h log k), we add the edges from mincut(vi, wi, H) to F , charge the cost of
this cut to the volume of H and remove the subgraph H from the current graph G (with the
same justification as for |Z| ≤ 1); by the volume of H we mean V̄ (r) =

∑
e∈E(H) c(e)x(e).

I Lemma 5. If dx(vi, wi, H) > 1/(2h log k) then c(mincut(vi, wi, H)) < 2h log k · V̄ (r).

Proof. Suppose that dx(vi, wi, H) > 1/(2h log k) and let γ = c(mincut(vi, wi, H)). Then it
holds for all ρ ∈ [0, dx(vi, wi)] that c(δ(vi, ρ)) > γ where δ(vi, ρ) is the set of edges crossing
distance ρ from vi in H. Therefore,

V̄ (r) ≥
∫ dx(vi,wi,H)

ρ=0
c(δ(vi, ρ)) ≥ γ · dx(vi, wi) > γ/(2h log k)

Hence, c(mincut(vi, wi, H))< 2h log k · V̄ (r). J

If dx(vi, wi, H) ≤ 1/(2h log k), we replace H in G by a new edge viwi and set

x(viwi) = dx(vi, wi, H) , (2)
xj(viwi) = dx+xj

(vi, wi, H)− dx(vi, wi, H) ,∀j > i,

c(vi, wi) = c(mincut(vi, wi, H)),
`(viwi) = max{`1, `2}

where `1 = 0 if E(H) ∩ D1 = ∅ and `1 = maxe∈E(H)∩D1 `(e) otherwise, and `2 = 0 if
E(H) ∩D2 = ∅ and `2 = 1 + maxe∈E(H)∩D2 `(e) otherwise.
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I Lemma 6. Replacing the subgraph H by the new edge viwi as described above does not
increase the total volume

∑
e x(e)c(e) of the system. Moreover, after the replacement all

constraints of the LP are satisfied.

Proof. The product dx(vi, wi, H) · c(mincut(vi, wi, H)) is a lower bound on the volume of
H. The claim about the LP constraints is clear from the description of the replacement. J

We say that the new edge viwi represents the edges in E(H) (to be more precise, viwi
represents all edges that were represented by edges in E(H); an edge from the original edge
set represents itself). The new edge viwi is added to the set D of restricted edges and all
edges in D that are incident to a node in B(r) are removed from D. When some cut is
charged later to this new edge viwi, then the charge is redistributed recursively to the edges
represented by viwi, proportionally to their volume. When the edge viwi is cut later, then
it means cutting all edges in mincut(vi, wi, H). With this convention, every 3-route cut in
the modified graph corresponds to a 3-route cut of the same cost in the original graph. We
observe several things.

I Lemma 7. For each e ∈ D, every edge represented by e was charged at most `(e) + 1 times
due to the δ2(r) cuts.

Proof. By construction, every time something is charged to an edge f of level `(f), either
the edge is removed from the graph, or the level of the new edge that represents f is set to
`(f) + 1 at least. J

I Lemma 8. For each e ∈ D, `(e) ≤ log k.

Proof. By construction, the only possibility for an increase of the maximum level of edges
in D is when the level of a new edge viwi is set to `2 ≥ 1, according to the definition (2).
Note that in this case, at least two edges of level `2 − 1 are removed from D (and from G).
Since for every commodity i we add at most one edge to D, the claim follows. J

I Lemma 9. For each e ∈ D, x(e) ≤ 1/(2h log k).

Proof. By the construction and the definition (2) of x(viwi). J

The lemmas above guarantee that the set D entering the next iteration satisfies our
assumptions listed at the beginning of this section.

I Theorem 10. The approximation ratio of the algorithm for the 3-route single-source cut
problem is O(log2 k).

Proof. First of all, notice that if some mincut(vi, wi, H) is charged to an edge e, then e will
be removed together with H from the system and never be charged again. Hence, Lemma 5
implies that the cost of the part of F that is due to mincuts is at most O(φ log k).

It remains to bound the cost of the h-route cuts. By the construction, the cost of every
h-route cut δ2(r) is charged to the volume V (r) of some ball B(r). By Lemmas 4, 6, 7 and 8,
the sum of volumes of all balls to which some h-route cut was charged is at most O(φ log k).
Thus, by Lemma 4 the total cost of the h-route cuts is at most O(φ log2 k). J
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4 Multiple Sources

The algorithm for multiple sources is an extension of the single-source algorithm for h = 3.
Again, it works in iterations. In iteration i the algorithm constructs the ball B around one of
the terminals si and ti. In contrast to the single-source problem, there might be commodities
with both terminals inside B. To deal with these pairs, the algorithm is recursively run in
the ball B, with levels re-initialized to 0. There are two main issues that must be addressed:
the number of recursive calls working with the same part of the original graph, and the
(in)dependence of the subproblems. A minor change from the single-source algorithm is that
now we require that x(e)%le1/(6h log k) for every e ∈ D.

4.1 Number of overlapping recursive calls.
There are two ways how two recursive calls may work in the same area of the original graph G:
(i) One of the two calls is invoked inside the other call. (ii) When the recursive call for B
is completed, B is replaced by an edge and the edge is later included in a new ball B′ for
which another recursive call is invoked.

To guarantee that the depth of the recursion is small, we ensure that every constructed
ball contains at most half of the remaining commodities. Then the depth of the recursion is
log k only. In this part of our algorithm and its analysis we use the ideas from the recent
paper by Barman and Chawla [2]. Lemma 11 deals with this problem.

To guarantee that there are not too many later recursive calls working in a particular
area of the original graph, we apply a lazy strategy: instead of invoking the recursive call
immediately after the ball B is defined, the algorithm postpones the call. If the algorithm
later defines another ball B′ in which the recursive call is to be run, and the ball B (the edge
created from B) is contained in B′, it is sufficient to perform only the recursive call for B′;
this call will take care also about all commodities inside B (note that every two balls are
either disjoint, or one of them is contained in the other).

Before we state and prove Lemma 11 we need a few more definitions. To simplify
them, in addition to the assumption made in the previous section (i.e., x(uv) + xi(uv) =
|dx+xi(v)−dx+xi(u)| for each uv ∈ E), we assume, without loss of generality, that dx+xi(si) =
1. Then, for r ∈ (0, 1) and z ∈ {si, ti} we define Bz(r) = {u ∈ V | dx+xi

(z, u) ≤ r},
δti(r) = δ(r), δsi(r) = δ(1− r), δtix (r) = δx(r), and δsi

xi
(r) = δxi(1− r) where for each u ∈ V ,

dx+xi
(ti, u) = dx+xi

(u) and dx+xi
(si, u) = 1 − dx+xi

(u). For z ∈ {si, ti} we also define
δz1(r) = δz(r) \ {argmaxe∈δz(r) c(e)}, δz2(r) = δz1(r) \ {argmaxe∈δz

1 (r) c(e)} and

Dz
1 = {uv ∈ D | `(uv) = −1 or d(z, uv) is minimal among all e ∈ D with `(e) = `(uv)} ,

Dz
2 = D \Dz

1 .

where d(ti, uv) = d(uv) and d(si, uv) = 1− d(ti, uv). Finally, for z ∈ {si, ti} and r ∈ [0, 1],
we define V (z, r) = φ/k +

∫
ρ∈Rz∩[0,r] c(δ

z
x(ρ))dρ, where Rz = {r ∈ [0, 1] | δxi

(r) ≤
h− 1, δzx(r) ∩Dz

1 = ∅}.

I Lemma 11. There exist good radii rs and rt such that rs + rt ≤ 1,

c(δh−1(si, rs)) ≤ 3h log(2k) · V (si, rs) and c(δh−1(ti, rt)) ≤ 3h log(2k) · V (ti, rt) .

Proof. From Lemma 2 it follows that the measure of the set {r ∈ [0, 1] | |δxi
(r)| ≤ h− 1} is

at least 1/h. Since the number of edges in D1 is at most 2 log k and x(e) ≤ 1/(6h log k) for
every e ∈ D1, the measure of the radii forbidden due to edges in D1 is at most 1/(3h). As
dx+xi

(ti, si) = 1, there is a radius r so that |Rsi∩[0, r]| ≥ 1/(3h) and |Rti∩[r, 1]| ≥ 1/(3h). It
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follows from Lemma 1 that there is an rs ∈ Rsi∩ [0, r] with c(δsi

h−1(rs)) ≤ 3h log(2k) ·V (si, rs)
and an rt ∈ Rti ∩ [r, 1] with c(δtih−1(rt)) ≤ 3h log(2k) · V (ti, rt). Since rs + rt ≤ 1, the lemma
follows. J

If rs and rt are the radii from Lemma 11 then the sets Bsi(rs) and Bti(rt) are disjoint;
thus at least one of them contains at most half of the remaining commodities. We always
pick such a ball in our algorithm.

I Corollary 12. The depth of the recursion is at most log k.

4.2 Independence of the Balls
Note that without some special care, the recursive subproblems are not independent as the
inner part of every ball B is connected to the outside part by two edges. This is in contrast
to the case h = 2 where the two parts of the graph are connected by a single edge and thus
can be treated independently in order to deal with those commodities with both terminals in
the same part of the graph. A new type of edges, forbidden edges, will help us to control the
dependencies.

In the algorithm for the single-source multi-route cut, the input for iteration i consists
not only of the current graph with the set of commodities and the corresponding fractional
solution of the linear program but also of the set of restricted edges inside of this graph,
which helps us to control the dependencies between the iterations. For multiple sources,
besides the restricted edges, we will also use the forbidden edges. Formally, they will be
part of the set of restricted edges but their level will be −1 and the restrictions imposed on
them are stronger: they are never cut (be it an h-route cut or a mincut) and they are never
charged for any cut.

Assume that we plan to invoke a recursive call for a ball built around the terminal
z ∈ {si, ti} with radius r. We distinguish two cases (as in the previous section, vi and wi
denote the two entry nodes of H):

If dx(vi, wi, G \Hz) ≤ 1/(6h log k), the recursive call is invoked for the subgraph Hz with
an extra edge viwi with x(viwi) = dx(vi, wi, G \Hz), c(viwi) = c(mincut(vi, wi, G \Hz))
and level −1. For each j > i we also set xj(viwi) = dx+xj

(vi, wi, G \Hz)− x(viwi). The
set of commodities consists of those with both terminals in Bz(r), and the set of restricted
edges is (D ∩E(Hz))∪ {viwi}. Since the x-length of the new edge is very short and each
recursion creates at most one such edge, it is possible to impose such restrictions.
If dx(vi, wi, G \Hz) > 1/(6h log k), for the recursive call we use the ball Bz(r)s. The set
of commodities consists again of those with both terminals in Bz(r), and the set of edges
with restriction is D ∩ E(Hz). The pair {vi, wi} is added to the set T . At the very end
of the algorithm, we disconnect all pairs that are in T .

4.3 Putting it Together
Similarly to the singe-source version of the algorithm, for every part of the set F that the
algorithm constructs, the ratio between the cost and the volume is bounded by O(log k), and
to each part of the volume we charge at most O(log k) times within each recursive call. The
only problem is that the set F that was constructed so far need not be a valid h-route cut.
The difficulty is with the recursion.

In the recursive calls, when the distance dx(vi, wi, G \Hz) was large (see the previous
subsection), we ignored the fact the vi and wi were possibly connected outside the ball Bz(r).
Thus, at this point we have no guarantee that the set F that we constructed so far is a
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3-route cut. To ensure that we do have a 3-route cut, we remove an additional set of edges
from the graph. To be more specific, it suffices to disconnect the pairs of vertices in T .

We proceed as follows. Consider the instance of the classical multicut problem consisting
of the graph G \D and of the set T that represents the commodities. By construction of
the set T , the x-distance between terminals of every pair in T is at least 1/(6h log k). Thus,
if we scale the x-values by 6h log k, we get a fractional solution for the multicut problem
for this instance. We apply the classical ball-growing rounding algorithm [6] to obtain an
O(log k)-approximation of the minimum multicut for this instance. Due to the scaling, the
cost of the obtained cut is upper-bounded by O(h log2(k) · φ). We add all edges from this
cut to the set F .

Considering the explanation at the beginning of this section and the bound from the
previous paragraph, the cost of the set F is O(log3 k · φ), and at this point, F is a valid
3-route cut. The main theorem follows.

I Theorem 13. The approximation ratio of the algorithm for the general 3-route cut problem
is O(log3 k).

5 Duality of Multicommodity Multiroute Flows and Cuts

Recall that an elementary h-flow between s and t is a set of h edge-disjoint paths between s
and t, each carrying a unit flow. Let Qi denote the set of all elementary h-flows between
si and ti and let Q =

⋃k
i=iQi. Then the problem of finding a maximum multicommodity

h-route flow has the following linear programming formulation; there is a non-negative
variable f(q) for every q ∈ Q where the value f(q) represents the total amount of flow sent
along the h-route flow q. On the right side of the page we state the dual linear program.

max
∑
q∈Q

f(q) (3)

∑
q∈Q:e∈q

f(q) ≤ h · c(e) ∀e ∈ E

f(q) ≥ 0 ∀q ∈ Q

min h ·
∑
e∈E

c(e) · x(e) (4)∑
e∈q

x(e) ≥ 1 ∀q ∈ Q

x(e) ≥ 0 ∀e ∈ E

Note that without the factor h in the objective function the linear program (4) is another
relaxation of the h-route cut problem (the approximation algorithm of Chekuri and Khanna [4]
for 2-route cuts is based on this relaxation). We will refer by (4’) to the linear program (4)
with the objective function scaled down to

∑
e∈E c(e) · x(e).

There are simple examples showing that the linear relaxation (4’) is by a factor of h
lower (asymptotically) than the linear relaxation of (1). Think about two vertices s and t
connected by M parallel edges. Then the fractional optimum for the linear program (4’)
is M/h (assign a value 1/h to every variable) while the fractional optimum of the linear
program (1) is M − h.

The main technical result of this section is that the gap between the two relaxations is
not more than h. A corollary of this result is an approximate duality theorem for multiroute
cuts and flows.

I Theorem 14. Given an instance of the h-route cut problem, let O1 denote the optimum
value of the linear program (1) and O2 the optimum value of the linear program (4’). Then
O2 ≤ O1 ≤ h ·O2, and the bound is tight.
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Proof. Since the first inequality is trivial, it suffices to prove the second one. Let x be
an optimum solution of the linear program (4’). We are going to derive from x a solution
x̄, x1, . . . , xk ∈ RE of the linear program (1) with the objective value being larger by a factor
of at most h (i.e.,

∑
e∈E c(e)x̄(e) ≤ h

∑
e∈E c(e)x(e)). For each e ∈ E, let x̄(e) = h · x(e). It

suffices to prove that for each i, the following linear program has a feasible solution xi. As
in Section 2, Pi denotes the set of all paths between si and ti.∑

e∈p
xi(e) ≥ 1−

∑
e∈p

x̄(e) ∀p ∈ Pi (5)

∑
e∈E

xi(e) ≤ h− 1 ∀e ∈ E

xi(e) ≥ 0 ∀e ∈ E

Assume, for a contradiction, that the linear program (5) does not have a feasible solution.
Then, by Farkas’ lemma, there exists a non-negative vector λ ∈ RPi and a non-negative
scalar γ such that∑

p∈Pi:e∈p
λ(p) ≤ 1 ∀e ∈ E (6)

∑
p∈Pi

λ(p)(1−
∑
e∈p

x̄(e)) > h− 1

(without loss of generality, we assume that γ = 1; note that every vector (λ, γ) obtained by
the application of the Farkas’ to the linear program (5) satisfies γ > 0 and thus, we can scale
the (λ, γ) to guarantee γ = 1). In the following discussion, among all vectors λ satisfying the
constraints (6) we fix the one for which

∑
p∈Pi

λ(p) is minimal.
Observe that λ corresponds to a feasible flow between si and ti in the graph G with all

edge capacities set to one; the size of the flow is at least h−1+
∑
p∈Pi

∑
e∈p λ(p)x̄(e) > h−1.

For each edge e ∈ E, let λ(e) =
∑
p:e∈p λ(p) and let E′ = {e ∈ E | λ(e) > 0} be the subset

of edges on which the flow λ is non-zero. Since the flow is realized in a graph with unit
capacities and the size of the flow is strictly larger than h− 1, by Mengers’ theorem there
exist h edge disjoint paths between si and ti in (V,E′); let q ∈ Qi denote the corresponding
elementary h-flow and λ(q) = mine∈q λ(e). Let λ′ ∈ RPi be (a path-decomposition of) the
flow obtained from the flow λ by subtracting λ(q) units of flow from every edge e ∈ q. Note
that

∑
p∈Pi

λ(p) >
∑
p∈Pi

λ′(p). Since we started with a feasible solution x of the linear
program (4’), from the definition of x̄ we know that

∑
e∈q x̄(e) ≥ h. Observing that∑

p∈Pi

λ(p)(1−
∑
e∈p

x̄(e)) =
∑
p∈Pi

λ′(p)(1−
∑
e∈p

x̄(e)) + λ(q)(h−
∑
e∈q

x̄(e)) ,

we conclude that
∑
p∈Pi

λ′(p)(1−
∑
e∈p x̄(e)) > h− 1. However, this is a contradiction with

the choice of λ: the flow λ′ also satisfies the constraints (6) and its size is smaller than the
size of λ. Thus, the linear program (5) has a feasible solution, for each i, and the proof is
completed. J

I Corollary 15 (Duality of multiroute multicommodity flows and cuts). For any instance with
k commodities, the cost of the minimum h-route cut for h ≤ 3 is at least a fraction 1/h of the
maximum h-route multicommodity flow, and is always at most O(h2 log3 k) times as much.

Proof. The first relation is trivial: one always has to block at least one of the h paths of
every elementary h-flow. The other relation follows from Theorem 14, the duality of the
linear programs (3) and (4), and Theorem 13 (the approximation algorithm). J
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5.1 Sparsest multiroute cut
The sparsest multiroute cut problem is a multiroute analog of the sparsest cut problem. By a
combination of standard [7, 11] and our techniques we obtain the following results.

I Theorem 16. The approximation ratio achievable in polynomial time for the multiroute
sparsest cut problem with h ≤ 3 is O(h2 log h log3 k logD) where D =

∑k
i=1 di.

I Corollary 17. For any instance with k commodities, the sparsest h-route cut for h ≤ 3 is
at least as large as the maximum concurrent h-route multicommodity flow, and is always at
most O(h2 log h log3 k logD) times larger.
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Abstract
The visibility representation (VR for short) is a classical representation of plane graphs. It has
various applications and has been extensively studied. A main focus of the study is to minimize
the size of the VR. It is known that there exists a plane graph G with n vertices where any VR
of G requires a grid of size at least 2

3n × ( 4
3n − 3) (width × height). For upper bounds, it is

known that every plane graph has a VR with grid size at most 2
3n × (2n − 5), and a VR with

grid size at most (n− 1)× 4
3n. It has been an open problem to find a VR with both height and

width simultaneously bounded away from the trivial upper bounds (namely with size at most
chn× cwn with ch < 1 and cw < 2).

In this paper, we provide the first VR construction with this property. We prove that every
plane graph of n vertices has a VR with height ≤ max{ 23

24n + 2d
√
ne + 4, 11

12n + 13} and width
≤ 23

12n. The area (height×width) of our VR is larger than the area of some of previous results.
However, bounding one dimension of the VR only requires finding a good st-orientation or a good
dual s∗t∗-orientation of G. On the other hand, to bound both dimensions of VR simultaneously,
one must find a good st-orientation and a good dual s∗t∗-orientation at the same time, and thus
is far more challenging. Since st-orientation is a very useful concept in other applications, this
result may be of independent interests.

1998 ACM Subject Classification G.2.2 Graph algorithms.

Keywords and phrases plane graph, plane triangulation, visibility representation, st-orientation

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.141

1 Introduction

Drawing plane graphs has emerged as a fast growing research area in recent years (see [1]
for a survey). A visibility representation (VR for short) is a classical drawing style of plane
graphs, where the vertices of a graph G are represented by non-overlapping horizontal line
segments (called vertex segment), and each edge of G is represented by a vertical line segment
touching the vertex segments of its end vertices. Fig. 1 shows a VR of a plane graph G. The
problem of computing a compact VR is important not only in algorithmic graph theory, but
also in practical applications. A simple linear time VR algorithm was given in [13, 14] for
2-connected plane graphs. It uses an st-orientation of G and the corresponding st-orientation
of its st-dual G∗ to construct a VR. Using this approach, the height of the VR is bounded
by (n− 1) and the width of the VR is bounded by (2n− 5) [13, 14].
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Plane Graph 4-Connected Plane Graph
Width Height Width Height

1 ≤ (2n− 5) [13, 14] ≤ (n− 1) [13, 14]
2 ≤ b 3n−6

2 c [6]
3 ≤ b 22n−42

15 c [9] ≤ (n− 1) [7]
4 ≤ b 5n

6 c [16]
5 ≤ b 13n−24

9 c [17] ≤ d 3n
4 e [15]

6 ≤ b 4n−1
5 c [18]

7 ≤ 2n
3 + b2

√
nc [4]

8 ≤ 2n
3 + 14 [19]

9 ≤ b 4n
3 c − 2 [3] ≤ dn

2 e+ 2d
√

n−2
2 e [2]

10 ≤ 3
2 n [5] ≤ 3

4 n + 2d
√

ne+ 4 [5]
11 ≤ 23

12 n ≤ max{ 23
24 n + 2d

√
ne+ 4,

11
12 n + 13}

Table 1 Previous and new results on the height and the width of VR. (For the line 8, the original
bound given in [19] was Height ≤ 2n/3 + O(1). By a more careful calculation, the term O(1) is
actually 14.)

As in many other graph drawing problems, one of the main concerns in the VR research
is to minimize the grid size (i.e. the height and the width) of the representation. For the
lower bounds, it was shown in [16] that there exists a plane graph G with n vertices where
any VR of G requires a grid of size at least (b 2n

3 c)× (b 4n
3 c − 3). Some work has been done

to reduce the height and width of the VR by carefully constructing special st-orientations.
Table 1 compares related previous results and new result in this paper.

The line 1 in Table 1 gives the trivial upper bounds. All other results, except the line 10
and 11 (the recult in this paper), concentrated on one dimension of the VR (either the width
or the height). In Table 1, the un-mentioned dimension is bounded by the trivial upper
bound (namely, n−1 for the height and 2n−5 for the width). In [11, 12], heuristic algorithms
were developed aiming at reducing the height and the width of VRs simultaneously. The line
10 in Table 1 is the only VR construction with simultaneously reduced height and width.
However, it only works for 4-connected plane graphs. The line 11 shows the new result
in this paper: we prove that every plane graph with n vertices has a VR with height at
most max{ 23

24n+ 2d
√
ne+ 4, 11

12n+ 13} and width at most 23
12n. The representation can be

constructed in linear time.
The present paper is organized as follows. Section 2 introduces preliminaries. Section 3

presents a decomposition lemma for plane graphs. Section 4 presents the construction of VR
with the stated height and width. Section 5 concludes the paper.

2 Preliminaries

In this paper, we only consider simple graphs (namely without self-loops and multiple edges).
A planar graph is a graph G = (V,E) such that the vertices of G can be drawn in the plane
and the edges of G can be drawn as non-intersecting curves. Such a drawing is called an
embedding. The embedding divides the plane into a number of connected regions. Each region
is called a face. The unbounded face is the exterior face. The other faces are interior faces.
The vertices and edges that are not on the boundary of the exterior face are called interior
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vertices and edges, respectively. A plane graph is a planar graph with a fixed embedding. A
plane triangulation is a plane graph where every face is a triangle (including the exterior
face). |G| denotes the number of vertices of G. I(G) denotes the set of interior vertices of G.
Thus |I(G)| = |G| − 3 for a plane triangulation G.

For a path P , length(P ) (or |P |) denotes the number of edges in P . For two vertices
a, b in P , P (a, b) denotes the sub-path of P from a to b (inclusive). (We slightly abuse the
notation here: For a graph G, |G| denotes the number of vertices in G. For a path P , |P |
denotes the number of edges in P .)

When discussing VRs, we assume the input graph G is a plane triangulation. (If not, we
get a triangulation G′ by adding dummy edges into G. After constructing a VR for G′, we
can get a VR of G by deleting the vertical line segments for the dummy edges). From now
on, G always denotes a plane triangulation.

A numbering O of a set S = {a1, . . . , ak} is a one-to-one mapping between S and the set
{1, 2, . . . , k}. We write O = 〈ai1 , ai2 , . . . , aik

〉 to indicate O(ai1) = 1, O(ai2) = 2 ... etc. A
set S with a numbering written this way is called an ordered list. For two elements ai and aj ,
if ai is assigned a smaller number than aj in O, we write ai ≺O aj . Let S1 and S2 be two
disjoint sets. If O1 is a numbering of S1 and O2 is a numbering of S2, their concatenation,
written as O = 〈O1,O2〉, is the numbering of S1 ∪S2 where O(x) = O1(x) for all x ∈ S1 and
O(y) = O2(y) + |S1| for all y ∈ S2.

G is called an directed graph (digraph) if each edge of G is assigned a direction. An
orientation of a (undirected) graph G is a digraph obtained from G by assigning a direction
to each edge of G. We use G to denote both the resulting digraph and the underlying
undirected graph unless otherwise specified. (Its meaning will be clear from the context.)

Let G = (V,E) be an undirected graph. A numbering O of V induces an orientation of
G as follows: each edge of G is directed from its lower numbered end vertex to its higher
numbered end vertex. The resulting digraph, denoted by GO, is called the orientation derived
from O which, obviously, is an acyclic digraph. We use lengthG(O) (or simply length(O) if
G is clear from the context) to denote the length of the longest directed path in GO.

For a 2-connected plane graph G and an exterior edge (s, t), an orientation of G is called
an st-orientation if the resulting digraph is acyclic with s as the only source and t as the
only sink. Such a digraph is also called an st-graph. Lempel et al. [8] showed that for every
2-connected plane graph G and an exterior edge (s, t), there exists an st-orientation. For
more properties of st-orientation and st-graph, we refer readers to [10].

Let G be a 2-connected plane graph and (s, t) an exterior edge. An st-numbering of G is
a one-to-one mapping ξ : V → {1, 2, . . . , n}, such that ξ(s) = 1, ξ(t) = n, and each vertex
v 6= s, t has two neighbors u,w with ξ(u) < ξ(v) < ξ(w), where u (w, resp.) is called a
smaller neighbor (bigger neighbor, resp.) of v. Given an st-numbering ξ of G, the orientation
of G derived from ξ is obviously an st-orientation of G. On the other hand, if G = (V,E) has
an st-orientation O, we can define an one-to-one mapping ξ : V → {1, . . . , n} by topological
sort. It is easy to see that ξ is an st-numbering and the orientation derived from ξ is O.
From now on, we will interchangeably use the term “an st-numbering” of G and the term
“an st-orientation” of G, where each edge of G is directed accordingly.

I Definition 1. Let G be a plane graph with an st-orientation O, where (s, t) is an exterior
edge drawn at the left on the exterior face of G. The st-dual graph G∗ of G and the dual
orientation O∗ of O is defined as follows:

Each face f of G corresponds to a node f∗ of G∗. In particular, the unique interior face
adjacent to the edge (s, t) corresponds to a node s∗ in G∗, the exterior face corresponds
to a node t∗ in G∗.
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For each edge e 6= (s, t) of G separating a face f1 on its left and a face f2 on its right,
there is a dual edge e∗ in G∗ from f∗1 to f∗2 .
The dual edge of the exterior edge (s, t) is directed from s∗ to t∗.

t

a

c

s

b

(1) (2)s

b

a

c

t

s*

t*

Figure 1 (1) An st-graph G and its st-dual graph G∗; (2) A VR of G.

Fig. 1 (1) shows an st-graph G and its st-dual graph G∗. (Circles and solid lines denote
the vertices and the edges of G. Squares and dashed lines denote the nodes and the edges of
G∗.) It is well known that the st-dual graph G∗ defined above is an st-graph with source s∗
and sink t∗. The correspondence between an st-orientation O of G and the dual st-orientation
O∗ is a one-to-one correspondence. The following theorem was given in [13, 14]:

I Theorem 2. Let G be a 2-connected plane graph with an st-orientation O. Let O∗ be the
dual st-orientation of the st-dual graph G∗. A VR of G can be obtained from O in linear
time. The height of the VR is length(O). The width of the VR is length(O∗). Since G has n
vertices and G∗ has 2n− 4 nodes, any st-orientation of G leads to a VR with height ≤ n− 1
and width ≤ 2n− 5.

Fig. 1 (2) shows a VR of the graph G shown in Fig. 1 (1). The width of the VR is
length(O∗) = 5. The height of the VR is length(O) = 3.

The following theorems were given in [19, 3, 5], and will be needed later for our VR
construction.

I Theorem 3. [19] Every plane triangulation with n vertices has a VR with width ≤ 2n− 5
and height ≤ 2

3n+ 14, which can be constructed in linear time.

I Theorem 4. [3] Every plane triangulation with n vertices has a VR with height ≤ n− 1
and width ≤ b 4

3nc − 2, which can be constructed in linear time.

I Theorem 5. [5] Every 4-connected plane triangulation with n vertices has a VR with
height ≤ 3

4n+ 2d
√
ne+ 4 and width ≤ 3

2n, which can be constructed in linear time.

From Theorem 2, results in above theorems can also be stated in terms of the length of
the orientations of G. The statement “G has an st-orientation O such that length(O) ≤ x
and length(O∗) ≤ y” is equivalent to the statement “the VR of G derived from O has height
≤ x and width ≤ y”. We will use these two statements interchangeably.

3 A Decomposition Lemma

The basic idea of our VR construction is as follows: We use the VR constructions in Theorems
2, 3, 4 and 5 for different subgraphs of G, some of them have small width and others have
small height. The crux of the construction is to find a proper balance that reduces overall



J.-J. Wang and X. He 145

height and width of the VR. In this section, we prove a decomposition lemma that is needed
by our VR construction to achieve the balance.

Let G = (V,E) be a plane graph. A triangle of G is a set of three mutually adjacent
vertices. The notation 4 = (a, b, c) denotes a triangle consisting of vertices a, b, c. A triangle
4 divides the plane into its interior and exterior regions. We say 4 = (a, b, c) is a separating
triangle if G− {a, b, c} is disconnected. In other words, 4 = (a, b, c) is a separating triangle
if there are vertices in both its interior and exterior regions. The following fact by Whitney
is well known:

I Fact 1. A plane triangulation G is 4-connected if and only if G has no separating triangles.

Let 4 = (a, b, c) be a separating triangle. G4 denotes the subgraph of G induced by
{a, b, c} ∪ {v ∈ V | v is in interior of 4}. 4 is maximal if there is no other separating
triangle 4′ such G4 ⊂ G4′ . Two triangles 41 and 42 are related if either G41 ⊆ G42 or
G42 ⊆ G41 .

Let G1 and G2 be two plane triangulations. If G1 has an internal face f such that the
vertex set of f and the vertex set of the outer face of G2 are identical, we can embed G2 into
G1 by identifying the face f and the exterior face of G2. The resulting plane triangulation is
denoted by G1 ⊕f G2 (or simply G1 ⊕G2).

I Definition 6. Let G1 and G2 be two plane triangulations such that G2 can be embedded
into G1 by a common face f = {a, b, c}. Let O1 be an st-orientation of G1 and O2 be an
st-orientation of G2 such that the three edges {(a, b), (b, c), (c, a)} are oriented the same
way in O1 and O2. OG1 ⊕OG2 denotes the union of O1 and O2, which is an orientation of
G1 ⊕G2.

I Lemma 7. Let G1, G2, O1, and O2 be as in Definition 6. Then OG1 ⊕ OG2 is an
st-orientation of G1 ⊕G2.

Proof. Immediate from the definition. J

I Definition 8. The 4-block tree of a plane triangulation G is a rooted tree T defined as
follows:

If G has no separating triangles (i.e. G is 4-connected), then T consists of a single root r.
If not, let 41, . . . ,4p be the maximal separating triangles of G. Let Ti be the 4-block
tree of G4i

. Then T is the tree with root r and the roots of Ti (1 ≤ i ≤ p) as the children
of r.

From the definition, we have the following properties:

Each non-root node u of T corresponds to a separating triangle 4u of G.
For any u, v ∈ T , u and v have ancestor-descendant relation if and only if 4u and 4v

are related in G.

For a node u of T , Gu denotes the subgraph G4u
− (∪v∈C(u)I(G4v

)) where C(u) is
the set of children of u in T . In other words, Gu is obtained from G4u by deleting all
vertices that are in the interior of the maximal separating triangles of G4u

. Since Gu has no
separating triangles, Gu is 4-connected. Each Gu is called a 4-block component of G. Fig. 2
shows a plane triangulation G, the 4-block components and the 4-block tree of G.

For a node u ∈ T , define |Tu| = |G4u
|.

I Lemma 9. Let G be a triangulation and T be its 4-block tree. At least one of the following
two conditions holds.
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Figure 2 (1) A triangulation G; (2) 4-block components and the 4-block tree T of G.

1. There exists a node v in T such that |Gv| ≥ n
6 .

2. There exists a set of unrelated separating triangles {41,42, . . . ,4h}, such that |G4i
| ≥ 5

and n
4 − 3 ≤

∑h
i=1 |I(G4i)| ≤ 3

4n− 3.

Proof. Let r be the root of T . Let H be a maximal path in T from r to some node v of T
such that for each node u ∈ H, |Tu| ≥ 3n

4 (v can be the root r).
If v is a leaf of T , then |Gv| ≥ 3n

4 > n
6 . So condition (1) is satisfied.

Now, suppose v is not a leaf. Let {v1, v2, . . . , vp} be the children of v in T . Without loss
of generality, assume |Tv1 | ≤ |Tv2 | ≤ . . . ≤ |Tvp

|. Then, either n
4 ≤ |Tvp

| < 3n
4 ; or |Tvi

| < n
4

for all vi ∈ {v1, v2, . . . , vp}.
If n

4 ≤ |Tvp
| < 3n

4 , then the separating triangle 4vp
satisfies n

4 − 3 ≤ |I(G4vp
)| ≤ 3n

4 − 3.
So the single separating triangle 4vp satisfies condition (2).

Now suppose |Tvi
| < n

4 for all vi. Let im be the index such that |Tvi
| ≤ 4 for all i ≤ im

and |Tvi | ≥ 5 for all i > im. There are three cases.
(1)

∑
i>im

(|Tvi
| − 3) < n

4 − 3.
Let n1 = |Gv|. Since Gv is a triangulation with n1 vertices, Gv has 2n1 − 5 internal faces

by Euler’s formula. Each child vi of v corresponds to a maximal separating triangle of G4v
,

and each such separating triangle is one of the interior faces of Gv. Thus, im ≤ p ≤ 2n1 − 5.
Since |I(G4vi

)| = 1 for all i ≤ im, we have:

3
4n ≤ |Tv| = n1 +

∑
i≤im

|I(G4vi
)|+

∑
i>im

|I(G4vi
)|

= n1 + im +
∑

i>im

|I(G4vi
)| ≤ n1 + (2n1 − 5) +

∑
i>im

|I(G4vi
)|

From the assumption
∑

i>im
|I(G4vi

)| < n
4 − 3, we have: 3n1 − 5 > 3

4n−
n
4 = n

2 . This
implies |Gv| = n1 ≥ n

6 + 5
3 . So Gv satisfies (1).

(2) n
4 − 3 ≤

∑
i>im

(|Tvi | − 3) ≤ 3
4n− 3.

This is equivalent to n
4 −3 ≤

∑
i>im

|I(G4vi
)| ≤ 3

4n−3. So the set of unrelated separating
triangles {4vim+1 ,4vim+2 , . . . ,4vip

} satisfies (2).
(3)

∑
i>im

(|Tvi
| − 3) > 3

4n− 3
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Let it be the first index such that
∑

im<i≤it
(|Tvi | − 3) ≥ n

4 − 3. Because each |Tvi | <
n
4 , clearly

∑
im<i≤it

(|Tvi
| − 3) ≤ 3

4n − 3. So the set of unrelated separating triangles
{4vim+1 ,4vim+2 , . . . ,4vit

} satisfies (2). J

4 Compact Visibility Representation

In this section. we describe our compact VR construction of a plane triangulation G. In
order to reduce VR’s height and width simultaneously, we construct a VR of G by using
different VRs for some subgraphs of G. As stated in theorems 2, 3, 4 and 5, some of these
VRs have small height and others have small width. Roughly speaking, we select a set
of separating triangles, {41,42, . . . ,4h} of G. For the subgraph of G that is outside of
{G41 , G42 , . . . , G4h

} (call it G′), we use a VR of G′ with small height. For each G4i , we
use a VR with small width. Then, we embed each G4i

into G′.
Define X (k) = d 2

3ke − 1. It is easy to verify:
X (k) is a non-decreasing function; and X (k) ≥ 1 and X (k) ≥ k/3 for all k ≥ 2.

I Theorem 10. Let S = {41,42, . . . ,4h} be a set of unrelated separating triangles of

G. Then G has an st-orientation O such that length(O) ≤ 2n
3 +

∑h

i=1
|I(G4i

)|
3 + 14 and

length(O∗) ≤ 2n− 5−
∑h

i=1 X (|I(G4i
)|).

Proof. Define Gext = G− ∪h
i=1I(G4i

) and Gj = Gext ∪ (∪j
i=1G4i

). We will show that Gj

(0 ≤ j ≤ h) has an st-orientation Oj so that:

I Claim 1. length(Oj) ≤ 2
3 |Gj |+

∑j

i=1
|I(G4i

)|
3 + 14.

I Claim 2. length(O∗j ) ≤ 2|Gj | − 5−
∑j

i=1 X (|I(G4i
)|).

Then the theorem follows. We prove claims 1 and 2 by induction.
Base case j = 0: From Theorem 3, G0 = Gext has an st-orientation O0 such that

length(O0) ≤ 2
3 |G0|+ 14 and length(O∗0) ≤ 2|G0| − 5. So the claims hold for the base case.

Induction hypothesis: Gk has an st-orientation Ok such that: length(Ok) ≤ 2
3 |Gk| +∑k

i=1
|I(G4i

)|
3 + 14. and length(O∗k) ≤ 2|Gk| − 5−

∑k
i=1 X (|I(G4i

)|).
Suppose that 4k+1 = {ak+1, bk+1, ck+1}. Without loss of generality, assume the edges of

4k+1 are oriented in Ok as {(ak+1 → bk+1), (bk+1 → ck+1), (ak+1 → ck+1)}.
By Theorem 4, G4k+1 has an st-orientation O4k+1 , with ak+1 as the source and ck+1 as

the sink, such that: length(O4k+1) ≤ |G4k+1 | − 1 and length(O∗4k+1
) ≤ b 4

3 |G4k+1 |c − 2.

Let Ok+1 = Ok ⊕O4k+1 . First we show length(Ok+1) ≤ 2
3 |Gk+1|+

∑k+1
i=1
|I(G4i

)|
3 + 14.

Note that |Gk+1| = |Gk|+ |I(G4k+1)| = |Gk|+ |G4k+1 | − 3.
Let Pk+1 be a longest path in Ok+1 from s to t in Gk+1; Pk a longest path in Ok from s

to t in Gk; and P4k+1 a longest path in O4k+1 from ak+1 to ck+1. There are several cases:

(i) Pk+1 does not contain any interior edge in G4k+1 . Then Pk+1 is a path in Gk. By
induction hypothesis,

length(Ok+1) = |Pk+1| ≤
2
3 |Gk|+

∑k
i=1 |I(G4i)|

3 +14 ≤ 2
3 |Gk+1|+

∑k+1
i=1 |I(G4i)|

3 +14.
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Figure 3 The proof of Theorem 10 (1) Case 2; (2) Case 3; (3) Path in the dual graph.

(ii) Pk+1 passes through a path in G4k+1 from ak+1 to ck+1 (see Fig. 3 (1)). Pk+1
can be divided into 3 sub-paths: {Pk+1(s, ak+1), Pk+1(ak+1, ck+1), Pk+1(ck+1, t)}. Here
Pk+1(s, ak+1), Pk+1(ck+1, t) are paths in Gk. Pk+1(ak+1, ck+1) is a path in G4k+1 . Since
P4k+1 is a longest path in G4k+1 , we have: |Pk+1(ak+1, ck+1)| ≤ |P4k+1 |.
Let P ′ be the concatenation of: Pk+1(s, ak+1) followed by the edges (ak+1 → bk+1)
and (bk+1 → ck+1); followed by Pk+1(ck+1, t). Then P ′ is a path in Gk. Thus
|P ′| = |Pk+1(s, ak+1)| + 2 + |Pk+1(ck+1, t)| ≤ |Pk|. This implies: |Pk+1(s, ak+1)| +
|Pk+1(ck+1, t)| ≤ |Pk| − 2. Hence:

length(Ok+1) = |Pk+1| = |Pk+1(s, ak+1)|+ |Pk+1(ak+1, ck+1)|+ |Pk+1(ck+1, t)|

≤ |Pk| − 2 + |P4k+1 | ≤
2
3 |Gk|+

∑k
i=1 |I(G4i)|

3 + 14 + |G4k+1 | − 1− 2

= 2
3 |Gk|+

∑k
i=1 |I(G4i)|

3 + (|I(G4k+1)|+ 3) + 14− 3

= 2
3(|Gk|+ |I(G4k+1)|+ 3) +

∑k+1
i=1 |I(G4i

)|+ 3
3 + 14− 3

= 2
3 |Gk+1|+

∑k+1
i=1 |I(G4i

)|
3 + 14

(iii) Pk+1 passes through a path in G4k+1 from ak+1 to bk+1 (see Fig. 3 (2)).
Pk+1 can be divided into three sub-paths: {Pk+1(s, ak+1), Pk+1(ak+1, bk+1), Pk+1(bk+1, t)}.
Here Pk+1(s, ak+1), Pk+1(bk+1, t) are paths in Gk, while Pk+1(ak+1, bk+1) is a path in
G4k+1 . The concatenation of Pk+1(ak+1, bk+1) and the edge bk+1 → ck+1 is a path in
G4k+1 . Hence: |Pk+1(ak+1, bk+1)| + 1 ≤ |P4k+1 |. The concatenation of Pk+1(s, ak+1)
followed by the edge ak+1 → bk+1, followed by Pk+1(bk+1, t) is a path in Gk. So:
|Pk+1(s, ak+1)|+ 1 + |Pk+1(bk+1, t)| ≤ |Pk|. Hence:

length(Ok+1) = |Pk+1| = |Pk+1(s, ak+1)|+ |Pk+1(ak+1, bk+1)|+ |Pk+1(bk+1, t)|
≤ (|Pk| − 1) + (|P4k+1 | − 1)

≤ 2
3 |Gk|+

∑k
i=1 |I(G4i

)|
3 + 14 + |G4k+1 | − 3

= 2
3 |Gk+1|+

∑k+1
i=1 |I(G4i

)|
3 + 14
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(iv) Pk+1 passes through a path in G4k+1 from bk+1 to ck+1. The proof is symmetric to
Case 3.

Next we prove Claim 2. Let P ∗k be a longest path of O∗k from s∗ to t∗. From induction
hypothesis, |P ∗k | ≤ 2|Gk| − 5 −

∑k
i=1 X (|I(G4i

)|). Let P ∗4k+1
be a longest path in G∗4k+1

.
By Theorem 4, |P ∗4k+1

| ≤ b4
3 |G4k+1 |c − 2.

Let P ∗k+1 be a longest path of O∗k+1 from s∗ to t∗. Let fk+1 be the face in Gk+1 that is
in the interior of 4k+1 adjacent to the edge ak+1 → ck+1 (see Fig. 3 (3).) (In other words,
fk+1 corresponds to the source node of dual st-orientation of G∗4k+1

.) If P ∗k+1 uses any edge
in G∗4k+1

, it must cross the edge ak+1 → ck+1 and enter the face fk+1. There are two cases.

(a) P ∗k+1 does not pass fk+1. Then P ∗k+1 is a path in G∗k and the claim trivially holds.
(b) P ∗k+1 passes through fk+1.

length(O∗k+1) = |P ∗k |+ |P ∗4k+1
| − |{fk+1}| ≤ 2|Gk| − 5

−
k∑

i=1
X (|I(G4i

)|) + b43 |G4k+1 |c − 2− 1

= 2(|Gk+1| − |I(G4k+1)|)− 5

−
k∑

i=1
X (|I(G4i

)|) + b43(|I(G4k+1)|+ 3)c − 3

= 2|Gk+1| − 5−
k∑

i=1
X (|I(G4i

)|)− 2|I(G4k+1)|+ b43 |I(G4k+1)|c+ 1

= 2|Gk+1| − 5−
k∑

i=1
X (|I(G4i)|)− (d23 |I(G4k+1 |e − 1)

= 2|Gk+1| − 5−
k+1∑
i=1
X (|I(G4i

)|)

J

I Lemma 11. Let S = {41,42, . . . ,4h} be a set of unrelated separating triangles of G such
that G′ = G− (∪h

i=1I(G4i)) is a 4-connected graph. Then, G has an st-orientation O such

that length(O) ≤ 3
4n+

∑h

i=1
|I(G4i

)|
4 + 2d

√
|G′|e+ 4 and length(O∗) ≤ 3

2n+
∑h

i=1
|I(G4i

)|
2 .

Proof. Define Gj = G′ ∪ (∪j
i=1G4i

). We show, by induction, that Gj has an st-orientation
Oj such that

1. length(Oj) ≤ 3
4n+

∑j

i=1
|I(G4i

)|
4 + 2d

√
|G′|e+ 4

2. length(O∗j ) ≤ 3
2n+

∑j

i=1
|I(G4i

)|
2 .

Base case j = 0: Since G0 = G′ is 4-connected, by Theorem 5, G′ has an st-orientation
O′ such that length(O′) ≤ 3

4 |G
′|+ 2d

√
|G′|e+ 4 and length(O′∗) ≤ 3

2 |G
′|. The claims are

trivially true.
Suppose the claims are true for j = k.
Suppose that 4k+1 = {ak+1, bk+1, ck+1}. Without loss of generality, assume the edges of

4k+1 are oriented in Ok as {(ak+1 → bk+1), (bk+1 → ck+1), (ak+1 → ck+1)}.
By Theorem 2, G4k+1 has an st-orientation O4k+1 , with ak+1 as the source and ck+1 as

the sink, such that length(O4k+1) ≤ |G4k+1 | − 1 and length(O∗4k+1
) ≤ 2|G4k+1 | − 5.

We show the orientation Ok+1 = Ok ⊕O4k+1 satisfies the claims.
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The proof of Claim 1 is similar to the first part of the proof of Theorem 10. We only
prove Claim 2.

By induction hypothesis, Gk has an st-orientation Ok such that length(O∗k) ≤ 3
2 |Gk|+∑k

i=1
|I(G4i

)|
2 . Also, we know that length(O∗4k+1

) ≤ 2|G4k+1 |−5. As in the proof of Theorem
10, there are two cases for analyzing length(O∗k+1).

(a) P ∗k+1 does not pass fk+1. Then P ∗k+1 is a path in G∗k and the claim trivially holds.
(b) P ∗k+1 passes fk+1. Then:

length(O) ≤ 3
2 |Gk|+

1
2

k∑
i=1
|I(G4i)|+ 2|G4k+1 | − 5− 1

= 3
2 |Gk|+

1
2

k∑
i=1
|I(G4i

)|+ 2|I(G4k+1)| ≤ 3
2 |Gk+1|+

1
2

k+1∑
i=1
|I(G4i

)|

This completes the induction. J

I Theorem 12. Let Gv be a 4-block component of G, with the corresponding separating
triangle 4v in G. Then G has an st-orientation O such that length(O) ≤ 3

4n+ 1
4 (n−|Gv|) +

2d
√
|Gv|e+ 4 and length(O∗) ≤ 3

2n+ n−|Gv|
2 .

Proof. Let S = {41,42, . . . ,4h} be the set of maximal separating triangles of G4v
. Since

Gv is 4-connected, by Lemma 11, G4v has an st-orientation O4v such that:

length(O4v
) ≤ 3

4 |G4v
|+ 2d

√
|Gv|e+ 4 +

∑h
i=1 |I(G4i)|

4

length(O∗4v
) ≤ 3

2 |G4v
|+

∑h
i=1 |I(G4i

)|
2 .

Let Gext = G − I(G4v
). Then Gext has an st-orientation such that length(Oext) ≤

|G
ext
| − 1 and length(O∗ext) ≤ 2|Gext| − 5. Let O = Oext ⊕O4v

. Then:

length(O) ≤ length(Oext) + length(O4v
)− 2

≤ (|Gext | − 1) + 3
4 |G4v |+ 2d

√
|Gv|e+ 4 +

∑h
i=1 |I(G4i

)|
4 − 2

= 3
4 |Gext|+

1
4 |Gext|+

3
4 |G4v

|+ 2d
√
|Gv|e+

∑h
i=1 |I(G4i)|

4 + 1

= 3
4(|G|+ 3) + 1

4(|V (Gext) ∪ (∪h
i=1I(G4i

))|) + 2d
√
|Gv|e+ 1

= 3
4(n+ 3) + 1

4(n− |Gv|+ 3) + 2d
√
|Gv|e+ 1

= 3
4n+ 1

4(n− |Gv|) + 2d
√
|Gv|e+ 4

length(O∗) = length(O∗ext) + length(O∗4v
)− 1

≤ (2|Gext| − 5) + (3
2 |G4v

|+
∑h

i=1 |I(G4i
)|

2 )− 1

= 3
2 |Gext|+

3
2 |G4v |+

1
2 |Gext|+

∑h
i=1 |I(G4i

)|
2 − 6

= 3
2(|G|+ 3) + 1

2(|I(Gext) ∪ (∪h
i=1I(G4i

))|+ 3)− 6 = 3
2n+ 1

2(n− |Gv|)



J.-J. Wang and X. He 151

This completes the proof. J

I Theorem 13. Every plane triangulation G of n vertices has a VR with height ≤ max{ 23
24n+

2d
√
ne+ 4, 11

12n+ 13} and width ≤ 23
12n.

Proof. By Lemma 9, there are two cases:
Case 1: G has a 4-block component with size n1 ≥ n/6. By Theorem 12, G has an

st-orientation O such that length(O) ≤ 3
4n+ n−n1

4 +2d
√
ne+4 and length(O∗) ≤ 3n

2 + (n−n1)
2 .

Since n1 ≥ n
6 , we have: length(O) ≤ 23

24n+ 2d
√
ne+ 4 and length(O∗) ≤ 23

12n.

Case 2: G has a set of unrelated separating triangles {41,42, . . . ,4h} such that:

For all i, |G4i
| ≥ 5, (which implies |I(G4i

)| ≥ 2).
n
4 − 3 ≤

∑h
i=1 |I(G4i

)| ≤ 3
4n− 3.

Since X (z) ≥ z/3 for all z ≥ 2, we have:

h∑
i=1
X (|I(G4i

)|) ≥
∑h

i=1 |I(G4i
)|

3 .

By Theorem 10, G has an st-orientation O such that

length(O) ≤ 2n
3 + | ∪

h
i=1 I(G4i)|

3 + 14 ≤ 2n
3 + 3n/4− 3

3 + 14 = 11
12n+ 13

length(O∗) ≤ 2n− 5−
h∑

i=1
X (|I(G4i)|) ≤ 2n− 5− n/4− 3

3 <
23
12n.

In either case, the orientation O leads to a VR of G with the stated width and height. J

5 Conclusion

In this paper, we showed that every plane graph of n vertices has a VR with height
≤ max{ 23

24n+ 2d
√
ne+ 4, 11

12n+ 13} and width ≤ 23
12n. This is the first VR construction for

general plane graphs that simultaneously bounds the height and the width from the trivial
upper bound. The gap between the size of our VR and the known lower bound is still large.
It would be interesting to find more compact VR constructions.
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Telling convex from reflex allows to map a polygon
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Abstract
We consider the exploration of a simple polygon P by a robot that moves from vertex to vertex
along edges of the visibility graph of P. The visibility graph has a vertex for every vertex of P
and an edge between two vertices if they see each other, i.e. if the line segment connecting them
lies inside P entirely. While located at a vertex, the robot is capable of ordering the vertices it
sees in counter-clockwise order as they appear on the boundary, and for every two such vertices,
it can distinguish whether the angle between them is convex (≤ π) or reflex (> π). Other than
that, distant vertices are indistinguishable to the robot. We assume that an upper bound on
the number of vertices is known and show that the robot is always capable of reconstructing the
visibility graph of P. We also show that multiple identical, indistinguishable and deterministic
such robots can always position themselves such that they mutually see each other, i.e. such that
they form a clique in the visibility graph.

1998 ACM Subject Classification F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems — Computations on discrete structures, Geometrical prob-
lems and computations; G.2.2 [Discrete Mathematics]: Graph Theory — Visibility graphs

Keywords and phrases polygon mapping, map construction, autonomous agent, simple robot,
visibility graph reconstruction
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1 Introduction

Autonomous mobile robots are used for various tasks like cleaning, guarding, data retrieval,
etc. in unknown environments. Many tasks require the exploration of the environment and
the creation of a map. The difficulty of the mapping problem depends on the characteristics
of the environment itself and on the sophistication of the robots, i.e. on their sensory and
locomotive capabilities. A natural question is how much sophistication a robot needs to be
able to solve the problem. The ultimate goal is to characterize the difficulty of the mapping
problem by finding minimal robot configurations that allow a robot to create a map.

We focus on robots operating in simple polygons. For many tasks, instead of inferring a
detailed map of the geometry of the environment, it is enough to obtain the visibility graph.
The visibility graph has a node for each vertex of the polygon and an edge connecting two
nodes if the corresponding vertices see each other, i.e. if the straight-line segment between
them is contained in the polygon. The goal in this context becomes to find minimal robot
models that allow a robot inside a polygonal environment to reconstruct the visibility graph
of its environment. The information the robot can gather must be sufficient to uniquely infer
the visibility graph.
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A variety of minimalistic robot models have been studied, focusing on different types of
environments and objectives [1, 5, 8, 10, 14]. The model considered here originates from [12].
Roughly speaking, our robot is allowed to move along edges of the visibility graph. While
at a vertex, the robot sees the vertices visible to its current location in counter-clockwise
(ccw) order starting with its ccw neighbor along the boundary. Apart from this ordering
the vertices are indistinguishable to the robot. In each move the robot may select one of
them and move to it. The robot has no way of looking back, i.e. it has no immediate way of
knowing which vertex it came from among the vertices it sees now. However, the robot is
assumed to be aware of is an upper bound n̄ on the number of vertices n.

Unless extended with additional capabilities, a robot as defined above cannot reconstruct
the visibility graph of a polygon when restricted to moving along the boundary only [3]. If we
allow the robot to measure the angles between pairs of visible vertices in addition to ordering
them, moving along the boundary is sufficient to reconstruct the visibility graph however [9].
As soon as a robot starts moving across the polygon (as opposed to along the boundary), the
lack of the ability to look back makes it difficult for the robot to relate the information it
collected so far to subsequent observations. It thus makes sense to consider look-back robots
which have the ability to look back and identify the vertex they came from in their last move.
This ability empowers a look-back robot to retrace all of its movements. If we add the ability
to distinguish convex (≤ π) and reflex (> π) angles, it was shown that a look-back robot
can reconstruct the visibility graph [3]. Later, it was shown that a look-back robot in fact
does not even need to distinguish convex and reflex angles [6]. In the same paper, it was
also shown that look-back robots can solve the weak-rendezvous problem in which multiple
identical, indistinguishable and deterministic robots need to position themselves such that
they mutually see each other. In the following we show that a robot can reconstruct the
visibility graph even without looking back, as long as it can distinguish convex and reflex
angles. Along the way, we show that such robots can also solve the weak-rendezvous problem.

In the robot model we use, robots move along edges of the visibility graph and can locally
access some information about the edges. We can model this in the context of general robotic
exploration of edge-labeled graphs, where the edge-labeling is usually restricted to be locally
bijective at every vertex (i.e. no two edges incident to the same vertex have the same label).
In this more general context, robots are aware of the degree of the vertex they are located at
as well as of the labels of the edges incident to it. In every step, the robot selects an edge and
move to its other end. It is known that labeled graphs can appear mutually indistinguishable
to a robot, i.e. the reconstruction problem is not always solvable [2, 4]. The rendezvous
problem is generally not solvable either [7, 13]. We will see later, that polygon exploration
can be transformed to the exploration of a particular class of directed, arc-labeled graphs,
where both the reconstruction problem as well as the weak-rendezvous problem are solvable.

As it is impossible to reconstruct general graphs, it is natural to ask how much information
a robot can obtain about a graph. This information is encoded in the unique minimum base
graph of a graph G – the smallest graph among all graphs indistinguishable from G by a
robot [4]. In general, the mapping from a graph to its minimum base graph is not one-to-one
in the sense that there are graphs which share the same minimum base graph. Our question
whether a robot with certain capabilities can reconstruct the visibility graph of a polygon
can be translated to whether the mapping is one-to-one for the class of visibility graphs
with an appropriate labeling. We show that if the labeling locally encodes the convexity
information about every angle at a vertex, this mapping becomes one-to-one. In other words,
visibility graphs can be reconstructed from their minimum base graph if a bound n̄ on the
total number of vertices and the type of every angle (convex or reflex) are known.
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2 The visibility graph reconstruction problem

We consider the exploration of a (simple) polygon P by a robot that moves from vertex to
vertex along straight lines in P . Two vertices u, v that can be connected with a straight line
inside P are said to see each other. We define the visibility graph Gvis = (V,E) of P to be a
directed graph, where V is the set of vertices of P and there is an arc from u to v (and vice
versa) if u and v see each other. Whenever convenient we identify Gvis with its canonical
straight-line embedding in the polygon. For example, we speak of angles between arcs of Gvis
meaning the angles between the corresponding line segments of its straight-line embedding.

Depending on the additional capabilities we equip a robot with, it might or might not
be able to perform certain tasks. We focus on the visibility graph reconstruction problem
in which the robot has to uniquely infer Gvis. Here and throughout this paper we consider
isomorphic graphs to be the “same” graph, as we cannot hope to distinguish graphs further.
We also consider the weak-rendezvous problem in which multiple identical and deterministic
robots need to position themselves on vertices of the polygon that mutually see each other.

Before defining a specific robot model we introduce some formalism for Gvis. We fix a
vertex v0 and denote the vertices of P in ccw order along the boundary by v0, v1, . . . , vn−1.
Note that v0, v1, . . . , vn−1, v0 is a Hamiltonian cycle in Gvis. By chain(vl, vr) we denote the
sequence (vl, vl+1, . . . , vr) and by chainv(vl, vr) we denote the subsequence of chain(vl, vr)
containing only the vertices visible to v. Here and throughout this paper all indices are
understood modulo n. Let vi ∈ V and (u1, . . . , udi

) := chainvi
(vi+1, vi−1) be the vertices

visible to vi. We say di is the degree of vi and define visvi(x) := visvi(− (di + 1− x)) := ux

to be the x-th vertex visible to vi in ccw order or equivalently the (di + 1− x)-th vertex
visible to vi in clockwise (cw) order for 1 ≤ x ≤ di. Conversely, we set Ovi(ux) := x or
interchangeably Ovi

(ux) = − (di + 1− x) for 1 ≤ x ≤ di. For 1 ≤ x < y ≤ di we write
Avi

(x, y) = Avi
(y, x) to denote the ccw angle between the arcs (vi, ux) and (vi, uy) in that

order. Furthermore, we define the angle type Tvi
(·, ·) as follows: Tvi

(x, y) = Tvi
(y, x) = 1 if

Avi
(x, y) > π and Tvi

(x, y) = 0 otherwise. For convenience we set Tvi
(x, x) = 0. A vertex vi

is called reflex if Tvi(1, di) = 1 and convex otherwise.
The exploration of Gvis can be reduced to the general problem of exploring a strongly

connected, directed and arc-labeled graph G (from now on we use the word “graph” to refer
to such graphs). We write λ(e) to denote the label of an arc e. A robot exploring a graph is
assumed to be aware of the labels of all the outgoing arcs at its location. In every move, the
robot may choose one of those arcs and follow it to its target. In the following we distinguish
between (directed) paths that visit every vertex at most once and (directed) walks that do
not have this restriction. Every walk p in the graph uniquely induces a label-sequence λ(p).
Conversely, any label-sequence Λ induces a set of walks Λ(G) such that λ(p) = Λ for all
p ∈ Λ(G). By Λ(v) we denote the set of walks in Λ(G) that start at v. If no two outgoing
arcs of the same vertex share a label, we say the graph has a local orientation or is locally
oriented. Then, for every label-sequence Λ and vertex v we have Λ(v) = ∅ or |Λ(v)| = 1; in
the latter case we write Λ(v) to denote this unique walk.

We can now introduce our robot model in detail. As described above, we allow a robot to
move along arcs of the visibility graph. In addition, while situated at a vertex v of degree d,
the robot can order all outgoing arcs in ccw order starting with the arc to its ccw neighbor
along the boundary, and is aware of Tv(x, y) for all 1 ≤ x, y ≤ d. We assume the robot to be
aware of an upper bound n̄ ≥ n on the total number of vertices n. From now on, when we
talk about a robot in a polygon, we refer to the robot model described above.

The exploration of P by a robot is in fact equivalent to the exploration of an arc-labeled
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version of Gvis, with an appropriate labeling that encodes the information available to the
robot. For every vertex of the polygon we need to encode the local orientation and the angle
type information into a labeling of the outgoing arcs at the corresponding vertex in Gvis.
We introduce a labeling in which each label is a sequence of integers. Let u be a vertex of
the visibility graph with degree d and (u, v) be an outgoing arc of u. We label (u, v) with
the label (x0, x1, . . . , xd), where x0 := Ou(v) and xi := Tu(x0, i). Note that by the definition
of Ou our labeling is a local orientation. Further note that the arcs (u, v) and (v, u) can be
labeled differently. It is immediate to check that a robot exploring Gvis encounters the exact
same information as a robot inside the polygon (that is aware of Tv) if both start at the
same vertex. It is thus sufficient to show that the labeled graph Gvis can be reconstructed in
the framework of exploring general graphs in order to show that a robot can indeed solve the
visibility graph reconstruction problem.

3 Overview of the algorithm

The visibility graph reconstruction algorithm that we design in this paper combines several old
and new graph-theoretical and geometrical properties of visibility graphs as well as techniques
developed in earlier studies. Rather than formally introducing all relevant concepts right
away, this section aims to give an intuitive overview of the algorithm. We informally describe
the underlying techniques and defer their formal discussion to later sections. Note that we
are primarily interested in showing that a robot is at all capable of uniquely reconstructing
the visibility graph of any simple polygon. The algorithm we provide as a proof does not
need to be particularly efficient as long as it is guaranteed to terminate in finite time. An
algorithm that solves the weak-rendezvous problem is obtained as a byproduct.

In Section 2 we argued that the exploration of P by a robot is equivalent to the exploration
ofGvis in the context of general graph exploration. In general and without any prior knowledge
of the graph, there can be infinitely many graphs that are compatible with the observations
of the robot no matter how far it moves, i.e. all these graphs are indistinguishable to the
robot. However, it is known [4] that for every graph G, there is always a unique minimum
base graph G? that is indistinguishable from G and has minimum size. Using the fact that
Gvis is locally oriented and that an upper bound n̄ on n is known a priori, we are able to
show the following result.

I Theorem 1. A robot in P can determine G?
vis.

The main ingredient for this theorem is the observation that given two candidate graphs
for G?

vis, the robot can eliminate one of them in finite time by following an appropriate
sequence of arc labels. It is then sufficient to iterate over pairs of graphs with size at most n̄,
discarding one of the two in every step. Once the robot determined G?

vis, it has extracted all
the information it can possibly gather by moving around. Subsequent steps of the algorithm
can thus operate on G?

vis directly without further need of moving at all in Gvis.
We associate each vertex of Gvis with a vertex of G?

vis such that each vertex of G?
vis

represents a class of vertices of Gvis. For two vertices u, v of Gvis in the same class we have
Λ(u) = ∅ ⇔ Λ(v) = ∅ for all label-sequences Λ. Furthermore, the classes with which the
vertices are associated repeat periodically along the boundary and in particular all classes
have the same size. We define a unique order between the classes and use a procedure similar
to the one in [6] to show that at least one of them forms a clique in Gvis. The idea is to
repeatedly “cut off” ears of the polygon, i.e. vertices whose neighbors on the boundary see
each other. Cutting off such an ear yields a subpolygon of P and we can repeat the process
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Figure 1 Left: cutting away a class of vertices (ears) from P to obtain P ′. Middle: visibility
graph Gvis of P. Right: minimum base graph G?

vis of Gvis. Dashed edges are in P but not in P ′.

on the subpolygon. However, the robot cannot operate on Gvis directly as it only has access
to G?

vis. The following lemma allows the robot to cut off an entire class of vertices at a time,
an operation that can be performed in G?

vis simply by deleting the corresponding vertex (and
adjusting the arc labels of its neighboring vertices).

I Lemma 2. Let v be an ear of P. Then every vertex in the same class as v is an ear of P.

As every polygon has at least one ear, the robot can thus “cut off” an entire class of P in
order to obtain a new and smaller polygon P ′ (cf. Figure 1). By removing the corresponding
vertex of G?

vis and updating the arc labels, it obtains a graph G′?vis that is indistinguishable
from the visibility graph of P ′. If this process is repeated, always selecting the smallest
class with respect to the order relation for removal, eventually a situation is reached in
which only one (uniquely defined) class C? remains. As the corresponding subpolygon must
again have at least one ear, by the above lemma the entire class C? consists of ears and the
corresponding subpolygon thus is convex. A convex subpolygon is a clique in the original
visibility graph and we may conclude the following crucial theorem.

I Theorem 3. There is a uniquely defined class C? in Gvis whose vertices form a clique.

While the robot could explicitly execute the procedure described above, finding the class
C? can be done much more directly. If the number of self-loops of a vertex in G?

vis equals the
size of the corresponding class minus one, this class is a clique. It is thus enough to inspect
all classes in turn. Among all classes that form a clique, the largest class with respect to the
order relation must be C?. The previous theorem guarantees the existence of such a class.
This result also gives a robot the means to infer n from n̄: n is equal the size of C? times
the number of classes in Gvis. To compute the size of C?, the robot can do the following.
Consider a vertex v in G∗vis such that the number of self-loops incident to v is greater or
equal than the number of self-loops incident to any other vertex of G∗vis. Then, the class C
corresponding to v is a clique and there are exactly |C| − 1 self-loops incident to v.

The above yields an algorithm for multiple robots to weakly meet: As C? is unique, every
robot can determine C? and then simply position itself on a vertex of C?. We get

I Theorem 4. Any number of robots in P can solve the weak-rendezvous problem.

Starting from the clique C?, we show that by sequentially “gluing” ears back to the
polygon, a robot can extend the initial clique and reconstruct the entire visibility graph step
by step. Every step relies on a recursive counting method that was first introduced in [3].
In order to know how to glue ears back on, the robot explicitly needs to construct C? by
repeatedly cutting off ears and remember in which order the classes are cut off in the process.

I Theorem 5. A robot in P can solve the visibility graph reconstruction problem.
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4 Finding the minimum base graph G?
vis

This section focuses on the problem of exploring a general, locally oriented directed graph
G = (V,E) with a robot. Again, we assume an upper bound n̄ on the number of vertices n
to be known and we do not impose a limitation on the memory of the robot. We prove a
generalization of Theorem 1 to general, locally oriented graphs.

Before we define the notion of the minimum base graph G? of G we need to introduce a
few graph-theoretical concepts. First, given an arc e from vertex u to vertex v, we denote by
s(e) the source of arc e, i.e. the vertex u, and by t(e) the target of arc e, i.e. the vertex v.
Note that in the following we allow graphs to have parallel arcs between a pair of vertices. A
morphism µ : G→ G′ from G to a graph G′ is a mapping from G to G′ that maps vertices
to vertices and arcs to arcs and maintains adjacencies and arc labels. More formally, if e
is an arc in G from u to v then s(µ(e)) = µ(u), t(µ(e)) = µ(v), and λ(e) = λ(µ(e)). An
opfibration ϕ : G→ Ḡ with Ḡ =

(
V̄ , Ē

)
is a morphism such that for every arc ē ∈ Ē with

ū = s(ē) and for every vertex u ∈ ϕ−1(ū) in the preimage of ū there is a unique arc e with
source s(e) = u such that ϕ(e) = ē. We say that Ḡ is a base graph of G and G is a total
graph of Ḡ. Trivially, G is both its own base graph and total graph. If G has no base graph
smaller than itself, we say G is opfibration prime. An out-tree is a graph that has a root
vertex r such that there is exactly one directed walk from r to every other node.

We give the following properties without proof. For a detailed discussion, refer to [4].

I Proposition 6. Let ϕ : G → Ḡ be an opfibration. For every label-sequence Λ and every
vertex v ∈ V we have that Λ(v) 6= ∅ iff Λ(ϕ(v)) 6= ∅.

I Proposition 7. There is exactly one opfibration prime base graph of G. We call it the
minimum base graph of G and denote it with G?.

I Proposition 8. For every v ∈ V , there is a unique (but not necessarily finite) total graph
Hv of G that is an out-tree with root in ϕ−1(v), where ϕ is the opfibration mapping Hv to
G. We call it the universal total graph of G at v.

I Proposition 9. A graph is opfibration prime iff all its universal total graphs are distinct.

I Proposition 10. Two different opfibration prime graphs have different sets of universal
total graphs.

We can now show that if we have a local orientation, there is a label sequence of finite length
that can be used to distinguish any two opfibration prime graphs.

I Lemma 11. Let G1 = (V1, E1) , G2 = (V2, E2) be two distinct, locally oriented opfibration
prime graphs. There is a label-sequence δ of finite length for which δ(G1) = ∅ and δ(G2) 6= ∅
or vice versa.

Proof. We first show that (without loss of generality) there is a vertex x ∈ V1 such that for
every vertex v2 ∈ V2 there is a label-sequence δx,v2 of finite length with δx,v2(x) 6= ∅ and
δx,v2(v2) = ∅ or vice versa. By Proposition 10, without loss of generality, there is a vertex
x ∈ V1 such that the universal total graph Hx of G1 at x is not a total graph of G2. Then
for every vertex v2 ∈ V2, Hx and the universal total graph Hv2 of G2 at v2 are different.
Because G1 and G2 are locally oriented, so are Hx and Hv2 . Let rx and rv2 be the roots of
Hx and Hv2 respectively. Because Hx, Hv2 are distinct and locally oriented, there is a finite
label-sequence δx,v2 with δx,v2(rx) 6= ∅ and δx,v2(rv2) = ∅ or vice versa. By Proposition 6
this implies δx,v2(x) 6= ∅ and δx,v2(v2) = ∅ or vice versa.
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We now describe how to use the above to obtain the desired label-sequence δ. We start
with the empty label-sequence δ(0) and iteratively extend it to a longer but still finite label-
sequence δ(i) in step i. Let A(i) :=

{
v ∈ V1|δ(i)(v) 6= ∅

}
and B(i) :=

{
v ∈ V2|δ(i)(v) 6= ∅

}
be the sets of vertices that are “compatible” with δ(i). As δ(i+1) extends δ(i), we have by
construction that A(i+1) ⊆ A(i) and B(i+1) ⊆ B(i). We show that our extension satisfies(
A(i+1) ∪B(i+1)) ( (A(i) ∪B(i)) in every step and that either δ(i+1)(G1) 6= ∅ or δ(i+1)(G2) 6=
∅. At some point we thus obtain a label-sequence δ for which exactly one graph has no
compatible vertices. It remains to show the existence of such an extension.

Let δ(i) be a finite label-sequence with δ(i)(G1) 6= ∅ or δ(i)(G2) 6= ∅. If A(i) = ∅ or
B(i) = ∅, we have either δ(i)(G1) = ∅ or δ(i)(G2) = ∅. We can thus set δ = δ(i) and are
done. So assume A(i) 6= ∅ and B(i) 6= ∅. Then, there are two vertices v1 ∈ A, v2 ∈ B.
Let p1 = δ(i)(v1), p2 = δ(i)(v2) and v′1 be the target of p1 (i.e. the vertex at which p1
ends). As G1 is strongly connected, there is a path q from v′1 to x, where x is defined as
above. Let π = λ(q) be the associated label-sequence and π+ = δ(i) ◦ π, where “◦” denotes
the concatenation of sequences. We certainly have π+(v1) 6= ∅ and thus π+(G1) 6= ∅. If
π+(v2) = ∅, we set δ(i+1) = π+ and have B(i+1) ( B(i). Otherwise let v′′2 be the target of
π+(v2) (remember that x is the target of π+(v1)). Without loss of generality, we can set
δ(i+1) = π+ ◦ δx,v′′2

. By definition of δx,v′′2
, we have δ(i+1)(v1) 6= ∅ and δ(i+1)(v2) = ∅ or vice

versa. Thus A(i+1) ( A(i) or B(i+1) ( B(i) and hence
(
A(i+1) ∪B(i+1)) ( (A(i) ∪B(i)). J

I Theorem 12. A robot exploring G can determine G? if it knows an upper bound n̄ on the
size of G.

Proof. We prove the theorem for the case when the robot knows n exactly and show later
how to generalize the approach to the case when only an upper bound n̄ on n is given.

By Proposition 7, G? is unique. We will give an algorithm that maintains a finite set C of
graphs that is always guaranteed to contain G?. In every step our algorithm will rule out at
least one member of C, until there is only one left. This graph will then be G?. Throughout
the algorithm, we denote by πhist the label-sequence associated with the walk along which
the robot has travelled so far and by vhist the target of the walk. As G is locally oriented,
πhist together with the initial starting location of the robot uniquely corresponds to this walk
in G. The walk however is not explicitly known to the robot as it neither knows G nor its
starting location.

We start by setting C to contain all opfibration prime graphs of size at most n. In every
step let G1 be a graph of minimum size in C and G2 be a graph of minimum size in C\ {G1}
(if C\ {G1} = ∅, we are done and set G? = G1). We now describe how to discard either G1
or G2 from C.

By Lemma 11, there is a label-sequence δ for which δ(G1) = ∅ and δ(G2) 6= ∅ or vice
versa. The robot can determine the shortest such label-sequence δ simply by enumerating all
possible label-sequences in order of increasing lengths and checking for each in turn whether
it has the desired property. Without loss of generality assume δ(G1) = ∅ and δ(G2) 6= ∅.
The robot does not explicitly know G nor where in G it was initially located. It thus iterates
over all candidate graphs G′ = (V ′, E′) of size n and all vertices v′ ∈ V ′ (again there are
only finitely many choices). For every choice of G′, let Π(G′) be the set of all label-sequences
associated to walks in G′ that have the same length as δ. It is easy to see that there is
a label-sequence π of finite length in G′ for which π(vhist(v′)) 6= ∅ and which contains all
label-sequences in Π(G′) as a subsequence. The robot follows this label-sequence (because of
local orientation, every decision is unique) either until is reaches its end, or until it cannot
anymore because there is no arc of the required label emanating from its current vertex.
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As we iterate over every choice of G′ and v′, we are sure to reach G and the robot’s
initial starting location at some point in the process. We can thus be sure that in the end
πhist contains all label-sequences associated to walks in G with the same length as δ as a
substring, and of course conversely all substrings of πhist of that length are label-sequences of
walks in G. It remains to check whether πhist contains δ as a substring. If yes, we discard G1
from C and otherwise we discard G2. We can do this because δ(G1) = ∅ and δ(G2) 6= ∅ and
because by Proposition 6, any valid choice for G? must have the same set of label-sequences
as G. We then continue with new choices for G1 and G2. After a finite number of steps C
will only contain one graph which is a valid choice for G?. This concludes the proof.

Observe now that if only an upper bound n̄ on n is given, the algorithm can easily be
adapted to find G? in the same way by iterating over all graphs G′ of size at most n̄ for
every pair of graphs G1, G2. J

We obtain Theorem 1 immediately by applying Theorem 12 to Gvis. Note that the results
of this section are not restricted to visibility graphs.

5 Identifying the clique C?

In this section we study structural properties of G?
vis = (V ?, E?) which we later use to show

Theorem 3.
Let ϕ : Gvis → G?

vis be the opfibration from Gvis to G?
vis. As G?

vis is the minimum base of
Gvis, ϕ is unique. Every vertex v? of G?

vis corresponds to a set of vertices of Gvis. We write
Cv? := ϕ−1(v?) ⊆ V and say Cv? is the class of v?. For all v ∈ ϕ−1(v?), we set Cv := Cv? .
From the definition of opfibrations it follows that every two vertices u, v of the same class Cu

have the same degree d and that due to local orientation we have Cvisu(i) = Cvisv(i) for all
1 ≤ i ≤ d. We may thus write Cu(i) := Cvisu(i). Finally, we define B :=

(
Cv0 , Cv1 , . . . , Cvn−1

)
to be the sequence in which the classes appear along the boundary.

As G?
vis is opfibration prime, by Proposition 9 every vertex has its unique universal total

graph. We use this and define a natural order O on the vertices of G?
vis and thus on the

classes of Gvis.

I Lemma 13. The sequence B is periodical with period |V ?| and thus all classes have the
same size.

Proof. The image of the boundary under ϕ consists of n/|V ?| copies of a Hamiltonian cycle
of G?

vis. Hence B is periodical with period |V ?| and all classes have the size n/|V ?|. J

We show that if a vertex from some class is an ear, then every vertex of the class is an
ear. Recall that an ear of Gvis is a vertex vi ∈ V for which vi−1 and vi+1 see each other. We
will need the following property of the shortest curve between two vertices of P.

I Theorem 14 ([11]). Let s, t ∈ V . There is a unique shortest curve p from s to t that lies
in P. This curve is a chain of straight-line segments connected at reflex vertices of P, and
the two line segments at any vertex of p form a reflex angle. We say p is the (euclidean)
shortest path in P between s and t.

I Lemma 15. Let |V ?| > 2 and vx, vy ∈ V such that Cvx
(2) = Cvy

and Cvy
(−2) = Cvx

.
Then, Cvx+2 = Cvy

and every vertex in Cvx+1 is an ear.

Proof. We start by observing that for all vi ∈ V with visvisvi
(2)(−2) = vi we have visvi(2) =

vi+2 and thus vi+1 is an ear. For the sake of contradiction assume visvisvi
(2)(−2) = vi but
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Figure 2 Visualisation of the “zig-zag” sequence Z. As Z does not self-intersect, there is a point
l0 from which on Z’s entries do not change anymore. There are two cases how this point is reached:
either u(l0−1) is distinct from u(l0) (left) or both are the same (right).

visvi
(2) 6= vi+2. Consider the subpolygon induced by chain(vi, visvi

(2)). This subpolygon has
at least four vertices as visvi(2) /∈ {vi+1, vi+2}. In the visibility graph of the subpolygon, vi

and visvi
(2) are neighbors on the boundary and both have degree two, which is a contradiction

to the fact that every polygon must admit a triangulation. Therefore visvi(2) = vi+2 and
vi+1 is an ear as its neighbors on the boundary see each other.

Because of the above observation, it is sufficient to show that for every v ∈ Cvx we have
visvisv(2)(−2) = v. For the sake of contradiction assume in the following that there is a vertex
u(0) ∈ Cvx

with visvis
u(0) (2)(−2) 6= u(0).

We define an infinite sequence Z =
(
u(0), v(1), u(1), v(2), . . .

)
by v(l) := visu(l−1)(2) and

u(l) := visv(l)(−2) for all l > 0. Obviously u(l) ∈ Cvx
, v(l) ∈ Cvy

for all l ≥ 0. Intuitively, Z is
the zig-zag line obtained by alternatingly travelling along the first and the last non-boundary
arc in ccw order, starting at u(0). It is immediate to see that for any fixed index l′ ≥ 0 we
have u(l), v(l) ∈ chain(u(l′), v(l′)) for all l ≥ l′. Hence the part of the boundary in which these
vertices lie becomes smaller and smaller and from some index l0 ≥ 0 on we have u(l) = u(l0)

and v(l) = v(l0) for all l ≥ l0 (we set l0 to be the smallest such index). Let 0 ≤ i, j < n such
that vi = u(l0), vj = v(l0). We then have visvi(2) = vj and visvisvi

(2)(−2) = vi. Thus by the
above observation, vi+1 is an ear and vj = vi+2. As vi ∈ Cvx

and vj ∈ Cvy
, this implies

Cvx+2 = Cvy . It remains to show that every vertex in Cvx+1 is an ear.
We have to consider two cases. Either u(l0−1) is distinct from u(l0) or it is the same vertex

(cf. Fig. 2). We assume u(l0−1) 6= u(l0) and omit the discussion of the second case which is
essentially analogous. Let 0 ≤ k < n such that vk = u(l0−1). As visvk

(2) = vi+2, we have
that vk does not see any vertex in chain(vk+2, vi+1) (note that this chain is not empty as
vk 6= vi) and thus as vk+1 ∈ Cvx+1 is in the same class as (the ear) vi+1, the interior angle of
the polygon at vk+1 is strictly smaller than π. For geometrical reasons (cf. Fig. 3) no vertex
in chain(vi+3, vk) can see any vertex in chain(vk+2, vi+1). Let X ⊂ Cvx be the set of vertices
of Cvx

in chain(vi+3, vk) and let Y ⊂ Cvy
be the set of vertices of Cvy

in chain(vi+3, vk).
As |V ?| > 2, Cvx , Cvx+1 , Cvx+2 are all different and thus X and Y are disjoint. Note that
because B is periodical with period |V ?| (Lemma 13) we have |X| = |Y |+ 1.

We define the (undirected) bipartite graph Bxy =
(
Cvx ∪ Cvy , Exy

)
with the edge-set

Exy =
{
{u, v} ∈ Cvx

× Cvy
| (u, v) ∈ E

}
. In Bxy all vertices need to have the same degree d

as |Cvx
| =

∣∣Cvy

∣∣ and all vertices in either class have the same degree. We have |X| = |Y |+ 1,
we have that vertices in X can only have edges to vertices in Y ∪ {vi+2} and that vertices
in Y can only have edges to vertices in X. For all vertices to have the same degree, vi+2
cannot have any edges leading to Cvx\X. This is a contradiction to the fact that vi+2 sees
vi which is not in chain(vi+3, vk) and thus not in X. J
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Figure 3 No vertex in chain(vi+3, vk) can see any vertex in chain(vk+2, vi+1).

We can now consider arbitrary values of |V ?| and prove Lemma 2.

Proof of Lemma 2. In the following we let vi ∈ V be an ear and show that all vertices in
Cvi

are ears.
First consider the case |V ?| > 2. As (vi−1, vi+1) ∈ E, we have visvi−1(2) = vi+1 and

visi+1(−2) = vi−1, and thus Cvi−1(2) = Cvi+1 and Cvi+1(−2) = Cvi−1 . By Lemma 15 all
vertices in Cvi are ears. Now consider the case |V ?| = 1. In that case as vi is convex, so are
all vertices in Cvi

, as convexity is encoded in the arc-labeling. As |V ?| = 1, this means that
the polygon is convex and thus all vertices are ears.

It remains to consider the case |V ?| = 2. Let Cvj
6= Cvi

be the second class in Gvis.
Again, vi is convex and thus all vertices in Cvi are. For the sake of contradiction assume that
there is a vertex vx ∈ Cvi

which is not an ear. Then vx−1 and vx+1 do not see each other,
and by Lemma 13, vx−1, vx+1 ∈ Cvj . Let p be the shortest path in P between vx−1 and
vx+1. By Theorem 14, all vertices on p are reflex. This means that all vertices on p must be
from Cvj

and thus all vertices of Cvj
must be reflex. Moreover, every vertex u in Cvj

has two
neighbors u′, u′′ in Cvj such that the angle between (u, u′) and (u, u′′) is reflex. If we cut off
vi from P , we do not affect this property (every vertex u in Cvj

still has two neighbors from
Cvj forming a reflex angle) and we thus obtain a new polygon in which all vertices in Cvj

are still reflex. We can continue to obtain smaller and smaller subpolygons by selecting ears
and cutting them off, maintaining the property that all vertices in Cvj are reflex. Thus, in
this process, we never cut off a vertex of Cvj

. This is a contradiction, as every polygon has
at least one ear and thus the above process has to cut off all vertices eventually. J

Lemma 2 allows us to employ the following procedure repeatedly until only one class C?

remains: In step i, select the class C(i) which is smallest w.r.t. the order O among all classes
of ears. We remove C(i) from the polygon by deleting the corresponding vertex from G?

vis
and updating the arc labels of its neighborhood accordingly. Removing class C(i) in that way
produces a (not necessarily minimum) base graph of the visibility graph of the subpolygon
obtained by cutting off all ears in C(i). In the next step we effectively consider this new
polygon which again has to have at least one ear, and we are guaranteed to again have at
least one class that contains only ears. Note that the above procedure does not require the
base graph on which it operates in each step to be minimum. We start with the minimum
base graph G?

vis because it is the only base graph of Gvis the robot can infer at all.
If we repeat our procedure |V ?| − 1 times, we are left with a single class C(|V ?|) = C? and

a sequence
(
C(1), C(2), . . . , C(|V ?|−1)) which is fixed by our order relation O. As C? again

corresponds to a subpolygon and thus must contain at least one ear, every vertex in C? must
be an ear. Therefore the corresponding subpolygon is convex and C? forms a clique in Gvis.
This proves Theorem 3.
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The existence of a clique gives us a way of computing n from n̄ using G?
vis. By Lemma 13

we have n = |V ?| · |C|, where C is any class of Gvis. If we inspect the number of self-loops of
every vertex of G?

vis, we are sure to encounter at least one clique, and thus |C| is equal to
the maximum number of self-loops plus one.

By Theorem 1, a robot can determine G? in finite time. It thus can execute the above
procedure and we obtain

I Theorem 16. A robot in P can determine the sequence C =
(
C(1), C(2), . . . , C(|V ?|)), where

C is the lexicographically smallest sequence such that for every 1 ≤ i ≤ |V ?|, all vertices in
C(i) are ears in the subpolygon obtained by removing all vertices in

⋃i−1
j=1 C

(j) from P.

6 Reconstructing the visibility graph

In the following, we assume that the robot has already determined G?
vis and the sequence

C =
(
C(1), C(2), . . . , C(|V ?|−1), C(|V ?|)) from Theorem 16. For all 1 ≤ i ≤ |V ?| we denote

by G(i)
vis =

(
V (i), E(i)) the subgraph of Gvis induced by

⋃|V ?|
j=i C

(j). By definition of C, G(i)
vis

is the visibility graph of a subpolygon of P, and we denote this subpolygon by P(i). As
C(|V ?|) = C?, by Lemma 13 we have that G(|V ?|)

vis is the complete graph on n/|V ?| vertices.
Together with the following lemma, this suggests a way of reconstructing Gvis = G

(1)
vis .

I Lemma 17. Let 1 ≤ i < |V ?|. It is possible to determine G(i)
vis from G

(i+1)
vis .

Proof. The set of vertices V (i) of G(i)
vis is given by V (i) = C(i) ∪ V (i+1). It remains to show

how to construct E(i). Let A be the set of arcs in Gvis between vertices of C(i) and V (i+1),
and B be the set of arcs between vertices of C(i). We will first show how to construct A using
the information contained in G(i+1)

vis and G?
vis. After having determined A, we can apply the

same approach in order to obtain B. This completes the proof as E(i) = E(i+1) ∪A ∪B.
Note that every arc in Gvis has a counterpart of opposite orientation. In order to construct

A it is thus sufficient to consider e ∈ V (i+1) ×C(i) and show how to decide whether e ∈ A or
e /∈ A. Deciding which elements of C(i) × V (i+1) are in A is then immediate. Equivalently,
we can consider vj ∈ V (i+1) with degree d in G(i)

vis and 1 ≤ k ≤ d such that visvj (k) ∈ C(i),
and show how to “identify” visvj

(k), i.e. how to find x with vx = visvj
(k). If k = 1, we

have x = j + 1 and if k = d, we have x = j − 1 because vj sees its two neighbors on the
boundary. Now assume 1 < k < d. We will show that vy := visvj

(k − 1) /∈ C(i). For the
sake of contradiction assume that vy ∈ C(i). In P(i) all vertices of C(i) are ears and thus
convex. By Lemma 13 and i < |V ?|, there is more than one class and thus there is a vertex
vz ∈ chain(vy+1, vx−1) which is not visible to vj . The shortest path in P from vj to vz must
visit vx or vy, which is a contradiction to both vertices being convex (Theorem 14). We
can deduce that vy /∈ C(i) and thus (vj , vy) ∈ E(i+1) is part of G(i+1)

vis and has already been
identified, i.e. the index y is known. Because of Lemma 13, it is sufficient to know how
many vertices of C(i) are in chain(vy+1, vx−1) in order to find x itself. From the labeling
of G?

vis we can deduce how many vertices of C(i) are in chainvy
(vy+1, vx−1) (recall that

chainvy (vy+1, vx−1) only contains vertices visible to vy): As vx is convex and thus cannot lie
on a shortest path in P from vj to another vertex of C(i), the first arc in ccw order from vy to
a vertex of C(i) that forms a convex angle with (vy, vj) must be (vy, vx) as the target of the
arc must be visible to vj . It is thus sufficient to count the number of arcs from vy to vertices
of C(i) before (vy, vx) in ccw order. We say the corresponding vertices are hidden from vj by
vy. We still need a way to find the number of vertices of C(i) in chain(vy+1, vx−1) that are
not visible to vy. We can find this number by repeating our counting method recursively.
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For every vertex vl ∈ chainvy
(vy+1, vx−1) \C(i) (in G(i)

vis), we count all vertices of C(i) hidden
from vy by vl. As the vertices in C(i) are convex, they cannot hide any vertices from vy.
The sum of all these counts finally gives the number of vertices of C(i) in chain(vy+1, vx−1).
Together with Lemma 13 this number immediately yields the index x. The recursive counting
method described above was first introduced in a similar setting where robots are allowed to
retrace their movements [3]. Refer to [3] for a detailed proof of its correctness.

Using the fact that the arcs in A have already been identified, we can apply the exact
same approach to construct B. J

Theorem 5 follows directly from Theorem 16, Lemma 17 and the fact that G(|V ?|) is the
complete graph on n/|V ?| vertices.
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Abstract
We introduce a new technique for proving kernelization lower bounds, called cross-composition.
A classical problem L cross-composes into a parameterized problem Q if an instance of Q with
polynomially bounded parameter value can express the logical OR of a sequence of instances of L.
Building on work by Bodlaender et al. (ICALP 2008) and using a result by Fortnow and San-
thanam (STOC 2008) we show that if an NP-hard problem cross-composes into a parameterized
problem Q then Q does not admit a polynomial kernel unless the polynomial hierarchy collapses.

Our technique generalizes and strengthens the recent techniques of using or-composition
algorithms and of transferring the lower bounds via polynomial parameter transformations. We
show its applicability by proving kernelization lower bounds for a number of important graphs
problems with structural (non-standard) parameterizations, e.g., Chromatic Number, Clique,
and Weighted Feedback Vertex Set do not admit polynomial kernels with respect to the
vertex cover number of the input graphs unless the polynomial hierarchy collapses, contrasting
the fact that these problems are trivially fixed-parameter tractable for this parameter. We have
similar lower bounds for Feedback Vertex Set.
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1 Introduction

Preprocessing and data reduction are important and widely applied concepts for speeding
up polynomial-time algorithms or for making computation feasible at all in the case of
hard problems that are not believed to have efficient algorithms. Kernelization is a way of
formalizing data reduction, which allows for a formal analysis of the (im)possibility of data
reduction and preprocessing. It originated as a technique to obtain fixed-parameter tractable
algorithms for hard (parameterized) problems, and has evolved into its own topic of research
(see [19, 2] for recent surveys). A parameterized problem [14, 16] is a language Q ⊆ Σ∗×N, the
second component is called the parameter. A kernelization algorithm (kernel) transforms an
instance (x, k) in polynomial time into an equivalent instance (x′, k′) such that |x′|, k′ ≤ f(k)
for some computable function f , which is the size of the kernel.

From a practical perspective we are particularly interested in cases where f ∈ kO(1),
so-called polynomial kernels. Success stories of kernelization include the O(k2) kernel for
k-Vertex Cover containing at most 2k vertices [11] and the meta-theorems for kernelization
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of problems on planar graphs [4], among many others (cf. also [22]). Although researchers
have looked for polynomial kernels for elusive problems such as k-Path for many years, it was
only recently that techniques were introduced which make it possible to prove (under some
complexity-theoretic assumption) that a parameterized problem in FPT does not admit a
polynomial kernel. Bodlaender et al. [3] introduced the concept of a or-composition algorithm
as a tool to give super-polynomial lower bounds on kernel sizes. Consider some set S, and
let or(S) denote the set such that for any sequence x∗ := (x1, . . . , xt) of instances of S we
have x∗ ∈ or(S)⇔

∨t
i=1 xi ∈ S; then we could say that the language or(S) expresses the

or of instances of S. The approach taken in the original paper by Bodlaender et al. [3] uses
a theorem by Fortnow and Santhanam [17] to show that if there is a polynomial-time or-
composition algorithm that maps any sequence of instances (x1, k), (x2, k), . . . , (xt, k) of some
parameterized problem Q which all share the same parameter value to an instance (x∗, k∗)
of Q which acts as the or of the inputs and k∗ ∈ kO(1), then Q does not admit a polynomial
kernel unless NP ⊆ coNP/poly. This machinery made it possible to prove e.g. that k-
Path and the Clique problem parameterized by the treewidth of the graph do not admit
polynomial kernels unless NP ⊆ coNP/poly1. The latter is deemed unlikely since it is known
to imply a collapse of the polynomial hierarchy to its third level [24] (and further [8]).

It did not take long before the techniques of Bodlaender et al. were combined with the
notion of a polynomial parameter transformation to also prove lower bounds for problems
for which no direct or-composition algorithm could be found. This idea was used implicitly
by Fernau et al. [15] to show that k-Leaf Out-Branching does not admit a polynomial
kernel, and was formalized in a paper by Bodlaender et al. [7]: they showed that if there is
a polynomial-time transformation from P to Q which incurs only a polynomial blow-up in
the parameter size, then if P does not admit a polynomial kernel then Q does not admit
one either. These polynomial parameter transformations were used extensively by Dom et
al. [13] who proved kernelization lower bounds for a multitude of important parameterized
problems such as Small Universe Hitting Set and Small Universe Set Cover. Dell
and van Melkebeek [12] were able to extend the techniques of Fortnow and Santhanam to
prove, e.g., that Vertex Cover does not admit a kernel of size O(k2−ε) for any ε > 0.

Our results. We introduce a new technique to prove kernelization lower-bounds, which
we call cross-composition. This technique generalizes and strengthens the earlier methods of
or-composition [3] and polynomial-parameter transformations [7], and puts the two existing
methods of showing kernelization lower bounds in a common perspective. Whereas the
existing notion of or-composition works by composing multiple instances of a parameterized
problem Q into a single instance of Q with a bounded parameter value, for our new technique
it is sufficient to compose the or of any classical NP-hard problem into an instance of the
parameterized problem Q for which we want to prove a lower-bound. The term cross in
the name stems from this fact: the source- and target problem of the composition need no
longer be the same. Since the input to a cross-composition algorithm is a list of classical
instances instead of parameterized instances, the inputs do not have a parameter in which
the output parameter of the composition must be bounded; instead we require that the size
of the output parameter is polynomially bounded in the size of the largest input instance. In
addition we show that the output parameter may depend polynomially on the logarithm of
the number of input instances, which often simplifies the constructions and proofs. We also
introduce the concept of a polynomial equivalence relation to remove the need for padding

1 In the remainder of this introduction we assume that NP 6⊆ coNP/poly when stating kernelization lower
bounds.
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Problem name Parameter Kernel size
Clique vertex cover not polynomial [Section 4.1]
Chromatic Number vertex cover not polynomial [Section 4.2]
Feedback Vertex Set dist. from cluster not polynomial [Section 4.3]
Feedback Vertex Set dist. from co-cluster not polynomial [Section 4.3]
Weighted FVS vertex cover not polynomial [Section 4.3]

Table 1 An overview of the kernelization lower bounds obtained in this paper; all listed
problems are fixed-parameter tractable with respect to this parameterization. Section 4 describes
the parameterized problems in more detail.

arguments which were frequently required for or-compositions.
To show the power of cross-composition we give kernelization lower bounds for structural

parameterizations of several important graph problems. Since many combinatorial problems
are easy on graphs of bounded treewidth [6], and since the treewidth of a graph is bounded by
the vertex cover number, it is often thought that almost all problems become tractable when
parameterized by the vertex cover number of the graph. We show that this is not the case
for kernelization: Clique, Chromatic Number and Weighted Feedback Vertex Set
do not admit polynomial kernels parameterized by the vertex cover number of the graph. In
the case of Clique it was already known [3] that the problem does not admit a polynomial
kernel parameterized by the treewidth of the graph; since the vertex cover number is at
least as large as the treewidth we prove a stronger result. For the unweighted Feedback
Vertex Set problem, which admits a polynomial kernel parameterized by the target size of
the feedback set [23], we show that there is no polynomial kernel for the parameterization by
deletion distance to cluster graphs or co-cluster graphs.

Organization. The paper is organized as follows. We first give some preliminary
definitions. Section 3 gives the formal definition of cross-composition, and proves that
cross-compositions allow us to give kernelization lower bounds. In Section 4 we apply the
new technique to obtain kernelization lower bounds for various problems.

2 Preliminaries

In this work we only consider undirected, finite, simple graphs. Let G be a graph and denote
its vertex set by V (G) and the edge set by E(G). We use χ(G) to denote the chromatic
number of G. If V ′ ⊆ V (G) then G[V ′] denotes the subgraph of G induced by V ′. A graph
is a cluster graph if every connected component is a clique. A graph is a co-cluster graph
if it is the edge-complement of a cluster graph. Throughout this work we use Σ to denote
a finite alphabet, but note that multiple occurrences of Σ may refer to different alphabets.
For positive integers n we define [n] := {1, . . . , n}. The satisfiability problem for boolean
formulae is referred to as sat. Several proofs have been deferred to the full version [5] of
this paper due to space restrictions. For completeness we give the following core definitions
of parameterized complexity [3, 14].

I Definition 1. A parameterized problem is a language Q ⊆ Σ∗ ×N, and is contained in the
class (strongly uniform) FPT (for Fixed-Parameter Tractable) if there is an algorithm that
decides whether (x, k) ∈ Q in f(k)|x|O(1) time for some computable function f .

I Definition 2. A kernelization algorithm [19, 2], or in short, a kernel for a parameterized
problem Q ⊆ Σ∗ × N is an algorithm that given (x, k) ∈ Σ∗ × N outputs in p(|x|+ k) time a
pair (x′, k′) ∈ Σ∗ × N such that:
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(x, k) ∈ Q⇔ (x′, k′) ∈ Q,
|x′|, k′ ≤ f(k),

where f is a computable function, and p a polynomial. Any function f as above is referred
to as the size of the kernel; if f is a polynomial then we have a polynomial kernel.

3 Cross-Composition

3.1 The Definition
In this section we define the concept of cross-composition and give all the terminology needed
to apply the technique.

I Definition 3 (Polynomial equivalence relation). An equivalence relation R on Σ∗ is called a
polynomial equivalence relation if the following two conditions hold:

1. There is an algorithm that given two strings x, y ∈ Σ∗ decides whether x and y belong to
the same equivalence class in (|x|+ |y|)O(1) time.

2. For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements of S into at
most (maxx∈S |x|)O(1) classes.

I Definition 4 (Cross-composition). Let L ⊆ Σ∗ be a set and let Q ⊆ Σ∗ × N be a parame-
terized problem. We say that L cross-composes into Q if there is a polynomial equivalence
relation R and an algorithm which, given t strings x1, x2, . . . , xt belonging to the same equiv-
alence class of R, computes an instance (x∗, k∗) ∈ Σ∗ × N in time polynomial in

∑t
i=1 |xi|

such that:

1. (x∗, k∗) ∈ Q⇔ xi ∈ L for some 1 ≤ i ≤ t,
2. k∗ is bounded by a polynomial in maxti=1 |xi|+ log t.

3.2 How Cross-compositions Yield Lower Bounds
The purpose of this section is to prove that cross-compositions yield kernelization lower
bounds. To give this proof we need some concepts from earlier work [3, 17, 12].

I Definition 5 ([17]). A weak distillation of sat into a set L ⊆ Σ∗ is an algorithm that:
receives as input a sequence (x1, . . . , xt) of instances of sat,
uses time polynomial in

∑t
i=1 |xi|,

and outputs a string y ∈ Σ∗ with
1. y ∈ L⇔ xi ∈ sat for some 1 ≤ i ≤ t,
2. |y| is bounded by a polynomial in maxti=1 |xi|.

I Theorem 6 (Theorem 1.2 [17]). If there is a weak distillation of sat into any set L ⊆ Σ∗
then NP ⊆ coNP/poly and the polynomial-time hierarchy collapses to the third level (PH =
Σp3).

I Definition 7 ([12]). The or of a language L ⊆ Σ∗ is the set or(L) that consists of all
tuples (x1, . . . , xt) for which there is an index 1 ≤ i ≤ t with xi ∈ L.

I Definition 8 ([3]). We associate an instance (x, k) of a parameterized problem with the
unparameterized instance formed by the string x#1k, where # denotes a new character that
we add to the alphabet and 1 is an arbitrary letter in Σ. The unparameterized version of a
parameterized problem Q is the language Q̃ = {x#1k | (x, k) ∈ Q}.
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I Theorem 9. Let L ⊆ Σ∗ be a set which is NP-hard under Karp reductions. If L cross-
composes into the parameterized problem Q and Q has a polynomial kernel then there is a
weak distillation of sat into or(Q̃) and NP ⊆ coNP/poly.

Proof. The proof is by construction and generalizes the concepts of Bodlaender et al. [3].
Assuming the conditions in the statement of the theorem hold, we show how to build an
algorithm which distills sat into or(Q̃). By the definition of cross-composition there is a
polynomial equivalence relation R and an algorithm C which composes L-instances belonging
to the same class of R into a Q-instance.

The input to the distillation algorithm consists of a sequence (x1, . . . , xt) of instances of
sat, which we may assume are elements of Σ∗. Definem := maxtj=1 |xj |. If t > (|Σ|+1)m then
there must be duplicate inputs, since the number of distinct inputs of length m′ ≤ m is |Σ|m′ .
By discarding duplicates we may therefore assume that t ≤ (|Σ|+ 1)m, i.e., log t ∈ O(m). By
the assumption that L is NP-hard under Karp reductions, there is a polynomial-time reduction
from sat to L. We use this reduction to transform each sat instance xi for 1 ≤ i ≤ t into an
equivalent L-instance yi. Since the transformation takes polynomial time, it cannot increase
the size of an instance by more than a polynomial factor and therefore |yi| is polynomial
in m for all i.

The algorithm now pairwise compares instances using the polynomial-time equivalence test
of R (whose existence is guaranteed by Definition 3) to partition the L-instances (y1, . . . , yt)
into partite sets Y1, . . . , Yr such that all instances from the same partite set are equivalent
under R. The properties of a polynomial equivalence relation guarantee that r is polynomial
in m and that this partitioning step takes polynomial time in the total input size.

We now use the cross-composition algorithm C on each of the partite sets Y1, . . . , Yr,
which is possible since all instances from the same set are equivalent under R. Let (zi, ki) be
the result of applying C to a sequence containing the contents of the set Yi, for 1 ≤ i ≤ r.
From the definition of cross-composition and using log t ∈ O(m) it follows that each ki is
polynomial in m, and that the computation of these parameterized instances takes polynomial
time in the total input size. From Definition 4 it follows that (zi, ki) is a yes instance of Q
if and only if one of the instances in Yi is a yes instance of L, which in turn happens if and
only if one of the inputs xi is a yes instance of sat.

Let K be a polynomial kernelization algorithm for Q, whose existence we assumed in
the statement of the theorem. We apply K to the instance (zi, ki) to obtain an equivalent
instance (z′i, k′i) of Q for each 1 ≤ i ≤ r. Since K is a polynomial kernelization we know
that these transformations can be carried out in polynomial time and that |z′i|, k′i ≤ k

O(1)
i .

Since ki is polynomial in m it follows that |z′i| and k′i are also polynomial in m for 1 ≤ i ≤ r.
As the next step we convert each parameterized instance (z′i, k′i) to the unparameterized

variant z̃i := z′i#1k′i . Since the values of the parameters are polynomial in m this trans-
formation takes polynomial time, and afterwards we find that |z̃i| is polynomial in m for
each 1 ≤ i ≤ r.

The last stage of the algorithm simply combines all unparameterized variants into one
tuple x∗ := (z̃1, z̃2, . . . , z̃r). Since the size of each component is polynomial in m, and
since the number of components r is polynomial in m, we have that |x∗| is polynomial
in m. The tuple x∗ forms an instance of or(Q̃), and by the definition of or(Q̃) we know
that x∗ ∈ or(Q̃) if and only if some element of the tuple is contained in Q̃. By tracing back
the series of equivalences we therefore find that x∗ ∈ or(Q̃) if and only if some input xi is a
yes-instance of sat. Since we can construct x∗ in polynomial time and |x∗| is polynomial
in m, we have constructed a weak distillation of sat into or(Q̃). By Theorem 6 this implies
NP ⊆ coNP/poly and proves the theorem. J
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I Corollary 10. If some set L is NP-hard under Karp reductions and L cross-composes into
the parameterized problem Q then there is no polynomial kernel for Q unless NP ⊆ coNP/poly.

A simple extension of Theorem 9 shows that cross-compositions also exclude the possibility
of compression into a small instance of a different parameterized problem, a notion sometimes
referred to as bikernelization [20, 21]. If an NP-hard set cross-composes into a parameterized
problem Q, then unless NP ⊆ coNP/poly there is no polynomial-time algorithm that maps
an instance (x, k) of Q to an equivalent instance (x′, k′) of any parameterized problem P

with |x′|, k′ ≤ kO(1).

4 Results Based on Cross-Composition

In this section we apply the cross-composition technique to give kernelization lower bounds.
We consider the problems Feedback Vertex Set, Chromatic Number and Clique
under various parameterizations. The first parameter we consider is the vertex cover number
of a graph G, i.e. the cardinality of a smallest set of vertices Z ⊆ V (G) such that all edges
of G have at least one endpoint in Z. We show that Clique, Chromatic Number and
Weighted Feedback Vertex Set do not admit polynomial kernels parameterized by the
size of a vertex cover unless NP ⊆ coNP/poly.

We could also define the vertex cover number as the minimum number of vertex deletions
needed to reduce a graph to an edgeless graph; hence the vertex cover number measures
how far a graph is from being edgeless. Following the initiative of Cai [9] we may similarly
define the deletion distance of a graph G to a (co-)cluster graph as the minimum number of
vertices that have to be deleted from G to turn it into a (co-)cluster graph. Since (co-)cluster
graphs have a very restricted structure, one would expect that a parameterization by (co-)
cluster deletion distance leads to fixed-parameter tractability; indeed this is the case for
many problems, since graphs of bounded (co-)cluster deletion distance also have bounded
cliquewidth [1]. For the Feedback Vertex Set problem, which admits a polynomial kernel
parameterized by the target size and hence by the vertex cover number, we show that the
parameterizations by cluster deletion or co-cluster deletion distance do not admit polynomial
kernels.

In Table 2 we give the known results for our subject problems with respect to the standard
parameterization, which refers to the solution size. Since the problems we study are very
well-known, we do not give a full definition for each one. Instead we give an educative
example of how the parameter is reflected in an instance.

Chromatic Number parameterized by the size of a vertex cover
Instance: A graph G, a vertex cover Z ⊆ V (G), and a positive integer `.
Parameter: The size k := |Z| of the vertex cover.
Question: Is χ(G) ≤ `, i.e., can G be colored with at most ` colors?

For technical reasons we supply a vertex cover in the input of the problem, to ensure that
well-formed instances can be recognized in polynomial time. The parameter to the problem
claims a bound on the vertex cover number of the graph, and using the set Z we may verify
this bound. For Feedback Vertex Set parameterized by deletion distance to cluster
graphs or co-cluster graphs, we also supply the deletion set in the input. These versions of
the problem are certainly no harder to kernelize than the versions where a deletion set or
vertex cover is not given.
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Problem name Parameter Param. complexity Kernel size
Clique clique W[1]-hard [14] W[1]-hard [14]
Feedback Vertex Set feedback vertex set FPT [10] 4k2 vertices [23]
Chromatic Number chromatic number NP-h for k ∈ O(1) NP-h for k ∈ O(1)
Table 2 Parameterized complexity and kernel size for some of the problems considered in this

paper, with respect to the standard parameterization (i.e., target size).

4.1 Clique parameterized by Vertex Cover
An instance of the NP-complete Clique problem [18, GT19] is a tuple (G, `) and asks
whether the graph G contains a clique on ` vertices. We use this problem for our first
kernelization lower bound.

I Theorem 11. Clique parameterized by the size of a vertex cover does not admit a
polynomial kernel unless NP ⊆ coNP/poly.

Proof. We prove the theorem by showing that Clique cross-composes into Clique parame-
terized by vertex cover; by Corollary 10 this is sufficient to establish the claim. We define
a polynomial equivalence relation R such that all bitstrings which do not encode a valid
instance of Clique are equivalent, and two well-formed instances (G1, `1) and (G2, `2) are
equivalent if and only if they satisfy |V (G1)| = |V (G2)| and `1 = `2. From this definition
it follows that any set of well-formed instances on at most n vertices each is partitioned
into O(n2) equivalence classes. Since all malformed instances are in one class, this proves
that R is indeed a polynomial equivalence relation.

We now give a cross-composition algorithm which composes t input instances x1, . . . , xt
which are equivalent under R into a single instance of Clique parameterized by vertex
cover. If the input instances are malformed or the size of the clique that is asked for
exceeds the number of vertices in the graph, then we may output a single constant-size no
instance; hence in the remainder we may assume that all inputs are well-formed and encode
structures (G1, `), . . . , (Gt, `) such that |V (Gi)| = n for all i ∈ [t] and all instances agree on
the value of `, which is at most n. We construct a single instance (G′, Z ′, `′, k′) of Clique
parameterized by vertex cover, which consists of a graph G′ with vertex cover Z ′ ⊆ V (G′) of
size k′ and an integer `′.

Let the vertices in each Gi be numbered arbitrarily from 1 to n. We construct the
graph G′ as follows (see also Figure 1):

1. Create `n vertices vi,j with i ∈ [`] and j ∈ [n]. Connect two vertices vi,j and vi′,j′ if i 6= i′

and j 6= j′. Let C denote the set of these vertices. It is crucial that any clique in G′ can
only contain one vertex vi,· or v·,j for each choice of i ∈ [`] respectively j ∈ [n]. Thus any
clique contains at most ` vertices from C.

2. For each pair 1 ≤ p < q ≤ n of distinct vertices from [n] (i.e., vertices of graphs Gi),
create three vertices: wp,q, wp,q̂, and wp̂,q and make them adjacent to C as follows:

a. wp,q is adjacent to all vertices from C,
b. wp,q̂ is adjacent to all vertices from C except for v·,j with j = q, and
c. wp̂,q is adjacent to all vertices from C except for v·,j with j = p.

Furthermore we add all edges between vertices w·,· that correspond to distinct pairs
from [n]. Let D denote these 3

(
n
2
)
vertices. Any clique can contain at most one w·,·

vertex for each pair from [n].
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Figure 1 A sketch of the construction used in the proof of Theorem 11. The dashed edges show in
an examplary way how vertices wp,q, wp,q̂, and wp̂,q are connected to vertices of B and C, e.g., {p, q}
is an edge of Gi but not of Gj .

3. For each instance xi with graph Gi make a new vertex ui and connect it to all vertices
in C. The adjacency to D is as follows:

a. Make ui adjacent to wp,q if {p, q} is an edge in Gi.
b. Otherwise make ui adjacent to wp,q̂ and wp̂,q.

Let B denote this set of t vertices.

We define `′ := ` + 1 +
(
n
2
)
. Furthermore, we let Z ′ := C ∪ D which is easily verified to

be a vertex cover for G′ of size k′ := |Z ′| = `n + 3
(
n
2
)
. The value k′ is the parameter to

the problem, which is polynomial in n and hence in the size of the largest input instance.
The cross-composition outputs the instance x′ := (G′, Z ′, `′, k′). It is easy to see that our
construction of G′ can performed in polynomial time. Let us now argue that x′ is yes if and
only if at least one of the instances xi is yes.

(⇐) First we will assume that some xi∗ is yes, i.e., that Gi∗ contains a clique on at
least ` vertices. Let S ⊆ [n] denote a clique of size exactly ` in Gi∗ . We will construct a
set S′ of size `′ = `+ 1 +

(
n
2
)
and show that it is a clique in G′:

1. We add the vertex ui∗ to S′.
2. Let S = {p1, . . . , p`} ⊆ [n]. For each pj in S we add the vertex vj,pj

to S′. By Step 1 all
these vertices are pairwise adjacent, and by Step 3 they are adjacent to ui∗ .

3. For each pair 1 ≤ p < q ≤ n there are two cases:

a. If {p, q} is an edge of Gi∗ then the vertex ui∗ is adjacent to wp,q in G′ (by Step 3)
and wp,q is adjacent to all vertices of C (by Step 2). We add wp,q to S′.

b. Otherwise the vertex ui∗ is adjacent to both wp,q̂ and wp̂,q. Since the clique S cannot
contain both p and q when {p, q} is a non-edge we are able to add wp,q̂ respectively wp̂,q
to S′; recall that, e.g., wp,q̂ is adjacent to all vertices of C except those corresponding
to q.

In both cases we add one w·,·-vertex to S′, each corresponding to a different pair p, q; all
these vertices are pairwise adjacent by Step 2.
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We have identified the clique S′ in G′ of size `′ = `+1+
(
n
2
)
, proving that x′ is a yes-instance.

(⇒) Now assume that x′ is a yes-instance and let S′ be a clique of size ` + 1 +
(
n
2
)

in G′. Since S′ contains at most ` vertices from C (i.e., one vi,· for each i ∈ [`]) and at
most

(
n
2
)
vertices from D it must contain at least one vertex from B, say ui∗ ∈ B. Since B

is an independent set the set S′ must contain exactly ` vertices from C and exactly
(
n
2
)

vertices from D. Let S = {j ∈ [n] | vi,j ∈ S′ for some i ∈ [`]}. The set S has size ` since S′
contains at most one vertex v·,j for each j ∈ [n]. We will now argue that S is a clique in Gi∗ .
Let p, q ∈ S. The clique S′ must contain a w·,·-vertex corresponding to {p, q} and it must
contain vertices vi,p and vi′,q for some i, i′ ∈ [`]. Therefore it must contain wp,q since wp,q̂
has no edges to vertices v·,q and wp̂,q has no edges to v·,p by Step 2. Thus ui∗ ∈ S′ must be
adjacent to wp,q which implies that Gi∗ contains the edge {p, q}. Thus S is a clique in Gi∗ .

Since we proved that the instance (G′, Z ′, `′, k′) can be constructed in polynomial-time
and that it acts as the or of the input instances, and because the parameter value k′
is bounded by a polynomial in the size of the largest input instance, this concludes the
cross-composition proof and establishes the claim. J

I Corollary 12. If F is a class of graphs containing all cliques, then Vertex Cover and
Independent Set parameterized by the minimum number of vertex deletions to obtain a
graph in F do not admit polynomial kernels unless NP ⊆ coNP/poly. In particular, Vertex
Cover and Independent Set parameterized by co-cluster deletion distance or cluster
deletion distance do not admit polynomial kernels unless NP ⊆ coNP/poly. J

4.2 Chromatic Number parameterized by Vertex Cover
In this section we give a kernelization lower bound for Chromatic Number parameterized
by vertex cover, through the use of a restricted version of 3-Coloring.

I Definition 13. A graph G is a triangle split graph if V (G) can be partitioned into sets X,Y
such that G[X] is an edgeless graph and G[Y ] is a disjoint union of vertex-disjoint triangles.

An instance of the classical problem 3-Coloring with Triangle Split Decomposi-
tion is a tuple (G,X, Y ) consisting of a graph G and a partition of its vertex set into X ∪ Y
such that G[X] is edgeless and G[Y ] is a union of vertex-disjoint triangles. The question is
whether G has a proper 3-coloring. It is not hard to show show that this restricted form
of the problem is NP-complete, by replacing all edges in a normal instance of 3-Coloring
with a triangle.

I Theorem 14. Chromatic Number parameterized by the size of a vertex cover does not
admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. To prove the theorem we will show that 3-Coloring with Triangle Split De-
composition cross-composes into Chromatic Number parameterized by a vertex cover
of the graph. By a suitable choice of polynomial equivalence relation in the same style
as in Theorem 11 we may assume that we are given t input instances which encode struc-
tures (G1, X1, Y1), . . . , (Gt, Xt, Yt) of 3-Coloring with Triangle Split Decomposition
with |Xi| = n and |Yi| = 3m for all i ∈ [t] (i.e., m is the number of triangles in each instance).
We will compose these instances into one instance (G′, Z ′, `′, k′) of Chromatic Number
parameterized by vertex cover. By duplicating some instances we may assume that the
number of inputs t is a power of 2; this only increases the input size by a factor of at most 2,
and hence any bounds which are polynomial in the old input size will be polynomial in the
new input size which is sufficient for our purposes.
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For each set Yi, label the triangles in Gi[Yi] as T1, . . . , Tm in some arbitrary way, and label
the vertices in each triangle Tj for a set Yi as aji , b

j
i , c

j
i . We build a graph G′ with a vertex

cover of size k′ := 3 log t+ 4 + 3m ∈ O(m+ log t) such that G′ can be `′ := log t+ 4-colored
if and only if one of the input instances can be 3-colored.

1. Create a clique on vertices {pi | i ∈ [log t]} ∪ {w, x, y, z}; it is called the palette.
2. Add the vertices

⋃t
i=1 Xi to the graph, and make them adjacent to the vertex w.

3. For i ∈ [m] add a triangle T ∗i to the graph on vertices {ai, bi, ci}. The union of these
triangles will be the triangle vertices T ∗. Make all vertices in T ∗ adjacent to all vertices
from the set {pi | i ∈ [log t]} ∪ {w}.

4. For i ∈ [log t] add a path on two new vertices {qi0, qi1} to the graph, and make them
adjacent to all vertices ({pj | j ∈ [log t]} ∪ {x, y, z}) \ {pi}. These vertices form the
instance selector vertices.

5. For each instance number i ∈ [t] consider the binary representation of the value i,
which can be expressed in log t bits. Consider each position j ∈ [log t] of this binary
representation, where position 1 is most significant and log t is least significant. If bit
number j of the representation of i is a 0 (resp. a 1) then make vertex qj0 (resp. qj1)
adjacent to all vertices of Xi. (We identify t by the all-zero string 0 . . . 0.)

6. As the final step we re-encode the adjacencies between vertices in the independent sets Xi

and the triangles into our graph G′. For each i ∈ [t], for each vertex v ∈ Yi, do the
following. If v is adjacent in Gi to vertex aji then make vertex v adjacent in G′ to aj . Do
the same for adjacencies of v to bji and c

j
i .

This concludes the construction. The following claims about G′ are easy to verify:

(I) In every proper `′ = log t+ 4-coloring of G′, the following must hold:

a. each of the log t+ 4 vertices of the palette clique receives a unique color,
b. consider some i ∈ [log t]: the vertices qi0 and qi1 receive different colors (since they

are adjacent), one of them must take the color of w and the other of pi (they are
adjacent to all other vertices of the palette),

c. the triangle vertices T ∗ are colored using the colors of x, y, z (they are adjacent to
all other vertices of the palette),

d. the only colors which can occur on a vertex in Xi (for all i ∈ [t]) are the colors
given to x, y, z and {pj | j ∈ [log t]} (since the vertices in Xi are adjacent to w).

(II) For every i ∈ [t], the graph G′[Xi ∪ T ∗] is isomorphic to Gi.
(III) The set Z ′ := {pi | i ∈ [log t]} ∪ {w, x, y, z} ∪ T ∗ ∪ {qi0, qi1 | i ∈ [log t]} forms a vertex

cover of G′ of size k′ = |Z ′| = 3 log t+ 4 + 3m. Hence we establish that G′ has a vertex
cover of size O(m+ log t).

Using the given properties of G′ one may verify that χ(G′) ≤ log t+ 4⇔ ∃i ∈ [t] : χ(Gi) ≤ 3.
The remainder of the proof is deferred to the full version due to space restrictions. J

For every fixed integer q, the q-Coloring problem parameterized by the vertex cover
number does admit a polynomial kernel. This fact was independently observed by one of
the referees. Kernelization algorithms for structural parameterizations of the q-Coloring
problem will be the topic of a future publication.

4.3 Kernelization lower bounds for Feedback Vertex Set
In this section we give several kernelization lower bounds for Feedback Vertex Set. The
proofs can be found in the full version [5].
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I Theorem 15. Unless NP ⊆ coNP/poly, Feedback Vertex Set does not admit a
polynomial kernel when parameterized by 1) deletion distance to cluster graphs, and 2)
deletion distance to co-cluster graphs. J

I Theorem 16. Weighted Feedback Vertex Set, where each vertex is given a positive
integer as its weight, does not admit a polynomial kernel parameterized by the size of a vertex
cover unless NP ⊆ coNP/poly. J

5 Conclusions

We have introduced the technique of cross-composition and used it to derive kernelization
lower bounds for structural parameterizations of several graph problems. Since we expect
that cross-composition will be a fruitful tool in the further study of kernelization lower
bounds, we give some pointers on how to devise cross-composition constructions. As the
source problem of the composition one may choose a restricted yet NP-hard version of the
target problem; this brings down the richness of the instances that need to be composed. If
the goal is to give a lower bound for a structural parameterization (such as the size of a vertex
cover) then starting from a problem on graphs which decompose into an independent set and
some very structured remainder (e.g. triangle split graphs decompose into an independent
set and vertex-disjoint triangles) it may be possible to compose the instances by taking
the disjoint union of the inputs, and one-by-one identifying the vertices in the structured
remainder. The fact that cross-compositions allow the output parameter to be polynomial
in the size of the largest input can also be exploited, e.g., the proof of Theorem 11 uses
this when composing input instances on n vertices into a graph G′: we create nO(1) vertices
inside a vertex cover Z ′ for G′, and the adjacencies between Z ′ and a single vertex outside
the cover represent the entire adjacency structure of an input graph.

Cross-composition is also appealing from a methodological point of view, since it gives a
unified way of interpreting the two earlier techniques for proving kernelization lower bounds:
or-compositions and polynomial-parameter transformations can both be seen to yield cross-
compositions for a problem. For or-composition this is trivial to see since an or-composition
for problem Q just shows that the unparameterized variant Q̃ cross-composes into Q. The
combination of an or-composition for problem P and a polynomial-parameter transform
from P to Q also gives a cross-composition: first applying the or-composition on instances
of P and then transforming the resulting P -instance to a Q-instance effectively shows that
we can cross-compose instances of the unparameterized variant P̃ into instances of Q. Hence
the cross-composition technique puts the existing methods of showing super-polynomial
kernelization lower bounds in a common framework, and also explains why these problems
do not admit polynomial kernels: a parameterized problem P does not admit a polynomial
kernel if it can encode the or of some NP-hard problem for a sufficiently small parameter
value. This new perspective might lead to a deeper insight into the common structure of
FPT problems without polynomial kernels.

Acknowledgements We would like to thank Holger Dell for insightful discussions which
led to a more elegant proof of Theorem 9.
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Abstract
Kernelization is a concept that enables the formal mathematical analysis of data reduction
through the framework of parameterized complexity. Intensive research into the Vertex Cover
problem has shown that there is a preprocessing algorithm which given an instance (G, k) of Ver-
tex Cover outputs an equivalent instance (G′, k′) in polynomial time with the guarantee that
G′ has at most 2k′ vertices (and thus O((k′)2) edges) with k′ ≤ k. Using the terminology of
parameterized complexity we say that k-Vertex Cover has a kernel with 2k vertices. There is
complexity-theoretic evidence that both 2k vertices and Θ(k2) edges are optimal for the kernel
size. In this paper we consider the Vertex Cover problem with a different parameter, the size
fvs(G) of a minimum feedback vertex set for G. This refined parameter is structurally smaller
than the parameter k associated to the vertex covering number vc(G) since fvs(G) ≤ vc(G) and
the difference can be arbitrarily large. We give a kernel for Vertex Cover with a number of
vertices that is cubic in fvs(G): an instance (G,X, k) of Vertex Cover, where X is a feedback
vertex set for G, can be transformed in polynomial time into an equivalent instance (G′, X ′, k′)
such that k′ ≤ k, |X ′| ≤ |X| and most importantly |V (G′)| ≤ 2k and |V (G′)| ∈ O(|X ′|3). A
similar result holds when the feedback vertex set X is not given along with the input. In sharp
contrast we show that the Weighted Vertex Cover problem does not have a polynomial ker-
nel when parameterized by fvs(G) unless the polynomial hierarchy collapses to the third level
(PH = Σp3). Our work is one of the first examples of research in kernelization using a non-standard
parameter, and shows that this approach can yield interesting computational insights. To obtain
our results we make extensive use of the combinatorial structure of independent sets in forests.

1998 ACM Subject Classification F.2.2

Keywords and phrases kernelization, lower bounds, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.177

1 Introduction

The Vertex Cover problem is one of the six classic NP-complete problems discussed by
Garey and Johnson in their famous work on intractability [22, GT1], and has played an
important role in the development of parameterized algorithms [15, 28, 16]. A parameterized
problem is a language L ⊆ Σ∗ ×N, and such a problem is (strongly uniform) fixed parameter
tractable if membership of an instance (x, k) can be decided in f(k)|x|c time for some
computable function f and constant c. Since the structure of Vertex Cover is so simple
and elegant, it has proven to be an ideal testbed for new techniques in the context of
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parameterized complexity. The problem is also highly relevant from a practical point of view
because of its role in bioinformatics [1] and other problem areas.

In this work we suggest a “refined parameterization” for the Vertex Cover problem
using the feedback vertex number fvs(G) as the parameter, i.e. the size of a smallest vertex
set whose deletion turns G into a forest. We give upper bounds on the kernel size for
the unweighted version of Vertex Cover under this parameterization, and also supply
a conditional superpolynomial lower bound on the kernel size for the variant of Vertex
Cover where each vertex has a non-negative integral weight. But before we state our results
we shall first survey the current state of the art for the parameterized analysis of Vertex
Cover.

There has been an impressive series of ever-faster parameterized algorithms to solve
k-Vertex Cover, which led to the current-best algorithm by Chen et al. that can decide
whether a graph G has a vertex cover of size k in O(1.2738k + kn) time and polynomial
space [9, 30, 8, 17]. The Vertex Cover problem has also played an important role in
the development of problem kernelization [23]. A kernelization algorithm (or kernel) is
a polynomial-time procedure that reduces an instance (x, k) of a parameterized decision
problem to an equivalent instance (x′, k′) such that |x′|, k′ ≤ f(k) for some computable
function f , which is the size of the kernel. We also use the term kernel to refer to the reduced
instance (x′, k′).

The k-Vertex Cover problem admits a kernel with 2k vertices and O(k2) edges, which
has been a subject of repeated study [6, 8, 10, 2, 11] and experimentation [1, 13]. There is
some complexity-theoretic evidence that the size bounds for the kernel cannot be improved.
Since practically all reduction-rules found to date are approximation-preserving [28], it
appears that a kernel with less than 2k vertices would yield a polynomial-time approximation
algorithm with a performance ratio smaller than 2 which would disprove the Unique Games
Conjecture [25]. A recent breakthrough result by Dell and Van Melkebeek [12] shows that
there is no polynomial kernel which can be encoded into O(k2−ε) bits for any ε > 0 unless
the polynomial hierarchy collapses to the third level (PH = Σp

3), which suggests that the
current bound of O(k2) edges is tight up to logarithmic factors.

This overview might suggest that there is little left to explore concerning kernelization for
vertex cover, but this is far from true. All existing kernelization results for Vertex Cover
use the requested size k of the vertex cover as the parameter. But there is no reason why we
should not consider structurally smaller parameters, to see if we can preprocess instances
of Vertex Cover such that their final size is bounded by a function of such a smaller
parameter, rather than by a function of the requested set size k. We study kernelization for
the Vertex Cover problem using the feedback vertex number fvs(G) as the parameter.
Since every vertex cover is also a feedback vertex set we find that fvs(G) ≤ vc(G) which
shows that the feedback vertex number of a graph is a structurally smaller parameter than
the vertex covering number: there are trees with arbitrarily large values of vc(G) for which
fvs(G) = 0. We call our parameter “refined” since it is structurally smaller than the standard
parameter for the Vertex Cover problem.

Related Work. The idea of studying parameterized problems using alternative param-
eters is not new (see e.g. [28]), but was recently advocated by Fellows et al. [19, 20, 29]
in the call to investigate the complexity ecology of parameters. The main idea behind this
program is to determine how different parameters affect the parameterized complexity of
a problem. Some recent results in this direction include FPT algorithms for graph layout
problems parameterized by the vertex cover number of the graph [21] and an algorithm to
decide isomorphism on graphs of bounded feedback vertex number [26]. We are aware of
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only two applications of this idea to give polynomial kernels using alternative parameters.
Fellows et al. [20, 18] show that the problems Independent Set, Dominating Set and
Hamiltonian Circuit admit linear-vertex kernels on graphs G when parameterized by
the maximum number of leaves in any spanning tree of G. Very recently Uhlmann and
Weller [31] gave a polynomial kernel for Two-Layer Planarization parameterized by the
feedback edge set number, which is a refined structural parameter for that problem since it
is smaller than the natural parameter.

Our Results. We believe that we are one of the first to present a polynomial problem
kernel using a non-standard but practically relevant refined parameter. We study the following
parameterized problem:

fvs-Weighted Vertex Cover
Instance: A simple undirected graph G, a weight function w : V (G) → N+, a
feedback vertex set X ⊆ V (G) such that G−X is a forest, an integer k ≥ 0.
Parameter: The size |X| of the feedback vertex set.
Question: Is there a vertex cover C of G such that

∑
v∈C w(v) ≤ k?

We also consider the unweighted variant fvs-Vertex Cover in which all vertices have a
weight of 1. The problems fvs-Weighted Independent Set and fvs-Independent Set
are defined similarly. Throughout this work k will always represent the total size or weight
of the set we are looking for; depending on the context this is either a vertex cover or an
independent set.

We prove that fvs-Vertex Cover has a kernel in which the number of vertices is bounded
by min(O(|X|3), 2k). This bound is at least as small as the current-best Vertex Cover
kernel, but for graphs with small feedback vertex sets our bound is significantly smaller. We
also study the weighted version of the problem, and obtain a contrasting result: we show that
fvs-Weighted Vertex Cover does not admit a polynomial kernel unless PH = Σp3. This is
very surprising since both the weighted and unweighted versions of k-Vertex Cover admit
polynomial kernels and can be attacked using similar reduction rules [10]. To our knowledge
we give the first example of a parameterized problem whose weighted and unweighted versions
are both NP-complete and FPT, but for which the unweighted version allows a polynomial
kernel but the weighted version does not.

When we present our results we will state them in terms of fvs-Independent Set and
fvs-Weighted Independent Set since this simplifies the exposition. Because we are using
the size of a feedback vertex set as the parameter, there are trivial parameterized reductions
between these problems: an instance (G,X, k) of fvs-Vertex Cover is equivalent to an
instance (G,X, |V (G)| − k) of fvs-Independent Set with the same parameter value |X|.
Hence our kernelization bounds for Independent Set carry over to Vertex Cover.

2 Preliminaries

In this work we only consider undirected, finite, simple graphs. Let G be a graph and denote
its vertex set by V (G) and the edge set by E(G). We denote the independence number of G
by α(G), the vertex covering number by vc(G) and the feedback vertex number by fvs(G).
We will abbreviate maximum independent set as MIS, and feedback vertex set as FVS. For
v ∈ V (G) we denote the open and closed neighborhoods of v by NG(v) and NG[v], respectively.
For a set S ⊆ V (G) we have NG(S) :=

⋃
v∈S NG(v)\S, and NG[S] :=

⋃
v∈S NG[v]. We write

G′ ⊆ G if G′ is a subgraph of G. The graph G[V (G) \X] obtained from G by deleting the
vertices in X and their incident edges is denoted by G−X. The graph G[E(G) \Y ] obtained
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(a) Graph G and its indepen-
dence decomposition.

(b) Decomposition for graph
G/{{u, v}}.

(c) Decomposition for graph
G− {u, v}.

Figure 1 Examples of the independence decomposition of a graph. Black vertices are in A, white
vertices are in N , gray vertices are in S and the edges in M are drawn with thick lines.

from G by deleting the edges in Y but not their endpoints is denoted by G/Y . Carefully
observe the difference between these two operators: if {u, v} is an edge in G, then G−{u, v}
is the graph obtained from G by deleting the vertices u, v and their incident edges, whereas
G/{{u, v}} is the graph obtained from G by removing the edge {u, v} while leaving the
endpoints u and v intact. We note that many details had to be omitted from this extended
abstract due to space restrictions; they can be found in the full version [24] of this work.

We need the following proposition on the structure of maximum independent sets in trees
by Zito [32, Theorem 2], which we re-state here in terms of forests:

I Proposition 1. Let F be a forest. Then there is a unique partition of the vertex set V (F )
into subsets A,N, S such that:

1. Any MIS for F contains all vertices of A and no vertices of N .
2. For each vertex v ∈ S there is a MIS for F containing v and a MIS for F avoiding v.
3. There is a perfect matching M in F [S], and any MIS for F contains exactly one endpoint

of each edge in M .
4. The matching M contains all the α-critical edges of F : for all e ∈ E(F ) it holds that

α(F ) < α(F/{e})⇔ e ∈M .
This partition is uniquely characterized by adjacency relations. The sets A,N, S form the
described partition if and only if:

I. There is a matching M on the vertices of S.
II. No vertex of A is adjacent to another vertex of A or to a vertex in S.
III. Each vertex of N is adjacent to at least two vertices of A.
We will refer to this decomposition of the vertex set of a forest F into the subsets A,N, S
with the matching M as its independence decomposition (Figure 1).

I Observation 1. LetG be a graph. IfG′ is a vertex-induced subgraph ofG then α(G) ≥ α(G′),
so for all W ⊆ V (G) we have α(G) ≥ α(G−W ). If G′′ is an edge-induced subgraph of G
then α(G′′) ≥ α(G), so for all Z ⊆ E(G) we have α(G) ≤ α(G/Z).

I Observation 2. If G is a graph and v is a vertex in G such that degG(v) ≤ 1 then there is
a MIS for G that contains v.

3 Cubic Kernel for FVS-Independent Set

In this section we develop a cubic kernel for fvs-Independent Set. Consider an instance
(G,X, k) of the problem, which asks whether graph G with the FVS X has an independent
set of size k. Throughout this section F := G−X denotes the forest obtained by deleting
the vertices in X. Our starting point is the current-best Vertex Cover kernelization [8,
Theorem 2.2] which exploits a theorem by Nemhauser and Trotter [27].
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I Theorem 1. There is a polynomial-time algorithm that takes an instance (G, k) of Vertex
Cover as input, and computes in polynomial time an equivalent instance (G′, k′) such that G′
is a vertex-induced subgraph of G with k′ ≤ k, |V (G′)| − k′ ≤ |V (G)| − k and |V (G′)| ≤ 2k′.
We can ensure that G′ does not contain any vertices of degree ≤ 1.

Through the correspondence between Vertex Cover and Independent Set we can use
Theorem 1 to preprocess an instance (G,X, k) of fvs-Independent Set.

I Reduction Rule 1. Let (G,X, k) be the current instance of fvs-Independent Set. Run
the algorithm from Theorem 1 on the Vertex Cover instance (G, |V (G)| − k) and let the
result be (G′, |V (G′)| − k′). Obtain X ′ from X by deleting the vertices that were removed
from G by the algorithm, and use (G′, X ′, k′) as the new instance of fvs-Independent Set.

When given an independent subset X ′ ⊆ X of the feedback vertices we can efficiently
compute the largest independent set I in G which satisfies I ∩ X = X ′: since such a set
intersects X exactly in X ′, and since it cannot use any neighbors of X ′ the maximum size
is |X ′| + α(F − NG(X ′)) and this is polynomial-time computable since F − NG(X ′) is a
forest. We exploit this to assess which vertices from the FVS X might occur in a MIS of G.

I Definition 2. The number of conflicts ConfF ′(X ′) induced by a subset X ′ ⊆ X on a
subforest F ′ ⊆ F ⊆ G is defined as ConfF ′(X ′) := α(F ′)− α(F ′ −NG(X ′)).

This term ConfF ′(X ′) can be interpreted as follows. Choosing vertices from X ′ in an
independent set will prevent all their neighbors in the subforest F ′ from being part of the
same independent set; hence if we fix some choice of vertices in X ′, then the number of
vertices from F ′ we can add to this set (while maintaining independence) might be smaller
than the independence number of F ′. The term ConfF ′(X ′) measures the difference between
the two: informally it is the price we pay in the forest F ′ for choosing the vertices X ′ in the
independent set. We can now formulate our first new reduction rules.

I Reduction Rule 2. If there is a vertex v ∈ X such that ConfF ({v}) ≥ |X|, then delete v
from the graph G and from the set X.

I Reduction Rule 3. If there are distinct vertices u, v ∈ X with {u, v} 6∈ E(G) for which
ConfF ({u, v}) ≥ |X|, then add the edge {u, v} to G.

Correctness of these two rules can be established from the following lemma.

I Lemma 3. If X ′ ⊆ X is a subset of feedback vertices such that ConfF (X ′) ≥ |X| then
there is a MIS for G that does not contain all vertices of X ′.

Proof. Assume that I ⊆ V (G) is an independent set containing all vertices of X ′. We will
prove that there is an independent set I ′ which is disjoint from X ′ with |I ′| ≥ |I|. Since
ConfF (X ′) ≥ |X| it follows by definition that α(F )−α(F −NG(X ′)) ≥ |X|; since I cannot
contain any neighbors of vertices in X ′ we know that |I ∩ V (F )| ≤ α(F − NG(X ′)), and
since |V (G)| = |X|+|V (F )| we have |I| ≤ |X|+α(F−NG(X ′)) ≤ α(F ). Hence the maximum
independent set for F , which does not contain any vertices of X ′, is at least as large as I; this
proves that for every independent set containing X ′ there is another independent set which
is at least as large and avoids the vertices of X ′. Therefore there is a MIS for G avoiding at
least one vertex of X ′. J

I Reduction Rule 4. If F contains a connected component T (which must be a tree) such that
for all X ′ ⊆ X with |X ′| ≤ 2 for which X ′ is independent in G it holds that ConfT (X ′) = 0,
then delete T from graph G and decrease k by α(T ).
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To prove the correctness of Rule 4 we need the following lemma.

I Lemma 4. Let T be a connected component of F and let XI ⊆ X be an independent set in G.
If ConfT (XI) > 0 then there is a set X ′ ⊆ XI with |X ′| ≤ 2 such that ConfT (X ′) > 0.

Proof. Assume the conditions stated in the lemma hold. Consider the independence decom-
position of T into the sets A,N, S, and let M be a perfect matching on T [S]. We will try
to construct a MIS I for T that does not use any vertices in NG(XI); this must then also
be a MIS for T −NG(XI) of the same size. By the assumption that ConfT (XI) > 0 any
independent set in T must use at least one vertex in NG(XI) in order to be maximum, hence
our construction procedure must fail somewhere; the place where it fails will provide us with
a set X ′ as required by the statement of the lemma.

Construction of a MIS. By Proposition 1 any MIS for T must use all vertices in A,
no vertices from N and exactly one endpoint of each edge in the matching M . It follows
that if some vertex v ∈ A is adjacent in G to a vertex x ∈ XI , then α(T − {v}) < α(T )
and therefore α(T −NG(x)) < α(T ) which proves that ConfT ({x}) > 0; hence we can then
use X ′ := {x} as our desired subset to prove the claim. In the remainder of the proof we
may therefore assume that no vertex of A is adjacent in G to a vertex in XI .

We now start building our independent set I for T that avoids vertices in NG(XI). We
start by taking all vertices of A in the independent set; we do not use any vertices in NG(XI)
here since A ∩NG(XI) = ∅ by assumption. To augment I into a MIS for T it remains to
add one endpoint of each edge in the matching M . Since the endpoints of the matching are
not adjacent to vertices in A by the adjacency rules of Proposition 1, we can now restrict
ourselves to the subgraph T ′ := T [S] induced by the matched vertices since no choice of
independent vertices in T [S] will conflict with the choice of the vertices A. If there is a
vertex v in T ′ such that NT ′(v) = {u} and NG(v) ∩XI = ∅, then the edge {v, u} must be
in the matching M (since M is a perfect matching in T [S]). Because we must choose one
of {u, v} in a MIS for T , and by Observation 2 choosing a degree-1 vertex will never conflict
with choices that are made later on, we can add v to our independent set I while respecting
the invariant that no vertex in I is adjacent in G to a vertex in XI . Since we have then
chosen one endpoint of the matching edge {u, v} in I, we can delete u, v and their incident
edges to obtain a smaller graph T ′ (which again contains a perfect submatching of M) in
which we continue the process. As long as there is a vertex with degree 1 in T ′ that has no
neighbors in XI then we take it into I, delete it and its neighbor, and continue. If this process
ends with an empty graph, then by Proposition 1 the set I must be a MIS for T , and since
it does not use any vertices adjacent to XI it must also be a MIS for T −NG(XI); but this
proves that α(T ) = α(T −NG(XI)) which means ConfT (XI) = 0, which is a contradiction
to the assumption at the start of the proof. So the process must end with a non-empty
graph T ′ ⊆ T such that vertices with degree 1 in T ′ are adjacent in G to a vertex in XI

and for which the matching M restricted to T ′ is a perfect matching on T ′. We use this
subgraph T ′ to obtain a set X ′ as desired.

Using the subgraph to prove the claim. Consider a vertex v0 in T ′ with degT ′(v0) =
1, and construct a path P = {v0, v1, . . . , v2p+1} by following edges of T ′ that are alternatingly
in and out of the matching M , until arriving at a degree-1 vertex whose only neighbor was
already visited. Since T ′ is acyclic, M restricted to T ′ is a perfect matching on T ′ and
we start the process at a vertex of degree 1, it is easy to verify that there must be such a
path P (there can be many; any arbitrary such path will suffice), that P must contain an
even number of vertices, that the first and last vertex on P have degree-1 in T ′ and that
the edges {v2i, v2i+1} must be in M for all 0 ≤ i ≤ p. Since we assumed that all degree-1
vertices in T ′ are adjacent in G to XI , there exist vertices x1, x2 ∈ X such that v0 ∈ NG(x1)
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and v2p+1 ∈ NG(x2). We now claim that X ′ := {x1, x2} satisfies the requirements of the
statement of the lemma, i.e. that ConfT ({x1, x2}) > 0. This fact is witnessed by considering
the path P in the original tree T . Any MIS for T which avoids NG({x1, x2}) must use one
endpoint of the matched edge {v0, v1}, and since the choice of v0 is blocked because v0 is a
neighbor to x1, it must use v1. But path P shows that v1 is adjacent in T to v2, and hence
we cannot choose v2 in the independent set. But since {v2, v3} is again a matched edge, we
must use one of its endpoints; hence we must use v3. Repeating this argument shows that
we must use vertex v2p+1 in a MIS for T if we cannot use v0; but the use of v2p+1 is also
not possible if we exclude NG({x1, x2}). Hence we cannot make a MIS for T without using
vertices in NG({x1, x2}) which proves that α(T ) > α(T −NG({x1, x2}). By the definition of
conflicts this proves that ConfT (X ′) > 0 for X ′ = {x1, x2}, which concludes the proof. J

Using this lemma we can prove the correctness of Rule 4.

I Lemma 5. Rule 4 is correct: if T is a connected component in F such that for all X ′ ⊆ X
which are independent in G and satisfy |X ′| ≤ 2 it holds that ConfT (X ′) = 0, then
α(G) = α(G− T ) + α(T ).

Proof. Assume the conditions in the statement of the lemma hold. It is trivial to see
that α(G) ≤ α(G − T ) + α(T ). To establish the lemma we only need to prove that
α(G) ≥ α(G− T ) + α(T ), which we will do by showing that any independent set IG−T in
G−T can be transformed to an independent set of size at least |IG−T |+α(T ) in G. So consider
such an independent set IG−T , and let XI := IG−T ∩X be the set of vertices which belong
to both IG−T and the feedback vertex set X. Suppose that α(T ) > α(T −NG(XI)). Then
by Lemma 4 there is a subset X ′ ⊆ XI with |X ′| ≤ 2 such that ConfT (X ′) > 0. Since XI is
an independent set, such a subset X ′ would also be independent; but by the preconditions to
this lemma such a set X ′ does not exist and therefore we must have α(T ) = α(T −NG(XI)).

Now we show how to transform IG−T into an independent set for G of the requested
size. Let IT be a MIS in T − NG(XI), which has size α(T − NG(XI)) = α(T ). It is
easy to verify that IG−T ∪ IT must be an independent set in G because vertices of T are
only adjacent to vertices of G − T which are contained in X. Hence the set IG−T ∪ IT
is independent in G and it has size |IG−T | + α(T ). Since this argument applies to any
independent set IG−T in graph G−T it holds in particular for a MIS in G−T , which proves
that α(G) ≥ α(G− T ) + α(T ) which proves the claim. J

We introduce the concept of blockability for the statement of the last two reduction rules.

I Definition 6. We say that the pair x, y ∈ V (G) \ X is X-blockable if G contains an
independent set X ′ ⊆ X of size |X ′| ≤ 2 such that {x, y} ⊆ NG(X ′).

This can be interpreted as follows: any independent set in G that contains X ′ cannot
contain x or y, so the pair x, y is blocked from being in an independent set by choosing X ′. It
follows directly from the definition that if x, y is not X-blockable, then for any combination
of u ∈ NG(x) ∩X and v ∈ NG(y) ∩X we must have {u, v} ∈ E(G).

I Reduction Rule 5. If there are distinct vertices u, v ∈ V (G) \X which are adjacent in G
and are not X-blockable such that degF (u), degF (v) ≤ 2 then reduce the graph as follows.
Delete vertices u, v and decrease k by 1. If u has a neighbor t in F which is not v, then make
all vertices of NG(v)∩X adjacent to t. If v has a neighbor w in F which is not u, then make
all vertices of NG(u) ∩X adjacent to w. If the vertices t, w exist then they must be unique;
add the edge {t, w} to the graph.
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(a) Rule 5: Shrinking unblockable degree-2 paths
in trees. (k′ := k − 1)

(b) Rule 6: Removing unblockable pendants in
trees. (k′ := k − 2)

Figure 2 Illustrations of two reduction rules. The original structure is shown on the left, and the
image on the right shows the structure after the reduction. Feedback vertices X are drawn in the
bottom container, whereas the forest G−X is visualized in the top container.

I Reduction Rule 6. If there are distinct vertices t, u, v, w in V (G) \X such that degF (u) =
degF (v) = 3, NF (t) = {u}, NF (w) = {v} and {u, v} ∈ E(G) such that none of the pairs {u, t},
{v, w}, {t, w} are X-blockable, then reduce as follows. Let {p} = NF (u) \ {t, v} and let
{q} = NF (v) \ {w, u}. Delete {t, u, v, w} and their incident edges from G, decrease k by 2,
make p adjacent to all vertices of NG(t)∩X and make q adjacent to all vertices of NG(w)∩X.

See Figure 2 for an illustration of the final two reduction rules, which are meant to reduce
the sizes of the trees in the forest F . The correctness of these rules can be proven by
an exchange argument. Whereas Rule 4 deletes a tree T from the forest F when we can
derive that for every independent set in G − T we can obtain an independent set in G

which is α(T ) vertices larger, these last reduction rules act locally within one tree, but
according to the same principle. Instead of working on an entire connected component of F ,
they reduce subtrees T ′ ⊆ F in situations where we can derive that every independent set
in X can be augmented with α(T ′) vertices from T ′. In Rule 5 we reduce the subtree on
vertices {u, v} which has independence number 1, and in Rule 6 we reduce the subtree on
vertices {u, v, t, w} with independence number 2. Connections between the vertices adjacent
to the reduced subtree are made to enforce that removal of the subtree does not affect the
types of interactions between the neighboring vertices.

When no reduction rules can be applied to an instance, we call it reduced. In reduced
instances the number of vertices in F must be bounded by a function of |X|, which can be
proven using the following notion.

I Definition 7. Let F ′ be a subforest of F , and define the number of active conflicts induced
on F ′ by the feedback set X as follows: ActiveF ′(X) :=

∑
X′∈X ConfF ′(X ′) using the

abbreviation X :=
{
X ′
∣∣ X ′ ⊆ X ∧ |X ′| ≤ 2 ∧X ′ is independent in G

}
.

The number of active conflicts induced on F in a reduced instance is polynomially bounded
in |X|. For every v ∈ X we have ConfF ({v}) < |X| by Rule 2, and every pair of distinct
non-adjacent vertices {u, v} ⊆ X satisfies ConfF ({u, v}) < |X| by Rule 3. Hence for every
reduced instance we have ActiveF (X) ≤ |X|2 +

(|X|
2
)
|X|. A technical proof shows that in a

reduced instance the number of active conflicts induced on the forest F is at least 1
83 |V (F )|.

By combining this with the bound on the number of active conflicts, we can bound the
size of reduced instances and obtain a kernelization algorithm. The algorithm exhaustively
applies the six reduction rules, and the analysis then shows that the instance must be small
when no more reduction rules can be applied. Using the duality of Vertex Cover and
Independent Set we also obtain a kernel for fvs-Vertex Cover as a corollary.
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I Theorem 8. fvs-Independent Set has a kernel with a cubic number of vertices: there is
a polynomial-time algorithm that transforms an instance (G,X, k) into an equivalent instance
(G′, X ′, k′) such that |X ′| ≤ |X|, k′ ≤ k, |V (G′)|−k′ ≤ |V (G)|−k, |V (G′)| ≤ 2(|V (G′)|−k′)
and |V (G′)| ≤ |X|+ 83|X|3.

I Corollary 9. fvs-Vertex Cover has a kernel with min(2k, |X|+ 83|X|3) vertices.

4 No Polynomial Kernel for FVS-Weighted Independent Set

In this section we show that the introduction of vertex weights makes the parameterized
Independent Set problem harder to kernelize, by proving that fvs-Weighted Indepen-
dent Set does not have a polynomial kernel unless PH = Σp3. To establish this result, we
introduce a new parameterized problem called t-Paired Vector Agreement and show
that it does not have a polynomial kernel unless PH = Σp3. We then finish the proof by giving
a polynomial-parameter transformation [5, 14] to fvs-Weighted Independent Set.

t-Paired Vector Agreement
Instance: A list L consisting of t pairs of vectors (ai, bi) for 1 ≤ i ≤ t such that each
vector is an element of {0, 1,#, ?}m, and an integer k ≥ 0.
Parameter: The number of pairs t.
Question: Is it possible to choose one vector from each pair, such that the chosen
vectors S induce at most k conflict positions? A position 1 ≤ j ≤ m in a vector is
a conflict position if some chosen vector v ∈ S has vj = #, or if we have chosen
vectors u, v ∈ S such that uj = 0 and vj = 1.

The framework for proving that a parameterized problem does not have a polynomial
kernel unless PH = Σp

3 requires us to establish that the corresponding classical problem is
NP-complete. A reduction from Vertex Cover shows that the classic problem Paired
Vector Agreement is NP-complete. By exploiting the fact that t-Paired Vector
Agreement can be solved in O(2tp(m)) time for some polynomial p (by trying all possible
combinations of vectors), we can build an or-composition algorithm for the paired agreement
problem using a bitmask selection strategy; the techniques we use here are similar to those
employed by Dom et al. [14]. These two facts prove that t-Paired Vector Agreement
does not have a polynomial kernel unless PH = Σp3. To relate these results to fvs-Weighted
Independent Set we use the following transformation.

I Lemma 10. There is a polynomial-parameter reduction from t-Paired Vector Agree-
ment to fvs-Weighted Independent Set.

Proof. Let (L, t,m, k) be an instance of t-Paired Vector Agreement. We may assume
that k < m otherwise the answer to the instance is trivially yes. We show how to build
an equivalent instance (G′, w′, X ′, k′) of fvs-Independent Set in polynomial time such
that |X ′| = 2t, which implies the existence of a polynomial-parameter reduction.

The graph G′ has 2(t+m) vertices, and is defined as follows. For each index 1 ≤ i ≤ t
there is a pair of vertices vai , vbi which are connected by an edge, and have weight 2(t+m).
For each vector position 1 ≤ j ≤ m there are vertices p0

j , p
1
j which are connected by an

edge, and have weight 1. The vertices vai and vbi correspond to the vectors ai, bi of the
t-Paired Vector Agreement instance, and are connected to the position-vertices as
follows. Let v be a vertex vai or vbi corresponding to the vector vec(v) which is ai or bi,
respectively. For 1 ≤ i ≤ t vertex v is adjacent in G′ to all p0

j for which vector vec(v) has
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a 0 at position j; it is also adjacent to all p1
j for which vector vec(v) has a 1 at position j,

and finally vertex v is adjacent to all {p0
j , p

1
j} for which vector vec(v) has a # at position j.

This concludes the definition of the structure of graph G′.
One may verify that a position vertex pxj is adjacent to exactly 1 other position vertex p1−x

j ,
which implies that the graph induced by the position vertices p0,1

j has maximum degree 1 and
is therefore a forest; this shows that the vector-vertices va/bi form a feedback vertex set for G′
and thus we define the feedback vertex set for our instance as X ′ := {vai , vbi | 1 ≤ i ≤ t}
which has size exactly 2t. We now ask for an independent set of total weight at least k′ :=
2t(t+m) + (m− k), which completes the description of instance (G′, w′, X ′, k′). It is easy
to see that this instance can be computed in polynomial time from the instance (L, t,m, k).
The proof that these two instances are equivalent is not difficult, and has been deferred to
the full version of this paper. J

By standard kernelization lower-bound techniques (see [5, 14]) Lemma 10 implies:

I Theorem 11. The problems fvs-Weighted Independent Set and fvs-Weighted
Vertex Cover do not admit polynomial kernels unless PH = Σp3.

It is interesting to note that an instance (G′, w′, X ′, k′) of fvs-Independent Set resulting
from the polynomial-parameter transformation of Lemma 10 has a very restricted graph
structure: every connected component of the forest G′ −X ′ is a path on two vertices. Hence
our proof shows that even using the parameter “number of vertex deletions needed to turn
the graph into a disjoint union of P2’s” (a structurally larger parameter than the FVS size)
there is no polynomial kernel unless PH = Σp3.

5 Conclusion

We have given upper and lower bounds on the size of kernels for the Vertex Cover and
Independent Set problems using the parameter fvs(G). It would be very interesting
to perform experiments with our new reduction rules to see whether they offer significant
benefits over the existing Vertex Cover kernel on real-world instances. This result is one
of the first examples of a polynomial kernel using a “refined” parameter which is structurally
smaller than the standard parameterization. The contrasting result on the weighted problem
shows that there is a rich structure waiting to be uncovered when studying kernelization using
non-standard parameters. The kernel we have presented for fvs-Vertex Cover contains
O(|X|3) vertices and can therefore be encoded in O(|X|6) bits using an adjacency matrix.
The results of Dell and Van Melkebeek [12] imply that it is unlikely that there exists a kernel
which can be encoded in O(|X|2−ε) bits for any ε > 0. It might be possible to improve
the size of the kernel to a quadratic or even a linear number of vertices, by employing new
reduction rules. The current reduction rules can be seen as analogs of the traditional “high
degree” rule for the Vertex Cover problem, and it would be interesting to see whether it
is possible to find analogs of crown reduction rules when using fvs(G) as the parameter.

Although we have assumed throughout the paper that a feedback vertex set is supplied
with the input, we can drop this restriction by applying the known polynomial-time 2-
approximation algorithm for FVS [3]. Observe that the reduction algorithm does not require
that the supplied set X is a minimum feedback vertex set; the kernelization algorithm works
if X is any feedback vertex set, and the size of the output instance depends on the size of
the FVS that is supplied. Hence if we compute a 2-approximate FVS and supply it to the
kernelization algorithm, the bound on the number of vertices in the output instance is only a
factor 2 worse than when running the kernelization using a minimum FVS.
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This paper has focused on the decision version of the Vertex Cover problem, but the
data reduction rules given here can also be translated to the optimization version to obtain
the following result: given a graph G there is a polynomial-time algorithm that computes a
graph G′ and a non-negative integer c such that vc(G) = vc(G′) + c with |V (G′)| ≤ 2 vc(G)
and |V (G′)| ∈ O(fvs(G)3); and a vertex cover S′ for G′ can be transformed back into a
vertex cover of G of size |S′|+ c in polynomial time.

The approach of studying Vertex Cover parameterized by fvs(G) fits into the broad
context of “parameterizing away from triviality” [28, 7], since the parameter fvs(G) measures
how many vertex-deletions are needed to reduce G to a forest in which Vertex Cover can
be solved trivially in polynomial time. As there is a wide variety of restricted graph classes
for which Vertex Cover is in P , this opens up a multitude of possibilities for non-standard
parameterizations. For every graph class G which is closed under vertex deletion and for
which the Vertex Cover problem is in P , the Vertex Cover problem is in FPT when
parameterized by the size of a set X such that G−X ∈ G, assuming that X is given as part
of the input. Recent work [4] into this direction shows that whenever G contains all cliques
the resulting parameterized problem does not have a polynomial kernel unless PH = Σp

3.
Examples of such classes G are chordal graphs, interval graphs and other types of perfect
graphs. We conclude with two specific open problems. Is there a polynomial kernel using
the deletion distance from a bipartite graph as the parameter? Does the Vertex Cover
problem parameterized by the size of a minimum set X such that treewidth(G−X) ≤ i
have a polynomial kernel for every fixed i, or is there some value of i for which this problem
does not have a polynomial kernel? The classic Vertex Cover kernelizations can be
interpreted as the case i = 0 whereas this paper supplies the result for i = 1. It appears that
many interesting insights are waiting to be discovered in this direction.
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Abstract
We study a general class of problems called p-F-Deletion problems. In an p-F-Deletion
problem, we are asked whether a subset of at most k vertices can be deleted from a graph G such
that the resulting graph does not contain as a minor any graph from the family F of forbidden
minors. We obtain a number of algorithmic results on the p-F-Deletion problem when F
contains a planar graph. We give

a linear vertex kernel on graphs excluding t-claw K1,t, the star with t leves, as an induced
subgraph, where t is a fixed integer.
an approximation algorithm achieving an approximation ratio of O(log3/2 OPT ), where OPT
is the size of an optimal solution on general undirected graphs.

Finally, we obtain polynomial kernels for the case when F only contains graph θc as a minor for a
fixed integer c. The graph θc consists of two vertices connected by c parallel edges. Even though
this may appear to be a very restricted class of problems it already encompasses well-studied
problems such as Vertex Cover, Feedback Vertex Set and Diamond Hitting Set. The
generic kernelization algorithm is based on a non-trivial application of protrusion techniques,
previously used only for problems on topological graph classes.
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1 Introduction

Let F be a finite set of graphs. In an p-F-Deletion problem, we are given an n-vertex
graph G and an integer k as input, and asked whether at most k vertices can be deleted from
G such that the resulting graph does not contain a graph from F as a minor. We refer to
such a subset as an F -hitting set. The p-F-Deletion problem is a generalization of several
fundamental problems. For example, when F = {K2}, a complete graph on two vertices,
this is the Vertex Cover problem. When F = {C3}, a cycle on three vertices, this is the
Feedback Vertex Set problem. Other famous cases are F = {K2,3,K4}, F = {K3,3,K5}
and F = {K3, T2}, which correspond to removing vertices to obtain outerplanar graphs,
planar graphs, and graphs of pathwidth one respectively. Here, Ki,j denotes the complete
bipartite graph with bipartitions of sizes i and j, and Ki denotes the complete graph on i
vertices. Further, a T2 is a star on three leaves, each of whose edges has been subdivided
exactly once. A T2 structure is depicted in the leftmost graph of Figure 1.

Our interest in the p-F-Deletion problem is motivated by its generality and the
recent developments in kernelization or polynomial time preprocessing. The parameterized
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OPT is the size of an optimal solution on general undirected graphs.
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1 Introduction

Let F be a finite set of graphs. In an p-F-Deletion problem1, we are given an n-vertex graph
G and an integer k as input, and asked whether at most k vertices can be deleted from G such
that the resulting graph does not contain a graph from F as a minor. More precisely the problem
is defined as follows.

p-F-Deletion
Instance: A graph G and a non-negative integer k.

Parameter: k
Question: Does there exist S ⊆ V (G), |S| ≤ k,

such that G \ S contains no graph from F as a minor?

We refer to such subset S as F-hitting set. The p-F-Deletion problem is a generalization of
several fundamental problems. For example, when F = {K2}, a complete graph on two vertices,
this is the Vertex Cover problem. When F = {C3}, a cycle on three vertices, this is the
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1We use prefix p to distinguish the parameterized version of the problem.
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• a linear vertex kernel on graphs excluding K1,t as an induced subgraph, where t is a
fixed integer.

• an approximation algorithm achieving an approximation ratio of O(log3/2 OPT ), where
OPT is the size of an optimal solution on general undirected graphs.

Finally, we obtain polynomial kernels for the case when F contains the θc graph as a minor for
a fixed integer c. The graph θc consists of two vertices connected by c parallel edges. Even
though this may appear to be a very restricted class of problems it already encompasses
well-studied problems such as Vertex Cover, Feedback Vertex Set and Diamond
Hitting Set. The generic kernelization algorithm is based on a non-trivial application of
protrusion techniques, previously used only for problems on topological graph classes.
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1 Introduction

Let F be a finite set of graphs. In an p-F-Deletion problem1, we are given an n-vertex graph
G and an integer k as input, and asked whether at most k vertices can be deleted from G such
that the resulting graph does not contain a graph from F as a minor. More precisely the problem
is defined as follows.

p-F-Deletion
Instance: A graph G and a non-negative integer k.

Parameter: k
Question: Does there exist S ⊆ V (G), |S| ≤ k,

such that G \ S contains no graph from F as a minor?

We refer to such subset S as F-hitting set. The p-F-Deletion problem is a generalization of
several fundamental problems. For example, when F = {K2}, a complete graph on two vertices,
this is the Vertex Cover problem. When F = {C3}, a cycle on three vertices, this is the
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1We use prefix p to distinguish the parameterized version of the problem.
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Figure 1 Graphs T2, t-claw K1,t with t = 7, and θc with c = 7

complexity of this general problem is well understood. By a celebrated result of Robertson
and Seymour, every p-F-Deletion problem is non-uniformly fixed-parameter tractable
(FPT). That is, for every k there is an algorithm solving the problem in time O(f(k) ·n3) [32].
In this paper we study this problem from the view point of polynomial time preprocessing
and approximation, when the obstruction set F satisfies certain properties.

Preprocessing as a strategy for coping with hard problems is universally applied in practice
and the notion of kernelization provides a mathematical framework for analyzing the quality
of preprocessing strategies. We consider parameterized problems, where every instance I
comes with a parameter k. Such a problem is said to admit a polynomial kernel if every
instance (I, k) can be reduced in polynomial time to an equivalent instance with both size and
parameter value bounded by a polynomial in k. The study of kernelization is a major research
frontier of Parameterized Complexity and many important recent advances in the area are
on kernelization. These include general results showing that certain classes of parameterized
problems have polynomial kernels [3, 10, 22, 26]. The recent development of a framework for
ruling out polynomial kernels under certain complexity-theoretic assumptions [9, 17, 23] has
added a new dimension to the field and strengthened its connections to classical complexity.
For overviews of kernelization we refer to surveys [8, 24] and to the corresponding chapters
in books on Parameterized Complexity [21, 30].

While the initial interest in kernelization was driven mainly by practical applications, the
notion of kernelization turned out to be very important in theory as well. It is well known,
see e.g. [18], that a parameterized problem is fixed parameter tractable, or belongs to the
class FPT, if and only if it has a (perhaps exponential) kernel. Kernelization enables us to
classify problems within the class FPT further, based on the sizes of the problem kernels. So
far, most of the work done in the field of kernelization is still specific to particular problems
and powerful unified techniques to identify classes of problems with polynomial kernels are
still in their nascent stage. One of the fundamental challenges in the area is the possibility
of characterising general classes of parameterized problems possessing kernels of polynomial
sizes. From this perspective, the class of the p-F-Deletion problems is very interesting
because it contains as special cases the p-Vertex Cover and p-Feedback Vertex Set
problems which are the most intensively studied problems from the kernelization perspective.

Our contribution and key ideas. One of the main conceptual contributions of this
work is the extension of protrusion techniques, initially developed in [10, 22] for obtaining
meta-kernelization theorems for problems on sparse graphs like planar and H-minor-free
graphs, to general graphs. We demonstrate this by obtaining a number of kernelization
results for the p-F-Deletion problem when F contains a planar graph. Our first result is
the following theorem for graphs that do not contain K1,t (a star on t leaves, see Figure 1).

I Theorem 1. Let F be an obstruction set containing a planar graph. Then p-F-Deletion
admits a linear vertex kernel on graphs excluding K1,t as an induced subgraph, where t is a
fixed integer.
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Several well studied graph classes do not contain graphs with induced K1,t. Of course, every
graph with maximum vertex degree at most (t− 1) is K1,t-free. The class of K1,3-free graphs,
also known as claw-free graphs, contains line graphs and de Bruijn graphs. Unit disc graphs
are known to be K1,7-free [15].

Our kernelization is a divide and conquer algorithm which finds large protrusions. A
protrusion is a subgraph of constant treewidth separated from the remaining part of the
graph by a constant number of vertices. Having found protrusions of substantial size, the
kernelization algorithm replaces them with smaller, “equivalent” protrusions. Here we use
the results from the work by Bodlaender et al. [10] that enable this step whenever the
parameterized problem in question “behaves like a regular language”. To prove that p-F-
Deletion has the desired properties for this step, we formulate the problem in monadic
second order logic and show that it exhibits certain monotonicity properties. As a corollary
we obtain that p-Feedback Vertex Set, p-Diamond Hitting Set, p-Pathwidth One
Deletion Set, and p-Outerplanar Deletion Set admit a linear vertex kernel on
graphs excluding K1,t as an induced subgraph. With the same methodology we also obtain
a O(k log k) vertex kernel for p-Disjoint Cycle Packing on graphs excluding K1,t as an
induced subgraph. We note that p-Disjoint Cycle Packing does not admit a polynomial
kernel on general graphs [11] unless coNP ⊆ NP/poly.

Let θc be a graph with two vertices and c ≥ 1 parallel edges (see Figure 1). Our second
result is the following theorem on general graphs.

I Theorem 2. Let F be an obstruction set containing only θc. Then p-F-Deletion admits
a kernel of size O(k2 log3/2 k).

A number of well-studied NP-hard combinatorial problems are special cases of p-θc-Deletion.
When c = 1, this is the classical Vertex Cover problem [29]. For c = 2, this is another
well studied problem, the Feedback Vertex Set problem [4]. When c = 3, this is the
Diamond Hitting Set problem [20]. Let us note that the size of the best known kernel for
c = 2 is O(k2), which is very close to the size of the kernel in Theorem 2. Also, Dell and van
Melkebeek proved that no NP-hard vertex deletion problem based on a graph property that
is inherited by subgraphs can have kernels of size O(k2−ε) unless coNP ⊆ NP/poly [17] and
thus the sizes of the kernels in Theorem 2 are tight up to a polylogarithmic factor.

The proof of Theorem 2 is obtained in a series of non-trivial steps. The very high level
idea is to reduce the general case to problem on graphs of bounded degree, which allows
us to use the protrusion techniques as in the proof of Theorem 1. However, vertex degree
reduction is not straightforward and requires several new ideas. One of the new tools is a
generic O(log3/2 OPT )-approximation algorithm for the p-F-Deletion problem when the
class of excluded minors for F contains at least one planar graph. More precisely, we obtain
the following result, which is of independent interest.

I Theorem 3. Let F be an obstruction set containing a planar graph, and let OPT be
the size of the smallest F-hitting set. Given a graph G, in polynomial time we can find
a subset S ⊆ V (G) such that G[V \ S] contains no element of F as a minor and |S| =
O(OPT · log3/2 OPT ).

While several generic approximation algorithms are known for problems of minimum vertex
deletion to obtain subgraphs with property P , like when P is a hereditary property with
a finite number of minimal forbidden subgraphs [28], or can be expressed as a universal
first order sentence over subsets of edges of the graph [25], we are not aware of any generic
approximation algorithm for the case when a property P is characterized by a finite set of
forbidden minors.

STACS’11
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We then use the approximation algorithm as a subroutine in a polynomial time algorithm
that transforms the input instance (G, k) into an equivalent instance (G′, k′) such that k′ ≤ k
and the maximum degree of G′ is bounded by O(k log3/2 k). An important combinatorial
tool used in designing this algorithm is the q–Expansion Lemma. For q = 1 this lemma is
Hall’s theorem and its usage is equivalent to the application of the Crown Decomposition
technique [1, 14]. After obtaining an equivalent instance with bounded degree, we apply
protrusion techniques and prove Theorem 2.
Related work. All non-trivial p-F-Deletion problems are NP-hard [27]. By one of the
most well-known consequences of the celebrated Graph Minor theory of Robertson and
Seymour the p-F-Deletion problem is non-uniformly fixed parameter tractable. Whenever
F is given explicitly, the problem is uniformly FPT because the excluded minors for the
class of graphs that are YES-instances of the p-F-Deletion problem can by computed
explicitly [2]. A special case of that problem, when the set F contains θc, has been studied from
approximation and parameterized perspectives. In particular, the case of p-θ1-Deletion
or, equivalently, p-Vertex Cover, is the most well-studied problem in Parameterized
Complexity. Different kernelization techniques were applied on the problem, eventually
resulting in a 2k-sized vertex kernel [1, 13]. For the kernelization of p-Feedback Vertex
Set, or p-θ2-Deletion, there has been a sequence of dramatic improvements starting from
an O(k11) vertex kernel by Buragge et al. [12], improved to O(k3) by Bodlaender [7], and then
finally to O(k2) by Thomassé [34]. Recently Philip et al. [31] and Cygan et al. [16] obtained
polynomial kernels for p-Pathwidth One Deletion Set. Constant factor approximation
algorithms are known for Vertex Cover and Feedback Vertex Set [4, 5]. Very recently,
a constant factor approximation algorithm for the Diamond Hitting Set problem, or
p-θ3-Deletion, was obtained in [20]. Prior to our work, no polynomial kernels were known
for p-Diamond Hitting Set or more general families of p-F-Deletion problems.

2 Preliminaries

In this section we give various definitions which we use in the paper. For n ∈ N, we use [n]
to denote the set {1, . . . , n}. We use V (G) to denote the vertex set of a graph G, and E(G)
to denote the edge set. The degree of a vertex v in G is the number of edges incident on v,
and is denoted by d(v). We use ∆(G) to denote the maximum degree of G. A graph G′ is a
subgraph of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). The subgraph G′ is called an induced
subgraph of G if E(G′) = {{u, v} ∈ E(G) | u, v ∈ V (G′)}. Given a subset S ⊆ V (G) the
subgraph induced by S is denoted by G[S]. The subgraph induced by V (G) \S is denoted by
G \ S. We denote by N(S) the open neighborhood of S, i.e. the set of vertices in V (G) \ S
adjacent to S. Let F be a finite set of graphs. A vertex subset S ⊆ V (G) of a graph G is
said to be a F-hitting set if G \ S does not contain any graphs in the family F as a minor.

By contracting an edge (u, v) of a graph G, we mean identifying the vertices u and v,
keeping all the parallel edges and removing all the loops. A minor of a graph G is a graph
H that can be obtained from a subgraph of G by contracting edges. We keep parallel edges
after contraction since the graph θc which we want to exclude as a minor itself contains
parallel edges. Let G,H be two graphs. A subgraph G′ of G is said to be a minor-model
of H in G if G′ contains H as a minor. The subgraph G′ is a minimal minor-model of H
in G if no proper subgraph of G′ is a minor-model of H in G. A graph class C is minor
closed if any minor of any graph in C is also an element of C. A minor closed graph class C is
H-minor-free or simply H-free if H /∈ C.
Parameterized algorithms and Kernels. A parameterized problem Π is a subset of
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Γ∗ × N for some finite alphabet Γ. An instance of a parameterized problem consists of
(x, k), where k is called the parameter. A central notion in parameterized complexity is fixed
parameter tractability (FPT) which means, for a given instance (x, k), solvability in time
f(k) · p(|x|), where f is an arbitrary function of k and p is a polynomial in the input size. A
kernelization algorithm for a parameterized problem Π ⊆ Σ∗ × N is an algorithm that, given
(x, k) ∈ Σ∗ × N, outputs, in time polynomial in (|x|+ k), a pair (x′, k′) ∈ Σ∗ × N such that:
(a) (x, k) ∈ Π if and only if (x′, k′) ∈ Π and (b) |x′|, k′ ≤ g(k), where g is some computable
function. The output instance x′ is called the kernel, and the function g is referred to as the
size of the kernel. If g(k) = kO(1), then we say that Π admits a polynomial kernel [21].
Tree-width and protrusions. We use standard notions of tree decompositions, tree-width,
and nice tree decompositions, which definitions can be found in [10, 22]. Whenever we use
nice tree decompositions, we will assume that the root bag is empty. The tree-width of a
graph G is denoted by tw(G). Given a graph G and S ⊆ V (G), we define ∂G(S) as the
set of vertices in S that have a neighbor in V (G) \ S. We say that a set X ⊆ V (G) is an
r-protrusion of G if tw(G[X]) ≤ r and |∂G(X)| ≤ r. In our paper, we also use concepts of
MSO, t-boundaried graphs and their properties, the notion of finite integer index, and strong
monotonicity. The definitions of these notions can be found in [10, 22]. Proofs of results
labeled with F have been omitted due to lack of space.

3 Kernelization for p-F-Deletion on K1,t free graphs

In this section we show that if the obstruction set F contains a planar graph then the
p-F-Deletion problem has a linear vertex kernel on graphs excluding K1,t as an induced
subgraph. We start with the following lemma, which is crucial to our kernelization algorithms.

I Lemma 4 (F). Let F be an obstruction set containing a planar graph of size h. If G
has an F-hitting set S of size at most k, then tw(G \ S) ≤ d and tw(G) ≤ k + d, where
d = 202(14h−24)5 .

The Protrusion Rule — Reductions Based on Finite Integer Index. We obtain our
kernelization algorithm for p-F-Deletion by applying a protrusion based reduction rule.
That is, any large r-protrusion for a fixed constant r that depends only on F (that is, only
on the problem) is replaced with a smaller equivalent r-protrusion. For this, we utilize the
following lemma of Bodlaender et al. [10].

I Lemma 5 ([10]). Let Π be a problem that has finite integer index. Then there exists
a computable function γ : N → N and an algorithm that given an instance (G, k) and an
r-protrusion X of G of size at least γ(r), runs in O(|X|) time and outputs an instance
(G∗, k∗) such that |V (G∗)| < |V (G)|, k∗ ≤ k, and (G∗, k∗) ∈ Π if and only if (G, k) ∈ Π.

Remark: Let us remark that if G does not have K1,t as an induced subgraph then the proof
of Lemma 5 also ensures that the graph G′ does not contain K1,t as an induced subgraph.
This ensures that the reduced instance belongs to the same graph class as the original.

In order to apply Lemma 5 we need to be able to efficiently find large r-protrusions
whenever the instance considered is large enough. Also, we need to prove that p-F-Deletion
has finite integer index. The next lemma yields a divide and conquer algorithm for efficiently
finding large r-protrusions.

I Lemma 6. There is a linear time algorithm that given an n-vertex graph G and a set
X ⊆ V (G) such that tw(G \ X) ≤ d, outputs a 2(d + 1)-protrusion of G of size at least
n−|X|

4|N(X)|+1 . Here d is some constant.

STACS’11
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Proof. Let F = G \X. The algorithm starts by computing a nice tree decomposition of F
of width at most d. Notice that since d is a constant this can be done in linear time [6]. Let
S be the vertices in V (F ) that are neighbors of X in G, that is, S = NG(X).

The nice tree decomposition of F is a pair (T,B = {B`}`∈V (T )), where T is a rooted
binary tree. We will now mark some of the nodes of T . For every v ∈ S, we mark the topmost
node ` in T such that v ∈ B`. In this manner, at most |S| nodes are marked. Now we mark
more nodes of T by exhaustively applying the following rule: if u and v are marked, mark
their least common ancestor in T . Let M be the set of all marked nodes of T . Standard
counting arguments on trees give that |M | ≤ 2|S|.

Since T is a binary tree, it follows that T \M has at most 2|M |+1 connected components.
Let the vertex sets of these connected components be C1, C2 . . . Cη, η ≤ 2|M | + 1. For
every i ≤ η, let C ′i = NT (Ci) ∪ Ci and let Pi =

⋃
u∈C′

i
Bu. By the construction of M ,

every component of T \M has at most 2 neighbors in M . Also for every 1 ≤ i ≤ η and
v ∈ S, we have that if v ∈ Pi, then v should be contained in one of the bags of NT (Ci).
In other words, S ∩ Pi ⊆

⋃
u∈C′

i
\Ci

Bu. Thus every Pi is a 2(d+ 1)-protrusion of G. Since
η ≤ 2|M |+ 1 ≤ 4|S|+ 1, the pigeon-hole principle yields that there is a protrusion Pi with
at least n−|X|

4|S|+1 vertices. The algorithm constructs M and P1 . . . Pη and outputs the largest
protrusion Pi. It is easy to implement this procedure to run in linear time. J

The following lemma follows from [10], where it is shown that every strongly monotone
p-min-MSO problem has finite integer index.

I Lemma 7 (F). p-F-Deletion has finite integer index.

Analysis and Kernel Size – Proof of Theorem 1. Now we give the desired kernel for
p-F-Deletion. We will use the following combinatorial lemma.

I Lemma 8 (F). Let G be a graph excluding K1,t as an induced subgraph and S be an
F-hitting set. If F contains a planar graph of size h, then |N(S)| ≤ g(h, t) · |S| for some
computable function g of h and t.

Proof of Theorem 1. Let (G, k) be an instance of p-F-Deletion and h be the size of a
smallest planar graph in the obstruction set F . We first apply Theorem 3 (to be proved in
next section), an approximation algorithm for p-F-Deletion with factor O(log3/2 OPT ),
and obtain a set X such that G \X contains no graph in F as a minor. If the size of the set
X is more than O(k log3/2 k) then we return that (G, k) is a NO-instance to p-F-Deletion.
This is justified by the approximation guarantee provided by the Theorem 3.

Let d denote the treewidth of the graph after the removal of X, that is, d := tw(G \ S).
Now we obtain the kernel in two phases: we first apply the protrusion rule selectively
(Lemma 5) and get a polynomial kernel. Then, we apply the protrusion rule exhaustively on
the obtained kernel to get a smaller kernel. This is done in order to reduce the running time
complexity of the kernelization algorithm. To obtain the kernel we follow the following steps.

Applying the Protrusion Rule. By Lemma 4, d ≤ 202(14h−24)5 . We apply Lemma 6
and obtain a 2(d + 1)-protrusion Y of G of size at least |V (G′)|−|X|

4|N(X)|+1 . By Lemma 7, p-F-
Deletion has finite integer index. Let γ : N → N be the function defined in Lemma 5.
If |V (G′)|−|X|

4|N(X)|+1 ≥ γ(2d + 1), then using Lemma 5 we replace the 2(d + 1)-protrusion Y in
G and obtain an instance (G∗, k∗) such that |V (G∗)| < |V (G)|, k∗ ≤ k, and (G∗, k∗) is a
YES-instance of p-F-Deletion if and only if (G, k) is a YES-instance of p-F-Deletion .
Recall that G∗ also excludes K1,t as an induced subgraph.

Let (G∗, k∗) be a reduced instance with hitting set X. In other words, there is no
(2d+ 2)-protrusion of size γ(2d+ 2) in G∗ \X, and Protrusion Rule no longer applies. We
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claim that the number of vertices in this graph is bounded by O(k log3/2 k). Indeed, since we
cannot apply the Protrusion Rule, we have that |V (G∗)|−|X|

4|N(X)|+1 ≤ γ(2d+ 2). Because k∗ ≤ k, we
have that |V (G∗)| ≤ γ(2d+ 2)(4|N(X)|+ 1) + |X|. By Lemma 8, |N(X)| ≤ g(h, d) · |X| and
thus |V (G∗)| = O(γ(2d + 2) · k log3/2 k) = O(k log3/2 k). This gives us a polynomial time
algorithm that returns a vertex kernel of size O(k log3/2 k).

Now we give a kernel of smaller size. We would like to replace every large (2d + 2)-
protrusion in graph by a smaller one. We find a (2d+2)-protrusion Y of size at least γ(2d+2)
by guessing the boundary ∂(Y ) of size at most 2d + 2. This could be performed in time
kO(d). So let (G∗, k∗) be the reduced instance on which we cannot apply the Protrusion
Rule. If G is a YES-instance then there is a F-hitting set X of size at most k such that
tw(G \X) ≤ d. Now applying the analysis above with this X yields that |V (G∗)| = O(k).
Hence if the number of vertices in the reduced instance G∗, to which we can not apply the
Protrusion Rule, is more than O(k) then we return that G is a NO-instance. This concludes
the proof of the theorem. J

I Corollary 9. p-Feedback Vertex Set, p-Diamond Hitting Set, p-Pathwidth One
Deletion Set, p-Outerplanar Deletion Set admit linear vertex kernel on graphs
excluding K1,t as an induced subgraph.

The methodology used in proving Theorem 1 is not limited to p-F-Deletion. For example,
it is possible to obtain an O(k log k) vertex kernel on K1,t-free graphs for p-Disjoint Cycle
Packing, which is for a given graph G and positive integer k to determine if there are k
vertex disjoint cycles in G. It is iteresting to note that p-Disjoint Cycle Packing does not
admit a polynomial kernel on general graphs [11]. For our kernelization algorithm, we use
the following Erdős-Pósa property [19]: given a positive integer ` every graph G either has `
vertex disjoint cycles or there exists a set S ⊆ V (G) of size at most O(` log `) such that G \S
is a forest. So given a graph G and an integer k, we first apply the factor 2 approximation
algorithm given in [4] and obtain a set S such that G \ S is a forest. If the size of S is more
than O(k log k) then we return that G has k vertex disjoint cycles. Else, we use the fact that
p-Disjoint Cycle Packing [10] has finite integer index and apply the protrusion reduction
rule in G \ S to obtain an equivalent instance (G∗, k∗), as in Theorem 1. The analysis for
kernel size used in the proof of Theorem 1 together with the observation that tw(G \ S) ≤ 1
shows that if (G, k) is a YES instance then the size of V (G∗) is at most O(k log k).

I Corollary 10. p-Disjoint Cycle Packing has O(k log k) vertex kernel on graphs excluding
K1,t as an induced subgraph.

Next, we extend the methods used in this section for obtaining kernels for p-F-Deletion
on graphs excluding K1,t as an induced graph to all graphs, though for restricted F — we
consider the families F that contain θc. However, for this kernelization result, we need a
polynomial time approximation algorithm with a factor polynomial in optimum size and not
depending on the input size. For example, an approximation algorithm with factor O(logn)
would not serve our purpose. We obtain an approximation algorithm (Theorem 3) for
p-F-Deletion with a factor O(log3/2 OPT ) whenever the finite obstruction set F contains
a planar graph. Here OPT is the size of a minimum F -hitting set. This immediately implies
a factor O(log3/2 n) algorithm for all the problems that can categorized by p-F-Deletion.
The proof of Theorem 3 is crucially based on the following lemma.

I Lemma 11 (F). There is a polynomial time algorithm that, given a graph G and a positive
integer k, either reports that G has no F-hitting set of size at most k or finds an F-hitting
set of size at most O(k log3/2 k).
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4 Kernelization for p-θc-Deletion

In this section we obtain a polynomial kernel for p-θc-Deletion on general graphs. To
obtain our kernelization algorithm we not only need the approximation algorithm mentioned
before but also a variation of classical Hall’s theorem. We first present this combinatorial
tool and other auxiliary results that we make use of.
Combinatorial Lemma and some Linear-Time Subroutines.We need a variation of
the celebrated Hall’s Theorem, which we call the q–Expansion Lemma. It is a generalization of
a result due to Thomassé [34, Theorem 2.3], and captures a certain property of neighborhood
sets in graphs that implicitly has been used by several authors to obtain polynomial kernels
for many graph problems. For q = 1, the application of this lemma is exactly the well-known
Crown Reduction Rule [1, 14].
The Expansion Lemma. Consider a bipartite graph G with vertex bipartition A ] B.
Given subsets S ⊆ A and T ⊆ B, we say that S has |S| q-stars in T if to every x ∈ S we can
associate a subset Fx ⊆ N(x) ∩ T such that (a) for all x ∈ S, |Fx| = q; (b) for any pair of
vertices x, y ∈ S, Fx ∩ Fy = ∅. Observe that if S has |S| q-stars in T then every vertex x
in S could be thought of as the center of a star with its q leaves in T , with all these stars
being vertex-disjoint. Further, a collection of |S| q-stars is also a family of q edge-disjoint
matchings, each saturating S. We use the following result in our kernelization algorithm to
bound the degrees of vertices.

I Lemma 12 (F). [The q–Expansion Lemma] Let q be a positive integer, and let m be
the size of the maximum matching in a bipartite graph G with vertex bipartition A ]B. If
|B| > mq, and there are no isolated vertices in B, then there exist nonempty vertex sets
S ⊆ A, T ⊆ B such that S has |S| q-stars in T and no vertex in T has a neighbor outside S.
Furthermore, the sets S, T can be found in time polynomial in the size of G.

I Observation 1 (F). For c ≥ 2, any minimal θc minor-model M of a graph G is a connected
subgraph of G, and does not contain a vertex whose degree in M is less than 2, or a vertex
whose deletion from M results in a disconnected graph (a cut vertex of M).

I Lemma 13 (F). Let G be a graph and v a vertex of G. Given a tree decomposition of width
t ∈ O(1) of G, in O(n) time we can find both (1) a smallest set S ⊆ V of vertices of G such that
the graph G\S does not contain θc as a minor, and (2) a largest collection {M1,M2, . . . ,Ml}
of θc minor models of G such that for 1 ≤ i < j ≤ l, (V (Mi) ∩ V (Mj)) = {v}.

Now we describe the reduction rules used by the kernelization algorithm. In contrast to the
reduction rules employed by most known kernelization algorithms, these rules cannot always
be applied on general graphs in polynomial time. Hence the algorithm does not proceed
by applying these rules exhaustively, as is typical in kernelization programs. We describe
how to arrive at situations where these rules can in fact be applied in polynomial time, and
prove that even this selective application of rules results in a kernel of size polynomial in the
parameter k.
Bounding the Maximum Degree of a Graph Now we present a set of reduction rules
which, given an input instance (G, k) of p-θc-Deletion, obtains an equivalent instance
(G′, k′) where k′ ≤ k and the maximum degree of G′ is at most a polynomial in k. In the
sequel a vertex v is irrelevant if it is not a part of any θc minor model, and is relevant
otherwise. For each rule below, the input instance is (G, k).
I Reduction Rule 1 (Irrelevant Vertex Rule). Delete all irrelevant vertices in G.
Given a graph G and a vertex v ∈ V (G), an `-flower passing through v is a set of ` different
θc minor-models in G, each containing v and no two sharing any vertex other than v.
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I Reduction Rule 2 (Flower Rule). If a (k+1)-flower passes through a vertex v ofG, then include
v in the solution and remove it from G to obtain the equivalent instance (G \ {v}, (k − 1)).

The argument for the soundness of these reduction rules is simple and is hence omitted.
One can test whether a particular vertex v is part of any minimal minor-model corresponding
to θc using the rooted minor testing algorithm of Robertson and Seymour [32]. It is not clear,
however, that one might check whether a vertex is a part of (k + 1)-flower in polynomial
time. Hence we defer the application of these rules and apply them only when the vertices
are “evidently” irrelevant or finding a flower can be solved in polynomial time. Now we state
an auxiliary lemma which will be useful in bounding the maximum degree of the graph.

I Lemma 14 (F). Let G be a n-vertex graph containing θc as a minor and v be a vertex
such that G′ = G \ {v} does not contain θc as a minor and the maximum size of a flower
containing v is at most k. Then there exists a set Tv of size O(k) such that v /∈ Tv and
G \ Tv does not contain θc as a minor. Moreover we can find the set Tv in polynomial time.

I Lemma 15. There exists a polynomial time algorithm that, given an instance (G, k)
of p-θc-Deletion returns an equivalent instance (G′, k′) such that k′ ≤ k and that the
maximum degree of G′ is O(k log3/2 k). Moreover it also returns a θc-hitting set of G′ of size
O(k log3/2 k).

Proof. Given an instance (G, k) of p-θc-Deletion, we first apply Lemma 11 on (G, k). The
polynomial time algorithm described in Lemma 11, given a graph G and a positive integer k
either reports that G has no θc-hitting set of size at most k, or finds a θc-hitting set of size
at most k∗ = O(k log3/2 k). If the algorithm reports that G has has no θc-hitting set of size
at most k, then we return that (G, k) is a NO-instance to p-θc-Deletion. So we assume
that we have a hitting set S of size k∗. Now we proceed with the following two rules.

Selective Flower Rule. To apply the Flower Rule selectively we use S, the θc-hitting set.
For a vertex v ∈ S let Sv := S \{v} and let Gv := G\Sv. By a result of Robertson et. al. [33]
we know that any graph of treewidth greater than 202c5 contains a c×c grid, and hence θc, as
a minor. Since deleting v from Gv makes it θc-minor-free, tw(Gv) ≤ 202c5 + 1 = O(1). Now
by Lemma 13, we find in linear time the size of the largest flower centered at v, in Gv. If for
any vertex v ∈ S the size of the flower in Gv is at least k + 1, we apply the Flower Rule and
get an equivalent instance (G← G \ {v}, k ← k − 1). Furthermore, we set S := S \ {v}. We
apply the Flower Rule selectively until no longer possible. We abuse notation and continue
to use (G, k) to refer to the instance that is reduced with respect to exhaustive application
of the Selective Flower Rule. Thus, for every vertex v ∈ S the size of any flower passing
through v in Gv is at most k.

Now we describe how to find, for a given v ∈ V (G), a hitting set Hv ⊆ V (G) \ {v} for all
minor-models of θc that contain v. Notice that this hitting set is required to exclude v, so
Hv cannot be the trivial hitting set {v}. If v /∈ S, then Hv = S. On the other hand, suppose
v ∈ S. Since the maximum size of a flower containing v in the graph Gv is at most k, by
Lemma 14, we can find a set Tv of size O(k) that does not contain v and hits all the θc
minor-models passing through v in Gv. Hence in this case we set Hv = Sv ∪ Tv. We denote
|Hv| by hv. Notice that Hv is defined algorithmically, that is, there could be many small
hitting sets in V (G) \ {v} hitting all minor-models containing v, and Hv is one of them.
q-expansion Rule with q = c. Given an instance (G, k), S, and a family of sets Hv, we
show that if there is a vertex v with degree more than chv + c(c− 1)hv, then we can reduce
its degree to at most chv + c(c− 1)hv by repeatedly applying the q–Expansion Lemma with
q = c. Observe that for every vertex v the set Hv is also a θc hitting set for G, that is, Hv
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hits all minor-models of θc in G. Consider the graph G \Hv. Let the components of this
graph that contain a neighbor of v be C1, C2, . . . , Cr. Note that v cannot have more than
(c− 1) neighbors into any component, else contracting the component will form a θc minor
and will contradict the fact that Hv hits all the θc minors. Also note that none of the Ci’s
can contain a minor model of θc.

We say that a component Ci is adjacent to Hv if there exists a vertex u ∈ Ci and w ∈ Hv

such that (u,w) ∈ E(G). Next we show that vertices in components that are not adjacent to
Hv are irrelevant in G. Recall a vertex is irrelevant if there is no minimal minor model of θc
that contains it. Consider a vertex u in a component C that is not adjacent to Hv. Since
G[V (C) ∪ {v}] does not contain any θc minor we have that if u is a part of a minimal minor
model M ⊆ G, then v ∈ M and also there exists a vertex u′ ∈ M such that u′ /∈ C ∪ {v}.
Then the removal of v disconnects u from u′ in M , a contradiction to Observation 1 that for
c ≥ 2, any minimal θc minor model M of a graph G does not contain a cut vertex. Applying
the Irrelevant Vertex Rule to the vertices in all such components leaves us with a new set of
components D1, D2, . . . , Ds, such that for every i, in Di, there is at least one vertex that is
adjacent to a vertex in Hv.

As before, we continue to use G to refer to the graph obtained after the Irrelevant Vertex
Rule has been applied in the context described above. We also update the sets Hv for
v ∈ V (G) by deleting all the vertices w from these sets those have been removed using
Irrelevant Vertex Rule.

Now, consider a bipartite graph G with vertex bipartitions Hv and D. Here D =
{d1, . . . , ds} contains a vertex di corresponding to each component Di. For every u ∈ Hv, we
add the edge (u, di) if there is a vertex w ∈ Di such that {u,w} ∈ E(G). Even though we
start with a simple graph (graphs without parallel edges) it is possible that after applying
reduction rules parallel edges may appear. However, throughout the algorithm, we ensure
that the number of parallel edges between any pair of vertices is at most c. Now, v has at
most chv edges to vertices in Hv. Since v has at most (c− 1) edges to each Di, it follows
that if d(v) > chv + c(c− 1)hv, then the number of components |D| is more than chv. Now
by applying q–Expansion Lemma with q = c, A = Hv, and B = D, we find a subset S ⊆ Hv

and T ⊆ D such that S has |S| c-stars in T and N(T ) = S.
The reduction rule involves deleting edges of the form (v, u) for all u ∈ Di, such that

di ∈ T , and adding c edges between v and w for all w ∈ S. We add these edges only if they
were not present before so that the number of egdes between any pair of vertices remains at
most c. This completes the description of the q-expansion reduction rule with q = c. Let GR
be the graph obtained after applying the reduction rule. The following lemma shows the
correctness of the rule.

I Lemma 16 (F). Let G, S and v be as above and GR be the graph obtained after applying
the c-expansion rule. Then (G, k) is a YES instance of p-θc-Deletion if and only if (GR, k)
is a YES instance of p-θc-Deletion.

Observe that all edges that are added during the application of the q-expansion reduction
rule have at least one end point in S, and hence S remains a hitting set of GR. We are now
ready to summarize the algorithm that bounds the degree of the graph (see Algorithm 1).

Let the instance output by Algorithm 1 be (G′, k′,S). Clearly, in G′, the degree of every
vertex is at most chv + c(c− 1)hv ≤ O(k log3/2 k). The routine also returns S — a θc-hitting
set of G′ of size at most O(k log3/2 k).

We now show that the algorithm runs in polynomial time. For x ∈ V (G), let ν(x) be
the number of neighbors of x to which x has fewer than c parallel edges. Observe that the
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Algorithm 1 Bound-Degree(G, k,S)
1: Apply the Selective Flower Rule
2: if ∃v ∈ V (G) such that d(v) > chv + c(c− 1)hv then
3: Apply the q-expansion reduction rule with q = c.
4: else
5: Return (G, k,S).
6: end if
7: Return Bound-Degree(G, k,S).

application of q-expansion reduction rule never increases ν(x) for any vertex and decreases
ν(x) for at least one vertex. The other rules delete vertices, which can never increase ν(x)
for any vertex. This concludes the proof. J

5 Conclusion

In this paper we gave the first kernelization algorithms for a subset of p-F-Deletion
problems and a generic approximation algorithm for the p-F-Deletion problem when the
set of excluded minors F contains at least one planar graph. Our approach generalizes and
unifies known kernelization algorithms for p-Vertex Cover and p-Feedback Vertex
Set. By the celebrated result of Robertson and Seymour, every p-F-Deletion problem
is FPT and our work naturally leads to the following question: does every p-F-Deletion
problem have a polynomial kernel? Can it be that for some finite sets of minor obstructions
F = {O1, . . . , Op} the answer to this question is NO? Even the case F = {K5,K3,3}, vertex
deletion to planar graphs, is an interesting challenge. Another interesting question is if our
techniques can be extended to another important case when F contains a planar graph.
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Abstract
We consider a model of algorithmic self-assembly of geometric shapes out of square Wang tiles
studied in SODA 2010, in which there are two types of tiles (e.g., constructed out of DNA and
RNA material) and one operation that destroys all tiles of a particular type (e.g., an RNAse
enzyme destroys all RNA tiles). We show that a single use of this destruction operation enables
much more efficient construction of arbitrary shapes. In particular, an arbitrary shape can be
constructed using an asymptotically optimal number of distinct tile types (related to the shape’s
Kolmogorov complexity), after scaling the shape by only a logarithmic factor. By contrast,
without the destruction operation, the best such result has a scale factor at least linear in the
size of the shape and is connected only by a spanning tree of the scaled tiles. We also characterize
a large collection of shapes that can be constructed efficiently without any scaling.
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1 Introduction

DNA self-assembly research attempts to harness the power of synthetic biology to manipulate
matter at the nanoscale. The general goal of this field is to design a simple system of
particles (e.g., DNA strands) that efficiently assemble into a desired macroscale object. Such
technology is fundamental to the field of nanotechnology and has the potential to allow for
massively parallel, bottom-up fabrication of complex nanodevices, or the implementation of
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a biological computer. Motivated by experimental DNA assemblies of basic building blocks
or DNA tiles [5,7,14,16,17,19,26], the tile self-assembly model [18] has emerged as a premier
theoretical model of self-assembly. Tile self-assembly models particles as four-sided Wang
tiles which float randomly in the plane and stick to one another when abutting edges have
sufficient affinity for attachment.

Perhaps the most fundamental question within the tile self-assembly model is how
efficiently, in terms of the number of distinct tile types needed, can a target shape be uniquely
assembled. For some special classes of shapes such as rectangles and squares, the problem
has been considered in depth under a number of tile-based self-assembly models. More
generally, researchers have considered the complexity of assembling arbitrary shapes [9,11,20].
In particular, Soloveichik and Winfree [20] show that any shape, modulo scaling, can be
self-assembled with a number of tile types close to the Kolmogorov complexity of the target
shape. While intriguing from a theoretical standpoint, this result has an important drawback:
it assembles an arbitrarily large scaled-up version of the target shape, rather than the exact
target shape. It is conceivable that a reasonable scale factor could be tolerated in practice
by simply engineering smaller tiles, but the scale factors needed for the Soloveichik-Winfree
construction are unbounded in general, proportional to the running time of the Kolmogorov
machine that generates the shape, which is at least linear in the size of the target shape in all
cases. This extreme resolution loss motivates the search for a practical model and construction
that can achieve extremely small scale factors while retaining the Kolmogorov-efficient tile
complexity for general shapes.

Our results. We achieve Kolmogorov-efficient tile complexity of general shapes with a
logarithmic bounded scale factor, using the experimentally motivated Staged RNA Assembly
Model (SRAM) introduced in [1]. The SRAM extends the standard tile self-assembly model
by distinguishing all tile types as consisting of either DNA or RNA material. Further, in a
second stage of assembly, an RNase enzyme may be added to the system which dissolves all
RNA tiles, thus potentially breaking assemblies apart and allowing for new assemblies to
form. While this modification to the model is simple and practically motivated (the idea was
first mentioned in [18]), we show that the achievable scale factor for Kolmogorov-efficient
assembly of general shapes drops dramatically: for arbitrary shapes of size n, a scale factor
of O(logn) is achieved, and for a large class of “nice” shapes, the Kolmogorov optimal
tile complexity can be achieved without scaling (scale factor 1). Refer to Figure 1. Note
that the lower bound proof of [20] holds with a simple modification to the program that
simulates self-assembly in the SRAM. Further, we show that arbitrarily large portions of
infinite computable patterns of the plane can be weakly assembled within the SRAM. Such
assembly has been proved impossible in the standard tile assembly model [13], illustrating an
important distinction in the power of SRAM compared to the standard tile assembly model.

In addition to tile complexity and scale factor, we also address the metrics of connectivity
and addressability. Full connectivity denotes whether all adjacent tiles making up the target
shape share positive strength bonds, a desirable property as it creates a stable final assembly.
All of our finite constructions are fully connected, unlike the previous result of [20] which
just connected a spanning tree of the scaled tiles, making for a potentially very floppy
construction. Addressability denotes whether a construction is able to assign arbitrary binary
labels to the tiles that make up the final assembly. Addressability may have important
practical applications for assemblies that are to serve as scaffolding for the fabrication of
nanodevices such as circuits in which specific components must be attached to specific
locations in the assembled shape. Our O(logn)-scale construction provides the flexibility
to encode an arbitrary binary label within the tile types of each scaled-up position in the
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General shape S with n points Tile Types Stages Scale Connectivity
Previous work [20] Θ(K(S)/ log K(S)) 1 unbounded partial
Arbitrary shapes (Thm. 3.2) Θ(K(S)/ log K(S)) 2 O(log n) full
“Nice” shapes (Thm. 4.2) Θ(K(S)/ log K(S)) 2 1 full
Infinite computable pattern S Tile Types Stages Scale Connectivity
Computable patterns (Sec. 4.4) Θ(K(S)/ log K(S)) 2 1 partial
Table 1 Summary of the tile complexities, stage complexities, scale factors, and connectivity of

our RNA staged assembly constructions compared with relevant previous work. The value K(S)
denotes the Kolmogorov complexity of a given shape or pattern S, and n denotes the size of (number
of points in) S.

assembled shape, thus yielding a high degree of addressability, while our 1-scale construction
allows complete addressability. See [10] for a version of this paper that includes color images
and a full technical appendix.

2 Preliminaries

We work in the 2-dimensional discrete space Z2. Let U2 = {(0, 1), (1, 0), (0,−1), (−1, 0)} be
the set of all unit vectors in Z2. We write [X]2 for the set of all 2-element subsets of a set
X. All graphs here are undirected graphs, i.e., ordered pairs G = (V,E), where V is the set
of vertices and E ⊆ [V ]2 is the set of edges. A grid graph is a graph G = (V,E) in which
V ⊆ Z2 and every edge {~a,~b} ∈ E has the property that ~a−~b ∈ U2. The full grid graph on
a set V ⊆ Z2 is the graph G#

V = (V,E) in which E contains every {~a,~b} ∈ [V ]2 such that
~a−~b ∈ U2.

A shape is a set S ⊆ Z2 such that G#
S is connected. In this paper, we consider scaled-up

versions of finite shapes. Formally, if X is a shape and c ∈ N, then a c-scaling of S is defined
as the set Sc =

{
(x, y) ∈ Z2

∣∣ (⌊x
c

⌋
,
⌊
y
c

⌋)
∈ X

}
. Intuitively, Sc is the shape obtained by

replacing each point in S with a c× c block of points. We refer to the natural number c as
the scaling factor or resolution loss. Note that scaled shapes have been studied extensively
in the context of a variety of self-assembly systems [6, 9, 11,20,25].

Fix some universal Turing machine U . The Kolmogorov complexity of a shape S, denoted
by K(S), is the size of the smallest program π that outputs an encoding of a list of all the
points in S. In other words K(S) = min{|π| | U(π) = 〈S〉}. The reader is encouraged to
consult [21] for a more detailed discussion of Kolmogorov complexity.

Here we give a sketch of a variant of Erik Winfree’s abstract Tile Assembly Model
(aTAM) [22,23] known as the two-handed aTAM, which has been studied previously under
various names [2, 4, 8, 9, 15,24]. Please see [12] for a more detailed description of the model
and our notation.

A tile type is a unit square with four sides, each having a glue consisting of a label (a finite
string) and strength (0, 1, or 2). We assume a finite set T of tile types, but an infinite number
of copies of each tile type, each copy referred to as a tile. A supertile (a.k.a., assembly) is
a positioning of tiles on the integer lattice Z2. Two adjacent tiles in a supertile interact if
the glues on their abutting sides are equal. Each supertile induces a binding graph, a grid
graph whose vertices are tiles, with an edge between two tiles if they interact. The supertile
is τ -stable if every cut of its binding graph has strength at least τ , where the weight of an
edge is the strength of the glue it represents. That is, the supertile is stable if at least energy
τ is required to separate the supertile into two parts. A tile assembly system (TAS) is a pair
T = (T, τ), where T is a finite tile set and τ is the temperature, usually 1 or 2. Throughout
this paper τ = 2 (unless explicitly stated otherwise). Given a TAS T = (T, τ), a supertile
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is producible if either it is a single tile from T , or it is the τ -stable result of translating
two producible assemblies. A supertile α is terminal if for every producible supertile β, α
and β cannot be τ -stably attached. A TAS is directed (a.k.a., deterministic, confluent) if
it has only one terminal, producible supertile. Given a connected shape X ⊆ Z2, a TAS T
produces X uniquely if every producible, terminal supertile places tiles only on positions in
X (appropriately translated if necessary).

RNA tiles and RNAse enzyme
In this paper, we assume that each tile type is defined as being composed of either DNA or
RNA. By careful selection of the actual nucleotides used to create the glues, tile types of any
combination of compositions can bind together. The utility of distinguishing RNA-based
tile types comes from that fact that, at prescribed points during the assembly process, the
experimenter can add an RNAse enzyme to the solution which causes all tiles composed
of RNA to dissolve. We assume that, when this occurs, all portions of all RNA tiles are
completely dissolved, including glue portions that may be bound to DNA tiles, returning the
previously bound edges of those DNA tiles to unbound states.

More formally, for a given supertile Γ that is stable at temperature τ , when the RNAse
enzyme is added, all positions in Γ which are occupied by RNA tiles change to the empty
tile. The resultant supertile may not be τ -stable and thus defines a multiset of subsupertiles
consisting of the maximal stable supertiles of Γ at temperature τ , denoted by BREAKτ (Γ).

The plausibility of this model was mentioned by Rothemund and Winfree in [18], and
formalized in SODA 2010 [1] when it was combined with the idea of staged assembly [9].

Staged assembly with RNA removals
Staged assembly consists of a finite sequence of stages, modeling the actions taken by an
experimenter (e.g., bioengineer). A stage assembly system specifies each stage as either a tile
addition stage, in which new tile types are added to the system, or an enzyme stage, in which
assembled supertiles are broken into pieces by deleting all occurrences of RNA tile types. In
both cases, each stage consists of an initial set of preassembled supertiles from the previous
stage, unioned with a new set of tile types in the case of a tile addition stage, or the current
supertile set broken into subsupertiles (which may then be able to bind to each other) in the
case of an enzyme stage. From this initial set, the output of the stage is determined by the
two-handed assembly model, and the stage ends once all supertiles are terminal, meaning
that no further bindings can occur. It is only at this point that the next stage can be initiated.

Complexity Measures of Tile Assembly Systems
In this paper, we are primarily concerned with measuring the “complexity” of a tile assembly
system with respect to the following metrics. Tile Complexity: we say that the tile
complexity (sometimes called the program-size complexity [18]) is the number of unique tile
types of the system. Stage Complexity: we say that the stage complexity is the number of
stages that a particular tile system must progress through in order to produce a terminal
assembly. (We sometimes also mention the BREAK complexity [1], which is simply the
number of BREAK stages.) Scale Factor: we say that a tile system produces a shape S
with scale factor c ∈ N if the system uniquely produces Sc. Connectivity: when a tile
system produces a terminal assembly in which not every adjacent edge interacts with positive
strength, then we say that the system has partial connectivity. On the other hand, a tile
assembly system achieves full connectivity if it only produces terminal assemblies in which
every abutting edge interacts with positive strength. Addressability: addressability (of
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the final assembly of a tile assembly system) concerns the ability of a tile system to address
or mark each tile in the final assembly with a character drawn from Σ = {0, 1}. Note that
addressability concerns the ability of tile systems to label certain (tiles placed at) locations
in their final assembly as “black” or “nonblack.”

3 The Pod Construction

3.1 Partial Connectivity Construction
As a warmup to our main result, we obtain partial connectivity:

I Theorem 3.1. For every finite shape S ⊂ Z2, there exists a staged RNA assembly system TS
that uniquely produces S and moreover, TS has tile complexity O

(
K(S)

logK(S)

)
, stage complexity

2, a scale factor of O(log |S|), and has partial connectivity.

One highlight of Theorem 3.1 is that the stage complexity of TS is 2, i.e., the stages in our
construction consist of the initial tile addition stage followed by a single BREAK stage. This
is the fewest stages possible in any construction that makes use of the power of the RNAse
enzyme. The remainder of this section is devoted to providing a proof sketch of Theorem 3.1.

At a high level, the construction for Theorem 3.1 works by forming a O(log |S|)×O(log |S|)
(roughly) square block to represent each point in S. The correct positioning of blocks is
ensured by encoding binary strings that are unique to each pair of adjacent edges as “teeth”
on the edges of the blocks. The assembly begins with a seed, composed of RNA tile types
representing a Turing machine that outputs S as a list of points. An assembly which simulates
that Turing machine and then outputs definitions for each of the blocks assembles first, with
all tiles being composed of RNA except for those forming the blocks, which are composed of
DNA. We think of these blocks as DNA “pods” growing off of the RNA assembly. A BREAK
operation is then performed which dissolves everything except for the DNA blocks. These
blocks then combine to form the scaled version of S. Details of this construction follow.
Figure 1a shows the basic design of the blocks used in this construction. Figure 1b depicts
the high level structure of this construction.

The seed row consists of a row of tiles that uniquely self-assemble into a binary represen-
tation of the shortest Turing machine M that outputs the definition of a desired shape S
as a list of points, and then halts. Note that we use the optimal encoding scheme of [3, 20],
which implies that the tile complexity of our construction is O

(
K(S)

logK(S)

)
.

Assembly begins with the “unpacking” phase (similar to the main construction of Solove-
ichik and Winfree [20]). Once this simulation completes, the top row of the assembly will
consist of the list of points in the shape. Next, another Turing machine, N (charged with the
task of executing the algorithm defined in Section A.4 of [10]), is simulated by the assembly.

Once N halts, the top row of the assembly will consist of a sequence of binary strings
that represent the binary values to be encoded along the edges of the DNA blocks. It is these
blocks that will come together in a 2-handed fashion to form the final, scaled version of S.
The correct positioning of the blocks is ensured by the patterns of binary teeth as well as the
glues on the corners of the blocks which ensure that only complementary corners of blocks
can bind (e.g., the northeast corner of one block could bind only to the northwest corner
of another). For block edges which correspond to an outer edge of the shape S, instead
of binary teeth a smooth edge with 0-strength glues will be formed. Note that the seed
tiles, Turing machine simulation tiles, and tiles outside of the blocks are all RNA tile types
which will ultimately be dissolved by RNase enzyme in the BREAK stage. Following the
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(a)
Seed:  Binary representation of TM M

Unpacking:  UTM(M)

Labeling:  N(S)

Definition of S, e.g. (0,1),(0,2),(1,1)....

Labeled S, e.g. W,N,E,S;W,N,E,S;... (where W,N,E, and S are the binary numbers for the corresponding sides of a block)

Block formation

(b)

Figure 1 (a) Top: Key showing the shapes assembled for bits on each side of a block. Middle:
Example East side and West side, each representing the bit pattern “1001”. Bottom: Example
block which has the bit pattern “1001” on each side. Note that the white tiles represent the binary
patterns and have null glues on their outer edges while each exposed side of each yellow block has a
single strength 1 glue exposed which is specific to its corner and direction. (b) High level overview
of the main components of the pod construction.

BREAK, the O(log |S|)×O(log |S|) sized blocks representing each of the points in S are free
to self-assemble into the scaled up version of S, thus completing the construction.

3.2 Full Addressability of Points in S

In the aTAM, tile types are allowed to have “labels” which are nonfunctional (not necessarily
unique) strings associated with each tile type. Often, labels are assigned to tile types to make
it easier to logically identify and group them (for instance, the “0” and “1” labels assigned
to the tile types that assemble into a binary counter). In laboratory implementations of
DNA tile types, tile types are often created with the equivalent of such binary labels by the
inclusion or exclusion of a hairpin loop structure which projects upward above the plane of
the tile, for 0 and 1 respectively (a notable example of this technique is due to Papadakis,
Rothemund and Winfree [19]). This is currently done to simplify the imaging process and
therefore the detection of errors that occur in the assembly. However, it is possible that in
the future such projecting labels could be also used to create binding sites for additional
materials, allowing the self-assembling structure to serve as a scaffolding for more complicated
productions. For simplicity, we let the set of available labels be Σ = {0, 1}.

Here we present a construction that facilitates the arbitrary assignment of labels to
subsets of locations in the final assembly. We consider such locations to be “addressable.”
This provides a method for associating labels, in the form of binary strings, with each of the
points in S. These binary strings will be represented by rows of tiles within the blocks, each
labeled with a “0” or “1.”

In the construction for Theorem 3.1, it is trivial to allow the TM M encoded in the seed
to also output a binary string to be used to label each/any point in S. This binary string can
be passed upward through the south sides of the DNA blocks so that they are represented
by the labels of the tile types which form the center of each block (either in particular,
designated rows or in all rows). Of course, doing so requires an appropriate increase in tile
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complexity—the additional complexity of encoding each string that will ultimately be printed
on (e.g., used to address) each supertile in the final assembly.

This labeling method allows bit strings of length at most the width of the center portion
of a DNA block (plus 2 additional tiles) to be specified for each DNA block. Only one such
unique label can be specified for each block, but the row (or rows) in which it appears can be
specified by M . The label can appear in any subset of the rows, or alternatively in columns.
Intuitively, this is done by including a label value, which passes either upward or to the right
as the center of the block assembles. At rows (or columns) that have been specified with
special markers as M output the definition of the block, the label values can be “expressed”
by tile types with the labels corresponding to the bit values.

3.3 Full Connectivity Construction
Recall that for the previous constructions, the only positive strength interaction between
the glues of adjacent blocks occurred at the corners of those blocks. We now strengthen
Theorem 3.1 as follows.

I Theorem 3.2. For every finite shape S ⊂ Z2, there exists a staged RNA assembly system TS
that uniquely produces X and moreover, TS has tile complexity O

(
K(S)

logK(S)

)
, stage complexity

2, a scale factor of O(log |S|), and achieves full connectivity of the terminal assembly.

A proof sketch of Theorem 3.2 follows. In order to generate shapes with full connectivity, the
scheme proposed below requires that the scaling factor be doubled from the construction of
Theorem 3.1 and also that, when the RNase enzyme is added, there are no remaining singleton
tiles (neither DNA nor RNA) in the solution, only the terminally produced assemblies. The
latter requirement is due to the fact that the teeth of the blocks produced have single strength
glues all along their edges to which single tiles of the correct types could attach and prevent
the proper connection of blocks. However, it is easy to remove this assumption by doubling
the system temperature from τ = 2 to τ = 4, and doubling the strength of every glue that is
internal to each DNA block while maintaining single strength glues that are on the outside
of the block. Note that this additional assumption is not needed for the construction for
Theorem 3.1 since with those blocks, there are no locations on the exposed sides to which
singleton tiles could attach, only the correct and fully formed complementary blocks.

South EastWestNorth

Figure 2 Positioning of block edge information.

Figure 2 shows the procedure by
which the values for the edges of a
block are moved into the necessary
positions relative to the edges of the
block to be formed. It also shows how
those values are turned into “casts”
formed of RNA tiles. The high level
idea is that first, before any DNA
tiles can attach to the assembly, RNA
tiles form a “cast” whose shape is the
complement of the teeth of the block.
Once the self-assembly of the portion of the cast for an edge is completed, the assembly of
the DNA teeth for that side is allowed to proceed. The cast is formed as a one-tile-wide path
of tiles whose order of growth is generally clockwise. Once the self-assembly of the entire cast
is completed, the DNA tiles can fully form the block. Every DNA tile has strength-1 glues on
every edge and attaches with its south and west sides as input sides, generally forming the
block from the bottom left to the top right (more details of the cast formation can be found
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in Section A.7 of [10]). Once the blocks form, the remainder of the construction proceeds
similarly to the prior construction.

4 Self-Assembly of Shapes without Scaling

4.1 A Bounded Rectangle Decomposition of an Arbitrary Shape

Figure 3 A shape to be formed (left) and the
possible rectangle decompositions thereof (mid-
dle,right).

Figure 4 One possible decomposition (among
several) of a shape into rectangles.

We will now show how the pod construc-
tion of Section 3 can be modified to reduce
the scale factor from O(log |S|) to 1 for a
large class of finite shapes, while still ob-
taining asymptotically optimal tile complex-
ity (according to the Kolmogorov complex-
ity of the target shape), using just a single
BREAK stage, and maintaining full connec-
tivity of the final assembly. The large class
of shapes will be the set of shapes that have
a “bounded rectangle decomposition”–the
definition of which follows.

The leftmost image in Figure 3 shows an example of a simple target shape to be assembled.
The middle and rightmost images show two different possible rectangle decompositions of
that shape. Instead of having binary teeth along the full edges of each constituent rectangle,
binary teeth need only be present at the locations where rectangles must come together, i.e.,
at the interface between two rectangles. The remainder of the outside edges can be made
smooth, with 0-strength glues. Throughout this section, S denotes an arbitrary finite shape.

A shape R is a rectangle if R = {(x, y) ∈ Z2 | a ≤ x < m + a and b ≤ y < n +
b for some a, b,m, n ∈ N}. In this case, we say that R is a rectangle of width m and
height n positioned at (a, b). We say that R(S) = {Ri}ki=0, for some k ∈ N is a rectangle
decomposition of S if for all 0 ≤ i < k, Ri is a non-empty rectangle,

⋃k−1
i=0 Ri = S and for

all i, j ∈ N such that i 6= j, Ri ∩Rj = ∅. See Figure 3 for examples. Let R = {Ri}k−1
i=0 be

a rectangle decomposition of S and suppose that Ri and Rj are rectangles in R. For each
~u ∈ U2 = {(0, 1), (1, 0), (0,−1), (−1, 0)}, denote as I~u(Ri, Rj) the interface between rectangles
Ri and Rj in direction ~u, i.e., I~u(Ri, Rj) is the set of all points (x, y) ∈ Rj such that
(x, y) = (w, z)+~u for some (w, z) ∈ Ri. It is easy to see that, for any rectangle decomposition
R, I~u(Ri, Rj) is the unique interface in direction ~u between Ri and Rj or I~u(Ri, Rj) = ∅.
For each ~u ∈ U2, the length of an interface I~u(Ri, Rj) is |I(Ri, Rj)|. For each ~u ∈ U2, we
say that the orientation of an interface I~u(Ri, Rj) is horizontal if ~u ∈ {(1, 0), (−1, 0)} and
vertical if ~u ∈ {(0, 1), (0,−1)}. We say that Ri and Rj are adjacent if I~u(Ri, Rj) 6= ∅ for
some ~u ∈ U2.

I Definition 4.1. Let R = {Ri}k−1
i=0 be a rectangle decomposition of S. We say that R is a

bounded rectangle decomposition if: (1) for each l ∈ N,∣∣{ ∣∣I~u(Ri, Rj)
∣∣ = l

∣∣ ~u ∈ U2, i, j ∈ N and Ri, Rj ∈ R
}∣∣ ≤ 2b

l−12
4 c

and (2) for all Ri, Rj ∈ R, if Ri and Rj are adjacent (in some particular direction ~u ∈ U2),
then

∣∣I~u(Ri, Rj)
∣∣ ≥ 16.

Definition 4.1 is motivated by the way we will ultimately construct tile interfaces between
DNA supertiles in our forth-coming construction (discussed in the next subsection): each
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supertile-supertile interface of length l can play host to at most
⌊
l−12

4
⌋
binary “teeth” since

we will use 6 tiles for each corner piece and 4 tiles for the representation of each bit in the
interface. Intuitively, the first condition in Definition 4.1 says that there cannot be “too
many” (i.e., roughly exponentially-many) interfaces of each length in R, whereas the second
condition is merely saying that every non-empty interface must be at least a certain length.
In order to bypass the limitation imposed by the first condition, the shape could simply be
scaled, with a worst possible case being a scale factor of O(log |S|).

4.2 Self-Assembly of Rectangles of Arbitrary Dimension
The construction for Theorem 3.2 can be modified to prove the following result.

I Theorem 4.2. For every finite shape S ⊂ Z2, if S has a bounded rectangle decomposition,
then there exists a staged RNA assembly system TS that uniquely produces S, TS has
tile complexity O

(
K(S)

logK(S)

)
, utilizes 2 stages with a single BREAK step and achieves full

connectivity of the terminal assembly.

4.3 Full Addressability of Every Tile in the Final Assembly
In this section, we sketch a construction utilizing a single BREAK step that assembles
shapes (that can be “nicely” decomposed into rectangles) with no scaling, full connectivity,
and full addressability (in the form of specifying either a 0 or 1 label to appear in every
single tile position of the final assembly). This strengthens Theorem 4.2 with respect to
addressability but with an additional increase in tile complexity of O(K(B)), where B ⊆ S
is the set of points to be addressed, i.e., the set of points in the final assembly at which tiles
labeled with a “1” are placed, as well as requiring an additional constraint on the rectangles
contained within the rectangle decomposition. For this construction, we require that there is
some constant k ∈ Z+ that bounds at least one dimension of every rectangle in every valid
rectangle decomposition. That is, every rectangle, although potentially arbitrarily long (or
wide) in one dimension, must be no longer or wider in the other dimension, than k tiles.

The details of how the rectangular blocks for this construction are formed are depicted in
Figure 5. Our construction can be thought of to proceed in four logical phases: the unpacking
process, self-assembly of the RNA cast, self-assembly of the rectangular supertiles, and
self-assembly of the target shape. The main difference with the previous construction is in the
complexity of the cast and the order of assembly of the tiles forming the rectangular supertiles.
At a high level, this is due to the fact that information about the specific labels, and therefore
tile types–that need to eventually occupy every single position–must be propagated from the
casts into the forming rectangular supertiles. This forces the constraint on one dimension
of each rectangle, and the fact that the construction retains full connectivity forces the
positioning of the glues on the cast that propagate the information to be greatly complicated.
Details of this construction can be found in Section A.8 of [10], and a high level schematic
can be seen in Figure 6.

4.4 Weak Self-Assembly of Computable Patterns
Weak self-assembly is a general notion of self-assembly that applies to the self-assembly of
patterns that are in some sense “painted” on a canvas of tiles that strictly contains S (as
opposed to strict self-assembly, which pertains to the self-assembly of a given target shape
and nothing else). Intuitively, we say that a pattern S ⊆ Z2 weakly self-assembles if there
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Figure 5 Schematic of the self-assembly of a fixed-width, fully addressable rectangle that will
ultimately (after the RNAse enzyme is applied) participate in the self-assembly of a fully connected
and fully addressable unique terminal assembly (see Section A.8 of [10] for more details). The cast
forms as a single path around the entire perimeter, beginning at the bottom left side. Shaded/colored
tiles are DNA tiles while white tiles are RNA. Only colored, non-grey tiles are allowed to assemble
before the entire cast assembles. We depict single strength bonds as little colored (and labeled)
squares along the edges of tiles. Arrows represent double strength bonds between contiguous groups
of tiles through which they pass.

(a) (b) (c)

Figure 6 Each individual supertile is colored so as to correspond to the more detailed Figure 5.
Note that the bottommost supertile attaches via two north-facing interfaces! (a) An example target
shape X and a candidate bounded-rectangle decomposition (b) The corresponding supertiles. For
the sake of example, assume the width of each supertile must not exceed that of the bottommost
supertile (c) The final assembly

is a tile system that places special “black” marker tiles on—and only on—every point that
belongs to the set S.

Our final construction self-assembles an arbitrarily “large” (square) portion of any
computable pattern, with the size of the portion of the pattern determined simply by how
long the self-assembly is allowed to proceed before the BREAK operation is performed. This
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clearly demonstrates the fact that staged self-assembly with DNA removals is strictly more
powerful than the aTAM, in terms of the weak self-assembly of patterns, as it was shown
in [13] that there are (decidable) patterns that cannot weakly self-assembles in the aTAM.

1

2

3

4

5

6

7

8

9

10

Figure 7 The first 10 rectangles weakly self-
assembling an arbitrary computable pattern.

Essentially, this assembly simulates a
Turing machine using RNA tiles and cre-
ates pods for DNA tile rectangles with con-
stant width (or height) and increasingly large
height (or width). Tiles on these pods are
labeled corresponding to the portion of the
pattern which they will occupy. Figure 7
demonstrates the manner in which these rect-
angles will ultimately combine.

The darker grey portions represent the
binary teeth used to connect the rectangles.
Note that these rectangle-rectangle inter-
faces get larger as the rectangles grow out
from the center, but since there remain un-
connected portions of the perimeters of each
rectangle, the final assembly is not fully connected. For infinite patterns, the portion of the
construction that performs the Turing machine computation and outputs the definitions of
the rectangles must be slightly modified so that the rectangles are formed on the left side of
the north-growing simulation, enumerated one after another. This allows for an arbitrarily
large portion of such a pattern to be weakly self-assembled by simply allowing the assembly
to proceed for a “long enough” period of time before performing the BREAK operation.
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Abstract
A nonerasing morphism σ is said to be weakly unambiguous with respect to a word w if σ is
the only nonerasing morphism that can map w to σ(w), i. e., there does not exist any other
nonerasing morphism τ satisfying τ(w) = σ(w). In the present paper, we wish to characterise
those words with respect to which there exists such a morphism. This question is nontrivial if
we consider so-called length-increasing morphisms, which map a word to an image that is strictly
longer than the word. Our main result is a compact characterisation that holds for all morphisms
with ternary or larger target alphabets. We also comprehensively describe those words that have
a weakly unambiguous length-increasing morphism with a unary target alphabet, but we have to
leave the problem open for binary alphabets, where we can merely give some non-characteristic
conditions.
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1 Introduction

For any alphabets A and B, a morphism σ : A∗ → B∗ is said to be ambiguous with respect
to a word s if there exists a second morphism τ : A∗ → B∗ mapping s to the same image
as σ; if such a morphism τ does not exist, then σ is called unambiguous (with respect to
s). For example, if we consider A := {A,B,C}, B := {a, b} and s := ABBC AC, then
the morphism σ, defined by σ(A) := abb, σ(B) := abbb, σ(C) := abbbb, is ambiguous with
respect to s, since there exists a different morphism τ , given by τ(A) := abbab, τ(B) := bbab,
τ(C) := bbb, satisfying τ(s) = σ(s):

σ(A)︷ ︸︸ ︷
a b b

σ(B)︷ ︸︸ ︷
a b b b

σ(B)︷ ︸︸ ︷
a b b b

σ(C)︷ ︸︸ ︷
a b b b b

σ(A)︷ ︸︸ ︷
a b b

σ(C)︷ ︸︸ ︷
a b b b b .︸ ︷︷ ︸

τ(A)
︸ ︷︷ ︸
τ(B)

︸ ︷︷ ︸
τ(B)

︸ ︷︷ ︸
τ(C)

︸ ︷︷ ︸
τ(A)

︸ ︷︷ ︸
τ(C)

In contrast to this, as can be verified with little effort, the morphism σ′ : A∗ → B∗, defined
by σ′(A) := σ′(C) := a and σ′(B) := b, is unambiguous with respect to s.
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The potential ambiguity of morphisms is not only a fundamental phenomenon in combina-
torics on words, but it also shows connections to various concepts in computer science. This
particularly holds for equality sets (and, hence, the Post Correspondence Problem, see Harju
and Karhumäki [5]) and pattern languages (see Mateescu and Salomaa [7]). Regarding the
latter topic, insights into the ambiguity of morphisms have been used to solve a number of
prominent problems (see, e. g., Reidenbach [8, 9, 10]), revealing that unambiguous morphisms,
in a setting where various morphisms are applied to the same word, have the ability to
optimally encode information about the structure of the word. This shows an interesting
contrast to the foundations of coding theory (see Berstel and Perrin [1]), which is based on
injective morphisms.

Since unambiguity can, thus, be seen as a desirable property of morphisms, the initial work
on this topic by Freydenberger, Reidenbach and Schneider [3] and most of the subsequent
papers have focused on the following question:

I Problem 1. Let s be a word over an arbitrary alphabet. Does there exist a morphism
(preferably with a finite target alphabet comprising at least two letters) that is unambiguous
with respect to s?

In order to further qualify this problem, [3] introduces two types of unambiguity: The first
type follows our intuitive definition given above; more precisely, a morphism σ is called
strongly unambiguous with respect to a word s if it there exists no morphism τ satisfying
τ(s) = σ(s) and, for a symbol x occurring in s, τ(x) 6= σ(x). The second type slightly relaxes
this requirement by calling σ weakly unambiguous with respect to s if there is no nonerasing
morphism τ (which means that τ must not map any symbol to the empty word) showing the
above properties. Thus, e. g., our initial example morphism σ is weakly unambiguous with
respect to s′ := AAB, but it is not strongly unambiguous, since the morphism τ , given by
τ(A) := ε and τ(B) := σ(s′) (where ε stands for the empty word), satisfies τ(s′) = σ(s′). By
definition, every strongly unambiguous nonerasing morphism is also weakly unambiguous,
but – as shown by this example – the converse does not necessarily hold.

Apart from some very basic considerations, previous research has focussed on strongly
unambiguous morphisms, partly giving comprehensive results on their existence; positive
results along this line then automatically also hold for weak unambiguity. Freydenberger
et al. [3] characterise those words with respect to which there exist strongly unambiguous
nonerasing morphisms, and their characteristic criterion reveals that the existence of such
morphisms is equivalent to a number of other vital properties of words, such as being a
fixed point of a nontrivial morphism (see, e. g., Hamm and Shallit [4]) or being a shortest
generator of a terminal-free E-pattern language. Freydenberger and Reidenbach [2], among
other results, improve and deepen the techniques used in [3]. Schneider [12] studies the more
general problem of the existence of arbitrary (i. e., possibly erasing) strongly unambiguous
morphisms. While [12] provides a characterisation of those words that have a strongly
unambiguous erasing morphism with an infinite target alphabet, a comprehensive result
on finite target alphabets is still open. It is known, however, that a distinct characteristic
criterion is required for every alphabet size (unlike the restricted problem for strongly
unambiguous nonerasing morphisms, the existence of which can be characterised for all
non-unary alphabets identically), and that each of these criteria is NP-hard. Reidenbach and
Schneider [11] continue this strand of research, demonstrating that the existence of strongly
unambiguous erasing morphisms is closely related to decision problems for multi-pattern
languages, and they show that the same criterion that characterises the existence of such
morphisms for infinite target alphabets also, for all binary or larger alphabets, characterises
the existence of erasing morphisms with a strongly restricted ambiguity.
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In the present paper, we wish to investigate the existence of weakly unambiguous noneras-
ing morphisms; in other words, we initiate the research on the ambiguity of morphisms in free
semigroups without empty word. When considering this problem as indicated above, we can
already refer to a strong yet trivial insight mentioned by Freydenberger et al. [3], stating that
there indeed is a weakly unambiguous morphism with respect to every word. More precisely,
it directly follows from the definitions that every 1-uniform morphism (i. e., a morphism that
maps each variable in the pattern to a word of length 1) is weakly unambiguous with respect
to every word. Despite this immediate and unexciting observation, weak unambiguity deserves
further research, since there are major fields of study that are exclusively based on nonerasing
morphisms; this particularly holds for pattern languages, where so-called nonerasing (or
NE for short) pattern languages have been intensively investigated. We therefore exclude
the 1-uniform morphisms from our considerations and study length-increasing nonerasing
morphisms instead, i. e., we deal with morphisms σ that, for the word s they are applied to,
satisfy |σ(s)| > |s|. Hence, we wish to examine the following problem:

I Problem 2. Let s be a word over an arbitrary alphabet. Does there exist a length-increasing
nonerasing morphism that is weakly unambiguous with respect to s?

Our results in the present paper shall provide a nearly comprehensive answer to this
question, demonstrating that a combinatorially rich theory results from it. In particular, we
show that the existence of weakly unambiguous length-increasing morphisms depends on
the size of the target alphabet considered. However, unlike the above-mentioned result by
Schneider [12] on the existence of strongly unambiguous erasing morphisms, we can give a
compact and efficiently decidable characteristic condition on Problem 2, which holds for all
target alphabets that consist of at least three letters and which describes a type of words we
believe has not been discussed in the literature so far. Interestingly, this characterisation
does not hold for binary target alphabets. In this case, we can give a number of strong
conditions, but still do not even know whether Problem 2 is decidable. In contrast to this
phenomenon, it is of course not surprising that for unary target alphabets again a different
approach is required. Regarding this specification of Problem 2, we shall give a characteristic
condition.

Note that, due to space constraints, almost all proofs and some related definitions and
lemmas are omitted from this paper.

2 Definitions

Let N := {1, 2, 3, ...} and Σ be alphabets. We call any symbol in N a variable and any symbol
in Σ a letter. For the concatenation of two words w1, w2, we write w1 · w2 or simply w1w2.
The word that results from n−fold concatenation of a word w is denoted by wn. The notion
|x| stands for the size of a set x or the length of a word x. We denote the empty word by ε,
i. e., |ε| = 0. The symbol [...] is used to omit some canonically defined parts of a given word,
e. g., α = 1 · 2 · [...] · 5 stands for α = 1 · 2 · 3 · 4 · 5. In order to distinguish between a word
over N and a word over Σ, we call the former a pattern. We name patterns with lower case
letters from the beginning of the Greek alphabet such as α, β, γ. For every alphabet A, A∗
is the set of all (empty and non-empty) words over A, and A+ := A∗ \ {ε}. We call a word
v ∈ A∗ a factor of a word w ∈ A∗ if, for some u1, u2 ∈ A∗, w = u1vu2; moreover, if v is a
factor of w then we say that w contains v and denote this by v v w. If v 6= w, then we say
that v is a proper factor of w and denote this by v < w. If u1 = ε, then v is a prefix of w,
and if u2 = ε, then v is a suffix of w.
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With regard to an arbitrary pattern α, var(α) denotes the set of all variables occurring
in α, and |α|β , β v α, shows the number of (possibly overlapping) occurrences of β in α.

A morphism is a mapping that is compatible with concatenation, i. e., for patterns α ∈ N+

and β ∈ N+, a morphism σ : N+ → Σ∗ satisfies σ(α ·β) = σ(α) ·σ(β). A morphism σ is called
nonerasing provided that, for every i ∈ N, σ(i) 6= ε. The morphism σ is length-increasing if
|σ(α)| > |α|, and it is called 1-uniform if, for every i ∈ N, |σ(i)| = 1.

For any alphabet Σ, for any morphism σ : N+ → Σ+ and for any pattern α ∈ N+,
we call σ weakly unambiguous with respect to α if there is no morphism τ : N+ → Σ+

with τ(α) = σ(α) and, for some q ∈ var(α), τ(q) 6= σ(q). Moreover, for any morphism
σ : N∗ → Σ∗, σ is said to be strongly unambiguous with respect to α, if there is no morphism
τ : N∗ → Σ∗ with τ(α) = σ(α) and, for some q ∈ var(α), τ(q) 6= σ(q). On the other hand, σ
is ambiguous with respect to α, if there is a morphism τ : N+ → Σ+ with τ(α) = σ(α) and,
for some q ∈ var(α), τ(q) 6= σ(q).

We call any pattern α ∈ N+ prolix if and only if, there exists a decomposition
α = β0γ1β1γ2β2[...]βn−1γnβn with n ≥ 1, βk ∈ N∗ and γk ∈ N∗, k ≤ n, such that
1. for every k, 1 ≤ k ≤ n, |γk| ≥ 2,
2. for every k, 1 ≤ k ≤ n and, for every k′, 0 ≤ k′ ≤ n, var(γk) ∩ var(βk′) = ∅,
3. for every k, 1 ≤ k ≤ n, there exists an ik ∈ var(γk) such that |γk|ik = 1 and, for every k′,

1 ≤ k′ ≤ n, if ik ∈ var(γk′) then γk = γk′ .
We call α ∈ N+ succinct if and only if it is not prolix. Thus, for example, the pattern
1 · 2 · 3 · 2 · 4 · 2 · 1 · 5 · 5 · 4 · 2 · 1 · 1 · 2 · 3 · 2 is prolix (with β0 := ε, γ1 := 1 · 2 · 3 · 2,
β1 := ε, γ2 := 4 · 2 · 1, β2 := 5 · 5, γ3 := 4 · 2 · 1, β3 := ε, γ4 := 1 · 2 · 3 · 2, β4 := ε), whereas
1 · 2 · 3 · 3 · 4 · 2 · 4 · 2 · 1 is succinct.

3 Loyal neighbours

Before we begin our examination of Problem 2, we introduce some notions on structural
properties of variables in patterns that shall be used in the subsequent sections.

In our first definition, we introduce a concept that collects the neighbours of a variable in
a pattern.

I Definition 3. Let α ∈ N+. For every j ∈ var(α), we define the following sets:

Lj := {k ∈ var(α) | α = ... · k · j · ...},
Rj := {k ∈ var(α) | α = ... · j · k · ...}.

Also, if α = j... , then ε ∈ Lj , and if α = ...j , then ε ∈ Rj .

Thus, the notation Lj refers to all left neighbours of variable j and Rj to all right neighbours
of j. To illustrate these notions, we give an example.

I Example 4. We consider α := 1 · 2 · 3 · 1 · 4 · 5 · 6 · 1 · 4 · 7 · 8. For the variable 1, we have
L1 = {ε, 3, 6} and R1 = {2, 4}.

We now introduce the concept of loyalty of neighbouring variables, which is vital for the
examination of weakly unambiguous morphisms.

I Definition 5. Let α ∈ N+. A variable i ∈ var(α) has loyal neighbours (in α) if and only if
at least one of the following cases is satisfied:
1. ε /∈ Li and, for every j ∈ Li, Rj = {i}, or
2. ε /∈ Ri and, for every j ∈ Ri, Lj = {i}.
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Using the above definition, we can divide the variables of any pattern into two sets.

I Definition 6. For any pattern α ∈ N+, |α| > 1, let Sα be the set of variables that have
loyal neighbours and Eα be the set of variables that do not have loyal neighbours in α.

The following example clarifies the mentioned definitions.

I Example 7. Let α := 1 · 2 · 3 · 4 · 5 · 6 · 4 · 3 · 7 · 8. Definition 3 implies that

L1 = {ε}, L2 = {1}, L3 = {2, 4}, L4 = {3, 6},
L5 = {4}, L6 = {5}, L7 = {3}, L8 = {7},
R1 = {2}, R2 = {3}, R3 = {4, 7}, R4 = {5, 3},
R5 = {6}, R6 = {7}, R7 = {8}, R8 = {ε}.

According to Definition 5, the variables 3 and 4 do not have loyal neighbours. Thus, due to
Definition 6, Sα = {1, 2, 5, 6, 7, 8} and Eα = {3, 4}.

Freydenberger et al. [3] demonstrate that the partition of the set of all patterns into
succinct and prolix ones is characteristic for the existence of strongly unambiguous nonerasing
morphisms:

I Theorem 8 (Freydenberger et al. [3]). Let α ∈ N∗, let Σ be an alphabet, |Σ| ≥ 2. There
exists a strongly unambiguous nonerasing morphism σ : N∗ → Σ∗ with respect to α if and
only if α is succinct.

Our subsequent remark shows that having a variable with loyal neighbours is a sufficient,
but not a necessary condition for a pattern being prolix.

I Proposition 9. Let α ∈ N+. If Sα 6= ∅, then α is prolix. In general, the converse of this
statement does not hold true.

4 Weakly unambiguous morphisms with |Σ| ≥ 3

We now make use of the concepts introduced in the previous section to comprehensively
solve Problem 2 for all but unary and binary target alphabets of the morphisms.

We start this section by giving some lemmas that are required when proving the main
results of this paper. The first lemma is a general combinatorial insight that can be used in
the proof of Lemma 11 – which, in turn, is a fundamental lemma in this paper.

I Lemma 10. Let v be a word and n a natural number. If, for a word w, wn is a proper
factor of vn, then w is a proper factor of v.

We continue our studies with the following lemma, which is a vital tool for the proof of many
statements of this paper. It features an important property of two different morphisms that
map a pattern to the same image.

I Lemma 11. Let α ∈ N+, |α| > 1. Assume that σ : N+ → Σ+ is a morphism such that,
for an i ∈ var(α), |σ(i)| > 1 and, for every x ∈ var(α) \ {i}, |σ(x)| = 1. Moreover, assume
that τ is a nonerasing morphism satisfying τ(α) = σ(α). If there exists a j ∈ var(α) with
τ(j) 6= σ(j), then τ(i) < σ(i).

The next lemma, which directly results from Definition 5, discusses those patterns having at
least one square; more precisely, there exists an i ∈ N with i2 < α.
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I Lemma 12. Let α ∈ N+. If, for an i ∈ N, i2 v α, then i ∈ Eα.

The subsequent characterisation of those patterns that have a weakly unambiguous length-
increasing morphism with ternary or larger target alphabets is the main result of this paper.
It yields a novel partition of the set of all patterns over any sub-alphabet of N. This partition
is different from the partition into prolix and succinct patterns, which characterises the
existence of strongly unambiguous nonerasing morphisms (see Theorem 8).

I Theorem 13. Let α ∈ N+ with |α| > 1 and let |Σ| ≥ 3. There is a weakly unambiguous
length-increasing morphism σ : N+ → Σ+ with respect to α if and only if Eα is not empty.

Proof. Let {a, b, c} ⊆ Σ.
We begin with the if direction. Assume that Eα is not empty. This means that there is
at least one variable i ∈ var(α) that does not have loyal neighbours, i. e., i ∈ Eα. Due to
Definition 5 and Lemma 12, one of the following cases is satisfied:

Case 1: i2 v α.
We define a morphism σ by σ(x) := bc if x = i and σ(x) := a if x 6= i. So, σ(i2) = bcbc.
According to Lemma 11, any nonerasing morphism τ : N+ → Σ+ with τ(α) = σ(α) and, for
some k ∈ var(α), τ(k) 6= σ(k), must satisfy τ(i) 6= σ(i), and this means that τ(i) should be
a proper factor of σ(i). This implies that τ(i) = b or τ(i) = c and as a result, τ(i2) = bb

or τ(i2) = cc. Since σ(α) does not contain the factors bb and cc, we can conclude that
τ(α) 6= σ(α) and consequently, σ is weakly unambiguous with respect to α.

Case 2: i2 6v α, and one of the following cases is satisfied:
Case 2.1: If ε /∈ Li, then there exists a j ∈ Li such that Rj 6= {i}, and if ε /∈ Ri, then there
exits a j′ ∈ Ri such that Lj′ 6= {i}.
Case 2.2: ε ∈ Li and ε ∈ Ri.
Let σ : N+ → {a, b, c}+ be the morphism defined in Case 1. Due to Lemma 11, any
morphism τ : N+ → Σ+ with τ(α) = σ(α) and, for some k ∈ var(α), τ(k) 6= σ(k), must
satisfy τ(i) 6= σ(i), and this means that τ(i) should be a proper factor of σ(i). Thus, τ(i) = b

or τ(i) = c.
With regard to Case 2.1, consider τ(i) = c, and ε /∈ Li. Due to the number of c in σ(α),
which equals the number of occurrences of i in α, and also due to σ(i) = bc, the positions of
c of τ(i) should be at the same positions as c of σ(i) in σ(α). So, to have τ(α) = σ(α), for
every l ∈ Li, b is a suffix of τ(l), and as a result b is suffix of τ(j). However, since Rj 6= {i},
the number of occurrences of b in τ(α) is greater than the number of occurrences of b in
σ(α). Hence, τ(α) 6= σ(α). Consider τ(i) = b, and ε /∈ Ri. Due to the number of b in σ(α),
which equals the number of occurrences of i in α, and also due to σ(i) = bc, the positions of
b of τ(i) should be at the same positions as b of σ(i) in σ(α). Hence, to have τ(α) = σ(α),
for every r ∈ Ri, c is a prefix of τ(r), and consequently, c is prefix of τ(j′). However, since
Lj′ 6= {i}, the number of occurrences of c in τ(α) is greater than the number of occurrences
of c in σ(α). This again implies τ(α) 6= σ(α).
Case 2.2 means that α = iα′i, α′ ∈ N∗. So, σ(α) = bcσ(α′)bc. As mentioned above, due to
Lemma 11, τ(i) = b or τ(i) = c. This implies that τ(α) starts with b and finishes with b,
or it starts with c and finishes with c. Thus, τ(α) 6= σ(α). Hence, we can conclude that if
Eα 6= ∅, then there is a weakly unambiguous length-increasing morphism with respect to α.

We now prove the only if direction. In fact, we want to show that if there is a weakly
unambiguous length-increasing morphism σ : N+ → Σ+ with respect to α, then Eα is not
empty. Assume that σ maps one of the variables of α to a word of length more than 1, and let
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this variable be i. Also, let σ(i) := a1a2[...]an with n ≥ 2 and, for every q, 1 ≤ q ≤ n, aq ∈ Σ.
Assume to the contrary that Eα is empty. Thus, due to Lemma 12, i2 6v α. According to
Definition 5, one of the following cases is satisfied:

Case 1: ε /∈ Li and, for every j ∈ Li, Rj = {i}.
From this condition, we can directly conclude that

α := α1 · l1 · i · α2 · l2 · i · [...] · αm · lm · i · αm+1,

with |α|i = m and, for every k, 1 ≤ k ≤ m and, for every k′, 1 ≤ k′ ≤ m + 1, lk ∈ Li,
αk′ ∈ N∗, i 6= lk and, i, lk /∈ var(αk′). Thus,

σ(α) = σ(α1)σ(l1) a1a2[...]an · σ(α2)σ(l2)a1a2[...]an
·[...] · σ(αm)σ(lm) a1a2[...]an · σ(αm+1)

We now define the nonerasing morphism τ such that, for every k, 1 ≤ k ≤ m, τ(lk) := σ(lk)a1,
τ(i) := a2a3[...]an and, for all other variables in α, τ is identical to σ. Due to the fact that,
for every k, 1 ≤ k ≤ m, Rlk = {i}, we can conclude that τ(α) = σ(α); since τ is nonerasing,
σ is not weakly unambiguous.

Case 2: ε /∈ Ri and, for every j ∈ Ri, Lj = {i}.
We can directly conclude that α := α1 · i · r1 ·α2 · i · r2 · [...] ·αm · i · rm ·αm+1, with |α|i = m

and, for every k, 1 ≤ k ≤ m and, for every k′, 1 ≤ k′ ≤ m + 1, rk ∈ Ri, αk′ ∈ N∗, i 6= rk,
and i, rk /∈ var(αk′). So,

σ(α) = σ(α1)a1a2[...]anσ(r1) · σ(α2)a1a2[...]anσ(r2)
·[...] · σ(αm)a1a2[...]anσ(rm·)σ(αm+1)

We now define the nonerasing morphism τ such that, for every k, 1 ≤ k ≤ m, τ(rk) := anσ(rk)
and τ(i) := a1a2[...]an−1 and, for all other variables in α, τ is identical to σ. As, for every
k, 1 ≤ k ≤ m, Lrk

= {i}, we can conclude that τ(α) = σ(α); since τ is nonerasing, σ is
not weakly unambiguous. Hence, Eα = ∅ implies that σ is not weakly unambiguous, which
contradicts the assumption. Consequently, Eα is not empty. J

In order to illustrate Theorem 13, we give two examples:

I Example 14. Let α := 1 · 2 · 3 · 4 · 1 · 2 · 3. According to Definition 6, Sα = {1, 2, 3}
and Eα = {4}. In other words, the variable 4 does not have loyal neighbours. We define
a morphism σ by σ(4) := bc and, for every other variable j ∈ var(α), σ(j) := a. Due to
Lemma 11, any morphism τ with τ(α) = σ(α) and, for a k ∈ var(α), τ(k) 6= σ(k) needs to
split the factor bc. Hence, τ(1) needs to contain c, or τ(3) needs to contain b. However, since
|α|1 = 2 and |α|3 = 2 , |τ(α)|c > |σ(α)|c, or |τ(α)|b > |σ(α)|b. Consequently, τ(α) 6= σ(α)
and as a result, σ is weakly unambiguous with respect to α.

I Example 15. Let α := 1 · 2 · 3 · 4 · 5 · 6 · 4 · 7 · 8 · 3. According to Definition 5, all variables
have loyal neighbours, or in other words, Eα = ∅. Hence, it follows from Theorem 13 that
there is no weakly unambiguous length-increasing morphism σ : N+ → Σ+, |Σ| ≥ 3, with
respect to α.

We now give an alternative version of Theorem 13 that is based on regular expressions.

I Corollary 16. Let α ∈ N+ and let Σ be an alphabet, |Σ| ≥ 3. There is no weakly
unambiguous length-increasing morphism σ : N+ → Σ+ with respect to α if and only if, for
every i ∈ var(α), at least one of the following statements is satisfied:
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there exists a partition L,N, {i} of var(α) such that α ∈ (N∗Li)+N∗,
there exists a partition R,N, {i} of var(α) such that α ∈ (N∗iR)+N∗.

We conclude this section by determining the complexity of the decision problem resulting
from Theorem 13.

I Theorem 17. Let α ∈ N+ with |α| > 1, and let |Σ| ≥ 3. The problem of whether there is a
weakly unambiguous length-increasing morphism σ : N+ → Σ+ with respect to α is decidable
in polynomial time.

Hence, the complexity of Problem 2 is comparable to that of the equivalent problem for
strongly unambiguous nonerasing morphisms (this is a consequence of the characterisation
by Freydenberger et al. [3] and the complexity consideration by Holub [6]). In contrast to
this, when we ask for the existence of strongly unambiguous erasing morphisms, the problem
is NP-hard (according to Schneider [12]).

5 Weakly unambiguous morphisms with |Σ| = 2

As we shall demonstrate below, our characterisation in Theorem 13 does not hold for binary
target alphabets Σ (see Corollary 24). Hence, we have to study this case separately. The
most significant result of our considerations is a necessary condition on the structure of
those patterns α that satisfy Eα 6= ∅, but nevertheless do not have a weakly unambiguous
morphism σ : N+ → Σ+, |Σ| = 2.

Despite being restricted to ternary or larger alphabets, Theorem 13 and its proof have
two important implications that also hold for unary and binary alphabets. The first of them
shows that Eα being empty for any given pattern α is a sufficient condition for α not having
any weakly unambiguous length-increasing morphism:

I Corollary 18. Let α ∈ N+, and let Σ be any alphabet. If Eα = ∅, then there is no weakly
unambiguous length-increasing morphism σ : N+ → Σ+ with respect to α. In general, the
converse of this statement does not hold true.

Hence, if we wish to characterise those patterns with respect to which there is a weakly
unambiguous morphism σ : N+ → Σ+, |Σ| ≤ 2, then we can safely restrict our considerations
to those patterns α where Eα is a nonempty set.

The second implication of Theorem 13 demonstrates that any length-increasing morphism
that is weakly unambiguous with respect to a pattern α must have a particular, and very
simple, shape for all variables in Sα:

I Corollary 19. Let α ∈ N+, let Σ be any alphabet, and let σ : N+ → Σ+ be a length-
increasing morphism that is weakly unambiguous with respect to α. Then, for every i ∈ Sα,
|σ(i)| = 1.

Thus, any weakly unambiguous length-increasing morphism with respect to a pattern α must
not be length-increasing for the variables in Sα. This insight is very useful when searching
for morphisms that might be weakly unambiguous with respect to a given pattern.

As shown by Corollary 18, if Eα is empty, then there is no weakly unambiguous length-
increasing morphism σ : N+ → Σ+ with respect to α. In the next step, we give a strong
necessary condition on the structure of those patterns α that satisfy Eα 6= ∅, but nevertheless
do not have a weakly unambiguous morphism σ : N+ → Σ+, |Σ| = 2.
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I Theorem 20. Let α ∈ N+ such that Eα is nonempty. Let Σ be an alphabet, |Σ| = 2. If
there is no weakly unambiguous length-increasing morphism σ : N+ → Σ+ with respect to α,
then for every e ∈ Eα there exists an e′ ∈ Eα, e′ 6= e, such that e · e′ and e′ · e are factors of
α.

Theorem 20 (when compared to Theorem 13) provides deep insights into the difference
between binary and ternary target alphabets if the weak unambiguity of morphisms is
studied. In addition to this, it implies that whenever, for a given pattern α ∈ N+ with
Eα 6= ∅, there exists an e ∈ Eα such that, for every e′ ∈ Eα with e′ 6= e, the factors e · e′
or e′ · e do not occur in α, then there is a weakly unambiguous length-increasing morphism
σ : N+ → Σ+, Σ = {a, b}, with respect to α. It must be noted, though, that Theorem 20
does not describe a sufficient condition for the non-existence of weakly unambiguous length-
increasing morphisms in case of |Σ| = 2; this is easily demonstrated by the pattern 1 · 2 · 1
and further illustrated by Example 26.

As can be concluded from Example 7 and Theorem 13, there is a weakly unambiguous
length-increasing morphism σ : N+ → Σ+, |Σ| ≥ 3, with respect to α = 1·2·3 · 4·5·6·4 · 3·7·8.
We can define σ by σ(3) := bc and, for every j 6= 3, σ(j) := a. In contrast to this, the next
theorem implies that there is no weakly unambiguous morphism with respect to α if |Σ| = 2.
In order to substantiate this theorem, we need the following lemma.

I Lemma 21. Let Σ be an alphabet with |Σ| = 2, and let σ : N+ → Σ+ be a morphism.
For all x1, x2 ∈ N, there exist a1 v σ(x1) and a2 v σ(x2) such that a1a2 v σ(x1 · x2) and
a2a1 v σ(x2 · x1).

The next result introduces a sufficient condition on the non-existence of weakly unam-
biguous length-increasing morphisms σ : N+ → Σ+, |Σ| = 2. According to Theorem 20, it is
necessary for the non-existence of such morphisms, with respect to a given pattern α ∈ N+

that, for every e ∈ Eα, there exists an e′ ∈ Eα, e′ 6= e, such that e · e′ and e′ · e are factors of
α. Hence, this requirement must be satisfied in the following theorem.

I Theorem 22. Let α ∈ N+ satisfying Eα 6= ∅. Let Σ be an alphabet with |Σ| = 2. There is
no weakly unambiguous length-increasing morphism σ : N+ → Σ+ with respect to α if
1. for every e ∈ Eα, e2 6v α, and there is exactly one e′ ∈ Eα \ {e} such that e′ ∈ Le or

e′ ∈ Re, e′ ·e ·e′ 6v α, and there are s1, s2, s3, s4 ∈ Sα such that s1 ·e ·e′ ·s2 and s3 ·e′ ·e ·s4
are factors of α,

2. for every e ∈ Eα, ε /∈ Re and ε /∈ Le,
3. for any s, s′ ∈ Sα and e, e′ ∈ Eα, if (s · e · e′ · s′) < α, then, for all occurrences of s and s′

in α, the right neighbour of s is the factor e · e′ and the left neighbour of s′ is the factor
e · e′, and

4. for any s, s′ ∈ Sα and e ∈ Eα, if (s · e · s′) < α, then Rs = {e} and Ls′ = {e}.

In order to illustrate Theorem 22, we consider a few examples:

I Example 23. Let,

α := 1 · 2 · 3 · 4 · 5 · 6 · 4 · 3 · 7 · 8 · 3 · 9 · 10,
β := 1 · 2 · 4 · 5 · 6 · 3 · 4 · 7 · 8 · 3 · 9 · 10 · 4 · 3 · 11 · 12,
γ := 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 4 · 3 · 11 · 12 · 8 · 7 · 13 · 14.

Then, according to Definition 6, Eα, Eβ and Eγ are nonempty (the respective variables are
typeset in bold face). However, since the patterns satisfy Theorem 22, there is no weakly
unambiguous morphism σ : N+ → Σ+ with respect to them if |Σ| = 2.
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Theorem 22 and Example 23 directly imply the insight mentioned above that Theorem 13
does not hold for binary alphabets Σ:

I Corollary 24. Let Σ be an alphabet with |Σ| = 2. There is an α ∈ N+ such that Eα is not
empty and there is no weakly unambiguous length-increasing morphism σ : N+ → Σ+ with
respect to α.

In contrast to the previous theorems, the following result features a sufficient condition
on the existence of weakly unambiguous length-increasing morphisms σ : N+ → Σ+, |Σ| = 2,
with respect to a given pattern. This phenomenon partly depends on the question of whether
we can avoid short squares in the morphic image.

I Theorem 25. Let α ∈ N+, and let Σ be an alphabet, |Σ| = 2. Also, assume that
i · e · e′ < α and i · e′ · e < α, or
e · e′ · i < α and e′ · e · i < α,

with e, e′ ∈ Eα and i ∈ var(α). If a morphism σ : N+ → Σ+ satisfies
|σ(e)| = 2 and |σ(e′)| = 2,
for every j ∈ var(α) \ {e, e′}, |σ(j)| = 1, and
there is no x ∈ Σ with x2 v σ(α),

then σ is weakly unambiguous with respect to α.

The main difference between Theorem 25 and Theorem 22 is that those patterns α being
examined in Theorem 25 do not satisfy Condition 3 of Theorem 22. Thus, the two theorems
demonstrate what subtleties in the structure of a pattern can determine whether or not it
has a weakly unambiguous morphism with a binary target alphabet.

In order to illustrate Theorem 25, we now give some examples. In contrast to Example 23,
the factors 3 · 4 and 4 · 3 of the patterns in the following example have an identical right
neighbour or an identical left neighbour.

I Example 26. Let σ : N+ → {a, b}+ be a morphism. We define the morphism σ for the
following patterns α (where the factors featured by Theorem 25 are typeset in bold face) as
follows:

α = 1 · 2 · 5 · 3 · 4 · 6 · 7 · 8 · 5 · 4 · 3 · 9 · 10.
σ is defined by σ(1) := a, σ(2) := b, σ(5) := a, σ(3) := ba, σ(4) := ba, σ(6) := b,
σ(7) := a, σ(8) := b, σ(9) := b and σ(10) := a.
α = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 4 · 3 · 5 · 8 · 9.
σ is defined by σ(1) := a, σ(2) := b, σ(3) := ab, σ(4) := ab, σ(5) := b, σ(6) := a, σ(7) := b,
σ(8) := b and σ(9) := a.
α = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 3 · 4 · 9 · 10 · 11 · 8 · 4 · 3 · 12 · 13.
σ is defined by σ(1) := b, σ(2) := a, σ(3) := ba, σ(4) := ba, σ(5) := b, σ(6) := a, σ(7) := b,
σ(8) := a, σ(9) := b, σ(10) := a, σ(11) := b, σ(12) := b and σ(13) := a.

With reference to Theorem 25, it can be easily verified that, in all above cases, σ is length-
increasing and weakly unambiguous with respect to α.

The patterns in Example 26 further illustrate that the converse of Theorem 20 does not
hold true. More precisely, although for every pattern α in this example, for every e ∈ Eα
there exists an e′ ∈ Eα, e′ 6= e, such that e · e′ and e′ · e are factors of α, there is a weakly
unambiguous length-increasing morphism σ : N+ → {a, b}+ with respect to α.

Due to Theorems 22 and 25, we expect that it is an extremely challenging task to find an
equivalent to the characterisation in Theorem 13 for the binary case. From our understanding
of the matter, we can therefore merely give the following conjecture on the decidability of
Problem 2 for binary target alphabets.
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I Conjecture 27. Let α ∈ N+ with |α| > 1, and let |Σ| := 2. The problem of whether there
is a weakly unambiguous length-increasing morphism σ : N+ → Σ+ with respect to α is
decidable by testing a finite number of morphisms.

The above conjecture is based on the fact that according to the Corollary 19, any weakly
unambiguous length-increasing morphism with respect to a pattern α must not be length-
increasing for the variables in Sα. On the other hand, increasing the length of the morphic
images of the variables in Eα under a morphism σ : N+ → Σ+, |Σ| = 2, seems to increase
the chance of the existence of a morphism τ : N+ → Σ+ satisfying τ(α) = σ(α) and, for
some i ∈ var(α), τ(i) 6= σ(i). Consequently, we believe that if all morphisms σ with, for
every e ∈ Eα and an x ∈ N, |σ(e)| ≤ x are not weakly unambiguous with respect to α, then
there does not exist a weakly unambiguous morphism σ with |σ(e)| > x for some e ∈ Eα,
either. For all patterns, we expect a value of x = 2 to be a sufficiently large bound for the
morphisms to be tested.

6 Weakly unambiguous morphisms with |Σ| = 1

It is not surprising that most of our considerations in the previous sections are not applicable
to morphisms with a unary target alphabet. On the other hand, Corollary 18 and Corollary 19
also hold for this special case, i. e., for any pattern α, every weakly unambiguous morphism
must map the variables in Sα to words of length 1, which implies that such a morphism
can only be length-increasing if Eα is not empty. Incorporating these observations, we now
consider an example.

I Example 28. Let α1 := 1 ·2 ·3 ·4 ·1 ·2 ·3. Consequently, Eα1 = {4}. We define a morphism
σ : N+ → {a}+ by σ(4) := aa and σ(i) := a, i ∈ N \ {4}. It can be easily verified that σ
is weakly unambiguous with respect to α1. Now let α2 := 1 · 2 · 3 · 4 · 1 · 2 · 3 · 5 · 6. As a
result, Eα2 = {4}. If we now consider the morphism τ , given by τ(4) := a, τ(5) := aa and
τ(i) := σ(i), i ∈ N \ {4, 5}, then we may conclude τ(α2) = σ(α2). Thus, σ is not weakly
unambiguous with respect to α2.

Quite obviously, the fact that σ is unambiguous with respect to α1 and ambiguous with
respect to α2 is due to 4 being the only variable in α1 that has a single occurrence, whereas
α2 also has single occurrences of the variables 5 and 6. This aspect is reflected by the
following characterisation that completely solves Problem 2 for morphisms with unary target
alphabets.

I Theorem 29. Let α ∈ N+, var(α) = {1, 2, 3, ..., n}. There is no weakly unambiguous
length-increasing morphism σ : N+ → {a}+ with respect to α if and only if, for every
i ∈ var(α), there exist n1, n2, ..., nn ∈ N ∪ {0}, such that

|α|i = n1|α|1 + n2|α|2 + [...] + ni−1|α|i−1 + ni+1|α|i+1 + [...] + nn|α|n.

Hence, we are able to provide a result on unary alphabets that is as strong as our result in
Theorem 13 on ternary and larger alphabets. However, while Theorem 13 needs to consider
the order of variables in the patterns, it is evident that Theorem 29 can exclusively refer to
their number of occurrences.

7 Conclusion

In this paper, we have demonstrated that there is a weakly unambiguous length-increasing
morphism σ : N+ → Σ+, |Σ| ≥ 3, with respect to α ∈ N+ if and only if Eα is not empty, where
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Eα ⊆ var(α) consists of those variables that have special, namely illoyal neighbour variables.
We have demonstrated that this condition is not characteristic, but only necessary for the case
|Σ| = 2, which leads to an interesting difference between binary and all other target alphabets
Σ. We have not been able to characterise the existence of weakly unambiguous length-
increasing morphisms with binary target alphabets, but we have found strong conditions
that are either sufficient or necessary. Finally, for |Σ| = 1, we have been able to demonstrate
that the existence of weakly unambiguous length-increasing morphisms σ : N+ → Σ+ solely
depends on particular equations that the numbers of occurrences of the variables in the
corresponding pattern need to satisfy.
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Abstract
Partial words, which are sequences that may have some undefined positions called holes, can be
viewed as sequences over an extended alphabet A� = A ∪ {�}, where � stands for a hole and
matches (or is compatible with) every letter in A. The subword complexity of a partial word w,
denoted by pw(n), is the number of distinct full words (those without holes) over the alphabet
that are compatible with factors of length n of w. A function f : N → N is (k, h)-feasible if for
each integer N ≥ 1, there exists a k-ary partial word w with h holes such that pw(n) = f(n)
for all n, 1 ≤ n ≤ N . We show that when dealing with feasibility in the context of finite binary
partial words, the only linear functions that need investigation are f(n) = n + 1 and f(n) = 2n.
It turns out that both are (2, h)-feasible for all non-negative integers h. We classify all minimal
partial words with h holes of order N with respect to f(n) = n + 1, called Sturmian, computing
their lengths as well as their numbers, except when h = 0 in which case we describe an algorithm
that generates all minimal Sturmian full words. We show that up to reversal and complement,
any minimal Sturmian partial word with one hole is of the form ai�ajbal, where i, j, l are integers
satisfying some restrictions, that all minimal Sturmian partial words with two holes are one-
periodic, and that up to complement, �(aN−1�)h−1 is the only minimal Sturmian partial word
with h ≥ 3 holes. Finally, we give upper bounds on the lengths of minimal partial words with
respect to f(n) = 2n, which are tight for h = 0, 1 or 2.
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book [3] provides a good overview for subword complexity of finite and infinite words. Our
focus in this paper is on finite words.

Motivated by molecular biology of nucleic acids, Berstel and Boasson introduced partial
words which are finite sequences that may have some undefined positions called holes (a
(full) word is just a partial word without holes) [5]. Partial words can be viewed as sequences
over an extended alphabet A� = A ∪ {�}, where � 6∈ A stands for a hole. Here � matches
(or is compatible with) every letter in the alphabet. In this context, pw(n) is the number
of distinct full words over the alphabet that are compatible with factors of length n of the
partial word w (if A = {a, b} and w = a�abaa, then pw(3) = 5 since aaa, aab, aba, baa and
bab match factors of length 3 of w). Manea and Tiseanu showed that computing the subword
complexity of partial words is a “hard” problem [12].

In this paper, we investigate minimal partial words with given subword complexity. This
was done for a particular case of full words in [16]. There, it was shown that the minimal
length of a word w such that pw(n) = Fn+2 for all n, 1 ≤ n ≤ N is FN + FN+2, where
(Fn)n≥1 is the Fibonacci sequence and N is a positive integer, and an algorithm was given
for generating such minimal words for each N ≥ 1.

A function f : N → N is called (k, h)-feasible if for each integer N ≥ 1, there exists a
k-ary partial word w with h holes such that pw(n) = f(n) for all n, 1 ≤ n ≤ N . In this case,
w is an f -complex k-ary partial word with h holes of order N . Note that this is equivalent
to saying there exists an integer N0 such that for each N ≥ N0, there exists a k-ary partial
word w with h holes such that pw(n) = f(n) for all n, 1 ≤ n ≤ N . If f is a feasible function,
it is immediate that f is non-decreasing and let us denote the length of a shortest f -complex
k-ary partial word w with h holes of order N (called minimal) by Lk(f, N, h). Similarly,
denote the number of such minimal partial words by Nk(f, N, h).

First, let us consider functions of the form f(n) = kn, where k is the alphabet size. When
we restrict our attention to the case of h = 0, a k-ary de Bruijn sequence of order N is
a full word over a k-letter alphabet A where each of the kn full words of length n over A

appears as a factor exactly once. It is well known that Lk(kn, N, 0) = kn + n− 1. Moreover,
Nk(kn, N, 0) = k!k

n−1
, and these sequences can be efficiently generated by constructing

Eulerian cycles in corresponding de Bruijn directed graphs. The technical report of de Bruijn
provides a history on the existence of these sequences [8]. De Bruijn graphs find applications,
in particular, in genome rearrangements [1], etc.

In [7], the case of h > 0 was initiated. For positive integers N, h and k, Blanchet-Sadri
et al. introduced the concept of a de Bruijn partial word of order N with h holes over
an alphabet A of size k, as being a partial word w with h holes over A of minimal length
with the property that pw(n) = kn. There, the authors gave lower and upper bounds on
Lk(kn, N, h), and showed that their bounds are tight when h = 1 and k ∈ {2, 3}. They
provided an algorithm to construct 2-ary de Bruijn partial words with one hole of order N .
Finally, they showed how to compute N2(2n, N, 1) by adapting the so called BEST theorem
that counts the number of Eulerian cycles in directed graphs [15].

Now, let us look at constant functions over the binary alphabet {a, b}. Note that f ≡ 1
is (2, 0)-feasible, and that aN and bN are the only minimal f -complex full words of order N

(so that L2(1, N, 0) = N and N2(1, N, 0) = 2). Furthermore, f ≡ 1 is not (2, h)-feasible for
any h ≥ 1, as any � in a partial word w implies that 2 = pw(1) = f(1). Note also that f ≡ 2
is (2, 0)- and (2, 1)-feasible, but not (2, h)-feasible for h ≥ 2. To see this, words of the form
abN and �aN−1 show that f is (2, 0)- and (2, 1)-feasible respectively. Furthermore, these
words are minimal and unique up to reverse and complement. Thus, L2(2, N, 0) = N + 1,
L2(2, N, 1) = N , and N2(2, N, 0) = N2(2, N, 1) = 4. Now suppose that a word w has at least
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two holes. If w has two consecutive holes, note that pw(2) = 4. If the holes are spread out,
e.g. both �c and d� are factors of w for some letters c, d ∈ {a, b}, then pw(2) ≥ 3.

In this paper, let us investigate linear functions for binary partial words. It is obvious
that if f(1) = 1, then f ≡ 1. Thus, when characterizing linear functions f , we only need to
look at the case when f(1) = 2, that is, f(n) = pn + q for integers p, q such that p + q = 2
and p > 0. Note that if p > 2, then f(2) > 4. Thus, the only linear options are f(n) = n + 1
or f(n) = 2n. The contents of our paper is as follows: In Section 2, we review some basics on
partial words. We also give a bound on the subword complexity of any binary partial word
with h holes. In Section 3, we show that the linear function f(n) = n + 1 is (2, h)-feasible
for all non-negative integers h, and we consider (n + 1)-complex partial words referred to as
Sturmian. We classify all minimal Sturmian partial words with h holes of order N , computing
the exact length L2(n + 1, N, h) as well as the exact number N2(n + 1, N, h), except for
N2(n + 1, N, 0). Instead of computing the latter, we describe an algorithm that generates
all Sturmian full words of order N . We show that any minimal Sturmian partial word with
one hole is of the form ai�ajbal (up to reversal and complement), where i, j, l are integers
satisfying some restrictions, that all minimal Sturmian partial words with two holes are
one-periodic, and that up to complement, �(aN−1�)h−1 is the only minimal Sturmian partial
word with h ≥ 3 holes. Finally in Section 4, we prove that the linear function f(n) = 2n

is also (2, h)-feasible for all non-negative integers h, and we conclude with some results on
2n-complex partial words.

2 Preliminaries

We recall some basic terminology and notation on partial words that are useful throughout
the paper. For more background, we refer the reader to [6].

Let A be a nonempty finite set of symbols called an alphabet. Each element a ∈ A is
called a letter. A partial word over A is a finite sequence of symbols from the alphabet
enlarged with the hole symbol, A� = A ∪ {�}, where a (full) word is a partial word which
does not contain any �’s. The length of a partial word u is denoted by |u| and represents the
number of symbols in u. The empty word has length zero and is denoted by ε. If S is a set
of partial words, ‖S‖ denotes its cardinality.

We denote by u(i) the symbol at position i of the partial word u, the labelling of the
positions starting at 0. Position i in u is in the domain of u, denoted by D(u), if u(i) ∈ A.
Otherwise if u(i) = �, position i belongs to the set of holes of u. A positive integer p is called
a period of a partial word u if u(i) = u(j) whenever i, j ∈ D(u) and i ≡ j mod p. In such a
case, we call u p-periodic. The powers of u are defined recursively by u0 = ε and for n ≥ 1,
un = uun−1.

A completion of a partial word w over A is a full word ŵ constructed by filling in the
holes of w with letters from A. If u and v are two partial words of equal length, then u and
v are compatible, denoted by u ↑ v, if u(i) = v(i) whenever i ∈ D(u) ∩D(v), that is there
exist completions û, v̂ such that û = v̂.

A partial word u is a factor of a partial word v if there exist partial words x, y such that
v = xuy. We adopt the notation v[i..j) to denote the factor v(i) · · · v(j − 1) of v. Here u is a
prefix of v if x = ε and a suffix of v if y = ε. A full word u is a subword of a partial word w

if u ↑ v for some factor v of w. Informally, u is a subword of w if there is some completion ŵ

such that u is a factor of ŵ. Note that subwords in this paper are always full. We let Subw(n)
denote the set of all subwords of w of length n, and we let Sub(w) =

⋃
0≤n≤|w| Subw(n), the

set of all subwords of w. Note that if ŵ is a completion of w, then pŵ(n) ≤ pw(n), since
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Subŵ(n) ⊂ Subw(n).
We end this section by giving a bound on the subword complexity of any binary partial

word w. Let n ≤ |w| be a positive integer. A factor u of length n of w is repeated, if there
exist integers i 6= j such that u = w[i..i + n) = w[j..j + n). Similarly, a subword u of length
n of w is repeated, if there exist integers i 6= j such that u ↑ w[i..i + n) and u ↑ w[j..j + n).
Note that repeated factors imply repeated subwords, but the converse does not hold in
general.

I Proposition 1. Let w be a partial word with h holes over a binary alphabet. For index
i = 0, . . . , h and positive integer n ≤ |w|, let Fi(w, n) denote the multiset containing the
factors of w of length n with exactly i holes. Then

h∑
i=0
‖Fi(w, n)‖ = |w| − n + 1 (1)

pw(n) ≤
h∑

i=0
2i‖Fi(w, n)‖ (2)

with equality holding in (2) if and only if w has no repeated subwords of length n. The
following zero-hole and one-hole bounds hold:
1. Let h = 0. For n ≤ |w|, we have pw(n) ≤ |w| − n + 1, with equality holding if and only if

w has no repeated subwords of length n.
2. Let h = 1 and n ≤ |w|. If |w| ≤ 2n−1, then pw(n) ≤ 2(|w|−n+1). Else, pw(n) ≤ |w|+1.

In both cases, equality holds if and only if w has no repeated subwords of length n.

Proof. For Statement (2), Inequality (2) implies that pw(n) ≤ ‖F0(w, n)‖+2‖F1(w, n)‖ with
equality holding if and only if w contains no repeated subwords of length n. First suppose
that |w| ≤ 2n− 1. In this case, it is possible that w satisfies F0(w, n) = ∅. Note that since
Equality (1) holds, this situation maximizes the subword complexity. Therefore, pw(n) ≤
2‖F1(w, n)‖ = 2(|w| − n + 1). Now suppose that |w| > 2n− 1. We have ‖F1(w, n)‖ ≤ n. If
‖F1(w, n)‖ = n, then ‖F0(w, n)‖ = |w| − 2n + 1. Thus, pw(n) ≤ |w| − 2n + 1 + 2n = |w|+ 1
as desired. J

3 Sturmian partial words

In this section, we investigate Sturmian partial words. Recall that a finite partial word w is
called Sturmian of order N if pw(n) = n + 1 for all n, 1 ≤ n ≤ N . We will fill out Table 1,
whose first three columns show that for h ≥ 0, f(n) = n + 1 is (2, h)-feasible.

I Remark. Note that the lengths of the words in the third column of Table 1 give upper
bounds on L2(n + 1, N, h), listed in the fourth column. For N ≥ 1, let w = aN bN . By
Proposition 1(1), a word z must have length l ≥ 2N to satisfy pz(N) ≥ N + 1. Thus, w is a
minimal (n + 1)-complex partial word of order N , and so L2(n + 1, N, 0) = 2N .

Now for N ≥ 6, let w = abN/2c�abN/2cbad(N−4)/2e. By Table 1, w is an (n + 1)-complex
partial word of order N with |w| = 3N

2 when N is even, and |w| = 3N
2 −

1
2 when N is

odd. By Proposition 1(2), a word z with one hole must have length l ≥ 3N
2 −

1
2 to satisfy

pz(N) ≥ N + 1, implying that w is minimal, and so L2(n + 1, N, 1) is as shown in the table.
As is proved later, the other upper bounds also turn out to be lower bounds.
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Table 1 Sturmian partial words with h holes of order N

h N partial word L2(n + 1, N, h) N2(n + 1, N, h)

0 ≥ 1 aN bN 2N

1 ≥ 6 abN/2c�abN/2cbad(N−4)/2e 3N
2 if N is even 12 if N is even

3N
2 − 1

2 if N is odd 4 if N is odd
2 ≥ 12 ab(N−6)/2c�aN−5�ad(N−6)/2e 2N − 9 2N − 22

≥ 3 ≥ h + 1 �(aN−1�)h−1 N(h − 1) + 1 2

3.1 The case of h = 0
The aim of this section is to provide an algorithm that generates all minimal Sturmian full
words. In constructing them, some graph theory is useful (the reader is refereed to [10] for
more information).

Let G = (V, E) be a directed graph. The line digraph of G, denoted by L(G), is the
graph G′ = (V ′, E′) where V ′ = E, and for all v′1, v′2 ∈ V ′, (v′1, v′2) ∈ E′ if v′1 = (v1, v2) and
v′2 = (v2, v3) for some v1, v2, v3 ∈ V . Combining ideas from de Bruijn and Rauzy graphs, we
define a labelled directed graph GS = (V, E) on a set S of words of length n as follows: V

consists of the set of factors of length n− 1 of words in S and E consists of the set of edges
(x, x′) for which there exists y ∈ S such that x is a prefix of y and x′ is a suffix of y (such
edges are labelled by y). This definition provides us with a natural correspondence between
graphs and words.

I Lemma 3.1. Given a set S consisting of words of length n, there exists a word w such
that Subw(n) = S if and only if GS = (V, E) has a path that includes all of the edges of GS .
If such a path p exists, then there exists a word w of length |p|+ n− 1 with Subw(n) = S.
Furthermore, Subw(n− 1) ⊃ V .

The following properties of a directed graph G = (V, E) are well known and are useful
throughout this section. The notation ideg(v) refers to the in-degree of vertex v, odeg(v)
to its out-degree, and (ideg(v), odeg(v)) to its degree.
1. The size of the line digraph L(G) = (V ′, E′) of G is |V ′| = |E| and |E′| =

∑
v∈V ideg(v)×

odeg(v).
2. The graph G has an Eulerian circuit if and only if G is strongly connected and for every

vertex v ∈ V , ideg(v) = odeg(v).
3. If x, y ∈ V are such that odeg(x) = ideg(x) + 1 and ideg(y) = odeg(y) + 1, then G

has an (x, y)-Eulerian path (or an Eulerian path from x to y) if and only if G is weakly
connected and for every vertex v ∈ V \ {x, y}, ideg(v) = odeg(v).

We call a directed graph G Sturmian of order n if G has n vertices, n + 1 edges, and
contains an Eulerian path. The graph G is Sturmian Type I or II if G has degree sequence
(2, 2), (1, 1), . . . , (1, 1) or (2, 1), (1, 2), (1, 1), . . . , (1, 1) respectively.
I Proposition 2. 1. Suppose that G = (V, E) is Sturmian Type II of order n. Then L(G) is

Sturmian of order n + 1.
2. Suppose that G = (V, E) is Sturmian Type I of order n. Then it is possible to remove

one edge from L(G) to get G′, where G′ is Sturmian of order n + 1. Furthermore, it is
impossible to remove an edge from L(G) to get a graph G′ such that G′ contains a path
that contains all of the edges of G′ and G′ is not Sturmian.
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Proof. For Statement (2), note that L(G) has n + 1 vertices and n + 3 edges. Since G

contains an Eulerian path, L(G) has a Hamiltonian path, and thus is weakly connected.
Thus, we are left to show that we can remove one edge from L(G) to get a graph G′ that is
still weakly connected and contains an Eulerian path. The graph G being Sturmian Type I,
there is a distinct vertex v that has degree (2, 2). Label the edges in and out of v as i1, i2 and
o1, o2 respectively. Note that all the vertices in L(G) not in S = {i1, i2, o1, o2} have degree
(1, 1). Two cases remain which are illustrated in Figure 1: Case (i) where each member in S

is distinct, and Case (ii) where i2 = o2.
For Case (i), i1, i2 have degree (1, 2) while o1, o2 have degree (2, 1). Note that there are

edges from ij to ol for each j, l ∈ {1, 2}. Remove the edge (i2, o2) to get a graph G′. Note
that G′ is still weakly connected. Furthermore, in G′, i1 has degree (1, 2), o1 has degree (2, 1),
and all other vertices have degree (1, 1). Thus, G′ has an Eulerian path and is Sturmian
Type II. Note that removing any of the edges (ij , ol) can be handled similarly. Further,
note that removing any other edge from L(G) results in a graph that no longer has a path
containing all the edges. J

v1

i2

i1 o1

o2

i1

i2 o2

o1 i1 o1

i2

e

v1

i2

i1 o1

o2

i1

i2 o2

o1 i1 o1

i2

e

Figure 1 Part of L(G) in Proposition 2(2): Left: Case (i); Right: Case (ii).

We are now ready to present an algorithm (similar to one used by Rote in [14]) to generate
minimal Sturmian full words. Note that Proposition 2 implies that the graph G′ created
in line 2, 6, or 8 is always Sturmian. Since G′N has N + 1 edges, Algorithm 1 generates a
minimal Sturmian word.

Algorithm 1 Constructing a minimal Sturmian full word of order N ≥ 3.
1: Create G2 = GS , where S = {aa, ab, ba, bb}
2: Create G′2 by deleting an edge from G2
3: for i = 3 to N do
4: Build Gi = L(G′i−1)
5: if Gi has i + 2 edges then
6: Create G′i by deleting an edge from Gi (so that G′i has i + 1 edges), but ensure that

G′i still contains an Eulerian path
7: else
8: Set G′i = Gi

9: Find an Eulerian path p in G′N
10: return p

I Theorem 3.2. Algorithm 1 generates all minimal Sturmian full words.

Proof. Suppose that w is a minimal Sturmian full word of order N . Thus, Lemma 3.1 implies
that there is a sequence of graphs G2, . . . , GN such that Gi has i vertices and i + 1 edges.
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Furthermore, G′2 is a subgraph of GS , where S = {aa, ab, ba, bb}, for i = 2, . . . , N − 1, Gi+1
is a subgraph of L(Gi), and for each Gi there exists a path containing all its edges. Thus,
w can be generated by Algorithm 1 unless there exists some Gi that does not contain an
Eulerian path. However, since Gi+1 is a subgraph of L(Gi), Proposition 2 ensures that Gi+1
contains an Eulerian path. J

3.2 The case of h = 1
Recall the minimal Sturmian partial word abN/2c�abN/2cbad(N−4)/2e of order N ≥ 6 in Table 1,
which has the form ai�ajbal for some i, j, l. We show that any minimal Sturmian partial word
with one hole has a similar form. Note that since N ≥ 6, any Sturmian partial word w of
order N with one hole satisfies N < |w| (otherwise, N = |w|, and we get N + 1 = pw(N) = 2,
a contradiction).

I Lemma 3.3. 1. For N ≥ 6, any Sturmian partial word w of order N of the form w = �z,
where z is a full word, is not minimal.

2. Any Sturmian partial word w of order N of the form w = ai�(ajb)my, where i, j ≥ 1,
m ≥ 2, and y is a prefix of ajb, is not minimal.

Proof. For Statement (2), we first prove that N ≤ min(s, t), where s = i + j + 1 and
t = (j + 1)m + |y|+ 1. First suppose that s ≤ t and N ≥ s + 1. Note that Subw(s + 1) =
{asb, . . . , ai+1baj , aibajb, . . . , b(ajb)s/(j+1)}. This implies that pw(s + 1) = s− (i + 1) + 1 +
i + 1 = s + 1 < s + 2, a contradiction.

Next suppose that t < s (so that t + 1 ≤ i + j + 1). If N ≥ t + 1, then Subw(t +
1) = {at+1, atb, . . . , ab(ajb)(t−1)/(j+1)}, so pw(t + 1) = 1 + t − 1 + 1 = t + 1 < t + 2, a
contradiction. Hence, N ≤ min(s, t) as claimed. Therefore, if w has order N , then s, t ≥ N

or i + j + 1, (j + 1)m + |y|+ 1 ≥ N . Thus, |w| = i + 1 + (j + 1)m + |y| = s− j − 1 + t. For a
fixed t, j takes on a maximum value when m = 2 and |y| = 0. Hence, 2(j + 1) + 1 ≤ t so
that j ≤ t−3

2 and |w| = s − j − 1 + t ≥ s − t−3
2 − 1 + t = s + t

2 + 1
2 ≥

3N
2 + 1

2 . However,
L2(n + 1, N, 1) ≤ 3N

2 from Remark 3, so w is not minimal. J

I Theorem 3.4. Suppose w is a Sturmian partial word with one hole of order N ≥ 6 with a
factor z = �aib, where i ≥ 1. Then w contains no other b’s or w is not minimal.

Proof. Similarly to the above lemma, we use the fact (from Remark 3) that if |w| > 3N
2 then

w is not minimal. If w contains no other b’s we are done. Otherwise, w contains a factor
of the form bajz or zajb, for some j ≥ 1. Note that if j = 0, w would contain all the four
subwords of length 2, contrary to our assumption that w is Sturmian. First assume that
u = baj�aib is a factor of w. Let t = min(i, j). Note that

Subu(t + 2) = {at+2, bat+1, atba, . . . , abat, at+1b, batb}

has size t + 4, implying that N ≤ t + 1. Thus, |w| ≥ |u| = i + j + 3 ≥ 2t + 3 > 2t + 2 ≥ 2N ,
so w is not minimal. Next assume that u = �aibajb is a factor of w.

First, suppose that i > j. Thus,

Subu(j + 2) = {aj+2, baj+1, aj+1b, abaj , . . . , ajba, bajb}

has size j + 4 implying that N ≥ j + 1 Similarly to the above, this implies that |w| ≥ 2N

and w is not minimal. The case where j > i + 1 is handled similarly since Subu(i + 2)
is too large. Now, suppose that i = j. So w = xuy = x�aibaiby for some full words x, y.
Note that if x contains a b, it has already been shown that w is not minimal. Furthermore,
if x = ε, then w is not minimal by Lemma 3.3(1). Therefore, w = al�(aib)2y for some
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l ≥ 1. Note that if N < i + 2, then |w| ≥ 2N and w is not minimal. So suppose
N ≥ i + 2. We have that Subw(i + 2) ⊃ {ai+2, ai+1b, aiba, . . . , abai, baib} = S. Since the
latter set is of size i + 3, w must avoid {a, b}i+2 \ S. Thus, w = al�(aib)my for some
m ≥ 2 and some prefix y of aib, and by Lemma 3.3(2), w is not minimal. Finally, suppose
that j = i + 1. So w = xuy = x�aibai+1by for some full words x, y. Similarly to the
above, we only need to consider the case when w = al�aibai+1by for some l ≥ 1. Note
that Subw(i + 2) ⊃ {ai+2, bai+1, aiba, . . . , abai, ai+1b, baib}, so ‖Subw(i + 2)‖ ≥ i + 4 and
N ≤ i + 1. However, this implies that |w| ≥ 2N , and w is not minimal. J

I Corollary 3.5. For N ≥ 6, any minimal Sturmian partial word with one hole is of the
form ai�ajbal for some i, j, l (up to reversal and complement).

The next lemma gives some restrictions on the integers i, j, l.

I Lemma 3.6. Let w = ai�ajbal be a minimal Sturmian partial word with one hole of order
N ≥ 6. If N is odd, w has no repeated subwords of length N , and i, j + l + 1 < N (e.g. all
factors of w of length N contain a hole). If N is even, exactly one of the following holds:

w has exactly one subword of length N repeated exactly once, and i, j + l + 1 < N .
w has no repeated subwords of length N , and i < N , j + l + 1 = N .

Proof. Assume that N is odd. Thus, |w| = 3N
2 −

1
2 ≤ 2N − 1. From Proposition 1(2),

pw(N) ≤ 2(|w| − N + 1) = N + 1, and we have equality if and only if w has no repeated
subwords of length N . Furthermore, the proof of Proposition 1(2) shows that each factor of
w of length N contains a hole, and so i, j + l + 1 < N .

Assume that N is even. Thus, |w| = 3N
2 ≤ 2N − 1 and pw(N) ≤ 2(|w| −N + 1) = N + 2

from Proposition 1(2). More details follow. If ‖F0(w, N)‖ ≥ 2, then ‖F1(w, N)‖ ≤ |w|−N−1
and pw(N) ≤ ‖F0(w, N)‖+ 2‖F1(w, N)‖ ≤ N , and so w is not Sturmian. If ‖F0(w, N)‖ = 1,
then ‖F1(w, N)‖ = |w| − N and pw(N) ≤ ‖F0(w, N)‖ + 2‖F1(w, N)‖ = N + 1, and
equality holds if and only if no subword of length N repeats. This can only be the case
when i < N, j + l + 1 = N (note that w has aN as a repeated subword of length N

when i = N , j + l + 1 < N). If ‖F0(w, N)‖ = 0, then ‖F1(w, N)‖ = |w| − N + 1 and
pw(N) ≤ ‖F0(w, N)‖+ 2‖F1(w, N)‖ ≤ N + 2, and so pw(N) = N + 1 implies that exactly
one subword must repeat exactly once. This can only be the case when i, j + l + 1 < N .
Again, the proof of Proposition 1(2) makes it evident that the two cases listed above are the
only ones that lead to pw(N) = N + 1. J

The next lemma gives upper and lower bounds on j.

I Lemma 3.7. Let w = ai�ajbal be a minimal Sturmian partial word with one hole of order
N ≥ 6. Then bN−1

2 c ≤ j ≤ bN
2 c.

Proof. To show the lower bound j ≥ bN−1
2 c, suppose that j < bN−1

2 c. First suppose that
l ≥ j + 1. Here i, j ≥ 1. Since N ≥ 6, we have that N ≥ j + 2. However, Subw(j + 2) ⊃
{aj+2, aj+1b, ajba, . . . , abaj , baj+1, bajb} so that pw(j + 2) ≥ j + 4. Thus, l ≤ j.

Assume that N is even. Thus, j = N
2 −m for some m ≥ 2. Noting that |w| = 3N

2 =
i + j + l + 2 we have that i ≥ N

2 − 2 + 2m. Thus, i + j + 1 ≥ N
2 − 2 + 2m + N

2 −m + 1 ≥
N + m − 1 ≥ N + 1, with equality holding if and only if l = j. If l = j, both aN and
aN−l−1bal are repeated subwords of length N of w, contradicting Lemma 3.6. Similarly,
l < j implies that i + j + 1 ≥ N + 2, meaning that aN appears as a subword at least three
times, again contradicting Lemma 3.6. J

The next theorem gives the classification of the one-hole minimal Sturmian words.
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I Theorem 3.8. Let N ≥ 6.
1. If N is odd, then the only minimal Sturmian partial word with one hole of order N (up

to reversal and complement) is aN/2−1/2�aN/2−1/2baN/2−3/2, or equivalently
abN/2c�abN/2cbad(N−4)/2e, and so N2(n + 1, N, 1) = 4.

2. If N is even, then the only minimal Sturmian partial words with one hole of order N

(up to reversal and complement) are aN/2�aN/2−1baN/2−1, aN/2−1�aN/2baN/2−1, and
aN/2�aN/2baN/2−2 = abN/2c�abN/2cbad(N−4)/2e, and so N2(n + 1, N, 1) = 12.

Proof. Let w be a minimal Sturmian partial word with one hole. By Corollary 3.5, w =
ai�ajbal for some i, j, l. For Statement (2), when N is even, j = N

2 − 1 or j = N
2 . Assume

that j = N
2 − 1. From Lemma 3.6 we have two cases to consider. Suppose j + l + 1 = N ,

so that l = N
2 and i = N

2 − 1. Setting t = N
2 + 1, we have that t ≤ N and that

Subw(t) = {at, at−1b, at−2ba, . . . , abat−2, bat−1, bat−2b} is of size t+2, a contradiction. Thus,
i, j + l+1 < N , and w can have at most one repeated subword of length N . Set l = N

2 −m for
some m ≥ 1, so that i = N

2 − 1 + m. Further note that aibal is a repeated subword of length
N of w. We also have that i + j + 1 = N − 1 + m, so that if m > 1, aN is also a repeated
subword of length N , a contradiction. Therefore, m = 1 and w = aN/2�aN/2−1baN/2−1. J

3.3 The case of h = 2
Recall from Table 1 that ab(N−6)/2c�aN−5�ad(N−6)/2e is a Sturmian partial word of order
N ≥ 12 of length 2N − 9. We show that this form is minimal, and in fact all minimal
Sturmian partial words with two holes are similar. The next proposition describes behavior
between the holes.
I Proposition 3. Suppose that w is a Sturmian partial word of order N . Let z be a
factor of w of the form z = �a0 · · · al−1�, where a0, . . . , al−1 ∈ {a, b}. Then, N < l

2 + 3
2 ,

or z is one-periodic, or z = w = �ajban1ban2b · · · banibaj� for some i, j ≥ 0 and some
n1, n2, . . . , ni ∈ {j, j + 1}.

Proof. If N < l
2 + 3

2 we are done. Thus, assume N ≥ l
2 + 3

2 throughout the rest of
the proof. If l < 2 the statement is immediate. So assume that l ≥ 2. Without loss of
generality assume that a0 = a. For j, 0 ≤ j < l

2 , we show that either z avoids bajb or
z = w = �ajban1ban2b · · · banibaj� for some i ≥ 0 and some n1, n2, . . . , ni ∈ {j, j + 1}.

Assume first that j = 0. Suppose that al−1 = b. Thus, �a and b� are factors of z,
and aa, ba, bb ∈ Subz(2). Since pz(2) = 3, z must avoid ab. However, since a0 = a we
have that al−1 = a, a contradiction. Thus, al−1 = a, and aa, ab, ba ∈ Subz(2) implying
that z avoids bb. Inductively, suppose that z avoids bb, bab, . . . , baj−1b. This implies that
a0 = · · · = aj−1 = al−1−j+1 = · · · = al−1 = a. If z is one-periodic we are done, so suppose
otherwise. Note that this also implies that j < l

2 , else z would be one-periodic. Thus,
j + 2 ≤ l

2 + 3
2 ≤ N . Since z avoids bb, . . . , baj−1b, we have that

Subz(j + 2) ⊂ {aj+2, aj+1b, ajba, . . . , baj+1, bajb} = S

Note that ‖S‖ = j + 4, so exactly one element of S must be avoided. Further, note that
since z is not one-periodic, {aj+1b, ajba, . . . , baj+1} ⊂ Subw(j + 2). If z avoids bajb we are
done. Thus suppose that z avoids aj+2. Thus, z = �ajban1ban2b · · · banibaj� for some i ≥ 0
and n1, n2, . . . , ni ∈ {j, j + 1}. Suppose that z 6= w, so we can write w = xzy for some
partial words x, y where at least one of x, y 6= ε. Without loss of generality assume that
y 6= ε. Note that since pz(2) = pw(2) = 3, we have that w avoids bb. Therefore, � 6= y0 6= b

so y0 = a. However, this implies that aj+2 is a subword of w that is avoided by z, so that
pw(j + 2) > pz(j + 2) = j + 3, a contradiction. Thus, both x, y = ε and w = z. J
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I Corollary 3.9. Minimal Sturmian partial words of order N ≥ 12 with two holes are
one-periodic.

It remains to restrict the placement of the holes.

I Proposition 4. Let N ≥ 12. Any minimal Sturmian partial word w of order N with two
holes having a factor of the form z = �aj�, where j ≥ 1, satisfies |w| = 2j + 1 = 2N − 9.

Proof. We first show that any minimal one-periodic Sturmian partial word w with two holes
of order N having a factor of the form z = �aj�, where j ≥ 1, satisfies N ≥ j + 2. Suppose
not, that is N < j +2, so that N−2 < j. Set j = N−2+m for some m ≥ 1. It is easy to note
that w avoids bb, bab, . . . , baN−2b. Setting S = {aN , aN−1b, aN−2ba, . . . , abaN−2, baN−1}, we
have that Subz(N) ⊂ S. If w is Sturmian of order N , then Subw(N) = S. Since w is
one-periodic, w = ai�aj�al for some i, l ≥ 0. If i + l < N − 2, then Subw(N) 6= S, so
i + l ≥ N − 2. However, this implies that |w| ≥ N − 2 + N − 2 + m + 2 ≥ 2N − 1. Thus, by
Remark 3, w is not minimal, a contradiction.

Now, note that Subz(j + 2) = {aj+2, aj+1b, baj+1, bajb} so pz(j + 2) = 4. Suppose
|w| ≥ 2j + 2. Then w has a factor v = ai�aj�aj−i, for some i, j, 0 ≤ i ≤ j. However, we have

Subv(j + 2) = Subz(j + 2) ∪ {aibaj−i+1, . . . , abaj , ajba, . . . , ai+1baj−i}

Thus, pw(j+2) ≥ pv(j+2) = j+4, a contradiction. Suppose |w| ≤ 2j. Then w = ai�aj�am−i

for some i, j, m, 0 ≤ i ≤ m < j − 1. Thus,

Subw(j + 2) = {aj+2, aj+1b, baj+1, bajb, aibaj−i+1, . . . , abaj , ajba, . . . , aj+i−m+1bam−i}

so pw(j + 2) < 4 + j − 1 = j + 3, a contradiction. Therefore, |w| = 2j + 1.
Note also that pw(j+6) ≤ 1+‖F1(w, j+6)‖+3‖F2(w, j+6)‖ ≤ 1+(|w|−(j+6)−5)+3×5 =

j + 6 < j + 7 (there is 1 subword with no b, at most ‖F1(w, j + 6)‖ subwords with one b (fill
the hole with b), and at most 3‖F2(w, j + 6)‖ other subwords (fill the holes with ab, ba, bb)).
Thus, j + 2 ≤ N < j + 6. So N − 5 ≤ j ≤ N − 2. The only option is j = N − 5 in order to
achieve |w| = 2j + 1 ≤ 2N − 9. Finally, w = ab(j−1)/2c�aj�ad(j−1)/2e is of length 2j + 1 and
is Sturmian of order N = j + 5 when j ≥ 7. J

Our two-hole description of minimal Sturmian partial words follows.

I Theorem 3.10. The only minimal Sturmian partial words with two holes of order N ≥ 12
are those of the form ai�aj�al, where j = N − 5, i, l ≥ 3, and i + l = N − 6, and so
N2(n + 1, N, 2) = 2N − 22.

Proof. Let w be a minimal Sturmian partial word of order N with two holes. The fact that j =
N−5 and i+l = N−6 is evident from Proposition 4. We are left to show that i, l ≥ 3. Since aN

is trivially a subword of length N of w, we have that pw(N) ≤ 1+‖F1(w, N)‖+3‖F2(w, N)‖.
Note that since |w| = 2N −9, we have that ‖F1(w, N)‖+‖F2(w, N)‖ ≤ |w|−N + 1 = N −8.
Thus, ‖F1(w, N)‖ ≤ N−8−‖F2(w, N)‖. Therefore, pz(N) = N+1 ≤ 1+N−8+2‖F2(w, N)‖,
implying that ‖F2(w, N)‖ ≥ 4. Note that if i < 3 (the case where l < 3 is similar), there
are i + 1 < 4 factors containing two holes, a contradiction. Thus, there are N − 11 hole
placements that are valid for a minimal Sturmian partial word of order N with two holes.
Since the partial word is one-periodic, we have N2(n + 1, N, 2) = 2(N − 11) = 2N − 22 as
desired. J
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3.4 The case of h ≥ 3
Recall from Table 1 that w = �(aN−1�)h−1 is a Sturmian partial word with h holes of order N

of length N(h+1)+1, when h ≥ 3 and N ≥ h+1. By Remark 3, L2(n+1, N, h) ≤ N(h−1)+1
in that case. We show that w is in fact minimal, and that (up to complement) it is the
unique such word.

I Lemma 3.11. Any Sturmian partial word w having a factor z = �ai�aj�, bai�aj�, or
�ai�ajb is of order N < min(i, j) + 2. Furthermore, if w has another factor u compatible
with balb where l < min(i, j) then N < l + 2.

Proof. Set t = min(i, j). Assume that N ≥ t + 2. We immediately note that Subw(t + 2) ⊃
Subz(t + 2) = {at+2, batb, at+1b, . . . , bat+1}, so ‖Subw(t + 2)‖ is at least t + 4, contradicting
the fact that w is Sturmian. Now assume such a factor u exists. Assume that N ≥ l + 2.
Trivially, balb ∈ Subw(l + 2). Furthermore, {al+2, al+1b, . . . , bal+1} ⊂ Subz(l + 2). Thus,
pw(l + 2) is at least l + 4, a contradiction. J

I Theorem 3.12. For h ≥ 3 and N ≥ h + 1, L2(n + 1, N, h) = N(h− 1) + 1. Furthermore,
any minimal Sturmian partial word with h holes of order N is of the form �(aN−1�)h−1, and
so N2(n + 1, N, h) = 2.

Proof. Any minimal Sturmian partial word w with h ≥ 3 holes of order N must have a factor
of the form �ai�, where i ≥ 1. By Lemma 3.11, w must be of form an0c0an1c1 · · · anj cjanj+1 ,
where each ci ∈ {�, b} and each ni ≥ N − 1. It is thus evident that w = �(aN−1�)h−1, which
was shown in Table 1 to be Sturmian of order N for N ≥ h + 1, is the only form possible for
a minimal Sturmian partial word with h holes. J

4 Conclusion

We have thus classified all the (n + 1)-complex partial words with any number of holes.
The number of minimal Sturmian full words of order N , N2(n + 1, N, 0), remains to be
computed, but an algorithm has been presented that can generate all such words. It would
be interesting to complete the classification of the minimal 2n-complex partial words as well.
In this section, we give some preliminary results by filling out Table 2.

Table 2 2n-complex partial words with h holes of order N

h N partial word L2(2n, N, h)

0 ≥ 3 aN baN−2bbaN−2 3N − 1
1 ≥ 3 aN−2b�aN−2b 2N − 1
2 ≥ 5 ab(N−4)/2cb(�ad(N−4)/2eb)2 3N

2 − 1 if N is even
3N
2 − 1

2 if N is odd
≥ 3 ≥ 5 ab(N−4)/2cb(�ad(N−4)/2eb)h

I Proposition 5. For h ≥ 0, f(n) = 2n is (2, h)-feasible. For N ≥ 3, L2(2n, N, 0) = 3N − 1
and L2(2n, N, 1) = 2N − 1.

Follows is our h-hole bound.
I Proposition 6. Let w be a word with h ≥ 2 holes, and n ≤ |w| be a positive integer.

If |w| ≥ 2n− 2 + h, then pw(n) ≤ 2h+1 + (n− h + 1)2h + |w| − 2n− h− 2.
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If |w| ≤ 2n− h, then pw(n) ≤ 2h(|w| − n + 1).
Else 2n− h < |w| < 2n− 2 + h, and set d = 2n− 2 + h− |w| > 0. If d is even, then

pw(n) ≤ 2h+1 + (n− h + 1)2h − 4− 2
∑d/2

i=1 2i = 2h+1 + (n− h + 1)2h − 4× 2d/2

If d is odd, then
pw(n) ≤ 2h+1+(n−h+1)2h−4−2

∑(d−1)/2
i=1 2i−2(d+1)/2 = 2h+1+(n−h+1)2h−3×2(d+1)/2

I Corollary 4.1. For N ≥ 5, L2(2n, N, 2) = 3N
2 − 1 if N is even, and 3N

2 −
1
2 if N is odd.
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Abstract
A critical variable of a satisfiable CNF formula is a variable that has the same value in all satisfying
assignments. Using a simple case distinction on the fraction of critical variables of a CNF formula,
we improve the running time for 3-SAT from O(1.32216n) by Rolf [10] to O(1.32153n). Using a
different approach, Iwama et al. [5] very recently achieved a running time of O(1.32113n). Our
method nicely combines with theirs, yielding the currently fastest known algorithm with running
time O(1.32065n). We also improve the bound for 4-SAT from O(1.47390n) [6] to O(1.46928n),
where O(1.46981n) can be obtained using the methods of [6] and [10].
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1 Introduction

The ideas behind the most successful algorithms for k-SAT are surprisingly simple. In 1999,
Paturi, Pudlák, and Zane [9] proposed the following algorithm. Given a k-CNF formula F ,
we choose a variable x uniformly at random from the n variables in F , choose a truth value
b ∈ {0, 1}, and set x to b, thereby replacing F by F [x 7→b], and continue with F [x 7→b]. The
value b is chosen as follows: If the formula contains the unit clause (x), we choose b = 1. If it
contains (x̄), we choose b = 0. In these two cases, we say x was forced. If it contains neither,
we choose b randomly and say x was guessed. Finally, if the formula contains both (x) and
(x̄), we can give up, since the formula is unsatisfiable. This algorithm is usually called PPZ
after its three inventors.

Intuitively, if F is “strongly constrained”, then the algorithm encounters many unit
clauses, hence it needs to guess significantly fewer than n variables. On the other hand, if
F is only “weakly constrained”, it has multiple satisfying assignments, making it easier to
find one. Paturi, Pudlák and Zane [9] make this intuition precise and show that PPZ finds
a satisfying assignment for a k-CNF formula with probability at least 2−(1−1/k)n, provided
there exists one.

A couple of years later, Paturi, Pudlák, Saks, and Zane [8] came up with a simple but
powerful idea. In a preprocessing step, they apply a restricted version of resolution. This
increases the number of unit clauses the algorithm encounters and therefore increases its
success probability. This gives an algorithm called PPSZ. If F has a unique satisfying
assignment, its success probability is quite good (for 3-SAT, it is Ω(1.308−n)), and the
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analysis is highly elegant. The case of multiple satisfying assignments appears to be much
more difficult and has been the subject of several papers so far. Iwama and Tamaki [6]
made a major step forward when they observed that while the success probability of PPSZ
deteriorates as the number of satisfying assignments increases, that of Schöning’s random
walk algorithm [11] improves. They quantified this tradeoff and obtained an algorithm with
a success probability of Ω(1.32373−n)1. We denote this combined algorithm, consisting of
one run of PPSZ and one run of Schöning’s random walk algorithm, by Comb.

The PPSZ paper. There are two versions of [8], which we call the old version and the
new version. For unique k-SAT, both are the same, but for general k-SAT, the old version
of [8] gives a more complicated analysis. The old version gives a better bound for 3-SAT and
the new version gives a better bound for 4-SAT.

Only the new version is published, but the old version is still available at the Citeseer
cache2. However, we have found some minor errors in that version. There is also a conference
version [7] stating the results of the old version of [8], but without most proofs. Rolf [10]
improved the analysis of the old version to get a bound of Ω(1.32216n). However [10] does not
consider 4-SAT. We use the ideas of [10] for our improvement of 4-SAT. In Timon Hertli’s
master thesis [2], the old version of [8] with the result of [10] is presented in a self-contained
way. We will reference that thesis for detailed proofs.

1.1 Our Contribution
Let F be a satisfiable CNF formula over n variables and x be a variable therein. We call x
critical if all satisfying assignments of F agree on x. Equivalently, x is critical if exactly one
of the formulas F [x7→1] and F [x7→0] is satisfiable. We denote by c(F ) the fraction of critical
variables, i.e., the number of critical variables divided by n; if n = 0, we define c(F ) := 1.

Our contribution consists of two statements: Theorem 1 shows that for our purposes we
only need to consider formulas with many critical variables. Point 3 of Lemma 9 then implies
that the success probability of PPSZ increases if F has many critical variables. This is
obtained by slightly modifying the existing analysis of [8] and [10] by taking critical variables
into account. However, Lemma 9 is somewhat technical and we need to embed it into a
review of the existing analysis. Theorem 1 is very simple, so we state it here:

I Theorem 1. Let p, q, c∗ ∈ [0, 1] and a, b ≥ 1 such that q
b =

(
1− c∗

2

)
=: r. Suppose

algorithm A runs in time an2o(n) and for every satisfiable (≤ k)-CNF formula F with
c(F ) ≥ c∗ finds a satisfying assignment with probability at least pn

( 1
2
)o(n). Then there

exists an algrotihm A′ that runs in time max{a, b}n2o(n) and for every satisfiable (≤ k)-CNF
formula finds a satisfying assignment with probability at least min{p, q}n

( 1
2
)o(n).

Obviously we can turn A′ into a algorithm that finds a satisfying assignment in expected
time

(
max{a,b}
min{p,q}

)n
2o(n).

Proof. By guessing j variables we mean fixing in F j variables chosen uniformly at random
to values chosen uniformly at random, obtaining the formula F ′ over at most n− j variables.
A′ for each j ∈ {0, . . . , n} repeats the following bj times: Guess j variables and then run A
on F ′; the running time bound is trivial. To bound the probability, we first claim that there

1 Using the new version of [8] immediately gives the bound Ω(1.32267−n), as stated in [10].
2 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1134

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1134
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exists a j such that aj ≥ rj

n+1 where aj is the probability that after guessing j variables F ′
is satisfiable and c(F ′) ≥ c∗. Suppose this is not the case: Let bj be the probability that
after guessing j variables F ′ is satisfiable and c(F ′) < c∗. Clearly a0 + b0 = 1 since F is
satisfiable, and ai+1 + bi+1 ≥ bi · r, as guessing one variable preserves satisfiability with
probability at least

(
1− c∗

2

)
= r. By the assumption, bi · r ≥

(
ai + bi − ri

n+1

)
· r; from this

it is easy to show that an + bn ≥ rn−n rn

n+1 = rn

n+1 . If j = n, we have c(F ′) = 1 by definition;
hence bn = 0 and an ≥ rn

n+1 , a contradiction. Now let j∗ be the j given by the claim; we
repeat bj∗ times an algorithm that has success probability at least rj

∗

n+1p
n−j∗ ( 1

2
)o(n); as

r · b = q this gives by a routine argument an algorithm with success probability at least
pn−j

∗
qj

∗ ( 1
2
)o(n). J

We improve the analysis for PPSZ for formulas with many critical variables. In com-
bination with Theorem 1, this gives a success probability of Ω(1.32153−n) for 3-SAT and
Ω(1.46928−n) for 4-SAT. Very recently, Iwama, Seto, Takai, and Tamaki [5] showed how
to combine an improved version of Schöning’s algorithm [4, 1] with PPSZ and achieved
expected running time of O(1.32113n). We combine our improvement with theirs to obtain
a bound of O(1.32065n). Due to page limitations, we were not able to use the full power
of [5] in this version. We show a bound O(1.321n) that still improves on the bound of [5].
For a proof of the better bound, see the full version of this paper [3]. The only change is we
use a better result of [5] which has different parameters; however these are not not stated
explicitly so we needed to derive and prove them.

We analyze the algorithm Comb(F ), where F is a CNF formula. Comb consists essentially
of a call to PPSZ [8] and to Schoening [11]. In [6] it was shown that Comb has a better
success probability than what the analysis of PPSZ and Schoening gives. Let ISTT be
the algorithm of [5] that improves Comb.

I Theorem 2. There exists an algorithm that for every satisfiable 3-CNF formula finds a
satisfying assignment with probability Ω(1.32153−n) and runs in subexponential time.

I Theorem 3. There exists an algorithm that for every satisfiable 3-CNF formula finds a
satisfying assignment with expected running time O(1.32065−n).

Due to page limitations, we prove the following weaker theorem instead. For the proof of the
previous theorem, see the full version of this paper [3].

I Theorem 4. There exists an algorithm that for every satisfiable 3-CNF formula finds a
satisfying assignment with expected running time O(1.321−n).

I Theorem 5. There exists an algorithm that for every satisfiable 3-CNF formula finds a
satisfying assignment with probability Ω(1.46928−n) and runs in subexponential time.

This is already very close to unique 4-SAT, which has a success probability of Ω(1.46899−n).
The benefit of Theorem 1 is that when proving Theorems 2 and 5, we only need to consider
formulas with many critical variables. For example, to prove Theorem 2, we choose c∗ such
that 1− c∗/2 = 1/1.32153, i.e., c∗ ≈ 0.4866. Then we have to bound from below the success
probability of Comb for 3-CNF formulas F with c(F ) ≥ c∗.

1.2 Notation
We use the notational framework introduced in [12]. We assume an infinite supply of
propositional variables. A literal u is a variable x or a complemented variable x̄. A finite set
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C of literals over pairwise distinct variables is called a clause and a finite set of clauses is a
formula in CNF (Conjunctive Normal Form). We say that a variable x occurs in a clause C
if either x or x̄ are contained in it and that x occurs in the formula F if there is any clause
where it occurs. We write vbl(C) or vbl(F ) to denote the set of variables that occur in C or
in F , respectively. A clause containing exactly one literal is called a unit clause. We say that
F is a (≤ k)-CNF formula if every clause has size at most k. Let such an F be given and
write V := vbl(F ) and n := |V |.

A assignment is a function α : V → {0, 1} which assigns a Boolean value to each variable.
A literal u = x (or u = x̄) is satisfied by α if α(x) = 1 (or α(x) = 0). A clause is satisfied by
α if it contains a satisfied literal and a formula is satisfied by α if all of its clauses are. A
formula is satisfiable if there exists a satisfying truth assignment to its variables.

For an assignment α on V and a set W ⊆ V , we denote by α⊕W the assignment that
corresponds to α on variables of V \W and is flipped on variables of W .

Given a CNF formula F , we denote by sat(F ) the set of assignments that satisfy F .
Formulas can be manipulated by permanently assigning values to variables. If F is a

given CNF formula and x ∈ vbl(F ) then assigning x 7→ 1 satisfies all clauses containing x
(irrespective of what values the other variables in those closes are possibly assigned later)
whilst it truncates all clauses containing x̄ to their remaining literals.

We will write F [x 7→1] (and analogously F [x7→0]) to denote the formula arising from doing
just this.

We say that two clauses C1 and C2 conflict on a variable x if one of them contains x and
the other x. We call C1 and C2 a resolvable pair if they conflict in exactly one variable x,
and we define their resolvent by R(C1, C2) := (C1 ∪ C2) \ {x, x}. It is easy to see that if F
contains a resolvable pair C1, C2, then sat(F ) = sat(F ∪ {R(C1, C2)}). A resolvable pair C1,
C2 is s-bounded if |C1| ≤ s, |C2| ≤ s, and |R(C1, C2)| ≤ s.

By Resolve(F, s), we denote the set of clauses C that have an s-bounded resolution
deduction from F . By a straightforward algorithm, we can compute Resolve(F, s) in time
O
(
n3spoly (n)

)
[8].

By choosing an element u.a.r. from a finite set, we mean choosing it uniformly at random.
By choosing an element u.a.r. from an closed real interval, we mean choosing it according to
the continuous uniform distribution over this interval. Unless otherwise stated, all random
choices are mutually independent.

We denote by log the logarithm to the base 2. For the logarithm to the base e, we write
ln. We define 0 log 0 := 0.

2 Proof of the Main Theorems

In the following let k ≥ 3 be a fixed integer. Let F be a satisfiable (≤ k)-CNF formula,
V := vbl(F ) and n := |V |. We first give the concepts from [8] needed to understand Lemma 9.
Then we state the lemma and use it to improve the bounds on the success probability of
Comb and ISTT given sufficiently many critical variables. In Section 3, we prove Lemma 9
and also consider 4-SAT. Most concepts used in the proof are from [8, 10]. Our contribution
is to exploit what these concepts yield for critical variables.

Subcubes. For D ⊆ V and α ∈ {0, 1}V , the set B(D,α) := {β ∈ {0, 1}V | α(x) =
β(x) ∀x ∈ D} is called a subcube. The variables in D are called defining variables and those
in V \D nondefining variables. The subcube B(D,β) has dimension |V \D|. For example,
if V = {x1, x2, x3}, D = {x1, x3} and α = (1, 0, 0), then B(D,α) contains exactly the two



T. Hertli, R.A. Moser, and D. Scheder 241

Algorithm 1 PPSZ(CNF formula F , assignment β, permutation π)
Let α be a partial assignment over vbl(F ), initially the empty assignment.
G← Resolve(F, log(|vbl(F )|))
for all x ∈ vbl(G), according to π do

if {x} ∈ G then
α(x)← 1

else if {x} ∈ G then
α(x)← 0

else
α(x)← β(x)

end if
G← G[x7→α(x)]

end for
return α

Algorithm 2 PPSZ(CNF formula F )
{this algorithm is used for 4-SAT}
Choose β(x) u.a.r. from all assignments on vbl(F )
Choose π u.a.r. from all permutations of vbl(F )
return PPSZ(F, β, π)

assignments (1, 0, 0) and (1, 1, 0). Given a nonempty set S ⊆ {0, 1}V , there is a partition

{0, 1}V =
⋃
α∈S

Bα

where the Bα are pairwise disjoint subcubes, and α ∈ Bα for all α ∈ S. See [8] for a proof.
For the rest of the paper, we fix such a partition for S being the set of satisfying assignments.
To estimate the success probability of Comb, consider the assignment β that Comb chooses
uniformly at random from {0, 1}V .

Pr[Comb(F ) ∈ sat(F )] =
∑

α∈sat(F )

Pr[Comb(F ) ∈ sat(F )| β ∈ Bα] · Pr[β ∈ Bα]

≥ min
α∈sat(F )

Pr[Comb(F ) ∈ sat(F ) | β ∈ Bα].

Hence instead of analyzing Comb for an assignment β sampled uniformly at random from
all assignments, we fix α ∈ sat(F ) arbitrarily and we think of β as being sampled from the
subcube Bα. Let Nα be the set of non-defining variables of this cube, and Dα the set of
defining variables. Intuitively, if Bα has small dimension, then β is likely to be close to α,
thus Schoening has a better success probability:

I Lemma 6 ([6]). Pr[Schoening(F, β) ∈ sat(F ) | β ∈ Bα] ≥ (2− 2/k)−|Nα|.

Placements. As a next step, we analyze PPSZ(F, β, π) with β chosen uniformly at
random from Bα and the permutation also chosen from some subset of permutations. A
placement of the variables V is a function σ : V → [0, 1], and a uniform random placement
is defined by chosing σ(x) uniformly at random from [0, 1] independently for each x ∈ V .
With probability 1, a uniform random placement is injective and gives rise to a uniformly
distributed permutation via the natural ordering < on [0, 1]. For the rest of the paper, we will

STACS’11



242 Improving PPSZ for 3-SAT using Critical Variables

Algorithm 3 Schoening(CNF formula F, assignment β)
for 3|vbl(F )| steps do

if β satisfies F then
return β

end if
Select an arbitrary C ∈ F not satisfied by β
Select a variable x u.a.r. from vbl(C) and flip x in β

end for
return β

Algorithm 4 Comb(CNF formula F )
{this algorithm is used for 3-SAT}
Choose β(x) u.a.r. from all assignments on vbl(F )
α← PPSZ(F, β)
if α 6∈ sat(F ) then
α← Schoening(F, β)

end if
return α

view π as a placement rather than a permutation. Let Γ be a measurable set of placements.
Then

Pr[PPSZ(F, β, π) ∈ sat(F ) | β ∈ Bα] ≥
Pr[PPSZ(F, β, π) ∈ sat(F ) | β ∈ Bα, π ∈ Γ] · Pr[π ∈ Γ].

The benefit of this is that we can tailor Γ towards our needs, i.e., making the conditional
probability Pr[PPSZ(F, β, π) ∈ sat(F ) | β ∈ Bα, π ∈ Γ] fairly large. This may come at the
cost of making Pr[π ∈ Γ] small.

Forced variables. Suppose the permutation π orders the variables V as (x1, . . . , xn).
Let α be a satisfying assignment of F . Imagine we call PPSZ(F, α, π). The algorithm
applies bounded resolution to F , obtaining G = Resolve(F, log(n)) and sets the variables
x1, . . . , xn step by step to their respective values under α, creating a sequence of formulas
by G = G0, G1, . . . , Gn, where Gi = G

[xi 7→α(xi)]
i−1 for 1 ≤ i ≤ n. Since α is a satisfying

assignment, Gn is the empty formula. We say xi is forced with respect to α and π if Gi−1
contains the unit clause {xi} or {x̄i}. By forced(α, π) we denote the set of variables x that
are forced with respect to α and π. If x is not forced, we say it is guessed. We denote by
guessed(α, π) the set of guessed variables. Note that PPSZ(F, β, π) returns α if and only if
α(x) = β(x) for all x ∈ guessed(α, π). Furthermore, since β is chosen uniformly at random
from Bα, we already have α(x) = β(x) for all x ∈ Dα. Therefore

Pr[PPSZ(F, β, π) ∈ sat(F )] ≥ Pr[PPSZ(F, β, π) = α] (1)

= E
[
2−|Nα∩guessed(α,π)|

]
≥ 2−E[|Nα∩guessed(α,π)|], (2)

where the inequality comes from Jensen’s inequality applied to the convex function t 7→ 2−t.
Note that (2) holds when taking π uniformly at random as well as when sampling it from
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some set Γ. Using linearity of expectation, we see that

E[|Nα ∩ guessed(α, π)|] =
∑
x∈Nα

Pr[x ∈ guessed(α, π)]. (3)

Now if α is the unique satisfying assignment, then Nα = V . For 3-SAT, one central result
of [8] is that

I Lemma 7 ([8]). Let F be a satisfiable 3-CNF formula with a unique satisfying assignment α.
Then for every x ∈ vbl(F ), it holds that Pr[x ∈ guessed(α, π)] ≤ 2 ln(2)− 1 + o(1) < 0.3863.

Combining the lemma with (2) shows that PPSZ on 3-CNF formulas with a unique
satisfying assignment has a success probability of at least 2−(2 ln(2)−1+o(1))n ∈ Ω(1.308−n).
For the case of multiple satisfying assignments, the lemma does not hold anymore.

Critical variables. Let F be a satisfiable CNF formula and x a variable. Recall that we
call x critical if all satisfying assignments of F agree on x. The following observation is not
difficult to show:

I Observation 8. Let F be a satisfiable CNF formula and let VC be the set of critical
variables. Let Bα be the subcube as defined above. For a satisfying assignment α, let Nα be
the set of nondefining variables. Then VC ⊆ Nα.

I Lemma 9. Let F be a satisfiable 3-CNF formula and α be a satisfying assignment.
There is a measurable set Γ ⊆ [0, 1]V of placements such that for β = 0.8022563838 and
γ = 0.6073995502, we have
1. Pr[π ∈ Γ] ≥ 2−β|Dα|−o(n) ≈ 0.57345159|Dα|−o(n),
2. Pr[x ∈ forced(α, π) | π ∈ Γ] ≥ γ − o(1) ≈ 0.6073995502− o(1) for all x ∈ Nα,
3. Pr[x ∈ forced(α, π) | π ∈ Γ] ≥ 2− 2 ln(2)− o(1) ≈ 0.6137056 for all critical x ∈ V .
The important part of the lemma is point 3, namely that critical variables are forced with a
larger probability than non-critical ones.

Proof of Theorem 2. Using Theorem 1, we can assume c(F ) ≥ 0.48659459. Let ∆ :=
|Dα|/|V | = 1− |Nα|/|V | be the fraction of defining variables. Combining (3) with Lemma 9,
we obtain

E[|Nα ∩ guessed(α, π)| | π ∈ Γ] =
∑
x∈Nα

Pr[x ∈ guessed(α, π)]

≤ (2 ln 2− 1)|VC |+ (1− γ)|Nα \ VC |+ o(n)
≤ (2 ln 2− 1)c∗n+ (1− γ)(1−∆− c∗)n+ o(n)
= 0.389532n− 0.3926004498∆n+ o(n).

The expected fraction of nondefining variables we have to guess is thus a little bit larger
than in the case of a unique satisfying assignment, where it is ≈ 0.3863. Together with (2),
we conclude that the success probability of PPSZ is at least

Pr[PPSZ(F, β, π) = α | β ∈ Bα] ≥ Pr[PPSZ(F, β, π) = α | β ∈ Bα, π ∈ Γ] · Pr[π ∈ Γ]
≥ 2−E[|Nα∩guessed(α,π)| | π∈Γ] · Pr[π ∈ Γ]
≥ 2−0.389532n+0.3926004498∆n · 0.57345159∆n · 2−o(n)

≥ 1.3099684−n · 1.328369−∆n · 2−o(n). (4)
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Our bound on the success probability of PPSZ thus deteriorates with the number of defining
variables. A bigger subcube Bα is better for PPSZ. We combine this with the bound for
Schöning’s algorithm from Iwama and Tamaki [6], stated above in Lemma 6

Pr[Schoening(F, β) ∈ sat(F ) | β ∈ Bα] ≥ (2− 2/k)−(1−∆)n. (5)

The combined worst case is with ∆ ≈ 0.0309273, in which case both (4) and (5) evaluate
to Ω(1.32153−n). Therefore for any ∆, at least one of Schoening and PPSZ has a success
probability of Ω(1.32153−n). J

Proof of Theorem 4. Lemma 6 from [5] tells us that there is an algorithm ISTTSch that
improves Schoening such that for all m∗ ∈ [0, 1

3 ] we have, after preprocessing time 6m∗n,

Pr[ISTTSch(F, β) ∈ sat(F ) | β ∈ Bα] ≥ 1.012795m
∗·n · 1.2845745∆n · (3/4)n.

We want to prove that by replacing Schoening with ISTTSch in Comb, we obtain expected
running time of O(1.321n). Setting c∗ := 0.48599 and m∗ := 0.155371873 gives 1− c∗/2 ≥
1/1.321 and 6m∗ ≥ 1.321. With this choice of c∗, we have the following bound for PPSZ
(obtained as in the previous proof, but with a different constant c∗):

Pr[PPSZ(F, β, π) = α | β ∈ Bα] ≥ 1.31−n · 1.3312−∆n · 2−o(n).

The combined worst case is at ∆ ≈ 0.029225 where 1.31−n · 1.3312−∆n > 1.321−n and
1.012795m∗·n · 1.2845745∆n · (3/4)n > 1.321−n, proving that the combined success probability
is Ω(1.321−n) (after preprocessing time O(1.321n)). J

3 Proof of Lemma 9

3.1 Critical Clause Trees

Let G := Resolve(F, log(n)). Note that vbl(F ) = vbl(G) and sat(F ) = sat(G). A critical
clause for x ∈ V w.r.t. α is a clause where α satisfies exactly one literal and this literal
is over x. It can be easily seen that if the output of PPSZ should be α, then exactly the
critical clauses of G are the clauses that might turn into unit clauses. Note that the defining
variables are assumed to be set correctly, so we only need to consider critical clauses for
nondefining variables here.

We now define critical clause trees, a concept that tells us which critical clauses we can
expect in a CNF formula after bounded resolution. Let T be a rooted tree in which every
node is either labeled with a variable from V or is unlabeled. A cut in a rooted tree is a set
of nodes A such that the root is not in A and every path from the root to a leaf contains at
least one node in A. The depth of a node is the distance to the root. For a set A of nodes,
vbl(A) denotes the set of variables occurring as labels in A. We say T is a critical clause tree
for x w.r.t. G and α if the following properties hold:

1. The root is labeled by x.
2. On any path from the root to a leaf, no two nodes have the same label.
3. For any cut A of the tree, there is a critical clause C ∈ G w.r.t. α where the satisfied

literal is over x and every unsatisfied literal is over some variable in vbl(A).
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x

y z

a b c

Figure 1 Example Criti-
cal Clause Tree

It is shown in [8] that we can construct a critical clause tree
for x ∈ Nα as follows: Start with the root labeled x. Now we
can repeatedly extend a leaf node v. Let L be the set of labels
that occur on the path from v to the root. If α ⊕ L does not
satisfy F , then we can extend the tree at that node: There is a
clause C in F (not in G) not satisfied by α⊕L. For each literal
in C that is not satisfied by α, we add a child to v labeled with
the variable of that literal. If there are no such literals, we add
an unlabeled node. As clauses of F have at most k literals, each
node has at most k − 1 children. If the constructed tree has at
most log(n) nodes (as we do log(n)-bounded resolution), then
it is a critical clause tree for x w.r.t. G and α.

We give a simple example: Let

F := {{x, y, z}, {x, y, a}, {z, b, c}, {x, z, c}}.

For the all-one assignment and x, we can get the tree shown in Figure 1 by the de-
scribed procedure. {a, b} is a cut in this tree. We have R({z, b, c}, {x, z, c}) = {x, z, b},
R({x, y, z}, {x, y, a}) = {x, z, a} and R({x, z, b}, {x, z, a}) = {x, a, b}, giving the required
critical clause.

If α is the only satisfying assignment of F , α⊕ L never satisfies F , and we can build a
tree where all leafs are at depth d := b logk log(n))c. We call this a full tree. The important
observation is now that this also works if x is a critical variable, as in that case α⊕ L also
never satisfies F , as x ∈ L.

In the general case, however, the assignment α ⊕ L might satisfy F so that we cannot
extend the tree. However if L consists only of nondefining variables, then we know that
α⊕ L does not satisfy F . Hence we can get a tree where every leaf not at depth d is labeled
by a defining variable. We define the trees Tx we will use in the analysis:

I Definition 10. For x ∈ Nα, construct the critical clause tree for x as follows: If x is a
critical variable, then construct Tx such that all leaves are at depth d, i.e., construct a full
tree. Otherwise, construct Tx such that all leaves not labeled by defining variables are at
depth d.

This means that a tree might just consist of a root where all children are labeled with
defining variables, which essentially nullifies the benefits from resolution. To cope with this,
we have to make defining variables more likely to occur at the beginning. We achieve this by
choosing the set Γ of placements whose existence we claim in Lemma 9 in a way such that
exactly that happens.

I Definition 11. A function H : [0, 1]→ [0, 1] is called a nice distribution function if H is
non-decreasing, uniformly continuous, H(0) = 0, H(1) = 1, H is differentiable except for
finitely many points and H(r) ≥ r.

Compared with [8], we added the requirement H(r) ≥ r. This will mean that defining
variables cannot be less likely to occur at the beginning than nondefining variables. We now
define a random placement where defining variables are placed with distribution function H:

I Definition 12. Let H be a nice distribution function. By πH , we define the random
placement on V s.t. π(x) for x ∈ Nα is u.a.r. ∈ [0, 1], and for x ∈ Dα and r ∈ [0, 1],
Pr(π(x) ≤ r) = H(r).
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Assume that the variables are processed according to some placement π. Consider Tx.
If there is a cut A such that π(y) < π(x) for every y ∈ vbl(A), then x is forced, as the
corresponding critical clause has turned into a unit clause for x. Denote the probability that
Sx(π) is a cut in Tx by Q(Tx, π).

For r ∈ [0, 1], let Rk(r) be the smallest non-negative x that satisfies x = (r+ (1− r)x)k−1

and Rk :=
∫ 1

0 Rk(r)dr. It was shown in [8] that if Tx is a full tree, then

Q(Tx, πU ) ≥ Rk − o(1).

Rk(r) can be understood as follows: Take an infinite (k − 1)-ary tree and mark each node as
“dead” with probability r, except the root. Rk(r) is the probability that this tree contains an
infinite path that starts at the root and contains only “alive” nodes.

We have R3 = 2−2 ln 2 ≈ 0.6137 and R4 ≈ 0.4451. For r ∈ [0, 1
2 ], we have R3(r) =

(
r

1−r

)2

and for r ∈ [ 1
2 , 1], we have R3(r) = 1. As H(r) ≥ r, and by definition of πH and of a cut, it

is obvious that

Q(Tx, πH) ≥ Rk − o(1), (6)

if Tx is a full tree. If Tx is not a full tree, we do not have any good bounds on Q(Tx, πU ).
In [10] it is shown that if Tx is not necessarily a full tree, but a tree in which every leaf not
at depth d is labeled by a defining variable, then

Q(Tx, πH) ≥ γH − o(1), (7)

where

γH =
∫ 1

0
min{H(r)k−1, Rk(r)}dr.

Obviously γH ≤ Rk, which means that the bound (6) for full trees is at least as strong as
the bound (7) for general trees. The H(r)k−1 term corresponds to the tree that consists of a
root where all children are labeled with defining variables and are thus leaves (remember
that there are at most k− 1 children). It takes a small lemma to show that this tree and the
full tree are the worst cases. See [2] for details. The following observation summarizes this:

I Observation 13. If x is a critical variable, then Q(Tx, πH) ≥ Rk−o(1). If x is a noncritical
nondefining variable, then Q(Tx, πH) ≥ γH − o(1).

We want to find a set Γ of placements such that a placement chosen uniformly at random
from Γ behaves more or less like πH .

I Lemma 14 (old version of [8]). Let H be a nice distribution function. If |Dα| ≥
√
n, there

is a set of placements Γ depending on n with the following properties: Let πΓ be the placement
choosen uniformly at random from Γ. Then for any tree T with at most log(n) nodes we have

Q(T, πΓ) ≥ Q(T, πH)− o(1)

and

Pr(πU ∈ Γ) ≥ 2−βH |Dα|−o(n)

with

βH :=
∫ 1

0
h(r) log (h(r)) dr

where h(r) is the derivative of H(r).
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The proof of this lemma is long and complicated, see Sections 4.2 and 4.3 in [2]. The
case |Dα| <

√
n is easy to handle: The probability that all defining variables come at the

beginning is substantial, and we are essentially in the (good) unique case.
Below we will show how to choose a good function H for the case k = 3 and k = 4. To

get an intuition, see Figure 2 for a plot of H for k = 3. With this function, one obtains
γH ≈ 0.6073995502 and βH ≈ 0.8022563838. Together with Lemma 14 and Observation 13,
we conclude that for a critical variable x

Pr[x ∈ forced(α, π)] ≥ Q(Tx, πH)− o(1) ≥ Rk − o(1) ≥ 0.61371,

and for a non-critical non-defining variable x

Pr[x ∈ forced(α, π)] ≥ Q(Tx, πH) ≥ γH − o(1) ≥ 0.6073995502− o(1).

3.2 Choosing a good H

3-SAT. Let now k = 3. We choose H as in [10]: Let θ ∈ [0.5, 1] be a parameter. With some
appropriate parameters a and b > 1, we define H(r) as follows:

Figure 2 H(r) for 3-SAT

H(r) :=
{
r/θ if r ∈ [0, 1− θ)
1− (−a ln(r))b if r ∈ [1− θ, 1]

To determine a and b, we set the constraints

H(1− θ) = R3(1− θ)1/2

(as θ ≥ 1/2, this right-hand side is equal to 1−θ
θ )

and

h(1− θ) = 1/θ.

If these constraints are satisfied, H(r) is a nice
distribution function that is differentiable on [0, 1].
Figure 2 gives a plot of the H(r) we use. Numerical
optimization gives θ ≈ 0.52455825 and as before c∗ ≈ 0.48659459. See Section 4.6 in [2] for
details of the computation. This gives

a ≈ 0.96782885577,

b ≈ 7.19709520894,

βH ≤ 0.8022563838,

γH ≥ 0.6073995502.

This concludes the proof of Lemma 9.

4-SAT. For 4-SAT, we use the H corresponding to the new version of [8]. For some
parameter θ ∈ [ 2

3 , 1], we let H(r) := min{ rθ , 1}. It turns out that the optimum is when
βH = 1− γH . In that case it is easily seen that the bound for PPSZ does not depend on
|Dα|, and hence we do not need Schoening. Numerical optimization gives θ ≈ 0.6803639
and c∗ ≈ 0.63878808. This implies the success probability Ω(1.46928−n), proving Theorem 5.
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4 Conclusion

We have shown how to improve PPSZ by a preprocessing step that guarantees that a
substantial fraction of variables will be critical. With this, we were able to improve the bound
for 3-SAT and 4-SAT from [10]. We have also shown that our approach nicely combines with
the improvement by [5] by giving an even better bound. In 4-SAT, we are already very close
to the unique case. We do not know if a more refined choice of H (similar to [10]), possibly
depending on ∆, allows us to close that gap.

It is interesting to see that we could make use of multiple assignments in the guessing
step before considering just one assignment using the subcube partition.
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Abstract
We prove a complexity dichotomy theorem for counting weighted Boolean CSP modulo k for
any positive integer k > 1. This generalizes a theorem by Faben for the unweighted setting. In
the weighted setting, there are new interesting tractable problems. We first prove a dichotomy
theorem for the finite field case where k is a prime. It turns out that the dichotomy theorem for
the finite field is very similar to the one for the complex weighted Boolean #CSP, found by [Cai,
Lu and Xia, STOC 2009]. Then we further extend the result to an arbitrary integer k.
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1 Introduction

The complexity of counting problems is a fascinating subject. Valiant defined the class #P
to capture most of these counting problems [21]. Several other related complexity classes
are also well studied. One example is the ⊕P class, which consists of language L where
there is a polynomial time nondeterministic Turing machine that on input x ∈ L has an odd
number of accepting computations, and on input x 6∈ L has an even number of accepting
computations [20, 18]. This class ⊕P can also be formulated as computing the parity of
counting problems. In general, for any integer k, we may consider the counting problems
modulo k, and the corresponding complexity class is denoted by #kP. The class ⊕P is in
fact #2P.

Beyond the complexity of individual problems, there has been a great deal of interest in
finding complexity dichotomy theorems which state that for a wide class of counting problems,
every problem in the class is either computable in polynomial time (tractable) or hard (either
NP-hard or #P-hard) [13, 12, 6, 15]. Such dichotomies do not hold without restrictions [17],
assuming that the larger complexity class strictly contains P. The restrictions for which
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250 The Complexity of Weighted Boolean #CSP Modulo k

dichotomy theorems are known can be framed in terms of local constraints, most importantly,
Constraint Satisfaction Problems (CSP) [19, 10, 3, 4, 5, 11, 9, 14]. In this paper we address
weighted #CSP problems, modulo any integer k, denoted by #kCSP.

Here we give a brief description of #kCSP. Let F be a set of functions, where each
F ∈ F is a function mapping Boolean variables to a value. The weighted #CSP problem
#CSP(F ) is defined as follows: The input is a finite set of constraints on Boolean variables
x1, x2, . . . , xn of the form F (xi1 , xi2 , . . . , xik ), where F ∈ F . The output is∑

x1,x2,...,xn∈{0,1}

∏
F∈F

F (xi1 , xi2 , . . . , xik ).

If each F takes values 0, 1, then this counts the number of assignments “satisfying” all the
Boolean constraints. Generally speaking, functions F ∈ F could take arbitrary values. What
we consider, #kCSP, is the case that all F take integer values and the output is computed
modulo k.

For #CSP, the complexity dichotomy theorem was first obtained for the unweighted
case [10], and was later generalized to non-negative values [11]. Cai, Lu and Xia proved a
dichotomy theorem for Boolean #CSP, where functions F ∈ F take arbitrary complex val-
ues [8]. Independently, a dichotomy theorem for real weighted functions was also obtained[2].
In these proofs, there are three extensively used reduction techniques: (1) Gadget construc-
tion, (2) polynomial interpolation, and (3) holographic transformation. As pointed out by
Valiant [23], for finite fields, holographic transformations and interpolation both appear to
offer less flexibility than they do for general counting problems.

There do exist several problems for which counting the number of solutions is #P-complete
whereas computing it modulo some integer k is polynomial time computable. One prime
example is computing the permanent of a 0/1 matrix, which is #P-complete [20]. The parity
version of this problem corresponds to computing the permanent modulo 2, which is the
same as the determinant modulo 2, and is therefore computable in polynomial time via linear
algebra computations. Some more such tractable parity problems were recently given by
Valiant [23]. Furthermore, the characteristic of the finite field may affect the tractability.
For example, Valiant showed that #7Pl-Rtw-Mon-3CNF (counting the number of satisfying
assignments of a planar read-twice monotone 3CNF formula, modulo 7) is solvable in P
by a holographic algorithm [22], while the parity or general version of the same problem is
⊕P-hard or #P-hard, respectively.

These two facts (some useful techniques cannot be adopted in finite fields and there exist
some more complicated tractable cases) make it more challenging to obtain a dichotomy
for #kCSP problems. In [14], Faben obtained a dichotomy theorem for unweighted #kCSP.
Essentially, there is no additional tractable case in his dichotomy theorem (except one
obvious case). However, when we allow functions to take weights in the ring Zk, some new
non-trivial tractable cases do emerge, which is similar to weighted vs unweighted #CSP
without modulus. When moving from unweighted to real or complex weighted cases, the
presence of both positive and negative values, and more generally, complex numbers, offers
the opportunity of interesting cancelations, which could lead to efficient algorithms. In all
such dichotomy theorems, roots of unity plays an essential roles [15, 8, 2, 7]. In finite fields,
interesting cancelations do appear and every nonzero element is a root of unity. For general
k, which may not be a prime, another subtlety is that the computation is performed in a
ring Zk rather than a field, where some nice property of a field no longer holds.

Our result starts from the finite field case, where the modulus k is an odd prime. In this
case, the final result is algebraically the same as the dichotomy for complex weighted #CSP.
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The imaginary unit i =
√
−1 plays an important role in the dichotomy for the complex

weighted #CSP [8]. Here by “algebraically", we mean that we view i as a fourth primitive
root of unit which is also well defined in a finite field (or its extension). Then the dichotomy
for #kCSP is identical to that for complex weighted #CSP. Some of the proof techniques
are fairly similar to those in the proof for the complex weighted case [8], while others are
completely different. For example, the polynomial interpolation is one of the most important
techniques in [8], but it is not available for the finite field.

Hereby we briefly explain why the polynomial interpolation does not work. Consider
the simplest case where one would like to realize a unary function [1, x] by polynomial
interpolation. The answer to an instance of #pCSP including [1, x], is a polynomial in the
variable x. The degree of this polynomial is the number of occurrences of this function [1, x].
After replacing all of its occurrences by some realizable unary functions, we can evaluate
the polynomial in other points of the variable. Given enough such evaluations, we can get
a system of linear equations in the coefficients. The hope is to recover all coefficients by
solving this system as long as its not singular. Then we can evaluate the polynomial in the
original point x. In finite field Zp, we can reduce the degree of the polynomial to p− 1 by
Fermat’s Little Theorem. So we have p different coefficients to recover. To get a non-singular
linear system, we need to evaluate the polynomial on at least p points, which means we need
to construct at least p different unary functions. However, in Zp, there are only p essentially
different unary functions of the form [1, x], and thus the interpolation is not even needed if
we could construct all of them!

Another difference between the proof here and the one in [8] is that the norm of a complex
number is used in [8]. This is an analytical, rather than algebraical, property of complex
numbers, and is not available at all in finite fields. Such kinds of similarity and difference
between fields with characteristic zero and finite p is one main theme of algebraical geometry
[16]. It is interesting to observe similar phenomena in the complexity theory.

For general k, let k = pr1
1 p

r2
2 · · · prm

m , where pi’s are distinct primes, be the prime factor-
ization of k. By the Chinese Remainder Theorem, to solve the problem of #kCSP(F ) is
equivalent to solving all the #p

ri
i
CSP(F ). For #prCSP and p being an odd prime, we prove

a surprising result that #prCSP(F ) is tractable iff #pCSP(F ) is, assuming #P is not equal
to P. One direction is trivial, namely if #prCSP(F ) can be solved in polynomial time, so
can #pCSP(F ). The reduction in the other direction is not of the black box style. We need
the dichotomy for #pCSP(F ) to state all the tractable cases, assuming #P is not equal to
P, and we also need to explicitly use algorithms to solve such tractable cases. The algorithm
for #prCSP(F ) has a time complexity which is nr times larger than that of the algorithm
for #pCSP(F ). We use a different treatment to solve the case that p = 2.

2 Preliminaries

Let k be a given constant integer. In this paper we address the following type of counting
problems, called weighted Boolean #kCSP. Let F be a set of functions, where each f ∈ F

is a function f : {0, 1}r → Z, mapping Boolean variables to integers. We call r the arity of
f . The problem #kCSP(F ) is defined as follows: The input is a finite set of constraints
on Boolean variables x1, x2, . . . , xn of the form fj(xij,1 , xij,2 , . . . , xij,rj

), where fj ∈ F . The
output is ∑

x1,x2,...,xn∈{0,1}

∏
j

fj(xij,1 , xij,2 , . . . , xij,rj
)

 mod k. (1)

STACS’11
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Since we are only interested in the final value modulus k, it is equivalent to view that all the
functions take values in the ring Zk.

A symmetric function f of arity r on Boolean variables can be expressed by [f0, f1, . . . , fr],
where fj is the value of f on inputs of weight j. We also use ∆0,∆1 to denote [1, 0] and [0, 1]

respectively. A binary function f is also expressed by the matrix
[
f(0, 0) f(0, 1)
f(1, 0) f(1, 1)

]
.

Suppose f is a function on input variables x1, x2, . . . , xr. fxs=c denotes the function
fxs=c(x1, . . . , xs−1, xs+1, . . . , xr) = f(x1, . . . , xs−1, c, xs+1, . . . , xr), and fxs=∗ denotes the
function fxs=∗ = fxs=0 + fxs=1.

The underlying relation of f is given by Rf = {X ∈ {0, 1}r|f(X) 6= 0}. We also view
relations as functions from {0, 1}r to {0, 1}. In this way, Rf could be viewed as the unweighted
version of f . If the modulus k is a prime, we could copy f k− 1 times to get fk−1 which, by
Fermat’s Little Theorem, is the unweighted version of it. In this way, we would be able to
use some existing results for unweighted #kCSP problems.

A relation R ⊆ {0, 1}r being affine means it is the affine linear subspace composed of
solutions of a system of affine linear equations, equivalently, if a, b, c ∈ R, then a⊕ b⊕ c ∈ R.
If Rf is affine, we say f has affine support.

One important starting point of our work are the hardness results for unweighted #kCSP
[14]. For the unweighted case, every function f takes 1 if the input X ∈ Rf , and takes 0
otherwise.

I Theorem 1. [14] Given an unweighted function set F , and an integer k, #kCSP(F )
is computable in polynomial time if all the relations in F are affine, or if k = 2 and all
functions in F are closed under complement. Otherwise it is #kP-hard 1.

As a corollary, we have the following hardness result.

I Corollary 2. #kCSP({[0, 1, 1]}) and #kCSP({[1, 1, 0]}) are #kP-hard for all k.

We also need the following Pinning Lemma for #kCSP.

I Lemma 3. For every F and odd prime k, #kCSP(F ∪ {[1, 0], [0, 1]}) ≤T #kCSP(F ).

The proof is similar to that in [2].
We regard a function f and c·f as the same function, where c is a constant relatively prime

to the modulus k. Our study on #kCSP(F ) starts with prime modulus. Doing computation
modulo a prime is similar to computing with complex numbers in many aspects. For a
given k, we define ik as an element that satisfies i2k ≡ −1 (mod k). In some circumstances,
ik is an element of Zk, while in other situations, we need to extend the field and consider
Zk[x]/(x2 + 1). There are essentially two elements satisfying this property, but it doesn’t
matter which one we pick as ik.

We further define two classes of functions, for which the #kCSP problems are tractable.
Let X be an r+1 dimensional column vector (x1, x2, . . . , xr, 1) over Boolean field F2. Suppose
A is a Boolean matrix. χAX denotes the affine relation on inputs x1, x2, . . . , xr, whose value
is 1 if AX is the zero vector, 0 if AX is not the zero vector.

Ak denotes all functions which have the form χAX i
L1(X)+L2(X)+···+Ln(X)
k in modulo k,

where Lj is a 0-1 indicator function χ〈αj ,X〉, αj is a r + 1 dimensional vector, and the inner

1 We keep the statement as in Faben’s paper. Technically, in the case that k = 2k′ where k′ > 1 is odd,
and F are closed under complement and not all affine, we believe that we can only claim the problem is
#k′P-hard.
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product 〈·, ·〉 is over Z2. The additions among Lj(X) are just the usual addition in Z. Since
it is the power of i, it can be computed modulo 4, but not modulo 2. (Since we ignore the
global constant, all functions that are constant multiples of these functions are also in this
class.)

Pk denotes the class of functions which, in modulo k, can be expressed as a product of
unary functions, binary equality function ([1, 0, 1]), and binary disequality function ([0, 1, 0]).

It is often useful to view a #kCSP instance as a bipartite graph G = (U, V,E) where
U corresponds to the set of constraints and V corresponds to the set of variables. Edge
(u, v) ∈ E iff variable v appears in constraint u. A subgraph of G is simply a certain
combination of constraints in terms of CSP, and is sometimes called gadget. It is easy to see
that if there are several connected components in G, then the result of the whole instance
is exactly the product of that in the connected components. Therefore, it is sufficient to
consider connected #kCSP instances.

We also need some knowledge from number theory to deal with prime powers. Given k,
a is a quadratic residue modulo k if there exists y such that y2 ≡ a (mod k). Thus, ik exists
in Zk if and only if −1 is a quadratic residue modulo k.

I Lemma 4. Let p be an odd prime and k = pr. −1 is a quadratic residue modulo p if and
only if it is a quadratic residue modulo k.

Proof. The “if” direction is obvious. If there exist some ip ∈ [p] that i2p ≡ −1 (mod p), we
consider the number jt = ip+tp, where t is an integer ranging from 0 to pr−1−1. If there exist
t and t′ that j2

t ≡ j2
t′ (mod pr), it is easy to compute that pr−1|(p(t+t′)+2ip)(t−t′), because

|t− t′| < pr−1, p|p(t+ t′) + 2ip. We get p|2ip, which is impossible. Thus the pr−1 values {j2
t

(mod pr)} are distinct and there must exist some t such that j2
t ≡ −1 (mod pr). J

3 Complexity in the finite field Zp

In this section, we deal with the complexity of counting CSP problems in the finite field
Zp. The parity case that p = 2, which is in fact the same as the unweighted case, has been
solved in [14] (Theorem 1). In the following we always assume that p is an odd prime. All
computations are done in the finite field Zp. For convenience, we often use the usual notation
= instead of ≡ (mod p).

The counting CSP problem for Pp or Ap is tractable. The algorithm for Pp is based on
decomposing functions into separated components that is easy to solve. The algorithm for
Ap is similar to that for the complex weighted #CSP problems. We need the following two
lemmas. The proof for the modulo case here is similar to the complex weighted case in [8].

I Lemma 5. Let F (x1, x2, . . . , xk) = χAX i
L1(X)+L2(X)+···+Ln(X) ∈ A . If AX = 0 is

infeasible over Z2, then
∑
x1,x2,...,xk

F = 0. If AX = 0 is feasible, then in polynomial time,
we can construct another function H(y1, y2, . . . , ys) = iL

′
1(Y )+L′2(Y )+···+L′n(Y ) ∈ A , such that

0 ≤ s ≤ k, and
∑
x1,x2,...,xk

F =
∑
y1,y2,...,ys

H.

I Lemma 6. Let F (x1, x2, . . . , xk) = iL1(X)+L2(X)+···+Ln(X). Exactly one of the following
two statements hold:
1. (Congruity) There exists a constant c ∈ {1,−1, i,−i} such that for all x2, x3, . . . , xk ∈
{0, 1} we have F x1=1/F x1=0(x2, x3, . . . , xk) = c;

2. (Semi-congruity) There exists a constant c ∈ {1, i} and an affine subspace S of dimension
k− 2 on T = {(x2, x3, . . . , xk) | xi ∈ Z2}, such that F x1=1/F x1=0(x2, x3, . . . , xk) = c on
S, and F x1=1/F x1=0(x2, x3, . . . , xk) = −c on T − S.

STACS’11
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We first apply Lemma 5 to get rid of the χAX factor, and then use the congruity or
semi-congruity property of constraint functions proved in Lemma 6 to eliminate variables
one by one. Details can be found in [8].

We will then show that for any other functions the problem is hard. Before the hardness
proof we will mention two constructions, which will be used throughout our proofs.

Given a function f and any positive integer k, we can simulate a function g such that
any entry of g is the corresponding entry of f to the kth power. This is done by connecting
corresponding edges of k copies of f with an equality of arity k + 1. Figure 1 is a simple
example when k = 2 and the arity of f is 3. The other construction is for binary functions.
Given two binary functions f and g, whose matrices are F and G respectively, we connect
them directly via a binary equality as shown in Figure 2. It is easy to check that the matrix
of the resulting function is FG.

ff

=3

=3 =3

Figure 1 Duplicate two copies of f

gf

=2

Figure 2 Directly connect two binary func-
tions

The starting point of our hardness proof is the following lemma. In the rest of this section
we may omit the subscripts of Ap and Pp when it is clear from context.

I Lemma 7. If [a, b, c] 6∈ A ∪P, #pCSP({[a, b, c]}) is #pP-hard. To be explicit, all tractable
functions [a, b, c] from A ∪P have one of the following forms: [x, 0, y], [0, x, 0], [x2, xy, y2],
x[1,±i, 1] or x[1,±1,−1].

This lemma says, if restricted to one single symmetric binary function, a dichotomy
theorem holds. The same lemma also served as the hardness starting point for the complex
weighted dichotomy [8]. However, the proof techniques are completely different. The main
proof tool for the complex weighted dichotomy [8] is polynomial interpolation, which is not
available here as was explained in Section 1. Before proving this lemma, we state several
useful facts.

I Lemma 8. For any symmetric binary function [0, b, c] and a prime number p, where bc 6≡ 0
(mod p), #pCSP({[0, b, c]}) is #pP-hard.

Proof. Via the construction mentioned above, we can realize [0, bk, ck]. Taking k = p− 1,
by Fermat’s Little Theorem, it becomes [0, 1, 1]. By Corollary 2, the #pCSP problem is
#pP-hard. J

We also need the following lemma to realize new binary functions. The new binary
functions are not by an explicit construction but an existent argument, which crucially uses
the finiteness of the field.
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I Lemma 9. For any non-degenerate 2× 2 matrix A in Zp, there exists k such that Ak ≡ I
(mod p) where I is the identity matrix.

Proof. Since Zp is finite, there are finitely many non-degenerate 2× 2 matrices. Thus, by
Pigeonhole Principle, there exists p and q such that p < q and Ap ≡ Aq (mod p). Taking
the smallest such pair and letting k = q − p, it is easy to see that Ak ≡ I (mod p). J

I Corollary 10. For any non-degenerate 2× 2 matrix A in Zp, there exists a positive integer
k such that Ak ≡ A−1 (mod p).

I Lemma 11. Let F be a function of matrix
[
a b

c d

]
, where p - abcd and a2d2 6≡ b2c2

(mod p). #pCSP({F}) is #pP-hard.

Proof. We can realize
[
a2 c2

b2 d2

]
by two copies of the function. Since a2d2 6= b2c2, this

matrix is non-degenerate. Thus by Corollary 10, we can realize (a2d2−b2c2)−1
[

d2 −c2

−b2 a2

]
.

As we consider the problem in the field Zp, (a2d2 − b2c2)−1 is just a constant factor and we
may ignore it. By the pinning Lemma 3, we can realize [d2,−c2], and hence [d2, 0,−c2], by
connecting it to a =3. Then the following function[

a b

c d

] [
d2 0
0 −c2

] [
a c

b d

]
=
[
a2d2 − b2c2 acd2 − bc2d

acd2 − bc2d 0

]
,

or [a2d2 − b2c2, cd(ad − bc), 0] is realizable. Since p - abcd and a2d2 6= b2c2, we have
a2d2 − b2c2 6= 0 and cd(ad− bc) 6= 0. By Lemma 8, #pCSP({F}) is #pP-hard. J

Now we can prove Lemma 7.

Proof. (Lemma 7) If a = 0, we know bc 6= 0, otherwise it is in one of the five exceptional
cases. So by Lemma 8, #pCSP({[a, b, c]}) is #pP-hard . The case c = 0 is symmetric. Since
[a, b, c] 6∈ A ∪P, we know b 6= 0. Therefore we will assume in the following that abc 6= 0.

By Lemma 11, #pCSP({[a, b, c]}) is #pP-hard if b4 6= a2c2. Moreover, if b2 = ac, then
[a, b, c] ∈P. Therefore in the following, we assume that b2 = −ac. Since [a, b, c] /∈ A ∪P,
we must have that a 6= ±c.

Next we connect two copies of [a, b, c] to realize [a2 + b2, ab+ bc, b2 + c2]. Since b2 = −ac,
we actually have [a(a− c), b(a+ c), c(c− a)] , [a′, b′, c′]. It is easy to verify that b′4 6= a′2c′2,
and thus #pCSP({[a, b, c]}) ≥T #pCSP({[a′, b′, c′]}), which is #pP-hard . J

I Lemma 12. If RF is not affine, then #pCSP({F}) is #pP-hard.

Proof. We can easily reduce the unweighted case to the weighted one, the hardness follows.
J

Now we come to the two key lemmas for the hardness proof. Both proofs inductively
reduce the arity of a function. Suppose F 6⊆ A and F 6⊆ P. Thus there exists F 6∈ A

and G 6∈P, where F,G ∈ F . (It is possible that G = F ). From F and G, we recursively
simulate functions with smaller arity, keeping the property of being not in A and not in P

respectively. The proofs of these two lemmas are very similar to those in [8]. Due to space
limitation, we give a sketch of proof for Lemma 14 in the Appendix and omit the proof for
Lemma 13.
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I Lemma 13. If F 6∈ A , then either #pCSP({F}) is #pP-hard, or we can simulate a unary
function H /∈ A , that is, there is a reduction from #pCSP({F,H}) to #pCSP({F}).

I Lemma 14. For any function F 6∈ P, either #pCSP({F}) is #pP-hard , or we can
simulate, using F , a function [a, 0, 1, 0] (or [0, 1, 0, a]), where a 6= 0, or a binary function
H 6∈P having no zero values.

Now we are ready to prove the main lemma.

I Lemma 15. Let p be an odd prime, and F a class of functions mapping Boolean inputs
to [p]. If F ⊆ A or F ⊆ P, #pCSP(F ) is computable in polynomial time. Otherwise,
#pCSP(F ) is #pP-hard .

Proof. For A and P, their polynomial time algorithms are given above.
If F 6⊆ A and F 6⊆ P, by Lemma 13, either #pCSP(F ) is #pP-hard , or we can

simulate a function F = [1, λ] /∈ A . In particular λ /∈ {0,±1,±i}. By Lemma 14, either
#pCSP(F ) is #pP-hard , or we can simulate a function P = [a, 0, 1, 0], or P ′ = [0, 1, 0, a],
where a 6= 0, or a binary function H 6∈P having no zero values.

Firstly, we prove #pCSP({F, P}) is #pP-hard . Clearly P x1=∗ = [a, 1, 1]. If a 6∈
{1,−1}, it is #pP-hard by Lemma 7. If a ∈ {1,−1}, we can construct Q(x1, x2) =∑
x3
P (x1, x2, x3)F (x3) = [a, λ, 1], which is [±1, λ, 1]. Both of them are #pP-hard by

Lemma 7. The proof for #pCSP({F, P ′}) is the same.
Secondly, we prove #pCSP({F,H}) is #pP-hard . After normalizing, we may suppose

H =
[
1 x

y z

]
, where xyz 6= 0, and z 6= xy. There are two cases, depending on whether

z = −xy.
For the case z 6= −xy, we conclude that it is hard by applying Lemma 11 on H.
For the case z = −xy, we construct some binary functions with an integer parameter s

as follows:∑
x3

H(x1, x3)H(x2, x3)(F (x3))s = [1 + λsx2, (y + λsxz), (y2 + λsz2)]

= [1 + λsx2, y(1− λsx2), y2(1 + λsx2)].

As λ is not a power of i, at most one of the two values x2 and λx2 can be a power of i. Now
we choose s = 0 or s = 1 above so that λsx2 6∈ {±1,±i}.

After normalizing, we may write the function [1 + λsx2, y(1 − λsx2), y2(1 + λsx2)] as
[1, y(1− λsx2)(1 + λsx2)−1, y2], noticing that 1 + λsx2 6= 0. We claim that this function is
not one of the five tractable cases from Lemma 7. Since there are no zero entries, clearly it is
not the first two cases. It has rank 2, therefore it is not the third case. If it were the fourth
tractable case [1,±i, 1], then y = ±1, and (1− λsx2)(1 + λsx2)−1 = ±i. This implies that
λsx2 = ±i, which is impossible. If [1, y(1 − λsx2)(1 + λsx2)−1, y2] = [1,±1,−1], the fifth
tractable case, then y = ±i, and again (1− λsx2)(1 + λsx2)−1 = ±i, also impossible. J

4 Dichotomy for a general integer k

We first deal with the case when k is a power of an odd prime. Then we use Chinese
Remainder Theorem to prove hardness for other composite numbers. Beigel and Gill have
shown that the class #prP is the same as #pP and for a composite k having two or more
prime factors, the modulo counting class is a union of counting classes modulo each of its
prime factors [1]. Therefore, we only talk about #pP-hard for prime p.
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I Lemma 16. Suppose p is an odd prime, k = pr for some integer r ≥ 1. F is a finite set
of constraint functions. If, after taking modulus p, F ⊆ Ap or F ⊆ Pp, #kCSP(F ) has
polynomial time algorithms. Otherwise, #kCSP(F ) is #pP-hard .

Proof. If #pCSP(F ) is #pP-hard, then #kCSP(F ) must be #pP-hard. Therefore we only
need to show the tractable part. We decompose every function f ∈ F into the sum of two
functions gf and hf , such that all values of hf are multiples of p, and gf ∈Pk or gf ∈ Ak,
depending on whether f ∈ Pp or f ∈ Ap. Such a decomposition is always possible. If
f ∈Pp, assuming that f =

∏
fi, where fi is either unary, or binary equality or disequality,

the we can simply take gf =
∏
fi in modulo k. Since gf ≡ f (mod p), we can see that values

of hf = f − gf are multiples of p. On the other hand, if f ∈ Ap, then f could be expressed

as f = χAX i

∑
Li(X)

p . Let gf = χAX i

∑
Li(X)

k . It is easy to see that gf ≡ f (mod p), and hf
satisfies our condition.

Given the decomposition, we can express the final summation in the following way∑
x1,x2,...,xn∈{0,1}

∏
f(xi1 , xi2 , . . . , xir ) mod k

=
∑

x1,x2,...,xn∈{0,1}

∏
(gf (xi1 , xi2 , . . . , xir ) + hf (xi1 , xi2 , . . . , xir )) mod k

=
∑

f ′1∈{gf1 ,hf1}

· · ·
∑

f ′n∈{gfn ,hfn}

 ∑
x1,x2,...,xn∈{0,1}

∏
f ′i(xi1 , xi2 , . . . , xir )

 mod k

We only need to consider the assignments of functions such that the summation in the
parenthesis is nonzero. To ensure that this is nonzero, no more than r of the functions f ′i
can be assigned hfi . The total number of such combinations is of order O(nr+1).

For every such combination, assume that f ′1, . . . , f ′r are assigned. Since F is finite, the
degree of the functions is bounded. Therefore, constantly many variables are involved in f ′1,
. . . , f ′r. We can list all assignments to these variables in constant time. We can express each
assignment with the help of Lemma 3, and obtain a new instance in #kCSP(F ′) such that
F ′ ⊆ A or F ′ ⊆P, depending on the case of F . Therefore, we can compute the value of
these instances in polynomial time, and thus we can compute the value of the whole instance
efficiently. J

Now we deal with k = 2r. We need the following claim to establish the connection
between the weighted and unweighted case.

I Lemma 17. For any positive integer r and t, (1 + 2t)2r ≡ 1 (mod 2r).

Therefore, we only need to duplicate the weighted functions k = 2r times to obtain an
unweighted function. Note this process actually converts all odd values to 1, and all even
values to 0. Then we have the following result for k = 2r.

I Lemma 18. If k = 2r and r > 1, then #kCSP(F ) is #2P-hard, unless all functions in
F are affine modulo 2, for which we have a polynomial time algorithm.

Proof. Hardness can be proved by considering the unweighted version of F and applying
Theorem 1. Algorithm for an affine F is similar to that in Lemma 16, except that for a
given combination and assignment, we calculate the value of the gadget directly instead of
applying the Pinning Lemma. This can be done efficiently according to [8]. J

Based on Lemma 15, Lemma 16, Lemma 18 and the Chinese Remainder Theorem, we
conclude with our main result:
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I Theorem 19. Let k = 2r0pr1
1 p

r2
2 · · · prm

m , where pi’s are distinct odd primes, r0 ≥ 0, and
ri ≥ 1 for i = 1, 2, ...,m. Let F be a set of functions. #kCSP(F ) is in P if one of the
following three conditions is satisfied.
1. r0 = 0. F ⊆ Api or F ⊆Ppi for all i ∈ [m].
2. r0 = 1. F ⊆ A2 or every function in F are closed under complement after mod 2.

F ⊆ Api or F ⊆Ppi for all i ∈ [m].
3. r0 ≥ 2. F ⊆ A2. F ⊆ Api

or F ⊆Ppi
for all i ∈ [m].

Otherwise the problem is #pP-hard for some p|k. More specific, we have
For i ∈ [m], if F 6⊆ Api

and F 6⊆Ppi
, then #kCSP(F ) is #pi

P-hard.
If r0 = 1, F 6⊆ A2, and it is not the case that every function in F are closed under
complement after mod 2, then #kCSP(F ) is #2P-hard.
If r0 ≥ 2 and F 6⊆ A2, then #kCSP(F ) is #2P-hard.

The statement of the main theory is a little complicated due to technique reason 2 . In
terms of dichotomy, we have a simple statement.

I Theorem 20. Let k > 1 and F be a set of functions. Then #kCSP(F ) is either in P or
#pP-hard for some p|k.
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A Proof of Lemma 14

Proof. Suppose F has arity r. Since P contains all unary functions and F 6∈ P, r ≥ 2.
Define an |RF |×r {0, 1}-matrix whose rows list every element of RF , and columns correspond
to x1, . . . , xr.

We first remove any column which is all-0 or all-1 and update the table to RFxi=0 or
RFxi=1 , respectively. If two columns are identical or are complementary in every bit, we
remove one of them and update the table to RFxj =∗ , where j corresponds to the column
removed. We remove columns as long as possible. It is easy to see that this removal process
maintains the property of not belonging to P.
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Now we suppose there is some G 6∈P where no more columns can be removed by the
above process. There must be some columns left in the table, otherwise the function just
before the last column removal is a unary function, hence in P. In fact G being not in P,
the arity of G is ≥ 2. For simplicity we still denote it by r. We have two cases:

Case 1: |RG| < 2r. By Lemma 12, we may assume RG is affine, given by an affine linear
system AX = 0. We have shown that |RG| 6= 0, as some columns remain. Since G is not
unary, the table has more than one columns. If |RG| = 1, any two columns (of length one)
must be identical or complementary and the removal process should have continued. Thus
|RG| > 1. W.l.o.g. assume x1, . . . , xs are free variables in AX = 0 and xs+1, . . . , xk are
dependent variables. |RG| = 2s is a power of 2. We have shown that s ≥ 1. By |RG| < 2r,
s < r. We claim s ≥ 2. If instead s = 1, then every x2, . . . , xr is dependent on x1 on RG, so
the column at x2 must be an all-0 or all-1 column, or be identical or complementary to x1.
The expression of xr in terms of x1, . . . , xs must involve at least two non-zero coefficients;
otherwise the column at xr must be an all-0 or all-1 column, or be identical or complementary
to another column. W.l.o.g., say the coefficients of x1, x2 are non-zero.

Let P (x1, x2, xr) = Gx3=0,...,xs=0,xs+1=∗,...,xr−1=∗ (these two lists of variables could be
empty). It can be verified that RP = χx1⊕x2⊕xr=c for some c ∈ Z2.

The affine linear equation x1 ⊕ x2 ⊕ xr = c is symmetric. Now we define a “symmetrized”
function H(x1, x2, xr) =

∏
σ∈S3

P (xσ(1), xσ(2), xσ(r)), where S3 is the symmetry group on
three letters {1, 2, k}. This H is a symmetric function on (x1, x2, xr) and has support
RH = RP . Thus, after normalizing, H = [a, 0, 1, 0] or [0, 1, 0, a] where a 6= 0. We remark
that this ternary function H 6∈P.

Case 2: |RG| = 2r. If for all 1 ≤ i ≤ r, the ratio Gxi=1/Gxi=0 is a constant function
ci, (since |RG| = 2r there are no divisions by zeros), then G = c0 ·

∏
1≤i≤r Ui(ci), where the

constant c0 = Gx1=0,...,xr=0, and Ui(ci) is the unary function [1, ci] on xi. This gives G ∈P,
a contradiction.

Now suppose for some i, Gxi=1/Gxi=0 is not a constant function. W.l.o.g., assume that
i = 1. The Boolean hypercube on (x2, . . . , xr) ∈ {0, 1}r−1 is connected by edges which flip
just one bit. W.l.o.g., suppose that
Gx1=1/Gx1=0(0, a3, . . . , ar) 6= Gx1=1/Gx1=0(1, a3, . . . , ar). Set x3 = a3, . . . , xr = ar, we
get a binary function H(x1, x2) = G(x1, x2, a3, . . . , ar). We have that H(1, 0)/H(0, 0) 6=

H(1, 1)/H(0, 1), hence the rank of H =
[
H(0, 0) H(0, 1)
H(1, 0) H(1, 1)

]
is 2.

If H were in P, then partition the variable set according to connectivity by binary
equality and disequality functions. If any connected component has at least 2 variables, we
can set values to these 2 variables so that H = 0. But H is never zero. Then each component
must be a single variable and H is defined by a product of unary functions. But such a
function has rank 1. This contradiction completes our proof. J
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Abstract
Bulatov (2008) and Dyer and Richerby (2010) have established the following dichotomy for the
counting constraint satisfaction problem (#CSP): for any constraint language Γ, the problem of
computing the number of satisfying assignments to constraints drawn from Γ is either in FP or is
#P-complete, depending on the structure of Γ. The principal question left open by this research
was whether the criterion of the dichotomy is decidable. We show that it is; in fact, it is in NP.
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1 Introduction

Many important and natural problems in areas such as graph theory, Boolean logic, databases,
type inference, scheduling, artificial intelligence and even theoretical physics can be expressed
naturally as constraint satisfaction problems (CSPs) [9, 13]. In such problems, we seek to
assign values from some domain to variables, while simultaneously satisfying a collection of
constraints on the values that may be taken by given combinations of the variables.

For example, graph three-colourability is the problem of deciding whether we can assign
one of three colours (domain values) to each vertex of a graph (variables) such that no
edge joins vertices with the same colour (constraints). Since it includes this well-known
NP-complete problem, it is immediate that this general form of CSP, known as uniform CSP
is, itself, NP-complete.

For this reason, attention has focused on the so-called nonuniform version of CSP. Here,
we fix a domain D and a set Γ of relations over D, known as the constraint language. We
write CSP(Γ) for the version of CSP where we only allow constraints of the form, “the values
assigned to variables v1, . . . , vr must form a tuple in the r-ary relation H ∈ Γ.” Note that all
the constraints needed to express three-colourability can be written by taking D to be any
three-element set and letting Γ contain just the binary disequality relation on D.

It follows that, for some Γ, even the restricted problem CSP(Γ) is NP-complete. However,
taking Γ to be the binary disequality relation on a two-element domain allows us to express
graph two-colourability, which is in P. Feder and Vardi [13] conjectured that these are the
only possibilities: that is, for all Γ, CSP(Γ) is in P or is NP-complete. To date, this conjecture
remains open but it is known to hold in special cases [1, 14, 18]. Recent efforts to resolve the
conjecture have focused on techniques from universal algebra [6].

It follows from Ladner’s theorem that there can be no such dichotomy for the whole of
NP, since either P = NP or there is an infinite, strict hierarchy of complexity classes between
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the two [15]. Therefore, if P 6= NP, there are problems in NP that are neither in P nor
NP-complete. However, a dichotomy for CSP is still possible because the problems expressible
as CSP(Γ) for some Γ are a proper subset of NP. In particular, there is no Γ such that CSP(Γ)
defines graph Hamiltonicity or even graph connectivity (this follows from [11,12]). Further,
Ladner’s proof is via a diagonalisation that does not seem to be expressible in CSP [13].

In the present paper, we consider the counting constraint satisfaction problem, #CSP.
Here, we are interested in the number of satisfying assignments to CSP instances. For several
restricted classes of constraint language Γ, it was known that #CSP(Γ) is either in polynomial
time or #P-complete [4, 5, 7–9].

Bulatov successfully proved the dichotomy for all Γ [2,3], showing that #CSP(Γ) is always
either computable in polynomial time or #P-complete. He made extensive use of techniques
from universal algebra; the present authors gave an elementary proof of an equivalent
dichotomy [10]. The principal question left open by this research was the decidability of the
distinct but equivalent criteria: that is, whether there is an algorithm that determines for
which Γ #CSP(Γ) is tractable and for which it is #P-complete. In this paper, we demonstrate
such an algorithm.

We first describe the dichotomy — formal definitions will be given later. A ternary
relation R is balanced if the matrix M(x, y) = |{z : xyz ∈ R}| decomposes into blocks of
rank one. A relation R ⊆ Dr of arity r ≥ 3 can be considered as a ternary relation over
Dk ×D` ×Dr−k−` for any k, ` ≥ 1 with k + ` < r. We say that R is balanced if every such
interpretation as a ternary relation is balanced.

A relation that can be defined from the relations in Γ using only existential quantification,
conjunction and equalities between variables is said to be pp-definable. Γ is strongly balanced
if all pp-definable relations of arity three or more are balanced. This gives the criterion of
the dichotomy in [10].

I Theorem 1 (Dichotomy Theorem). If Γ is strongly balanced, then #CSP(Γ) is in FP;
otherwise, it is #P-complete.

Note that infinitely many relations are pp-definable in Γ, which is why decidability is
not obvious. Bulatov’s criterion is equivalent but expressed in terms of an infinite algebra
constructed from Γ so, again, is not obviously decidable.

In the remainder of the paper, we construct a nondeterministic, polynomial-time algorithm
that determines whether a given constraint langauge Γ is strongly balanced.

1.1 Proof outline
Our proof of the Dichotomy Theorem [10] uses succinct representations, which we call
“frames”, of a class of relations we call strongly rectangular. We do not require frames in the
present paper but strong rectangularity is useful as it imposes structure and because every
strongly balanced relation is strongly rectangular. We first show that strong rectangularity
is decidable in NP.

We next develop an alternative, equational characterisation of strong balance. We use this
characterisation to translate the question of whether a constraint langauge Γ over domain D
is strongly balanced to a property of homomorphisms to the relational structure (D,Γ)6 (we
use a standard definition of Cartesian products). Using a technique due to Lovász [16], we
show that this property is equivalent to the existence of certain automorphisms of the product
structure. It follows that strong balance is decidable in NP, since we can nondeterministically
“guess” a suitable collection of functions and check, in deterministic polynomial time, that
they are the desired automorphisms.
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1.2 Organisation of the paper
The remainder of the paper is organised as follows. The necessary definitions and notation
and some basic results appear in Section 2. In Section 3, we review the concept of strong
rectangularity, which we introduced in [10] and, in Section 4, we formally define strong
balance and present some necessary results on rank-one block matrices. The proof of the
decidability of strong balance appears in Section 5 and some concluding remarks follow, in
Section 6.

2 Definitions and notation

Given a set D, we write a = (a1, . . . , ar) for an r-ary tuple in Dr. We will sometimes omit
the brackets and commas and just write a1 . . . ar.

For a natural number n, we write [n] for the set {1, . . . , n}.

2.1 Relations and constraints
Let D = {d1, d2, . . . , dq} be a finite domain with q = |D|. A constraint language Γ is a finite
set of named, finitary relations on D, including the binary equality relation {(di, di) : i ∈ [q]},
which we denote by =. We will call S = (D,Γ) a relational structure. We may view an r-ary
relation H on D with ` = |H| as an `× r matrix with elements in D. Then a tuple t ∈ H is
any row of this matrix. We write HΓ for the instantiation of the relation H in Γ.

We define the size of a relation H as ‖H‖ = `r, the number of elements in its matrix, and
the size of Γ as ‖Γ‖ =

∑
H∈Γ ‖H‖. To avoid trivialities, we will assume that every relation

H ∈ Γ is nonempty. We will also assume that every d ∈ D appears in a tuple of some relation
H ∈ Γ. If this is not so for some d, we can remove it from D. It then follows that ‖Γ‖ ≥ q.

Let V = {ν1, ν2, . . . , νn} be a finite codomain. An assignment is a function x : V → D.
We will abbreviate x(νi) to xi. If {i1, i2, . . . , ir} ⊆ [n], we write H(xi1 , xi2 , . . . , xir ) for
the relation Θ = {x : (xi1 , xi2 , . . . , xir

) ∈ H} and we refer to this as a constraint. Then
(νi1 , νi2 , . . . , νir ) is the scope of the constraint and we say that x is a satisfying assignment
for the constraint if x ∈ Θ.

A Γ-formula Φ in a set of variables {x1, x2, . . . , xn} is a conjunction of constraints
Θ1 ∧ · · · ∧Θm. We will identify the variables with the xi above, although strictly the latter
are only a model of the formula. The precise labelling of the variables is of no significance
and a formula remains the same if its variables are bijectively renamed.

A Γ-formula Φ describes an instance of the constraint satisfaction problem (CSP) with
constraint language Γ. A satisfying assignment for Φ is an assignment that satisfies all Θi

(i ∈ [m]). The set of all satisfying assignments for Φ is the Γ-definable relation RΦ over D.
We will make no distinction between Φ and RΦ, unless this could cause confusion.

If H ⊆ Dr and I = {i1, . . . , ik} ⊆ [r], with i1 < · · · < ik, we write prIH for the projection
of H given by {(ai1 , . . . , aik

) : a1 . . . ar ∈ H}.

2.2 Definability
A primitive positive (pp) formula Ψ is a Γ-formula Φ with existential quantification over
some subset of the variables. A satisfying assignment for Ψ is any satisfying assignment for Φ.
The unquantified (free) variables then determine the pp-definable relation RΨ, a projection
of RΦ. Again, we make no distinction between Ψ and RΨ.

The set of all Γ-definable relations is denoted by CSP(Γ) and the set of all relations
pp-definable in Γ is the relational clone 〈Γ〉.
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2.3 Polymorphisms
A Mal’tsev polymorphism of a relation H ⊆ Dr is a function ϕ : D3 → D with the following
properties:

1. whenever a,b, c ∈ H, we have ϕ(a,b, c) :=
(
ϕ(a1, b1, c1), . . . , ϕ(ar, br, cr)

)
∈ H;

2. for any a, b ∈ D, ϕ(a, b, b) = ϕ(b, b, a) = a.

The first condition describes a (ternary) polymorphism; the second is known as the
Mal’tsev property. Note that the first condition can be extended to functions of arbitrary
arity but we only require ternary polymorphisms here.

A function ϕ is a polymorphism of a constraint langauge Γ if it is a polymorphism of
every relation in Γ. The following lemma is well known from the folklore and is easy to prove.

I Lemma 2. ϕ is a polymorphism of Γ if, and only if, it is a polymorphism of 〈Γ〉.

2.4 Homomorphisms and monomorphisms
A different, but equivalent, view of CSP(Γ) is often taken in the literature. This is to regard Φ
as a finite structure with domain V and relations determined by the scopes of the constraints.
Thus, we have relations H̃, where (i1, i2, . . . , ir) ∈ H̃ if, and only if, H(xi1 , xi2 , . . . , xir

) is a
constraint. A satisfying assignment x corresponds to a homomorphism from Φ to Γ.

The following definitions and notation are used only in Section 5. Let [D1 → D2]
denote the set of functions from D1 to D2. A homomorphism between two relational
structures S1 = (D1,Γ1) and S2 = (D2,Γ2) is a function σ ∈ [D1 → D2] that preserves
relations. Thus, for each r-ary relation H and each tuple u = (u1, . . . , ur) ∈ HΓ1, we
have σ(u) = (σ(u1), . . . , σ(ur)) ∈ HΓ2. We write σ : S1 → S2 to indicate that σ is a
homomorphism.

Let [V ↪→ D] and [V ↔ D] denote the sets of all injective and bijective functions
V → D, respectively. An injective homomorphism is called a monomorphism and we will
write σ : S1 ↪→ S2. An endomorphism of a relational structure S is a homomorphism
σ : S→ S (such a function is also a unary polymorphism). An automorphism is a bijective
endomorphism whose inverse is also an endomorphism. Note that [S ↪→ S] = [S ↔ S],
since D is finite, so an injective endomorphism is always an automorphism. Clearly, the
identity function is always an automorphism, for any relational structure S.

2.5 Powers of structures
We use the following construction of powers of S (see, for example, [17, p. 282]). For any
relational structure S = (D,Γ) and k ∈ N, the relational structure Sk = (Dk,Γk) is defined
as follows. The domain is the Cartesian power Dk. The constraint language Γk is such
that, each r-ary relation H ∈ Γ, corresponds to an r-ary Hk ∈ Γk, which is defined as
follows. If ui = (ui,1, ui,2, . . . , ui,k) ∈ Dk (i ∈ [r]), then (u1,u2, . . . ,ur) ∈ Hk if, and only if,
(u1,j , u2,j , . . . , ur,j) ∈ H for all j ∈ [k]. Now, if Ψ is a formula pp-definable in Γ, we define
the corresponding formula Ψk to be identical to Ψ, except that each occurrence of H ∈ Γ is
replaced by the corresponding relation Hk ∈ Γk. Observe that Ψk is actually pp-definable in
Γ, since Ψk(x) = Ψ(x1) ∧Ψ(x2) ∧ · · · ∧Ψ(xk), where the xi (i ∈ [k]) are disjoint n-tuples of
variables. In particular, we have |Ψk| = |Ψ|k.

Using this construction, the definition of a polymorphism can be reformulated. In this
view of CSP(Γ), it follows directly that a k-ary polymorphism is just a homomorphism
ϕ : Sk → S.
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3 Rectangularity

The key tool in our proof of the Dichotomy Theorem [10] is the use of succint representations
(which we call “frames”) for a class of relations that we call strongly rectangular. Frames
allow us to efficiently count solutions in the polynomial-time cases but we do not require
them here. However, the concept of strong rectangularity does play a role in our analysis.

A binary relation H ⊆ A1 ×A2 is rectangular if, for all a, b ∈ A1 and c, d ∈ A2,

ac, ad, bc ∈ H implies bd ∈ H .

For r ≥ 2, a relation H ⊆ Dr can be considered as a binary relation in Dk ×Dr−k for
any k with 1 ≤ k < r. We say that a relation of arity r ≥ 2 is rectangular if every such
expression of it as a binary relation is rectangular.

I Definition 3. A constraint langauge Γ is strongly rectangular if every relation in 〈Γ〉 of
arity ≥ 2 is rectangular.

We consider the following computational problem.
strong rectangularity

Instance : A relational structure S = (D, Γ).
Question : Is Γ strongly rectangular?

As 〈Γ〉 is an infinite set, it is not immediate whether strong rectangularity is
decidable. However, it turns out that strong rectangularity is equivalent to the existence of a
Mal’tsev polymorphism.

I Lemma 4. Γ is strongly rectangular if, and only if, it has a Mal’tsev polymorphism.

We defer the proof of this lemma for a moment. We require the lemma to prove the
following result.

I Lemma 5. strong rectangularity is in NP.

Proof. By Lemma 4, Γ is strongly rectangular if, and only if, it has a Mal’tsev polymorphism.
Thus, we nondeterministically guess a function ϕ : D3 → D in time O(q3). We can verify
that ϕ is a Mal’tsev polymorphism, deterministically in time O(‖Γ‖4) just by checking that
all relevant inputs to ϕ produce appropriate outputs. J

Lemma 4 is usually proved in an algebraic setting. That proof is not difficult, but requires
an understanding of concepts from universal algebra, such free algebras and varieties [6].
Therefore, we will give a proof in the relational setting which, we believe, provides more
insight for the reader whose primary interest is in relations.

Proof of Lemma 4. Suppose Γ has a Mal’tsev polymorphism ϕ. Consider any pp-definable
binary relation B ⊆ Dr ×Ds. By Lemma 2, ϕ is also a polymorphism of B. If (a, c), (a,d),
(b,d) ∈ B then we have (ϕ(a,a,b), ϕ(c,d,d)) = (b, c) ∈ B, from the definition of a Mal’tsev
polymorphism. Thus, B is rectangular and, hence, Γ is strongly rectangular.

Conversely, suppose Γ is strongly rectangular. Denote the relation H ∈ Γ by H = {uH
i :

i ∈ [`H ]}, where uH
i ∈ DrH. Consider the Γ-formula

Φ(x) =
∧

H∈Γ

∧
i1∈[`H ]

∧
i2∈[`H ]

∧
i3∈[`H ]

H
(
xH

i1,i2,i3

)
,
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where xH
i1,i2,i3

is an rH -tuple of variables, distinct for all H ∈ Γ, i1, i2, i3 ∈ [`H ]. Thus, the
relation RΦ has arity rΦ =

∑
H∈Γ rH`

3
H and |RΦ| =

∏
H∈Γ `H

`3
H.

Clearly RΦ has three tuples u1, u2, u3 such that the sub-tuple corresponding to xH
i1,i2,i3

in
uj is uH

ij
for each j ∈ {1, 2, 3}. Then U = {u1,u2,u3} has the following universality property

for Γ. For all H ∈ Γ and every triple of (not necessarily distinct) tuples t1, t2, t3 ∈ H, there
is a set I(t1, t2, t3) with I ⊆ [rΦ], |I| = rH such that prIRΦ = H and prIuj = tj (j = 1, 2, 3).

Now, for each set of identical columns in U , we impose equality on the corresponding
variables in Φ, to give a Γ-formula Φ′. Let U ′ be the resulting submatrix of U , with rows u′1,
u′2, u′3. Observe that U ′ is obtained by deleting copies of columns in U . Therefore U ′ has no
identical columns and has a column (a, b, c) for all a, b, c ∈ prkH with H ∈ Γ and k ∈ [rH ].

Next, for all columns (a, b, c) of U ′ such that b /∈ {a, c}, we impose existential quantification
on the corresponding variables in Φ′, to give a pp-formula Φ′′. Let U ′′ be the submatrix of U ′
with rows u′′1 , u′′2 , u′′3 corresponding to u′1, u′2, u′3. Then U ′′ results from deleting columns
in U ′ and U ′′ has columns of the form (a, a, b) or (c, d, d). Thus, after rearranging columns
(relabelling variables), we will have

U ′′ =

u′′1
u′′2
u′′3

 =

 a c
a d
b d

 ,
for some nonempty tuples a, b, c, d. By strong rectangularity, this implies u′′ =

[
b c

]
∈

RΦ′′ .
Removing the existential quantification in Φ′′, u′′ can be extended to u′ ∈ RΦ′ . Now,

if column k of U ′ is (a, b, c) say, we define ϕ(a, b, c) = u′k. This is unambiguous, since U ′
has no identical columns. Thus, u′ = ϕ(u′1,u′2,u′3) ∈ RΦ′ . If, for any a, b, c ∈ D, ϕ(a, b, c)
remains undefined, we will set ϕ(a, b, c) = a unless a = b, in which case ϕ(a, b, c) = c. Clearly
ϕ satisfies ϕ(a, b, b) = ϕ(b, b, a) = a, for all a, b ∈ D, and so has the Mal’tsev property.

Removing the equalities between variables in Φ′, u′ can be further extended to u =
ϕ(u1,u2,u3) ∈ RΦ. This is consistent since u satisfies the equalities imposed on Φ to
give Φ′. Now, for any t1, t2, t3 ∈ H, the universality property of U implies that prIu =
ϕ(t1, t2, t3) ∈ H. Thus, ϕ preserves all H ∈ Γ, so it is a polymorphism and hence a Mal’tsev
polymorphism. J

4 Strong balance

Recall the Dichotomy Theorem (Theorem 1): #CSP(Γ) is computable in polynomial time if
Γ is strongly balanced, and is #P-complete, otherwise. In this section, we formally define
strong balance and investigate its properties.

A rank-one block matrix is a k × k matrix M whose rows and columns can be permuted
to give a block-diagonal matrix whose non-zero blocks have rank 1. (It is equivalent to say
that the relation {xy : M(x, y) 6= 0} is rectangular and there are functions α, β : [k] → N
such that M(x, y) = α(x)β(y) where M 6= 0 but we will use a third characterisation, given
by Corollary 9.)

Let H ⊆ A1 ×A2 ×A3 be a ternary relation. We say that H is balanced if the balance
matrix

M(x, y) = |{z ∈ A3 : (x, y, z) ∈ H}| (x ∈ A1, y ∈ A2)

is a rank-one block matrix. For r > 3, a relation H ⊆ Dr can be expressed as a ternary
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relation in Dk ×D` ×Dr−k−` for any k, ` ≥ 1 with k + ` < r. We say that a relation H of
arity r > 3 is balanced if every such expression of H as a ternary relation is balanced.

I Definition 6. A constraint language Γ is strongly balanced if every relation of arity ≥ 3 in
〈Γ〉 is balanced.

Note that infinitely many relations are pp-definable in any constraint language. Our goal
in the remainder of this paper is to show that, this notwithstanding, the property of being
strongly balanced is decidable.

Towards this goal, we derive a different characterisation of rank-one block matrices. This
may seem more complicated than the original definition, but it is more suited to our purpose.
By the underlying relation of a matrix M(x, y), we mean the relation {(x, y) : M(x, y) 6= 0}.
We say that a matrix is rectangular if its underlying relation is.

I Lemma 7. A is a rank-one block matrix if, and only if, every 2× 2 submatrix of A is a
rank-one block matrix.

Proof. Let A be a k × ` rank-one block matrix and let

B =
[
air ais

ajr ajs

]
(i, j ∈ [k], r, s ∈ [`])

be any 2× 2 submatrix of A. If any of air, ais, ajr, ajs is zero, at least two must be zero,
since A is rectangular. In this case, B is clearly a rank-one block matrix. If air, ais, ajr, ajs

are all nonzero, B must be a submatrix of some block of A. Since this block has rank one, B
also has rank one.

Conversely, suppose A is not a rank-one block matrix. If its underlying relation is not
rectangular, there exist air, ais, ajr > 0 with ajs = 0. The corresponding matrix B clearly
has rank two, and has only one block so is not a rank-one block matrix. If the underlying
relation of A is rectangular, then A must have a block of rank at least two. This block must
have some 2× 2 submatrix B with rank two and all its elements non-zero. J

I Lemma 8. A rectangular 2 × 2 matrix A is a rank-one block matrix if, and only if,
a2

11a
2
22a12a21 = a2

12a
2
21a11a22.

Proof. The equation holds if any of a11, a12, a21 or a22 is zero. But, then, rectangularity
implies that at least two of them must be zero and A is a rank-one block matrix in all possible
cases. Otherwise, the equation is equivalent to a11a22 = a12a21, which is the condition that
A is singular. So A is one block, with rank one. The argument is clearly reversible. J

I Corollary 9. A rectangular k × ` matrix A is a rank-one block matrix if, and only if,
a2

ira
2
jsaisajr = a2

isa
2
jrairajs, for all i, j ∈ [k] and r, s ∈ [`].

Proof. When i = j or r = s, the two sides of the equation are identical. Otherwise, the
equality follows directly from Lemmas 7 and 8. J

It is possible to modify the above so that Corollary 9 involves products of only five
elements, rather than six, but we do not pursue that refinement here.

The following lemma gives a basic precondition for strong balance.

I Lemma 10. Every strongly balanced constraint language is strongly rectangular.
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Proof. Suppose Ψ ∈ 〈Γ〉 is not rectangular. There are ac,bc,ad ∈ R such that bd /∈ R. Let
Ψ′ be the relation {uvv : uv ∈ Ψ} and let M ′ be its balance matrix. The 2× 2 submatrix
corresponding to rows a and b and columns c and d is

B =
[
α β

γ 0

]
for some α, β, γ ≥ 1. This submatrix is not a rank-one block matrix so, by Lemma 7, nor is
M ′. Therefore, Γ is not strongly balanced. J

5 Decidability

We now give a relaxation of the strong balance criterion, by noting the conditions sufficient
for the success of the algorithm in [10]. For an instance with n variables, the algorithm only
requires that ternary relations on D ×D ×Di, for i ∈ [n− 2], be balanced. Therefore, let
Ψ(x), with x = (x1, . . . , xn), be an arbitrary formula pp-definable in Γ. For the algorithm to
succeed, it suffices that the q × q matrix

M(a, b) =
∣∣{x ∈ [V → D] : x ∈ Ψ, x1 = a, x2 = b}

∣∣ (∀a, b ∈ D)

is a rank-one block matrix for any Ψ. We may therefore take this as the criterion for strong
balance.

We will construct an algorithm to solve the following decision problem.
strong balance

Instance : A relational structure S = (D, Γ).
Question : Is Γ strongly balanced?

Recall from Section 2 that we may assume that ‖Γ‖ ≥ q. Thus, we may take ‖Γ‖ as
the measure of input size for strong balance and we bound the complexity of strong
balance as a function of this value. Complexity is a secondary issue, since ‖Γ‖ is a constant
in the nonuniform model for #CSP(Γ). In this model, we are only required to show that some
algorithm exists to solve strong balance. However, we believe that the computational
complexity of deciding the dichotomy is intrinsically interesting. Our approach will be to
show that the strong balance condition is equivalent to a structural property of Γ that can
be checked in NP.

We may assume that Γ is strongly rectangular since, if it is not, we know by Lemma 10
that it is not strongly balanced. For the remainder of this section, we fix an n-ary pp-definable
relation Ψ ∈ 〈Γ〉 with balance matrix M .

By Corollary 9, the condition for M to be a rank-one block matrix is that

M(a, c)2M(a, d)M(b, d)2M(b, c) = M(a, d)2M(a, c)M(b, c)2M(b, d) for all a, b, c, d ∈ D.

We can reformulate this condition using the construction of powers of S. If a = (a1, . . . , ak)
and b = (b1, . . . , bk), the balance matrix Mk for Ψk is the qk × qk matrix given by

Mk(a,b) =
∣∣{x ∈ [V → Dk] ∩Ψk : x1 = a, x2 = b}

∣∣
= M(a1, b1)M(a2, b2) · · ·M(ak, bk) .

The condition for M to be a rank-one block matrix can be rewritten as

M6(ā, c̄) = M6(ā, d̄) , (1)
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where

ā = (a, a, a, b, b, b), c̄ = (c, c, d, d, d, c), d̄ = (d, d, c, c, c, d) . (2)

Let us fix ā, c̄, d̄. For notational simplicity, let us write S̄ for S6, Γ̄ for Γ6, Ψ̄ for Ψ6, M̄
for M6 and D̄ for D6. Then, from (1), we must verify that M̄(ā, c̄) = M̄(ā, d̄) for all relations
RΨ̄ that are pp-definable in Γ̄ and given ā, c̄, d̄ ∈ D̄. We use a method of Lovász [16]; see
also [8]. For s̄ ∈ D̄, and a pp-definition Ψ̄ in variables V , let

Homs̄(Ψ̄) = {x ∈ [V → D̄] ∩ Ψ̄ : x1 = ā, x2 = s̄}
homs̄(Ψ̄) = |Homs̄(Ψ̄)| .

However, a homomorphism V → D̄ that is consistent with Ψ̄ is just a satisfying assignment
to Ψ̄. M̄(ā, s̄) is the number of such assignments with x1 = ā and x2 = s̄, i.e., the number of
homomorphisms that map x1 7→ ā and x2 7→ s̄. This proves the following.

I Lemma 11. Γ is strongly balanced if, and only if, homc̄(Ψ̄) = homd̄(Ψ̄) for all formulae
Ψ̄ and all ā, c̄, d̄ of the form above.

We will also need to consider the injective functions in Homs̄(Ψ̄). For s̄ ∈ D̄, let

Mons̄(Ψ̄) = {x ∈ [V ↪→ D̄] ∩ Ψ̄ : x1 = ā, x2 = s̄}
mons̄(Ψ̄) = |Mons̄(Ψ̄)| .

I Lemma 12. homc̄(Ψ̄) = homd̄(Ψ̄) for all Ψ̄ if, and only if, monc̄(Ψ̄) = mond̄(Ψ̄) for all Ψ̄.

Proof. Consider the set I of all partitions I of V into disjoint classes Ī1, . . . , ĪkI
, such that

1 ∈ Ī1, 2 ∈ Ī2. Writing I � I ′ whenever I is a refinement of I ′, P = (I,�) is a poset. We will
write ⊥ for the partition into singletons, so ⊥ � I for all I ∈ I.

Let V/I denote the set of classes Ī1, . . . , ĪkI
of the partition I, so |V/I| = kI , and let

Ī1, Ī2 be denoted by 1/I, 2/I. Let Ψ̄/I denote the relation obtained from Ψ̄ by imposing
equality on all pairs of variables that occur in the same partition of I. Thus, the constraints
x1 = ā, x2 = s̄ become x1/I = ā, x2/I = s̄. Then we have

homs̄(Ψ̄) = homs̄(Ψ̄/⊥) =
∑
I∈I

mons̄(Ψ̄/I) =
∑
I∈I

mons̄(Ψ̄/I)ζ(⊥, I) , (3)

where ζ(I, I ′) = 1, if I � I ′, and ζ(I, I ′) = 0, otherwise, is the ζ-function of P. Thus, if
monc̄(Ψ̄) = mond̄(Ψ̄) for all Ψ̄, then

homc̄(Ψ̄) =
∑
I∈I

monc̄(Ψ̄/I)ζ(⊥, I) =
∑
I∈I

mond̄(Ψ̄/I)ζ(⊥, I) = homd̄(Ψ̄) . (4)

Conversely, suppose that homc̄(Ψ̄) = homd̄(Ψ̄) for all Ψ̄. The reasoning used to give (3)
implies, more generally, that

homs̄(Ψ̄/I) =
∑
I�I′

mons̄(Ψ̄/I ′) =
∑
I′∈I

mons̄(Ψ̄/I ′)ζ(I, I ′) .

Now, Möbius inversion for posets [20, Ch. 25] implies that the matrix ζ : I × I → {0, 1} has
an inverse µ : I × I → Z. It follows directly that

mons̄(Ψ̄) =
∑
I∈I

homs̄(Ψ̄/I)µ(⊥, I) .
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Thus, with homc̄(Ψ̄) = homd̄(Ψ̄) for all Ψ̄, we have

monc̄(Ψ̄) =
∑
I∈I

homc̄(Ψ̄/I)µ(⊥, I) =
∑
I∈I

homd̄(Ψ̄/I)µ(⊥, I) = mond̄(Ψ̄) . (5)

Now, (4) and (5) give the conclusion. J

I Lemma 13. monc̄(Ψ̄) = mond̄(Ψ̄) for all Ψ̄, if, and only if, there is an automorphism
η : D̄ ↔ D̄ of S̄ = (D̄, Γ̄) such that η(ā) = ā and η(c̄) = d̄.

Proof. The condition holds if S̄ has such an automorphism since, if Ψ̄(x) = ∃y Φ̄(x,y) for
some Φ̄, then

monc̄(Ψ̄) = |{x ∈ [V ↪→ D̄] : x1 = ā, x2 = c̄, ∃y (x,y) ∈ Φ̄}|
= |{η(x) ∈ [V ↪→ D̄] : x1 = η(ā), x2 = η(c̄), ∃y (η(x), η(y)) ∈ Φ̄}|
= |{x ∈ [V ↪→ D̄] : x1 = ā, x2 = d̄, ∃y (x,y) ∈ Φ̄}|
= mond̄(Ψ̄) .

Conversely, suppose we have monc̄(Ψ̄) = mond̄(Ψ̄) for all Ψ̄. Consider the following Γ̄-formula
Φ̄ with domain D̄ and variables xt̄ (t̄ ∈ D̄):

Φ̄(x) =
∧

H̄ ∈ Γ̄

∧
(ū1,...,ūr)∈ H̄

H̄(xū1 , . . . , xūr
) .

Then

Mons̄(Φ̄) = {x ∈ [D̄ ↪→ D̄] : xā = ā, xc̄ = s̄, x ∈ Φ̄} .

We have Monc̄(Φ̄) 6= ∅, since the identity assignment xt̄ = t̄ for all t̄ ∈ D̄ is clearly satisfying.
Thus, by the assumption, Mond̄(Φ̄) 6= ∅. Let η ∈ Mond̄(Φ̄), so η is an endomorphism of
S̄ with η(ā) = ā and η(c̄) = d̄. Since [D ↪→ D] = [D ↔ D], η : D ↔ D is the required
automorphism. J

I Corollary 14. S = (D,Γ) is strongly balanced if, and only if, for all ā, c̄, d̄ as defined in
(2), S̄ = (D̄, Γ̄) has an automorphism ψ such that ψ(ā) = ā and ψ(c̄) = d̄.

Proof. This follows from Lemmas 11, 12 and 13. J

This characterisation of strong balance leads directly to a nondeterministic algorithm.

I Theorem 15. strong balance is in NP.

Proof. We first determine whether Γ is strongly rectangular, using the method of Lemma 5.
If it is not, then Γ is not strongly balanced, by Lemma 10.

Otherwise, we can construct S̄ = (D̄, Γ̄) in time O(‖Γ‖6). Let q̄ = q6 = |D̄| and let
Π denote the set of q̄ ! permutations of D̄. Each π ∈ Π is a function π : D̄ ↪→ D̄ and so a
potential automorphism of S̄. For each of the q4 possible choices a, b, c, d ∈ D, we determine
ā, c̄, d̄ ∈ D̄ in polynomial time. We select π ∈ Π nondeterministically and check that π(ā) = ā,
π(c̄) = d̄ and that π preserves all H̄ ∈ Γ̄. The computation requires O(q4‖Γ̄‖2) = O(‖Γ‖16)
time in total, so everything other than the O(q10) = O(‖Γ‖10) nondeterministic choices can
be done deterministically in a polynomial number of steps. J
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We have paid little attention to the efficiency of the computations in Theorem 15. If
the elements of D are encoded as binary numbers in [q], comparisons and nondeterministic
choices require O(log q) bit operations, rather than the O(1) operations in our accounting.
On the other hand, membership in H6 can be tested in O(‖H‖) comparisons, rather than
the O(‖H‖6) that we have allowed. This might be reduced further by storing H in a suitable
data structure, instead of a simple matrix. As we have noted, Corollary 9 can be refined to
products of five terms, which can be used to improve the algorithm of Theorem 15.

If we consider the domainD as fixed, the problem of deciding whether constraint languages
over that domain D are strongly balanced is in deterministic polynomial time. With D fixed,
there are a constant number of potential Mal’tsev polymorphisms that must be checked to
determine strong rectangularity, and the numbers of tuples ā, c̄, d̄ and possible automorphisms
on D are also fixed constants.

6 Conclusions

We have shown that there is an algorithm that determines whether a constraint language
is strongly balanced. This means that the complexity dichotomy for #CSP(Γ) is effective,
thus answering the major open problem that arose from the proofs that the dichotomy
exists [3, 10].

Although we have shown strong balance to be decidable in NP, we have only established an
upper bound. We believe the complexity of the problem to be interesting in its own right. It
is not hard to see that the problem of determining whether the automorphisms of Corollary 14
exist is reducible to the graph isomorphism problem. It therefore seems unlikely that strong
balance is NP-complete as this would imply NP-completeness of graph isomorphism which
would, in turn, imply the collapse of the polynomial hierarchy [19]. However, we leave open
the question of whether strong balance is equivalent to graph isomorphism or whether more
efficient algorithms exist.

Bulatov’s proof of the #CSP(Γ) dichotomy is expressed not in terms of strong balance
but in terms of the “congruence singularity” of Γ (or, more precisely, of an algebra defined
from Γ). We have shown the two conditions to be equivalent but it remains open if there is a
direct proof that the property of congruence singularity is decidable.
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Abstract
In this paper, we present a parallel speed-up of a simple, yet significantly powerful, sequential
model by cellular automata. The simulated model is called oblivious multi-head finite automata
and is characterized by the fact that the trajectory of the heads only depends on the length of the
input word. While the original k-head finite automaton works in time O(nk), its corresponding
cellular automaton performs the same task in time O(nk−1 log(n)) and space O(nk−1).
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Introduction

Cellular automata (CA for short) are recognized as a major model of massively parallel
computation. Their simple and homogeneous description as well as their ability to distribute
and synchronize the information in a very efficient way contribute to their success. However,
to determine to what extent CA can fasten sequential computation is not a simple task.

As regards specific sequential problems, the gain in speed by the use of CA is manifest [1,
2, 3]. But when we try to get general simulations, we have to face the delicate question of
whether parallel algorithms are always faster than sequential ones. An inherent difficulty
arises from the fact that efficient parallel algorithms make often use of techniques radically
different from the sequential ones. Also there might exist a faster CA for each singular
sequential solution whereas no general simulation exists.

Hence, no surprise: for Turing machines, model of sequential computation, the known
simulations by CA provide no parallel speed-up. The early construction of Smith [9] simulates
one step of the Turing machine by one step of the CA. Furthermore, no faster simulations
have been reported yet even for restricted variants. In particular, we do not know whether
any finite automata with k heads can be simulated on CA in less than O(nk) steps, which is
the sequential time complexity.

In a step toward addressing such issues, we shall examine here a simple sequential model,
called data-independent multi-head finite automata. This device was introduced by Holzer
in [6] as multi-head finite automata with an additional constraint of obliviousness: the
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trajectory of the heads only depends on the length of the input word. As emphasized in [6],
such finite automata lead to significant computational power: they characterize parallel
complexity NC1 – which explains they can be efficiently parallelized. Their properties have
been further discussed in [7]. We propose below a simulation of these data-independent
multi-head finite automata by CA which gives rise to an efficient parallel speed-up.

This paper is organized as follows. The next section introduces the two models considered.
Section 2 displays some of their features and abilities. Section 3 presents the simulation
algorithm and its time and space cost.

1 Definitions

1.1 Multi-head finite automata
Given an integer k ≥ 1, a two-way k-head finite automaton is a finite automaton reading an
input word written between two end-markers using k heads that can move in any direction
provided they do not go beyond these markers.

I Definition 1. A (deterministic) two-way multi-head finite automaton (2DFA(k) for short)
is a tuple (Σ, Q,B,C, q0, qa, qr, k, δ), where Σ is a finite set of input symbols (or letters), Q
is a finite set of states, B 6= C /∈ Σ are the left and right end-markers, q0 ∈ Q is the initial
state, qa 6= qr ∈ Q are respectively the accepting state and the rejecting state, k ≥ 1 is the
number of heads and δ : Q× (Σ ∪ {B,C})k → Q× {−1, 0, 1}k the transition function; −1
means to move the head one letter to the left, 1 to move it one letter to the right and 0 to
keep it on its current letter. For the heads to be unable to move beyond the end-markers, we
require that if δ(q, a1, . . . , ak) = (q′,m1, . . . ,mk), then for any i ∈ J1, kK, ai = B⇒ mi ≥ 0
and symmetrically ai = C⇒ mi ≤ 0.

A configuration of a 2DFA(k) on an input word w at a certain time t ≥ 0 is a couple (p, q)
where p ∈ J0, |w|+ 1Kk is the position of the multi-head and q the current state.

The computation of a 2DFA(k) on an input word w ∈ Σn starts with all heads on the left
end-marker, and ends when the automaton reaches the accepting or the rejecting state. In
the former case, the word is said to be accepted, while in the latter it is rejected. For some
words, none of these cases happen and hence the automaton will enter a loop eventually.
The language L(F) recognized by a 2DFA(k) F is the set of the words accepted by F . One
can notice a 2DFA(k) necessarily enters a loop if it has not accepted nor rejected the input
at step |Q|(n+ 2)k steps, which is the number of configurations featuring w; so, we say the
computation is over if we reach this step (it may of course take less).

We will focus now on the data-independent 2DFA (2DIDFA), a particular class of 2DFA
for which the path followed by the heads only depends on the length of the input word, not
on the letters thereof.

I Definition 2. Given k ≥ 1, a 2DFA(k) F is said to be oblivious (or data-independent) if
there exists a function fF : N2 → Nk such that the position of its multi-head at time t ∈ N
on any input word w is fF (|w|, t).

1.2 Cellular automata
A cellular automaton is a parallel synchronous computing model consisting of an infinite
number of finite automata called cells which are distributed on Z and share the same
transition function, depending on the cell itself and its two neighbors.
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I Definition 3. A cellular automaton is a tuple (Σ, Q,#, qa, qr, δ), where Σ is the finite set
of input symbols (or letters), Q ⊃ Σ is the finite set of states and δ : Q3 → Q the transition
function. # ∈ Q \ Σ is a particular quiescent state, verifying δ(#,#,#) = #. qa 6= qr ∈ Q
are respectively the accepting state and the rejecting state. These are persistent, which means
that a cell in such a state will never switch to another state: for any q,q

′ ∈ Q, δ(q, qa, q
′) = qa

and δ(q, qr, q
′) = qr.

A configuration is a function C : Z → Q. A site is a cell at a certain time step of the
computation; 〈c, t〉 will denote the state of the site (c, t) ∈ Z × N. The computation of a
CA C on an input word w of size n ≥ 1 starts at time 0 with all cells in state # except
cells 1 to n where the letters of the word are written. This is the initial configuration Cw

associated to w. Then the cells update in parallel their respective states according to δ: for
all (c, t) ∈ Z× N, 〈c, t+ 1〉 = δ(〈c− 1, t〉, 〈c, t〉, 〈c+ 1, t〉).

The input word is accepted (resp. rejected) in time t ∈ N if and only if cell 1 enters the
accepting state qa (resp. the rejecting state qr) at time t (and hence at any time t′ ≥ t).
The language L(C) recognized by the automaton is the set of the words it eventually accepts.
L(C) is said to be recognized in time τ : N → N if and only if any word w is accepted or
rejected in time τ(|w|).

2 Preliminaries

Our concrete question is the following: How long does it take to simulate a data-independent
k-head finite automaton on CA? Regarding general multi-head finite automata, one can
recall that a 2DFA(k) can be simulated on a deterministic multi-tape Turing machine in
time O(nk), where n is the length of the input word [10]. Besides, it is well-known that CA
are able to simulate in real time any deterministic (even multi-tape) Turing machine [9, 4].
A simple simulation consists in representing each tape of the Turing machine by two stacks
– several stacks can be simulated simultaneously by a CA without loss of time. An upper
bound in O(nk) for the time required by a CA to simulate a 2DIDFA(k) follows immediately.
Now, how to reduce this time bound? As yet, no parallel speed-up is known to simulate
Turing machines on CA; and no faster simulation of DIDFA on Turing machines taking
the obliviousness constraint into account has been proposed. Here we will present a direct
simulation which will take advantage of the oblivious feature of the DFA and so allow us to
parallelize its computation.

2.1 Facts about multi-head finite automata
Let F = (Σ, Q,B,C, q0, qa, qr, k, δ) be a 2DIDFA, n ≥ 1 be an integer and w ∈ Σn be a word
of size n. Let us look at the computation of F on input word w. The multi-head (composed
of k heads) can be regarded as a device moving one point at a time in any direction within
the set W = J0, n+ 1Kk.

As F is data-independent, we can separate the path taken by the multi-head from the
consecutive states of the automaton (depending on the letters of w). In other words, we can
take a look at the path of the multi-head on an input word an, for any a ∈ Σ; it will be the
same for w. If all heads are around the middle of the input, they will read only a for a long
time and hence their movement will become periodic until one of them reaches an end-marker.
That implies that the path of the multi-head is very simple as long as it is not near the outer
edge O = {p ∈ W | ‖p− n+1

2 (1, . . . , 1)‖∞ = n+1
2 }. To be more accurate, we can be sure the

path has already become periodic precisely when the multi-head enters the central part of
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W by crossing the inner edge I = {p ∈ W | ‖p− n+1
2 (1, . . . , 1)‖∞ = n+1

2 − |Q| − 1} and it
remains periodic until reaching the outer edge O (cf. Fig. 1).

0

|Q|+ 1

n− |Q|

n+ 1

0 |Q|+ 1 n− |Q| n+ 1

p21

p22

p42

p43

p74

outer edge

inner edge

Figure 1 A representation of W for k = 2. The (beginning of the) path of the multi-head is
drawn with the periodic sections (jumps) crossing the central white square (delimited by the inner
edge I) in black. For each jump a period shape is indicated in bold. The first five key points pi that
begin or end a jump are displayed as black dots.

The simulation of a 2DIDFA F on an input word w will involve the storing of specific
configurations occurring in the run of F over the input word a|w| (see Fig. 1). We hence
define the sequence of key points (pi, ei, ti)i ∈ (W×Q×N)N where (pi, ei) is the configuration
at instant ti of F over a|w|, by p0 = (0, . . . , 0) ∈ O, e0 = q0, t0 = 0 and for all i > 0,

if pi ∈ I, pi+1 is the next position of O the multi-head encounters, at a certain time ti+1
with F in state ei+1; this point is called a jump (across a periodic section);
otherwise ti+1 = ti + 1 and (pi+1, ei+1) is the next configuration of F ; this point is called
a step.

Since the automaton is deterministic, any non-looping (accepting or rejecting) path cannot
go through twice the same position in the same state. Thus, we can bound the number of
jumps by |Q||I| ∼ 2|Q|knk−1. In the same way, as steps are located between the outer and
inner edges, their number is bounded by |Q|((n+ 2)k − (n− 2|Q|)k) ∼ 2|Q|(|Q|+ 1)knk−1.
The number of key points of a non-looping path is thus in O(nk−1). In particular, it is linear
when k = 2.

2.2 Basic techniques on cellular automata
A given computation of a CA can be easily represented by drawing successive configurations
each one above its predecessor, forming a space-time diagram.

We will often have to perform several rather independent computations at the same time;
this can easily be done by a “product” automaton which works with a finite number of
layers supporting each a specific computation. Although rather independent, the layers can
communicate between one another to exchange information, since any cell can see all layers.
Typically, cells may be waiting for a firing squad to end on a layer before changing their
behavior on another layer.
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In the remainder of this article, we will have to handle computations involving coordinates.
It is classical on CA to write integers in binary on segments of cells (one bit per cell) and
execute basic operations with them. Here, all integers will be spelled backward on cells, the
lowest bit being the leftmost one. For binary operators, we consider two integers superimposed
on the same segment of cells.

It is easy to see that arithmetical operation such as addition, subtraction or comparison
can be done in space and time linear in the number of bits of the operands. The same goes
for division by a fixed constant where we consider the result to be both the quotient and the
remainder.

Using the power of parallelism, it is also possible to achieve multiplication in linear space
and time (see [1]). Moreover, we shall also use implicitly the fact that it is possible to
synchronize any interval of cells in space and time linear in the size of this interval. This
problem is often referred to as the firing squad synchronization problem (see [3, 8]).

In our construction, we shall use another basic operation that we call selection. The
principle is the following: we fix an interval of cells of size n. Given an integer i (written
in binary) between 0 and l positioned at the left of our interval, we want to select the i-th
element of the interval and bring it at the right end of the interval (see Fig. 2).

i0

i1

0

0

O(`)

1 i0 i1 n

−→ t

Figure 2 Schematic space-time diagram of a selection. The time scale of the picture has been
compressed by factor 2, so that a signal of speed 1 (for instance, in red) seems to be of speed 2.

The basic principle of this operation is quite simple, we shift the integer i along the
interval and at each shift decrease its value by one. When reaching 0, we take the content of
the corresponding cell inside the interval and send it at maximal speed toward the end of
the interval [5]. Thus, the shift speed can be constant and the whole selection achieved in
linear time using as workspace only the constant logarithmic space that is required to write
the value l.

In addition, this operation can be pipelined. That is, if we suppose that for a fixed
interval, we have m integers written as `-bit strings at the beginning of the interval every
`′ = O(`) time steps, then the total time for achieving all the selections is m`′ + n.
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3 Simulation

I Theorem 4. Given k > 1, for any 2DIDFA(k) F recognizing a language L, there exists a
CA C recognizing L in time O(nk−1 log(n)) and space O(nk−1), where n is the size of the
input word.

The rest of this paper will be devoted to the proof of this theorem. We will only consider
the case k = 2 to alleviate the descriptions, but it should be straightforward to generalize
this proof.

We assume now that we have a 2DIDFA(2) F = (Σ, Q,B,C, q0, qa, qr, 2, δ). Let us
take an arbitrary input word w ∈ Σn, given an integer n ≥ 2|Q|. We will define a CA
C = (Σ, Q′,#, q′a, q′r, δ′) fulfilling the requirements of the theorem. Instead of giving the full
description of its state set and transition function, we will describe its behavior when given w
as input (the finite number of words that are too short are treated by the CA as a particular
case, we can hence forget them).

The execution of C on w involves coordinates. They all range from 0 to n+ 1, hence we
need `(n) = dlog2(n+ 2)e bits to be able to write any of them. We have to compute it, thus
the first thing C will do is to write n + 1 in binary on cells J1, `(n)K. This can be done in
time O(n).

3.1 Computation of the sequence of key points
We have, as defined previously, W = J0, n+ 1K2, O = ({0, n+ 1} × J0, n+ 1K) ∪ (J0, n+ 1K×
{0, n+1}), I = ({|Q|+1, n−|Q|}×J|Q|+1, n−|Q|K)∪ (J|Q|+1, n−|Q|K×{|Q|+1, n−|Q|})
and the sequence of key points (pi, ei, ti)i summing up the computation over an. What we
want to do now is to output these key points in order on the CA. Note that the coordinates
xi, yi of position pi, time ti, and index i are polynomial in n; thus, they can be encoded in
logarithmic space, while state ei lies in a finite set, only requiring a single cell. Each such
point will be written as superimposed `(n)-bit strings (for xi, yi, ti, and i) together with ei.

We will compute the sequence of key points iteratively:
1. The procedure is initiated from the first key point ((0, 0), q0, 0).
2. At the start of iteration i, key point (pi = (xi, yi), ei, ti) is given. First we determine if

pi ∈ I. It consists in checking whether at least one coordinate of pi is equal to |Q|+ 1 or
n− |Q|.

if pi /∈ I (case of a step). We check for each head whether it lies on the outer edge
(i.e., whether xi, yi ∈ {0, n + 1}). This indicates which letter is read (B,C or a).
According to this information, we mimic a single transition of the automaton. Namely,
we compute the coordinates of pi+1 and ti+1 by means of some increment or decrement,
along with the next state ei+1.
if pi ∈ I (case of a jump). Between pi and pi+1, the automaton follows a periodic
behavior that only depends on the current state ei. Such behavior can be specified by
finite parameters, namely its period ri = (ui, vi) ∈ J−|Q|, |Q|K2 and its shape si (i.e.,
the head’s sequence of moves in {−1, 0, 1}2, of length at most |Q|). Since the number
of states and so the number of distinct periodic behaviors are finite, we can assume
that ri and si are available in due time. Thus, we perform operations (n− xi)/ui and
(n−yi)/vi to get the respective quotients ai and bi and remainders hi and ki. We select
the smaller quotient ci ∈ {ai, bi} and then compute a′i = ui × ci and b′i = vi × ci. The
next key point is pi+1 = (xi +a′i, yi +b′i). To be accurate, we have to add the remainder
of the period depending on hi (if ci = ai) or ki (if ci = bi) and on the particular
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shape si of the period. Although this remainder can have negative coordinates in some
particular cases, their absolute values are always bounded by |Q|.

3. The procedure stops if either ei+1 ∈ {qa, qr} or a loop is detected. In this last case,
we check the number of key points already computed and the elapsed time. If i+ 1 =
|Q|((n+ 2)2 − (n− 2|Q| − 2)2) or ti+1 > |Q|(n+ 2)2, we know that the automaton has
entered a loop and we can thus definitely stop the simulation.

What is the cost of the whole iteration procedure? Each iteration performs only a finite
number of linear operations over integers of size `(n) = O(log(n)) and thus is done in space
and time O(log(n)). Since the number of key points for a non-looping computation is in
O(n), the whole procedure takes O(n log(n)) time steps. One can notice it is conducted very
slowly, with O(log(n)) time steps to get only one move of the multi-head in case of step
points. But we save a lot of time with every jump across a periodic section, computing O(n)
moves of the multi-head within O(log(n)) time steps of the CA.

3.2 Computation of the states
For the moment, we have computed the sequence of key positions (pi)i that the multi-head
would follow on input word w, but we still do not know its successive states (we have seen
only those corresponding to input word an). A fortiori we do not know whether w should be
accepted. We are now about to get past this lack. What we want to do is to compute, for
all key positions pi, the function δi ∈ QQ such that for all q ∈ Q, if at some time step t the
DFA is in state q (for input word w) with the multi-head on key position pi, then at time
t+ ti+1 − ti it is in state δi(q) with the multi-head on key position pi+1. One can notice that
this way δi(q) may be undefined if state q does not lead to the actual path between pi and
pi+1. If so, it is no problem, we just set δi(q) = • /∈ Q.

To compute these functions, we have two cases according to whether key position pi is in
I or not. If it is a step (pi /∈ I), its associated function δi only performs a single transition
of the DFA and so can be simply computed from the letter lying at this position. In case
of a jump (pi ∈ I), the problem is more complex, since the associated function mimics all
successive transitions performed from pi to pi+1. But, making use of the regularities of
oblivious computation, we can compute simultaneously all these jump functions in linear
time.

Pre-computation of all feasible jump functions
Each cell c ∈ {|Q|+ 1, n− |Q|} will compute the jump function associated to potential key
position p = (c, |Q|+ 1) (and at the same time (c, n− |Q|) and (|Q|+ 1, c) and (n− |Q|, c)).
First we will assume that the DFA is in some state q and that the forthcoming periodic
trajectory is of shape s.

Cell c plays the role of the multi-head. Once every two time steps, it will update the state
of the DFA according to the letters it reads and send two signals at speed 1, one toward the
left and one toward the right, to tell the rest of the cells supporting the input word what is
the next move of the multi-head. Two copies of the input word are shifted according to the
signals received and hence this cell has access to the letters encountered by the multi-head.
Because of the duration of the transmission of the order to shift, we need to have parts of
the copies provisionally compressed (two letters may lie on the same cell) or dilated, some
cells being empty (cf. Fig 3). This process (for particular values q and s) is conducted until
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an end-marker is fed to cell c, or until it realizes state q does not induce a period of shape s.
In both cases, if p = pi for some i, we have got δi(q) after O(n) time steps.

What we just described grants us state δi(q) only for the key positions at the four corners
of the inner edge. Anyway, there is a nice way to get all the other functions simultaneously.
Suppose pi is at a corner of I; how do we compute, for instance, δj(q) for pj = (xi +h, yi) ∈ I?
The two points share their first coordinate (every p ∈ I shares a coordinate with a corner),
thus for a same periodic behavior the two trajectories of the multi-head are identical, except
for the first head, which is shifted by h letters. δi(q) is computed on cell xi from some time
step t ∈ N; this cell will send each second-head letter it reads at speed 1 to the other cells.
Thus, from time step t + h, cell xi + h will receive the correct letters of the second head,
while the copy of the tape for the first head is shifted on this cell with the same delay of h
time steps (cf. Fig. 3). δj(q) can in this way be computed on cell xi + h.

This previous process is actually achieved simultaneously for every q ∈ Q. Finally, using
one layer for each possible shape, we can have all feasible jump functions written on segment
J|Q|+ 1, n− |Q|K in O(n) time steps.

Selecting the transition function associated to a key point
Suppose we are given all the feasible jump functions written on segment J|Q|+ 1, n− |Q|K,
a copy of the input written on cells J1, nK and a key point initially written in position
J−2`(n) + 1,−`(n)K. Using those data, we want to retrieve the function associated to the
key point. Two cases are considered depending on whether the function performs a single
transition or a jump transition of the DFA.

Case of step points: according to the coordinates of the step position, we collect the input
letters read by each head of the DFA and then deduce the proper function. This is done
in time and space O(n).
Case of jump points: making use of the operation of selection described in section 2.2, we
select the jump function written on cell c and layer l, where c is specified by the position
and l (depending on the period) by the state of the jump point. This is done in time and
space O(n).

3.3 Final stage
Compiling the previous procedures, the cellular automaton C works the following way:

First, C pre-computes all the feasible jump functions and writes them on cells J|Q| +
1, n− |Q|K. This is done in both space and time O(n).
Then, C generates the list of key points. This is done in time O(n log(n)) and space
O(log(n)).
As soon as one key point is written, C selects its associated function. Each selection is
done in time and space O(n).
Once a new selection is over, C updates the current state of the automaton F according
to the proper function. In case it is the accepting or the rejecting state, or if the time of
the last key point reaches the maximal number of moves the multi-head is supposed to
perform, C terminates its computation.

These methods obviously work in space O(n). In regard to the time, since the selections
are pipelined, the bound corresponds to the time required to generate all the key points plus
the time of the last selection. Hence the total running time is in O(n log(n)) +O(n), i.e. in
O(n log(n)), leading to the theorem. J
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Figure 3 Simulation of the multi-head from a corner of the inner edge. On the left we have two
portions of the path (a) and (b) that are translated copies of each other by h letters. Portion (a)
starts at corner (|Q| + 1, |Q| + 1) and is simulated by cell |Q| + 1 (the darkened one) by the CA (on
the right) with two layers, one by head. On each layer, according to the state of the DFA, the dark
cell may send signals telling the other cells to shift their letter to the left (blue signal) or to the right
(red signal). If they see no signal, the cells keep their letter, which are symbolized by dots, linked to
indicate where they are moved at each time step – end-markers are also represented by dots, linked
in black. As the shifted tapes on each layer cross the dark cell, the latter gets the appropriate letters
within two time steps to deduce the next move and state of the DFA. Cell |Q| + 1 + h simulates
portion (b) h time steps later. It sees directly the correct letters on the first layer while those for the
second head are sent by the dark cell.

Conclusion

We have presented an efficient construction that simulates oblivious k-head finite automata
on cellular automata in time O(nk−1 log(n)) and space O(nk−1). Such simulations achieving
parallel speed-up are scarce. The performance gain is in O(n/ log(n)) as regards the naïve
simulation without speed-up, which processes the same task in time O(nk).

Our result fully exploits the oblivious feature of the sequential computation. Now, it is
another challenge to achieve parallel speed-up for multi-head finite automata without the
constraint of data-independence.
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(δi)i q0

qt1
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O(n)

O(log(n))

−→ t

Figure 4 Global simulation. Light grey corresponds to the pre-computation of jumps functions,
dark grey to the computation of the sequence of key points, and the rest is the selection (here again,
the time scale is compressed by factor 2).
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Abstract
The density classification problem consists in using a binary cellular automaton (CA) to decide
whether an initial configuration contains more 0s or 1s. This problem is known for having no exact
solution in the case of binary, deterministic, one-dimensional CA. Stochastic cellular automata
have been studied as an alternative for solving the problem. This paper is aimed at presenting
techniques to analyse the behaviour of stochastic CA rules, seen as a “blend” of deterministic
CA rules. Using analytical calculations and numerical simulations, we analyse two previously
studied rules and present a new rule. We estimate their quality of classification and their average
time of classification. We show that the new rule solves the problem with an arbitrary precision.
From a practical point of view, this rule is effective and exhibits a high quality of classification,
even when the simulation time is kept small.
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Keywords and phrases stochastic and probabilistic cellular automata, density classification prob-
lem, models of spatially distributed computing, stochastic process
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Introduction

The density classification problem is one of the most studied inverse problems in the field
of cellular automata. Informally, it requires that a binary cellular automaton — or more
generally a discrete dynamical system — decides whether an initial binary string contains
more 0s or more 1s. In its classical formulation, the cells are arranged in a ring and each
cell can only read its own state and the states of the neighbouring cells. The challenge is
to design a behaviour of the cells that drives the system to a uniform state, that consists
of all 1s if the initial configuration contained more 1s and all 0s otherwise. In short, the
convergence of the cellular automaton should decide whether the initial density of 1s was
greater or lower than 1/2.

Although the task looks trivial, it has attracted a considerable amount of research
since its formulation by Packard [13]. The difficulty of finding a solution comes from the
impossibility to centralise the information or to use any classical counting technique. Instead,
the convergence to a uniform state should be obtained by using only local decisions, that is,
by using an information that is limited to the close neighbours of a cell. Moreover, as CA
are homogeneous by nature (the cells obey the same law), there can be no specialisation of
the cells for a partial computation. Solving the problem efficiently requires to find the right
balance between deciding locally with a short-range view and following other cells’ decision
to attain a global consensus.

The quest for efficient rules has been conducted on two main directions: man-designed
rules and rules obtained with large space exploration techniques such as genetic algorithms
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(e.g., [11]). The Gacs-Kurdymov-Levin (GKL) rule, which was originally designed in the
purpose of resisting small amounts of noise [14, 5], proved to be a good candidate (∼80%
of the initial conditions well-classified on rings of 149 cells) and remained unsurpassed for
a long time. In 1995, after observing that outperforming this rule was difficult, Land and
Belew issued a key result: no perfect (deterministic) density classifier that uses only two
states exist [9]. However, this did not stop the search for efficient CA as nothing was known
about how well a rule could perform. In particular, it was asked whether an upper bound on
a rule quality would exist. The search for rules with an increasing quality has been carried
on until now, with genetic algorithms as the main investigation tool (see e.g. [4, 12] and
references therein).

On the other hand, various modifications to the classical problem were proposed, allowing
one to solve the problem exactly. For instance, Capcarrere et al. proposed to modify the
output specification of the problem to find a solution that classifies the density perfectly [3].
Fukś showed that running two CA rules successively would also provide an acceptable
solution [7]. This issue was further explored by Martins and Oliveira, who discovered various
couples and triples of rules that solve the problem when applied sequentially and for a given
number of steps [10]. Some authors also proposed to embed a memory in the cells, which is
another method for enhancing the abilities of the rules [1, 16].

However, all of these solutions break the original specification of the problem, where
the cells have only two states and obey a homogeneous rule. The use of stochastic (or
probabilistic)1 CA is an interesting alternative that complies with these two conditions.
Indeed, in stochastic CA, the only modification to the CA structure is that the outcome of
the local transitions of the cells is no longer deterministic: it is specified by a probability to
update to a given state. This research path was opened by Fukś who exhibited a rule which
acts as a “stochastic copy” of the state of the neighbouring cells [8]. However, this mechanism
generates no force that drives the system towards its goal; the convergence is mainly attained
with a random drift of the density (see Sec. 2). Recently, Schüle et al. proposed a stochastic
rule that implements a local majority calculus [15]. This allows the system to converge to
its goal more efficiently, but the convergence rates still remain bounded by some intrinsic
limitations (see Sec. 3).

We propose to follow this path and present a new stochastic rule that solves the density
classification problem with an arbitrary precision, that is, with a probability of success
arbitrarily close to 1. This result answers negatively the open question to whether there
exists an upper bound on the success rate one can reach. The idea is to use randomness to
solve the dilemma between the local majority decisions and the propagation of a consensus
state. A trade-off is obtained by tuning a single parameter, η, that weights two well-known
deterministic rules, namely the majority rule and the “traffic” rule. We show that the
probability of making a good classification approaches 1 as η is set closer to 0. To evaluate
the “practical” use of our rule, we perform numerical simulations. Results show that this
rule attains qualities of classification that have been out of reach so far.

1 Formalisation of the Problem

In this section, we define the deterministic Elementary Cellular Automata and their stochastic
counterpart. We introduce the main notations for studying our problem.

1 Both terms ’stochastic’ and ’probabilistic’ CA are found in literature. We prefer to employ the former
as etymologically the Greek word ’stochos’ implies the idea of goal, aim, target or expectation.
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1.1 Elementary Cellular Automata
Let L = Z/nZ represent a set of n cells arranged in a ring. Each cell can hold a state in
{0, 1} and we call a configuration the state of the system at a given time ; the configuration
space is En = {0, 1}L, it is finite and we have |En| = 2n. We denote by |x|P the number of
occurrences of a pattern P in x. The density ρ(x) of a configuration x ∈ En is the ratio of
1s in this configuration: ρ(x) = |x|1/n. We denote by 0 = 0L and 1 = 1L the two special
uniform configurations. For q ∈ {0, 1}, a configuration x is a q-archipelago if all the cells in
state q are isolated, i.e., if x does not contain two adjacent cells in state q.

In all the following, we assume that n is odd. This will prevent us from dealing with
configurations that have an equal number of 0s and 1s.

An Elementary Cellular Automaton (ECA) is a one-dimensional binary CA with nearest
neighbour topology, defined by its local transition rule, a function φ : {0, 1}3 → {0, 1} that
specifies how to update a cell using only nearest-neighbour information. For a given ring
size n, the global transition rule Φ : En → En associated to φ is the function that maps a
configuration xt to a configuration xt+1 such that:

∀c ∈ L, xt+1
c = φ(xtc−1, x

t
c, x

t
c+1)

A Stochastic Elementary Cellular Automaton (sECA) is also defined by a local transition
rule, but the next state of a cell is known only with a given probability. In the binary case,
we define f : {0, 1}3 → [0, 1] where f(x, y, z) is probability that the cell updates to state 1
given that its neighbourhood has the state (x, y, z). The global transition rule F associated
to the local function f is the function that assigns to a random configuration xt the random
configuration xt+1 characterised2 by:

∀c ∈ L, xt+1
c = Btc

(
f(xtc−1, x

t
c, x

t
c+1)

)
(1)

where xtc denotes the random variable that is given by observing the state of cell c at time t
and where (Btc)c∈L,t∈N is a series of independent Bernoulli random variables, i.e., Btc(p) is a
random variable that equals to 1 with probability p and 0 with probability 1− p.

1.2 Density Classifiers
We say that a configuration x is a fixed point for the global function F if we have F (x) = x

with probability 1 and that F is a (density) classifier if 0 and 1 are its two only fixed points.
For a classifier C, let T (x) be the random variable that takes its values in N ∪∞ defined

as:
T (x) = min

{
t : xt ∈ {0,1}

}
We say that C correctly classifies a configuration x if T (x) is finite and if xT (x) = 1 for
ρ(x) > 1/2 and xT (x) = 0 for ρ(x) < 1/2. The probability of good classification G(x) of a
configuration x is the probability that C correctly classifies x.

To evaluate quantitatively the quality of a classifier requires to choose a distribution of
the initial configurations. Various such distributions are found in literature, often without

2 Note that defining rigorously the series of random variables xt obtained from F would require to
introduce advanced tools from the probability theory. In particular, one should define a space of
realisation Ω and always consider probability measures on Ω and for all ω ∈ Ω, define the random
variables with respect to the configurations xt(ω) ∈ En. For the sake of simplicity, and as it is frequently
done, the parameter ω is omitted and the random variables are defined only with regard to their
probability of realisation on Ω.
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an explicit mention, and this is why one may read different quality evaluations for the same
rule (for instance compare the results given for the GKL rule: 82% in Ref. [3] and 97.8% in
Ref. [9]). In order to avoid ambiguities, we re-define here the three main distributions of
initial configurations that have been used by authors:

(a) The binomial distribution µb is obtained by choosing a configuration uniformly in En.
(b) The d-uniform distribution µd is obtained by choosing an initial probability p uniformly

in [0, 1] and then building a configuration by assigning to each cell a probability p to be
in state 1 and a probability 1− p to be state 0.

(c) The 1-uniform distribution µ1 is obtained by choosing a number k uniformly in {0, . . . , n}
and then by choosing uniformly a configuration in the set of configurations of En that
contain exactly k ones.

Formally,

∀x ∈ En, µb(x) = 1
2n ; µd(x) =

∫ 1

0
pk(1− p)n−kdp ; µ1(x) = 1

n+ 1 ·
1(
n
k

)
where k = |x|1 is the number of 1s in x.
I Proposition 1. The d-uniform distribution µd and the 1-uniform distribution µ1 are
equivalent.
This equality can be established by identifying µd(x) to the values of the so-called ’Beta
function’ or ’Euler’s integral of first kind’.

Given a ring size n, a distribution µ on En, the quality Q of a classifier C is defined by:

Q(n) =
∑
x∈En

G(x) · µ(x)

In this paper, we evaluate the performance of a classifier using a binomial quality Qb,
defined with the distribution µb and a d-uniform quality Qd, defined with the distribution
µd. Intuitively, we see that for most classifiers, we will have Qd > Qb. Indeed, when we
take the binomial distribution, as n grows to infinity, most initial configurations of En have
a density close to 1/2 and are generally more difficult to classify that configuration with
densities close to 0 or 1. The d-uniform distribution avoids this difficulty by assigning an
equal chance to appear to all the initial densities.

Similarly, we define the average classification time with regard to distribution µ as

Tµ =
∑
x∈En

E
{
T (x)

}
µ(x)

We denote by Tb and Td the average classification time obtained with the µb and µd
distributions, respectively. As, for most classifiers, we have Td < Tb, we are only interested
in estimating Tb.

1.3 Structure of the sECA space
Obviously, the classical deterministic ECA are particular sECA with a local rule that takes
its values in {0, 1}. The space of sECA can be described as an eight-dimensional hypercube
with the 256 ECA in its corners. This can be perceived intuitively if we see sECA rules
as points of a hypercube, to which we apply the operations of addition and multiplication.
More formally, taking k sECA f1, . . . , fk and w1, . . . , wk real numbers in [0, 1] such that∑k
i=0 wi = 1, the barycenter of the sECA (fi) with weights wi is the sECA g defined with:

∀x, y, z ∈ {0, 1}, g(x, y, z) =
k∑
i=0

wi.f(x, y, z)
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Table 1 Table of the 8 active transitions and their associated letters. The transition code of an
ECA is the sequence of letters of its active transitions.

A B C D E F G H
000 001 100 101 010 011 110 111
1 1 1 1 0 0 0 0

As a consequence, one may choose to express an sECA as a barycenter of other ECA. The
most intuitive basis of the sECA space is formed by the 8 ECA that have only one transition
that leads to 1: the coordinates correspond to the values f(x, y, z). Equally, one may express
a sECA as a barycenter of the 8 (deterministic) ECA that have only one active transition, i.e.,
only one change of state in their transition table. Such ECA are labelled A, B, ..., H according
to the notation introduced in Ref. [6] and summed up in Tab. 1. Formally, for every sECA f ,
there exists a 8-tuple (pA, pB, . . . , pH) ∈ [0, 1]8 such that: f = pA ·A+pB ·B+ · · ·+pH ·H. We
denote this relationship by f = [pA, pB, . . . , pH]T, where the subscript T stands for (active)
transitions.

This basis presents many advantages for studying the random evolution of configurations
(see Ref. [6]). For instance, the group of symmetries of a rule can easily be obtained: the
left-right symmetry permutes pB and pC, and pF and pG, whereas the 0-1 symmetry permutes
pA and pH, pB and pG, etc.

This transition code also allows us to easily write the conservation laws of a stochastic
CA and to estimate some aspects of its global behaviour. To do this analysis, we write
a(x) = |x|000, b(x) = |x|001, . . . , h(x) = |x|111 (see Tab. 1) and drop the argument x when
there is no ambiguity. The following equalities hold [6]:

b+ d = e+ f = c+ d = e+ g ; b = c ; f = g (2)

We now detail how to use these tools to analyse the behaviour of an sECA.

2 Fukś Density Classifier

To start examining how stochastic CA solve the density classification problem, let us first
consider the probabilistic density classifier proposed by Fukś [8]. For p ∈ (0, 1/2], the local
rule C1 is defined with the following transition table:

(x, y, z) 000 001 010 011 100 101 110 111
f(x, y, z) 0 p 1− 2p 1− p p 2p 1− p 1

For any ring size n, this rule is a density classifier as 0 and 1 are its only fixed points. With
the transition code of Sec. 1.3, we write:

C1 = [0, p, p, 2p, 2p, p, p, 0]T
= p · BDEG + p · CDEF

where the rules3 BDEG(170) and CDEF(240) are the left and right shift respectively. This
means that Fuks’ rule can be interpreted as applying, for each cell independently: (a) a left

3 We give the “classical” rule code into parenthesis ; it is obtained by converting the series of 8 bits of the
transition table (000 to 111) to the corresponding decimal number.
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C1, p = 0.25 C2, ε = 0.8 C3, η = 0.25

Figure 1 Space-time diagrams showing the evolution of the C1,C2,C3 classifiers with n = 39,
and same initial density ∼ 0.4. Time goes from bottom to top ; white cells are 0-cells and blue
cells are 1-cells. (left & middle) evolution will most probably end with a good classification (0);
(right) evolution will with end with a good classification with probability 1 (an archipelago has been
reached ).

shift with probability p, (b) a right shift with probability p, and (c) staying in the same state
with probability 1− 2p (see Fig. 1). We also note that this rule is invariant under both the
left-right and the 0-1 permutations (as pB = pC = pF = pG, pA = pH and pD = pE).

I Theorem 1. For the classifier C1 set with p ∈ (0, 1/2],

∀x ∈ En, G(x) = max {ρ(x), 1− ρ(x)} and Tb ≤
1
4p · n

2

The relationship on G(x) was observed experimentally with simulations and partially
explained by combinatorial arguments [8]. As for the classification time of the system, no
predictive law was given. We now propose a proof that uses the analytical tools developed
for asynchronous ECAs [6] and completes the results established by Fukś. The proof stands
on the following lemma:

I Lemma 2. For a sequence of random variables (xt)t∈N that describes the evolution of a
stochastic CA with the initial condition x ∈ En, let M be a mapping M : En → {0, . . . ,m}
where m is any integer, and let (Xt) be the sequence of random variables defined by ∀t,Xt =
M(xt). If Xt and ∆Xt+1 = Xt+1 −Xt verify that:

the stochastic process (Xt) is a martingale on {0, . . . ,m}, that is, for a filtration Ft
adapted to (Xt), E

{
∆Xt+1 |Ft

}
= 0,

Xt ∈ {1, . . . ,m− 1} =⇒ var
{

∆Xt+1
}
> v,

then:

Pr{XT = m} = q

m

and the absorbing time of the process T (x) = min{t : Xt = 0 or Xt = m} is finite and obeys:

E{T (x)} ≤ q(m− q)
v

≤ m2

4v
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where q = E{X0} = M(x).

Sketch. A similar lemma was formulated for studying asynchronous CA [6]. The main
elements of its proof are: (1) to note that T is a stopping time, (2) to use the Optional
Stopping Time theorem to calculate E{XT }, (3) to note that the process Yt = X2

t − v · t is a
submartingale and use again the Optional Stopping Time theorem. J

Proof of Theorem 1. We simply take Xt = |xt|1 and show that Lemma 2 applies to Xt. We
write:

E
{

∆Xt+1 |Ft
}

= p.b+ p.c+ 2p.d− 2p.e− p.f − p.g
= p.(b+ d− e− f) + p.(c+ d− e− g)

Using Eq. (2), we obtain E
{

∆Xt+1 |Ft
}

= 0.
Second, we assume that Xt ∈ {1, . . . , n− 1}. It implies that xt /∈ {0,1}, that is, xt is not

a fixed point. Denoting by Ã, B̃, the cells where transitions A, B, ... apply, and given that
transitions B, C, D (resp. E, F, G) increase (resp. decrease) ∆Xt+1 by 1, we write:

∆Xt+1 =
∑
c∈B̃,C̃

Btc(p) +
∑
c∈D̃

Btc(2p)−
∑
c∈Ẽ

Btc(2p)−
∑
c∈F̃ ,G̃

Btc(p) (3)

where (Btc) is the series of the Bernoulli random variables of Eq. (1). Using the independence
of these variables and var

{
B(p)

}
= p(1− p), Eq. (3) gives:

var
{

∆Xt+1
}

= (b+ c+ f + g) · p(1− p) + (d+ e) · 2p(1− 2p)
= p · [(s1 + 2s2)− (s1 + 4s2) · p]

with s1 = b + c + f + g and s2 = d + e. Using Eq. (2) and noting that the value of n is
odd, we remark that there exists a 00 or 11 pattern and that s1 = b+ c+ f + g ≥ 2. From
p ≤ 1/2, we obtain (s1 + 2s2)− (s1 + 4s2) · p ≥ 1 and var

{
∆Xt+1

}
≥ p.

Lemma 2 thus applies by taking v = p and m = n. Finally, we find that the probability
that the process stops on XT = n, that is, on the fixed point 1, is equal to the initial density
ρ(x) = |x|1/n. We also find that :

∀x ∈ En, T (x) ≤ |x|1 (n− |x|1)
p

and Tb ≤
n2

4p
J

From this result, we derive that the probability of good classification of any configuration
x is equal to G(x) = max{ρ(x), 1 − ρ(x)}. The d-uniform quality of C1 is thus equal to
Qd(n) = 3/4 (obtained y a simple integration). For n = 2k+ 1, the binomial quality of C1 is
equal to: Qb(n) = 1/2 +

(2k
k

)
/22k+1. This formula explains why the quality of classification

of C1 quickly decreases as the ring size n increases. For instance for n = 49, we have:
Qb(n) = 0.557, that is, the gain of using C1 compared to a random guess is less than 6%.
For the reference value n = 149, the gain drops down to 3.3% (see Tab. 2 p. 294).

3 Schüle Density Classifier

We now consider the probabilistic density classifier proposed by Schüle et al [15]. It was
designed to improve the convergence of the system towards a fixed point. For ε ∈ (0, 1], the
local rule C2 is defined with the following transitions:

(x, y, z) 000 001 010 011 100 101 110 111
f(x, y, z) 0 1− ε 1− ε ε 1− ε ε ε 1



N. Fatès 291

This rule is a density classifier as 0 and 1 are its only fixed points. With the transition code
of Sec. 1.3, we write:

C2 = [0, 1− ε, 1− ε, ε, ε, 1− ε, 1− ε, 0]T
= (1− ε) · BCFG + ε · DE

where rule BCFG(150) is the rule that implements a XOR function with three neighbours
and DE is the majority rule. This means that Schüle’s rule can be interpreted as applying for
each cell independently: (a) a XOR with probability 1− ε (b) a majority with probability ε
(see Fig. 1). This rule is invariant under both the left-right and the 0-1 symmetries (as we
have: pB = pC = pF = pG, pA = pH and pD = pE).

I Theorem 3. For the classifier C2, for ε = 2/3,

∀x ∈ En, G(x) = max {ρ(x), 1− ρ(x)} and Tb ≤ 9/2 · n2

The relationship on G(x) was proved under the mean-field approximation [15]. We now
propose to re-derive this result more directly.

Proof. Let us take Xt = |xt|1 and show that Lemma 2 applies to Xt. We have:

E
{

∆Xt+1
}

= (1− ε)(b+ c− f − g) + ε(d− e)
= (1− ε) · (b+ c− d+ e− f − g) + d− e

Using Eq. (2), we obtain:

E
{

∆Xt+1
}

= (3ε− 2)(d− e) (4)

which leads to E
{

∆Xt+1
}

= 0 for ε = 2/3.
Let us now assume that Xt ∈ {1, . . . , n− 1}. This implies that xt is not a fixed point and

that b+ c+ d+ e+ f + g ≥ 1. Recall that we denote by Ã, B̃,... the cells where transitions
A, B ,... apply. We have:

∆Xt+1 =
∑
c∈B̃,C̃

Btc(1− ε) +
∑
c∈D̃

Btc(ε)−
∑
c∈Ẽ

Btc(ε)−
∑
c∈F̃ ,G̃

Btc(1− ε)

where (Btc) is the series of Bernoulli random variables of Eq. (1). This results in:

var
{

∆Xt+1
}

= (b+ c+ d+ e+ f + g) · ε(1− ε)
≥ ε(1− ε)

Lemma 2 thus applies by taking v = ε(1 − ε) and m = n. Consequently, we find that
the probability that the process stops on the fixed point 1 (given by XT = n) is equal to
X0/n = ρ(x) and that ∀x ∈ En, T (x) ≤ |x|1(n−|x|1)ε(1−ε) , which implies

Tb ≤
n2

4ε(1− ε) ≤
9n2

2

J

Equation (4) also allows us to understand the general behaviour of Schüle’s classifier C2
for ε 6= 2

3 . Informally, let us consider a configuration x with a density close to 1. For such a
configuration, we most likely have more isolated 0s than isolated 1s, that is, d− e > 0 and
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the sign of ∆Xt+1 is the same as 3ε− 2. As for such configurations, we want the density to
increase, we see that setting ε > 2/3 drives the system more rapidly towards its goal. This
also explains why for ε < 2/3, it was no longer possible to observe the system convergence
within “reasonable” simulation times. In fact, as observed by Schüle and al. [15], the system
is then in a metastable state: although the classification time is finite, the system is always
attracted towards a density 1/2. Last, but not least, we think that for ε > 2/3, only isolated
0s or 1s of the initial configuration contribute to driving the system to its goal. This leads
us to formulate the following statement:

I Proposition 2. For the classifier C2 set with ε > 2/3, the quality of classification Qb(n) is
bounded. More precisely:

∀ε > 2/3,∀x ∈ En : |x|010 = |x|101 = 0,G(x) = max{ρ(x), 1− ρ(x)}

and

∀ε > 2/3,∀x ∈ En,G(x) ≤ max{ρ∗(x), 1− ρ∗(x)}

where ρ∗(x) = (Φ∞MAJ(x)) is the density attained by an asymptotic evolution of x under the
majority rule.

Theses hypotheses are partially confirmed by numerical simulations (see Tab. 2). We also
verified experimentally that for ε→ 1, the quality approaches an asymptotic limit while the
average classification time diverges. We leave a rigorous proof this statement for future work
and now present a rule that does not suffer from such limitations.

4 A New Rule for Density Classification

For η ∈ (0, 1], let us consider the following sECA:

(x, y, z) 000 001 010 011 100 101 110 111
f(x, y, z) 0 0 0 1 1− η 1 η 1

With the transition code, this writes:

C3 = [0, 0, 1− η, 1, 1, 0, 1− η, 0]T
= η.DE + (1− η).CDEG

For η = 0 we have CDEG(184), which is a well-known rule, often called the “traffic” rule.
This rule is number conserving, i.e., the number of 1s is conserved as the system evolves (see
e.g., [2]). Observing the evolution of the rule, we see that a 1 with a 0 at its right moves to
right while a 0 with a 1 at its left is moved to the left. So everything happens as if the 1s
were cars that tried to go to the right, possibly meeting traffic jams. These jams resorb by
going in the inverse directions of the cars (when possible). For η = 1, we have the majority
rule DE(232). For η ∈ (0, 1), the effect of the rule is the same as applying, for each cell
and at each time step, the traffic rule with probability 1 − η and the majority rule with
probability η (see Fig. 1). This combination of rules has a surprising property: although the
system is stochastic, there exists an infinity of configurations that can be classified with no
error.

I Lemma 4. An archipelago is well-classified with probability 1.
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Proof. The proof is simple and relies on two observations.
First, let us note that the successor of a q-archipelago is a q-archipelago. To see why this

holds, without loss of generality, let us assume that x is a 1-archipelago. Let us denote by y
a potential successor of x. Let C be the 1-cells in y: C = {c ∈ L : yc = 1}. If we look in x at
the local predecessor pattern of a cell c ∈ C, we have (xc−1, xc, xc+1) ∈ {100, 101, 011, 111}
by examining the transition function of C3, and, as x is a 1-archipelago, (xc−1, xc, xc+1) ∈
{100, 101}. As these two patterns do not overlap, it is not possible to have two successive
cells of L contained in C and y is a 1-archipelago.

Second, we remark that the number of 1s of xt is a non-increasing function of t. At each
time step, each isolated 1 can “disappear” if transition C is not applied, which happens with
probability η > 0. As a result, all the 1s will eventually disappear and the system will attain
the fixed point 0, which corresponds to a good classification as we have ρ(x) < 1/2. J

The second interesting property of C3 is its ability to make any configuration evolve to
an archipelago with a probability that can be made as large as wanted.

I Lemma 5. For every p ∈ [0, 1), there exists a setting η of the classifier C3 such that
for every configuration x ∈ En, the probability to evolve to an archipelago xA such that
d(xA) = d(x) is greater than p.

Proof. The proof relies on the well-known property of the traffic rule to evolve to an
archipelago in at most n/2 steps. Let us denote by Φ the global transition function of CDEG
and write yt = Φt(x), that is, (yt) is the series of configurations obtained with x as an initial
condition. From the properties of the traffic rule, we have that ρ(yt) = ρ(x) and that ydn/2e
is an archipelago4 (see e.g., Ref. [3] Lemma 4).

For a given p and given n, without loss of generality, let us consider a configuration x
such that ρ(x) < 1/2. Let us now evaluate the probability that rule C3 does not behave like
the traffic rule in the first T = dn/2e steps. Formally let Dt = card{c ∈ L : xtc 6= ytc} .

Comparing the transition rules of CDEG and C3, we see that differences in the evolution
of the two rules can only occur for cells where transitions C and G apply, that is, cells that
have a 100 and 110 neighbourhood. As we have b = c and f = g, and b+ f + g + c ≤ n, we
write b+ f ≤ dn/2e. For such cells, differences of evolution occur with a probability η, which
implies that, at each time step, the probability pdiff = Pr{Dt > 0} that the evolution of C3
and CDEG differ on T steps is upper-bounded by: pdiff ≤ ηT ·dn/2e ≤ ηT

2 . The probability
Peq = Pr{D1 = 0, . . . , DT = 0} that the two rules evolve identically on T steps is thus
greater than or equal to 1 − pdiff and we find that it is sufficient to set: η < 1 − p

1
T 2 to

guarantee that Peq > p, i.e., that the probability to reach a 1-archipelago is greater than p.
As the traffic rule is number-conserving, the archipelago has the same density as the initial
configuration. J

This inequality shows that, by taking η small enough, the probability that a configuration x
with ρ(x) < 1/2 evolves to a 1-archipelago can be made arbitrarily small. This allows us to
state our main result.

I Theorem 6. For all p ∈ [0, 1), there exists a setting η of the classifier C3 such that
∀x ∈ En, G(x) ≥ p. As a consequence, ∀n ∈ 2N + 1, setting η → 0 implies Qb(n)→ 1.

4 As remarked by an anonymous referee, bn/2c steps should be sufficient.
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Table 2 Results for n = 149 ; averages on 10 000 samples, the values 53.3 and 75.0 are calculated.

model setting Qb (in%) Qd (in%) Tb

C1 p = 0.25 53.3 75.0 4638
C1 p = 0.48 53.3 75.0 2652
C1 p = 0.5 53.3 75.0 8985
C2 ε = 0.7 54.0 80.1 4061
C2 ε = 0.8 55.1 83.8 6223
C2 ε = 0.9 56.6 85.8 11887
C3 η = 0.1 82.4 98.1 517
C3 η = 0.01 91.0 99.1 4950
C3 η = 0.005 93.4 99.3 9981

Proof. Combining the two previous lemmas to prove the theorem is straightforward: for η
small enough, the system evolves to an archipelago that has the same density as the initial
condition (Lemma 5). It is then necessarily well-classified as it will progressively “drift”
towards the appropriate fixed point (Lemma 4). However, we remark that the time taken to
reach the fixed point increases as η decreases. J

The analytical estimation of the quality of C3 and its time of convergence is more complex
than for Fukś and Schüle classifiers. Table 2 shows the values of Qb, Qd and Tb estimated
by numerical simulations. We can observe that the quality rapidly increases to high values,
even when keeping the average convergence time to a few thousand steps. In particular for
η < 1%, the quality goes above the symbolic rate of 90%, which, to our knowledge, has not
been yet reached for one-dimensional systems (see e.g. [4, 12]). Another major point regards
the classification time of C3: for n ≤ 300 and η ≤ 0.1, it is experimentally determined as
varying linearly (or quasi-linearly) with the ring size n.
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Abstract
In a probabilistic cellular automaton (PCA), the cells are updated synchronously and indepen-
dently, according to a distribution depending on a finite neighborhood. A PCA can be viewed as
a Markov chain whose ergodicity is investigated. A classical cellular automaton (CA) is a partic-
ular case of PCA. For a 1-dimensional CA, we prove that ergodicity is equivalent to nilpotency,
and is therefore undecidable. We then propose an efficient perfect sampling algorithm for the
invariant measure of an ergodic PCA. Our algorithm does not assume any monotonicity property
of the local rule. It is based on a bounding process which is shown to be also a PCA.
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1 Introduction

Cellular automata (CA) are dynamical systems in which space and time are discrete. A
cellular automaton consists of a lattice (e.g. Zd or Z/nZ) divided in regular cells, each cell
containing a letter of a finite alphabet. The cells evolve synchronously, each one evolving in
function of a finite number of cells in its neighborhood, according to a local rule.

To take into account randomness, one is led to consider probabilistic cellular automata
(PCA) [17]. For PCA, time is dicrete and the cells evolve synchronously as for CA, but the
difference is that for each cell, the new content is randomly chosen, independently of the
others, according to a distribution depending only on a finite neighborhood of the cell.

Let us mention a couple of motivations. First, the investigation of fault-tolerant com-
putational models was the motivation for the russian school to study PCA [17, 6]. Second,
PCA appear in combinatorial problems related to the enumeration of directed animals [11].
Third, in the context of the classication of CA (Wolfram’s program), robustness to random
errors can be used as a discriminating criterion [5, 14].

We focus our study on the equilibrium behavior of PCA. Observe that a PCA may be
viewed as a Markov chain over the state space AE , where A is the alphabet and E is the
set of cells. The equilibrium is studied via the invariant measures of the Markov chain. A
PCA is ergodic if it has a unique and attractive invariant measure. Finding conditions to
ensure ergodicity is a difficult problem which has been thoroughly investigated [17, 6]. When
a PCA is ergodic, it is usually impossible to determine the invariant measure explicitly, and
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simulation becomes the alternative. Simulating PCA is known to be a challenging task,
costly both in time and space. Also, configurations cannot be tracked down one by one
(there is an infinite number of them when E is infinite) and may only be observed through
some measured parameters. The point is to have guarantees upon the results obtained from
simulations.

In this context, our contributions are as follows. First, we prove that the ergodicity of a
CA on Z is undecidable. This was mentioned as Unsolved Problem 4.5 in [16]. Since a CA is
a special case of a PCA, it also provides a new proof of the undecidability of the ergodicity
of a PCA (Kurdyumov, see [17, Chap. 14], and Toom [15]). Second, we propose an efficient
perfect sampling algorithm for ergodic PCA. Recall that a perfect sampling procedure is
a random algorithm which returns a configuration distributed according to the invariant
measure. By applying the procedure repeatedly, we can estimate the invariant measure with
arbitrary precision. We propose such an algorithm for PCA by adapting the coupling from
the past method of Propp & Wilson [12]. When the set of cells is finite, a PCA is a finite state
space Markov chain. Therefore, coupling from the past from all possible initial configurations
provides a basic perfect sampling procedure, but a very inefficient one since the number of
configurations is exponential in the number of cells. Here, the contribution consists in an
important simplification of the procedure. We define a new PCA on an extended alphabet,
called the envelope PCA (EPCA). We obtain a perfect sampling procedure for the original
PCA by running the EPCA on a single initial configuration. When the set of cells is infinite,
a PCA is a Markov chain on an uncountable state space. So there is no basic perfect sampling
procedure anymore. We prove the following: If the PCA is ergodic, then the EPCA may or
may not be ergodic. If it is ergodic, then we can use the EPCA to design an efficient perfect
sampling procedure (the result of the algorithm is the finite restriction of a configuration
with the right invariant distribution). The EPCA can be viewed as a systematic treatment
of ideas already used by Toom for percolation PCA (see for instance [16, Section 2]).

The perfect sampling procedure can also be run on a PCA whose ergodicity is unknown,
with the purpose of testing it. We illustrate this approach on Majority, prototype of a PCA
whose equilibrium behavior is not well understood.

2 Probabilistic cellular automata

Let A be a finite set called the alphabet, and let E be a countable or finite set of cells. We
denote by X the set AE of configurations.

We assume that E is equipped with a commutative semigroup structure, whose law is
denoted by +. In examples, we consider mostly the cases E = Z or E = Z/nZ. Given K ⊂ E
and V ⊂ E, we define V +K =

{
v + k | v ∈ V, k ∈ K}.

A cylinder is a subset of X having the form {x ∈ X | ∀k ∈ K,xk = yk} for a given finite
subset K of E and a given element (yk)k∈K ∈ AK . When there is no possible confusion, we
shall denote briefly by yK the cylinder {x ∈ X | ∀k ∈ K,xk = yk}. For a given finite subset
K, we denote by C(K) the set of all cylinders of base K.

Let us equip X = AE with the product topology, which can be described as the topology
generated by cylinders. We denote byM(A) the set of probability measures on A and by
M(X) the set of probability measures on X for the σ-algebra generated by all cylinder sets,
which corresponds to the Borelian σ-algebra. For x ∈ X, denote by δx the Dirac measure
concentrated on the configuration x.

I Definition 2.1. Given a finite set V ⊂ E, a transition function of neighborhood V is a
function f : AV → M(A). The probabilistic cellular automaton (PCA) P of transition
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function f is the application P :M(X)→M(X), µ 7→ µP, defined on cylinders by:

µP (yK) =
∑

xV +K∈C(V +K)

µ(xV +K)
∏

k∈K

f((xk+v)v∈V )(yk) .

Let us look at how P acts on a Dirac measure δz. The content zk of the k-th cell
is changed into the letter a ∈ A with probability f((zk+v)v∈V )(a), independently of the
evolution of the other cells. The real number f((zk+v)v∈V )(a) ∈ [0, 1] is thus to be thought
as the conditional probability that, after application of P , the k-th cell will be in the state a
if, before its application, the neighborhood of k was in the state (zk+v)v∈V .

Let u be the uniform measure on [0, 1]. We define the product measure τ =
⊗

i∈E u on
[0, 1]E .

I Definition 2.2. An update function of the probabilistic cellular automaton P is a deter-
ministic function φ : AE × [0, 1]E → AE (the function φ takes as argument a configuration
and a sample in [0, 1]E , and returns a new configuration), satisfying for each x ∈ AE , and
each cylinder yK ,

τ({r ∈ [0, 1]E ;φ(x, r) ∈ yK}) =
∏

k∈K

f((xk+v)v∈V )(yk).

In practice, it is always possible to define an update function φ for which the value
of φ(x, r)k only depends on (xk+v)v∈V and on rk. For example, if the alphabet is A =
{a1, . . . , an}, one can set

φ(x, r)k =


a1 if 0 ≤ rk < f((xk+v)v∈V )(a1)
a2 if f((xk+v)v∈V )(a1) ≤ rk < f((xk+v)v∈V )({a1, a2})
...
an if f((xk+v)v∈V ({a1, a2, . . . , an−1}) ≤ rk ≤ 1.

(1)

For a given initial configuration x0 ∈ AE , and samples (rt)t∈N, r
t ∈ [0, 1]E , let (xt)t∈N ∈

(AE)N be the sequence defined recursively by xt+1 = φ(xt, rt). Such a sequence is called a
space-time diagram. It can be viewed as a realization of the Markov chain. Examples of
space-time diagrams appear in Figures 1 and 2.

Classical cellular automata are a specialization of PCA.

I Definition 2.3. A deterministic cellular automaton (DCA) is a PCA such that for each
sequence (xv)v∈V ∈ AV , the measure f((xv)v∈V ) is concentrated on a single letter of the
alphabet. A DCA can thus be seen as a deterministic function F : AE → AE .

In the literature, the term cellular automaton denotes what we call here a DCA. Deter-
ministic cellular automata have been widely studied, in particular on the set of cells E = Z,
see Section 3. For a DCA, any initial configuration defines a unique space-time diagram.

I Example 2.4. Let A = {0, 1}, E = Z, and V = {0, 1}. Consider 0 < ε < 1 and the
local function f(x, y) = (1− ε) δx+y mod 2 + ε δx+y+1 mod 2 . This defines a PCA that can
be considered as a perturbation of the DCA F : AE → AE defined by F (x)i = xi + xi+1
mod 2, with errors occuring in each cell independently with probability ε.

I Example 2.5. LetA = {0, 1}, E = Zd, and let V be a finite subset of E. Consider 0 < α < 1
and the local function: f((xv)v∈V ) = α δmax(xv, v∈V ) + (1−α) δ0 . The corresponding PCA is
called the percolation PCA associated with V and α. The particular case of the space E = Z
and the neighborhood V = {0, 1} is called the Stavskaya PCA. In Figure 1, we represent two
portions of diagrams of the percolation PCA for E = Z and V = {−1, 0, 1}.
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Time

(a) α = 0.5 (b) α = 0.6

Figure 1 Space-time diagrams of the PCA of Example 2.5, for V = {−1, 0, 1}.

2.1 Invariant measures and ergodicity
A PCA can be seen as a Markov chain on the state space AE . We use the classical terminology
for Markov chains that we now recall.

I Definition 2.6. A probability measure π ∈M(X) is said to be an invariant measure of
the PCA P if πP = π. The PCA is ergodic if it has exactly one invariant measure π which
is attractive, that is, for any measure µ ∈M(X), the sequence µPn converges weakly to π
(i.e. for any cylinder C, limn→+∞ µPn(C) = π(C)).

A PCA has at least one invariant measure, and the set of invariant measures is convex and
compact. This is a standard fact, based on the observation that the setM(X) of measures
on X is compact for the weak topology, see for instance [17]. Therefore, there are three
possible situations for a PCA:

(i) several invariant measures; (ii) a unique invariant measure which is not attractive;
(iii) a unique invariant measure which is attractive (ergodic case).

I Example 2.7. Consider the PCA of Example 2.4. Using the results in [17, Chapters 16
and 17], one can prove that the PCA is ergodic and that its unique invariant measure is the
uniform mesure, i.e. the product of Bernoulli measures of parameter 1/2.

I Example 2.8. Consider the percolation PCA of Example 2.5. Observe that the Dirac
measure δ0E is an invariant measure. Using a coupling with a percolation model, one can
prove the following, see for instance [16, Section 2]. There exists α∗ ∈ (0, 1) such that:

α < α∗ =⇒ (iii) : ergodicity, α > α∗ =⇒ (i) : several invariant measures.
The exact value of α∗ is not known but it satisfies 1/|V | ≤ α∗ ≤ 53/54.

The existence of a PCA corresponding to situation (ii) had been a long standing conjecture,
but an example has recently been presented in [3]. The PCA of Example 2.5 exhibits a phase
transition between the situations (i) and (iii). In Section 5, we study a PCA that may have
a phase transition between the situations (ii) and (iii). It would provide the first example of
this type.

3 Ergodicity of DCA

DCA form the simplest class of PCA, it is therefore natural to study the ergodicity of DCA.
In this section, we prove the undecidability of ergodicity for DCA (Theorem 3.4).

Remark. In the context of DCA, the terminology of Definition 2.6 might be confusing.
Indeed a DCA P can be viewed in two different ways: (i) a (degenerated) Markov chain;
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(ii) a symbolic dynamical system. In the dynamical system terminology, P is uniquely
ergodic if: [∃!µ, µP = µ]. In the Markov chain terminology (that we adopt), P is ergodic if:
[∃!µ, µP = µ] and [∀ν, νPn w−→ µ], where w−→ stands for the weak convergence. Knowing if
the unique ergodicity (of symbolic dynamics) implies the ergodicity (of the Markov theory)
is an open question for DCA.

The limit set of P is defined by LS =
⋂

n∈N P
n(AE). In words, a configuration belongs to

LS if it may occur after an arbitrarily long evolution of the cellular automaton. Observe that
LS is non-empty since it is the decreasing limit of non-empty closed sets. A constructive way
to show that LS is non-empty is as follows. The image by P of a monochromatic configuration
xE is monochromatic: xE → yE . In particular, there exists a monochromatic periodic orbit
for P , and we have: xE

0 → xE
1 → · · · → xE

k−1 → xE
0 =⇒ {xE

0 , x
E
1 , . . . , x

E
k−1} ⊂ LS.

Recall that δu denotes the probability measure concentrated on the configuration u. The
periodic orbit (xE

0 , . . . , x
E
k−1) provides an invariant measure given by (δxE

0
+ . . .+ δxE

k−1
)/k.

More generally, the support of any invariant measure is included in the limit set.

I Definition 3.1. A DCA is nilpotent if its limit set is a singleton.

Clearly, a DCA is nilpotent iff LS = {xE} for some x ∈ A. The following stronger
statement is proved in [4], using a compactness argument:

[ P nilpotent ] ⇐⇒ [ ∃x ∈ A,∃N ∈ N, PN (AE) = {xE} ] .

In that case, for any probability measure µ on AE , we have µPN = δxE , so that P is ergodic
with unique invariant measure δxE . This proves the following proposition.

I Proposition 3.2. Consider a DCA P . We have: [ P nilpotent ] =⇒ [ P ergodic ].

If we restrict ourselves to DCA on Z, we get the converse statement.

I Theorem 3.3. Consider a DCA P on the set of cells Z. We have:

[ P nilpotent ] ⇐⇒ [ P ergodic ] .

Proof. Let P be an ergodic DCA. Assume that there exists a monochromatic periodic orbit
(xZ0 , . . . , xZk−1) with k ≥ 2. Then µ = (δxZ

0
+ · · ·+ δxZ

k−1
)/k is the unique invariant measure.

The sequence δxZ
0
Pn does not converge weakly to µ, which is a contradiction. Therefore, there

exists a monochromatic fixed point: P (xZ) = xZ, and δxZ is the unique invariant measure.
Define the cylinder C = {v ∈ AZ | ∀i ∈ K, vi = x}, whereK is some finite subset of Z. For

any initial configuration u ∈ AZ, using the ergodicity of P , we have: δuP
n(C) −→ δxZ(C) = 1.

But δuP
n is a Dirac measure, so δuP

n(C) is equal to 0 or 1. Consequently, we have
δuP

n(C) = 1 for n large enough, that is, ∃N ∈ N,∀n ≥ N, ∀i ∈ K, Pn(u)i = x.

In words, in any space-time diagram of P , any column becomes eventually equal to
xxx · · · . Using the terminology of Guillon & Richard [8], the DCA P has a weakly nilpotent
trace. It is proved in [8] that the weak nilpotency of the trace implies the nilpotency of the
DCA. (The result is proved for cellular automata on Z and left open in larger dimensions.)
This completes the proof. J

Kari proved in [10] that the nilpotency of a DCA on Z is undecidable. (For DCA on Zd,
d ≥ 2, the proof appears in [4].) By coupling Kari’s result with Theorem 3.3, we get:

I Corollary 3.4. Consider a DCA P on the set of cells Z. The ergodicity of P in undecidable.
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The undecidability of the ergodicity of a PCA was a known result, proved by Kurdyumov,
see [17], see also Toom [15]. But the undecidability of the ergodicity of a DCA, which is a
stronger result, was in fact mentioned as Unsolved Problem 4.5 in [16].

Corollary 3.4 can also be obtained without Theorem 3.3, by directly adapting Kari’s proof
to show the undecidability of the ergodicity of the DCA associated with a NW-deterministic
tile set.

4 Sampling the invariant measure of an ergodic PCA

Generally, the invariant measure(s) of a PCA cannot be described explicitly. Numerical
simulations are consequently very useful to get an idea of the behavior of a PCA. Given
an ergodic PCA, we propose a perfect sampling algorithm which generates configurations
exactly according to the invariant measure.

A perfect sampling procedure for finite Markov chains has been proposed by Propp
& Wilson [12] using a coupling from the past scheme. Perfect sampling procedures have
been developed since in various contexts. Let us mention some related works. For more
information see the annotated bibliography: Perfectly Random Sampling with Markov Chains,
http://dimacs.rutgers.edu/~dbwilson/exact.html/.

The complexity of the algorithm depends on the number of all possible initial conditions,
which is prohibitive for PCA. A first crucial observation already appears in [12]: for a
monotone Markov chain, one has to consider only extremal initial conditions. To cope with
more general situations, Huber [9] introduced the idea of a bounding chain for determining
when coupling has occurred. The construction of these bounding chains is model-dependent
and in general not straightforward. In the case of a Markov chain on a lattice, Bušić et al.
[2] proposed an algorithm to construct the bounding chains.

Our contribution is to show that the bounding chain ideas can be given in a particularly
simple and convenient form in the context of PCA via the introduction of the envelope PCA.

4.1 Basic coupling from the past for PCA
We present first the algorithm for a PCA on a finite set of cells, and then for an infinite set
of cells.

Finite set of cells. Consider an ergodic
PCA P on the alphabet A and on a finite set
of cells E (for example Zm = Z/mZ). Let
π be the invariant measure on X = AE . A
perfect sampling procedure is a random al-
gorithm which returns a state x ∈ X with
probability π(x). Algorithm 1 is a presenta-
tion of the Propp & Wilson, or coupling from
the past (CFTP), perfect sampling procedure,
written here in the context of PCA.

I Proposition 4.1 ([12]). If Algorithm 1
stops almost surely, then the PCA is ergodic
and the output is distributed according to the
invariant measure.

Algorithm 1: Basic CFTP algorithm for
a finite set of cells
Data: Update function φ : X × [0, 1]E → X of

a PCA. Family (r−n
k )(k,n)∈E×N of i.i.d.

r.v. uniform on [0, 1].
begin

t = 1 ;
repeat

R−t = X ;
for j = −t to −1 do

Rj+1 = {φ(x, (rj
i )i∈E) ; x ∈ Rj}

t = t+ 1
until |R0| = 1 ;
return the unique element of R0

end
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The proof is based on the following idea: if we had run the Markov chain from time −∞
up to 0, then the result would obviously be equal to the output of the algorithm. But if we
start from time −∞, the Markov chain has reached equilibrium by time 0.

Infinite set of cells. Assume that the set of cells E is infinite. Then a PCA defines a
Markov chain on the infinite state space X = AE , so the above procedure is not effective
anymore. However, it is possible to use the locality of the updating rule of a PCA to still
define a perfect sampling procedure. (This observation already appears in [1].)

Let P be an ergodic PCA P and denote by π its invariant distribution. In this context, a
perfect sampling procedure is a random algorithm taking as input a finite subset K of E and
returning a cylinder xK ∈ C(K) with probability π(xK).

To get such a procedure, we use the fol-
lowing fact: if the PCA is run from time −k
onwards, then to compute the content of the
cells in K at time 0, it is enough to consider
the cells in the finite dependence cone of K.
This is illustrated here for the set of cells
E = Z and the neighborhood V = {−1, 0, 1},
with the choice K = {0}.

-3

-2

-1

t E = Z

-4

0

More formally, let V be the neighborhood of the PCA. Given a subset K of E, the
dependence cone of K is the family (V−t(K))t∈N of subsets of E defined recursively by
V0(K) = K and V−t(K) = V + V−t+1(K). Let φ : X × [0, 1]E → X be an update
function, for instance the one defined in (1). For a given subset K of E, we denote
φ−t : AV−t(K) × [0, 1]V−t(K) → AV−t+1(K) the corresponding restriction of φ. With these
notations, the algorithm now consists in setting at each step R−t = AV−t(K) and computing
Rj+1 = {φj(x, (rj

i )i∈Vj(K)) ; x ∈ Rj} ⊂ AVj+1(K) for j = −t to −1. This is done until we get
|R0| = 1.

Next proposition is an easy extension of Proposition 4.1.

I Proposition 4.2. If the procedure stops almost surely, then the PCA is ergodic and the
output is distributed according to the marginal of the invariant measure.

4.2 Envelope probabilistic cellular automata (EPCA)
The CFTP algorithm is inefficient when the state space is large. This is the case for PCA:
when E is finite, the set AE is very large, and when E is infinite, it is the dependence cone
described above which is very large. We cope with this difficulty by introducing the envelope
PCA.

For simplicity, we assume that P is a PCA on the alphabet A = {0, 1} (as previously,
the set of cells is denoted by E, the neighborhood by V ⊂ E and the local function by f).
Most of the results can be easily extended to the case of a general alphabet.

Definition of the EPCA. Let us introduce a new alphabet: B = {0,1, ?}. A word on
B is to be thought as a word on A in which the letters corresponding to some positions are
not known, and are thus replaced by the symbol “?”. Formally we identify B with 2A − ∅
as follows: 0 = {0}, 1 = {1}, and ? = {0, 1}. So each letter of B is a set of possible letters
of A. With this interpretation, we view a word on B as a set of words on A. For instance,
?1? = {010, 011, 110, 111}.
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We will associate to the PCA P a new PCA on the alphabet B, that we call the envelope
probabilistic cellular automaton of P .

I Definition 4.3. The envelope probabilistic cellular automaton (EPCA) of P , is the PCA
env(P ) of alphabet B, defined on the set of cells E, with the same neighborhood V as for P ,
and a local function env(f) : BV →M(B) defined for each y ∈ BV by

env(f)(y)(0) = min
x∈AV , x∈y

f(x)(0), env(f)(y)(1) = min
x∈AV , x∈y

f(x)(1)

env(f)(y)(?) = 1− min
x∈AV , x∈y

f(x)(0)− min
x∈AV , x∈y

f(x)(1).

Observe that env(P ) acts like P on configurations which do not contain the letter “?”.
More precisely,

∀y ∈ AV , env(f)(y)(0) = f(y)(0), env(f)(y)(1) = f(y)(1), env(f)(y)(?) = 0 . (2)

It implies next proposition. The converse statement is not true, see the counter-examples
in Section 4.3.3.

I Proposition 4.4. If the EPCA env(P ) is ergodic then the PCA P is ergodic.

Construction of an update function for the EPCA. Let us define the update
function φ̃ : BE × [0, 1]E → BE of the PCA env(P ), by:

φ̃(y, r)k =


0 if 0 ≤ rk < env(f)((yk+v)v∈V )(0)
1 if 1− env(f)((yk+v)v∈V )(1) ≤ rk ≤ 1
? otherwise.

(3)

The value of φ̃(y, r)k in function of rk can be represented as follows:

0

min
x∈AV , x∈(yk+v)v∈V

f(x)(0) min
x∈AV , x∈(yk+v)v∈V

f(x)(1)

1 rk

0 ? 1

Let φ be the natural update function for the PCA P defined in (1). Observe that φ̃
coincides with φ on configurations which do not contain the letter “?”. Furthermore, we have:

∀r ∈ [0, 1]E , ∀x ∈ AE , ∀y ∈ BE , x ∈ y =⇒ φ(x, r) ∈ φ̃(y, r) . (4)

4.3 Perfect sampling using EPCA
We propose two perfect sampling algorithms, for a finite and for an infinite number of cells.
We show that in both cases, the algorithm stops almost surely if and only if the EPCA is
ergodic. The ergodicity of the EPCA implies the ergodicity of the PCA but the converse is
not true: we provide a counterexample for each case, finite and infinite.

We also give sufficient conditions of ergodicity of the EPCA.

4.3.1 Algorithms
The algorithm for a finite set of cells is given in Algorithm 2. For an infinite set of cells, we
consider the dependence cone of a finite set of cells K (see Section 4.1).
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Finite set of cells. The idea is to con-
sider only one trajectory of the EPCA - the
one that starts from the initial configuration
?E (coding the set of all configurations of the
PCA). The algorithm stops when at time 0,
this trajectory hits the set AE .

Infinite set of cells. Once again, we
consider only one trajectory of the EPCA: at
each step , we set c = ?V−t(K) and compute
c = φ̃j(c, (rj

i )i∈Vj(K)) ∈ BVj+1(K) for j = −t
to −1. This is done until we get c ∈ AK .

Algorithm 2: Perfect sampling using
the EPCA for a finite set of cells

Data: Update function φ̃. Family
(r−n

k )(k,n)∈E×N of i.i.d. r.v.
uniform on [0, 1].

begin
t = 1 ;
repeat

c = ?E ;
for j = −t to −1 do

c = φ̃(c, (rj
i )i∈E)

t = t+ 1
until c ∈ AE ;
return c

end

I Proposition 4.5. The algorithms above (finite and infinite cases) stop almost surely if and
only if the EPCA is ergodic. In that case, the output of the algorithm is distributed according
to the unique invariant measure of the PCA.

Proof. The argument is the same in the finite and infinite cases. We give it for the finite
case. Assume first that Algorithm 2 stops almost surely. By construction, it implies that
for all µ0, the measure µ0 env(P )n is asymptotically supported by AE . Therefore, we can
strengthen the result in Proposition 4.4: the invariant measures of env(P ) coincide with
the invariant measures of P . In that case, env(P ) is ergodic iff P is ergodic. Now recall
that the update functions of P and env(P ) satisfy (4). Thus, Algorithm 1 also stops almost
surely. Furthermore, if we use the same samples (r−n

k )(k,n)∈E×N, Algorithms 1 and 2 will
have the same output. According to Proposition 4.1, this output is distributed according to
the unique invariant measure of P . In particular, P is ergodic. So env(P ) is ergodic.

Assume now that the EPCA is ergodic. The unique invariant measure π of env(P ) has to
be supported by AE . Also, by ergodicity, we have δ?E env(P )n w−→ π. This means precisely
that Algorithm 2 stops a.s. J

4.3.2 Criteria of ergodicity for the EPCA
I Proposition 4.6. Let the set of cells be finite. The EPCA env(P ) is ergodic if and only if
we have env(f)(?V )(?) < 1. This condition can also be written as:

min
x∈AV

f(x)(0) + min
x∈AV

f(x)(1) > 0 . (5)

In particular, on a finite set of cells, if the PCA has positive rates (i.e. ∀u ∈ AV ,∀a ∈
A, f(u)(a) > 0), then Algorithm 2 stops a.s.

For an infinite set of cells the situation is more complex. Condition (5) is not sufficient to
ensure the ergodicity of the EPCA. A counter-example is given in Section 4.3.3. First, we
propose a rough sufficient condition of ergodicity

I Proposition 4.7. Let α∗ ∈ (0, 1) be the critical probability of the percolation PCA with
neighborhood V , see Examples 2.5 and 2.8. The EPCA env(P ) is ergodic if

env(f)(?V )(?) < α∗ (6)
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and non-ergodic if

min
x∈BV −AV

env(f)(x)(?) > α∗. (7)

4.3.3 Counter-examples
Recall Proposition 4.4: [EPCA ergodic] =⇒ [PCA ergodic]. We now show that the converse
is not true.

Let us consider the PCA Majority defined at the beginning of Section 5. For n odd, the
PCA is ergodic on the set of cells Zn = Z/nZ, by Proposition 5.1. However the associated
EPCA satisfies env(f)(???) = δ?. According to Proposition 4.6, the EPCA is not ergodic.

Consider the PCA of Example 2.4. This PCA has positive rates, in particular, it satisfies
(5). So the EPCA is ergodic on a finite set of cells. Now let the set of cells be Z.

The PCA is ergodic for ε ∈ (0, 1), see Example 2.7. Consider now the associated EPCA
env(P ). Assume for instance that ε ∈ (0, 1/2). We have

env(f)(u) =
{
f(u) if u ∈ {0,1}V

εδ0 + εδ1 + (1− 2ε)δ? otherwise .

By applying Proposition 4.7, env(P ) is non-ergodic if 1− 2ε > α∗.

5 The majority PCA: a case study

The Majority PCA is one of the simplest examples of PCA whose behaviour is not well
understood. Therefore, it provides a good case study for our sampling algorithms.

Given 0 < α < 1, the PCA Majority(α), or simply Majority, is the PCA on the alphabet
A = {0, 1}, with set of cells E = Z (or Zn = Z/nZ), neighborhood V = {−1, 0, 1}, and
transition function

f(x, y, z) = α δmaj(x,y,z) + (1− α) δ1−y ,

where maj : A3 → A is the majority function: the value of maj(x, y, z) is 0, resp. 1, if there
are two or three 0’s, resp 1’s, in the sequence x, y, z. This PCA thus consists in choosing
independently for each cell to apply rule 232 (with probability α) or to flip the value.

I Proposition 5.1. Consider the Markov chain on the state space {0, 1}Zn which is induced
by the Majority PCA on set of cells Zn. The Markov chain has a unique invariant measure
ν. If n is even then ν = (δ(01)n/2 + δ(10)n/2)/2; if n is odd then ν is supported by {0, 1}Zn .

Let us consider now the PCA Majority on Z. Let x = (01)Z ∈ {0, 1}Z be the configuration
defined by: ∀n ∈ Z, x2n = 0, x2n+1 = 1. The configuration (10)Z is defined similarly. The
probability measure µ = (δ(01)Z + δ(10)Z)/2 is clearly an invariant measure for the PCA
Majority. It can be viewed as the “limit” over n of the invariant measures of the PCA on
Z2n. What about the “limits” of the invariant measures of the PCA on Z2n+1? Do they
define other invariant measures for the PCA on Z?

I Conjecture 5.2. There exists αc ∈ (0, 1) such that Majority(α) has a unique invariant
measure for α < αc, and several invariant measures for α > αc.

We propose a partial result relying on ideas of Regnault [13].
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(a) The value of cn as a function of n, for different α.

(b) α = 0.5
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Figure 2 Experimental study of Majority(α) (the configurations at odd times only are represented
on the space-time diagrams).

I Proposition 5.3. Let pc be the percolation threshold of directed bond-percolation in N2. If
α ≥ 3

√
1− (1− pc)4, then Majority(α) has several invariant measures. It is in particular the

case if α ≥ 0.996.

We also tried to come up with some numerical evidence. To study the PCA Majority
experimentally, a first idea would be to consider the same PCA on the set of cells Zn, n odd,
but this does not work well. First, computing exactly the invariant measure is impossible
except for small n. Second the efficient perfect sampling is not available since the EPCA is
not ergodic.

Instead, we used approximations of the PCA by a (non-homogeneous) PCA on the set of
cells Dn = {−n, . . . , n}, with random boundary conditions : at each step, the contents of
cells −n and n are updated using values of the cells −(n+ 1) and n+ 1 chosen uniformly at
random in {0, 1}. Again, computing exactly the invariant measure is impossible except for
very small windows. But now, the EPCA is ergodic, and the perfect sampling algorithms
become effective.

Let µn be the unique invariant measure for the set of cells Dn. Define

cn = µn{x ∈ X | x0 = x1 = 0}+ µn{x ∈ X | x0 = x1 = 1} .

One can prove that if lim supn cn > 0, then there exists a non-trivial invariant measure for
the PCA Majority on Z (this relies on the compactness ofM(X)).

The experimental results appear in Figure 2, with a logarithmic scale. We ran the
sampling algorithms 10000 times, up to a window size of n = 1024. We show on the figure
the confidence intervals calculated with Wilson score test at 95%.

It is reasonable to believe that the top two curves do not converge to 0 while the bottom
three converge to 0. This is consistent with the visual impression of space-time diagrams. It
reinforces Conjecture 5.2 with a possible phase transition between 0.4 and 0.45.
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Abstract
The diameter k-clustering problem is the problem of partitioning a finite subset of Rd into k
subsets called clusters such that the maximum diameter of the clusters is minimized. One early
clustering algorithm that computes a hierarchy of approximate solutions to this problem for all
values of k is the agglomerative clustering algorithm with the complete linkage strategy. For
decades this algorithm has been widely used by practitioners. However, it is not well studied
theoretically. In this paper we analyze the agglomerative complete linkage clustering algorithm.
Assuming that the dimension d is a constant, we show that for any k the solution computed
by this algorithm is an O(log k)-approximation to the diameter k-clustering problem. Moreover,
our analysis does not only hold for the Euclidean distance but for any metric that is based on a
norm.
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1 Introduction

Clustering is the process of partitioning a set of objects into subsets (called clusters) such
that each subset contains similar objects and objects in different subsets are dissimilar. It
has many applications including data compression [13], analysis of gene expression data [6],
anomaly detection [10], and structuring results of search engines [3]. For every application
a proper objective function is used to measure the quality of a clustering. One particular
objective function is the largest diameter of the clusters. If the desired number of clusters k
is given we call the problem of minimizing this objective function the diameter k-clustering
problem.

One of the earliest and most widely used clustering strategies is agglomerative clustering.
The history of agglomerative clustering goes back at least to the 1950s (see for example
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[8, 11]). Later, biological taxonomy became one of the driving forces of cluster analysis.
In [14] the authors, who where the first biologists using computers to classify organisms,
discuss several agglomerative clustering methods.

Agglomerative clustering is a bottom-up clustering process. At the beginning, every
input object forms its own cluster. In each subsequent step, the two ’closest’ clusters will
be merged until only one cluster remains. This clustering process creates a hierarchy of
clusters, such that for any two different clusters A and B from possibly different levels of
the hierarchy we either have A ∩ B = ∅, A ⊂ B, or B ⊂ A. Such a hierarchy is useful
in many applications, for example, when one is interested in hereditary properties of the
clusters (as in some bioinformatics applications) or if the exact number of clusters is a priori
unknown.

In order to define the agglomerative strategy properly, we have to specify a distance
measure between clusters. Given a distance function between data objects, the following
distance measures between clusters are frequently used. In the single linkage strategy, the
distance between two clusters is defined as the distance between their closest pair of data
objects. It is not hard to see that this strategy is equivalent to computing a minimum
spanning tree of the graph induced by the distance function using Kruskal’s algorithm. In
case of the complete linkage strategy, the distance between two clusters is defined as the
distance between their furthest pair of data objects. In the average linkage strategy the
distance is defined as the average distance between data objects from the two clusters.

1.1 Related Work
In this paper we study the agglomerative clustering algorithm using the complete linkage
strategy to find a hierarchical clustering of n points from Rd. The running time is obviously
polynomial in the description length of the input. Therefore, our only goal in this paper is to
give an approximation guarantee for the diameter k-clustering problem. The approximation
guarantee is given by a factor α such that the cost of the k-clustering computed by the
algorithm is at most α times the cost of an optimal k-clustering. Although the agglomerative
complete linkage clustering algorithm is widely used, only few theoretical results considering
the quality of the clustering computed by this algorithm are known. It is known that there
exists a certain metric distance function such that this algorithm computes a k-clustering
with an approximation factor of Ω(log k) [5]. However, prior to the analysis we present
in this paper, no non-trivial upper bound for the approximation guarantee of the classical
complete linkage agglomerative clustering algorithm was known, and deriving such a bound
has been discussed as one of the open problems in [5].

The diameter k-clustering problem is closely related to the k-center problem. In this
problem, we are searching for k centers and the objective is to minimize the maximum
distance of any input point to the nearest center. When the centers are restricted to come
from the set of the input points, the problem is called the discrete k-center problem. It is
known that for metric distance functions the costs of optimal solutions to all three problems
are within a factor of 2 from each other.

For the Euclidean case we know that the diameter k-clustering problem and the k-center
problem are NP-hard. In fact, it is already NP-hard to approximate both problems with
an approximation factor below 1.96 and 1.82 respectively [7].

For fixed k, i.e. when we are not interested in a hierarchy of clusterings, there ex-
ist provably good approxiamtion algorithms. For the discrete k-center problem, a simple
2-approximation algorithm is known for metric spaces [9], which immediately yields a 4-
approximation algorithm for the diameter k-clustering problem. For the k-center prob-
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lem, a variety of results is known. For example, for the Euclidean metric in [2] a (1 + ε)-
approximation algorithm with running time 2O(k log k/ε2)dn is shown. This implies a (2 + ε)-
approximation algorithm with the same running time for the diameter k-clustering problem.

Also, for metric spaces a hierarchical clustering strategy with an approximation guarantee
of 8 for the discrete k-center problem is known [5]. This implies an algorithm with an
approximation guarantee of 16 for the diameter k-clustering problem.

This paper as well as all of the above mentioned work is about static clustering, i.e. in
the problem definition we are given the whole set of input points at once. An alternative
model of the input data is to consider sequences of points that are given one after another. In
[4] the authors discuss clustering in a so-called incremental clustering model. They give an
algorithm with constant approximation factor that maintains a hierarchical clustering while
new points are added to the input set. Furthermore, they show a lower bound of Ω(log k)
for the agglomerative complete linkage algorithm and the diameter k-clustering problem.
However, since their model differs from ours, this result has no bearing on our lower bounds.

1.2 Our contribution
In this paper, we study the agglomerative complete linkage clustering algorithm for input
sets X ⊂ Rd, where d is constant. To measure the distance between data points, we use
a metric that is based on a norm, e.g., the Euclidean metric. We prove that in this case
the agglomerative clustering algorithm is an O(log k)-approximation algorithm. Here, the
O-notation hides a constant that is doubly exponential in d. This approximation guarantee
holds for every level of the hierarchy computed by the algorithm. That is, we compare each
computed k-clustering with an optimal solution for the particular value of k. These optimal
k-clusterings do not necessarily form a hierarchy. In fact, there are simple examples where
optimal solutions have no hierarchical structure.

Our analysis also yields that if we allow 2k instead of k clusters and compare the cost of
the computed 2k-clustering to an optimal solution with k clusters, the approximation factor
is independent of k and depends only on d. Moreover, the techniques of our analysis can be
applied to prove stronger results for the k-center problem and the discrete k-center problem.
For the k-center problem we derive an approximation guarantee that is logarithmic in k and
only single exponential in d. For the discrete k-center problem we derive an approximation
guarantee that is logarithmic in k and the dependence on d is only linear and additive.

Furthermore, we give almost matching upper and lower bounds for the one-dimensional
case. These bounds are independent of k. For d ≥ 2 and the metric based on the `∞-norm
we provide a lower bound that exceeds the upper bound for d = 1. For d ≥ 3 we give
a lower bound for the Euclidean case which is above the lower bound for d = 1. Finally,
we construct instances providing lower bounds for any metric based on an `p-norm with
1 ≤ p ≤ ∞. However, for these instances the lower bounds and the dimension d depend on
k.

2 Preliminaries and problem definition

Throughout this paper, we consider input sets that are finite subsets of Rd. Our results
hold for arbitrary metrics that are based on a norm, i.e., the distance ‖x− y‖ between two
points x, y ∈ Rd is measured using an arbitrary norm ‖ · ‖. Readers who are not familiar
with arbitrary metrics or are only interested in the Euclidean case, may assume that ‖ · ‖2

is used, i.e. ‖x − y‖ =
√∑d

i=1(xi − yi)2. For r ∈ R and y ∈ Rd we denote the closed
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d-dimensional ball of radius r centered at y by Bdr(y) := {x | ‖x− y‖ ≤ r}.
Given k ∈ N and a finite set X ⊂ Rd with k ≤ |X| we say that Ck = {C1, . . . , Ck} is a

k-clustering of X if the sets C1, . . . , Ck (called clusters) form a partition of X into k non-
empty subsets. We call a collection of k-clusterings of the same finite set X but for different
values of k hierarchical, if it fulfills the following two properties. First, for any 1 ≤ k ≤ |X|
the collection contains at most one k-clustering. Second, for any two of its clusterings Ci, Cj
with |Ci| = i < j = |Cj | every cluster in Ci is the union of one or more clusters from Cj . A
hierarchical collection of clusterings is called a hierarchical clustering.

For a finite and non-empty set C ⊂ Rd we define the diameter of C to be diam(C) :=
maxx,y∈C ‖x − y‖. Finally, we define the cost of a k-clustering Ck as its largest diameter,
i.e. cost(Ck) := maxC∈Ck diam(C).

I Problem 1 (diameter k-clustering). Given k ∈ N and a finite set X ⊂ Rd with |X| ≥ k

find a k-clustering Ck of X with minimal cost.

For our analysis of agglomerative clustering we repeatedly use the volume argument
stated in Lemma 3. This argument provides an upper bound on the minimum distance
between two points from a finite set of points lying inside the union of finitely many balls.
For the application of this argument the following definition is crucial.

I Definition 2. Let k ∈ N and r ∈ R. A set X ⊂ Rd is called (k, r)-coverable if there exist
y1, . . . , yk ∈ Rd with X ⊆

⋃k
i=1 Bdr(yi).

I Lemma 3. Let k ∈ N, r ∈ R and P ⊂ Rd be finite and (k, r)-coverable with |P | > k. Then
there exist distinct p, q ∈ P such that ‖p− q‖ ≤ 4r d

√
k
|P | .

The proof of Lemma 3 can be found in the full version of this paper [1].

3 Analysis

In this section we analyze the agglomerative algorithm for Problem 1 stated as Algorithm 1.
Given a finite set X ⊂ Rd of input points, the algorithm computes hierarchical k-clusterings
for all values of k between 1 and |X|. As mentioned before, the algorithm takes a bottom-up
approach. It starts with the |X|-clustering that contains one cluster for each input point
and then successively merges two of the remaining clusters that minimize the diameter of
the resulting cluster.
I Observation 4. The greedy strategy guarantees that the following holds for all computed
clusterings. First, the cost of the clustering is equal to the diameter of the cluster created
last. Second, the diameter of the union of any two clusters is always an upper bound for
the cost of the clustering to be computed next.
Note that our results hold for any particular tie-breaking strategy. However, to keep the
analysis simple, we assume that there are no ties. Thus, for any input set X the clusterings
computed by Algorithm 1 are uniquely determined.

Our main result is the following theorem.

I Theorem 5. Let X ⊂ Rd be a finite set of points. Then for all k ∈ N with k ≤ |X| the
partition Ck of X into k clusters as computed by Algorithm 1 satisfies

cost(Ck) = O(log k) · optk,

where optk denotes the cost of an optimal solution to Problem 1, and the constant hidden in
the O-notation is doubly exponential in the dimension d.
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AgglomerativeCompleteLinkage(X):
X finite set of input points from Rd

1: C|X| := { {x} |x ∈ X}
2: for i = |X| − 1, . . . , 1 do
3: find distinct clusters A, B ∈ Ci+1

minimizing diam(A ∪B)
4: Ci := (Ci+1 \ {A, B}) ∪ {A ∪B}
5: end for
6: return C1, . . . , C|X|

Algorithm 1 The agglomerative complete linkage clustering algorithm.

We prove Theorem 5 in two steps. First, Proposition 6 in Section 3.1 provides an upper
bound to the cost of the intermediate 2k-clustering. This upper bound is independent of
k and |X| and may be of independent interest. Second, in the remainder of Section 3, we
analyze the k merge steps of Algorithm 1 down to the computation of the k-clustering.

In the following, let X ⊂ Rd be the finite set of input points for Algorithm 1 and k ∈ N
be a fixed number of clusters with k ≤ |X|. Furthermore, to simplify notation let r := optk,
where optk is the maximum diameter of an optimal solution to Problem 1. Since any cluster
C is contained in a ball of radius diam(C), the set X is (k, r)-coverable, a fact that will
be used frequently in our analysis. By C1, . . . , C|X| we denote the clusterings computed by
Algorithm 1 on input X.

3.1 Analysis of the 2k-clustering
I Proposition 6. Let X ⊂ Rd be finite. Then for all k ∈ N with 2k ≤ |X| the partition C2k
of X into 2k clusters as computed by Algorithm 1 satisfies

cost(C2k) < 23σ (28d+ 6) · optk,

where σ = (42d)d and optk denotes the cost of an optimal solution to Problem 1.

To prove Proposition 6 we divide the merge steps of Algorithm 1 into two stages. The
first stage consists of the merge steps down to a 22O(d log d)

k-clustering. The analysis of the
first stage is based on the following notion of similarity. Two clusters are called similar if
one cluster can be translated such that every point of the translated cluster is near a point
of the second cluster. Then, by merging similar clusters, the diameter essentially increases
by the length of the translation vector. During the whole first stage we guarantee that
there is a sufficiently large number of similar clusters left. The cost of the intermediate
22O(d log d)

k-clustering can be upper bounded by O(d) · optk.
The second stage consists of the merge steps reducing the number of remaining clusters

from 22O(d log d)
k to only 2k. In this stage we are no longer able to guarantee that a sufficiently

large number of similar clusters exists. Therefore, we analyze the merge steps of the second
stage using a weaker argument. The underlying reasoning of what we do for the second
stage is the following. If there are more than 2k clusters left, we are able to find sufficiently
many pairs of clusters that intersect with the same cluster of an optimal k-clustering. As
long as one of these pairs is left, the cost of merging this pair gives an upper bound on the
cost of the next merge step. Therefore, we can bound the diameter of the created cluster
by the sum of the diameters of the two clusters plus the diameter of the optimal cluster.
We find that the cost of the intermediate 2k-clustering is upper bounded by 22O(d log d) ·optk.
Let us remark that we do not obtain our main result if we already use this argument for the
first stage.
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3.2 Stage one
In our analysis the first stage is subdivided into phases, such that in each phase the number
of remaining clusters is reduced by one fourth. The following lemma will be used to bound
the increase of the cost during a single phase.

I Lemma 7. Let λ ∈ R with 0 < λ < 1 and ρ :=
⌈( 3

λ

)d⌉. Furthermore let m ∈ N with
2ρ+1k < m ≤ |X|. Then

cost(Cb 3m
4 c) < (1 + 2λ) · cost(Cm) + 4r d

√
2ρ+1k

m
. (1)

Proof. Let t :=
⌊ 3m

4
⌋
and S := Cm ∩ Ct+1 be the set of clusters from Cm that still exist⌈

m
4
⌉
−1 merge steps after the computation of Cm. In each iteration of its loop, the algorithm

can merge at most two clusters from Cm. Thus |S| > m
2 .

From every cluster C ∈ S we fix an arbitrary point and denote it by pC . Let R :=
cost(Cm). Then the distance from pC to any q ∈ C is at most R and we get C−pC ⊂ BdR(0).

A ball of radius R can be covered by ρ balls of radius λR (see [12]). Hence, there exist
y1, . . . , yρ ∈ Rd with BdR(0) ⊆

⋃ρ
i=1 BdλR(yi). For C ∈ S we call the set Conf(C) := {yi | 1 ≤

i ≤ ρ and BdλR(yi) ∩ (C − pC) 6= ∅} the configuration of C. That is, we indentify each
cluster C ∈ S with the subset of the balls BdλR(y1), . . . ,BdλR(yρ) that intersect with C − pC .
Note that no cluster from C ∈ S has an empty configuration. The number of possible
configurations can be upper bounded by 2ρ. With |S| > m

2 it follows that there exist
j > m

2ρ+1 distinct clusters C1, . . . , Cj ∈ S with the same configuration. Using m > 2ρ+1k we
deduce j > k.

Let P := {pC1 , . . . , pCj}. Since X is (k, r)-coverable, so is P ⊂ X. Therefore, by
Lemma 3, there exist distinct a, b ∈ {1, . . . , j} such that ‖pCa − pCb‖ ≤ 4r d

√
2ρ+1k
m .

Next we want to bound the diameter of the union of the corresponding clusters Ca and
Cb. The distance between any two points u, v ∈ Ca or u, v ∈ Cb is at most the cost of
Cm. Now let u ∈ Ca and v ∈ Cb. Using the triangle inequality, for any w ∈ Rd we obtain
‖u− v‖ ≤ ‖pCa − pCb‖+ ‖u+ pCb − pCa − w‖+ ‖w − v‖.

For ‖pCa − pCb‖ we just derived an upper bound. To bound ‖u + pCb − pCa − w‖, we
let y ∈ Conf(Ca) = Conf(Cb) such that u − pCa ∈ BdλR(y). Furthermore, we fix w ∈ Cb
with w − pCb ∈ BdλR(y). Hence, ‖u + pCb − pCa − w‖ = ‖u − pCa − (w − pCb)‖ can be
upper bounded by 2λR = 2λ · cost(Cm). For w ∈ Cb the distance ‖w − v‖ is bounded by
diam(Cb) ≤ cost(Cm). We conclude that merging clusters Ca and Cb results in a cluster
whose diameter can be upper bounded by

diam(Ca ∪ Cb) < (1 + 2λ) · cost(Cm) + 4r d

√
2ρ+1k

m
.

Using Observation 4 and the fact that Ca and Cb are part of the clustering Ct+1, we can
upper bound the cost of Ct by cost(Ct) ≤ diam(Ca ∪ Cb). J

Note that the parameter λ from Lemma 7 establishes a trade-off between the two terms
on the right-hand side of Inequality 1. To complete the analysis of the first stage, we have to
carefully choose λ. In the proof of the following lemma we use λ = ln 4

3/4d and apply Lemma 7
for
⌈
log 4

3

|X|
2σ+1k

⌉
consecutive phases, where σ = (42d)d. Then, we are able to upper bound

the total increase of the cost by a term that is linear in d and r and independent of |X| and
k. The number of remaining clusters is independent of the number of input points |X| and
depends only on the dimension d and the desired number of clusters k.
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I Lemma 8. Let 2σ+1k < |X| for σ = (42d)d. Then on input X Algorithm 1 computes a
clustering C2σ+1k with cost (C2σ+1k) < (28d+ 4) · r.

Proof. Let u :=
⌈
log 3

4

2σ+1k
|X|

⌉
and define mi :=

⌈( 3
4
)i |X|⌉ for all i = 0, . . . , u. Furthermore

let λ = ln 4
3/4d. This implies ρ ≤ σ for the parameter ρ of Lemma 7. Then mu ≤ 2σ+1k

and mi > 2σ+1k ≥ 2ρ+1k for all i = 0, . . . , u − 1. We apply Lemma 7 with m = mi for all
i = 0, . . . , u − 1. Since

⌊ 3mi
4
⌋
≤ mi+1 and Algorithm 1 uses a greedy strategy we deduce

cost(Cmi+1) ≤ cost(Cb 3mi
4 c) for all i = 0, . . . , u − 1. Using cost(C2σ+1k) ≤ cost(Cmu) and

cost(Cm0) = 0 we get

cost (C2σ+1k) <
u−1∑
i=0

(
(1 + 2λ)i · 4r d

√
2σ+1k( 3

4
)u−1−i |X|

)

= 4r d

√
2σ+1k( 3

4
)u−1 |X|

·
u−1∑
i=0

(1 + 2λ)i · d
√(

3
4

)i .

Using u− 1 < log 3
4

2σ+1k
|X| we get

cost (C2σ+1k) < 4r
u−1∑
i=0

1 + 2λ
d

√
4
3

i

. (2)

By taking only the first two terms of the series expansion of the exponential function we get
1 + 2λ = 1 + ln 4

3
2d < e

ln 4
3

2d = 2d
√

4
3 . Substituting this bound into Inequality (2) and extending

the sum gives

cost (C2σ+1k) < 4r
∞∑
i=0

 1
2d
√

4
3

i

< 4r
∞∑
i=0

(
1

1 + 2λ

)i
.

Solving the geometric series leads to

cost (C2σ+1k) < 4r
(

1
2λ + 1

)
< (28d+ 4) · r.

J

3.3 Stage two
The second stage covers the remaining merge steps until Algorithm 1 computes the clustering
C2k. The following lemma is the analogon of Lemma 8. Again, the proof subdivides the
merge steps into phases of one fourth of the remaining steps. However, compared to stage
one, the analysis of a single phase yields a weaker bound. The proof can be found in the
full version of this paper [1].

I Lemma 9. Let n ∈ N with n ≤ 2σ+1k and 2k < n ≤ |X| for σ = (42d)d. Then on input
X Algorithm 1 computes a clustering C2k with

cost(C2k) < 23σ (cost(Cn) + 2r) .

Proposition 6 follows immediately by combining Lemma 8 and Lemma 9.
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3.4 Connected instances
For the analysis of the two stages in Section 3.1 we use arguments that are only applicable
if there are enough clusters left (at least 2k in case of stage two). To analyze the remaining
merge steps, we show that it is sufficient to analyze Algorithm 1 on a subset Y ⊆ X satisfying
a certain connectivity property. Using this property we are able to apply a combinatorial
approach that relies on the number of merge steps left. This introduces the O(log k) term
to the approximation factor of our main result.

We start by defining the connectivity property that will be used to relate clusters to an
optimal k-clustering.

I Definition 10. Let Z ⊆ Rd and r ∈ R. Two sets A,B ⊆ Rd are called (Z, r)-connected if
there exists a z ∈ Z with Bdr(z) ∩A 6= ∅ and Bdr(z) ∩B 6= ∅.

Note that for any two (Z, r)-connected clusters A,B we have

diam(A ∪B) ≤ diam(A) + diam(B) + 2r. (3)

Next, we show that for any input set X we can bound the cost of the k-clustering
computed by Algorithm 1 by the cost of the `-clustering computed by the algorithm on
a connected subset Y ⊆ X for a proper ` ≤ k. Recall that by our convention from the
beginning of Section 3, the clusterings computed by Algorithm 1 on a particular input set
are uniquely determined.

I Lemma 11. Let X ⊂ Rd be finite and k ∈ N with k ≤ |X|. Then there exists a subset
Y ⊆ X, a number ` ∈ N with ` ≤ min(k, |Y |), and a set Z ⊂ Rd with |Z| = ` such that:
1. Y is (`, r)-coverable;
2. cost(Ck) ≤ cost(P`);
3. For all n ∈ N with ` + 1 ≤ n ≤ |Y |, every cluster in Pn is (Z, r)-connected to another

cluster in Pn.
Here, the collection P1, . . . ,P|Y | denotes the hierarchical clustering computed by Algorithm 1
on input Y .

Proof. To define Y,Z, and ` we consider the (k + 1)-clustering computed by Algorithm 1
on input X. We know that X =

⋃
A∈Ck+1

A is (k, r)-coverable. Let E ⊆ Ck+1 be a minimal
subset such that

⋃
A∈E A is (|E| − 1, r)-coverable, i.e., for all sets F ⊆ Ck+1 with |F | < |E|

the union
⋃
A∈F A is not (|F |−1, r)-coverable. Since a set F of size 1 cannot be (|F |−1, r)-

coverable, we get |E| ≥ 2.
Let Y :=

⋃
A∈E A and ` := |E| − 1. Then ` ≤ k and Y is (`, r)-coverable. Thus, we can

define Z ⊂ Rd with |Z| = ` and Y ⊂
⋃
z∈Z Bdr(z). Furthermore, we let P1, . . . ,P|Y | be the

hierarchical clustering computed by Algorithm 1 on input Y .
Since Y is the union of the clusters from E ⊆ Ck+1, each merge step between the

computation of C|X| and Ck+1 merges either two clusters A,B ⊂ Y or two clusters A,B ⊂
X\Y . The merge steps inside X\Y have no influence on the clusters inside Y . Furthermore,
the merge steps inside Y would be the same in the absence of the clusters inside X \ Y .
Therefore, on input Y Algorithm 1 computes the (`+ 1)-clustering P`+1 = E = Ck+1 ∩ 2Y .
Thus, P`+1 ⊆ Ck+1.

To compute P`, Algorithm 1 on input Y merges two clusters from P`+1 that minimize the
diameter of the resulting cluster. Analogously, Algorithm 1 on input X merges two clusters
from Ck+1 to compute Ck. Since P`+1 ⊆ Ck+1, Observation 4 implies cost(Ck) ≤ cost(P`).

It remains to show that for all n ∈ N with `+ 1 ≤ n ≤ |Y | it holds that every cluster in
Pn is (Z, r)-connected to another cluster in Pn. We first show the property for n = ` + 1.
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For ` = 1 this follows from the fact that Bdr(z) with Z = {z} has to contain both clusters
from P2. For ` > 1 we are otherwise able to remove one cluster from P`+1 and get ` clusters
whose union is (`−1, r)-coverable. This contradicts the definition of E = P`+1 as a minimal
subset with this property.

To prove 3. for general n, let C1 ∈ Pn and z ∈ Z with Bdr(z) ∩ C1 6= ∅. There exists a
unique cluster C̃1 ∈ P`+1 with C1 ⊆ C̃1. Then we have Bdr(z) ∩ C̃1 6= ∅. However, Bdr(z)
has to intersect with at least two clusters from P`+1. Thus, there exists another cluster
C̃2 ∈ P`+1 with Bdr(z) ∩ C̃2 6= ∅. Since every cluster from P`+1 is a union of clusters from
Pn, there exists at least one cluster C2 ∈ Pn with C2 ⊆ C̃2 and Bdr(z) ∩ C2 6= ∅. J

3.5 Analysis of the remaining merge steps
Let Y, Z, `, and P1, . . . ,P|Y | be as given in Lemma 11. Then, Proposition 6 can be used to
obtain an upper bound for the cost of P2`. In the following, we analyze the merge steps
leading from P2` to P`+1 and show how to obtain an upper bound for the cost of P`+1. As
in Section 3.1, we analyze the merge steps in phases. The following lemma is used to bound
the increase of the cost during a single phase.

I Lemma 12. Let m,n ∈ N with n ≤ 2` and ` < m ≤ n ≤ |Y |. If there are no two
(Z, r)-connected clusters in Pm ∩ Pn, it holds

cost(Pbm+`
2 c) ≤ cost(Pm) + 2 · (cost(Pn) + 2r) .

Proof. We show that there exist at least m− ` disjoint pairs of clusters from Pm such that
the diameter of their union can be upper bounded by cost(Pm) + 2 · (cost(Pn) + 2r). By
Observation 4, this upper bounds the cost of the computed clusterings as long as such a pair
of clusters remains. Then the lemma follows from the fact that in each iteration of its loop
the algorithm can destroy at most two of these pairs.

To bound the number of such pairs of clusters we start with a structural observation.
Let S := Pm ∩ Pn be the set of clusters from Pn that still exist in Pm. By our definiton
of Y,Z, and ` we find that any cluster A ∈ S ⊆ Pm is (Z, r)-connected to another cluster
B ∈ Pm. If we assume that there are no two (Z, r)-connected clusters in S, this implies
B ∈ Pm \ S. Thus, using A ∈ Pn, B ∈ Pm, and Equation (3) the diameter of A ∪B can be
bounded by

diam(A ∪B) ≤ cost(Pm) + cost(Pn) + 2r. (4)

Moreover, using similar argument, if two clusters A1, A2 ∈ S ⊆ Pn are (Z, r)-connected to
the same cluster B ∈ Pm \ S we can bound the diameter of A1 ∪A2 by

diam(A1 ∪A2) ≤ cost(Pm) + 2 · (cost(Pn) + 2r). (5)

Next we show that there exist at least
⌈
|S|
2

⌉
disjoint pairs of clusters from Pm such that

the diameter of their union can be bounded either by Inequality (4) or by Inequality (5).
To do so, we first consider the pairs of clusters from S that are (Z, r)-connected to the same
cluster from Pm \ S until no candidates are left. For these pairs we can bound the diameter
of their union by Inequality (5). Then, each cluster from Pm \ S is (Z, r)-connected to at
most one of the remaining clusters from S. Thus, each remaining cluster A ∈ S can be
paired with a different cluster B ∈ Pm \ S such that A and B are (Z, r)-connected. For
these pairs we can bound the diameter of their union by Inequality (4). Since for all pairs
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either one or both of the clusters come from the set S, we can lower bound the number of
pairs by

⌈
|S|
2

⌉
.

To complete the proof, we show that m − ` ≤
⌈
|S|
2

⌉
. In each iteration of its loop

the algorithm can merge at most two clusters from Pn. Therefore, to compute Pm, at
least

⌈
n−|S|

2

⌉
merge steps must have been done since the computation of Pn. Hence, m ≤

n−
⌈
n−|S|

2

⌉
≤ n

2 + |S|
2 . Using n ≤ 2` we get m− ` ≤ |S|2 . J

I Lemma 13. Let n ∈ N with n ≤ 2` and ` < n ≤ |Y |. Then

cost(P`+1) < 2(log2 `+ 2) · (cost(Pn) + 2r) .

Proof. For n = `+ 1 there is nothing to show. Hence, assume n > `+ 1. Then by definition
of Z there exist two (Z, r)-connected clusters in Pn. Now let ñ ∈ N with ñ < n be maximal
such that no two (Z, r)-connected clusters exist in Pñ ∩ Pn. The number ñ is well-defined
since at least the set P1 does not contain two clusters at all. It follows that the same holds
for all m ∈ N with m ≤ ñ. We conclude that Lemma 12 is applicable for all m ≤ ñ with
` < m.

By the definition of ñ there still exist at least two (Z, r)-connected clusters in Pñ+1∩Pn.
Then, Observation 4 implies

cost(Pñ) ≤ 2 · cost(Pn) + 2r. (6)

If ñ ≤ `+ 1 then Inequality (6) proves the lemma. For ñ > `+ 1 let u := dlog2(ñ− `)e and
define mi :=

⌈( 1
2
)i (ñ− `) + `

⌉
> ` for all i = 0, . . . , u. We apply Lemma 12 with m = mi

for all i = 0, . . . , u − 1. Since
⌊
mi+`

2
⌋
≤ mi+1 and Algorithm 1 uses a greedy strategy we

deduce cost(Cmi+1) ≤ cost(C⌊mi+`
2

⌋) for all i = 0, . . . , u− 1. By summation over all i, we get

cost(Pmu) < cost(Pñ) + 2u · (cost(Pn) + 2r)
(6)
< 2(u+ 1) · (cost(Pn) + 2r) .

Since ñ < 2` we get u < log2 `+ 1 and the lemma follows using mu = `+ 1. J

The following lemma finishes the analysis except for the last merge step.

I Lemma 14. Let Y ⊂ Rd be finite and ` ≤ |Y | such that Y is (`, r)-coverable. Fur-
thermore, let Z ⊂ Rd with |Z| = ` such that for all n ∈ N with ` + 1 ≤ n ≤ |Y |
every cluster in Pn is (Z, r)-connected to another cluster in Pn, where P1, . . . ,P|Y | de-
notes the hierarchical clustering computed by Algorithm 1 on input Y . Then cost(P`+1) <
2(log2 `+ 2) ·

(
23σ (28d+ 6) + 2

)
· r for σ = (42d)d.

Proof. Let n := min(|Y |, 2`). Then, using Proposition 6, we get cost(Pn) < 23σ (28d+ 6) ·r.
The lemma follows by using this bound in combination with Lemma 13. J

3.6 Proof of Theorem 5
Using Lemma 11 we know that there is a subset Y ⊆ X, a number ` ≤ k, and a hierarchical
clustering P1, . . . ,P|Y | of Y with cost(Ck) ≤ cost(P`). Furthermore, there is a set Z ⊂ Rd
such that every cluster from P`+1 is (Z, r)-connected to another cluster in P`+1. Thus, P`+1
contains two clusters A,B that intersect with the same ball of radius r. Hence cost(Ck) ≤
diam(A ∪B) ≤ 2 · cost(P`+1) + 2r. The theorem follows using Lemma 14 and ` ≤ k. J
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4 Further results and open problems

4.1 Lower bounds
For d = 1 we are able to show that Algorithm 1 computes an approximation to Problem 1
with an approximation factor between 2.5 and 3. We even know that for any input set
X ⊂ R the approximation factor of the computed solution is strictly below 3. However, we
do not show an approximation factor of 3− ε for some ε > 0. The proof of the upper bound
is very technical, makes extensive use of the total order of the real numbers, and is too long
to be included in this extended abstract.

Furthermore, we know that the dimension d has an impact on the approximation factor
of Algorithm 1. This follows from a 2-dimensional input set yielding a lower bound of 3 for
the metric based on the `∞-norm. Note that this exceeds the upper bound from the one-
dimensional case. Furthermore, for the Euclidean metric we know a 3-dimensional input
set giving a lower bound of 2.56, thus exceeding our lower bound from the one-dimensional
case.

Moreover, we can show that there exist input instances such that Algorithm 1 computes
an approximation to Problem 1 with an approximation factor of Ω( p

√
log k) for metrics based

on an `p-norm (1 ≤ p < ∞) and Ω(log k) for the metric based on the `∞-norm. In case
of the `1- and the `∞-norm this matches the already known lower bound [5] that has been
shown using a rather artificial metric. However, in our instances the dimension d is not fixed
but depends on k.

All lower bounds mentioned above are proven in the full version of this paper [1].

4.2 Related clustering problems
As mentioned in the introduction, the cost of optimal solutions to the diameter k-clustering
problem, the k-center problem, and the discrete k-center problem are within a factor of 2
from each other. That is, Algorithm 1 computes an O(log k)-approximation for all three
problems.

In case of the k-center problem and the discrete k-center problem, our techniques can be
applied in a simplified way and yield stronger bounds. Here, we consider the agglomerative
algorithm that minimizes the (discrete) k-center cost function in every merge step. In case
of the k-center problem we are able to show an upper bound that is logarithmic in k and
single exponential in d. More precisely, the dependency on d in the upper bound for the
cost of the 2k-clustering from doubly exponential to only single exponential. Mainly this is
achieved because the analysis no longer requires configurations of clusters.

In case of the discrete k-center problem we are able to show an upper bound of 20d +
2 log2 k + 4 for the approximation factor. Here, the analysis benefits from the fact that we
are able to bound the increase of the cost in each phase of the second stage by a term that
is only additive.

The lower bound of Ω( p
√

log k) for any `p-norm and Ω(log k) for the `∞-norm can be
adopted to the discrete k-center problem (see full version of this paper [1]). In particular,
in case of the `2-norm we obtain an instance in dimension O(log3 k) for which we can show
a lower bound of Ω(

√
log k). Applying the upper bound of 20d+ 2 log2 k+ 4 to this instance

we see that Algorithm 1 computes a k-clustering whose cost is O(log3 k) times the cost of
an optimal solution. This implies that the approximation factor of Algorithm 1 cannot be
simultaneously independent of d and log k. More precisely, the approximation factor cannot
be sublinear in 6

√
d and in

√
log k.
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4.3 Open problems
The main open problems our contribution raises are:

Can the doubly exponential dependence on d in Theorem 5 be improved?
Are the different dependencies on d in the approximation factors for the discrete k-
center problem, the k-center problem, and the diameter k-clustering problem due to the
limitations of our analysis or are they inherent to these problems?
Can our results be extended to more general distance measures?
Can the lower bounds for `p-metrics with 1 < p <∞ be improved to Ω(log k), matching
the lower bound from [5] for all `p-norms?
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Abstract
In prior papers, beginning with the seminal work by Freivalds et al. 1995, the notion of intrinsic
complexity is used to analyze the learning complexity of sets of functions in a Gold-style learning
setting. Herein are pointed out some weaknesses of this notion. Offered is an alternative based
on epitomizing sets of functions – sets, which are learnable under a given learning criterion, but
not under other criteria which are not at least as powerful.

To capture the idea of epitomizing sets, new reducibility notions are given based on robust
learning (closure of learning under certain classes of operators). Various degrees of epitomizing
sets are characterized as the sets complete with respect to corresponding reducibility notions!
These characterizations also provide an easy method for showing sets to be epitomizers, and they
are, then, employed to prove several sets to be epitomizing.

Furthermore, a scheme is provided to generate easily very strong epitomizers for a multitude
of learning criteria. These strong epitomizers are so-called self-learning sets, previously applied
by Case & Kötzing, 2010. These strong epitomizers can be generated and employed in a myriad
of settings to witness the strict separation in learning power between the criteria so epitomized
and other not as powerful criteria!
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Keywords and phrases Algorithmic Learning Theory, Learning Complexity, Robustness in
Learning

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.320

1 Introduction

We analyze the problem of algorithmically learning a description for an infinite sequence
(a function from the natural numbers into the natural numbers) when presented larger and
larger initial segments of that sequence. For example, a learner h might be presented more
and more of the sequence g = 1, 4, 9, 16, . . .. After each new datum of g, h may output
a description of a function as its conjecture. For example, h might output a program for
the constantly 1 function after seeing the first element of this sequence g and a program
for the squaring function on all the other data from g. Many criteria for saying whether
h is successful on g have been proposed in the literature. Gold, in his seminal paper [16],
gave a first, simple learning criterion, later called in [11] Ex-learning1, where a learner is

1 Ex stands for explanatory.
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successful iff it eventually stops changing its conjectures, and its final conjecture is a correct
description for the input sequence.

Trivially, each single, describable sequence g has a suitable constant function as an Ex-
learner (this learner constantly outputs a description for g). Thus, we are interested for
which sets of functions S is there a single learner h learning each member of S. We are
interested herein in learning sets of total computable functions, and we will use (codes
of) programs from a fixed programming system as possible conjectured descriptions for the
functions.2 This framework is known as function learning in the limit and has been studied
extensively, using a wide range of learning criteria similar to Ex-learning (see, for example,
the text book [19]).

Freivalds et al. [12] considered how to define learning complexity of a set of learnable
functions. They introduced the seminal notion of intrinsic complexity and defined, for
learning criteria I, a corresponding reducibility relation ≤I . Intrinsic here is intrinsic to a
learning task or problem S, not to particular learning algorithms for S. The idea is that,
if S ≤I S ′, then S ′ is at least as hard to I-learn as is S. In particular, [12] shows that, if
S ≤Ex S ′ and S ′ is Ex-learnable, then S is Ex-learnable. This intrinsic complexity has been
further studied in some detail, see, for example, [12, 18, 17].

From [12], for a given learning criterion I, an I-learnable set of functions S0 is said to
be ≤I-complete iff, for all I-learnable sets of functions S, S ≤I S0. As far as ≤I describes
the relative difficulty of learnability, ≤I -complete sets are the most difficult to I-learn. [12]
shows that the set SFinSup of all computable functions of finite support3 is ≤Ex-complete.
These notions from [12] are structural analogs, for example, to the various notions from
complexity theory of polynomial time reducibility and completeness.

There are at least two problems connected with the notion of intrinsic complexity from
[12].

(i) For some learning criteria I, the relation ≤I is not very fine-grained. In particular, there
are ≤I -complete sets of functions which are also learnable with respect to much more
restricted learning criteria (see Theorem 4.2 below).

(ii) There are learning criteria I and sets of functions S,S ′ such that S ≤I S ′ and S ′ is
I-learnable, but S is not I-learnable (see Theorem 4.3 below).

In this paper we quantify the difficulty of learning a given class of functions in a new
way. First, we consider the following concept, essentially from [12]. A set of functions S
epitomizes a learning criterion I with respect to some class of learning criteria I, iff, S is
I-learnable, and, for each I ′ ∈ I, if some I-learnable task is too hard to be I ′-learned, then
S is already such an example task too hard to be I ′-learned.4

We believe that epitomization nicely captures the learning complexity of a set of func-
tions. Hence, the work herein aims at finding such epitomizers. Naturally, the interest is
in epitomizers with respect to as large as possible classes of learning criteria I. We give
epitomizers with respect to classes of all learning criteria which are robust with respect to
certain classes of operators (operating on functions). Essentially, a learning criterion I is
robust with respect to a given class of operators O iff, for each I-learnable task S and each

2 One could, for example, think of the programming system as one of Java, C, Turing machines, . . . .
3 A (total) function has finite support iff only finitely many arguments have a function value other than 0.
4 Note that [12] called epitomizing sets characteristic. To our best knowledge, neither this term nor the
concept caught on in the later literature — until now.
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operator Θ ∈ O, Θ(S) is also I-learnable, i.e., the class of I-learnable sets of functions is
closed under operators from O.5

Furthermore, for any set of operators O, we define a reducibility ≤O and a corresponding
completeness notion. As an important first theorem we have that a set S epitomizes a
learning criterion I with respect to all O-robust learning criteria iff S is ≤O-complete for all
I-learnable sets (Theorem 3.6 below)! The benefits of this theorem are twofold.

First, since, as noted above, we believe that epitomization captures the complexity of
learning, this Theorem 3.6 entails that our reducibility notions also capture this complexity.

Secondly, we now need only to prove completeness to get epitomization!
Other than structural insight, we get the following two benefits from epitomizers.
First, we can use epitomizers to show the identity of learning power of two learning

criteria. For example, Theorem 5.2 establishes SFinSup to be epitomizing with respect to
various learning criteria and sets of operators. In Corollary 5.3 below we use this to show a
learning criterion I to be as powerful as one of the epitomized learning criteria by showing
that SFinSup can be I-learned. With classic methods, the proof of this result might have
required tedious work with attention to detail, while we can conclude it as a corollary to
structural properties uncovered by our theorems.

The second way in which epitomization helps us is by providing canonical candidates
to witness the separation of two learning criteria. To this end, self-learning classes (see
Theorem 5.7) are particularly useful epitomizers and are used in the literature to prove
particularly difficult separations (see, for example, [9], which solves two previously open
problems using this technique, and see also [10]).

[12] noted that their ≤Ex-completeness does not give epitomization with respect even to
the set of learning criteria considered in [12].

Thus, we believe our approach to complexity of learning is both more comprehensive and
more useful than the notion of intrinsic complexity from [12].

We present mathematical preliminaries in Section 2. The notions discussed above and
some first theorems about them are given in Section 3, including the mentioned important
characterization of epitomizers as complete sets (Theorem 3.6 below).

Section 4 gives definitions and results regarding the notion of intrinsic complexity in-
troduced in [12]. We already mentioned our Theorems 4.2 and 4.3 below which witness
drawbacks of this older notion; furthermore, in Theorem 4.5 below, we characterize ≤Ex in
terms of one of our reducibility notions, and conclude in Corollary 4.6 that all sets complete
with respect to a central one of our reducibility notions are ≤Ex-complete.

Finally, in Section 5, we present a series of tasks and state which learning criteria they
epitomize at what strength. N.B. Epitomizers with respect to larger classes of learning criteria
are stronger. As indicated above, we give each epitomization result, for some set of operators
O, and with respect to the corresponding set of O-robust learning criteria. N.B. It will be
seen that the smaller the set of operators O, the larger the set of O-robust learning criteria.
Theorem 5.2 entails that SFinSup, the set of functions of finite support introduced above,
is a very weak epitomizer. Some so called self-describing classes are also surprisingly weak
epitomizers (Theorem 5.4 below); some are of considerably greater strength (Theorem 5.5

5 In the previous literature, a set S was called robustly I-learnable iff, for all recursive operators [22] Θ,
the class of total functions in Θ(S) is I-learnable (see, for example, [15]). The motivation for such
past notions of robustness was to eliminate self-referential examples. The motivation herein is quite
different. Herein, as will be seen, it is very interesting that which operators are to be considered can
be restricted, and ask for all I-learnable tasks to be robust with respect to some possibly restricted
class of operators.
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below); but, interestingly, the strongest are self-learning sets (Theorem 5.7 below).
Some of our proofs involve subtle infinitary program self-reference arguments employing

(variants of) the Operator Recursion Theorem (ORT) from [5, 6, 19]. Note that, due to
space constraints, all proofs are omitted from the paper.

We are working on extending the present paper to employ self-learning sets which work
for learning criteria, unlike those herein, which require the learners to be total on all inputs.

2 Mathematical Preliminaries

Unintroduced computability-theoretic notions follow [22].
N denotes the set of natural numbers, {0, 1, 2, . . .}.
The symbols ⊆,⊂,⊇,⊃ respectively denote the subset, proper subset, superset and

proper superset relation between sets. The symbol \ denotes set-difference.
The quantifier ∀∞x means “for all but finitely many x ∈ N”; the quantifier ∃∞x means

“for infinitely many x ∈ N”. For any set A, card(A) denotes its cardinality, Pow(A) denotes
the set of all subsets of A.

With P and R we denote, respectively, the set of all partial and of all total functions
N→ N. With dom and range we denote, respectively, domain and range of a given function.
Set-theoretically, (partial) functions are identified with their graphs, i.e., they are treated
as sets of ordered pairs, and we sometimes compare them by ⊆.

We sometimes denote a partial function f of n > 0 arguments x1, . . . , xn in lambda
notation (as in Lisp) as λx1, . . . , xn f(x1, . . . , xn). For example, with c ∈ N, λx c is the
constantly c function of one argument.

If f ∈ P is not defined for some argument x, then we denote this fact by f(x)↑, and we
say that f on x diverges; the opposite is denoted by f(x)↓, and we say that f on x converges.
If f on x converges to p, then we denote this fact by f(x)↓ = p.

We say that f ∈ P converges to p iff ∀∞x : f(x)↓ = p; we write f → p to denote this.6
For any (possibly partial) predicate P , we let µx P (x) denote the least x such that P (x)

and, for all y < x, P (x)↓ (if no such x exists, µx P (x) is undefined).
We fix any computable 1-1 and onto pairing function 〈·, ·〉 : N × N → N.7 With π1 and

π2, respectively, we denote decoding into first and second arguments of pairing, respectively.
Whenever we consider tuples of natural numbers as input to f ∈ P, it is understood that
the general coding function 〈·, ·〉 is used to (left-associatively) code the tuples into a single
natural number (but we will not necessarily state the pairing explicitly).

For any g ∈ P and x ∈ N, we let g[x] denote the sequence of the numbers g(0), . . . , g(x−
1), if all are defined, and ↑ otherwise.

A partial function f ∈ P is partial computable iff there is a deterministic, multi-tape
Turing machine which, on input x, returns f(x) if f(x)↓, and loops infinitely if f(x)↑.
P and R denote, respectively, the set of all partial computable and the set of all (total)
computable functions N→ N. The functions in R are called computable functions.

We let ϕ be any fixed acceptable programming system for the partial computable func-
tions N → N with associated complexity measure Φ [19]. Further, we let ϕp denote the
partial computable function computed by the ϕ-program with code number p, and we let
Φp denote the partial computable complexity function of the ϕ-program with code number
p.

6 f(x) converges should not be confused with f converges to.
7 For a linear-time computable and invertible example, see [23, Section 2.3].
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Whenever we consider sequences or finite sets as input to functions, we assume these
objects to be appropriately coded as natural numbers. Similarly, when functions are defined
to give non-numeric output, for example, when the outputs are in N ∪ {?}, we implicitly
assume N ∪ {?} to be appropriately coded onto the natural numbers.

We use complexity theoretic notions as introduced in [23]. We let LinF be the set of all
linear time computable functions. A function g is called linlin iff g is computable in linear
time and there is a linear time computable function g−1 such that g−1 ◦ g = λx x. We let
LL be the set of all linlin functions.
Learning in the Limit

A learner is a partial computable function. A target is a total computable function g; a
learning task is a set of targets S ⊆ R.

A learning criterion consists of three parts which, together, determine whether a given
learner is successful on a given learning task.

Firstly, the learning criterion has to specify what learners are allowed. This is called a
learner admissibility restriction, and is modeled as a set C ⊆ P, the set of all admissible
learners.

Secondly, the learning criterion has to specify how learner and target interact. This part
is modeled as a sequence generating operator, which is an operator β taking as arguments a
learner h and a target g and that outputs a function p. We call p the learning sequence of
h given g. For this paper, we think of p as the sequence of conjectured programs of h on g.

Thirdly, the learning criterion has to specify which learning sequences are to be con-
sidered “successful” on a given target. This is done with a sequence acceptance criterion, a
total binary predicate δ on a learning sequence and a target function.8

For C a learner admissibility restriction, β a sequence generating operator, δ a sequence
acceptance criterion and h a learner, we call (C, β, δ) a learning criterion. For every learning
criterion I with I = (C, β, δ) we let CI = C, βI = β and δI = δ. Let I = (C, β, δ) be a
learning criterion. We proceed by giving definitions for I-learning.

We say that h I-learns a learning task S iff, h ∈ C and, for all g ∈ S, with p = β(h, g),
(p, g) ∈ δ. We denote by S(I) and also by Cβδ the set of all I-learnable learning tasks.9
With an abuse of notation, we sometimes also use Cβδ to denote I.

Any set of complexity-bounded functions is an example learner admissibility restriction,
as are R and P. We omit mentioning C, if C = P (no restriction on the learner).

We give the following three examples for sequence generating operators. Let G be defined
thus.10

∀h, g, i : G(h, g)(i) = h(g[i]). (1)

Let It be defined thus.11

∀h, g : It(h, g)(0) =? ∧ ∀i : It(h, g)(i+ 1) = h(It(h, g)(i), 〈i, g(i)〉). (2)

Lastly, we give transductive learning [7].

∀h, g : Td(h, g)(0) =? ∧ ∀i : Td(h, g)(i+ 1) = h(〈i, g(i)〉). (3)

8 Herein, our βs and δs can essentially be modeled as multi-argument variants of Rogers’ [22] recursive
operators.

9 Note that “Cβδ” is the classical way to denote this, while we use “S(I)” whenever C, β and δ are not
explicit.

10 G stands for Gold identification [16].
11 It stands for iterative [14, 24].
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For sequence acceptance criteria, we give the following five examples. We define explanatory
learning [16] as follows.

Ex = {(p, g) | p total and ∃e : p→ e and ϕe = g}.

Finite learning is given by

Fin = {(p, g) | p total and ∃e ∈ N : e ∈ range(p) ⊆ {e, ?} and ϕe = g}.

Further, we define a sequence acceptance criterion corresponding to postdictively complete
learning12 [2, 4, 24].

Pcp = {(p, g) | p total and ∀i : g[i] ⊆ ϕp(i+1)}.

For conservative learning [1] we give the following sequence acceptance criterion.

Conv = {(p, g) | p total and ∀i : p(i+ 1) 6= p(i)⇒ g[i] 6⊆ ϕp(i)}.

Finally, behaviorally correct learning as given by [3, 11] is associated with

Bc = {(p, g) | p total and ∀∞i : ϕp(i) = g}.

Any two sequence acceptance criteria δ and δ′ can be combined by intersecting them. For
ease of notation we write δδ′ instead of δ ∩ δ′.

For more examples of the above concepts, see [20].

3 Concept Definitions

In this section, we give the key concepts used in this paper in Definition 3.3. Before we can
get to that, we define pre-orders and associated notions, as well as several sets of operators,
for which we give examples and remark on some easy properties.

The main theorem of this section is Theorem 3.6, which shows the important connections
between complete sets and epitomizers.

Let S be a set and � a binary relation on that set. We call � a pre-order iff � is reflexive
and transitive. For s ∈ S and T ⊆ S, we say that s is �-complete for T iff, s ∈ T and, for
all t ∈ T , t � s.

Next we define several sets of operators. For illustration, see Example 3.2.

I Definition 3.1. A function Θ : P → P is called an operator. We define the following sets
of operators.

Let Oeff be the set of all effective operators [22], i.e., all operators Θ such that there is
a computable function s ∈ R with ∀e : Θ(ϕe) = ϕs(e).13
Let C ⊆ P. Let OCloc be the set of all Θ ∈ Oeff such that, for all g, x, Θ(g)[x] depends
only on g[x], i.e., if there is a function f with ∀g ∈ P,∀x : Θ(g)[x] = f(g[x]), and f ∈ C.
Note that Θ ∈ Oloc is equivalent to

∀g, g′ ∈ P∀x : g[x] = g′[x]⇒ Θ(g)[x] = Θ(g′)[x].14 (4)

12Also called consistent learning.
13Note that, without loss of generality, we can take s to be linlin.
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Let C ⊆ P. Let OCelemWise be the set of all Θ ∈ Oeff such that there is a function f ∈ C
such that ∀g ∈ P : Θ(g) = λx f(g(x), x).15 We write OelemWise for OPelemWise.

Next, we define sets of left-invertible operators. For any set of operators O and S ⊆ R, we
let LInv(O;S) = {Θ ∈ O | Θ(S) ⊆ R ∧ ∃Θ̂ ∈ O ∀g ∈ S : (Θ̂ ◦Θ)(g) = g}.

Clearly, OelemWise ⊂ Oloc ⊂ Oeff .

I Example 3.2. For illustration, we give the following example operators.

The operator Θ such that ∀g ∈ P∀x : Θ(g)(x) = g(x + 1) is in Oeff , but not in Oloc
or OelemWise; furthermore, Θ is not in LInv(Oeff) (Θ is not 1-1, hence cannot be left-
inverted).
The operator Θ such that

∀g ∈ P∀x : Θ(g)(x) =
{

0, if x = 0;
g(x− 1), otherwise,

(5)

is in Oeff and in Oloc, but not in OelemWise; furthermore, Θ is in LInv(Oeff), but not in
LInv(Oloc) (Θ has a computable left-inverse, but not a local one).
The operator Θ such that ∀g ∈ P∀x : Θ(g)(x) = x + g(x) is in Oeff , Oloc and also
OelemWise; furthermore, Θ is even in LInv(OelemWise).

Now we give the definition of the central notions of this paper.

I Definition 3.3. Let O be a set of operators and I a learning criterion. Let S,S0,S1 ⊆ R.

(i) I is called O-robust iff, for all S ⊆ R and Θ ∈ LInv(O;S),

S ∈ S(I)⇒ Θ(S) ∈ S(I).16 (6)

(ii) We say that S epitomizes I with respect to a set of learning criteria I, iff S ∈ S(I) and

∀I ′ ∈ I : [S ∈ S(I ′)⇔ S(I) ⊆ S(I ′)] .17 (7)

(iii) If S epitomizes I with respect to the set of all O-robust learning criteria, then we say S
O-epitomizes I.

(iv) We say that S O-generates I iff {Θ(S ′) | S ′ ⊆ S,Θ ∈ LInv(O;S ′)} is the set of all
I-learnable functions.

(v) S0 ≤O S1 iff there is an operator Θ ∈ LInv(O;S0) such that Θ(S0) ⊆ S1.

As an interesting first observation on epitomizers, we make the following remark regard-
ing separations from unions of learning criteria.

I Proposition 3.4. Let I be a learning criterion and I a set of learning criteria with
∀I ′ ∈ I : S(I) \S(I ′) 6= ∅. Suppose there is a set epitomizing I with respect to I. Then

S(I) \
⋃

I′∈I
S(I ′) 6= ∅.

15We call these operators element wise.
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Theorem 5.7 provides very strong existence results for epitomizers which can be used to
satisfy the corresponding hypothesis of Proposition 3.4.18

We can use Proposition 3.4 to give cases where epitomizers do not exist: For example,
let I be reliable learnability and let I be the set of all learning criteria of delayed postdictive
completeness; then ∀I ′ ∈ I : S(I) \S(I ′) 6= ∅ and S(I) =

⋃
I′∈I S(I ′), which shows that

there is no epitomizer of I with respect to I (see [8] for the definitions; the result will be
included in an extension of [8]).19

The following theorem gives a number of general observations regarding the concepts
introduced in Definition 3.3.

I Proposition 3.5. Let O,O′ be sets of operators, I a learning criterion.

(i) Let I be O-robust. Then, for all S ⊆ R, Θ ∈ LInv(O;S) with Θ(S) ⊆ R,

S ∈ S(I)⇔ Θ(S) ∈ S(I).

(ii) If O ∈ {Oeff ,Oloc,OelemWise}, then ≤O is a pre-order.
(iii) Suppose I is O-robust. Suppose S ∈ S(I). Then, for all S ′ ⊆ R,

S ′ ≤O S ⇒ S ′ ∈ S(I).

Next is the central theorem of this section, showing that, for important sets of operators
O and certain learning criteria I, ≤O-completeness for I characterizes O-epitomization of
I.

I Theorem 3.6. Let O be a set of operators containing the identity and which is closed
under composition. Let I be a O-robust learning criterion. Let S ⊆ R. The following are
equivalent.

(i) S O-epitomizes I.
(ii) S O-generates I.
(iii) S is ≤O-complete for I.

4 Connection to Intrinsic Complexity

We will now give the definitions of intrinsic complexity. Some version thereof was introduced
in [12], here we give an interpretation that fits our formalism. After that we will give
theorems regarding the shortcomings of intrinsic complexity, as discussed in the introduction.

In particular, Theorem 4.2 gives an example ≤GEx-complete set of functions which is
nonetheless learnable in much more restricted criteria. Then, in Theorem 4.3, we give two
natural learning criteria I for which the learnable sets are not downward closed with respect
to ≤I . For the two criteria, the cause of this failure of closure is different: in one case it is
a local restriction on the conjectures, in the other a memory restriction on the learner.

Finally, we show the equivalence of ≤GEx with one of our reducibility notions in The-
orem 4.5.

18We give the following example for illustration. Let, for all a ∈ N, Exa be like Ex, but, for success,
the final program is allowed to be incorrect on up to a places. Further, let Ex∗ be like Ex, but the
final program is allowed to be incorrect on up to finitely many places. From [11] we know that, for all
a ∈ N, GExa ⊂ GExa+1; hence, GExa ⊂ GEx∗. Theorem 5.7 provides an appropriate epitomizer for
GEx∗, so that we can deduce, with Proposition 3.4,

⋃
a∈N GExa ⊂ GEx∗ (which was shown in [11]).

19We are thankful to an anonymous referee who pointed out a (different) example for the nonexistence
of epitomizers.
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I Definition 4.1. Let I = (C, β, δ) be a learning criterion, and g a function. We say that a
sequence p is I-admissible for g iff (p, g) ∈ δ.20

Let S0,S1 ⊆ R, and an identification criterion I be given. We say that S0 ≤I S1 iff there
exist recursive operators Θ and Ψ such that, for any function g ∈ S0,

(i) Θ(g) ∈ S1, and
(ii) for any I-admissible sequence p for Θ(g), Ψ(p) is an I-admissible sequence for g.

We say that a set S ⊆ R is ≤I -complete, iff S is ≤I -complete for S(I).

I Theorem 4.2 ([12] & [3, 4]). SFinSup is ≤GEx-complete, but SFinSup ∈ GPcpEx ⊂ GEx.

The following theorem shows two criteria classes to be not closed downwards with respect
to their respective intrinsic reducibility notions.

I Theorem 4.3.

(i) There are sets S0 and S1 ⊆ R such that S0 ≤ItEx S1 and S1 ∈ ItEx, but S0 6∈ ItEx.
(ii) There are sets S0 and S1 ⊆ R such that S0 ≤GPcpEx S1 and S1 ∈ GPcpEx, but
S0 6∈ GPcpEx.

In order to characterize the reducibility of intrinsic complexity in terms of our notions,
we give the following definitions, extending notions from Section 3.

I Definition 4.4. Let O,O′ be sets of operators and S ⊆ R.

(i) Let LInv(O,O′;S) = {Θ ∈ O | ∃Θ̂ ∈ O′ ∀g ∈ S : (Θ̂ ◦Θ)(g) = g}.
(ii) For two sets S0,S1 ⊆ R, we write S0 ≤(O,O′) S1 iff there is an operator Θ ∈

LInv(O,O′;S0) such that Θ(S0) ⊆ S1.
(iii) Furthermore, let OlimPEff be the set of all partial operators Θ such that there is a

computable function s ∈ R with

∀e : Θ(ϕe) =
{
ϕp, if λt s(e, t) converges to some p;
↑, otherwise.21

(8)

Now we show the equivalence of one particular reducibility notion of intrinsic complexity
with one of our extended variants from Definition 4.4. Note that a similar characterization
can be made for GBc.

I Theorem 4.5. We have

≤(Oeff ,OlimPEff) equals ≤GEx .

We get the following Corollary from Theorem 4.5.

I Corollary 4.6. Let I be a learning criterion with δI = Ex as sequence acceptance criterion.
We have that ≤Oeff is a subrelation of ≤GEx; in particular, for all S ⊆ R

S is ≤Oeff -complete for S(I)⇒ S is ≤I -complete.

20 I-admissibility is not to be confused with learner admissibility restrictions.
21Note that the operators from OlimPEff resemble those from [21] and [13].
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5 Specific Function Learning Epitomizers

In this section we present several epitomizers, starting with the very natural class SFinSup
in Theorem 5.2. After noting an immediate corollary, we show a self-describing class to be
an epitomizer. Finally, we give a construction for self-learning classes and show them to
be very powerful epitomizers in Theorem 5.7, i.e., epitomizing with respect to a very wide
range of learning criteria, much wider than for self-descibing classes (which is in turn wider
than for SFinSup).

Note that all proofs rely implicitly on Theorem 3.6, as they show completeness and derive
epitomization from that.

But first, we give a table of examples of which learning criteria are robust with respect
to which set of operators.

I Example 5.1. Let C ⊆ P contain all linlin functions. Let F ⊆ P be closed under C-
composition and contain all linear time computable functions.

The following table states several kinds of robustness of learning criteria with respect to
certain sets of operators.

Oeff FGEx, FGBc, FGFin

OCloc FGPcpEx, FGConvEx, FGPcpConvEx

OCelemWise FItEx, FItConvEx, FItPcpConvEx, FTdEx, FTdBc

Note that each criterion in any given row just above could also be listed in any lower row.

Next, we show SFinSup to epitomize various particular learning criteria with respect to
various sets of learning criteria.

I Theorem 5.2. We have

(i) SFinSup Oeff-epitomizes GEx;
(ii) SFinSup does not Oloc-epitomize GEx;
(iii) SFinSup Oloc-epitomizes GPcpEx.
(iv) SFinSup does not OelemWise-epitomize GPcpEx;

From Theorem 5.2 we can directly get the following corollary, showing an identity of
learning criteria power. The very short proof shows the power of our notions of epitomizers
and robustness.

I Corollary 5.3. We have

GPcpEx = GPcpConvEx.

Next we analyze a set of self-describing functions which was first given in [11] and used
a lot in [19]. Theorem 5.4 shows that this set is not a very good epitomizer.

I Theorem 5.4. Let S0 = {g ∈ R | ϕg(0) = g}. Then S0 Oeff-epitomizes GFin. However,
S0 does not Oloc-epitomize any learning criterion that can be built from components given
in this paper as S0 ≡Oloc {g ∈ R | ∀x > 0 : g(x) = 0}.

Next we analyze a set of self-describing functions which was used in [11] to show the
separation of GBc and (a stronger version of) GEx. Theorem 5.5 shows that this set
necessarily shows the separation of GEx and GBc, if any set does.

STACS’11



330 Measuring Learning Complexity with Criteria Epitomizers

I Theorem 5.5. Let S0 = {g ∈ R | ∀∞x : ϕg(x) = g}. Then S0 OLL
loc -epitomizes GBc.

However, S0 does not OelemWise-epitomize GBc, as SFinSup 6≤OelemWise S0.22

Theorem 5.7 gives examples for self-learning classes of functions, which turn out to be
very strong epitomizers. In order to define these classes, we need the following notions of
computable robustness and data normality.

I Definition 5.6. Let I be a learning criterion.
We call I computably element-wise robust iff I is element-wise robust in a constructive

way, i.e., there is an effective operator Ψ ∈ Oeff such that, for all h, e ∈ P, e ◦ I(h) ⊆
I(Ψ(h, e)).

We call I data normal iff (a) – (c) below.

(a) There is fI ∈ R such that

∀h ∈ P∀g ∈ R∀i : βI(h, g)(i) = h(fI(g[i], βI(h, g)[i])).23 (9)

(b) There is a function dI ∈ R such that

∀h ∈ P∀g ∈ R∀i : dI(fI(g[i], βI(h, g)[i])) =
{

?, if i = 0;
g(i− 1), otherwise.24

(10)

(c) There is an effective operator Ψ̂ ∈ Oeff such that, for all h ∈ P, I(h) ⊆ I(Ψ̂(h)) and
Ψ̂(h)(fI(∅, ∅)) =?.25

I Theorem 5.7. Let I be a computably element-wise robust learning criterion with CI = P
(i.e., I does not impose global restrictions on the learner). Suppose I is data normal as
witnessed by f and d. Let h0 be such that

∀x : h0(x) =
{

?, if d(x) =?;
ϕd(x)(x), otherwise.

(11)

Further, let S0 = I(h0).26 Then S0 OLL
elemWise-epitomizes I.

Theorem 5.7 provides epitomizing sets for the learning criteria βδ with β and δ as ex-
plicitly given in this paper, and many more. Furthermore, S0 of Theorem 5.7 epitomizes
with respect to all learning criteria that can be built from the example components given
in this paper (including the ones with learner admissibility restrictions), as they are all
OLL

elemWise-robust. In particular, Theorem 5.7 provides a superior epitomizer for GBc than
the epitomizer of Theorem 5.5.27

22This uses Theorem 3.6.
24 Intuitively, in the ith round the learner has access to the (i− 1)st data item.
25 Intuitively, without loss of generality, the output based on no data of a learner equals ?.
26S0 is a self-learning class. Roughly, the learner (h0 in Theorem 5.7) defining such a set (S0 in The-
orem 5.7) just runs each input datum as coding a program to determine its corresponding conjecture
to output [9, 10].
Note that h0 is not total, hence, not polynomial time computable, etc. It is work in progress to extend
self-learning classes for criteria separations to cases which cover associated learners interestingly more
restricted than simply being partial computable, e.g., restricted to being linear time computable.

27The first author of the present paper, when he was co-creating [11], had the intuition that, for any
criterion I, if (GBc \ S(I)) 6= ∅, then the S0 of Theorem 5.5 above would witness that separation.
Consider I = TdBc. Clearly, SFinSup separates GBc from TdBc. However, the epitomizer S0 of
Theorem 5.5 clearly is TdBc-learnable—disproving the present first author’s old intuition. Nicely,
though, from OLL

elemWise-robustness of TdBc (Example 5.1), the epitomizer S0 of Theorem 5.7 does
separate GBc from TdBc.
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2 J. Bārzdiņš. Inductive inference of automata, functions and programs. In Proceedings of

the 20th International Congress of Mathematicians, Vancouver, Canada, pages 455–560,
1974. English translation in, AMS Translations: Series 2 109 (1977), pp. 107-112.
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Abstract
This paper studies the “explanation problem” for tree- and linearly-ordered array data, a

problem motivated by database applications and recently solved for the one-dimensional tree-
ordered case. In this paper, one is given a matrix A = (aij) whose rows and columns have
semantics: special subsets of the rows and special subsets of the columns are meaningful, others
are not. A submatrix in A is said to be meaningful if and only if it is the cross product of
a meaningful row subset and a meaningful column subset, in which case we call it an “allowed
rectangle.” The goal is to “explain” A as a sparse sum of weighted allowed rectangles. Specifically,
we wish to find as few weighted allowed rectangles as possible such that, for all i, j, aij equals
the sum of the weights of all rectangles which include cell (i, j).

In this paper we consider the natural cases in which the matrix dimensions are tree-ordered
or linearly-ordered. In the tree-ordered case, we are given a rooted tree T1 whose leaves are the
rows of A and another, T2, whose leaves are the columns. Nodes of the trees correspond in an
obvious way to the sets of their leaf descendants. In the linearly-ordered case, a set of rows or
columns is meaningful if and only if it is contiguous.

For tree-ordered data, we prove the explanation problem NP-Hard and give a randomized
2-approximation algorithm for it. For linearly-ordered data, we prove the explanation problem
NP-Hard and give a 2.56-approximation algorithm. To our knowledge, these are the first results
for the problem of sparsely and exactly representing matrices by weighted rectangles.

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.332

1 Introduction

This paper studies two related problems of “explaining" data parsimoniously. In the first part
of this paper, we focus on providing a top-down “hierarchical explanation” of “tree-ordered”
matrix data. We motivate the problem as follows. Suppose that one is given a matrix
A = (aij) of data, and that the rows naturally correspond to the leaves of a rooted tree T1,
and the columns, to the leaves of a rooted tree T2. For example, T1 and T2 could represent
hierarchical IP addresses spaces with nodes corresponding to IP prefixes. Each node of either
T1 or T2 is then said to correspond to the set of rows (or columns, respectively) corresponding
to its leaf descendants. Say 128.* (i.e., the set of all 224 IP addresses beginning with
“128”, which happens to correspond to the .edu domain) is a node in T1 and 209.85.225.*
(i.e., the set of all 28 IP addresses beginning with 209.85.225, which is www.google.com’s
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domain) is a node in T2. Then (128.*, 209.85.225.*) could, say, represent the amount
of traffic flowing from all hosts in the .edu domain (e.g., 128.8.127.3) to all hosts in the
www.google.com domain (e.g., 209.85.225.99). It is easy to relabel the rows or columns
so that each internal node of T1 or T2 corresponds to a contiguous block of rows or columns.

We need a few definitions. Let us say a rectangle in an m × n matrix A is a set
Rect(i1, i2, j1, j2) = {i : i1 ≤ i ≤ i2} × {j : j1 ≤ j ≤ j2}, for some 1 ≤ i1 ≤ i2 ≤ m,
1 ≤ j1 ≤ j2 ≤ n. Certain rectangles are allowed; others are not. Let R denote the set of
allowed rectangles. Say a set of w(R)-weighted rectangles R represents A = (aij) if for any
cell (i, j), the sum of w(R) over cells that contain (i, j) is aij .

Returning to the Internet example, a pair (u, v), u a node of T1, v a node of T2, cor-
responds to a rectangle. Say that a rectangle is allowed, relative to T1 and T2, if it is the
cross product of the set of rows corresponding to some node u in T1 and the set of columns
corresponding to some node v in T2. In this scenario, we attempt to “explain” or “describe”
the matrix by writing it as a sum of weighted allowed rectangles. Formally, we wish to assign
a weight wR to each allowed rectangle R such that the set of weighted rectangles represents
A.

Of course there is always a solution: one can just assign weights to the 1× 1 rectangles.
But this is a trivial description of the matrix. Usually more concise explanations are prefer-
able. For this reason we seek an “explanation” with as few nonzero terms as possible. More
precisely, we seek to assign a weight wR to each allowed rectangle R such that the set of
weighted rectangles represents A, and such that the number of nonzero weights wR assigned
is minimized. (We define problems formally in Section 3.)

Here is a 1-dimensional example. Suppose that a media retailer sells items in exactly
four categories: action-movie DVD’s, comedy DVD’s, books, and CD’s. The retailer builds
a hierarchy with four leaves, one for each of the categories of items. A node “DVD’s" is the
parent of leaves “action-movie DVD’s" and “comedy DVD’s”. There is one more node, a
root labeled “all”, with children “DVD’s", “books”, and “CD’s”.

Suppose that one year, sales of action-movie DVD’s increased by $6000 and sales of the
other three categories increased by $8000 each. One could represent the sales data by giving
those four numbers, one for each leaf of the hierarchy, yet one could more parsimoniously say
that there was a general increase of $8000 for all (leaf) categories, in addition to which there
was a decrease of $2000 for action-movie DVD’s. This is represented by assigning $8000 to
node “all” and $-2000 to “action-movie DVD’s”. While many different linear combinations
may be possible, simple explanations tend to be most informative. Therefore, we seek
an answer minimizing the explanation size (the number of nonzero terms required in the
explanation).

Here is a definition of Tree×Tree. An instance consists of an m×n matrix A = (aij),
along with two rooted trees, a tree T1 whose leaf set is the set of rows of the matrix, and a tree
T2 whose leaf set is the set of columns. Let Li(v) be the leaf descendants of node v in tree Ti,
i ∈ {1, 2}. Now R is just the set {L1(u)×L2(v) : u is a node in T1 and v is a node in T2}.
The goal is to find the smallest set of weighted rectangles which represents A. We prove this
problem NP-hard and give a randomized 2-approximation algorithm for it. APX-hardness
is not known.

The second problem, AllRects, is motivated by the need to concisely describe or explain
linearly-ordered data. Imagine that one has two ordered parameters, such as horizontal and
vertical location, or age and salary. No trees are involved now. Instead we allow any interval
of rows (i.e., {i : i1 ≤ i ≤ i2} for any 1 ≤ i1 ≤ i2 ≤ m) and any interval of columns (i.e.,
{j : j1 ≤ j ≤ j2} for any 1 ≤ j1 ≤ j2 ≤ n). For example, [800, 1000] × [500, 1500] could
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be used to represent a geographical region extending eastward from 800 to 1000 miles and
northward from 500 to 1500 miles, and [35.0, 45.0]×[80000, 95000] could be used to represent
the subset of people 35-44 years old and earning a salary of $80000-$95000. Then we can use
the former “rectangles” to summarize the change (say, in population counts) with respect
to location, or use the latter with respect to demographic attributes age and salary.

Hence in AllRects the set R of allowed rectangles is the cross product between the
set of row intervals and the set of column intervals. As a linear combination of how few
arbitrary rectangles can we write the given matrix? We prove this problem NP-hard and
give a 2.56-approximation algorithm for it. Again, APX-hardness is unknown.

2 Related Work

To our knowledge, while numerous papers have studied similar problems, none proposes any
algorithm for either of the two problems we study. One very relevant prior piece of work is
a polynomial-time exact algorithm solving the 1-dimensional version of Tree×Tree (more
properly called the “tree” case in 1-d, since only one tree is involved) [1]. Here, as in the
media-retailer example above, we have a sequence of integers and a tree whose leaves are
the elements of the sequence. Indeed, we use this algorithm heavily in constructing our
randomized constant-factor approximation algorithm for the tree×tree case.

Relevant to our work is [4] by Bansal, Coppersmith, and Schieber, which (in our lan-
guage) studies the 1-d (exact) problem in which all intervals are allowed and all must have
nonnegative weights, proves the problem NP-hard, and gives a constant-factor approxima-
tion algorithm.

Also very relevant is a paper by Natarajan [13], which studies an “inexact” version of the
problem: instead of finding weighted rectangles whose sum of weights is aij exactly, for each
matrix cell (i, j), these sums approximate the aij ’s. (Natarajan’s algorithm is more general
and can handle any arbitrary set R of allowed rectangles; however, the algorithm is very
slow.) More precisely, in the output set of rectangles, define a′ij to be the sum of the weights
of the rectangles containing cell (i, j). Natarajan’s algorithm ensures, given a tolerance
∆ > 0, that the L2 error

√∑m
i=1
∑n

j=1(a′ij − aij)2 is at most ∆. (Natarajan’s algorithm
cannot be used for ∆ = 0.) The upper bound on the number of rectangles produced by
Natarajan’s algorithm is a factor of approximately 18 ln(||A||2/∆) (where ||A||2 is the square
root of the sum of squares of the entries of A) larger than the optimal number used by an
adversary who is allowed, instead, only L2-error ∆/2. Furthermore, Natarajan’s algorithm
is very slow, much slower than our algorithms. See the full version of our paper for details.

Frieze and Kannan in [9] show how to inexactly represent a matrix as a sum of a small
number of rank-1 matrices, but their method is unsuitable to solve our problem, as not
only is there no way to restrict the rank-1 matrices to be rectangles, the error is of L1 type
rather than L∞. In other words, the sum of the mn errors is bounded by ∆mn, rather than
individual errors’ being bounded by ∆.

Our problem may remind readers of compressed sensing, the decoding aspect of which
requires one to seek a solution x with fewest nonzeroes to a linear system Hx = b. The key
insight of compressed sensing is that when H satisfies the “restricted isometry property"
[16, 6, 8], as do almost all random matrices, the solution x of minimum L1 norm is also the
sparsest solution. The problem with applying compressed sensing to the problems mentioned
herein, when the matrix A is m×n, is that the associated matrix H, which has mn rows and
a number of columns equal to the number of allowed rectangles, is anything but random.
On a small set of test instances, the authors found the solutions of minimum L1 norm (using
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linear programming) and discovered that they were far from sparsest.
Other authors have studied other ways of representing matrices. Applegate et al. [2]

studied the problem of representing a binary matrix, starting from an all-zero matrix, by
an ordered sequence of rectangles, each of whose entries is all 0 or all 1, in which aij should
equal the entry of the last rectangle which contains cell (i, j). Anil Kumar and Ramesh [3]
study the same model in which only all-1 rectangles are allowed (in which case the order
clearly doesn’t matter). Two papers [14, 11] study the Gale-Berlekamp switching game and
can be thought of as a variant of our problem over Z2.

3 Formal Definitions and Examples

Given an m × n matrix A = (aij) and 1 ≤ i1 ≤ i2 ≤ m, 1 ≤ j1 ≤ j2 ≤ n, recall that
Rect(i1, i2, j1, j2) = {(i, j)|i1 ≤ i ≤ i2, j1 ≤ j ≤ j2}. Define Rects = {Rect(i1, i2, j1, j2)|1 ≤
i1 ≤ i2 ≤ m, 1 ≤ j1 ≤ j2 ≤ n}. For each of the two problems, we are given a subset
R ⊆ Rects; the only difference between the two problems we discuss is the definition of R.
The goal is to find a smallest subset OPT2(A) of R, and an associated weight w(R) (positive
or negative) for each rectangle R, such that every cell (i, j) is covered by rectangles whose
weights sum to aij , that is,

aij =
∑

R:R∈OP T2(A) and R3(i,j)

w(R), (1)

the “2” in “OPT2(A)” referring to the fact that A is 2-dimensional.
While the algorithm for the tree×tree case appears (in Section 4) before that for the

arbitrary-rectangles case (in Section 5), here we define AllRects, the latter, first, since it’s
easier to define. As mentioned above, we call the case of R = Rects AllRects.
Example. Since the matrix

A =
[

2 2 2 2
5 3 1 2
6 4 1 3
5 5 2 2

]
= 2

[
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

]
+ 3

[
0 0 0 0
1 1 0 0
1 1 0 0
1 1 0 0

]
+ 1

[
0 0 0 0
0 0 0 0
1 1 1 1
0 0 0 0

]
− 2

[
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

]
+ 1

[
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

]
,

A can be written as a linear combination with w({1, 2, 3, 4} × {1, 2, 3, 4}) = 2, w({2, 3, 4} ×
{1, 2}) = 3, w({3} × {1, 2, 3, 4}) = 1, w({2, 3} × {2, 3}) = −2, and w({2} × {3}) = 1. Hence
|OPT2(A)| ≤ 5.

We need some notation in order to define Tree×Tree, in which we are also given trees
T1 and T2. We use Ri to denote the row vector in the ith row of the input matrix, 1 ≤ i ≤ m.
For a node u ∈ T1, let S1

u = {Rl : l is a leaf descendant in T1 of u}. Similarly, we use Cj

to denote the column vector in the jth column of the input matrix, 1 ≤ j ≤ n. For a node
v ∈ T2, let S2

v = {Cl : l is a leaf descendant in T2 of v}. Note that, since T1 and T2 are
trees, {S1

u|u ∈ T1} and {S2
v |v ∈ T2} are laminar.

In this notation, in Tree×Tree, R = {S1
u|u ∈ T1} × {S2

v |v ∈ T2}.
Example. Using trees T1, T2 having a root with four children (and no other nodes) apiece,
we may use any single row or all rows, and any single column or all columns. For example,
since the matrix

A =
[

5 3 4 5
3 0 2 4
2 2 1 3
3 3 2 3

]
= 3

[
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

]
+ 2

[
1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

]
− 1

[
0 0 0 0
0 0 0 0
1 1 1 1
0 0 0 0

]
− 1

[
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0

]
− 2

[
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

]
− 3

[
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

]
+ 1

[
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

]
+ 1

[
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

]
,

we can write A as a sum with w({1, 2, 3, 4} × {1, 2, 3, 4}) = 3, w({1} × {1, 2, 3, 4}) = 2,
w({3}×{1, 2, 3, 4}) = −1, w({1, 2, 3, 4}×{3}) = −1, w({1}×{2}) = −2, w({2}×{2}) = −3,
w({2} × {4}) = 1, and w({3} × {4}) = 1. Since there are eight matrices, |OPT2(A)| ≤ 8.
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Note that we use the same notation, OPT2(A), for the optimal solutions of both All-
Rects and Tree×Tree.

4 Approximation Algorithm for Tree×Tree

We defer the (interesting) proof of NP-Hardness of Tree×Tree to the full version of the
paper. Our algorithm will rely upon the exact algorithm, due to Agarwal et al. [1], for the
case in which the matrix has just one column (that is, the 1-dimensional case).

I Definition 1. Given a fixed rooted tree T1 with m leaves, and an m-vector V = (vi),
let OPT1(V ) denote a smallest set of intervals I = {i : i1 ≤ i ≤ i2} ⊆ [1,m] and as-
sociated weights w(I), each I corresponding to a node of T1, such that for all i, vi =∑

I:I∈OP T1(V ) and I3i w(I).

Clearly |OPT1(V )| equals |OPT2(V ′)|, where V ′ is the m × 1 matrix containing V as
a column. The difference is that OPT1(V ) is a set of vectors while OPT2(V ′) is a set of
rectangles. We emphasize that V is a vector and that the definition depends on T1 and not
T2 by putting the “1” in “OPT1(V )”. The key point is that [1] showed how to compute
OPT1(V ) exactly.

In order to charge the algorithm’s cost against OPT2(A), we need to know some facts
about OPT2(A). Recall that OPT2(A) is a smallest subset of R such that there are weights
w(R) such that equation (1) holds.

I Definition 2.
1. For each rectangle R and associated weight wR, let R′wR

denote the m×n matrix which
is 0 for every cell (i, j), except that (R′wR

)
ij

:= wR if (i, j) ∈ R.
2. Given a vertex v of T2, let Dv be the set of all R ∈ OPT2(A) such that R has column

set exactly equal to S2
v .

3. Now let Kv =
∑

R∈Dv
R′wR

. By definition of Dv, all columns j of Kv for j ∈ Dv are the
same. Let Vv be column j of Kv for any j ∈ Dv.

I Lemma 3. The column vectors (Vv) satisfy the following:
1. For all leaves l in T2, the vector Cl equals the sum of Vv over all ancestors v of l in T2.
2. For all leaves l′ and l′′ in T2 with a common ancestor u, the vector Cl′ − Cl′′ equals the

sum of Vv over all vertices v on the path from u down to l′ (not including v = u) minus
the sum of Vv over all vertices v on the path from u down to l′′ (not including v = u).

3. The union, over all vertices v ∈ T2, of OPT1(Vv) × {S2
v} (which obviously has size

|OPT1(Vv)|), with the corresponding weights, is an optimal solution for Tree×Tree on
A.

4. |OPT2(A)| =
∑

v∈T2
|OPT1(Vv)|.

Proof. The nodes v which correspond to sets of columns containing column Cl are exactly
the ancestors in T2 of l. Hence, Part 1 follows.

Part 2 is an immediate corollary of Part 1. Clearly, by Part 1, the union over all vertices
v ∈ T2 of OPT1(Vv)× {S2

v} is a feasible solution for Tree×Tree on A. It is also optimal,
and here is a proof. The size of the optimal solution OPT2(A) equals the sum, over vertices
v ∈ T2, of the number of rectangles in OPT2(A) having column set S2

v . Fix a vertex v ∈ T2.
Since the weighted sum of the rectangles in OPT2(A) with column set S2

v is Vv, and each has
a row set S1

u for some u ∈ T1, the number of such rectangles must be at least OPT1(Vv). If
the number of rectangles with column set S2

v strictly exceeded OPT1(Vv), we could replace
all rectangles in OPT2(A) having column set S2

v by a smaller set of weighted rectangles
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having column set S2
v , each of whose columns is the same, and summing to Vv in each

column; since the new set and the old set have the same weighted sum, the new solution
would still sum to A, and have better-than-optimal size, thereby contradicting optimality
of OPT2(A). Part 3 follows.

Part 4 follows from Part 3. J

Lemma 3 will be instrumental in analyzing the algorithm.
While the algorithm is very simple to state, it was nontrivial to develop and analyze. In

the algorithm, we use the algorithm by Agarwal et al. [1] to obtain OPT1(V ) given a vector
V .

Algorithm for Tree×Tree
1. For every internal node u in the tree T2, pick a random child u∗ of u and let c(u) = u∗.

Let path(u) be the random path going from u to a leaf: u 7→ c(u) 7→ c(c(u)) 7→ · · · 7→ l(u),
where we denote the last node on the path, the leaf, by l(u).

2. Where root denotes the root of T2, for every node u in T2, in increasing order by depth,
do:

If u is the root of T2, then
Output OPT1(Cl(root))× {S2

root} with the corresponding weights (those of the op-
timal solution for Cl(root)).

Else
Let p(u) be the parent of u.
Output OPT1(Cl(u) − Cl(p(u)))× {S2

u} with the corresponding weights.

I Theorem 4. The expected cost of the algorithm is at most 2|OPT2(A)|.

In the main part of the paper we prove a weaker guarantee for exposition: the expected
cost of the algorithm is at most 4|OPT2(A)|. We defer the improvement to the full version
of the paper. The algorithm can be easily derandomized using dynamic programming.

Proof. Every column Cu is covered by rectangles with sum

(Cu − Cl(p(u))) + (Cl(p(u)) − Cl(p(p(u)))) + · · ·+ Cl(root) = Cu.

Thus the algorithm produces a valid solution. We now must estimate the expected cost of
the solution. The total cost incurred by the algorithm is

|OPT1(Cl(root))|+
∑

u 6=root

|OPT1(Cl(u) − Cl(p(u)))|.

Assume, without loss of generality, that all nodes in the tree either have two or more children
or are leaves. Denote the number of children of a node v, the degree of v, by d(v). Denote
by 1 the indicator function. Observe that for the root node we have

|OPT1(Cl(root))| =

∣∣∣∣∣∣OPT1

( ∑
v∈path(root)

Vv

)∣∣∣∣∣∣ ≤
∑

v∈path(root)

|OPT1(Vv)|;

for a nonroot vertex u, we have by Lemma 3 (2), keeping in mind that l(·), c(·), and path(·)
are random,

|OPT1(Cl(u) − Cl(p(u)))| =
∣∣∣OPT1

( ∑
v∈path(u)

Vv −
∑

v∈path(c(p(u)))

Vv

)∣∣∣
≤
( ∑

v∈path(u)

|OPT1(Vv)|+
∑

v∈path(c(p(u)))

|OPT1(Vv)|
)
· 1(u 6= c(p(u))).
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Here we used the triangle inequality for the function |OPT1(·)|.
Consider the second sum in the right-hand side. For every child u′ of p(u), the random

node c(p(u)) takes value u′ with probability 1/d(p(u)). Thus

E
[ ∑

v∈path(c(p(u)))

|OPT1(Vv)| · 1(u 6= c(p(u)))
]

= 1
d(p(u))

∑
u′:u′ is a sibling of u

E
[( ∑

v∈path(c(p(u)))

|OPT1(Vv)|
)
| c(p(u)) = u′

]
= 1
d(p(u))

∑
u′:u′ is a sibling of u

E
[ ∑

v∈path(u′)

|OPT1(Vv)|
]
.

Pr
(
u 6= c(p(u))

)
equals (d(p(u)) − 1)/d(p(u)). Denote this expression by αu. The total

expected size of the solution returned by the algorithm is bounded by

E
[ ∑

v∈path(root)

|OPT1(Vv)|
]

+
∑

u6=root

αuE
[ ∑

v∈path(u)

|OPT1(Vv)|
]

(2)

+
∑

u6=root
1

d(p(u))
∑

u′:u′ is a sibling of u E
[∑

v∈path(u′) |OPT1(Vv)|
]

= E
[∑

v∈path(root) |OPT1(Vv)|
]

+
∑

u6=root αuE
[∑

v∈path(u) |OPT1(Vv)|
]

+
∑

u′ 6=root

(∑
u6=root

1(u′ is a sibling of u)
d(p(u′))

)
E
[∑

v∈path(u′) |OPT1(Vv)|
]
. (3)

Notice that, for a fixed u′ 6= root,∑
u6=root

1(u′ is a sibling of u)
d(p(u′)) = d(p(u′))− 1

d(p(u′)) = αu′ < 1. (4)

Hence, the total cost of the solution is bounded by∑
u

E
[ ∑

v∈path(u)

|OPT1(Vv)|
]
+
∑

u′ 6=root

E
[ ∑

v∈path(u′)

|OPT1(Vv)|
]
≤ 2

∑
u

E
[ ∑

v∈path(u)

|OPT1(Vv)|
]
.

Finally, observe that node v belongs to path(v) with probability 1; it belongs to the
path(p(v)) with probability at most 1/2; it belongs to the path path(p(p(v))) with probability
at most 1/4, etc. It belongs to path(u) with probability 0 if u is not an ancestor of v. Thus

2
∑

u

E
[ ∑

v∈path(u)

|OPT1(Vv)|
]

= 2
∑

v

|OPT1(Vv)| ·
(∑

u

Pr
(
v ∈ path(u)

))
≤ 2

∑
v

|OPT1(Vv)| ·
(

1 + 1/2 + 1/4 + · · ·
)

< 4
∑

v

|OPT1(Vv)| ≤ 4|OPT2(A)|.

We have proven that the algorithm finds a 4-approximation. A slightly more careful analysis,
in the full version of the paper, shows that the approximation ratio of the algorithm is at
most 2. J

What is the running time of the 2-approximation algorithm? The time needed to run
the 1-dimensional algorithm of [1] is O(dn) where there are n leaves in each tree and the
smaller of the two depths is d. One can verify that the running time of our 2-approximation
algorithm is a factor O(n) larger, or O(dn2). In most applications at least one of the trees
would have depth O(logn), giving O(n2 logn) in total.
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5 Approximation Algorithm For AllRects

5.1 The 1-Dimensional Problem
First we consider the one-dimensional case, for which we will give a (23/18+ε)-approximation
algorithm; 23/18 < 1.278. We are given a sequence a1, a2, . . . , an of numbers and we need to
find a collection of closed intervals [i, j] with arbitrary real weights wij so that every integral
point k ∈ {1, . . . , n} is covered by a set of intervals with total weight ak. That is, for all k,∑

i,j:k∈[i,j]

wij = ak. (5)

Our goal is to find the smallest possible collection. We shall use the approach of Bansal,
Coppersmith, and Schieber [4] (in their problem all ai ≥ 0 and all wij > 0). Set a0 = 0 and
an+1 = 0. Observe that if ak = ak+1, then in the optimal solution every interval covering
k also covers k + 1. On the other hand, since every rectangle covering both k and k + 1
contributes the same weight to ak and ak+1, if ak 6= ak+1, then there should be at least one
interval that either covers k but not k + 1, or covers k + 1 but not k. By the same reason,
the difference ak+1− ak, which we denote by ∆k = ak+1− ak, equals the difference between
the weight of intervals with the left end-point at k+ 1 and the weight of rectangles with the
right endpoint at k:

∆k =
∑

j:k+1≤j

wk+1,j −
∑

i:i≤k

wik. (6)

Note that if we find a collection of rectangles with weights satisfying (6), then this collection
of intervals is a valid solution to our problem, i.e., then equality (5) holds. Define a directed
graph on vertices {0, . . . , n}. For every interval [i, j], we add an arc going from i − 1 to j.
Then the condition (6) can be restated as follows: The sum of weights of arcs outgoing from
k minus the sum of weights of arcs entering k equals ∆k. Our goal is to find the smallest
set of arcs with non-zero weights satisfying this property. Consider an arbitrary solution
and one of the weakly connected components S. The sum

∑
k∈S ∆k = 0, since every arc is

counted twice in the sum, once with the plus sign and once with the minus sign. Since S is
a connected component the number of arcs connecting nodes in S is at least |S| − 1. Thus
a lower bound on the number of arcs or intervals in the optimal solution is the minimum of

M∑
t=1

(|St| − 1) = n+ 1−M

among all partitions of the set of items {0, . . . , n} into M disjoint sets S1, . . . , SM such that∑
k∈St

∆k = 0 for all t. On the other hand, given such a partition (S1, . . . , SM ), we can
easily construct a set of intervals. Let kt be the minimal element in St. For every element
k in St \ {kt}, we add an interval [kt + 1, k] with weight −∆k. We now verify that these
intervals satisfy (6). If k belongs to St and k 6= kt, then there is only one interval in the
solution with right endpoint at k. This interval is [kt + 1, k] and its weight is −∆k. The
solution does not contain intervals with left endpoint at k + 1 (since k 6= kt). Thus (6)
holds as well. If k belongs to St and k = kt, the solution does not contain intervals with the
right endpoint at k, but for all k′ ∈ St there is an interval [k+ 1, k′] with weight −∆k′ . The
total weight of these intervals equals∑

k′∈St;k′ 6=k

−∆k′ = −
∑

k′∈St

∆k′ + ∆k = ∆k.
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Condition (6) again holds.
Thus the problem is equivalent to the problem of partitioning the set of items {0, . . . , n}

into a family of M sets {S1, . . . , SM} satisfying the condition
∑

k∈St
∆k = 0 for all t, so as

to minimize
∑

t(|St| − 1) = (n+ 1)−M . Notice that the sum of all ∆k equals 0. Moreover,
every set with the sum of ∆k equal to 0 corresponds to an instance of the 1-dimensional
rectangle covering problem. We shall refer to the problem as Zero-Weight Partition.

We now describe the approximation algorithm for Zero-Weight Partition which is
a modification of the algorithm of Bansal, Coppersmith, and Schieber [4] designed for a
slightly different problem (that of minimizing setup times in radiation therapy).
I Remark. For Zero-Weight Partition, our algorithm gives a slightly better approxi-
mation guarantee than that of [4]: 23/18 ≈ 1.278 vs 9/7 ≈ 1.286. The difference between
algorithms is that the algorithm of Bansal, Coppersmith, and Schieber [4] performs either
the first and third steps (in terms of our algorithm; see below), or the second and third
steps; while our algorithm always performs all three steps.

In the first step the algorithm picks all singleton sets {k} with ∆k = 0 and pairs {i, j}
with ∆i = −∆j . It removes the items covered by any of the chosen sets. At the second step,
with probability 2/3 the algorithm enumerates all triples {i, j, k} with ∆i +∆j +∆k = 0 and
finds the largest 3-set packing among them using the (3/2+ε)-approximation algorithm due
to Hurkens and Schrijver [10], i.e., it finds the largest (up to a factor of (3/2 + ε)) disjoint
family of triples {i, j, k} with ∆i + ∆j + ∆k = 0. Otherwise (with probability 1/3), the
algorithm enumerates all quadruples {i, j, k, l} having ∆i + ∆j + ∆k + ∆l = 0 and finds the
largest 4-set packing among them using the (2+ε)-approximation algorithm due to Hurkens
and Schrijver [10]. At the third, final, step the algorithm covers all remaining items, whose
sum of ∆k’s is zero, with one set.

Before we start analyzing the algorithm, let us consider a simple example. Suppose
that (a1, a2, a2, a4, a5, a6) = (15, 8, 10, 17, 18, 15). First we surround the vector with two 0’s:
(a0, a1, a2, a2, a4, a5, a6, a7) = (0, 15, 8, 10, 17, 18, 15, 0). Then compute the vector of ∆k’s:
(∆0,∆1,∆2,∆2,∆4,∆5,∆6) = (15 − 0, 8 − 15, 10 − 8, 17 − 10, 18 − 17, 15 − 18, 0 − 15) =
(15,−7, 2, 7, 1,−3,−15). Notice that (−15)+7+(−2)+(−7)+(−1)+3+15 = 0. We partition
the set into sets of weight 0: {∆0,∆6}, {∆1,∆3}, {∆2,∆4,∆5}. This partition corresponds
to the following solution of the 1-dimensional problem: interval [1, 6] with weight 15, interval
[2, 3] with weight −7, interval [3, 4] with weight −1, interval [3, 5] with weight 3.

I Lemma 5. For every positive ε > 0, the approximation ratio of the algorithm when using
ε is at most 23/18 +O(ε), with 23/18 < 1.278.

Proof. First, observe that the partitioning returned by the algorithm is a valid partitioning,
i.e., every item belongs to exactly one set and the sum of ∆k’s in every set equals 0. We
show that the first step of the algorithm is optimal. That is, there exists an optimal solution
that contains exactly the same set of singletons and pairs as in the partition returned by
the algorithm. Suppose that the optimal solution breaks one pair {i, j} (∆i = −∆j) and
puts i in S and j in T . Then we can replace sets S and T with two new sets {i, j} and
S ∪ T \ {i, j}. The new solution has the same cost as before; the sum of ∆k’s in every set
is 0, but the pair {i, j} belongs to the partitioning. Repeating this procedure several times,
we can transform an arbitrary optimal solution into an optimal solution that contains the
same set of singletons and pairs as the solution obtained by the approximation algorithm.

For the sake of the presentation let us assume that ε = 0 (that is, we assume that the
approximation algorithms due to Hurkens and Schrijver [10], we use in our algorithm, have
approximation guarantees at most 3/2 and 2). Let pk be the number of sets of size k in the
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optimal solution. The cost of the optimal solution is p2 + 2p3 + 3p4 + 4p5 + · · · , because the
objective function charges |S|−1 to a set of size |S|. Our approximation algorithm also finds
p1 singleton sets and p2 pairs. Then with probability 2/3, it finds s3 ≥ (2/3)p3 triples and
covers the remaining 3 · (p3−s3)+4p4 +5p5 + · · · vertices with one set; and with probability
1/3, it finds s4 ≥ p4/2 quadruples and covers the remaining 3p3 +4·(p4−s4)+4p4 +5p5 +· · ·
vertices with one set. Thus the expected cost of the solution returned by the algorithm equals

2
3

(
p2 + 2 · 2p3

3 + 3 · p3

3 + 4p4 +
∑
k≥5

kpk − 1
)

+ 1
3

(
p2 + 3 · p4

2 + 3p3 + 4 · p4

2 +
∑
k≥5

kpk − 1
)

= p2 + 23
9 p3 + 23

6 p4 +
∑
k≥5

kpk − 1. (7)

Therefore, the approximation ratio of the algorithm, assuming that ε = 0, is

p2 + 23
9 p3 + 23

6 p4 +
∑

k≥5 kpk − 1
p2 + 2p3 + 3p4 +

∑
k≥5(k − 1)pk

≤ max
{

1
1 ,

23
9
2 ,

23
6
3 ,

5
4 ,

6
5 , . . .

}
= 23

18 .

It is easy to verify that if ε > 0, the approximation ratio of the algorithm is at most
23/18 +O(ε). J

In the full version of the paper we prove that finding the exact solution of the problem
is NP-hard.

5.2 The 2-Dimensional Case
We now consider the 2-dimensional case (which does not appear in [4]). We are given an
m × n matrix A = (aij) (1 ≤ i ≤ m, 1 ≤ j ≤ n) and we need to cover it with the
minimum number of weighted rectangles Rect(i1, i2, j1, j2) (for arbitrary i1, i2, j1, j2); we
use w(i1, i2, j1, j2) for the weight of Rect(i1, i2, j1, j2). We assume that aij = 0 for i and j
outside the rectangle {1, . . . ,m} × {1, . . . , n}.

By analogy to the 1-dimensional case, define ∆ij = ai,j − ai,j+1 + ai+1,j+1 − ai+1,j . Call
a pair (i, j) with 0 ≤ i ≤ m, 0 ≤ j ≤ n, with ∆ij 6= 0 an array corner. Imagine that the
matrix is written in an m×n table, and ∆ij ’s are written at the grid nodes. The key point is
that every rectangle covers exactly one, two, or four of the cells (i+1, j+1), (i, j), (i, j+1),
(i + 1, j) bordering a grid point, and that those covering two or four of those cells cannot
affect ∆ij . This means that only rectangles having a corner at the intersection of the ith
and jth grid line contribute to ∆ij . (This is why the definition of ∆ij was “by analogy” to
the 1-d case.) This means that the number of rectangles in the optimal solution must be
at least one quarter of the number of array corners, the “one-quarter" arising from the fact
that each rectangle has exactly four corners and can hence be responsible for at most four
of the array corners.

It is easy now to give a 4-approximation algorithm, which we sketch without proof, based
on this observation. Build a matrix M , initially all zero, which will eventually equal the
input matrix A. Until no more array corners exist in A−M , find an array corner (i, j) with
i < m and j < n. (As long as array corners exist, there must be one with i < m and j < n.)
Let ∆ 6= 0 be ∆ij . Add to M a rectangle of weight ∆ with upper left corner at (i, j) and
extending as far as possible to the right and downward, eliminating the array corner at (i, j)
in A−M .

It is easy to see that (1) when the algorithm terminates, M = A, and that (2) the
number of rectangles used is at most the number of array corners in A, and hence at most
4|OPT2(A)|.
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Now we give, instead, a more sophisticated, 23/9+ε < 2.56-approximation algorithm for
the 2D problem. The idea is to make more efficient use of the rectangles. Instead of using
only one corner of each (in contrast to the adversary, who might use all four), now we will
use two. In fact, we will deal separately with different horizontal (between-consecutive-row)
grid lines, using a good 1-dimensional approximation algorithm to decide how to eliminate
the array corners on that grid line. Every time the 1-d algorithm tells us to use an interval
[j1, j2], we will instead inject a rectangle which starts in column j1 and ends in column j2,
and extends all the way to the bottom. Because we use 2 of each rectangle’s 4 corners, we
pay a price of a factor of 4/2 over the 1-d approximation ratio of 23/18 + O(ε). Hence we
will get 23/9 +O(ε).

Here are the details. Fix i and consider the restriction of the zero-weight partition
problem to the ith horizontal grid line, i.e., the 1-dimensional zero-weight partition problem
with ∆j = ∆ij . Denote by OPT i the cost of the optimal solution. The number of rectangles
touching the ith horizontal grid line from above or below is at least OPT i, since only these
rectangles contribute ∆ij ’s. Every rectangle touches only two horizontal grid lines, thus the
total number of rectangles is at least

∑m
i=1 OPT

i/2.
All rectangles generated by our algorithm will touch the bottom line of the table; that is

why we lose a factor of 2. Note that if we could solve the 1-dimensional problem exactly we
would be able to find a covering with

∑m
i=1 OPT

i rectangles and thus get a 2 approximation.
For each horizontal grid line i, the algorithm solves the 1-dimensional problem (with ∆j =
∆ij) and finds a set of intervals [j1, j2] with weights wj1j2 . These intervals are the top sides
of the rectangles generated by the algorithm. All bottom sides of the rectangles lie on the
bottom grid line of the table. That is, for every interval [j1, j2] the algorithm adds the
rectangle Rect(i,m, j1, j2) to the solution and sets its weight w(i,m, j1, j2) to be wj1j2 .

The total number of rectangles in the solution output by the algorithm is
∑m

i=1 ALGi,
where ALGi is the cost of the solution of the 1-dimensional problem. Thus the cost of the
solution is at most 2 · (23/18 +O(ε)) times the cost of the optimum solution. We now need
to verify that the set of rectangles output by the algorithm is indeed is a solution.

Subtract the weight of each rectangle from all aij ’s covered by the rectangle. We need
to prove that the residual matrix

a′ij = aij −
∑

i1,j1,j2:(i,j)∈Rect(i1,m,j1,j2)

w(i1,m, j1, j2)

equals zero. Observe that ∆′ij = a′i+1,j+1 + a′ij − a′i+1,j − a′i,j+1 = 0 for all 0 ≤ i ≤ m − 1
(i.e., all rows i, possibly, except for the bottom line) and 0 ≤ j ≤ n. Assume that not all
a′ij equal to 0. Let a′i0j0

be the first nonzero a′ij with respect to the lexicographical order
on (i, j). Then a′i0−1,j0−1 = a′i0−1,j0

= a′i0,j0−1 = 0. Thus a′i0j0
= 0. We have proven the

following theorem.

I Theorem 6. For every positive ε, there exists a polynomial-time approximation algorithm
for AllRects with approximation guarantee at most 23/9 +O(ε), with 23/9 = 2.5555.....

5.3 A Simplified Algorithm
Because of the dependence on ε, the running time of the previous algorithm can be large
when ε is small. A simpler algorithm for the 1-dimensional case—namely, just use pairs
and triples—can be shown to give ratio 4/3 for the 1-d case, and hence 8/3 = 2.6666... in
2-d, only slightly worse than 23/9. For the simplified 1-d algorithm, the running time is
O(n + k2 log k), if there are k ∆’s. To run the 2-d algorithm, the running time becomes
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O(n2+
∑n

i=1 k
2
i log ki), where there are ki corners on the ith row. Since the number of corners

is Θ(OPT ), the running time is at most O(n2) plus O(maxk1+k2+···+kn=OP T

∑
i k

2
i log ki).

Since f(x) = x2 log x is convex, this quantity is maximized by making as many ki’s equal to
n as possible. A simple proof then shows that the time is O(n2 +OPT · (n logn)).
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Abstract
We study fragments of first-order logic and of least fixed point logic that allow only unary negation:
negation of formulas with at most one free variable. These logics generalize many interesting
known formalisms, including modal logic and the µ-calculus, as well as conjunctive queries and
monadic Datalog. We show that satisfiability and finite satisfiability are decidable for both
fragments, and we pinpoint the complexity of satisfiability, finite satisfiability, and model checking.
We also show that the unary negation fragment of first-order logic is model-theoretically very
well behaved. In particular, it enjoys Craig interpolation and the Beth property.
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1 Introduction

Vardi [24] raised the question “why is modal logic so robustly decidable?”. His explanation
was that modal logic enjoys a combination of three properties, namely (i) the tree model
property (if a sentence has a model, it has a model which is a tree), (ii) translatability into
monadic second-order logic (MSO), and thereby into tree automata, and (iii) the finite
model property (if there is a model, there is also a finite one). The decidability of (finite)
satisfiability follows immediately from these three properties. The guarded fragment of
first-order logic (GFO) [1] was subsequently proposed as a large fragment of first-order logic
that generalizes modal logic while retaining these properties. It consists of FO formulas in
which all quantifiers are “guarded”. GFO has the tree-like model property (if a sentence
has a model, it has a model of bounded tree width), it can be interpreted into MSO (each
formula can be transformed into a tree automata recognizing a tree decomposition of its
models of bounded tree width) and it has the finite model property [1, 15].

In this paper we provide another, orthogonal generalization of modal logic that enjoys
the same nice properties. We introduce UNFO, a fragment of FO in which negation is
restricted to formulas having only one free variable. UNFO is incomparable in term of
expressive power to GFO but it generalizes modal logic, as well as other formalisms, such as
conjunctive queries, that are not contained in GFO. We show that UNFO has the tree-like
model property, interpretation into MSO and the finite model property. Hence UNFO is
robustly decidable.

We also introduce UNFP, which extends UNFO with least and greatest monadic fixpoints,
in the same way that the µ-calculus extends modal logic, and guarded fixpoint logic GFP
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extends GFO [16]. UNFP generalizes the µ-calculus but also monadic Datalog and remains
incomparable with GFP. It still has the tree-like model property and can be interpreted
into MSO, but it no longer has the finite model property. Nevertheless, we show that finite
satisfiability for UNFP is decidable (recall that the decidability of finite satisfiability for GFP
is still open at the time of submission1). The satisfiability problem is 2ExpTime-complete,
both for UNFO and for UNFP, both on arbitrary and finite structures.

We also study the model checking problem. In contrast with GFO, whose model checking
problem is PTime-complete [7], we show that for UNFO it is complete for PNP[O(log2 n)],
providing one of the few natural complete problems for that complexity class. For UNFP,
model checking is hard for PNP and contained in NPNP ∩ coNPNP. The gap between the
upper-bound and the lower-bound reflects a similar open problem for GFP and the µ-calculus
where the model checking problems lies between PTime and NP ∩ coNP [7].

UNFO is not only computationally but also model-theoretically very well behaved. We
characterize the expressive power of UNFO in terms of an appropriate notion of invariance,
and we show that UNFO has the Craig Interpolation Theorem as well as the Projective Beth
Property. Note that Craig Interpolation fails for GFO [18]. On trees, UNFO and UNFP
correspond to well known formalisms.

Unary negation vs. guarded quantification As mentioned, UNFO and GFO are
incomparable in term of expressive power. For instance the properties “some node lies on
a cycle of length 4” and “every node lies on a cycle of length 4” (and their negations) are
definable in UNFO but not in GFO (and not even in GFP). Conversely, the property “the
binary relation R is contained in binary relation S” (and its negation) is definable in GFO
but not in UNFO (and not even in UNFP). See Section 6 for more discussion. In spite of
these differences, our proofs often follow similar strategies as proofs for GFO and GFP.

Due to space limitations many proofs are omitted or only sketched. They will appear in the
journal version of this paper.

2 Preliminaries

We deal with relational structures. We assume given a relational schema providing a finite
set of relation symbols and fixing an arity to each relation. A model, or structure, over a
relational schema is a set, the domain, together with an interpretation of each relation symbol
of the schema as a relation over the domain of the arity given by the schema. A model is
said to be finite if its domain is finite. We assume familiarity with first-order logic, FO, and
least fixpoint logic, FP, over relational structures. We use classical syntax and semantics for
FO and FP. In particular we write M |= φ(u) for the fact that the tuple u of elements of
the model M makes the FO-formula φ true on M .

2.1 UNFO and UNFP

We define unary negation FO, UNFO, as the fragment of FO given by the following grammar
(where R is an arbitrary relation name from the underlying schema):

φ :: R(x) | x = y | φ ∧ φ | φ ∨ φ | ∃xφ | ¬ϕ(x)

1 Possibly recently solved [4].
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where ϕ has no free variables besides (possibly) x. Throughout this paper, we will keep using
the notation ϕ(x) to indicate that a formula has at most one free variable. In other words,
UNFO is the restriction of FO where negation is only allowed if the subformula has at most
one free variable. In particular x 6= y is not expressible in UNFO.

We say that a formula of UNFO is in UN-normal form if, in the syntax tree of the
formula, every existential quantifier (except for the root) is either directly below another
existential quantification, or the subformula starting with that quantifier has at most one free
variable. It is immediate to see that each formula of UNFO can be turned into an equivalent
one in UN-normal form in linear time by “pulling out existential quantifiers” as much as
possible. For instance the formula ∃xR(x)∧ ∃x¬(∃yS(x, y)) is not in UN-normal form but it
is equivalent to ∃x∃x′ R(x) ∧ ¬(∃yS(x′, y)) which is in UN-normal form.

A formula of UNFO is said to be of width k if, when put in UN-normal form, it uses at
most k variables. We denote by UNFOk all UNFO formulas of width k.

In order to define UNFP we introduce extra unary predicates that will serve for computing
unary fixpoints. We denote the unary predicates given by the relational schema using the
letters P,Q . . . and the unary predicates serving for computing the fixpoints by X,Y . . .. By
UNFO(X) we mean UNFO defined over the schema extended with the unary predicates X.
In particular it allows formulas of the form ¬φ(x,X). UNFP is the extension of UNFO(X)
by means of the following least fixpoint construction:

[LFPX,x φ(X,X, x)](y)

where X occurs only positively in φ. An analogous greatest fixed point operator is definable
by dualization. Note that no first-order parameters (i.e., free variables in the body of φ other
than the bound variable x) are permitted.

Since UNFP is a syntactic fragment of least fixed point logic LFP, we omit the definition
of the semantics, cf. [19]. The definition of the normal form naturally extend to UNFP. As
in the case of UNFO, a UNFP formula has width k if, when put in UN-normal form, it uses
at most k variables. In particular, a formula of UNFP has width k if all the UNFO(X)-parts
of its subformulas have width k. We denote by UNFPk all UNFP formulas of width k.

The negation depth of a UNFO or UNFP formula will be an important parameter. It is
the maximal nesting depth of negations in its syntax tree.

2.2 Logics that are contained in UNFO and UNFP
UNFO and UNFP generalize many known formalisms. We list here some well known logics
that can be embedded into UNFO and UNFP.

Conjunctive queries and monadic datalog. A conjunctive query (CQ) is a query of the
form ∃x1 · · ·xn τ1 ∧ · · · ∧ τl where each τi is a positive atomic formula. Unions of conjunctive
queries (UCQs) are contained in UNFO. Actually, UNFO can naturally be viewed as an
extension of the UCQ language with unary negation. Similarly, monadic datalog (i.e., datalog
queries in which all IDB relations are unary [12]) is contained in UNFP. As a matter of
fact, if one allows the answer predicate of monadic datalog programs to have any arity, then
monadic datalog corresponds precisely to the positive fragment of UNFP.
Modal logic and the µ-calculus. Modal logic is contained in UNFO. Indeed, the standard
translation from modal logic to first-order logic produces first-order formulas that belong to
UNFO. Similarly, the µ-calculus (and in fact the two-way µ-calculus) is contained in UNFP.
Unary conjunctive view logic. First-order unary-conjunctive-view logic (UCV) was
introduced in [3] as a fragment of FO. A UCV query is an equality-free first-order formula
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over a signature consisting of unary predicates only, but where each of these unary predicates
is in fact a view defined by a unary conjunctive query. UCV queries can be translated into
UNFO, more precisely into the fragment of UNFO that has negation depth 1 (as follows
from the fact that equality-free monadic FO admits quantifier elimination, cf. [17]).
The temporal logic CTL∗(X). CTL∗(X) is the fragment of CTL∗ in which only the
modality X (“next”) is allowed (For the definition of the semantics, see [11]). CTL∗(X) is
a fragment of UNFO. The model checking problem for CTL∗(X) is known to be complete
for the complexity class PNP[O(log2 n)] [23]. We will show that, in fact, the model checking
problem for full UNFO is PNP[O(log2 n)]-complete.
Core XPath. On XML trees with all axes, it is known that Core XPath = FO2 for unary
queries while Core XPath = UCQ-over-FO2-unary-predicates for binary queries [20]. It turns
out that UNFO has the same expressive power as Core XPath, both for unary and for binary
queries [10] and therefore UNFO characterizes Core XPath in a more uniform way. Similarly,
Regular XPath embeds into UNFP.
Data tree patterns. In [13], Boolean combinations of tree patterns are studied as a query
language for data trees (or, XML documents containing data). If we represent data trees by
relational structures, then tree patterns can be seen as conjunctive queries. Therefore the
Boolean combinations of tree patterns studied in [13] can be seen as a fragment of UNFO.
Description logics. The conjunctive query answering problem for description logics can
be reduced to the UNFO entailment problem. Take for example the basic description logic
ALC . The conjunctive query answering problem for ALC is the following problem (cf. [2]
for basic terminology): Given a TBox T , an ABox A consisting of atomic formulas speaking
about individuals (constant symbols) c1 . . . cn, a conjunctive query q(x1, . . . , xk), and a tuple
of constants (ci1 , . . . , cik), is (ci1 , . . . , cik) an answer to q in every model of T ∪A?

It is easy to see that this is equivalent to the validity of the UNFO-entailment

φT ∧
∧
A[c1/x1, . . . , cn/xn] |= q(xi1 , . . . , xik)

where φT is the UNFO-translation of T . It follows that conjunctive query answering for ALC
is decidable and has the finite model property (cf. Remark 3). The same argument works
not only for ALC but for any description logic whose TBoxes can be expressed in UNFP.
Moreover, the argument works not only for conjunctive queries, but to any class of queries
expressible in UNFP.

3 Model theory

In this section we give results about the expressive power of UNFO and UNFP, and we show
that UNFO has Craig Interpolation Theorem and the Projective Beth Property. We only
state the results here, the proofs will appear in the journal version of this paper.

Invariance for UN-bisimulations We define a game that captures model indistinguisha-
bility, and we use it to characterize the expressive power of UNFO and UNFP. The game is
as follows: the two players maintain a single pair (a, b) of objects from the two structures. A
move of Abelard consists of choosing a set X of points in one of the two structures. Then
Eloise responds with a homomorphism from that set into a set of points in the other structure,
where the homomorphism maps a to b (respectively b to a) if a (respectively b) belongs to
the set X. Finally, Abelard picks a pair from the homomorphism and the players continue
with that pair. The game is parametrized by the size of the sets chosen by Abelard at each
round.
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Equivalently, we can present the game in terms of a back-and-forth system:

I Definition 1. Let M,N be two structures. A UN-bisimulation (of width k ≥ 1) is a binary
relation Z ⊆M ×N such that the following hold for every pair (a, b) ∈ Z:

For every finite set X ⊆ dom(M) (with |X| ≤ k) there is a partial homomorphism
h : M → N whose domain is X, such that h(a) = b if a ∈ X, and such that every pair
(a′, b′) ∈ h belongs to Z.
Likewise in the other direction, where X ⊆ dom(N).

We write M ≈UN N if there is a non-empty UN-bisimulation between M and N , and we
write M ≈kUN N if there is a non-empty UN-bisimulation of width k between M and N .

It is not difficult to see that UN-bisimulation implies UNFP-indistinguishability.

I Proposition 1. For any k ≥ 1, if M ≈kUN N then M and N satisfy the same sentences of
UNFPk. In particular, if M ≈UN N then M and N satisfy the same sentences of UNFP.

A similar invariance property holds for formulas with free variables. For simplicity, we
only state a version of the result without reference to the width of formulas. Let a UN-
homomorphism h : M → N be a homomorphism with the property that M,a ≈UN N,h(a)
for all a ∈ dom(M). We write M,a→UN N, b if there is a UN-homomorphism h : M → N

such that h(a) = b. Then we have the following:

I Proposition 2. If M,a→UN N, b and M |= φ(a) then N |= φ(b), for all UNFP-formulas
φ(x).

Tree-like model property and finite model property From the invariance for UN-
bisimulation it follows by a standard infinite unraveling argument that UNFP has the tree-like
model property. A more involved partial unraveling, using back-edges in order to keep the
structure finite, can also be used to show that UNFO has the finite model property. We will
not give the details of these constructions, as it turns out that both results will follow from
the material presented in Section 4.

I Theorem 2. Every satisfiable UNFO formula has a finite model.

I Theorem 3. Every satisfiable UNFP formula of width k has a model of tree-width k − 1.

Note, that UNFP does not have the finite model property. This follows from the fact that
UNFP contains the two-way µ-calculus which is known to lack the finite model property [8].
Indeed, if max(x) is shorthand for ¬∃y(E(x, y)), then the formula

∃xmax(x) ∨ ∃x[GFPX,y ∃z(Xz ∧ E(z, y))](x)

is valid on finite structures (if a finite structure has no maximal elements, it must contain a
cycle, and hence an infinite backward path) but it is false in the infinite structure (N, suc).

Characterization We have seen in Proposition 1 that UNFO sentences are first-order
formulas that are closed under ≈UN-equivalence. It turns out that the converse is also true.
Indeed, in the same way that bisimulation-invariance characterizes modal logic [6, 22] and
guarded bisimulation-invariance characterizes the guarded fragment of FO [1], we will see
that ≈UN-invariance characterizes UNFO. We state this result over arbitrary models. We
believe the result can also be proved over finite structures. We postpone this issue to the
journal version of this paper.

Call a FO sentence ≈UN-invariant if for all structures M ≈UN N , we have M |= φ iff
N |= φ, and define ≈kUN-invariance similarly. Then
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I Theorem 4. UNFO is the ≈UN-invariant fragment of FO, and for all k ≥ 1, UNFOk is
the ≈kUN-invariant fragment of FO (on arbitrary structures)

The result above applies to sentences. A similar characterization can be obtained for
formulas with free variables, using UN-homomorphisms instead of UN-bisimulations.

I Theorem 5. UNFO formulas (with free variables) form the fragment of FO that is preserved
under UN-homomorphisms.

Craig interpolation and Beth definability We conclude the list of nice model-theoretic
properties of UNFO by showing that it has Craig Interpolation Theorem and the Projective
Beth Property. In fact, we can show strong versions of these results, which take into account
also the width of formulas. This is remarkable, given that both Craig Interpolation and the
Beth Property fail for the k-variable fragment of first-order logic, for all k > 1. Moreover, the
results presented in this section hold both on arbitrary structures and on finite structures.

For all UNFO-formulas φ(x), ψ(x), we write φ |= ψ to express that the first-order formula
∀x(φ→ ψ) (which is not necessarily a UNFO-formula) is valid.
I Remark. For all UNFO-formulas φ(x), ψ(x), φ |= ψ holds (on finite structures) if and only
if the formula

∃x(φ ∧
∧
i

Pi(xi)) ∧ ¬∃x(ψ ∧
∧
i

Pi(xi))

is not satisfiable (on finite structures). Hence, all results we prove for sentences (e.g., the
complexity of satisfiability, the finite model property, etc.) all apply to entailment as well.

Below, we state and prove our results for arbitrary structures, but the analogous results
for finite structures follow by Theorem 2 and Remark 3.

I Theorem 6. UNFOk has Craig interpolation: for all k ≥ 1 and for every pair of UNFOk-
formulas φ(x), ψ(x) in the same free variables such that φ |= ψ, there is a UNFOk-formula
χ(x) over the common vocabulary of φ and ψ such that φ |= χ and χ |= ψ.

As usual, this Craig interpolation theorem implies a Beth definability theorem. Let Σ be
a UNFO-theory in a signature σ and let R ∈ σ and τ ⊆ σ. We say that Σ implicitly defines
R in terms of τ if for all τ -structures M and for all σ-expansions M1,M2 of M satisfying Σ,
we have that RM1 = RM2 . We say that a formula φ(x) in signature τ is an explicit definition
of R relative to Σ if Σ |= ∀x (Rx↔ φ(x)). Note that the formula ∀x (Rx↔ φ(x)) is itself
not necessarily a UNFO-formula, but this is irrelevant.

I Theorem 7. UNFO has the Projective Beth property: whenever a UNFO-theory Σ in a
signature σ implicitly defines a k-relation R in terms of a signature τ ⊆ σ, then there is a
UNFO-formula in signature τ that is an explicit definition of R relative to Σ. Moreover, if Σ
belongs to UNFOk (k ≥ 1), then the explicit definition can be found in UNFOk as well.

4 Satisfiability

In this section, we show that the satisfiability problem for UNFP and for UNFO is 2ExpTime-
complete, both on arbitrary structures and on finite structures. The lower-bound holds already
for UNFO3 over finite trees. Note that this is in contrast with GFO whose complexity drops
from 2ExpTime-complete to ExpTime-complete when the arity of relations is bounded [15].
The upper-bound is obtained by a reduction to the two-way modal µ-calculus, whose
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satisfiability and finite satisfiability problems are known to be ExpTime-complete [8]. Given
a formula ϕ of UNFP we construct in exponential time a formula ϕ∗ in the µ-calculus such
that ϕ has a (finite) model iff ϕ∗ has a (finite) model. The construction of a finite model
of ϕ from a finite model of ϕ∗ uses a result from [21], which implies that we can restrict
attention to locally acyclic structures (i.e., structures that do not contain short cycles). The
same reduction to the two-way modal µ-calculus allows us to prove the finite model property
of UNFO and the tree-like model property of UNFP.

We describe the reduction from ϕ to ϕ∗ in two parts. In the first one we consider only a
special case of UNFP formulas that we call simple where, intuitively, each conjunctive query
inside ϕ is a single atomic formula. The construction of ϕ∗ is then polynomial. In a second
part we show how the general case reduces to this one (with an exponential blow-up).

4.1 Simple UNFP formulas
We first consider a fragment of UNFP, which we call simple UNFP (sUNFP). It is a common
fragment of UNFP and GFP, which embeds the two-way µ-calculus. The syntax of sUNFP
is given by the following grammar (recall that we use the notation φ(x) to indicate that a
formula has no first-order free variables besides possibly x, but may contain some monadic
second order free variables):

φ(x) ::= P (x) | X(x) | φ(x) ∧ φ(x) | φ(x) ∨ φ(x) | ¬φ(x) | [LFPX,yφ(y)](x) |

∃y1 . . . yn(R(y1 . . . yn) ∧ yi = x ∧
∧

j∈{1...n}\{i}

φj(yj)) | ∃xφ(x)

Note that all formulas generated by this inductive definition have at most one free variable.
We denote by sUNFO the first-order (fixed point free) fragment of sUNFP.

We need the following notions. The incidence graph inc(M) of a structure M is the
bi-partite graph containing facts of M and elements of M , and with an edge between a fact
and an element if the element occurs in the fact. We say that a structure M is l-acyclic, for
l ≥ 1, if inc(M) has no cycle of length less than 2l, and no element of M occurs twice in the
same fact. We call a structure acyclic, if it is l-acyclic for all l (i.e., the incidence graph is
acyclic and no element occurs in the same fact twice).

A simple formula is essentially a formula of the two-way µ-calculus with navigation
through arbitrary relations instead of just binary relations. Based on a simple coding of
relations of arbitrary arity using binary relations we can transform a simple formula into a
formula of the µ-calculus and obtain:

I Proposition 3.
1. The satisfiability problem for sUNFP is ExpTime-complete, both on arbitrary structures

and on finite structures.
2. If a sUNFP formula has a model, it has an acyclic model
3. If a sUNFP formula has a finite model, then it has a l-acyclic finite model, ∀l ≥ 1.
4. sUNFO has the finite model property.

4.2 Arbitrary UNFP-formulas
A formula of UNFO is said to be in disjunctive UN-normal form if it is a disjunction of
formulas that are in UN-normal form and in which only unary disjunction, of the form
φ(x) ∨ ψ(x), is used. It is immediate to see that every formula of UNFO can be turned into
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an equivalent (but possibly exponentially longer) one in disjunctive UN-normal form. It
turns out that the parameters that will occur in the exponent of the reduction described
below (for instance the width) are not affected when going from an arbitrary formula to
one in disjunctive normal form. Hence we can now fix an arbitrary UNFP-formula φ in
disjunctive UN-normal form without loss of generality.

Step 1: Simplifying assumptions (without loss of generality)

1. φ is a sentence (all free variables can be existentially quantified, cf. also Remark 3).

2. Every subformula of the form ∃zψ(y, z) with z = z1 . . . zn is more precisely of the form

∃z(τ(z) ∧ zi = y ∧
∧

j∈{1...n}\{i}

φj(zj)) or ∃z(τ(z) ∧
∧

j∈{1...n}

φj(zj))

for some i ≤ n, where τ(z) is a conjunction of relational atomic formulas (no equalities,
those can be eliminated by identifying the respective quantified variables).

Step 2: Collecting subformulas and neighborhood types We denote by subfφ the
set of all subformulas ψ(y) of φ that have one free first-order variable. Next, we collect all
conjunctive queries occurring in φ, viewing each as describing a neighborhood type. For any
subformula of φ of the form

∃z(τ(z) ∧ zi = y ∧
∧

j∈{1...n}\{i}

φj(zj)) or ∃z(τ(z) ∧
∧

j∈{1...n}

φj(zj)) ,

we call τ(z) a neighborhood type. We denote the set of neighborhood types in φ by ntypesφ.

Step 3: Stitching neighborhood types together. We now consider structures that are
“stitched together” from copies of the neighborhood types in ntypesφ. To make this precise,
we introduce for each neighborhood type τ(z1, . . . , zn) ∈ ntypesφ an n-ary relation symbol
Rτ . A structure in the signature consisting of these new relations will be called a stitch
diagram. Each stitch diagram M gives rise to a stitching M x, which is the structure (over
the same domain of M) obtained by replacing each Rτ -fact with a copy of the neighborhood
type τ , for all τ ∈ ntypesφ. Notice that, when going from M to M x, the distance between
nodes can only increase (by second simplifying assumption, τ does not contain equalities
hence no nodes are merged during the process).

At this point, our basic strategy for reducing UNFP to sUNFP should be clear: we will
produce an sUNFP-formula to describe stitch diagrams whose stitchings satisfy a certain
desired UNFP formula. In the rest of this section, we work out the details of this strategy.

It is important to realize that, even if a stitch diagram M does not contain an atomic
fact Rτ (a), it may still be the case that M x |= τ(a). In this case we say that the fact Rτ (a)
is implicit in M . For example, this could happen if M |= Rτ ′(a) and τ is homomorphically
contained in τ ′. The following claim gives us a handle on when this phenomenon may occur.
For any τ ∈ ntypesφ, we denote by |τ | the number of atomic formulas in τ . We write
N ⊆M if N is a not-necessarily-induced substructure of M .

I Claim 1. If Rτ (a) is implicit in a stitch diagram M then there is an N ⊆M containing
at most |τ | many facts, such that Rτ (a) is already implicit in N . Moreover N is connected
whenever τ is.

Proof. We need at most one fact of M to account for each atom in τ(a). J
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Let l = maxτ∈ntypesφ |τ |. We will restrict attention to stitch diagramsM that are l-acyclic.
By Item (3) of Proposition 3 this is without loss of generality. This implies that every N ⊆M
containing at most l facts is fully acyclic. The importance of the above claim, then, shows in
two facts: (i) intuitively, there are finitely many reasons why a fact may be implicit in M ,
and (ii) each of these reasons is acyclic, and hence can be described in sUNFP as we will see.

Step 4: The translation from UNFP to sUNFP Let ψ(y) be any subformula of φ
with at most one free variable. By induction on the structure of ψ(y) we construct a sUNFP
formula ψ′(y) such that, assuming X are the free monadic variables of ψ, for all l-acyclic M ,
all a ∈M , and all sets S of elements of M , M,S |= ψ′(a) iff M x, S |= ψ(a).

The inductive definition commutes with all Boolean operator and with the LFP operator.
Fix now any τ(z) ∈ ntypesφ with z = z1, . . . , zn, fix an i ≤ n, and fix a sequence of formulas
ψ1, . . . , ψi−1, ψi+1, . . . , ψn ∈ subfφ and assume φ is of the form:

ψ(y) := ∃z(τ ∧ zi = y ∧
∧

j∈{1...n}\{i}

ψj(zj)) .

(the argument if ψ is of the form ∃z(τ ∧
∧
j∈{i...n ψj(zj)) is similar. Note that these two

cases also account for the base of the induction, if we let |z| = 1).
By induction we already have constructed sUNFP formulas ψ′1, . . . , ψ′i−1, ψ

′
i+1, . . . , ψ

′
n

corresponding to ψ1, . . . , ψi−1, ψi+1, . . . , ψn.
We are interested in detecting in M how a node in M x may come to satisfy ψ. We will

construct a sUNFP formula that lists all the cases in M that make this happen. It clearly
suffices to consider each connected component of τ at a time. Hence by Claim 1 it only
depends on a small neighborhood of x in M . The formula will then be essentially a long
disjunction, where each disjunct corresponds to the description of a small neighborhood of
M in which τ is implicitly satisfied by a tuple of nodes satisfying in addition the formulas
ψj . Note that since we assume M to be l-acyclic, these small substructures are all acyclic,
which will make it possible to describe them by an (existential) formula of sUNFP.

More precisely, consider any connected acyclic stitch diagram N containing at most l
facts, and any homomorphism h : τ → N x. We now construct an sUNFP formula χψ,N,h(y)
that describes N (existentially positively) from the point of view of h(zi), and expressing
also that each h(zj) satisfies ψj . In other words, we view N as a tree rooted in h(zi) and the
formula describes that tree from top to bottom. We construct the desired sUNFP formula
by induction on |N |.

Assume N is a tree whose root element is N0 = Rτ (a1, · · · , an) and with several subtrees
N1, N2 · · · (the base case where N is a single node is treated similarly). Notice that by
l-acyclicity it follows that for all m > 0, N0 and Nm share at most one element, say aβm .
For m ≥ 0, let hm be the restriction of h to Nm. Finally assume that h0 maps zi to aαi .
The desired formula χφ,N,h(y) is then:

∃z1 · · · zαi−1zαi+1 · · · zn
(
Rτ (z1 · · · zαi−1yzαi+1 · · · zn) ∧

∧
j 6=i,h0(zj)=aαj

ψ′j(zαj ) ∧
∧
m

χψ,Nm,hm(zβm)
)

Finally ψ′(y) is the disjunction, for each N and h as above, of the formulas χψ,N,h(y).
It follows from the construction that, for all l-acyclic stitch diagrams M , M |= ψ′ if

and only if M x |= ψ. This shows that, if ψ′ is satisfiable, then so is ψ. Conversely, it is
easy to construct, from a model M of ψ, a model M ′ of ψ′ (indeed, it suffices to take the
domain M and to populate the relations Rτ with all tuples satisfying τ in M . Therefore, ψ
is satisfiability (on finite structures) if and only if ψ′ is.

A careful analysis of the complexity of the above translation yields:
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I Theorem 8. The satisfiability problem for UNFP is in 2ExpTime, both on arbitrary
structures and on finite structures.

Notice now that when starting with a formula of UNFO we obtain a formula of sUNFO.
In view of Item (4) of Proposition 3, this immediately implies the finite model property
of UNFO and proves Theorem 2. Similarly, it follows from Item (2) of Proposition 3 that
UNFP has the tree-like model property. Indeed if a stitch diagram M is acyclic, then M x

has tree-width at most k − 1, where k is the width of the formula. This proves Theorem 3.
The complexity result of Theorem 8 is tight:

I Proposition 4. There is a fixed finite signature such that the satisfiability problem for
UNFO is 2ExpTime-hard, both on arbitrary structures and on finite structures.

The lower bound can be shown on arbitrary structures, on finite trees, and on any class
in-between. The proof uses formulas that have width 3 and negation depth 2. For width 2 we
can actually show that satisfiability of UNFO2 is NExpTime-complete. For negation depth 1
it turns out to be NPNP-complete.

5 Model Checking

In this section we study the model checking complexity of UNFO and UNFP. We are
concerned here with the combined complexity of the model checking problem, where the input
consists of a formula and a structure. It was already observed in [10] that the model checking
problem for UNFO is in PNP. Here, we show that the problem is in fact PNP[O(log2 n)]-
complete, and that the model checking problem for UNFP is in NPNP ∩ coNPNP. The
complexity class PNP consists of all problems that are computable by a Turing machine
running in time polynomial in the size of its input, where the Turing machine, at any point
during its computation, can ask yes/no queries to an NP oracle, and take the answers of the
oracle into account in subsequent steps of the computation (including subsequent queries to
the NP oracle). Analogously we can define the complexity classes NPNP and coNPNP. The
complexity class PNP[O(log2 n)] is defined in the same way as PNP, except that the number of
yes/no queries that can be asked to the NP oracle is bounded by O(log2(n)), where n is the
size of the input. Similarly PNP[O(logn)] restricts the number of yes/no queries to O(log(n)).
We refer to [9, 14, 23, 25] for the precise definitions and proprieties of these oracle complexity
classes.

I Theorem 9. The model checking problem for UNFO is PNP[O(log2 n)]-complete.

The lower bound follows from the fact that UNFO embeds CTL∗(X), since the model
checking problem for CTL∗(X) is already known to be PNP[O(log2 n)]-complete [23]. The upper-
bound argument is more involved. It uses 1 ×M TB-trees [23], a model for PNP[O(log2 n)]

computations based on tree-shaped circuits containing SAT tests. The argument relies on the
fact that UNFO formulas can be viewed as such tree-shaped circuits, and it breaks down if
subformula sharing is allowed. Indeed for a simple extension of UNFO with a let construct of
the form let b = φ in ψ the model checking problem can be shown to be complete for PNP.2

Recall that the negation depth of a UNFO formula is the maximal nesting depth of
negations in its syntactic tree. We can show the following result:

2 Here, b is a Boolean variable and φ a sentence; let b = φ in ψ can be viewed as a succinct notation for
the formula obtained by replacing all free occurrences of b in ψ by φ.
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I Theorem 10. For any l > 0, the complexity of the model checking problem for UNFO
formula of negation depth ≤ l is PNP[O(logn)]-complete. The lower bound holds even when
the structure is fixed.

The upper bound is obtained by induction on l using a naive bottom-up evaluation
algorithm. Each level requires one series of parallel calls to the NP-oracle, hence the result
when l is a constant. The lower-bound proof uses the fact that every problem in PNP[O(logn)]

admits a PTime truth-table reduction to a problem in NP [9]. The proof will be detailed in
the journal version of this paper.

Finally, we turn to the complexity of the model checking of UNFP.

I Theorem 11. The UNFP model checking problem is in NPNP ∩ coNPNP and PNP-hard.

The upper bound is proved using the obvious extension of the known NP∩coNP algorithm
for the model checking of the µ-calculus, using the NP-oracle for solving the unary conjunctive
queries. The lower bound will be detailed in the journal version of this paper.

6 Discussion

Trees Over trees, UNFO and UNFP correspond to well known formalisms. We have
already mentioned that on XML trees UNFO captures Core XPath and it is not hard to
see that UNFP captures the regular languages. When only the child relation of the tree is
present, definability in UNFO correspond to “Locally Testability” while UNFP defines the
bisimulation invariant regular languages.

Undecidable extensions Our results show that UNFO and UNFP are well behaved
logics. One may ask if there are extensions that are still well behaved. Inequalities are a
minimal form of negation not supported by UNFO. Unfortunately, extending UNFO with
inequalities leads to undecidability. Let us denote by UNFO 6= the extension of UNFO
with inequalities, and with UNFO¬ the extension of UNFO with negative relational atomic
formulas. Recall that a fragment of first-order logic is called a conservative reduction class
if there a computable map from arbitrary first-order formulas to formulas in the fragment,
which preserves (un)satisfiability as well as finite (un)satisfiability.

I Theorem 12. UNFO 6= and UNFO¬ are conservative reduction classes, and hence unde-
cidable for satisfiability on arbitrary structures and on finite structures.

Also, in the fixed point case, one can wonder whether the restriction to monadic least
fixed-points was necessary. Indeed, this question naturally arises since it is known that
the guarded fragment of first-order logic is decidable even when extended with (guarded)
fixed point operators of arbitrary arity. However, it turns out that in our setting allowing
non-monadic fixed points operators makes the logic undecidable.

I Theorem 13. The extension of UNFP with non-monadic fixed point operators is undecid-
able for satisfiability on arbitrary structures and on finite structures.

Further work We have already mentioned that UNFO and GFO are incomparable. It
would be nice to come up with a logic that generalizes both UNFO and GFO. A step in this
direction is the recent work of [5] showing that (finite) satisfiability of a Boolean combination
of guarded and CQ formulas is decidable. With Vince Bárány we are currently investigating
the guarded negation fragment of FO which allows negations of the form R(x) ∧ ¬φ(x). This
fragment, and its fixed point extension, generalize both UNFO and GFO, while apparently
retaining their good properties, including robust decidability.
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Abstract
We consider fragments of first-order logic and as models we allow finite and infinite words simulta-
neously. The only binary relations apart from equality are order comparison < and the successor
predicate +1. We give characterizations of the fragments Σ2 = Σ2[<,+1] and FO2 = FO2[<,+1]
in terms of algebraic and topological properties. To this end we introduce the factor topology
over infinite words. It turns out that a language L is in FO2 ∩Σ2 if and only if L is the interior
of an FO2 language. Symmetrically, a language is in FO2 ∩Π2 if and only if it is the topological
closure of an FO2 language. The fragment ∆2 = Σ2∩Π2 contains exactly the clopen languages in
FO2. In particular, over infinite words ∆2 is a strict subclass of FO2. Our characterizations yield
decidability of the membership problem for all these fragments over finite and infinite words; and
as a corollary we also obtain decidability for infinite words. Moreover, we give a new decidable
algebraic characterization of dot-depth 3/2 over finite words.

Decidability of dot-depth 3/2 over finite words was first shown by Glaßer and Schmitz in
STACS 2000, and decidability of the membership problem for FO2 over infinite words was shown
1998 by Wilke in his habilitation thesis whereas decidability of Σ2 over infinite words is new.
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Keywords and phrases infinite words, regular languages, first-order logic, automata theory, semi-
groups, topology

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.356

1 Introduction

The dot-depth hierarchy of star-free languages Bn for n ∈ N+{1/2, 1} over finite words has
been introduced by Brzozowski and Cohen [5]. Later, the Straubing-Thérien Ln hierarchy
has been considered [20, 23] and a tight connection in terms of so-called wreath products
was discovered [19, 21]. It is known that both hierarchies are strict [4] and that they have
very natural closure properties [5, 18]. Effectively determining the level n of a language in
the dot-depth hierarchy or the Straubing-Thérien hierarchy is one of the most challenging
open problems in automata theory. So far, the only decidable classes are Bn and Ln for
n ∈ {1/2, 1, 3/2}, see e.g. [17] for an overview and [10] for level B3/2.

Thomas showed that there is a one-to-one correspondence between the quantifier alter-
nation hierarchy of first-order logic and the dot-depth hierarchy [25]. This correspondence
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holds if one allows [<,+1,min,max] as a signature (we always assume that we have equality
and predicates for labels of positions; in order to simplify notation, these symbols are omitted
here). The same correspondence between the Straubing-Thérien hierarchy and the quanti-
fier alternation hierarchy holds, if we restrict the signature to [<], cf. [18]. In particular, all
decidability results for the dot-depth hierarchy and the Straubing-Thérien hierarchy yield
decidability of the membership problem for the respective levels of the quantifier alternation
hierarchy.

The intersection ∆2[<] = Σ2[<] ∩ Π2[<] of the language classes Σ2[<] and Π2[<] of the
quantifier alternation hierarchy over finite words has a huge number of different characteriza-
tions, see [22] for an overview. One of them turns out to be the first-order fragment FO2[<]
where one can use (and reuse) only two variables [24]. The fragment FO2[<] is a natural
restriction since three variables are already sufficient to express any first-order language
over finite and infinite words [12]. Using the wreath product principle [21], one can extend
∆2[<] = FO2[<] to ∆2[<,+1] = FO2[<,+1], see e.g. [14]. Decidability of FO2[<] follows
from the decidability of Σ2[<], but there is also a more direct effective characterization: A
language over finite words is definable in FO2[<] if and only if its syntactic monoid is in
the variety DA, and the latter property is decidable. The wreath product principle yields
DA ∗D as an algebraic characterization of FO2[<,+1], but this does not immediately help
with decidability. Almeida [1] has shown that DA ∗D = LDA. Now, since LDA is decid-
able, membership in FO2[<,+1] is decidable. Note that min and max do not yield additional
expressive power for ∆2[<] and FO2[<].

Some of the characterizations and decidability results for the quantifier alternation hi-
erarchy and for FO2[<] have been extended to infinite words. Decidability of Σ1[<] and
its Boolean closure BΣ1[<] over infinite words is due to Perrin and Pin [15]; decidability
of Σ2[<] over infinite words was shown by Bojańczyk [3]. The fragments ∆2[<] and FO2[<]
do not coincide for infinite words. In particular, decidability of FO2[<] does not follow from
the respective result for ∆2[<]. Decidability of FO2[<] over infinite words was first shown
by Wilke [27].

Over infinite words, using a conjunction of algebraic and topological properties yields
further effective characterizations of the fragments Σ2[<] and FO2[<], cf. [7]. The key
ingredient is the alphabetic topology which is a refinement of the usual Cantor topology.
In addition, languages in FO2[<] ∩ Σ2[<] can be characterized using topological notions;
namely, a language L over infinite words is in FO2[<]∩Σ2[<] if and only if L is the interior
of a language in FO2[<] with respect to the alphabetic topology. By complementation,
a language is in FO2[<] ∩ Π2[<] if and only if it is the topological closure of a language
in FO2[<]. This shows that topology reveals natural properties of first-order fragments over
infinite words. In this paper, we continue this line of work.

Outline We combine algebraic and topological properties in order to give effective charac-
terizations of Σ2[<,+1] (Theorem 3.1) and FO2[<,+1] (Theorem 4.1) over finite and infinite
words. The key ingredient is a generalization of the alphabetic topology which we call the
factor topology. As a byproduct, we give a new effective characterization of Σ2[<,+1] over
finite words (Theorem 3.2), i.e., of the level 3/2 of the dot-depth hierarchy. Dually, we get
a characterization of Π2[<,+1] over infinite words (Theorem 3.4). Moreover, we also obtain
decidability results for the respective fragments over infinite words (in contrast to finite and
infinite words simultaneously; Corollary 3.3 and Corollary 4.2). Concerning the intersection
of fragments, we show that L is in FO2[<,+1]∩Σ2[<,+1] if and only if L is the interior of a
language in FO2[<,+1] with respect to the factor topology (Theorem 6.1) and dually, L is
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definable in FO2[<,+1] ∩Π2[<,+1] if and only if L is the topological closure of a language
in FO2[<,+1] with respect to the factor topology (Theorem 6.2). Finally, we show that
∆2[<,+1] is a strict subclass of FO2[<,+1] and that a language L is in ∆2[<,+1] if and
only if L is in FO2[<,+1] and clopen in the factor topology (Theorem 5.1).

Due to lack of space, some proofs are omitted. For complete proofs, we refer to the full
version of this paper [11].

2 Preliminaries

Words Throughout, Γ is a finite alphabet and unless stated otherwise u, v, w are finite
words, and α, β, γ are finite or infinite words over the alphabet Γ. The set of all finite words
is Γ∗ and the set of all infinite words is Γω. The empty word is denoted by 1. We write Γ∞
for the set of all finite and infinite words Γ∗ ∪ Γω. As usual, Γ+ is the set of all non-empty
finite words Γ∗ \{1}. If L is a subset of a monoid, then L∗ is the submonoid generated by L.
For L ⊆ Γ∗ we let Lω = {u1u2 · · · | ui ∈ L for all i ≥ 1} be the set of infinite products. We
also let L∞ = L∗∪Lω. The infinite product of the empty word is empty, i.e., we have 1ω = 1.
Thus, L∞ = Lω if and only if 1 ∈ L. The length of a word w ∈ Γ∗ is denoted by |w|. We
write Γk for all words of length k and Γ≥k is the set of finite words of length at least k;
similarly, Γ<k consist of all words of length less than k. By alphk(α) we denote the factors
of length k of α, i.e.,

alphk(α) =
{
w ∈ Γk

∣∣ α = vwβ for some v ∈ Γ∗, β ∈ Γ∞
}
.

As a special case, we have that alph1(α) = alph(α) is the alphabet (also called content) of α.
We write imk(α) for those factors in alphk(α) which have infinitely many occurrences in α.
The notation imk(α) comes from “imaginary”.

Languages We introduce a non-standard composition ◦ for sufficiently long words. Let
k ≥ 1. For u ∈ Γ∗ and α ∈ Γ∞ define w ◦k α by

w ◦k α = vxβ if there exists x ∈ Γk−1 such that w = vx and α = xβ.

Furthermore w ◦k 1 = w and 1 ◦k α = α. In all other cases w ◦k α is undefined. Note that
alphk(u◦k α) = alphk(u)∪alphk(α), if u◦k α is defined. In particular, the operation ◦k does
not introduce new factors of length k. For A ⊆ Γk we define

A∗k = {w1 ◦k · · · ◦k wn | n ≥ 0, wi ∈ A} ,
Aωk = {w1 ◦k w2 ◦k · · · | wi ∈ A} ,
A∞k = A∗k ∪Aωk ,

Aimk = {α ∈ Γ∞ | imk(α) = A} .

If k is clear from the context, then we write w ◦ α instead of w ◦k α, we write A∗ instead
of A∗k , we write A∞ instead of A∞k , and we write A im instead of Aimk . Note that Γ∗ = ∅ im .

A k-factor monomial is a language of the form

P = A∗1 ◦ u1 ◦ · · · ◦A∗s ◦ us ◦A∞
s+1

for ui ∈ Γ≥k and Ai ⊆ Γk. The degree of P is the length of the word u1 · · ·us. A k-factor
polynomial is a finite union of k-factor monomials and of words of length less than k. A
language L is a factor polynomial (resp. monomial) if there is a number k such that L is
a k-factor polynomial (resp. monomial).
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Fragments of First-order Logic We think of words as labeled linear orders, and we write
x < y, if position x comes before position y. Similarly, x = y + 1 means that x is the
successor of y. A position x of a word α is an a-position, if the label of x in α is the letter a.

We denote by FO the first-order logic over words. Atomic formulas in FO are > (for true),
unary predicates λ(x) = a for a ∈ Γ, and binary predicates x < y and x = y+1 for variables x
and y. Variables range over positions in N and λ(x) = a means that x is an a-position.
Formulas may be composed using Boolean connectives as well as existential quantification
∃x : ϕ and universal quantification ∀x : ϕ for ϕ ∈ FO. The semantics is as usual. A sentence
in FO is a formula without free variables. Let ϕ ∈ FO be a sentence. We write α |= ϕ if α
models ϕ. The language defined by ϕ is L(ϕ) = {α ∈ Γ∞ | α |= ϕ}.

The fragment Σn[C] of FO for C ⊆ {<,+1} consists of all sentences in prenex normal form
with n blocks of quantifiers starting with a block of existential quantifiers. In addition, only
binary predicates in C are allowed. The fragment Πn[C] consists of negations of formulas
in Σn[C]. We frequently identify first-order fragments with the classes of languages they
define. For example, ∆n[C] = Σn[C] ∩Πn[C] is the class of all languages which are definable
in both Σn[C] and Πn[C]. Another important fragment is FO2[C]. It consists of all sentences
using (and reusing) only two different names for the variables, say x and y, and where
only binary predicates from C are allowed. Let F be a fragment of first-order logic. We
say that L is F-definable over some subset K ⊆ Γ∞, if there exists some formula ϕ ∈ F
with L = {α ∈ K | α |= ϕ}. We frequently use this notion for either K = Γ∗ or K = Γω.

Finite Monoids We repeat some basic notions and properties concerning finite monoids.
For further details we refer to standard textbooks such as [16]. Let M be a finite monoid.
For every such monoid there exists a number n ≥ 1 such that an = a2n for all a ∈M , i.e., an

is the unique idempotent power of a. The set of all idempotents of M is denoted by E(M).
An important tool in the study of finite monoids are Green’s relations. At this point, we
only introduce their ordered versions. We have a ≤R b if and only if aM ⊆ bM , we have
a ≤L b if and only if Ma ⊆Mb, and we have a ≤J b if and only if MaM ⊆MbM .

An ordered monoid M is equipped with a partial order ≤ which is compatible with
multiplication, i.e., a ≤ b and c ≤ d implies ac ≤ bd. We can always assume that M is
ordered, since equality is a compatible partial order.

The theory of first-order fragments over finite non-empty words is presented more con-
cisely in the context of semigroups instead of monoids. In this paper however, we want to
incorporate finite and infinite words in a uniform model, and our approach is heavily based
on allowing words to be empty. In order to state “semigroup conditions” for monoids, we
have to use surjective homomorphisms h : Γ∗ →M instead of monoids M only.

Let h : Γ∗ → M be a surjective homomorphism and let e ∈ M be an idempotent. The
set Pe consists of all products of the form x0f1 · · ·xm−1fmxm with elements x0, . . . , xm ∈M
and idempotents f1, . . . , fm ∈ h(Γ+) ⊆M satisfying the following three conditions

e ≤R x0f1,

e ≤J fixifi+1 for all 1 ≤ i ≤ m− 1,
e ≤L fmxm.

If e 6∈ h(Γ+), then we set Pe = {1}. Note that in this case we necessarily have e = 1 in M .
The notation Pe is for paths in e. An idempotent e is said to be locally path-top with respect
to h if ePee ≤ e. Symmetrically, it is locally path-bottom with respect to h if ePee ≥ e. If
the underlying homomorphism is clear from the context, we omit the reference to it. The
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homomorphism h is locally path-top (resp. locally path-bottom) if all idempotents in M are
locally path-top (resp. locally path-bottom).

I Lemma 2.1. Let h : Γ∗ →M be a surjective homomorphism onto a finite monoid M . It
is decidable whether M is locally path-top.

Proof. We give an algorithm computing Pe for a given idempotent e. We define a com-
position on triples T = E(M) ×M × E(M) by (f1, x1, f2)(f3, x2, f4) = (f1, x1f2x2, f4) if
f2 = f3; otherwise the composition is undefined. Compute the fixed point P of the equa-
tion P = P ∪ P Te with Te = {(f1, x1, f2) ∈ T | f1, f2 ∈ h(Γ+), e ≤J f1x1f2} and initial
value P = Te. This requires at most |M |3 iterations. Then Pe is the set of all x0f1xf2x2
where (f1, x, f2) ∈ P , e ≤R x0f1 and e ≤L f2x2. J

Let h : Γ∗ →M be a surjective homomorphism and let n ∈ N such that an is idempotent
for all a ∈M . The homomorphism h : Γ∗ →M is in LDA if

(eaebe)n eae (eaebe)n = (eaebe)n

for all idempotents e ∈ h(Γ+) and for all a, b ∈M . If the reference to the homomorphism is
clear from the context, then we say “M ∈ P” for some property P meaning that “h ∈ P”.

Recognizability A language L ⊆ Γ∞ is regular if it is recognized be some extended Büchi
automaton, see e.g. [6], or equivalently, if it is definable in monadic second order logic [26].
Below, we present a more algebraic framework for recognition of L ⊆ Γ∞. The syntactic
preorder ≤L over Γ∗ is defined as follows. We let s ≤L t if for all u, v, w ∈ Γ∗ we have the
following two implications:

utvwω ∈ L ⇒ usvwω ∈ L and u(tv)ω ∈ L ⇒ u(sv)ω ∈ L.

Remember that 1ω = 1. Two words s, t ∈ Γ∗ are syntactically equivalent, written as
s ≡L t, if both s ≤L t and t ≤L s. This is a congruence and the congruence classes
[s]L = {t ∈ Γ∗ | s ≡L t} form the syntactic monoid Synt(L) of L. The preorder ≤L on
words induces a partial order ≤L on congruence classes, and (Synt(L),≤L) becomes an
ordered monoid. It is a well-known classical result that the syntactic monoid of a regular
language L ⊆ Γ∞ is finite, see e.g. [15, 26]. Moreover, in this case L can be written as a
finite union of languages of the form [s]L [t]ωL with s, t ∈ Γ∗ and st ≡L s and t2 ≡L t.

Now, let h : Γ∗ → M be any surjective homomorphism onto a finite ordered monoid M
and let L ⊆ Γ∞. If the reference to h is clear from the context, then we denote by [s] the
set of finite words h−1(s) for s ∈M . The following notations are used:

(s, e) ∈M ×M is a linked pair, if se = s and e2 = e.
h weakly recognizes L, if

L =
⋃
{[s][e]ω | (s, e) is a linked pair and [s][e]ω ⊆ L} .

h strongly recognizes L (or simply recognizes L), if

L =
⋃
{[s][e]ω | (s, e) is a linked pair and [s][e]ω ∩ L 6= ∅} .

L is downward closed (on finite prefixes) for h, if [s][e]ω ⊆ L implies [t][e]ω ⊆ L for all
s, t, e ∈M where t ≤ s.
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Using Ramsey’s Theorem, one can show that for every word α ∈ Γ∞ there exists a linked
pair (s, e) such that α ∈ [s][e]ω. On the other hand, two different languages of the form
[s][e]ω are not necessarily disjoint. Therefore, if L is weakly recognized by h, then there
could exist some linked pair (s, e) such that [s][e]ω and L are incomparable. If L is strongly
recognized by h, then for every linked pair we have either [s][e]ω ⊆ L or [s][e]ω ∩ L = ∅. In
particular, whenever L is strongly recognized by h, then Γ∞ \ L is also strongly recognized
by h. Every regular language L is strongly recognized by its syntactic homomorphism
hL : Γ∗ → Synt(L); s 7→ [s]L. Moreover, L is downward closed for hL.

2.1 The factor topology
Topological properties play a crucial role in this paper. Very often a combination of algebraic
and topological properties yields a decidable characterization of the fragments. Moreover,
topology can be used to describe the relation between the fragments. This section introduces
the topology matching the fragments Σ2[<,+1] and Π2[<,+1].

We define the k-factor topology by its basis. All sets of the form u ◦ A∞ for u ∈ Γ∗
and A ⊆ Γk are open. Therefore, singleton sets {u} for u ∈ Γ∗ are open in the k-factor
topology since {u} = u ◦ ∅∞ . A language is said to be factor open (resp. factor closed) if
there is a natural number k such that L is open (resp. closed) in the k-factor topology.

I Proposition 2.2. Let L ⊆ Γ∞ be a regular language. Then L is factor open if and only
if L is open in the (2 |Synt(L)|)-factor topology.

I Proposition 2.3. It is decidable whether a regular language L ⊆ Γ∞ is factor open.

3 The first-order fragment Σ2

One of our main results is a decidable characterization of the fragment Σ2[<,+1] over finite
and infinite words. It is a combination of a decidable algebraic and a decidable topological
property. For finite words only, this yields a new decidable algebraic characterization for
dot-depth 3/2, which in turn coincides with Σ2[<,+1] over finite words [25].

I Theorem 3.1. Let L ⊆ Γ∞ be a regular language. The following are equivalent:
1. L is Σ2[<,+1]-definable.
2. L is a factor polynomial.
3. L is factor open and there exists a surjective locally path-top homomorphism h : Γ∗ →M

which weakly recognizes L such that L is downward closed for h.
4. L is factor open and Synt(L) is locally path-top.

Next, we give a counterpart of the preceding theorem for finite words, which in turn yields
a new decidable characterization of dot-depth 3/2. The first decidable characterization was
discovered by Glaßer and Schmitz [9, 10]. It is based on so-called forbidden patterns. Later,
a decidable algebraic characterization was given by Pin and Weil [19].

I Theorem 3.2. Let L ⊆ Γ∗ be a language. The following are equivalent over finite words:
1. L is Σ2[<,+1]-definable over finite words.
2. L is a factor polynomial.
3. Synt(L) is finite and locally path-top.

Proof. The language Γ∗ of finite words is definable in Σ2[<] by stating that there is a
position such that all other positions are smaller. Hence, if L = {w ∈ Γ∗ | w |= ϕ} for some
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ϕ ∈ Σ2[<,+1], then there also exists some ϕ′ ∈ Σ2[<,+1] such that L = {α ∈ Γ∞ | α |= ϕ′}.
Using Theorem 3.1, this shows “1⇒ 2”. Trivially, “2⇒ 3” follows from the same theorem.
Finally, “3⇒ 1” uses the fact that every language over finite words is factor open. J

The equivalence of (1) and (2) in Theorem 3.2 was also shown by Glaßer and Schmitz
using different techniques and with another formalism for defining factor polynomials [10].
As a corollary of Theorem 3.1 and Theorem 3.2 we obtain the following decidability results.

I Corollary 3.3. Let L be a regular language.
1. For L ⊆ Γ∞ it is decidable, whether L is Σ2[<,+1]-definable.
2. For L ⊆ Γ∗ it is decidable, whether L is Σ2[<,+1]-definable over finite words.
3. For L ⊆ Γω it is decidable, whether L is Σ2[<,+1]-definable over infinite words.

Proof. For “1” we note that the syntactic monoid is effectively computable. Therefore,
Theorem 3.1 (4) can be verified effectively by Lemma 2.1 and Proposition 2.3. Similarly, “2”
follows from the decidability of Theorem 3.2 (3). The set Γ∗ is definable in Σ2[<,+1] over
Γ∞. Hence, L ⊆ Γω is Σ2[<,+1]-definable over Γω if and only if L∪Γ∗ is Σ2[<,+1]-definable
over Γ∞, and the latter condition is decidable by “1”. Therefore, assertion “3” holds. J

By duality, the properties of Σ2[<,+1] in Theorem 3.1 yield a decidable characterization
of Π2[<,+1], which we state here for completeness.

I Theorem 3.4. Let L ⊆ Γ∞ be a regular language. The following are equivalent:
1. L is Π2[<,+1]-definable.
2. L is factor closed and Synt(L) is locally path-bottom.

4 First-order logic with two variables

In this section, we consider two-variable first-order logic with order < and successor +1 over
finite and infinite words. The fragment FO2[<,+1] admits a temporal logic counterpart
having the same expressive power [8]. It is based on unary modalities only. Wilke [27] has
shown that membership is decidable for FO2[<,+1]. We complement these results by giving
a simple algebraic characterization of this fragment. An important concept in our proof is a
refinement of the factor topology. A set of the form A im is definable in FO2[<,+1] but it is
neither open nor closed in the factor topology. This observation leads to the strict k-factor
topology. A basis of this topology is given by all sets of the form u ◦ A∞ ∩ A im for u ∈ Γ∗
and A ⊆ Γk. We do not use this topology outside this section.

I Theorem 4.1. Let L ⊆ Γ∞ be a regular language. The following are equivalent:
1. L is FO2[<,+1]-definable.
2. L is weakly recognized by some homomorphism h : Γ∗ → M ∈ LDA and closed in the

strict (2 |M |)-factor topology.
3. Synt(L) ∈ LDA.

The syntactic monoid of a regular language is effectively computable. Hence, one can
verify whether property (3) in Theorem 4.1 holds. Since both Γ∗ and Γω are FO2[<,+1]-
definable over Γ∞, this gives us the following corollary.

I Corollary 4.2. Let L be a regular language.
1. For L ⊆ Γ∞ it is decidable, whether L is FO2[<,+1]-definable.
2. For L ⊆ Γ∗ it is decidable, whether L is FO2[<,+1]-definable over finite words.
3. For L ⊆ Γω it is decidable, whether L is FO2[<,+1]-definable over infinite words.
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The following proposition relates monoids in LDA with monoids which are simultane-
ously locally path-top and locally path-bottom. It is a useful tool in the proof of Theorem 4.1.
Moreover, it immediately follows that ∆2[<,+1] is a subclass of FO2[<,+1]. We will further
explore the relation between these two fragments in the next section.

I Proposition 4.3. Let M be finite and let h : Γ∗ →M be a surjective homomorphism. The
following are equivalent:
1. h : Γ∗ →M ∈ LDA.
2. ePee = e for all idempotents e of M .

I Example 4.4. Let Γ = {a, b, c}. Consider the language L1 = Γ∗ab∗aΓ∞ consisting
of all words such that there are two a’s that only contain b’s in between. It is easy to
see that L1 is Σ2[<]-definable. Next, we will show that L1 is not FO2[<,+1]-definable.
Choose n ∈ N such that sn is idempotent for every s ∈ Synt(L1). Then (bnabncbn)n 6∈ L1
whereas (bnabncbn)nbnabn(bnabncbn)n ∈ L1. This shows that Synt(L1) is not in LDA. By
Theorem 4.1 we conclude that L1 is not FO2[<,+1]-definable. Similarly, L2 = Γ∞ \ L1 is
definable in Π2[<] but not in FO2[<,+1]. C

5 The first-order fragment ∆2

Over finite words, the first-order fragments FO2[<,+1] and ∆2[<,+1] have the same ex-
pressive power [14, 24]. This is not true for infinite words. Here, it turns out that ∆2[<,+1]
is a strict subclass of FO2[<,+1] and that the ∆2[<,+1]-languages are exactly the clopen
languages in FO2[<,+1].

I Theorem 5.1. Let L ⊆ Γ∞ be a language. The following are equivalent:
1. L is ∆2[<,+1]-definable.
2. L is FO2[<,+1]-definable and clopen in the factor topology.

A consequence of Theorem 5.1 is that ∆2[<,+1] is a strict subclass of FO2[<,+1]. In
fact, it is a strict subclass of the intersection for the fragments FO2[<,+1] and Σ2[<,+1].

I Corollary 5.2. Over Γ∞, the fragment ∆2[<,+1] is a strict subclass of the fragment
FO2[<,+1] ∩ Σ2[<,+1] and also of the fragment FO2[<,+1] ∩Π2[<,+1].

Proof. The set of non-empty finite words Γ+ is defined by the sentence

∃x∀y : y ≤ x

in FO2[<] ∩ Σ2[<]. We have to show that Γ+ is not definable in Π2[<,+1]. By Theo-
rem 3.4 it suffices to show that Γ+ is not factor closed. Let a ∈ Γ, and consider the word
α = aω 6∈ Γ+. Every factor open set containing α also contains some finite word am ∈ Γ+.
Hence, the complement of Γ+ is not factor open, and therefore, Γ+ is not factor closed. By
complementation, we see that Γω is definable in FO2[<] ∩Π2[<] but not in ∆2[<,+1]. J

I Example 5.3. We consider another language which is definable in FO2[<]∩Σ2[<] but not
in ∆2[<,+1]. Let Γ = {a, b} and L3 = Γ∗ab∞. The language L3 is FO2[<]∩Σ2[<]-definable:

∃x∀y : λ(x) = a ∧
(
λ(y) = a ⇒ y ≤ x

)
.

In order to show that L3 is not definable in Π2[<,+1], it suffices to show that L3 is not
factor closed (Theorem 3.4). Let k ∈ N. Every open set containing the word (bka)ω 6∈ L3
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also contains some word (bka)mbω ∈ L3. Hence, the complement of L3 is not k-factor open,
and therefore, there is no k such that L3 is closed in the k-factor topology.

The same reasoning also works over Γω, since the language of all infinite words is definable
in Π2[<,+1]. Hence, L′3 = Γ∗abω is definable in Σ2[<] over infinite words and in FO2[<]
but not in ∆2[<,+1] over infinite words. The language L′3 is the standard example of a
language which cannot be recognized by a deterministic Büchi automaton [26, Example 4.2].
In particular, none of the fragments FO2[<,+1] or Σ2[<,+1] contains only deterministic
languages. C

I Example 5.4. Let Γ = {a, b, c} and consider the language L4 = (Γ2 \ {bb})∗ ◦ aa ◦ (Γ2)∗
consisting of all words such that there is no factor bb before the first factor aa. The language
L4 is defined by the Σ2[<,+1]-sentence

∃x∀y < x : λ(x) = aa ∧ λ(y) 6= bb.

Here, λ(x) = w is a shortcut saying that a factor w starts at position x. A word α is in L4
if and only if aa is a factor of α and for every factor bb there is a factor aa to the left.
These properties are Π2[<,+1]-definable and hence L4 ∈ ∆2[<,+1]. The language L4 is
not definable in any of the fragments FO2[<], Σ2[<], or Π2[<] without successor, since its
syntactic monoid is neither locally top nor locally bottom, cf. [7]. The language L4 ∩Γ∗ has
been used as an example of a language not definable in the Boolean closure of Σ2[<] over
finite words by Almeida and Klíma [2, Proposition 6.1] as well as by Lodaya, Pandya, and
Shah [14, Theorem 4]. The Boolean closure of Σ2[<] over finite words coincides with the
second level of the Straubing-Thérien hierarchy, cf. [18, 25]. C

6 The first-order fragments FO2 ∩Σ2 and FO2 ∩Π2

In this section, we show that topological concepts can not only be used as an ingredient
for characterizing first-order fragments, but also for describing some relations between frag-
ments. More precisely, we relate languages definable in both Σ2[<,+1] and FO2[<,+1]
with the interiors of FO2[<,+1]-languages with respect to the factor topology. Dually,
the languages in the fragment FO2[<,+1] ∩Π2[<,+1] are precisely the topological closures
of FO2[<,+1]-languages. Remember that for a language L, its closure L is the intersection
of all closed sets containing L. It can be “computed” as

L = {α ∈ Γ∞ | ∀U ⊆ Γ∞ open with α ∈ U : U ∩ L 6= ∅} .

The interior of L is the union of all open sets contained in L. The interior of a language is
the complement of the closure of its complement.

I Theorem 6.1. Let L ⊆ Γ∞ be a regular language. The following are equivalent:
1. L ∈ FO2[<,+1] ∩ Σ2[<,+1].
2. L ∈ FO2[<,+1] and L is open in the factor topology.
3. L is the factor interior of some FO2[<,+1]-definable language.

The equivalence of (1) and (2) is an immediate consequence of Theorems 3.1 and 4.1.
The surprising property is (3); for example, it is not obvious that the factor interior of
an FO2[<,+1]-definable language is again in FO2[<,+1]. The following theorem is an
immediate consequence of Theorem 6.1, obtained by complementation. In fact, the actual
proof is slightly easier the other way round—proving Theorem 6.2 and then obtaining
Theorem 6.1 by complementation—since the closure of a language is easier to “compute”.
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I Theorem 6.2. Let L ⊆ Γ∞ be a regular language. The following are equivalent:
1. L ∈ FO2[<,+1] ∩Π2[<,+1].
2. L ∈ FO2[<,+1] and L is closed in the factor topology.
3. L is the factor closure of some FO2[<,+1]-definable language.

The language L3 from Example 5.3 is definable in FO2[<,+1] ∩ Σ2[<,+1]. For any k,
the k-factor closure of L3 is Γ∞. Hence, one could conjecture that the factor closure of
every language in FO2[<,+1] ∩ Σ2[<,+1] is again in FO2[<,+1] ∩ Σ2[<,+1] and therefore
in ∆2[<,+1]. Among other things, the following example shows that this is not the case.

I Example 6.3. Let Γ = {a, b, c}. We consider the factor closure of the language L5 defined
by the FO2[<,+1]-sentence

∃x : λ(x) = aba ∧
(
∃y > x : λ(y) = aba

)
∧
(
¬∃y > x : λ(y) = bab

)
with λ(x) = w being a macro for “an occurrence of the factor w ∈ Γ+ starts at position x”.
The language L5 contains all words of the form u · aba · v · aba · β with u, v ∈ Γ∗, β ∈ Γ∞,
and bab 6∈ alph3(aba · v · aba · β).

The (k+1)-factor closure of a language is always contained in its k-factor closure. For L5,
we show that this inclusion is strict for k ∈ {1, 2}. The word (ab)ω is in the 1-factor closure
of L5, but not in its 2-factor closure. The word (abacbabc)ω is in the 2-factor closure of L5,
but not in its 3-factor closure. The 1-factor closure of L5 is L5 ∪ {α ∈ Γω | a, b ∈ im1(α)}.
The 2-factor closure of L5 consists of L5 and all words α with either {ab, ba, aa} ⊆ im2(α)
or {ab, ba, ac, ca} ⊆ im2(α). The 3-factor closure of L5 is similar, but it requires more case
distinctions.

There is no k such that L5 is k-factor closed. By Theorem 3.4, we see that L5 is
not Π2[<,+1]-definable. On the other hand, Theorem 6.2 says that every k-factor clo-
sure of L5 is Π2[<,+1]-definable. Moreover, almost the same sentence as above yields
Σ2[<,+1]-definability of L5. Since the 1-factor closure of L5 is not factor open, the frag-
ment FO2[<,+1]∩Σ2[<,+1] is not closed under taking factor closures, whereas FO2[<,+1]
has this closure property by Theorem 6.2. C

7 Summary

We considered fragments of first-order logic over finite and infinite words. As binary pred-
icates we allow order comparison x < y and the successor predicate x = y + 1. Figure 1
depicts the relation between the fragments Σ2[<,+1], Π2[<,+1], and FO2[<,+1]. More-
over, the languages L1, L2, L3, L4, and L5 from Examples 4.4, 5.3, 5.4, and 6.3 are included.
For the other languages, we fix Γ = {a, b, c} and ∅ 6= A ( Γ.

Σ2 Π2∆2

FO2

•L1

•Γ
∗
•L3 •

L5

•A
im

•Γ
ω

•L4 •L2

Figure 1 The fragments Σ2[<, +1], Π2[<, +1], and FO2[<, +1] over Γ∞.
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The central notion for presenting our results is a partially defined composition u ◦k v =
u′xv′ where u = u′x, v = xv′, and |x| = k − 1. Using this composition, one can show that
the languages definable in Σ2[<,+1] is exactly the class of factor polynomials. Moreover,
the composition ◦k leads to the k-factor topology, which we use in further characterizations
of the successor fragments. A set is factor open if there exists some number k such that L
is k-factor open. For every regular language L, Proposition 2.2 gives a bound k such that L
is factor open if and only if L is k-factor open. Then, in Proposition 2.3, we essentially
show that for a given number k it is decidable whether a regular language L is k-factor
open. Altogether, in order to check whether L is factor open, we can check whether L
is k-factor open, with k being the bound given by Proposition 2.2. Hence, the topological
properties, which we use in the characterizations of the fragments, are decidable. Together
with the decidable algebraic properties, this gives a decision procedure for deciding whether
a given regular language L ⊆ Γ∞ or L ⊆ Γω is definable in one of the fragments under
consideration. In Table 1 we summarize our main results. All fragments are using binary
predicates [<,+1]. The first decidable characterization of FO2[<,+1] is due to Wilke [27].
Decidability for Σ2[<,+1] over infinite words is new (Corollary 3.3).

Logic Algebra + Topology Languages

Σ2 ePee ≤ e + factor open factor polynomials Thm. 3.1

Π2 ePee ≥ e + factor closed Thm. 3.4

FO2 LDA Thm. 4.1weak LDA + strictly factor closed

∆2 LDA + factor clopen Thm. 5.1

FO2 ∩ Σ2 LDA + factor open factor interior of FO2 Thm. 6.1

FO2 ∩Π2 LDA + factor closed factor closure of FO2 Thm. 6.2

Table 1 Main characterizations of some first-order fragments

Open problems The fragment Σ2[<,+1] has a language description in terms of factor
polynomials. Without the successor predicate similar characterizations in terms of so-called
unambiguous polynomials exist for the fragments FO2[<], for FO2[<]∩Σ2[<], and for ∆2[<],
cf. [7]. It is open whether these fragments admit similar characterizations if we allow the
successor predicate.

Moreover, for the fragment ∆2[<,+1] we only have an implicit decidable characteriza-
tion based on the decidability of Σ2[<,+1] and Π2[<,+1] (or alternatively, based on the
decidability of FO2[<,+1] and being clopen). A more direct characterization of this frag-
ment remains open. For ∆2[<] without successor, such a characterization shows that all
languages in ∆2[<] over infinite words are recognizable by deterministic Büchi automata.

Another important fragment is BΣ1, the Boolean closure of Σ1. A result of Knast [13]
shows that, over finite words, it is decidable whether a regular language is definable in
BΣ1[<,+1,min,max], which over finite words corresponds to the first level of the dot-depth
hierarchy. A similar result over infinite words is still missing.
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The model checking problem for propositional
intuitionistic logic with one variable is
AC1-complete
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Abstract
We investigate the complexity of the model checking problem for propositional intuitionistic logic.
We show that the model checking problem for intuitionistic logic with one variable is complete
for logspace-uniform AC1, and for intuitionistic logic with two variables it is P-complete. For
superintuitionistic logics with one variable, we obtain NC1-completeness for the model checking
problem and for the tautology problem.
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1 Introduction

Intuitionistic logic (see e.g. [8, 20]) is a part of classical logic that can be proven using
constructive proofs–e.g. by proofs that do not use reductio ad absurdum. For example, the
law of the excluded middle a ∨ ¬a and the weak law of the excluded middle ¬a ∨ ¬¬a do
not have a constructive proof and are not valid in intuitionistic logic. Not surprisingly,
constructivism has its costs. Whereas the tautology problem is coNP-complete for classical
propositional logic [5], for intuitionistic propositional logic IPC it is PSPACE-complete [17, 18].
The computational hardness of intuitionistic logic is already reached with the fragment IPC2
of formulas having only two variables: the tautology problem is PSPACE-complete already
for IPC2 [16]. Recall that every fragment of classical propositional logic with a fixed number
of variables has an NC1-complete tautology problem (follows from [2]).

In this paper, we consider the complexity of intuitionistic propositional logic with one
or two variables. The model checking problem—i.e. the problem to determine whether a
given formula is satisfied by a given Kripke model—was recently shown to be P-complete [12]
for IPC. We show, that it remains P-complete for the fragment with two variables IPC2.
More surprisingly, for the fragment with one variable IPC1 we show the model checking
problem to be AC1-complete. A basic ingredient for this result lies in normal forms for
models and formulas as found by Nishimura [14], that we reinvestigate under an algorithmic
and complexity theoretical point of view. To our knowledge, this is the first “natural”
AC1-complete problem, whereas formerly known AC1-complete problems (see e.g. [1]) have
some explicit logarithmic bound in the problem definition. In contrast, the formula value
problem for classical propositional logic is NC1-complete [2], even with one variable (follows
from [2]).
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Classical propositional logic is the extension of IPC with the axiom a∨¬a. Those proper
extensions of intuitionistic logic are called superintuitionistic logics. The superintuitionistic
logic KC (see [7]) results from adding ¬a ∨ ¬¬a to IPC. We show that the model checking
problem for every superintuitionistic logic with one variable is NC1-complete (and easier than
that for IPC1), whereas for the superintuitionistic logic KC with two variables it is already
P-complete (and as hard as for IPC2).

We also consider the tautology problem that is known to be PSPACE-complete for
IPC2 [16]. Svejdar [19] recently showed the upper bound SPACE(logn · log logn) for IPC1.
We show the tautology problem to be in NC1 for any superintuitionistic logic with one
variable. For superintuitionistic logics with more than one variable such a general result for
the tautology problem remains open.

This paper is organized as follows. In Section 2 we introduce the notations we use for
intuitionistic logic and model checking. Section 3 is devoted to introduce the old results by
Nishimura [14] and to upgrade them with a complexity analysis. The following Section 4
presents our lower and upper bound for model checking for IPC1. Section 5 deals with the
complexity of the model checking problem and the tautology problem for superintuitionistic
logics with one variable, and Section 6 considers the case with two variables. The implied
completeness for the model checking for intuitionistic logic and conclusions are drawn in
Section 7. Proofs and technical details can be found in [13].

2 Preliminaries

Complexity (see e. g. [21]). The notion of reducibility we use is the logspace many-one
reducibility ≤log

m , except for NC1 hardness, where we use first-order reducibility. NC1 and AC1

are the classes of sets that are decided by families of logspace-uniform circuits of polynomial
size and logarithmic depth. The circuits consist of and-, or-, and negation-gates. The
negation-gates have fan-in 1. For NC1, the and- and or-gates have fan-in 2 (bounded fan-in),
whereas for AC1 there is no bound on the fan-in of the gates (unbounded fan-in). ALOGTIME
denotes the class of sets decided by alternating Turing machines in logarithmic time, and we
will use that NC1 = ALOGTIME (see [15]). L denotes the class of sets decidable in logarithmic
space. We use ALOGSPACE[f(n)] to denote the class of sets decided by an alternating
log-space Turing machine that makes O(f(n)) alternations, where n is the length of the input.
We will use that AC1 = ALOGSPACE[logn] (see [6]). LOGDCFL is the class of sets that are
≤log

m -reducible to deterministic context-free languages. It is also characterized as the class of
sets decidable by deterministic Turing machines in polynomial-time and logarithmic space
with additional use of a stack. The inclusion structure of the classes we use is as follows.

NC1 ⊆ L ⊆ LOGDCFL ⊆ AC1 ⊆ P ⊆ PSPACE

Intuitionistic Propositional Logic (see e.g.[20]). Let VAR denote a countable set
of variables. The language IPC of intuitionistic propositional logic is the same as that of
propositional logic PC, i.e. it is the set of all formulas of the form

ϕ ::= p | ⊥ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) ,

where p ∈ VAR. The languages IPCi are the subsets/fragments of IPC for which VAR
consists of i variables. We will consider IPC0 (i.e. formulas without variables), IPC1 and
IPC2 (i.e. formulas with one resp. two variables).

As usual, we use the abbreviations ¬ϕ := ϕ→ ⊥ and > := ¬⊥. Because of the semantics
of intuitionistic logic, one cannot express ∧ or ∨ using → and ⊥.
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A Kripke model for intuitionistic logic is a tripleM = (U,R, ξ), where U is a nonempty
and finite set of states, R is a preorder on U (i.e. a reflexive and transitive binary relation),
and ξ : VAR → P(U) is a function—the valuation function. Informally speaking, for any
variable it assigns the set of states in which this variable is satisfied. The valuation function
ξ is monotone in the sense that for every p ∈ VAR, a, b ∈ U : if a ∈ ξ(p) and aRb, then
b ∈ ξ(p). (U,R) can also be seen as a directed graph. We will call such models intuitionistic.

Given an intuitionistic modelM = (U,6, ξ) and a state s ∈ U , the satisfaction relation
for intuitionistic logics |= is defined as follows.

M, s 6|= ⊥
M, s |= p iff s ∈ ξ(p), p ∈ VAR,
M, s |= ϕ ∧ ψ iff M, s |= ϕ andM, s |= ψ,

M, s |= ϕ ∨ ψ iff M, s |= ϕ orM, s |= ψ,

M, s |= ϕ→ ψ iff ∀n > s : ifM, n |= ϕ thenM, n |= ψ

A formula ϕ is satisfied by an intuitionistic modelM in state s iffM, s |= ϕ. A tautology
resp. a valid formula is a formula that is satisfied by every model.

The Model Checking Problem. This paper examines the complexity of model
checking problems for intuitionistic logics.

Problem: model checking problem for IPCi

Input: 〈ϕ,M, s〉, where ϕ is an IPCi formula,M is an intuitionistic Kripke
model, and s is a state ofM

Question: M, s |= ϕ ?

We assume that formulas and Kripke models are encoded in a straightforward way. This
means, a formula is given as a text, and the graph (U,R) of a Kripke model is given by
its adjacency matrix that takes |U |2 bits. Therefore, only finite Kripke models can be
considered.

3 Properties of IPC1 and its complexity

The set IPC1 of formulas with one variable is partitioned into infinitely many equivalence
classes [14]. This was shown using the formulas that are inductively defined as follows (see
e.g.[8]). We use a for the only variable.

ϕ1 = ¬a, ψ1 = a, ϕn+1 = ϕn → ψn, ψn+1 = ϕn ∨ψn

The formulas ⊥,>,ϕ1,ψ1,ϕ2,ψ2, . . . are called Rieger-Nishimura formulas.

I Theorem 1. ([14], cf.[8, Chap.6,Thm.7]) Every formula in IPC1 is equivalent1 to exactly
one of the Rieger-Nishimura formulas.

The function RNindex maps every formula to the index of its equivalent Rieger-Nishimura
formula.

RNindex(α) =


(i, phi), if α ≡ ϕi

(i, psi), if α ≡ ψi

(0,⊥), if α ≡ ⊥
(0,>), if α ≡ >

1 α is equivalent to β if every state in every model satisfies both or none formula.
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We analyze the complexity of this function in Lemma 3. For this, we need a lower bound for
the length of formulas in every equivalence class (see Lemma 2). With other words, this is
an upper bound of the length of the Rieger-Nishimura index of any formula.

Let [ϕ] denote the equivalence class that contains ϕ, for ϕ being an IPC1 formula. The
equivalence classes of the IPC1 formulas form a free Heyting algebra over one generator
(for algebraic details see [10]). This algebra is also called the Rieger-Nishimura lattice (see
Fig. 1). It is shown in [14] that the lattice operations can be calculated using a big case
distinction (see [13, Appendix A]). We use these algebraic properties of IPC1 to give a lower
bound on the length of formulas2 in the equivalence classes of IPC1, and to give an upper
bound on the complexity of the problem to decide the Rieger-Nishimura index of a formula.
Let rank(α) be the first element—the integer—of the RNindex(α) pair.

I Lemma 2. For every IPC1 formula ϕ it holds that rank(ϕ) ≤ c1 · log(|ϕ|), for a constant
c1 independent of ϕ.

In order to analyze the complexity of the Rieger-Nishimura index computation, we define
the following decision problem.

Problem: EqRNformula
Input: 〈α, (i, x)〉, where α is an IPC1 formula and (i, x) is an index
Question: Is (i, x) the Rieger-Nishimura index of α?

I Lemma 3. EqRNformula is in LOGDCFL.

Similar as any formula can be represented by its index, Kripke models can, too. We give
a construction of models—the canonical models—(according to [8, Chap.6, Defi.5]) that are
also used to distinguish the formula equivalence classes (Theorem 4). Our definition is a
little different from that in [8, Chap.6, Defi.5]. We show in Lemma 5 that every model over
one variable is homomorphic to a canonical model, and that this homomorphic Kripke model
can be determined in ALOGSPACE[n]. (For model checking it suffices to determine at most
logn as index. For details see Section 4.4.) For n = 1, 2, . . ., we define the canonical models
Hn = (Wn,E, ξn) as follows (according to [8, Chap.6, Defi.5]).

1. Wn = {1, 2, . . . , n− 2} ∪ {n},
2. a E b iff a = b or a ≥ b+ 2, and

3. ξn(a) =
{
∅, if n = 2
{1}, otherwise.

See Figure 1 for some examples.
The formulas in IPC1 can be distinguished using the canonical models as follows.

I Theorem 4. ([14],cf.[8, Chap.6, Thm.8]) For every n and every k holds:
1. Hn, n |= ψk iff n ≤ k (i.e. k ∈ {n, n+ 1, . . .}), and
2. Hn, n |= ϕk iff n < k or n = k + 1 (i.e. k ∈ {n− 1} ∪ {n+ 1, n+ 2, . . .}).

From [8, Chap.6, Lemma 11] it is known that every intuitionistic Kripke modelM (for
formulas with one variable a) is homomorphic to some Hi. We additionally analyse the
complexity of the decision problem whetherM is homomorphic to Hi (see Lemma 5). For

2 |α| denotes the length of the formula α, and it is the number of appearances of variables, connectives,
and constants in α.
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Figure 1 The Rieger-Nishimura lattice (left), and the canonical models H9 and H10 (reflexive
and transitive edges are not depicted, ξn(a) = {1} is indicated by the double circle for state 1).

this, we define a function h that for given model M and state w has as function value
h(M, w) the index i of the homomorphic model Hi. LetM = (W,6, ζ) be a model and w a
state. Let Ww⇑ = {v ∈W | w 6 v} and Ww↑ = Ww⇑ \ {w}. We define h as follows.

h(M, w) =


1, if w ∈ ζ(a)
2, if w 6∈ ζ(a) and ∀v ∈Ww↑ v 6∈ ζ(a)
3, if w 6∈ ζ(a) and ∀v ∈Ww↑ h(M, v) 6= 2 and ∃u ∈Ww↑ h(M, u) = 1
n+ 2, if ∀v ∈Ww↑ h(M, v) 6= n+ 1 and

∃u1, u2 ∈Ww↑ h(M, u1) = n and h(M, u2) = n− 1

We call h(M, w) the model index of w. The function h is well defined because for every state
w it holds that {h(M, v) | v ∈Ww⇑} = {1, 2, . . . , h(M, w)− 2} ∪ {h(M, w)}.

Let M1 and M2 be models, w1 resp. w2 a state from M1 resp. M2. We say that
(M1, w1) is homomorphic to (M2, w2) if for every α ∈ IPC1 it holds thatM1, w1 |= α iff
M2, w2 |= α.

I Lemma 5. LetM = (W,≤, ζ) be a Kripke model.
1. (M, w) is homomorphic to (Hh(M,w), h(M, w)).
2. For a given modelM, a state w and an integer n, to decide whether h(M, w) = n is in

ALOGSPACE[n].

4 The complexity of model checking for IPC1

We first define an AC1-hard graph problem, that is similar to the alternating graph accessibility
problem, but has some additional simplicity properties. Then we give a construction that
transforms such a graph into an intuitionistic Kripke model. This transformation is the basis
for the reduction from the alternating graph accessibility problem to the model checking
problem for IPC1.
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4.1 Alternating graph problems
The alternating graph accessibility problem is shown to be P-complete in [4]. We use
the following restricted version of this problem that is very similar to Boolean circuits
with and- and or-gates (and input-gates). An alternating slice graph [12] G = (V,E) is a
directed bipartite acyclic graph with a bipartitioning V = V∃ ∪ V∀, and a further partitioning
V = V0 ∪ V1 ∪ V2 ∪ · · · ∪ Vm−1 (m slices, Vi ∩ Vj = ∅ if i 6= j) where V∃ =

⋃
i<m,i odd

Vi and

V∀ =
⋃

i<m,i even
Vi, such that E ⊆

⋃
i=1,2,...,m−1

Vi × Vi−1 — i.e. all edges go from slice Vi

to slice Vi−1 (for i = 1, 2, . . . ,m − 1). All nodes excepted those in the last slice V0 have
a positive outdegree. Nodes in V∃ are called existential nodes, and nodes in V∀ are called
universal nodes. Alternating paths from node x to node y are defined as follows by the
property apathG(x, y).
1) apathG(x, x) holds for all x ∈ V
2a) for x ∈ V∃: apathG(x, y) iff ∃z ∈ V∀ : (x, z) ∈ E and apathG(z, y)
2b) for x ∈ V∀: apathG(x, y) iff ∀z ∈ V∃ : if (x, z) ∈ E then apathG(z, y)
The problem AsAgap is similar to the alternating graph accessibility problem, but for the
restricted class of alternating slice graphs.

Problem: AsAgap
Input: 〈G, s, t〉, where G = (V∃∪V∀, E) is an alternating slice graph with slices

V0, V1, . . . , Vm−1, and s ∈ Vm−1 ∩ V∃, t ∈ V0 ∩ V∀
Question: does apathG(s, t) hold?

Similarly as the alternating graph accessibility problem, AsAgap is P-complete [12,
Lemma 2]. The following technical Lemma is not hard to prove.

I Lemma 6. For every set A in (logspace-uniform) AC1 exists a function f that maps
instances x of A to instances f(x) = 〈Gx, sx, tx〉 of AsAgap and satisfies the following
properties.
1. f is computable in logspace.
2. Gx is an alternating slice graph of logarithmic depth; i.e. if Gx has n nodes, then it has

m ≤ logn slices.
3. For all instances x of A holds: x ∈ A iff f(x) ∈ AsAgap.

Essentially, the function f constructs the AC1 circuit C|x| with input x, and transforms it
to an alternating slice graph Gx. The goal node tx represents exactly the bits of x that are
1. The start node sx corresponds to the output gate of C|x|, and apathGx

(sx, tx) expresses
that C|x| accepts input x.

4.2 Transforming alternating slice graphs to intuitionistic Kripke
models

Our hardness results rely on a transformation of instances 〈G, s, t〉 of AsAgap to Kripke
modelsMG = (U,R, ξ). We describe it informally here. An example can be seen in Figure 2.

Let 〈G, s, t〉 be an instance of AsAgap for the slice graph G = (V∃ ∪ V∀, EG) with the
m slices V∃ = Vm−1 ∪ Vm−3 ∪ · · · ∪ V1 and V∀ = Vm−2 ∪ Vm−4 ∪ · · · ∪ V0. The Kripke model
MG is constructed as follows. The nodes of the Kripke model consist of the nodes of H4m,
and of two copies uin and uout of each node u of G. The slice Wout

i ofMG consists of the
out-copies of nodes in Vi and the nodes 4i+ 1 and 4i+ 2 of H4m, and the slice W in

i ofMG

consists of the in-copies of nodes in Vi and the nodes 4i+ 3 and 4i+ 4 of H4m.
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Figure 2 An alternating slice graph G (left) and the resulting Kripke model MG (right); both
the states in ξ(a) are drawn doubly; pseudotransitive and reflexive edges in MG are not depicted.
The value at state x denotes its model index h(MG, x). For states in H16, their names and their
model indices coincide. States vin and vout for which apathG(v, t) holds in G are colored grey.

All the edges of H4m are kept. The edges (u, v) of G are changed to (uout , vin) inMG,
and for every u of G an edge (uin, uout) is added. We add edges from the copies of the nodes
in G to the nodes from H4m as follows. Every node vout for v ∈ Vi (i > 0) has an edge to
node 4i− 1 from H4m, and every node vin for v ∈ Vi has an edge to node 4i+ 2 from H4m.

An intuitionistic Kripke model must be transitive and reflexive. The part of the model
that comes from H4m is transitive and reflexive, the part of the model that comes from the
alternating slice graph G is not. The transformation of the alternating slice graph to an
intuitionistic Kripke model must be computable in logarithmic space, because it will be used
as part of a logspace reduction function. Within this space bound we cannot compute the
transitive closure of a graph. Therefore, we make the graph transitive with brute force. We
add all edges from nodes vin and vout (v ∈ V ) that jump over at least one slice—we call
these edges pseudotransitive. Finally, we need to add all missing reflexive edges.

The valuation function for our modelMG is ξ(a) = {tout , 1}, where tout is the copy of the
goal node t in Wout

0 , and {1} = ξ4m(a) is the node from H4m. This concludes the informal
description of the Kripke modelMG. An example of an AsAgap instance 〈G, s, t〉 and the
Kripke modelMG constructed from it can be seen in Figure 2.

The canonical model is attached to the slice graph in order to obtain control over the
model indices of the other states (w.r.t. the modelMG). This is described by Propositions 7
and 8.

I Proposition 7. For every i = 0, 1, 2, . . . ,m− 1 and every v ∈ Vi holds

h(MG, v
out) ∈ {4i+ 1, 4i+ 2} and h(MG, v

in) ∈ {4i+ 2, 4i+ 4} .

I Proposition 8. For every i = 0, 1, 2, . . . ,m− 1 and every v ∈ Vi holds:
1. if i is even (∀ slice):

apathG(v, t) iff h(MG, v
out) = 4i+ 1, and apathG(v, t) iff h(MG, v

in) = 4i+ 4,
2. if i is odd (∃ slice):

apathG(v, t) iff h(MG, v
out) = 4i+ 2, and apathG(v, t) iff h(MG, v

in) = 4i+ 2.

Let T denote the function that maps instances x = 〈G, s, t〉 of AsAgap to Kripke models
T (x) =MG as described above. The following properties of T are easy to verify.
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I Lemma 9. 1. T is logspace computable.
2. If x = 〈G, s, t〉 for an alternating slice graph G with n nodes and m < n slices, then T (x)

is a Kripke model with ≤ 4n states and depth 2m.

We will use T as part of the reduction functions for our hardness results.

4.3 Hardness results
Our first result states that the calculation of the model index of an intuitionistic Kripke
model is P-complete. It is already P-complete to decide the last bit of this model index.

I Theorem 10. The following problems are P-complete.
1. Given a Kripke modelM and a state w, decide whether h(M, w) is even.
2. Given a Kripke modelM, a state w, and an integer i, decide whether h(M, w) = i.

Proof. In order to show the P-hardness of the problems, we give a reduction from the P-hard
problem AsAgap [12]. From an instance 〈G, s, t〉 of AsAgap where G is an alternating
slice graph with m slices, constructM = T (〈G, s, t〉). Then h(M, sout) ∈ {4m+ 1, 4m+ 2}
(Proposition 7), and apathG(s, t) iff h(M, sout) = 4m+2 (Proposition 8). Therefore, 〈G, s, t〉 ∈
AsAgap if and only if h(M, sout) is even resp. h(M, sout) = 4m+ 2.

For every modelM = (U,6, ξ) holds h(M, w) ≤ |U |+ 1. From Lemma 5 and using that
P = ALOGSPACE[poly] it then follows that both problems are in P. J

In the construction of the above proof, the decision whether h(M, sout) = 4m + 2 is
the same as to decide whetherM, sout |= ψ4m+2, for the Rieger-Nishimura formula ψ4m+2.
Unfortunately, the length of ψ4m+2 is exponential in m, and therefore the mapping from
〈G, s, t〉 (with m slices) to the model checking instance 〈ψ4m+2, T (〈G, s, t〉), sout〉 cannot
in general be performed in logarithmic space. But if the depth m of the slice graph is
logarithmic, the respective formula ψ4m+2 has polynomial size only. Using Lemma 6, every
AC1 problem is logspace reducible to instances of AsAgap having logarithmically bounded
depth, and by the above mapping these special instances are logspace reducible to model
checking for IPC1.

I Theorem 11. The model checking problem for IPC1 is AC1-hard.

4.4 Model checking for IPC1 is in AC1

Algorithm 1 decides the model checking problem for IPC1. In the following, we estimate its
complexity. The algorithm gets input 〈ϕ,M, s〉 and works in two steps. In the first step we
calculate the Rieger-Nishimura index (r, x) of ϕ. Since the index is very small (Lemma 2)
and using Lemma 3, this can be done in LOGDCFL. In the second step we identify the
homomorphic canonical model for (M, s). In fact it is not always necessary to identify the
homomorphic canonical model exactly. According to Theorem 4, the input can be rejected
if h(M, s) > r + 1, and the latter can be checked by finding some state u > s inM with
h(M, u) > r + 1. This estimation can be done in alternating logarithmic space with r + 1
alternations. If h(M, u) ≤ r + 1, according to Theorem 5 the model index can be computed
exactly in ALOGSPACE[r + 1], and knowing the Rieger-Nishimura index of ϕ and the model
index of (M, s), it can be decided whetherM, s |= ϕ using Theorem 4. Since k is at most
about log |ϕ| (Lemma 2), the computation of the model index can be done in alternating
logspace with log |〈ϕ,M, s〉| alternations (Lemma 5). Since the Rieger-Nishimura index of a
formula can be decided in LOGDCFL, and LOGDCFL ⊆ AC1 = ALOGSPACE[logn], we obtain
the desired upper bound.
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Algorithm 1 model checking algorithm for IPC1

Require: a formula ϕ, a modelM and a state s
1: search for (r, x) with 0 ≤ r ≤ c1 · log(|ϕ|) such that 〈ϕ, (r, x)〉 ∈ EqRNformula
2: if (r, x) = (0,⊥) then reject
3: else if (r, x) = (0,>) then accept
4: else if x = psi then
5: if h(M, s) 6= i for all i ∈ {1, 2, . . . , r} then reject
6: else accept
7: else if x = phi then
8: if h(M, s) 6= i for all i ∈ {1, 2, . . . , r − 1} ∪ {r + 1} then reject
9: else accept
10: end if

I Theorem 12. The model checking problem for IPC1 is in AC1.

5 Some notes on superintuitionistic logics with one variable

Superintuitionistic propositional logics are logics that have more valid formulas than IPC. In
this sense, classical propositional logic is a superintuitionistic logic, since it can be obtained as
the closure under substitution and modus ponens of the tautologies from IPC plus a∨¬a as
additional axiom. A well-studied superintuitionistic logic is KC [7] that results from adding
the weak law of the excluded middle ¬a ∨ ¬¬a to IPC. Semantically, the Kripke models for
KC are restricted to those intuitionistic modelsM = (W,6, ξ) where 6 is a directed preorder.
Whereas IPC1 has infinitely many equivalence classes of formulas, KC1 has only 7 equivalence
classes—represented by the Rieger-Nishimura formulas ⊥,>,ϕ1,ψ1,ϕ2,ψ2,ψ3—that can be
distinguished using the first 3 canonical models [14, 11]. The function h can be implemented
as an alternating Turing machine that runs in logarithmic time, if the function value is
fixed to a finite range—that in this case is {1, 2, 3}–independent on the input. For KC1,
the Rieger-Nishimura index of the formulas also has a finite range (as mentioned above).
Therefore, it can be calculated by an alternating Turing machine that runs in logarithmic time
similar to the machine presented by Buss [3] that calculates the value of a Boolean formula.
Instead of the Boolean values 0 and 1, for KC1 we have 7 different Rieger-Nishimura indices.
The rules how the index of a formula can be calculated from the indices of its subformulas
and the connective, follow directly from the Rieger-Nishimura lattice operations—see e.g. [13].
If the indices are bound to a finite range, this big table yields an even bigger but finite table
without variable formula indices. For example, the equivalence ϕn ∨ ϕn+1 ≡ ψn+2 for all
n ≥ 1 induces the three equivalences ϕ1 ∨ϕ2 ≡ ψ3, ϕ2 ∨ > ≡ >, and > ∨ > ≡ > for KC1.
This yields ALOGTIME as an upper bound for the tautology problem for KC1.

There are infinitely many superintuitionistic logics (with one variable) that can be
obtained by adding an arbitrary formula as axiom to IPC1, that is not valid for IPC1. For
example, if we add a formula equivalent to ϕk, then the superintuitionistic logic obtained has
finitely many equivalence classes represented by ⊥,>,ϕ1,ψ1,ϕ2,ψ2, . . . ,ϕk−1,ψk−1. With
similar arguments as for KC1 we can conclude that the model checking problems for these
logics all are in NC1. Moreover, the formula value problem for Boolean formulas without
variables is NC1-hard [2]. Intuitionistic formulas without variables have the same values, if
they are interpreted as classical Boolean formulas. This means, the semantics of → is the
same for Boolean formulas and for intuitionistic formulas without variables. Therefore, the
model checking problem for any superintuitionistic logic is NC1-hard, too.
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I Theorem 13. The model checking problem for every superintuitionistic logic with one
variable is NC1-complete.

The tautology problem for superintuitionistic logic has the same complexity, since in
order to decide whether a formula with one variable is a tautology it suffices to know its
Rieger-Nishimura index.

I Theorem 14. The tautology problem for every superintuitionistic logic with one variable
is NC1-complete.

The best upper space bound for the tautology problem for IPC1 is a little higher, namely
SPACE(logn · log logn) [19].

6 The complexity of model checking for IPC2

I Theorem 15. The model checking problems for KC2 and for IPC2 are P-hard.

This can be proven with a reduction from the IPC model checking problem that is
P-complete [12]. We give formulas with two variables—the replacement formulas—which
simulate the variables in an arbitrary IPC formula. For an arbitrary model we need to
simulate the assignment function. For this we use a special model where every replacement
formula has a unique maximal refuting state. We combine the given model and the special
model in a way that if a variable is not assigned to a state, this state is connected to the
state from the special model that refutes the replacement formula which substitutes this
variable. This construction is similar to the polynomial time reduction from the tautology
problem for IPC to the tautology problem for IPC2 in [16]. The main difference is that
our logspace reduction yields pseudotransitive models, whereas in [16] a polynomial time
reduction is used that allows to compute transitive models.

7 Conclusion

We consider computational problems that appear with intuitionistic propositional logic with
at most two variables. Our main theorem completely characterizes the complexity of model
checking for intuitionistic logic.

I Theorem 16. 1. The model checking problem for IPC0 is NC1-complete.
2. The model checking problem for IPC1 is AC1-complete.
3. The model checking problem for IPC2 is P-complete.

Part (1) follows from the fact that an intuitionistic formula that contains constants ⊥
and > but no variables can be evaluated like a Boolean formula, whose evaluation problem is
NC1-complete [2] independently of the number of variables. Part (2) follows from Theorems 11
and 12. It shows a difference between IPC1 and its modal companion S4 with one variable,
for which the model checking problem is P-complete [12]. Part (3) comes from Theorem 15
(hardness) and [12] (containment in P). Similarly as Rybakov [16] for the tautology problem,
this shows that the model checking problem for IPC reaches its full complexity already with
the use of two variables.

Next we summarize the results from Theorems 13 and 15 for superintuitionistic logics.
1. The model checking problem for every superintuitionistic logic with one variable is NC1-

complete.
2. The model checking problem for KC2 is P-complete.
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There are superintuitionistic logics with two variables between Boolean logic and KC2
(see below). The exact complexity of the model checking problem for these logics is open. It
is interesting to notice that the complexity results for IPC2 and for KC2 are the same. But
if only one variable is allowed, the complexity of IPC1 is higher than that of KC1.

Intuitionistic logic with one variable turns out to be the most challenging case. There are
infinitely many equivalence classes of formulas, and according to Lemma 2 the sequence of
smallest representatives of these equivalence classes has an exponential growth with respect
to the length of the formulas. Such a fast growing sequence seems to appear rarely in
“natural” problems, and it is a key ingredient for the AC1-completeness of the model checking
problem. Intuitionistic logic with one variable is strongly related to free Heyting algebras
with one generator. Since Heyting algebras are generalizations of Boolean algebras, it would
be interesting to investigate whether the difference between NC1 and AC1 is related to that
between Boolean algebras and Heyting algebras.

If we consider other problems related to Kripke models for IPC1 that are not “out braked”
by a very fast growing part of the input, the complexity jumps up to P-completeness, as
shown in Theorem 10. Model checking for IPC1 also gets P-hard if the instances 〈ϕ,M, s〉
allow the formula ϕ to be represented as a graph. Let us call this the g-model checking
problem for short. This is a consequence of the P-hardness of the monotone circuit evaluation
problem [9], holds even for formulas without variables, and therefore it also holds for all
superintuitionistic logics. If formulas are represented as graphs, the sequence of smallest
representatives of the equivalence classes of IPC1 does not have exponential growth anymore.
Moreover, the calculation of the Rieger-Nishimura index gets P-hard.

I Theorem 17. The following problems are P-complete:
1. the g-model checking problem for IPC1,
2. the g-model checking problem for every superintuitionistic logic with one variable,
3. the tautology problem for IPC1, where the formula is represented as a graph, and
4. the tautology problem for every superintuitionistic logic with one variable, where the

formula is represented as a graph.

Parts (1) and (2) contrast the different upper bounds NC1 and AC1 (Theorem 13 resp.
Theorem 16) for the standard encodings of formulas. Parts (3) and (4) contrast the complexity
of the tautology problems for the logics under consideration, that have the following upper
bounds.
1. The tautology problem for every superintuitionistic logic with one variable is NC1-complete.
2. The tautology problem for IPC1 is in LOGDCFL ∩ SPACE(logn · log logn).
3. The tautology problem for KC2 and for IPC2 is PSPACE-complete.

Part (1) is Theorem 14, part (2) is from Svejdar [19] and Lemma 3, and part (3) follows
directly from [16]. The exact complexity of the tautology problem for IPC1 is open. It is
interesting to notice that superintuitionistic logics with one variable all have lower complexity
than IPC1, whereas for superintuitionistic logics with two variables already KC2 reaches
the same complexity as IPC2. A superintuitionistic logic between Boolean logic and KC
is LC [7]. Non-trivial hardness results for LC2 are not known. It would be interesting to
investigate exactly the complexity jump from LC2 to KC2.

Acknowledgements The authors thank Vitek Svejdar, Heribert Vollmer, Johannes Süpke,
Robert Zeranski, and Thomas Schneider for helpful discussions.
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Abstract
Consider the problem of scheduling a set of tasks of length p without preemption on m identical
machines with given release and deadline times. We present a new algorithm for computing
the schedule with minimal completion times and makespan. The algorithm has time complexity
O(min(1, p

m )n2) which improves substantially over the best known algorithm with complexity
O(mn2).
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1 Introduction

We consider the problem of scheduling a set of equal length tasks without preemption on
m identical machines with given release and deadline times. The goal is to produce a
schedule, if one exists, that minimizes the sum of the completion times. We later prove
that this simultaneously minimizes the makespan. This scheduling problem is known as
Pm|rj ; pj = p;Dj |

∑
Cj in the notation used by Pinedo [8].

The scheduling problem we study is formally defined as follows. There are n jobs labeled
from 1 to n with integer release times ri and latest starting times ui such that ri < ui for
i ∈ 1..n. A job can start on or after time ri but must start strickly before time ui. Each
job has an integer processing time p and needs to be allocated on one of the m identical
machines. Jobs are not allowed to be preempted and only one job at a time can be executed
on a machine. The deadline of job i is therefore given by ui + p− 1. We therefore need to
find for each job i a starting time si such that ri ≤ si < ui and that for any time t, no more
than m jobs are being executed. Moreover, we would like to minimize the total completion
time, i.e. the sum of the completion time of each job. Formally, we have the following system
to solve.

min
n∑

i=1
si (1)

ri ≤ si < ui ∀i ∈ 1..n (2)
|{i | t ≤ si < t+ p}| ≤ m ∀t (3)

Simons [9] proposed the first polynomial time algorithm running in O(n3 log logn) for
solving this problem. Simons and Warmuth [10] further improved this bound to O(mn2).
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Vakhania [11] presented an algorithm that runs in O(d2
max(m+ dmax)n logn) where dmax is

the latest deadline. Note that in any feasible instance we have dmax ≥ p
⌈

n
m

⌉
. Vakhania’s

algorithm is therefore competitive when the processing time p is small and the number of
machines is proportional to the number of jobs. Dürr and Hurand [3] gave an algorithm that
runs in O(n3). Even though their algorithm does not improve over the best time complexity,
it deepens the understanding of the problem by reducing it to a shortest path in a graph. The
algorithm presented in this paper is based on this reduction while improving substantially
its time complexity.

There exist specializations to the problem with more efficient algorithms. For instance,
on a single machine (m = 1) and with a unit processing time (p = 1), the problem consists
of a matching in a convex bipartite graph. Lipski and Preparata [7] designed an algorithm
running in O(nα(n)) time where α is the inverse of Ackermann’s function and where it is
assumed that the jobs are presorted by deadlines. Gabow and Tarjan’s [4] showed how to
reduce this complexity to O(n) using their union-find data structure. The algorithm can be
easily adapted without altering the complexity for multiple machines even in the case where
the number of machines fluctuates over time. Finally, Garey et al. [5] solve the scheduling
problem in O(n logn) time for jobs of equal processing times on a single machine (m = 1).

2 Reduction to a Shortest Path

Suppose that an oracle provides the number xt of jobs starting at time t. A solution can be
constructed using a matching in a convex bipartite graph. For each job j, we create a node
j and for each time t, we create xt duplicates of a node t. There is an edge between a job
node j and a time node t if rj ≤ t < uj . A matching in such a graph associates to each job a
starting time. Since the graph is convex, Lipski and Preparata [7] show how to find such a
matching in O(nα(n)) time.

Thus we have reduced the scheduling problem to finding how many jobs start at any given
time t. We answer this question by computing a shortest path in a graph in a manner similar
to what Dürr and Hurand [3] did. Their solution consists of building a graph with O(n)
nodes and O(n2) edges and to compute the shortest path using the Bellman-Ford algorithm
in O(n3) time. We propose a similar approach with a graph having more nodes. These
additional nodes make the computation of a solution easier. However, the main contribution
of our technique is presented in Section 3 to 5 where we identify and exploit the properties
of the graph to obtain a substantially faster algorithm.

We know that at most m jobs can start in any window of size p. We can already state
the equations. Let rmin = mini ri and umax = maxi ui be the earliest release time and latest
allowed starting time.

t+p−1∑
j=t

xj ≤ m ∀ rmin ≤ t ≤ umax − p (4)

xt ≥ 0 ∀ rmin ≤ t < umax (5)

Condition 4 states that at most m processes may start on a given interval of length p.
Let umax = maxi ui be the latest time when a job can start. Given two (possibly identical)
jobs i and j defining a non-empty semi-open interval [ri, uj), the set {k | ri ≤ rk ∧ uk ≤ uj}
denotes the jobs that must start in this interval, hence

uj−1∑
t=ri

xt ≥ |{k | ri ≤ rk ∧ uk ≤ uj}| ∀ i, j ∈ 1..n (6)
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I Lemma 1. The scheduling problem has a solution if and only if Equations (4) to (6) are
satisfiable.

Proof. (⇒) Given a valid schedule, we set xt to the number of jobs starting at time t, i.e
xt = {i | si = t}. By definition of the problem, all equations are satisfied.
(⇐) Consider a bipartite graph G = 〈J ∪ T,E〉 such that J = {1, . . . , n} are the nodes
associated to the jobs and T is a multiset of time points such that time t occurs xt times in T .
There is an edge from the job-node i to the time-node t if t ∈ [ri, ui]. Note that the bipartite
graph is convex, i.e. if there is an edge (i, t1) and an edge (i, t3) then there is an edge (i, t2)
for all t2 ∈ [t1, t3] ∩ T . A maximum matching in this convex bipartite graph gives a valid
assignment of jobs to time points. Equation (4) ensures that no machines are overloaded
and the schedule is feasible. From Hall’s [6] marriage theorem, there exists a matching if
and only if for any set of jobs S, there are at least |S| time nodes that are adjacent to the
nodes in S. Let i ∈ S be the job with the earliest release time and j ∈ S be the job with the
latest deadline. Inequality (6) ensures that there are at least |{k | ri ≤ rk ∧ uk ≤ uj}| ≥ |S|
time-nodes adjacent to the nodes in S which meets Hall’s condidtion. J

We perform a change of variables to simplify the form of the equations. Let yt =
∑t−1

i=rmin
xi

for rmin ≤ t ≤ umax. Equations (4) to (6) are rewritten as follows.

yt+p − yt ≤ m ∀ rmin ≤ t ≤ umax − p (7)
yt − yt+1 ≤ 0 ∀ rmin ≤ t < umax (8)
yri
− yuj

≤ −|{k | ri ≤ rk ∧ uk ≤ uj}| ∀ ri < uj (9)

Equations (7) to (9) form a system of difference constraints, which can be solved creating a
graph with one node per variable and an edge (a, b) of weight w for each constraint b−a ≤ w.
For the equations above, we obtain a graph G = 〈T,E〉 where T = rmin..umax is the set
of nodes, one for each integer time point. We consider three sets of edges: forward edges
Ef = {(t, t + p) | rmin ≤ t ≤ umax − p}, backward edges Eb = {(uj , ri) | ri < uj}, and null
edges En = {(t + 1, t) | rmin ≤ t < umax}. The edges of the graph are the union of these
three sets of edges E = Ef ∪ En ∪ Eb that are directly derived from Equations (7), (8), and
(9). The following weight function maps every edge to an integer weight. Let (a, b) ∈ E, then

w(a, b) =
{
m if a < b

−|{k | b ≤ rk ∧ uk ≤ a}| otherwise (10)

We call the graph G the scheduling graph. The following theorem shows the connexion
between a shortest path in the scheduling graph and a solution to the system of difference
constraints. The proof is taken from Cormen et al. [2] who credit it to R. Bellman.

I Theorem 2. Let δ(a, b) be the shortest distance between node a and node b in the scheduling
graph. The assignment yt = n+ δ(umax, t) is a solution to Equations (7) to (9).

Proof. Suppose there is an inequality yb−ya ≤ w(a, b) that is not satisfied by the assignment,
we therefore have n + δ(umax, b) − n − δ(umax, a) > w(a, b). The inequality δ(umax, b) >
δ(umax, a) + w(a, b) contradicts that δ(umax, b) is the shortest distance from umax to b. J

Let |T | ∈ O(umax − rmin) be the number of nodes and |E| ∈ O(n2 + umax − rmin) the
number of edges in the scheduling graph. Here we could directly apply a shortest path
algorithm such as Bellman-Ford to compute a shortest path from umax to all other nodes
in the graph. These algorithms run in time polynomial in T and |E|, or in other words,
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Figure 1 A scheduling graph with 9 nodes. The weight on an edge between two nodes appear at
the intersection of the two diagonals passing by these nodes. The weights of the null and backward
edges appear bellow the nodes while the weights of the forward edges appear above the nodes.
Empty cells indicate the absence of an edge. For instance, the weight of backward edge (9, 2) is -4.
The shortest path between node 9 and 6 passes by the nodes 9, 1, 4, 7, 2, 5, 3, 6.

pseudo-polynomial on the term umax. In the next section we show properties of the scheduling
graph and use them to propose a much more efficient method based on a speed up version of
Bellman- Ford’s algorithm.

Figure 1 presents a scheduling graph with 2 machines, 5 jobs, and a processing time of 3.

3 Properties of the Scheduling Graph

I Lemma 3. Let e < f < g < h be four nodes in a scheduling graph without negative cycles.
If the edges (h, f) and (g, e) lie on a shortest path then there exists an equivalent path of
same length that does not include these edges.

Proof. Suppose that the edges (h, f) and (g, e) lie on a same shortest path and that (h, f)
precedes (g, e) on this path. Since any sub-path of a shortest path is also a shortest path, we
have

w(h, e) ≥ w(h, f) + δ(f, g) + w(g, e) (11)

Recalling that −w(y, x) for x < y is the number of jobs that must start in the time interval
[x, y), we know that the following relationship holds on backward edges.

w(h, e) ≤ w(g, e) + w(h, f)− w(g, f) (12)

Subtracting (12) from (11) shows that the cycle passing by (f, g) is negative or null and since
there are no negative cycles, we obtain the equality 0 = w(g, f) + δ(f, g) Substituting this
equality back in (12) shows an equality in (11). The edge (h, e) is therefore an equivalent
path that does not contain the edges (h, f) nor (g, e).

Alternatively, suppose that (h, f) succeeds to (g, e) on the path. We have

w(g, f) ≥ w(g, e) + δ(e, h) + w(h, f) (13)

Adding (12) to (13) gives 0 ≥ w(h, e) + δ(e, h). Since there are no negative cycles in the
scheduling graph, the inequality is tight. Substituting the equality into (12) shows that (13)
is tight and that (g, f) is an equivalent shortest path. J
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A backward edge (b, a) is associated to the interval [a, b). If two backward edges have
disjoint intervals, we say that the backward edges are disjoint. If the interval of one backward
edge is contained in the interval of another backward edge, we say that the backward edges
are nested. Otherwise, we say that the backward edges are crossed.

I Lemma 4. The shortest path which also minimizes the number of edges does not have
crossed backward edges.

Proof. By applying Lemma 3 on a shortest path, one obtains a shortest path with two
crossed edges and one forward edge replaced by one backward edge. One can repeat the
process until there are no more crossed edges in the path. Since each time we apply Lemma 3,
the number of edges in the path diminishes, the process is guaranteed to finish. J

Let d be the distance vector such that d[t] = δ(umax, t) is the shortest distance from node
umax to node t. The vector d is monotonically increasing.

I Lemma 5. The distance vector d is monotonically increasing.

Proof. Consider the nodes t and t+ 1, the null edges En guarantees that d[t] ≤ d[t+ 1] +
w(t+ 1, t) or simply d[t] ≤ d[t+ 1]. J

I Lemma 6. If the scheduling graph has no negative cycles, d[rmin] = −n.

Proof. Lemma 4 implies that there is a shortest path from umax to rmin that do not have
forward edges. Because two consecutive backward edges are no shorter than one longer
backward edge (w(c, a) ≤ w(c, b) +w(b, a) for any time point a < b < c) we conclude that the
edge (umax, rmin) is a single-segment shortest path from umax to rmin with distance −n. J

Lemma 5 and Lemma 6 implies that the distance vector d contains the values −n..0 in
non-decreasing order. Keeping a structure in memory of the n time points where the vector
d is strictly increasing is sufficient to retrieve all components of vector d. This is a first step
towards a strongly polynomial algorithm.

4 The Algorithm

We present an algorithm based on the Bellman-Ford algorithm [1] for the single-source
shortest path problem. We encode the distance vector with a vector d−1 of dimension n+ 1.
The component d−1[i] is the rightmost node reachable at distance at most −i. For example,
if n = 10 and d−1[3] = 4, there is a path from umax to 4 of weight at most −3.

An iteration of the Bellman-Ford algorithm applies the relaxation d[b]← min(a,b)∈E d[a] +
w(a, b) for all nodes b and assumes that there is an edge (b, b) of null weight on all nodes.
After sufficiently many iterations. the algorithm converges to a distance vector d such that
d[a] is the shortest distance between the source node and the node a.

We develop two procedures. One that applies the relaxation to the edges in En ∪ Ef

and one that applies it to the edges in En ∪ Eb. Yen [12] introduced the technique of
partitioning edges between forward and backward edges to reduce the number of iterations
of the Bellman-Ford algorithm to the number of times a shortest path alternates between a
backward edge to a forward edge. In a scheduling graph, the number of alternations can
be reduced to min(n,

⌈
n
m

⌉
p) as we will prove in Section 5. The algorithm for finding the

starting times adapts the Bellman-Ford algorithm to the scheduling graph. If the distance
vector of the algorithm does not converge after a sufficient number of iterations there exists
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a negative cycle in the graph proving that the problem is unsolvable. The algorithm then
returns an error message.

Algorithm 1: FindStartingTimes(~r, ~u,m, p)
B ← sort({ri | i ∈ 1..n} ∪ {ui | i ∈ 1..n});
for i = 1 to n do li ← index(B, ri);
for i = 1 to n do vi ← index(B, ui);
d0 ← [umax, rmin, . . . , rmin︸ ︷︷ ︸

n copies
];

for k ← 1 to min(n,
⌈

n
m

⌉
p) + 1 do

~dk ← RelaxForwardEdges( ~dk−1,m, p);
~dk ← RelaxBackwardEdges( ~dk,~l, ~v,B);
if ~dk = ~dk−1 then return [dk[n− 1], dk[n− 2], . . . , dk[0]];

return Failure;

Relaxing the Forward Edges.

Relaxing forward edges is done in O(n) time by iterating over the distance vector d−1. It
ensures that if there is a path of distance i that goes to node x, then there is a path of
distance i + m that reaches node x + p. For all possible distances i spanning from −n to
−m, we apply the relaxation d−1[−i−m]← max(d−1[−i] + p, d−1[−i−m]).

Algorithm 2: RelaxForwardEdges(~d,m, p)
for i← −n to −m do

d[−i−m]← max(d[−i] + p, d[−i−m]);
return ~d;

Relaxing the Backward Edges.

Processing backward edges in O(n) time is more complex. Assume that jobs are sorted in
non-decreasing order of release times (ri ≤ ri+1). The algorithm is based on the similarity
between the backward edges incoming to node ri and backward edges incoming to node ri+1.

I Lemma 7. Let Ji be the set of jobs sharing the same release time as ri. The backward edges
incoming to ri and ri+1 are linked by the relation w(t, ri) = w(t, ri+1)− |{k ∈ Ji | uk ≤ t}|.

Proof. Recall that w(a, b) is the negation of the number of jobs that must start in the
interval (b, a). The number of jobs that must start in the time interval [ri, t) is the number of
jobs that must start in the interval [ri+1, t) plus the number of jobs that can start in [ri, ri+1)
but must start before t. Hence −w(t, ri) = −w(t, ri+1) + |{k ∈ Ji|uk ≤ t}| as claimed. J

Let d[uj ] be the best distance found so far by the Bellman-Ford algorithm from node umax
to node uj . Relaxing the backward edges consists of computing the value minj d[uj ]+w(uj , ri)
for all ri. The following Lemma shows that not all edges need to be processed.

I Lemma 8. Given two latest starting times ua < ub, if d[ua] + w(ua, ri+1) ≥ d[ub] +
w(ub, ri+1) then d[ua] + w(ua, ri) ≥ d[ub] + w(ub, ri).

Proof. Using the set Ji as defined in Lemma 7, we have |{j ∈ Ji | uj ≤ ua}| ≤ |{j ∈
Ji | uj ≤ ub}|. From Lemma 7, we obtain w(ua, ri+1)− w(ua, ri) ≤ w(ub, ri+1)− w(ub, ri).
Subtracting this inequality from the hypothesis proves the Lemma. J
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Lemma 8 is fundamental to obtain a fast algorithm relaxing the backward edges. It says
that when processing the backward edges ingoing to ri+1, if the edge (ub, ri+1) is a better or
equivalent candidate for a shortest path than (ua, ri+1) then the edge (ub, ri) is also a better
or equivalent candidate than (ua, ri). By transitivity, any backward edge outgoing from ua

and ingoing to a node smaller than ri+1 can be ignored.
Let B be the set containing all the release times r1, . . . , rn and latest starting times

u1, . . . , un. This set contains no duplicates and its elements are labeled from b1 to b|B|.
We construct a singly linked-list that we call the list of representatives. The list initially

contains the elements of B in increasing order. Each element of the list is a representative of
a set that initially only contains itself. The representative is always the largest element of its
set. Each set is represented in the data structure by a node labeled by its representative
that has a link to the previous node b1 ← b2 ← · · · . The link between bj+1 and bj has
weight d[bj+1]− d[bj ]. If the weight of a link (bj+1, bj) is null, we merge the node bj and the
node bj+1 together to form a larger set for which bj+1 is the representative. The node bj

disappears from the list of representatives since Lemma 8 ensures that bj+1 will always be a
better candidate than bj .

On the running example of Figure 1, the vector ~d is initialized to ~d = [9, 1, 1, 1, 1, 1]. After
the forward edge relaxation stage, its value becomes ~d = [9, 7, 4, 4, 1, 1]. The representatives
are B = {1, 2, 3, 4, 5, 6, 7, 9} which gives the vector d = [−5,−3,−3,−3,−1,−1,−1, 0] that
maps each element in B to a distance. After merging the sets connected with a null link, we
obtain the following chain where representatives are highlighted in bold.

{1} 2←− {2, 3,4} 2←− {5, 6,7} 1←− {9} (14)

Initially, the data structure allows us to compute d[bj ] for any j. As we shall show in
Lemma 9, one only needs to visit the nodes from bj to b1 and sum up the weights on the links
to obtain d[bj ] + n. Subtracting n from the sum of the links gives d[bj ]. The data structure
can be updated to compute the values d[bj ] + w(bj , ri) for each backward edge (bj , ri) in
the scheduling graph. We process the tasks in non-increasing order of release time starting
with rn. When processing task i, we first look in the data structure for the representative of
ui which we call bq. Assume that the node bq points to bt, we decrement the weight of the
link (bq, bt). If the weight of the link becomes null after decrementing, we delete bt from the
list of representatives and merge the set containing bt with the set represented by bq. The
element bq remains the representative of the merged set.

Continuing with the running example, processing job 5 decreases by one the weight on
the link between node 7 and node 4. Processing job 4 decreases once more the weight of this
link and fix it to zero. The data structure then looks as follows.

{1} 2←− {2, 3, 4, 5, 6,7} 1←− {9} (15)

I Lemma 9. After processing the last job with release time ri, the sum of the weights on the
links from the representative of uj to node b1 is equal to d[uj ] + w(uj , ri) + n.

Proof. Let bk be the representative of uj . Initially, the weights on the links of the data
structure from bk to b1 are equal to the telescopic sum

∑k−1
l=0 (d[bl+1]− d[bl]) which simplifies

to d[bj ]−d[b1] = d[bj ]+n. After processing the last job with release time ri, all jobs that must
start at or after ri and before bk have been processed. Each of these |{a | ri ≤ ra ∧ ua ≤ uj}|
jobs decremented by one a link on the path between bk and b1. Therefore, the sum of the
links on a path between uj and b1 is d[uj ] + w(uj , ri) + n. J
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The Bellman-Ford algorithm requires to find the backward edge incoming into ri that
minimizes the value d′[bj ] + w(bj , ri) where bj can be ri. Lemma 10 shows how the data
structure finds the optimal edge.

I Lemma 10. Let bj be the representative of ri after processing all jobs with release times
greater than or equal to ri. The backward edge (bj , ri) is the one minimizing the value
d′[bj ] + w(bj , ri).

Proof. The backward edge (bj , ri) that minimizes d′[bj ] + w(bj , ri) also minimizes d′[bj ] +
w(bj , ri) + n. Lemma 9 guarantees that the later value is equal to the weights on the path
from bj to b1. Since all weights on the path are positive, the smallest representative that is
greater than or equal to ri is the one minimizing d′[bj ] + w(bj , ri). This representative is
necessarily the representative of ri.

We prove that values that are not representatives are not optimal. If ub is the represent-
ative of ua, then for some release time rc ≥ ri, the link from node rb to ra was decremented
to zero. From Lemma 9, we have d′[ua] + w(ua, rc) = d′[ub] + w(ub, rc). From Lemma 8 we
conclude that d′[ua] + w(ua, ri) ≥ d′[ub] + w(ub, ri). Therefore, the representative ub is as
good or better than the non-representative ua. J

The algorithm RelaxBackwardEdges uses the data structure discussed above to relax the
backward edges. The first for loop on line 1 converts the vector d to the vector d′. Recall
that d[i] is the largest node in the graph reachable at distance at most −i and d′[i] is the
smallest distance found so far to reach node B[i] where B is the sorted vector of release
times ri and latest starting times ui.

The algorithm then initializes the data structure. Each node is a set in a union-find data
structure T whose representative is the largest element. The weight of the link pointing to
a representative bi is stored in c[i]. We store in k[i] the number of jobs j that have been
processed so far and for which the latest starting time uj is represented by bi. The for loop
on line 2 processes each job in non-increasing order of release time. The data structure is
updated as explained above. Line 3 computes the value d′[be] + w(be, ri) where be is the
representative of ri. Note that k[e] is the number of processed jobs with latest starting time
smaller than or equal to be which is equal to −w(be, ri).

5 Analysis

The following lemmas show the correctness of the algorithm and give the conditions to bound
its time complexity.

I Lemma 11. There is a shortest path from umax to all other nodes with at most
⌈

n
m

⌉
disjoint backward edges.

Proof. Suppose a shortest path has k disjoint edges (bi, ai) for 1 ≤ i ≤ k. We assume that
these backward edges are interleaved with forward edges since two backward edges connected
with null edges can be replaced by a single backward edge of cost equal or smaller than the
sum of the weights of the backward edges. Since the intervals [ai, bi) are disjoint, we have∑k

i=1 w(bi, ai) ≥ −n. It is safe to assume that the path has negative weight since a path of
null weight can be entirely constituted of null edges without any backward edges. The path
has k − 1 sequences of forward edges whose weights sum to at most n− 1. Each sequence of
forward edges must be at least of weight m. To maximize the number k, we assume that
each sequence of forward edges has a single edge. We have (k − 1)m ≤ n− 1 which implies
k ≤

⌊
n−1

m

⌋
+ 1 =

⌈
n
m

⌉
. J

STACS’11



388 A Fast Algorithm for Multi-Machine Scheduling Problems with Jobs of Equal ...

Algorithm 3: RelaxBackwardEdges(~d,~l, ~v,B,W )
Construct a vector d′ s.t. the distance between umax and B[i] is d′[i];
d′ ← [ ]; // Empty vector
j ← −n;
for b ∈ B in increasing order do1

while b > d[−j] do j ← j + 1;
append(d′, j);

T ← UnionFind(|B|) ; // |B| disjoint sets
k ← [0, . . . , 0]; // Create a null vector of dimension |B|
for i← 1 to |B| − 1 do

c[i]← d′[i+ 1]− d′[i];
if c[i] = 0 then Union(T, i, i+ 1);

for i ∈ [1, n] in non-increasing value of li do2
q ← FindMax(T, vi);
t← FindMax(T, F indMin(T, vi)− 1);
c[t]← c[t]− 1;
k[q]← k[q] + 1;
if c[t] = 0 then

Union(T, t, q);
k[q]← k[q] + k[t];

e← FindMax(T, li);
a← d′[e]− k[e];3

if a < d′[li] then
d′[li]← a;
d[−a]← B[li];

return ~d;

Lemma 12 gives an upper bound on the number of nested backward edges lying on a
shortest path. Lemma 13 gives an upper bound on the number of backward edges lying on a
shortest path.

I Lemma 12. A shortest path can have at most p nested backward edges (bi, ai) such that
ai < ai+1 and bi > bi+1.

Proof. In such a path, there must be a sequence of forward edges that connects ai to bj

for some i and some j. This sequence of forward edges cannot pass by a node ak for k > i

since each node is visited only once on a path. This implies that ai and ak are not congruent
modulo p for every k > i. Consequently, ai 6= aj mod p for all i 6= j. The maximum set of
values satisfying this property has cardinality p. J

I Lemma 13. There is a shortest path with at most min(n,
⌈

n
m

⌉
p) backward edges.

Proof. The number of backward edges on a path is bounded by n since there are at most n
nodes ri to which they lead to. Lemma 11 guarantees that there are at most

⌈
n
m

⌉
disjoint

backward edges. Each disjoint backward edge can have at most p nested backward edges.
Therefore, there are at most

⌈
n
m

⌉
p backward edges on a shortest path. The number of

backward edges is bounded by the smallest of both bounds. J

I Theorem 14. The algorithm for finding the starting times is correct.
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Proof. The correctness of the forward and backward edge relaxation algorithms follows from
the discussions and Lemmas in the previous section. The correctness of algorithm for finding
the starting times follows from the Bellman-Ford algorithm. We however need to justify why
min(n,

⌈
n
m

⌉
p) iterations are sufficient. A path is necessarily an alternation of forward edges

in Ef and backward or null edges in Eb ∪En. Yen [12] shows that the number of iterations
can be bounded to the number of alternations. An alternation between a forward edge, a
sequence of null edges, and another forward edge can be replaced by an equivalent path of
two forward edges and a sequence of null edges (or a sequence of null edges followed by two
forward edges). Consequently, we can assume that the sequences of null edges occur before
or after a backward edge. Lemma 13 gives an upper bound of min(n,

⌈
n
m

⌉
p) on the number

of backward edges which is also an upper bound on the number of alternations. J

I Theorem 15. The algorithm for finding the starting times completes in O(min(1, p
m )n2)

steps.

Proof. The running time complexity of the forward edge relaxation stage is clearly O(n).
The complexity of the backward edge relaxation stage depends on the implementation of the
Union-Find data structure. There are O(n) calls to the functions FindMin, FindMax, and
Union. Using path compression, each call can be executed in O(α(n)) time where α is the
inverse of Ackermann’s function. However, since the disjoint sets always contain consecutive
values in B, Gabow and Tarjan [4] propose a data structure where each call executes in
constant amortized time which makes the backward edge relaxation stage run in O(n) steps.
Finally, the algorithm for finding the starting times performs min(n,

⌈
n
m

⌉
p) calls to the

forward and backward edge relaxation stages which results in a running time complexity of
O(min(1, p

m )n2). J

Observe that the running time complexity O(min(1, p
m )n2) is strongly polynomial in all

parameters. While the presence of the variable p might suggest pseudo-polynomiality, the
term min(1, p

m ) is always bounded by a constant. In the particular case where p is considered
to be a small bounded value, the resulting complexity O(n2

m ) decreases as the number of
machines m increases.

The algorithm has better performance in some special cases of interest. For instance,
when p = 1, a shortest path cannot have nested backward edges as stated in Lemma 12.
Neither can the path have disjoint backward edges. To wit, suppose that (a, b) and (c, d) are
two disjoint backward edges such that (a, b) occurs before (c, d) on a shortest path. If b ≥ c
then the edge (d, a) is an equivalent or shorter path. If b < c then the forward edges need to
pass by node c before reaching d creating a loop. With shortest paths including only one
backward edge, the algorithm converges after one iteration.

We showed that the algorithm computes in polynomial time a shortest path and thus a
valid schedule. We show that it also detects infeasibility in polynomial time. By Lemma 13,
if there is no negative cycle, a shortest path has at most min(n,

⌈
n
m

⌉
p) alternations between

backward and forward edges. By Yen’s theorem, if there are no negative cycles, the Bellman-
Ford algorithm will converge after min(n,

⌈
n
m

⌉
p) iterations. On the other hand, if the graph

has a negative cycle, the Bellman-Ford never converges since the cost function tends to
minus infinity. To detect infeasibility, the algorithm first iterates min(n,

⌈
n
m

⌉
p) times. If

the graph has no negative cycles, the algorithm should have converged. To test if it did
converge, the algorithm iterates one more time. If the distance vector has changed, then
the algorithm has not converged and will never do. The algorithm detected infeasibility in
exactly min(n,

⌈
n
m

⌉
p) + 1 iterations which is strongly polynomial.
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We now characterize the solution returned by the algorithm and prove that it minimizes
both the sum of the completion times and the makespan.

I Theorem 16. The solution returned by the algorithm for finding the starting times min-
imizes the sum of the completion times.

Proof. Minimizing the sum of the completion times is equivalent to minimizing the sum of
the starting times. We recall that xt is the number of jobs starting at time t. Minimizing the
sum of the starting times is equivalent to minimizing

∑umax−1
t=rmin

txt. Performing the change of
variables from xt to yt+1 − yt leads to a telescopic sum that we solve in (16) and simplify
in (17).

umax−1∑
t=rmin

t(yt+1 − yt) = (umax − 1)yumax − rminyrmin −
umax−1∑

t=rmin+1
yt (16)

= rmin(yumax − yrmin) +
umax−1∑

t=rmin+1
(yumax − yt) (17)

The difference yumax − yrmin is equal to n for all solutions since this is the number of jobs
executed between the beginning and the end of the schedule. The first term to optimize is
therefore a constant and can be ignored leaving only the expression

∑umax−1
t=rmin+1(yumax − yt)

to minimize or
∑umax−1

t=rmin+1(yt − yumax) to maximize.
Let (a1, a2), (a2, a3), . . . , (ak−1, ak) with a1 = umax and ak = t be the edges on the shortest

path from umax to t with total weight δ(umax, t). By substituting the inequalities (7)-(9), we
obtain this relation.

δ(umax, t) =
k−1∑
i=1

w(ai, ai+1) ≥
k−1∑
i=1

yai+1 − yai = yt − yumax (18)

By setting yumax = 0 and yt = δ(umax, t), we maximize the difference yt − yumax up to
reaching the equality. Since we maximize the difference for all values t, this maximizes∑umax−1

t=rmin
(yt − yumax) which is equivalent to minimizing

∑umax−1
t=rmin

txt. J

I Theorem 17. The algorithm for finding the starting times minimizes the makespan.

Proof. Suppose the algorithm makes the latest job start at time m. We have −
∑umax−1

t=m xt =
ym − yumax < 0. A schedule with smaller makespan would have ym − yumax = 0 which means
this quantity would be greater than the one produced by the algorithm. However, following
the argument in Theorem 16, the inequality (18) is maximized up to equality. Therefore, a
schedule with a smaller makespan violates (7)-(9). J

6 Conclusion

We gave an algorithm which substantially improves over the previous best known ones for
the problem of makespan and completion times minimization for multi-machine scheduling
with tasks of equal length. We observed that the running time complexity depends on the
relative sizes of m and p. An open question is to show whether this relationship is tight or
whether there exists a better complexity in terms of n,m, and p.
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Abstract
This paper revisits the online problem of flow-time scheduling on a single processor when jobs
can be rejected at some penalty [4]. The user cost of a job is defined as the weighted flow time
of the job plus the penalty if it is rejected before completion. For jobs with arbitrary weights
and arbitrary penalties, Bansal et al. [4] gave an online algorithm that is O((logW + logC)2)-
competitive for minimizing the total user cost when using a slightly faster processor, whereW and
C are the max-min ratios of job weights and job penalties, respectively. In this paper we improve
this result with a new algorithm that can achieve a constant competitive ratio independent of
W and C when using a slightly faster processor. Note that the above results assume a processor
running at a fixed speed. This paper shows more interesting results on extending the above
study to the dynamic speed scaling model, where the processor can vary the speed dynamically
and the rate of energy consumption is a cubic or any increasing function of speed. A scheduling
algorithm has to control job admission and determine the order and speed of job execution. This
paper studies the tradeoff between the above-mentioned user cost and energy, and it shows two
O(1)-competitive algorithms and a lower bound result on minimizing the user cost plus energy.
These algorithms can also be regarded as a generalization of the recent work on minimizing flow
time plus energy when all jobs must be completed (see the survey paper [1]).

1998 ACM Subject Classification F.2.2[Analysis of Algorithms and Problem Complexity] Non-
numerical Algorithms and Problems—Sequencing and scheduling

Keywords and phrases Online scheduling, weighted flow time, rejection penalty, speed scaling

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.392

1 Introduction

It is not uncommon that a server rejects some jobs (in particular, low-priority jobs) during
peak load, yet it is non-trivial how to strike a balance between the cost due to longer response
time and the cost of rejecting some jobs. Bansal et al. [4] initiated the study of flow-time
scheduling on a single processor when jobs can be rejected at some penalty. Specifically, jobs
are released online with arbitrary sizes, weights and penalties. Consider a schedule which
may reject some jobs before completion, each job defines a user cost equal to its weighted
flow time plus the penalty if it is rejected, where the flow time is the time elapsed since a
job is released until it is completed or rejected. In this penalty model, the scheduler aims at
minimizing the total user cost of all jobs.
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Assuming jobs have uniform penalty and unit weight, Bansal et al. [4] gave an online
algorithm that is 2-competitive for minimizing the total user cost. For jobs with arbitrary
penalties and arbitrary weights, they give a resource augmentation result which achieves a
competitive ratio of O((logW + logC)2) when using a slightly faster processor (precisely,
(1 + ε)-speed processor for any ε > 0), where W is the max-min ratio of job weights and C is
the max-min ratio of job penalties. They also show a lower bound of Ω(max(n 1

4 , C
1
2 )) without

using a faster processor, where n is the number of jobs in the job sequence. Note that for the
special case when each job has infinite penalty, no jobs would be rejected and the problem
reduces to the classic problem of minimizing weighted flow time only. In this case, Becchetti
et al. [8] showed a better resource augmentation result, achieving O(1)-competitiveness for
weighted flow time when using (1 + ε)-speed processor.

In this paper, we extend the results on rejection penalty [4] in two different directions.
First of all, we improve the upper bound result on arbitrary penalties and arbitrary weights.
Our online algorithm is constant competitive when using a (1 + ε)-speed processor, where the
constant does not depend on W and C. In other words, for the special case when jobs must
be all completed (with infinite penalty), our new algorithm has a comparable performance
(but with a larger constant) as Becchetti et al’s algorithm [8].

All the above results assume the processor running at a fixed speed. The main results
in this paper are on extending the above study of rejection penalty to the dynamic speed
scaling model [15] and taking energy into consideration. Specifically, it is assumed that
the processor can vary its speed dynamically between 0 and some maximum speed T , and
the power P increases with the speed s according to a certain function, say, P (s) = s3. In
this setting, a scheduling algorithm has to control job admission and determine the order
and speed of job execution, and we are interested to measure the user cost as well as the
total energy usage. Note that minimizing user cost and minimizing energy are orthogonal
objectives. In this paper, we consider the problem of minimizing a linear combination of
the user cost and energy, or simply the user cost plus energy. This problem can also be
considered as a generalization of the existing work on minimizing weighted flow time plus
energy where job rejection is not allowed [2, 9, 6, 13, 7, 3] (see related work below).

Speed scaling results. For jobs with uniform penalty and unit weight, we give a 6-
competitive algorithm for minimizing the user cost plus energy. This algorithm ensures that
the penalty of rejected jobs is always at most the flow time plus energy incurred thus far.
Intuitively, it maintains a good balance between the flow time plus energy and the penalty.
Next, we consider jobs with arbitrary penalties. We show a lower bound result illustrating
the problem of minimizing the user cost plus energy being fundamentally more difficult than
that of flow time plus energy. Specifically, we assume that P (s) = sα for some α > 1 and jobs
have unit weight, and we show that any online algorithm has a competitive ratio of Ω(α1/2−ε)
where ε is arbitrarily small, even if the maximum speed T is unbounded. This lower bound
implies that the competitive ratio must grow with the steepness of the power function (α),
while the problem of minimizing flow time plus energy admits a 2-competitive algorithm for
any arbitrary power function [7, 3]. We turn to resource augmentation and consider giving
the online algorithm a more energy-efficient processor which, using the power P (s), can run
at speed (1 + ε)s for some ε > 0. We call such a processor a (1 + ε)-speedup processor, based
on which we devise an online algorithm for the arbitrary-penalty and arbitrary-weight setting.
For any power function P (s), our new algorithm is O(1)-competitive for minimizing the user
cost plus energy when using a (1 + ε)-speedup processor. This algorithm, unlike the first one,
rejects jobs only at their arrival time and therefore never wastes energy on rejected jobs.

Amortization and potential functions have become standard tool for analyzing algorithms
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for minimizing flow time plus energy (e.g., [9, 13, 7, 3]). When jobs can be rejected, the
online algorithm A and the optimal offline algorithm OPT may have completed two different
sets of jobs. This complicates the analysis. For the case of uniform penalty and unit weight,
the potential analysis only allows us to bound the flow time plus energy incurred by some
special active jobs in A in terms of the cost of OPT. For cost incurred by other active jobs,
our technique is an accounting argument to upper bound this cost of A by the total penalty
of OPT. For arbitrary penalty and arbitrary weight jobs, taking the advantage of the use of
speedup processor, we can directly incorporate the job penalty into the potential analysis
and the maximum speed constraint T into the potential function.

Related work on dynamic speed scaling. To reduce energy usage, major chip manu-
facturers like Intel and IBM are now producing processors that can support dynamic speed
scaling, which allows operating systems to manage the power by scaling the processor speed
dynamically. How to exploit speed scaling effectively has become an interesting problem for
the algorithmic community. Yao et al. [15] were the first to consider online job scheduling
that takes speed scaling and energy usage into consideration. They considered a model
where a processor can vary its speed s, and the energy is consumed at the rate sα for some
constant α > 1 (in CMOS based processors, α is believed to be 3 [5]). Running jobs slower
saves energy, yet it takes longer time. The challenge arises from the conflicting objectives
of optimizing energy usage and some quality of service such as flow time. To understand
their tradeoff, Albers and Fujiwara [2] initiated the study of minimizing a linear combination
of the total flow and energy. The intuition is that, from an economic viewpoint, users are
willing to pay a certain (say, ρ) units of energy to reduce one unit of flow time. By changing
the units of time and energy, one can further assume ρ = 1 and thus wants to minimize flow
plus energy. Following Albers and Fujiwara’s work, there is a chain of work on speed scaling
algorithms [2, 9, 6, 13, 7, 3], gradually improving the competitive ratios as well as dropping
the assumptions on the speed-to-power functions. Now the best known algorithms can work
for any arbitrary power function. For jobs with unit weight, a 2-competitive algorithm has
been obtained [3]. For arbitrary weight, a competitive ratio of O(1 + 1

ε ) can be achieved
using a (1 + ε)-speedup processor [7, 11].

Power functions and notations. Throughout the paper, we assume P (0) = 0, and P
is defined, strictly increasing, strictly convex, continuous and differentiable at all speeds in
[0, T ]; if T = ∞, the speed range is [0,∞) and for any speed x, there exists x′ such that
P (x)/x < P (s)/s for all s > x′ (otherwise the optimal speed scaling policy is to always run
at the infinite speed and an optimal schedule is not well-defined). We use Q to denote P−1.
Note that Q is strictly increasing and concave. E.g., if P (s) = sα, then Q(x) = x1/α. For
each job j, we use p(j), w(j) and v(j) to denote its work, weight and penalty.

Organization of the paper. The following discussion focuses on the results on the
dynamic speed scaling model only. Our improved result on minimizing the user cost alone on
a fixed-speed processor would be shown as a special case in Section 3. Section 2 considers jobs
with uniform penalty and unit weight and presents a 6-competitive algorithm for minimizing
the user cost plus energy. Section 3 gives the results on jobs with arbitrary penalties and
arbitrary weights. Finally, a lower bound result is given in Section 4.

2 Uniform Penalty and Unit Weight

This section considers jobs with the same penalty c > 0 and unit weight. We give an online
algorithm UPUW for minimizing flow plus penalty plus energy. The job rejection policy of
UPUW is similar to that in [4], but the involvement of speed scaling and energy complicates
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the analysis and demands a potential function. Our main result is the following theorem.

I Theorem 1. Consider jobs with uniform penalty and unit weight. Algorithm UPUW is
6-competitive for minimizing flow plus penalty plus energy.

Algorithm UPUW. At time t, let na(t) and sa(t) be respectively the number of active
jobs (i.e., jobs that have been released but not yet finished) and the speed of UPUW. Recall
that Q is the inverse of the power function P . We set sa(t) = min(Q(na(t) + 1), T ). UPUW
always runs the job with the smallest remaining work (SRPT) at speed sa(t) (ties are broken
by job ids). Let φ be a counter that counts the flow plus energy incurred until time t, i.e.,
φ(t) =

∫ t
0(na(x)+P (sa(x)))dx. Whenever φ crosses a multiple of c, UPUW rejects the active

job with the largest remaining work (if na(t) > 0).
To prove Theorem 1, we compare UPUW with the optimal offline schedule OPT. Consider

any job sequence. Let Ga be the total flow plus energy of UPUW and Ra be the total penalty
of UPUW, and similarly define Go and Ro for OPT. Let te be the time when all jobs are
completed or rejected by both UPUW and OPT. By definition of UPUW, Ga = φ(te) and
Ra ≤ Ga. Thus, we have

I Fact 2. The flow plus penalty plus energy of UPUW is Ga +Ra ≤ 2φ(te).

To upper bound φ(te), we define another counter ψ such that at any time t, ψ(t) ≥ φ(t).
Then it suffices to upper bound ψ(te) by the cost of OPT. We define ψ as follows: Initially,
ψ(0) = 0. Whenever OPT rejects a job at t, ψ increases by c. At other times, if ψ = φ, ψ
increases at the same rate as φ, else (i.e., ψ > φ), ψ stays the same.

Analysis framework. We will upper bound ψ(te) in terms of Go and Ro. Note that
ψ(t) is non-decreasing and increases in two cases: (Case 1) ψ increases by c whenever OPT
rejects a job, and (Case 2) ψ increases at the same rate as φ whenever ψ(t) = φ(t). The
increase due to Case 1 is bounded by Ro. To bound the increase due to Case 2, at any time t,
we define a special subset of active jobs, denoted B(t), as follows. Let k(t) = bψ(t)

c c − b
φ(t)
c c.

Let B(t) be the set of the na(t) − k(t) active jobs in UPUW with the smallest remaining
work (B(t) = ∅ if na(t) < k(t)), and let ña(t) denote the size of B(t). Whenever ψ(t) = φ(t),
k(t) = 0. If ña(t) = 0, it implies na(t) ≤ 0, and φ(t) as well as ψ(t) do not increase. Thus,
the increase of ψ due to Case 2 is bounded by the flow plus energy incurred by UPUW during
times when ña(t) ≥ 1, which is upper bounded in Lemma 3. To prove Lemma 3, we follow
the analysis in [7, 3] but adapt the potential function to focus only on jobs in B(t) instead
of all active jobs in UPUW. Like [7, 3], the potential analysis requires an upper bound on
ña(t) − no(t) at any time t, where no(t) is the number of active jobs in OPT (Lemma 5).
Yet with job rejections, we need new technique to obtain such upper bound, which will be
proven via a mapping of jobs in B(t) to jobs in a schedule related to OPT (Lemma 6).

We first state Lemma 3 and show how this lemma leads to Theorem 1. For any time
interval I, let Ga[I] and Go[I] be the flow plus energy incurred during I by UPUW and
OPT, respectively.

I Lemma 3. For any time interval I = (t1, t2) such that ña(t1) = ña(t2) = 0 and ña(t) > 0
for any t ∈ I, Ga[I] ≤ 3 ·Go[I] + 2

∫
t∈Ik(t) dt.

Proof of Theorem 1. Let I1, I2, ..., Im be all the intervals in [0, te] such that for each Ii =
(t1, t2), ña(t1) = ña(t2) = 0 and ña(t) > 0 for any t ∈ Ii. Let S = I1 ∪ I2 ∪ · · · ∪ Im.
Recall that the increase due to Case 2 (in the analysis framework above) can only happen
when ña ≥ 1, i.e. only during S. Then, by Lemma 3, the increase of ψ due to Case 2
is at most

∫
t∈Sna(t) + P (sa(t)) dt =

∑m
i=1Ga[Ii] ≤

∑m
i=1

(
3 ·Go[Ii] + 2

∫
t∈Iik(t) dt

)
≤

3 ·Go + 2
∫
t∈Sk(t) dt.
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We now upper bound
∫
t∈Sk(t)dt. Whenever OPT rejects a job, ψ increases by c, and then

ψ stays the same until φ reaches ψ. Since φ(t) increases at the rate of na(t)+P (sa(t)), we have
Ro =

∫
t:ψ(t)>φ(t)na(t) +P (sa(t))dt. Note that k(t) = bψ(t)

c c− b
φ(t)
c c > 0 implies ψ(t) > φ(t).

Thus, Ro ≥
∫
t:k(t)>0na(t) +P (sa(t)) dt. At any time t ∈ S, ña(t) > 0 and hence k(t) < na(t).

Then
∫
t∈Sk(t) dt =

∫
t:t∈S∧k(t)>0k(t) dt <

∫
t:t∈S∧k(t)>0na(t) dt ≤

∫
t:k(t)>0na(t) dt < Ro.

Therefore, the increase of ψ due to Case 2 is at most 3Go + 2Ro. Adding up the increase
of ψ due to Case 1, i.e., Ro, gives ψ(te) ≤ 3Go + 3Ro. By Fact 2 and φ(te) ≤ ψ(te),
Ga +Ra ≤ 6(Go +Ro) and hence UPUW is 6-competitive. J

The rest of the section is devoted to proving Lemma 3. Before giving the potential
analysis, we state a property of set B(t) and show that at any time t, the size of B(t) is
no more than the number of active jobs in OPT by P (T )− 1 (Lemma 5). Without loss of
generality, we assume P (T ) ≥ 1,1 and OPT rejects a job only at its arrival time.

I Property 4. At any time t, the set B(t) only changes upon various events as follows.

(i) If a job j arrives and OPT rejects j, then na − k remains the same, so either B does
not change or j replaces another job j′ with remaining work at least p(j) in B.

(ii) If a job j arrives and OPT admits j, na − k increases by 1, so either B remains empty,
or j is added to B, or another job j′ with remaining work at most p(j) is added to B.

(iii) If UPUW completes a job j, na − k decreases by 1, so either B remains empty or j
leaves B.

(iv) If UPUW rejects a job, then φ reaches a multiple of c, and na − k either remains the
same or decreases by 1. Thus, either B does not change or a job in B leaves B.

I Lemma 5. At any time t, ña(t)− no(t) + 1 ≤ P (T ).

We now show Lemma 5. If ña(t) = 0, ña(t) = 0 ≤ P (T )− 1 (as P (T ) ≥ 1). If sa(t) < T ,
then sa(t) = Q(na(t) + 1) < T and hence na(t) + 1 ≤ P (T ), so ña(t) ≤ na(t) ≤ P (T )− 1.

It remains to consider that ña(t) ≥ 1 and sa(t) = T . Let t′ be the last time before t such
that ña(t′) = 0 or sa(t′) < T . By above, we can show that ña(t′) ≤ P (T )− 1. For any time
x ∈ (t′, t], ña(x) ≥ 1 and sa(x) = T . Let No(x) be the set of jobs arriving during (t′, x] that
are admitted by OPT. Suppose OPT has completed h jobs in No(t) in (t′, t]. Let S be the
schedule obtained by running SRPT at speed T during (t′, t] on jobs B(t′) ∪No(t). Since
SRPT maximizes the number of jobs completed by any time [14], S completes at least h
jobs during (t′, t]. As no(t) ≥ |No(t)| − h, the number of active jobs in S at t is at most
ña(t′) + |No(t)| − h ≤ P (T )− 1 + no(t).

We relate the schedule of UPUW with S. At any time x ∈ [t′, t], letB(x) = {j1, j2, · · · , jña(x)},
ordered in non-decreasing remaining work in UPUW; we always use job ids for tie-breaking.
We can show Lemma 6 below by induction on time [t′, t] over various events stated in
Property 4. Details will be given in the full paper. This lemma implies that at time t, the size
of B(t) is less than the number of active jobs in S, i.e., ña(t) ≤ P (T )− 1 + no(t), implying
Lemma 5.

I Lemma 6. At any time x ∈ (t′, t], there is a one-to-one mapping ρ : B(x)→ B(t′)∪No(x)
such that the remaining work of each ji ∈ B(x) in UPUW is at most that of ρ(ji) in S, and
ρ(j1), ρ(j2), · · · , ρ(jña(x)) are in non-decreasing order of remaining work in S.

1 If P (T ) < 1, we use the algorithm in [4] for job selection, which is 2-competitive for flow plus penalty,
and always run at speed T . When the algorithm is running a job, the power is less than 1 and the
number of active jobs is at least 1, so the total energy usage is at most the total flow time and hence
this algorithm is 4-competitive.
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We now give the potential analysis for proving Lemma 3. Recall that we are considering
an interval I = (t1, t2). Let Ga(t) and Go(t) be the flow plus energy incurred from time t1
up to time t by UPUW and OPT, respectively, for any t ∈ I. It suffices to define a potential
function Φ(t) for any time t ∈ I such that the following conditions hold: (i) Boundary
condition: At time t1 and t2, Φ = 0. (ii) Discrete-event condition: During I, when a job
arrives, or a job is completed by UPUW or OPT, or a job is rejected by UPUW, ∆Φ(t) ≤ 0.
(iii) Running condition: At any other time t ∈ I, dGa(t)

dt + dΦ(t)
dt ≤ 3 · dGo(t)

dt + 2k(t). Then,
Lemma 3 follows by integrating these conditions over I.

Potential function Φ(t). Consider any time t. Let ña(q, t) and no(q, t) be the number
of active jobs in B(t) and OPT, respectively, with remaining work at least q. Note that
ña(t) = ña(0, t) and no(t) = no(0, t). We will drop the parameter t from the notations when
t refers to the current time clearly. Let (·)+ = max(·, 0). We adapt the potential function
given in [7, 3] as follows:

Φ(t) = 3
∫ ∞

0

(ña(q,t)−no(q,t))+∑
i=1

P ′(Q(i))dq .

The boundary condition holds because at t1 and t2, ña = 0, so ña(q) = 0 for all q and
Φ = 0. We now check the discrete-event condition. Note that ña(x) ≥ 1 for any x ∈ (t1, t2).
When a job j arrives and is rejected by OPT, by Property 4(i), there are two cases: (Case
1) B does not change, then Φ does not change. (Case 2) j replaces another job j′ with
remaining work q′ ≥ p(j) in B. Then na(q) decreases by 1 for q ∈ [p(j), q′] and Φ does not
increase. When a job j arrives and is admitted by OPT, by Property 4(ii), a job j′ (which
may be j) with remaining work q′ ≤ p(j) is added to B. Then ña(q) increases by 1 for
q ∈ [0, q′] ⊆ [0, p(j)] and no(q) increases by 1 for q ∈ [0, p(j)]. Thus, ña(q)− no(q) does not
increase for all q and Φ does not increase. When a job is completed by UPUW or OPT,
ña(q) or no(q) changes only at the single point q = 0, which does not affect the integration
and hence Φ remains the same. Finally, when a job is rejected by UPUW, either B does
not change or a job in B leaves B. For the former case, Φ does not change. For the latter
case, let q′ be the remaining work of the job that leaves B. Then ña(q) decreases by 1 for
q ∈ [0, q′], and hence Φ does not increase.

It remains to check the running condition. Consider any time t ∈ (t1, t2) without job
arrival, completion and rejection. Let sa and so be the current speeds of UPUW and OPT,
respectively. To bound the rate of change of Φ, Lemma 7 below shows how Φ changes in an
infinitesimal amount of time (from t to t+ dt). Its proof is based on similar arguments as
in [7, 3] and will be given in the full paper.

I Lemma 7. Consider any time t without job arrival or completion and ña ≥ 1. If
ña < no, then dΦ

dt ≤ 0; if ña ≥ no, then either (i) dΦ
dt ≤ 3 · P ′(Q(ña − no))(−sa + so), or

(ii) dΦ
dt ≤ 3 · P ′(Q(ña − no + 1))(−sa + so) and no ≥ 1, or (iii) dΦ

dt = 0 and ña = no.

I Lemma 8. At any time in (t1, t2) without job arrival, completion and rejection, dGa
dt + dΦ

dt ≤
3 · dGo

dt + 2k.

Proof. Note that during (t1, t2), ña ≥ 1 and ña = na − k. Also, sa = min(Q(na + 1), T ) and
hence dGa

dt = na + P (sa) ≤ 2na + 1 ≤ 2na + ña = 3ña + 2k. Similarly, dGo
dt = no + P (so).

If ña < no, by Lemma 7, dΦ
dt ≤ 0 and thus dGa

dt + dΦ
dt ≤ 3ña + 2k < 3no + 2k ≤ 3dGo

dt + 2k.
Otherwise, if ña ≥ no, we consider the three cases in Lemma 7, where we need the upper
bound on ña − no (Lemma 5).

Case (i): dΦ
dt ≤ 3P ′(Q(ña−no))(−sa + so). By a lemma given in [7] (stated as Lemma 9

below), dΦ
dt ≤ 3(−sa+Q(ña−no))P ′(Q(ña−no))+3P (so)−3(ña−no). If sa = T , by Lemma 5,
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sa = T ≥ Q(ña−no + 1) ≥ Q(ña−no); otherwise, sa = Q(na + 1) ≥ Q(ña + 1) ≥ Q(ña−no).
Thus, dΦ

dt ≤ 3(no +P (so))−3ña and hence dGa
dt + dΦ

dt ≤ 3ña +2k+ dΦ
dt ≤ 3(no +P (so))+2k =

3dGo
dt + 2k.
Case (ii): dΦ

dt ≤ 3P ′(Q(na − no + 1))(−sa + so) and no ≥ 1. By Lemma 9, dΦ
dt ≤

3(−sa +Q(ña−no + 1))P ′(Q(ña−no + 1)) + 3P (so)−3(ña−no + 1). If sa = T , by Lemma 5,
sa = T ≥ Q(ña − no + 1); otherwise, sa = Q(na + 1) ≥ Q(ña + 1) ≥ Q(ña − no + 1). Thus,
dΦ
dt ≤ 3(no+P (so))−3ña−3, and hence dGa

dt + dΦ
dt ≤ 3ña+2k+ dΦ

dt ≤ 3(no+P (so))+2k−3 ≤
3dGo

dt + 2k.
Case (iii): dΦ

dt = 0 and ña = no. Then dGa
dt + dΦ

dt ≤ 3ña+2k = 3no+2k ≤ 3dGo
dt +2k. J

Below is the lemma given in [7], which is used in the proof of Lemma 8.

I Lemma 9. [7] Let P be a strictly increasing, strictly convex, continuous and differentiable
function. Let i, sa, so ≥ 0 be any real. Then, P ′(Q(i))(−sa + so) ≤ (−sa +Q(i))P ′(Q(i)) +
P (so)− i.

3 Arbitrary Penalty and Arbitrary Weight

This section considers jobs of arbitrary penalty and arbitrary weight in the following two
models. In the fixed-speed model, the processor always runs at speed 1 and energy is not a
concern. The objective is to minimize the user cost, i.e., total weighted flow plus penalty. In
the speed scaling model, the processor can scale its speed with an arbitrary power function
P (s) and maximum speed T . Then the objective is to minimize the user cost plus energy.

In the speed scaling model, we give an O((1+ 1
ε )2)-competitive algorithm for weighted flow

plus penalty plus energy, using (1 + ε)2-speedup processor for any ε > 0. In the fixed-speed
model, we give a (1 + ε)2-speed O((1 + 1

ε )
2)-competitive algorithm for weighted flow plus

penalty. This improves the (1 + ε)-speed O( 1
ε (logW + logC)2)-competitive result in [4].

Fractional weighted flow. To obtain these results, we will first focus on the objective
of total fractional weighted flow, and then convert the result for (integral) weighted flow. At
any time t, the fractional weight of an active job j, denoted by w(j, t), is its weight times
its remaining fraction, i.e., w(j, t) = w(j) · q(j,t)p(j) , where q(j, t) is the remaining size of j at t.
Then the fractional weighted flow of job j is

∫∞
r(j)w(j, t)dt, and hence the total fractional

weighted flow is
∫∞

0 wa(t)dt, where wa(t) is the total fractional weight of active jobs at time t.
HDF and future cost. Under a fixed speed function, HDF (highest density first)

minimizes fractional weighted flow [8]. Our algorithm will always rejects a job at its arrival
time and processes the admitted jobs using HDF. Furthermore, at any time, the processor
always scales its speed according to the total fractional weight w of the active jobs, and
we denote this speed by s(w) (for fixed-speed processor, s(w) is a constant). Consider any
time t. Let wa(q, t) be the total fractional weight of active jobs with inverse density at least q.
Then we can define a future cost Φ̂a(t) to capture the total fractional weighted flow to serve
the current active jobs if no jobs arrive in the future [12]:

Φ̂a(t) =
∫ ∞
q=0

∫ wa(q,t)

x=0

x

s(x) dx dq .

Algorithm HDF-AC. We focus on the objective of fractional weighted flow and define
the algorithm HDF-AC that works for both the speed scaling and fixed-speed models. Let
ε > 0 be a constant. Consider any time t.

Job execution: Let wa(t) and sa(t) be the total fractional weight of active jobs and the
speed of HDF-AC. In the fixed-speed model, we use (1 + ε)-speed processor, so sa(t) = 1 + ε ;
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in the speed scaling model, we use (1 + ε)-speedup processor and set sa(t) = (1 + ε) ·
min(Q(wa(t)), T ). Then, HDF-AC runs the admitted jobs using HDF at speed sa(t).

Admission control: Let wa(q, t) be the total fractional weight of active jobs with inverse
density at least q. Let f(x) = x

min(Q(x),T ) in the speed scaling model, and f(x) = x in the
fixed-speed model. Then the future cost at time t is

Φ̂a(t) = 1
1 + ε

·
∫ ∞
q=0

∫ wa(q,t)

x=0
f(x) dx dq .

When a job j arrives, let ∆Φ̂a(t) be the increase in Φ̂a(t) if j is admitted. More precisely, let
d(j) = p(j)/w(j) be the inverse density of j. Then ∆Φ̂a(t) = 1

1+ε ·
∫ d(j)
q=0

∫ wa(q,t)+w(j)
x=wa(q,t) f(x)dx dq.

HDF-AC discards j if v(j) ≤ ∆Φ̂a(t); otherwise, j is admitted.
Our main result is the following theorem.

I Theorem 10. Consider any ε > 0. (i) In the speed scaling model, HDF-AC is (8 + 12
ε )-

competitive for fractional weighted flow plus penalty plus energy, when using (1 + ε)-speedup
processor. (ii) In the fixed-speed model, HDF-AC is (3+ 6

ε )-competitive for fractional weighted
flow plus penalty, when using (1 + ε)-speed processor.

Though the objectives for Theorem 10 (i) and (ii) are different, we present an analysis
framework that works for both objectives. Let OPT be the optimal offline schedule for the
corresponding objective. Without loss of generality, we can assume that OPT rejects a job
at its arrival. Let wo(t) and so(t) be the total fractional weight of active jobs and the speed
of OPT. In the speed scaling model, the objective is fractional weighted flow plus penalty
plus energy. We further assume that OPT runs the BCP algorithm [7], i.e., at any time t,
OPT runs the admitted jobs using HDF at speed so(t) = min(Q(wo(t)), T ). Since BCP is
2-competitive for fractional weighted flow plus energy [7], such assumption on OPT only
increases the competitive ratio by a factor of 2. In the fixed-speed model, the objective is
fractional weighted flow plus penalty. We further assume that OPT runs HDF at speed
so(t) = 1, since HDF minimizes fractional weighted flow [8].

Since OPT runs HDF, we can define its future cost similarly. At any time t, let wo(q, t)
be the total fractional weight of active jobs with inverse density at least q. Recall that
f(x) = x

min(Q(x),T ) in the speed scaling model, and f(x) = x in the fixed-speed model. Then
the future cost of OPT at time t is

Φ̂o(t) =
∫ ∞
q=0

∫ wo(q,t)

x=0
f(x) dx dq .

Overview of analysis. Our analysis exploits amortization and potential functions. We
split the objective into two parts; R denotes the penalty and G denotes the fractional weighted
flow (plus energy). Let Ga(t) and Go(t) denote the objective G incurred up to time t by
HDF-AC and OPT, respectively. Define Ra(t) and Ro(t) similarly for the penalty R. To show
that HDF-AC is (c1+c2)-competitive for the objective G+R against OPT, it suffices to define
a potential function Φ(t) such that the following conditions hold: (i) Boundary condition:
Φ = 0 before any job is released and after all jobs are completed. (ii) Completion condition:
When a job is completed by HDF-AC or OPT, ∆Φ(t) ≤ 0. (iii) Arrival condition: When a
job arrives, ∆Ra(t)+∆Φ(t) ≤ c1 ·(∆Φ̂o(t)+∆Ro(t)), where ∆Φ̂o(t) is the change in the future
cost of OPT at time t. (iv) Running condition: At any other time, dGa(t)

dt + dΦ(t)
dt ≤ c2 ·

dGo(t)
dt .

To see the correctness, note that Ra(t) and Ro(t) changes discretely only at job arrivals,
and Ga(t) and Go(t) changes continuously at other times. Let te be the time when all jobs are
completed by both HDF-AC and OPT. Since the future cost Φ̂o(t) captures the fractional
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weighted flow incurred by OPT to serve the active jobs at t, we have
∫ te

0 ∆Φ̂o(t)dt ≤ Go(te).
Therefore, the correctness follows from integrating these conditions over time, which gives
Ga(te) +Ra(te) ≤ c1 · (

∫ te
0 ∆Φ̂o(t) dt+Ro(te)) + c2 ·Go(te) ≤ (c1 + c2) · (Go(te) +Ro(te)) .

Potential function. We now define a general form of Φ(t) that works for both objectives.
Consider any time t. Recall that f(x) = x

min(Q(x),T ) in the speed scaling model, and f(x) = x

in the fixed-speed model. The potential function Φ is defined as

Φ(t) = 2
ε
·
∫ ∞
q=0

∫ (wa(q,t)−wo(q,t))+

x=0
f(x) dx dq .

The boundary and completion conditions hold obviously. We now check the arrival
condition. We drop the parameter t from all notations when it is clear that t refers to the
current time.

I Lemma 11. When a job j arrives, ∆Ra + ∆Φ ≤ (2 + 4
ε ) · (∆Φ̂o + ∆Ro).

Proof. Let d(j) = p(j)/w(j) be the inverse density of job j. If HDF-AC admits this job,
then wa(q) increases by w(j) for q ∈ [0, d(j)]. Similarly, if OPT admits this job, then wo(q)
increases by w(j) for q ∈ [0, d(j)]. Now, we consider the following two cases.

Case 1: OPT admits j. In this case, ∆Ro = 0. If HDF-AC also admits j, then
wa(q) − wo(q) remains the same for all q, so ∆Φ = 0. Since ∆Φ̂o ≥ 0, ∆Ra + ∆Φ = 0 ≤
(2 + 4

ε ) · (∆Φ̂o + ∆Ro).
Otherwise, HDF-AC rejects j. We analyze using techniques in [12]. Note that ∆Φ̂o =∫ d(j)

q=0
∫ wo(q)+w(j)
x=wo(q) f(x) dx dq. The change of Φ due to OPT is

−2
ε
·
∫ d(j)

q=0

∫ (wa(q)−wo(q))+

x=(wa(q)−wo(q)−w(j))+

f(x) dx dq .

Note that ∆Ra = v(j) ≤ 1
1+ε

∫ d(j)
q=0

∫ wa(q)+w(j)
x=wa(q) f(x) dx dq ≤ 2

ε

∫ d(j)
q=0

∫ wa(q)+w(j)
x=wa(q) f(x) dx dq, and

the change of Φ due to HDF-AC is zero. Thus,

∆Ra + ∆Φ ≤ 2
ε
·
∫ d(j)

q=0

(∫ wa(q)+w(j)

x=wa(q)
f(x) dx−

∫ (wa(q)−wo(q))+

x=(wa(q)−wo(q)−w(j))+

f(x) dx
)

dq .

It was shown in [12] that if the function f satisfies that f(0) ≥ 0 and f is increasing
and subadditive, i.e., for any a, b ≥ 0, f(a + b) ≤ f(a) + f(b), then

∫ wa(q)+w(j)
x=wa(q) f(x)dx −∫ (wa(q)−wo(q))+

x=(wa(q)−wo(q)−w(j))+
f(x)dx ≤ 2

∫ wo(q)+w(j)
x=wo(q) f(x) dx. In the fixed-speed model, f(x) = x

obviously satisfies these conditions. In the speed scaling model, f(x) = x
min(Q(x),T ) . It was

also shown in [12] that x
Q(x) is increasing and subadditive. Clearly, f(x) is also increasing.

Consider any a, b ≥ 0. If a + b ≤ P (T ), it follows directly that f(a + b) ≤ f(a) + f(b);
otherwise, f(a + b) = a+b

T ≤ a
min(Q(a),T ) + b

min(Q(b),T ) = f(a) + f(b). Therefore, in both
cases, we can apply the inequality to get that ∆Ra + ∆Φ ≤ 4

ε ·
∫ d(j)
q=0

∫ wo(q)+w(j)
x=wo(q) f(x)dx dq =

4
ε ·∆Φ̂o ≤ (2 + 4

ε ) · (∆Φ̂o + ∆Ro).
Case 2: OPT rejects j. In this case, ∆Ro = v(j), ∆Φ̂o = 0, and the change of Φ due

to OPT is zero. Similarly, if HDF-AC admits j, then ∆Ra = 0 and the change of Φ due to
HDF-AC is

2
ε
·
∫ d(j)

q=0

∫ wa(q)+w(j)

x=wa(q)
f(x) dx dq ,

which is exactly 2(1 + 1
ε ) times the increase of Φ̂a and is therefore at most 2(1 + 1

ε )v(j).
Otherwise, if HDF-AC also rejects j, ∆Ra = v(j) and the change of Φ due to HDF-AC is
zero. In both cases, ∆Ra + ∆Φ ≤ (2 + 2

ε ) · v(j) ≤ (2 + 4
ε ) · (∆Φ̂o + ∆Ro). J
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It remains to show the running condition. Consider any time t without job arrival or
completion. Let sa and so be the current speeds of HDF-AC and OPT, respectively. To
bound the rate of change of Φ, Lemma 12 below shows how Φ changes in an infinitesimal
amount of time (from t to t+ dt). Its proof is based on similar arguments as in [7, 12] and
will be given in the full paper.

I Lemma 12. Consider any time without job arrival or completion. (i) If wa < wo, then
dΦ
dt ≤ 0. (ii) If wa > wo, then dΦ

dt ≤
2
ε · f(wa − wo) · (−sa + so). (iii) If wa = wo, then

dΦ
dt ≤

2
ε · f(wo) · so.

We are ready to show the running condition for the speed scaling model (Lemma 13) and
for the fixed-speed model (Lemma 14).

I Lemma 13. In the speed scaling model, at any time without job arrival or completion,
dGa
dt + dΦ

dt ≤ (2 + 2
ε ) · dGo

dt .

Proof. Since sa = (1 + ε) min(Q(wa), T ) ≤ (1 + ε)Q(wa) and HDF-AC is using a (1 +
ε)-speedup processor, P (sa) ≤ wa and dGa

dt ≤ 2wa. By the assumption of OPT, so =
min(Q(wo), T ) and dGo

dt ≥ wo. We now consider the three cases stated in Lemma 12. Recall
that f(x) = x

min(Q(x),T ) .
Case (i): wa < wo. By Lemma 12, dΦ

dt ≤ 0, so dGa
dt + dΦ

dt ≤ 2wa < 2wo ≤ (2 + 2
ε ) · dGo

dt .
Case (ii): wa > wo. Note that Q is increasing. By Lemma 12, dΦ

dt ≤
2
ε ·

wa−wo
min(Q(wa−wo),T ) (−(1+

ε) min(Q(wa), T ) + min(Q(wo), T )) ≤ − 2
ε · (wa − wo) ε·min(Q(wa),T )

min(Q(wa−wo),T ) ≤ 2wo − 2wa. Thus,
dGa
dt + dΦ

dt ≤ 2wa + 2wo − 2wa ≤ (2 + 2
ε ) · dGo

dt .
Case (iii): wa = wo. By Lemma 12, dΦ

dt ≤
2
ε ·

wo
min(Q(wo),T ) ·min(Q(wo), T ) = 2

ε · wo. Thus,
dGa
dt + dΦ

dt ≤ 2wa + 2
ε · wo = (2 + 2

ε ) · wo ≤ (2 + 2
ε ) · dGo

dt . J

I Lemma 14. In the fixed-speed model, at any time without job arrival or completion,
dGa
dt + dΦ

dt ≤ (1 + 2
ε ) · dGo

dt .

Proof. It suffices to show that wa + dΦ
dt ≤ (1 + 2

ε ) · wo. Recall that sa = 1 + ε, so = 1 and
f(x) = x. We now consider the three cases stated in Lemma 12.
Case (i): wa < wo. By Lemma 12, dΦ

dt ≤ 0, so wa + dΦ
dt ≤ wa ≤ wo ≤ (1 + 2

ε ) · wo.
Case (ii): wa > wo. By Lemma 12, dΦ

dt ≤
2
ε · (wa − wo) · (−(1 + ε) + 1) = 2wo − 2wa.

Therefore, wa + dΦ
dt ≤ wa + 2wo − 2wa ≤ wo ≤ (1 + 2

ε ) · wo.
Case (iii): wa = wo. By Lemma 12, dΦ

dt ≤
2
ε · wo. Thus, wa + dΦ

dt ≤ wa + 2
ε · wo =

(1 + 2
ε ) · wo. J

In the speed scaling model, by Lemmas 11 and 13, HDF-AC is (4+ 6
ε )-competitive against

OPT. Recall that OPT uses BCP and thus is 2-approximate. Therefore, Theorem 10 (i)
follows. In the fixed-speed model, by Lemmas 11 and 14, HDF-AC is (3 + 6

ε )-competitive
against OPT, which is the actual optimal schedule. Thus, Theorem 10 (ii) follows.

Online algorithm for integral weighted flow. We now convert the result of The-
orem 10 for the objective of (integral) weighted flow. Since HDF is (1 + ε)-speed (1 + 1

ε )-
competitive for weighted flow on a fixed speed processor [8] and the fractional weighted
flow of any schedule (including OPT) is always at most its (integral) weighted flow, we use
the following online algorithm HDF-AC∗: HDF-AC∗ keeps a simulated copy of HDF-AC on
the same job instance. It always follows the admission control of HDF-AC. At any time,
HDF-AC∗ runs at speed (1 + ε) faster than the simulated HDF-AC, but selects the job to
run using HDF on its own active jobs.

The following performance guarantee of HDF-AC∗ follows directly from Theorem 10.
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I Corollary 15. Consider any ε > 0. (i) In the speed scaling model, HDF-AC∗ is (1 +
1
ε )(8 + 12

ε )-competitive for weighted flow plus penalty plus energy, when using (1 + ε)2-speedup
processor. (ii) In the fixed-speed model, HDF-AC∗ is (1 + 1

ε )(3 + 6
ε )-competitive for weighted

flow plus penalty, when using (1 + ε)2-speed processor.

4 Lower Bound for Arbitrary Penalty Jobs

This section gives the lower bound result. Assuming P (s) = sα, we show that the competitive
ratio of any algorithm must grow with α, i.e., the steepness of the power function. This
implies that no O(1)-competitive algorithm exists for arbitrary power function.

I Theorem 16. Consider minimizing flow plus energy plus penalty. For power function
P (s) = sα, if T is unbounded, any algorithm is Ω(α1/2−ε)-competitive for any 0 < ε < 1

2 .

Proof. Let A be any algorithm and OFF be the offline adversary. Let k ≥ 1 be some constant
depending on α (to be defined later). At time 0, the adversary releases two streams of jobs,
namely Stream 1 and Stream 2. Stream 1 contains k2 jobs of size 1 and penalty k2, each
released at time i, where 0 ≤ i ≤ k2 − 1. Stream 2 contains k job of size k and penalty k5,
each released at time jk, where 0 ≤ j ≤ k − 1. The penalty of Stream 2 jobs is large enough
such that A is not competitive if any one of them is rejected. Therefore, A runs Stream 2
jobs one by one (in SRPT) in their arrival order. Depending on the number of Stream 2 jobs
remaining in A at time k2, the adversary may release Stream 3, which contains k4

δ job of
size δ = 1

k and penalty k5, each released at time k2 + iδ, where 0 ≤ i ≤ k4

δ − 1.
Case 1: At time k2, A has less than k

2 Stream 2 jobs remaining. In this case, the
adversary does not release Stream 3. OFF can always run at speed 1 and completes the
Stream 1 jobs one by one in [0, k2] and then completes the Stream 2 jobs one by one in
[k2, 2k2]. Thus, the total flow of OFF is at most k2 · 1 + k · (k2 + k) = O(k3). Since OFF
always consume power 1α = 1, which is at most the number of active jobs at that time,
the energy usage of OFF is at most its flow. As OFF does not reject any job, the flow plus
energy plus penalty of OFF is O(k3).

Consider the schedule of A. If A rejects at least one Stream 2 jobs, the penalty of
A is at least k5. If A rejects more than k2

4 Stream 1 jobs, the penalty of A is at least
k2

4 · k
2 = Ω(k4). If A has at least k2

8 Stream 1 jobs remaining at time k2, the flow of these
jobs is at least

∑k2/8
i=1 i = Ω(k4). In all of the above three cases, the competitive ratio of A is

Ω(k). Otherwise, A does not reject any Stream 2 job, and A rejects at most k2

4 Stream 1
jobs, and there are less than k2

8 Stream 1 jobs remaining at time k2. Thus, during [0, k2], A
has completed at least k2 − k2

4 −
k2

8 = 5k2

8 Stream 1 jobs and at least k − k
2 = k

2 Stream 2
jobs. The work done of A during [0, k2] is at least 5k2

8 + k
2 · k = 9k2

8 . By the convexity of
the power function sα, running at a fixed speed minimizes the energy usage and thus the
energy usage of A is at least ( 9k2

8 /k2)α · k2 = ( 9
8 )αk2. Thus, the competitive ratio of A is

Ω(( 9
8 )α · 1

k ).
Case 2: At time k2, A has at least k2 Stream 2 jobs remaining. In this case, the adversary

releases Stream 3. Similar to Stream 2, without loss of generality, A works on Stream 3 jobs
one by one (in SRPT). OFF can reject all Stream 1 jobs and then always run at speed 1 to
complete the Stream 2 jobs one by one in [0, k2] and then completes the Stream 3 jobs one
by one in [k2, k2 + k4]. Thus, the total penalty of OFF is k2 · k2 = k4 and total flow of OFF
is at most k · k + k4

δ · δ = k2 + k4 = O(k4). Since OFF always consume power 1α = 1, which
is at most the number of active jobs at that time, the energy usage of OFF is at most its
flow. Therefore, the flow plus energy plus penalty of OFF is O(k4).
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Consider the schedule of A. If A rejects at least one Stream 2 or Stream 3 job, the penalty
of A is at least k5. If at time k2 + k4, A has at least k

4 Stream 2 jobs remaining, the flow
of these jobs is at least k

4 · k
4 = Ω(k5). If at time k2 + k4, A has at least k2

8δ Stream 3 jobs
remaining, the flow of these jobs is at least δ ·

∑k2/8δ
i=1 i = Ω(k

4

δ ) = Ω(k5). In all of the above
three cases, the competitive ratio of A is Ω(k). Otherwise, A does not reject any Stream 2
and Stream 3 job, and at time k2 + k4, there are less than k

4 Stream 2 jobs and less than
k2

8δ Stream 3 jobs remaining. Thus, A has completed more than k
2 −

k
4 = k

4 Stream 2 jobs
and more than k4

δ −
k2

8δ Stream 3 jobs during [k2, k2 + k4]. Since A runs Stream 2 jobs and
Stream 3 jobs by SRPT, respectively, the total work done during [k2, k2 + k4] is at least
k
4 · k + (k

4

δ −
k2

8δ ) · δ = k4 + k2

8 . Since running at a fixed speed minimizes the energy usage,
the energy usage of A is at least k4 · ((k4 + k2

8 )/k4)α = Ω(k4 · (1 + 1
8k2 )α) and hence A is

Ω((1 + 1
8k2 )α)-competitive.

Therefore, A is Ω(min(k, ( 9
8 )α( 1

k ), (1+ 1
8k2 )α))-competitive. We set k = α

1
2−ε for 0 < ε < 1

2 .
Since (1+ 1

8y )y is increasing with y, the competitive ratio of A is Ω(min(α 1
2−ε, ( 9

8 )α/α 1
2−ε, (1+

1
8α1−2ε )α1−2ε·α2ε)) = Ω(min(α 1

2−ε, ( 9
8 )α/α 1

2−ε, (1 + 1
8 )α2ε)) = Ω(α 1

2−ε). J
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Abstract
In recent years, the parameterized complexity approach has lead to the introduction of many new
algorithms and frameworks on graphs and digraphs of bounded clique-width and, equivalently,
rank-width. However, despite intensive work on the subject, there still exist well-established hard
problems where neither a parameterized algorithm nor a theoretical obstacle to its existence are
known. Our article is interested mainly in the digraph case, targeting the well-known Minimum
Leaf Out-Branching (cf. also Minimum Leaf Spanning Tree) and Edge Disjoint Paths problems
on digraphs of bounded clique-width with non-standard new approaches.

The first part of the article deals with the Minimum Leaf Out-Branching problem and in-
troduces a novel XP-time algorithm wrt. clique-width. We remark that this problem is known
to be W[2]-hard, and that our algorithm does not resemble any of the previously published at-
tempts solving special cases of it such as the Hamiltonian Path. The second part then looks at
the Edge Disjoint Paths problem (both on graphs and digraphs) from a different perspective –
rather surprisingly showing that this problem has a definition in the MSO1 logic of graphs. The
linear-time FPT algorithm wrt. clique-width then follows as a direct consequence.
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1 Introduction

It is known that the majority of graph problems are NP-complete in general, so alternative
approaches are necessary for tackling these problems. The utilization of parameterized
algorithmics is one such very successful approach, where instead of focusing on the general
class of all graphs we design algorithms on graphs with a bounded structural parameter (or
“width”). This has strong practical motivation, since real-world applications generally work
with specific classes of graphs as input.

“Polynomial runtime” parameterized algorithms are roughly divided into two groups.
The more ideal case constitutes fixed-parameter tractable (FPT) algorithms, where the
runtime is poly(n) · f(k) (n being the input size and k the parameter). Unfortunately, not
all combinations of problems and parameters allow FPT algorithms, and so in some cases it
is necessary to settle for an XP algorithm – i.e. an algorithm with runtime poly(n)f(k). No-
tice that the exponent in XP algorithms increases with the parameter, but still the runtime
remains polynomial for any fixed value of k.
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As for the parameters themselves, the one best known today is the tree-width of
Robertson and Seymour [17] which has allowed for efficient solution of many NP-hard prob-
lems on all graphs having bounded tree-width. The drawback is that the class of graphs
with bounded tree-width is quite restrictive. A lot of research since then has focused on
obtaining a width measure which would be more general and still allow efficient algorithms
for a wide range of NP-hard problems on graphs of bounded width. This has lead to the
introduction of clique-width by Courcelle and Olariu [4] and, subsequently, of rank-width
by Oum and Seymour [16]. Both of these width parameters are related in the sense that
one is bounded if and only if the other is bounded. We refer to Section 2 for further details.

In this article, we provide polynomial algorithms for two well-established problems on
digraphs of bounded clique-width/bi-rank-width.

The first one is Minimum Leaf Out-Branching, a problem which generalizes the Hamilto-
nian Path problem and which is studied e.g. in [5]. The task is to find a spanning
out-tree in a digraph that minimizes the number of leaves. Definition and more details
are provided in Section 3. We remark that the undirected variant is known as Minimum
Leaf Spanning Tree problem (e.g. [19]), and our results apply also to that.
The second one is Edge Disjoint Paths problem, asking for pairwise edge-disjoint paths
between a fixed number of terminal pairs. In this case the directed variant is much more
difficult than the undirected one – see details in Section 4.

Parameterized complexity status of Minimum Leaf Out-Branching remained unsolved in
our previous work on digraphs of bounded bi-rank-width [9], resisting the dynamic program-
ming approaches traditionally used e.g. for clique-width. The provided new Algorithm 12 in
Section 3 solves the problem and is also straightforwardly applicable to undirected graphs.

I Theorem 1 (Algorithm 12). The Minimum Leaf Out-Branching problem on a given digraph
G of clique-width k (with arbitrary number of leaves) can be solved in XP time O(nf(k)),
where f(k) ∼ 2O(k) if a k-expression of G is given, and f(k) ∼ 2O(2k) otherwise.

The second part of the article shortly deals with the Edge Disjoint Paths problem with
a fixed number of paths. Note that this was the only remaining open (directed) variant
of Disjoint Paths with respect to parameterization by clique-width – see [9, 12, 15] for
complexity results and/or algorithms for the other variants. We show in Section 4 that
even the Edge Disjoint Paths problem may be described by an MSO1 formula. This is
somehow surprising given the fact that MSO1 cannot speak about sets of edges, and our
logical formula is definitely not a trivial restatement of the original problem. In the end we
obtain, in connection with [3]:

I Theorem 2 (Theorem 17). Both the undirected and directed variant of the Edge Disjoint
Paths problem with a fixed number of terminal pairs have a linear-time FPT algorithm on
simple (di)graphs of bounded clique-width.

Theorem 2 can, moreover, be directly used as a subroutine in a new algorithm for the
Edge Disjoint Paths problem on tournaments by Chudnovsky and Seymour [in preparation].

2 Clique-width and rank-width

We use standard graph and digraph (directed graph) notation. All our graphs and digraphs
are simple (i.e. do not contain loops or multiple edges) unless specified otherwise.
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I Definition 3 (clique-width, [4]). Let k be a positive integer. A pair (G, γ) is a k-labelled
graph if G is a graph and γ : V (G)→ {1, 2, . . . , k} is a mapping. We call γ(v) for v ∈ V (G)
the label of a vertex v. As γ is usually fixed, we often write just G for the k-labelled graph
(G, γ), and we refer to γ(v) as to the G-label of a vertex v. A k-expression is a well formed
expression t built using the four operators defined below. Let 1 ≤ i, j ≤ k. Then

1. [i] is a nullary operator which represents a graph with a single vertex labelled i,
2. ηi,j , for i 6= j, is a unary operator which adds edges between all pairs of vertices where

one is labelled i and the other is labelled j,
3. ρi→j is a unary operator which changes the labels of all vertices labelled i to j, and
4. ⊕ is a binary operator which represents disjoint union of two k-labelled graphs.

Each k-expression t naturally corresponds to (generates) a k-labelled graph G which will
be denoted for reference by G[t] = G. The clique-width of an undirected graph G is then
the smallest k such that there exists a k-expression generating G. For digraphs clique-width
is defined in just the same way, only the operator ηi,j is replaced by the operator αi,j which
creates directed edges (arcs) from each vertex with label i to each vertex with label j. It is
known [4] that every graph of clique-width k can be generated by an irredundand expression,
i.e. an expression that applies the ηi,j /αi,j operator only in situations when there is no edge
from a vertex of label i to one of label j.

It is quite natural to view a k-expression tG corresponding to G as a tree T with nodes
labelled by subterms of tG (tG being the root), together with a bijection between the leaves
of the tree and vertices of G. In this setting the type of each node t ∈ V (T ) is the top-level
operator of t, and so we have four different node types.

I Example 4. α1,2(ρ1→2(α1,2(ρ1→2(α1,2([1]⊕[2]))⊕[1]))⊕[1]) is a 2-expression corresponding
to a directed clique of size 4. See Fig. 1.
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A = [1] ⊕ [2] C = ρ1→2(α1,2(B)) D = C ⊕ [1] E = α1,2(D)B = ρ1→2(α1,2(A)) ⊕ [1]

Figure 1 Construction of the directed clique of size 4

Closely related to clique-width is another structural parameter, called rank-width [16] (on
undirected graphs) or bi-rank-width [14] (on digraphs). Due to space restrictions we only
refer to [11] for their definitions. The relationship of these measures to the former is that
they are bounded if and only if clique-width is bounded. However, a crucial advantage of
rank-width is that it can be computed optimally by an FPT algorithm. To be more specific:

I Theorem 5 ([2, 16]). rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1 − 1 for all graphs G.

I Theorem 6 ([13, 14]). For every integer parameter k there is an O(n3)-time FPT al-
gorithm that, for a given n-vertex graph G, either finds a bi-rank-decomposition of G of
width at most k, or confirms that the bi-rank-width of G is more than k.

Due to lack of space for comprehensible definitions and explanation of rank-width and
their parse trees we stick with (perhaps better known) clique-width in this article. All the
results, however, could be straightforwardly reformulated for (bi-)rank-width.
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3 Minimum leaf out-branching

Let outG(x) denote the out-degree of x in a digraph G, i.e. the number of edges having their
tail in x. For an edge f and nonadjacent vertices x, y of a digraph G, we write G − f to
denote the graph resulting by removal f from G, and G + (x, y) for the graph obtained by
adding a new edge from x to y. A digraph T is an out-tree if T is an oriented tree with
only one vertex of in-degree zero (called the root). The vertices of out-degree zero are called
leaves of T . An out-forest is a digraph whose weakly connected components are out-trees.

I Definition 7. Let G be a digraph. We say that T is an out-branching of G if T is a
spanning subdigraph of G, i.e. V (T ) = V (G) and E(T ) ⊆ E(G), and T is an out-tree. The
Minimum Leaf Out-Branching problem (or MinLOB for short) is the problem of deciding,
for a digraph G and integer ` on the input, whether G contains an out-branching with at
most ` leaves.

Notice that not every digraph has an out-branching. It is not hard to show that G has
an out-branching if, and only if, there is a vertex v ∈ V (G) such that there is a directed path
from v to any vertex of G. This is checkable in linear-time [1], but the MinLOB problem
itself is NP-complete since it contains the Hamiltonian Path as a special case (` = 1). It is
also possible to analogically define the Maximum Leaf Out-Branching problem (MaxLOB),
asking for an out-branching with at least ` leaves, but this variant seems to have quite
different (and rather easier) algorithmic behaviour than MinLOB.

The core contribution of our paper is to resolve one important question left open in [9];
what is the computational complexity of MinLOB when parameterized by the clique-
width / bi-rank-width of the input graph? It follows by a reduction from Hamiltonian Path
[7] that MinLOB is W[2]-hard with respect to clique-width (even with fixed `), and so does
not have an FPT algorithm unless the Exponential Time Hypothesis fails. The first XP al-
gorithm for the undirected Hamiltonian Path parameterized by the clique-width was due to
Espelage et al [6]. Another XP algorithm for `-MinLOB for every fixed ` and parameterized
by the bi-rank-width has been recently given in [11].

Our new XP algorithm for MinLOB parameterized by the clique-width does not resemble
any of the aforementioned algorithms for the Hamiltonian Path and `-MinLOB problems.
In fact, our new algorithm seems to be in a certain fundamental aspect (see Theorem 13
and Question 14) very different from the many other parameterized algorithms designed for
graphs of bounded clique-width. We suggest that this difference may not be fully understood
yet, and so it deserves further conceptual investigation, too.

3.1 Out-branching and modules
We first show some basic properties of the problem as a prelude to the coming algorithm
in the next section. Though these properties (cf. Definitions 8, 9) are not directly used in
Algorithm 12 and its proof, we consider them worth independent interest.

For a digraph G, a setM ⊆ V (G) is called a module if every vertex ofM has the same in-
neighbourhood and out-neighbourhood (as every other in M) among the vertices not in M .
Generalizing the module concept, we consider a k-labelled digraph (H, γ) such that H ⊆ G.
We say that H is a labelled-modular subdigraph of G if γ−1(i) is a module in G− E(H) for
all i = 1, 2, . . . , k. Note that H is not required to be an induced subdigraph of G.

In other words, H is a labelled-modular subdigraph of G if the existence of an edge in
G− E(H) incident with some v ∈ V (H) “depends only on” the label of v. Notice that if s
is a subexpression of a (irredundand) k-expression t, then the generated k-labelled digraph
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G[s] is always a labelled-modular subdigraph of the whole G[t] (an analogical claim holds
e.g. for bi-rank-decompositions).

Let G be a digraph, H ⊆ G its subgraph and F ⊆ H an out-forest. We call the pair
(F, µ) where µ : V (H) → N an annotated out-forest. We say that the annotated out-forest
(F, µ) extends to an out-branching T ⊆ G if E(F ) = E(T ) ∩ E(H), and for all x ∈ V (H)
we have µ(x) = outT (x) − outF (x). We are going to define an equivalence relation ≈H on
the set of all annotated out-forests of a k-labelled graph H, with the intended meaning to
“capture all important information” about possible extendability of a particular annotated
out-forest into an out-branching.

I Definition 8 (Canonical equivalence). A pair of annotated out-forests (F1, µ1) and (F2, µ2)
in a k-labelled digraph H is canonically equivalent, written as (F1, µ1) ≈H (F2, µ2), if, and
only if, the following holds for each integer ` and every digraph G such that H is a labelled-
modular subdigraph of G: (F1, µ1) can be extended to an out-branching of G with ≤ ` leaves
if and only if (F2, µ2) can be extended to an out-branching of G with ≤ ` leaves.

On the other hand, in Definition 9 we introduce simple “information about (F, µ)” that
is sufficient to determine its equivalence class within ≈H . For every connected component
(out-tree) T0 of F in H, including the isolated vertices of H not incident with any edge of F ,
the shape of T0 is the pair (a,B) where a is the H-label of the root of T0 and B is the set
of all H-labels occurring at the vertices x ∈ V (T0) such that µ(x) > 0 (active vertices).

I Definition 9 (Out-forest signatures). The signature of a (spanning) annotated out-forest
(F, µ) in a k-labelled digraph H is a vector in N∗ consisting of

the number of leaves x of F (incl. isolated vertices) such that µ(x) = 0,
for every i = 1, . . . , k, the sum of µ(x) over all vertices x ∈ V (H) of the H-label i, and
for every possible shape, the number of out-trees of F having this shape.

Notice that the length of this vector depends only on k and not on the size of H.

I Lemma 10. Let (F1, µ1) and (F2, µ2) be a pair of annotated out-forests in a k-labelled
digraph H. If the signatures of (F1, µ1) and (F2, µ2) are equal, then (F1, µ1) ≈H (F2, µ2).

Due to lack of space, we skip the proof of this lemma. The claim clearly suggests that an
XP-time algorithm for MinLOB might exist since the information “carried by” the set of
available signatures is of polynomial size. Unfortunately, even this strong claim is not strong
enough to give such an algorithm (unlike in the finite Myhill–Nerode-type case, e.g. [8], or
in many other XP solvable problems [11]) since we do not know how to process available
signature vectors dynamically along a k-expression.

3.2 A dynamic algorithm for MinLOB
In order to obtain an XP algorithm for the MinLOB problem, we introduce a “weaker”
alternative to Definition 9. Recall that a vertex x of an annotated out-forest (F, µ) is active
if µ(x) > 0. We now relax this notion to suit the coming algorithm.

Assume a k-expression t generating the digraph H = G[t], an annotated out-forest (F, µ)
in H, and a vertex vq ∈ V (H) generated by the leaf q of t. We say that vq is potentially
active in H for the k-expression t if, for every node (subexpression) s of t on the path from
q to the root, the annotated out-forest induced by (F, µ) in G[s] ⊆ H contains an active
vertex (possibly vq itself) of the same G[s]-label as that of vq. In particular, if a vertex x is
active in (F, µ), then x is also potentially active for t. If there is no active vertex of label i
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in (F, µ), then there is also no such potentially active vertex. It may, however, happen that
there are many more potentially active vertices of (F, µ) for t than the active ones.

For every connected component (out-tree) T0 of F in H, we define the weak shape of T0
as the pair (a,B) where a is the H-label of the root of T0 and B is the set of all H-labels
occurring at the vertices x ∈ V (T0) that are potentially active for the k-expression t.

I Definition 11 (Weak signature, cf. Definition 9). The weak signature of a spanning annot-
ated out-forest (F, µ) in the k-labelled digraph H = G[t] generated by a k-expression t is a
vector ~w in Nc (with the appropriate length c) consisting of the sections

wl, the number of leaves x of F (incl. isolated vertices) such that µ(x) = 0,
wa(i) for every i = 1, . . . , k, where wa(i) equals the sum of µ(x) over all vertices x of the
H-label i (informally, the “total multiplicity” of all active vertices of label i), and
ws(a,B) for every possible weak shape (a,B), equal to the number of out-trees (weak
components) of F having this weak shape (a,B) in H for the k-expression t.

The advantage of a weak signature over former signature is that weak signatures are
easier to handle in dynamic programming on a k-expression of the input graph. Still, the
situation is not as easy as if we could dynamically compute the set of all weak signatures of
all possible annotated outforests in our graph—we can only compute a suitable superset of
it via the following straightforward algorithm.

I Algorithm 12. Assume an input consisting of a k-expression t generating a k-labelled di-
graph G on n vertices. The following algorithm computes, in XP-time wrt. the parameter k,
a set U of vectors from Nc (cf. Definition 11) such that U includes all weak signatures of
spanning annotated out-forests in G for t.

I. Input t (a k-expression); G = G[t].
II. At every leaf q = [i] of t (where i ∈ {1, . . . , k}), the graph G[q] is actually a single

vertex vq of label i. Let Uq be the set of weak signatures of the edge-less annotated
out-forests (G[q], µj) where µj(vq) = j, over 0 ≤ j ≤ outG(vq).

III. At every internal node r of t, we compute in the leaves-to-root direction as follows.
r = p⊕ q: Ur is the set, for all pairs ~c ∈ Up, ~d ∈ Uq, of their vector sums ~c+ ~d.
r = ρi→j(q): We initialize Ur = ∅. Then, for every ~c ∈ Uq, ~c = (wl, ~wa, ~ws) as

in Definition 11, we compute; ~wa′ = ~wa except that wa′(j) = wa(j) + wa(i) and
wa′(i) = 0, and ~ws′ “shifting” the components of ~ws according to the effect that
relabeling i→ j has on all possible weak shapes. We add (wl, ~wa′, ~ws′) to Ur.

r = αi,j(q): We initialize Ur = Uq. Then we repeat the following procedure as long
as Ur is changing:

Pick arbitrary ~c ∈ Ur, ~c = (wl, ~wa, ~ws) such that wa(i) > 0, and any weak shapes
(a,B) and (b, C) such that i ∈ B, b = j, and ws(a,B) > 0, ws(j, C) > 0.
Let ~wa′ = ~wa except that wa′(i) = wa(i)− 1.
Let ~ws′ = ~ws except that ws′(a,B) = ws(a,B)−1, ws′(j, C) = ws(j, C)−1, and
ws′(a,B ∪ C) = ws(a,B ∪ C) + 1.
If wa′(i) = 0, then let the label i be subsequently “removed from” the label sets
(of potentially active vertices) of all weak shapes indexing ~ws′.
Finally, add (wl, ~wa′, ~ws′) to Ur.

IV. Output U = Ut.
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Proof. There are two steps in the proof.
Claim. The set U contains, for every annotated out-forest (F, µ) in G such that µ(x) ≤

outG(x)− outF (x), the weak signature of (F, µ) for t.
This is easily proved by leaves-to-root structural induction on t: The claim is trivial at

the leaves. Considering a node r = p ⊕ q, the weak signature of any annotated out-forest
in G[r] that is obtained as a disjoint union of annotated out-forests in G[p], G[q] of weak
signatures ~c, ~d, respectively, equals computed ~c + ~d. Analogically for r = αi,j(q). Notice
that none of those two operations change potential activity of vertices by definition.

Consider one iteration at a node r = αi,j(q). Let (F + (u, v), µ′) be an annotated out-
forest in G[r] such that the weak signature ~c of (F, µ), µ(u) = µ′(u) + 1, has already been
computed in previous iterations of Ur by the inductive assumption. Hence u of G[r]-label i
is active in (F, µ) and ~c contains a weak shape (a,B) such that i ∈ B. Furthermore, since
F + (u, v) is an outforest, ~c contains a weak shape (b, C) such that b = j is the G[r]-label
of v. Then the vector (wl, ~wa′, ~ws′) computed by the algorithm from ~c is exactly the weak
signature of (F + (u, v), µ′) by definition.

Claim. Algorithm 12 runs in XP time, i.e. in time O(nf(k)) where f(k) ∼ 2O(k).
The runtime of the algorithm is clearly dominated (up to a constant multiple of the

exponent) by the number of possible weak signature vectors of length c. It is c = 1+k+k2k.
The value of each vector component may be a natural number up to n for wl, ~ws and up to
n2 for ~wa. Hence the claim follows. J

The importance of Algorithm 12 comes from the following crucial statement.

I Theorem 13. Suppose that the set U = Ut computed in Algorithm 12 contains a weak
signature vector ~w = (wl, ~wa, ~ws) such that wl = `, ~wa = ~0, and ~ws containing only one
non-zero entry 1 (i.e. ~w corresponds to a weak signature of an out-tree with ` leaves and
zero annotation). Then the graph G = G[t] contains an out-branching with ` leaves.

Consequently, Algorithm 12 solves the Minimum Leaf Out-Branching problem – for a
given G and arbitrary ` – in XP-time wrt. the clique-width k of G (Theorem 1).

Proof. Let ~c ∈ Us be a weak signature vector computed by Algorithm 12 on a subexpression
s of the k-expression t. A derivation tree δ of ~c over t is a rooted tree which is a subdivision
of that of s, and every node of δ is labelled with one weak signature vector as follows:

Each r ∈ V (s) ⊆ V (δ) is labelled with some ~cr ∈ Ur such that the root of δ is labelled by
~c, and for each edge (r, q) ∈ E(s) it holds that ~cr is computed from ~cq by Algorithm 12.
Moreover, (r, q) ∈ E(δ) unless r is of the form “r = αi,j(q)”. If r = αi,j(q) and ~cr

was created from ~cq by adding k edges, then (r, q) is replaced with an r–q -path (r0 =
r, r1, . . . , rk = q) of length k in δ such that ~cr`

, 0 ≤ ` < k, is obtained from ~cr`+1 by one
(productive) iteration of the “r = αi,j(q)” step in III.

Typically, one vector ~c can have many derivation trees.
Such a derivation tree δ is realizable over t if there exists an annotated out-forest (F, µ) in

G[s] such that, for each node d of δ, the corresponding subforest of (F, µ) has weak signature
equal to the label of d. Obviously not all vectors in Us have realizable derivations, in general.

Let V ⊆ U be the set of good vectors assumed in the statement of this theorem, i.e. of
those vectors ~w = (wl, ~wa, ~ws) ∈ U such that wl = `, ~wa = ~0, and ~ws containing only
one non-zero entry 1. Among all the good vectors ~w ∈ V, we select ~w0 and a derivation
tree δ0 of ~w0 such that there is a derivation tree δ1 ⊆ δ0 which is realizable over t and
δ1 maximizes the number of edges of its realizing out-forest (F1, µ1). We aim to show, by
means of contradiction, that δ1 = δ0. Then (F1, µ1) would be a realization of whole δ0 of
weak signature ~w0 ∈ V, and hence F1 is an outbranching with ` leaves by the definition of V.
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Let δ1 ( δ0. Analyzing Algorithm 12. III, one easily finds out that both the “r = p⊕ q”
and “r = ρi→j(q)” operations preserve realizability. Hence we have got a realizing out-forest
(F1, µ1) of δ1 over t, its weak signature ~c1, and the label ~c2 of the parent of the root of δ1 in
the derivation tree δ0 such that: ~c2 results from ~c1 by one iteration of the “r = αi,j(q)” step
in III, but no single edge of G can be added to (F1, µ1) to produce an out-forest of weak
signature ~c2. In the rest of the proof we are going to construct another annotated out-forest
with one more edge than (F1, µ1) such that its weak signature is contained in the derivation
tree of some good vector in V (and this will be a contradiction to the assumptions).

We need a few more technical terms before proceeding with our proof.
An out-branching of a weak signature vector ~c is any out-tree Γ such that V (Γ) is the
multiset of weak shapes respecting their multiplicities given by ~c, i.e. every weak shape
has the appropriate number of unique copies in V (Γ). Informally, if ~c were realizable by
an out-forest F , then the vertices of Γ would be all the out-trees of F .
Considering a weak signature ~c labelling a node of a derivation tree δ, we say that an
out-branching Γ of ~c is determined by δ if the following holds for every pair x, y ∈ V (Γ):
(x, y) ∈ E(Γ) iff the computation run of Algorithm 12 associated with δ contains a
“directed sequence” of αi,j operations interconnecting the particular copies x to y.
An out-branching Γ of a weak signature ~c is feasible for t if there exists good ~d ∈ V such
that a derivation tree δ of ~d contains the label ~c and Γ is determined by δ.

Informally, the out-branching Γ of ~c outlines the “intended arrangement” of components of
~c in a (potential) resulting out-branching of G.

In our case we have got an out-branching Γ1 of the aforementioned weak signature ~c1
(of (F1, µ1)) determined by the derivation tree δ0. Let (x, y) ∈ E(Γ1) be its edge such that
x is a copy of the weak shape (a,B), i ∈ B, and y is a copy of the weak shape (j, C),
and that ~c2 results from ~c1 in the iteration of the “r = αi,j(q)” step (III) which picks the
weak shapes (a,B) and (j, C) in ~c1. The digraph Γ1 − (x, y) has two weak components; X
containing x and Y containing y. Let F1 = L1 ∪ L′1 be a partition of F1 such that L1 is
formed by the out-trees corresponding to the vertices of X and L′1 is formed by those of Y ,
and, particularly, let Tx ⊆ L1, Ty ⊆ L′1 be the out-trees corresponding to x, y of Γ1. Hence
the root v1 of Ty has F1-label j and some potentially active vertex u1 in Tx has F1-label i,

We may as well assume that δ1, its realization (F1, µ1) and x, y are chosen – subject
to optimality in the previous criteria – such that they minimize the distance from the root
of δ1 to one of its nodes d2 satisfying the following: In the annotated subforest (F2, µ2)
induced from (F1, µ1) at the derivation node d2 and containing u1, there exists a vertex
u2 ∈ V (F2) ∩ V (L1) such that u2 is active in (F2, µ2) and u2 has the same F2-label as u1
(possibly u2 = u1). This leads to two cases to be considered:

i. The distance to our d2 is zero. Then there is an active vertex u2 ∈ V (L1) in (F1, µ1) of
the F1-label i, and so (u2, v1) is an edge of G.

ii. The distance to our d2 is non-zero. Then, in particular, all active vertices of (F1, µ1) of
the F1-label i belong to L′1.

Ad (i), we take the out-forest F ′1 = F1 + (u2, v1) ⊆ G. Let ~c1
′ be the weak signature of

the annotated out-forest (F ′1, µ′1) where µ′1(u2) = µ1(u2) − 1 and µ′1(x) = µ1(x) otherwise,
and δ′1 the derivation tree of ~c1

′ realizing (F ′1, µ′1). Let x′ be the vertex of Γ1 corresponding
to the out-tree of F1 containing u2, let Γ′1 = Γ1 − (x, y) + (x′, y), and Γ′′1 be obtained from
Γ′1 by contracting (x′, y). Clearly, Γ′1 is an out-branching of ~c1 and feasibility of Γ1 naturally
implies that also Γ′1 is feasible for t. Hence Γ′′1 is a feasible out-branching of ~c1

′ for t. The
derivation tree witnessing feasibility of Γ′′1 (in place of δ0), its subtree δ′1 (in place of δ1),
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and the annotated out-forest (F ′1 = F1 + (u2, v1), µ′1) contradict the optimality of our choice
of ~w0 and δ0 above. The proof is finished in this case (i).

Ad (ii), let the F2-label of u1 and u2 be i′. Let d3 be the parent node of d2 in δ1 and
(F3, µ3) be induced from (F1, µ1) at d3. By the optimality of our choice of d2, the operation
(cf. III) taking place at d3 must be an iteration of αi′,j′ adding an edge from u2 (or u2 would
still be active in (F3, µ3)). Let (u2, v) ∈ E(F3) \E(F2) be this added edge. Moreover, since
u1 is still potentially active in (F1, µ1), there exists a vertex u3 ∈ V (F2)∩V (L′1) of F2-label
i′ active in (F3, µ3), and (u3, v) ∈ E(G).

Let F ′3 = F2 + (u3, v) and µ′3 = µ3 except that µ′3(u2) = µ3(u2) + 1, µ′3(u3) = µ3(u3)−1.
The (F ′3, µ′3) is an annotated out-forest in which u2 is still active. Now, if u3 is active in
(F1, µ1), then we set F ′1 = F1 − (u2, v) + (u3, v) and µ′1 accordingly. If u3 is not active
in (F1, µ1), then we pick any edge (u3, v

′) ∈ E(F1) \ E(F3) and subsequently define F ′1 =
F1 − (u2, v) + (u3, v)− (u3, v

′) + (u2, v
′) and µ′1 = µ1. Again, it is routine to verify that F ′1

is an out-forest in G in both cases. Let ~c1
′ be the weak signature of new (F ′1, µ′1) and δ′1 the

derivation tree of ~c1
′ realizing (F ′1, µ′1).

Finally, we apply the computation run of the derivation tree δ0 (starting up from the
root of δ1) onto the top of δ′1. In this way we obtain an out-branching Γ′1of ~c1

′ that is an
appropriate local modification of Γ1. It follows from our choice of u2, u3 and their out-edges
that Γ′1 is also feasible for t. Now we have an alternative optimal choice of ~w′0 ∈ V and
δ′0 which are witnessing feasibility of Γ′1, and of (F ′1, µ′1) in place of (F1, µ1). This time,
however, d3 with δ′1 contradicts the optimality of our previous choice of d2 (the distance
from the root of δ′1 to d3 is smaller by one).

This contradiction closes case (ii), and so the proof is finished. J

I Question 14. Seeing the complications in the proof of Theorem 13, one may naturally
ask about a simpler solution of the problem. Say, cannot one come up with a better version
of Definition 9 that, together with an appropriate modification of Lemma 10, would directly
provide us with an XP algorithm? To be more formal, we ask whether there exists an
equivalence relation ∼ on the set of annotated out-forests in a k-labelled graph H such that
∼ refines ≈H (Definition 8) for every particular H, and
the set of nonempty classes of ∼ for particular H can be computed dynamically over a
k-expression of H in XP time.

4 Edge-disjoint paths

I Definition 15. In the Disjoint Paths problem, an input is a graph (or digraph) G and
k pairs of terminals (s1, t1), . . . , (sk, tk), where si, ti ∈ V (G) for 1 ≤ i ≤ k. The question
is whether there exists a collection of k pairwise vertex-disjoint paths P1, . . . , Pk in G such
that Pi connects si to ti, i = 1, . . . , k.

The Edge Disjoint Paths problem is defined analogously with requiring the paths
P1, . . . , Pk to be only pairwise edge-disjoint.

While the undirected Disjoint Paths variants are FPT solvable when parameterized
simply by the number of paths (terminal pairs) [18], the directed case is NP-complete already
for two paths in general. Hence it makes sense to look for suitable additional parameter-
izations of this problem, e.g. by clique-width. Note, on the other hand, that the Disjoint
Paths problem with the number of paths k on the input is para-NP-complete for graphs
of bounded clique-width [12], and the Edge Disjoint Paths problem with k on the input is
para-NP-complete even for graphs of tree-width two [15].
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I Definition 16. The monadic second order logic of one-sorted adjacency graphs, commonly
abbreviated as MSO1, has variables for graph vertices (say x, y, z . . . ) and for vertex sets
(X,Y, Z . . . ), common logic connectives and quantifiers, and a binary relational predicate
edge. When dealing with directed graphs, we write arc instead of edge. Note that quanti-
fication over sets of edges is not possible (unlike in the more general MSO2 language).

To give examples of MSO1, we express that X is a dominating set in a graph G as
δ(X) ≡ ∀y 6∈X ∃z ∈X edge(z, y), and that a digraph G is acyclic as α ≡ ∀X ∃y ∈X ∀z ∈
X¬ arc(z, y). The MinLOB problem, on the other hand, is not expressible in MSO1 (even
with constant number of leaves) since neither the Hamiltonian Path is. Interestingly, the
“dual” MaxLOB problem has an MSO1 definition since, e.g. [10], a solution to MaxLOB
is a complement to an out-connected dominating set in G.

Similarly, the (vertex) disjoint paths problem for a fixed k has a relatively easy description
in MSO1, e.g. [10]. For edge-disjoint paths with fixed k the situation is more complicated
– the inability to handle sets of edges seems to prevent us from expressing that two paths
(possibly sharing many vertices) are indeed edge disjoint. Yet, with a suitable trick we are
able to express the existence of k directed pairwise edge-disjoint paths in MSO1, and hence
also to show membership in FPT when parameterized by clique-width or rank-width.

I Theorem 17. Let G be a digraph, and (s1, t1), . . . , (sk, tk) be pairs of terminals in G.
There exists an MSO1 formula πk such that G |= πk(s1, . . . , sk, t1, . . . , tk) if, and only if,
the corresponding directed k edge-disjoint paths problem in G has a solution.

Proof. We start with an informal sketch of our approach. The initial idea is to focus on such
collections of pairwise edge-disjoint si–ti paths Pi, 1 ≤ i ≤ k, in G that lexicographically
minimize the length vector

(
len(P1), . . . , len(Pk)

)
. So each Pi is an induced path in the

subgraph G − E(P1 ∪ · · · ∪ Pi−1). Then, by standard means, we “identify” each si–ti path
Pi with its vertex set Xi, and express the existence of Pi as the nonexistence of a separation
between si, ti inside Xi of G − E(P1 ∪ · · · ∪ Pi−1). The difficult part of this solution is to
specify the edges E(Pj), 1 ≤ j < i. Formally, let

%(x, y, Z, r) ≡ ∀Y
[
(x ∈ Y ∧ y 6∈ Y )→ (1)

∃z, z′ ∈ Z
(
z ∈ Y ∧ z′ 6∈ Y ∧ z 6= r 6= z′ ∧ arc(z, z′)

)]
be a formula stating that there exists a directed path from x to y on the vertices Z \ {r}
(note that {x, y} 6⊆ Z implies G 6|= %(x, y, Z, r)), and put

µ(s, t, Z, u, v) ≡ %(s, u, Z, v) ∧ %(v, t, Z, u) (2)

Claim. Let Z be a vertex subset of G such that s, t ∈ Z and the subgraph G[Z] ⊆ G induced
on the vertices Z contains a directed s–t-path. Then the following three statements hold:

(i) If G |= µ(s, t, Z, u, v), then {s, t, u, v} ⊆ Z.
(ii) If G |= ¬µ(s, t, Z, u, v), then no s–t-path in G[Z] may contain the edge (u, v).
(iii) Suppose Z is inclusion-minimal such that G[Z] contains a s–t-path P . Then such P is

unique and E(P ) is the set of those (u, v) ∈ E(G) such that G |= µ(s, t, Z, u, v).
For (i) the proof follows directly from the definition of µ(s, t, Z, u, v). To see that (ii)
also holds, it is enough to note that every edge (u, v) of every s–t-path in G[Z] satisfies
G |= µ(s, t, Z, u, v) by (1). Finally to prove (iii) let us suppose that (u, v) ∈ E(G[Z]) \E(P )
(i.e., (u, v) points “backwards” on P due to minimality of Z). If in (2), for instance, G |=
%(s, u, Z, v), then the corresponding s–u-path joined with the u–t-subpath of P would result
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in an s–t-path in G[Z] avoiding v, a contradiction to minimality of Z. This finishes the
proof of the claim.

Now, (iii) provides us with a criterion for identifying edges used by one particular s–t-
path. To make use of it in a k path problem, we have to identify edges used by the first path
P1 in G, then edges used by P2 in G−E(P1), then those used by P3 in G−E(P1 ∪P2), etc.
For that we use the following trick which “replaces” the atomic predicate arc in (1) with
appropriate recursively defined (3) formulas αj where j = 1, . . . , k. For simplicity, we write
ŝj as a shortcut for the list s1, s2 . . . , sj , and analogically for t̂j , X̂j .

α1(u, v) ≡ arc(u, v) , (3)

αj+1(u, v, ŝj , t̂j , X̂j) ≡ αj(u, v, ŝj−1, t̂j−1, X̂j−1) ∧ ¬µj(sj , tj , Xj , u, v, ŝj−1, t̂j−1, X̂j−1)

where µj ≡ %j(sj , u,Xj , v, ŝj−1, t̂j−1, X̂j−1)∧%j(v, tj , Xj , u, ŝj−1, t̂j−1, X̂j−1) analogically to
(2), and %j is replacing the arc predicate in % (1) simply as follows

%j(x, y, Z, r, ŝj−1, t̂j−1, X̂j−1) ≡ ∀Y
[
(x ∈ Y ∧ y 6∈ Y )→ (4)

∃z, z′ ∈ Z
(
z ∈ Y ∧ z′ 6∈ Y ∧ z 6= r 6= z′ ∧ αj(z, z′, ŝj−1, t̂j−1, X̂j−1)

)]
.

Writing just %′j in place of previous %j “without r” (4), we obtain the solution

πk(ŝk, t̂k) ≡ ∃X̂k %
′
1(s1, t1, X1) ∧ %′2(s2, t2, X2, ŝ1, t̂1, X̂1)∧

· · · ∧ %′k(sk, tk, Xk, ŝk−1, t̂k−1, X̂k−1) .

It remains to prove that G |= πk(ŝk, t̂k) if, and only if, there exist k edge-disjoint si–ti
paths in G where i = 1, . . . , k. In one direction, suppose a particular choice of the vertex
sets X̂k satisfying πk on G. According to (3) and (4) this assumption means that, for each
i = 1, . . . , k by induction, there exists a directed si–ti path Pi on the vertices Xi such
that Pi completely avoids (ii) edges potentially used by the paths P1, . . . , Pi−1. Hence such
P1, . . . , Pk are pairwise edge-disjoint in G.

Conversely, among all collections of k pairwise edge-disjoint si–ti paths Pi in G, we select
one lexicographically minimizing the vector

(
len(P1), . . . , len(Pk)

)
. Then, clearly, each Xi =

V (Pi) for i = 1, . . . , k is inclusion-minimal inducing an si–ti path in G−E(P1 ∪ · · · ∪Pi−1),
and so the claim (iii) applies here. Hence, by induction on i, we conclude from (3) that G |=
αi+1(u, v, ŝi, t̂i, X̂i) iff (u, v) ∈ E(G)\E(P1∪· · ·∪Pi). And since Pi+1 ⊆ G−E(P1∪· · ·∪Pi),
it follows from (4) that our selected sets X1, . . . , Xk satisfy πk(ŝk, t̂k) on G. J

In connection with [3]1 we finally obtain:

I Corollary 18. Both the undirected and directed edge-disjoint paths problems with fixed k
have a linear FPT algorithm on simple (di)graphs of bounded clique-width.

I Question 19. Notice that the MSO1 formula πk constructed in the proof of Theorem 17
has quantifier alternation depth growing with k. Therefore the worst-case runtime estimate
of Corollary 18 coming from [3] has a tower-exponential dependency on the parameter k.
The question thus is whether an MSO1 description of the k edge-disjoint paths problem is
possible with fixed quantifier alternation depth. (An ad-hoc estimate of the Myhill–Nerode
congruence classes of the problem suggests this might be true.)

1 Note that [3] considered only undirected graphs, but the same results also hold for digraphs, cf. [14, 8].



Robert Ganian, Petr Hliněný, and Jan Obdržálek 415

References
1 J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications. Springer

Monographs in Mathematics. Springer, second edition, 2009.
2 D. Corneil and U. Rotics. On the relationship between cliquewidth and treewidth. SIAM

J. Comput., 34(4):825–847, 2005.
3 B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems

on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.
4 B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete Appl.

Math., 101(1-3):77–114, 2000.
5 P. Dankelmann, G. Gutin, and E. Kim. On complexity of minimum leaf out-branching

problem. Discrete Appl. Math., 157(13):3000–3004, 2009.
6 W. Espelage, F. Gurski, and E. Wanke. How to solve NP-hard graph problems on clique-

width bounded graphs in polynomial time. InWG’01, volume 2204 of LNCS, pages 117–128.
Springer, 2001.

7 F. Fomin, P. Golovach, D. Lokshtanov, and S. Saurab. Clique-width: On the price of
generality. In SODA’09, pages 825–834. SIAM, 2009.

8 R. Ganian and P. Hliněný. On parse trees and Myhill–Nerode–type tools for handling
graphs of bounded rank-width. Discrete Appl. Math., 158:851–867, 2010.

9 R. Ganian, P. Hliněný, J. Kneis, A. Langer, J. Obdržálek, and P. Rossmanith. On digraph
width measures in parametrized algorithmics. In IWPEC’09, volume 5917 of LNCS, pages
161–172. Springer, 2009.

10 R. Ganian, P. Hliněný, J. Kneis, A. Langer, J. Obdržálek, and P. Rossmanith. Digraph
width measures in parametrized algorithmics. Submitted. Available from: http://www.
fi.muni.cz/~hlineny/Research/papers/kenny-full.pdf, 2010.

11 R. Ganian, P. Hliněný, and J. Obdržálek. Unified approach to polynomial algorithms on
graphs of bounded (bi-)rank-width. Submitted, 2010. 29 p.

12 F. Gurski and E. Wanke. Vertex disjoint paths on clique-width bounded graphs. Theoret.
Comput. Sci., 359(1-3):188–199, 2006.

13 P. Hliněný and S. Oum. Finding branch-decomposition and rank-decomposition. SIAM J.
Comput., 38:1012–1032, 2008.

14 M. Kanté. The rank-width of directed graphs. arXiv:0709.1433v3, March 2008.
15 T. Nishizeki, J. Vygen, and X. Zhou. The edge-disjoint path problem is NP-complete for

series-parallel graphs. Discrete Appl. Math., 115(1-3):177–186, 2001.
16 S. Oum and P. D. Seymour. Approximating clique-width and branch-width. J. Combin.

Theory Ser. B, 96(4):514–528, 2006.
17 N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. J.

Algorithms, 7(3):309–322, 1986.
18 N. Robertson and P. D. Seymour. Graph minors. XIII: The disjoint paths problem. J.

Comb. Theory Ser. B, 63(1):65–110, 1995.
19 G. Salamon and G. Wiener. On finding spanning trees with few leaves. Inform. Process.

Lett., 105(5):164–169, 2008.

STACS’11

http://www.fi.muni.cz/~hlineny/Research/papers/kenny-full.pdf
http://www.fi.muni.cz/~hlineny/Research/papers/kenny-full.pdf


From Pathwidth to Connected Pathwidth
Dariusz Dereniowski∗1

1 Department of Algorithms and System Modeling, Gdańsk University of
Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
deren@eti.pg.gda.pl

Abstract
It is proven that the connected pathwidth of any graph G is at most 2 · pw(G) + 1, where

pw(G) is the pathwidth of G. The method is constructive, i.e. it yields an efficient algorithm
that for a given path decomposition of width k computes a connected path decomposition of
width at most 2k + 1. The running time of the algorithm is O(dk2), where d is the number of
‘bags’ in the input path decomposition.

The motivation for studying connected path decompositions comes from the connection
between the pathwidth and some graph searching games. One of the advantages of the above
bound for connected pathwidth is an inequality cs(G) ≤ 2s(G) + 3, where cs(G) is the connec-
ted search number of a graph G and s(G) is its search number, which holds for any graph G.
Moreover, the algorithm presented in this work can be used to convert efficiently a given search
strategy using k searchers into a connected one using 2k + 3 searchers and starting at arbitrary
homebase.

1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and
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Keywords and phrases connected pathwidth, connected searching, fugitive search games, graph
searching, pathwidth
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1 Introduction

The notions of pathwidth and treewidth are receiving increasing interest since the series of
Graph Minor articles by Robertson and Seymour. The importance of those parameters is
due to their numerous practical applications, connections with several graph parameters and
usefulness in designing graph algorithms. Informally speaking, the pathwidth of a graph G,
denoted by pw(G), says how closely G is related to a path. Moreover, a path decomposition
captures the linear path-like structure of G. (For a definition see Section 2.)

Here we briefly describe a graph searching game that is the main motivation for the
results presented in this paper. A team of k searchers is given and the goal is to find an
invisible and fast fugitive located in a given graph G. The fugitive has also the complete
knowledge about the graph and about the strategy used by the searchers, and therefore
he will avoid being captured as long as possible. The fugitive is captured when a searcher
reaches his location. In this setting the game is equivalent to the problem of clearing all
edges of a graph that is initially entirely contaminated. There are two main types of this
graph searching problem. In the node searching two moves are allowed: placing a searcher on
a vertex and removing a searcher from a vertex. An edge becomes clear whenever both of its
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endpoints are simultaneously occupied by searchers. In the edge searching we have, besides to
the two mentioned moves, a move of sliding a searcher along an edge. In this model an edge
{u, v} becomes clear if a searcher slides from u to v and either all the other edges incident
to u have been previously cleared or another searcher occupies u. In both cases the goal
is to find a search strategy (a sequence of moves of the searchers) that clears all the edges
of G. The node (edge) search number of G, denoted by ns(G) (s(G), respectively), equals
the minimum number of searchers sufficient to construct a node (edge, respectively) search
strategy. An important property is that pw(G) = ns(G)− 1 for any graph G [13, 14, 15, 18].
The edge searching problem is closely related to node searching, i.e. |s(G)− ns(G)| ≤ 1 [4],
and consequently to pathwidth, pw(G) ≤ s(G) ≤ pw(G) + 2.

In this work we are interested in special types of path decompositions called connected
path decompositions. The motivation comes from the need of creating connected search
strategies. An edge search strategy is connected if the subgraph of G that is clear is always
connected. The minimum number of searchers that guarantees the capture of the fugitive
by a connected (edge) search strategy, denoted by cs(G), is the connected search number
of G. This model of graph searching receives recently a growing interest, because in many
applications the connectedness is an requirement.

Related work. There are several results that give a relation between the connected
and the ‘classical’ search numbers of a graph. Fomin et al. proved in [7] that the connected
search number of an n-node graph of branchwidth b is bounded by O(b logn) and this bound
is tight. One of the implications of this result is that cs(G) = O(logn)pw(G). Nisse proved
in [19] that cs(G) ≤ (tw(G)+2)(2s(G)−1) for any chordal graph G. Barrière et al. obtained
in [2] a constant upper bound for trees, namely for each tree T , cs(T )/s(T ) ≤ 2. On the
other hand, there exists an infinite family of graphs Gk such that cs(Gk)/s(Gk) approaches
2 when k goes to infinity [3].

Fraigniaud and Nisse presented in [9] a O(nk3)-time algorithm that takes a width k tree
decomposition of a graph and returns a connected tree decomposition of the same width. (For
definition of treewidth see e.g. [5, 21].) Therefore, tw(G) = ctw(G) for any graph G. This
method cannot be applied for proving the same result for connected path decompositions,
because the decomposition that the algorithm in [9] constructs is not, in general, a path
decomposition even when a path decomposition is given as an input. That result also yields
an upper bound of cs(G) ≤ (logn+ 1)s(G) for any graph G. The problems of computing the
pathwidth (the search number) and the connected pathwidth (the connected search number)
are NP-hard, also for several special classes of graphs, see e.g. [6, 11, 12, 16, 17, 20].

This work. This paper presents an efficient algorithm that takes a (connected) graph
G and its path decomposition P = (X1, . . . , Xd) of width k as an input and finds in time
O(dk2) a connected path decomposition C = (Z1, . . . , Zm) of width at most 2k + 1, where
m ≤ kd. This solves an open problem stated in several papers, e.g. in [1, 2, 3, 7, 8, 9, 10, 22],
since it implies that for any graph G, cpw(G) ≤ 2pw(G) + 1, and improves previously known
estimations [7, 19]. The path decomposition C can be turned into a monotone connected search
strategy using at most 2k + 3 searchers. Thus, in terms of the graph searching terminology,
the bound immediately implies that mcs(G) ≤ cpw(G) + 2 ≤ 2pw(G) + 3 ≤ 2s(G) + 3, where
mcs(G) is the monotone connected search number of G. (A search strategy is monotone if the
fugitive cannot reach a previously cleared edge.) Since cs(G) ≤ mcs(G), the bound can be
restated for the connected search number of a graph, cs(G) ≤ 2s(G)+3. Moreover, the factor
2 in the bound is tight [3]. The bound finds also applications in designing approximation
algorithms, for it implies that the pathwidth and the connected pathwidth (the search
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number, the connected search number, and some other search numbers not mentioned here,
e.g. the internal search number) are within a constant factor of each other.

2 Preliminaries and basic definitions

Given a simple graph G = (V (G), E(G)) and its subset of vertices X ⊆ V (G), the subgraph
of G induced by X is G[X] = (X, {{u, v} ∈ E(G) : u, v ∈ X}). For a simple (not necessary
connected) graph G, H is its connected component if H is connected, that is, there exists a
path in H between each pair of vertices, and each proper supergraph of H is not a subgraph
of G. For X ⊆ V (G) let NG(X) = {u ∈ V (G) \X : {u, x} ∈ E(G) for some x ∈ X}.

I Definition 1. A path decomposition of a simple graph G = (V (G), E(G)) is a sequence
P = (X1, . . . , Xd), where Xi ⊆ V (G) for each i = 1, . . . , d, and

◦
⋃
i=1,...,dXi = V (G),

◦ for each {u, v} ∈ E(G) there exists i ∈ {1, . . . , d} such that u, v ∈ Xi,
◦ for each i, j, k, 1 ≤ i ≤ j ≤ k ≤ d it holds Xi ∩Xk ⊆ Xj .

The width of the path decomposition P is width(P) = maxi=1,...,d |Xi| − 1. The pathwidth of
G, pw(G), is the minimum width over all path decompositions of G.

A path decomposition P is connected if G[X1 ∪ · · · ∪Xi] is connected for each i = 1, . . . , d.
Then, cpw(G) denotes the minimum width over all connected path decompositions of G.

I Definition 2. Given a graph G and its path decomposition P = (X1, . . . , Xd), a node-
weighted graph G = (V (G), E(G), ω) derived fromG and P is the graph with vertex set V (G) =
V1 ∪ · · · ∪ Vd, where Vi = {vi(H) : H is a connected component of G[Xi]}, i = 1, . . . , d,
and edge set E(G) = {{vi(H), vi+1(H ′)} : vi(H) ∈ Vi, vi+1(H ′) ∈ Vi+1, i ∈ {1, . . . , d −
1}, and V (H) ∩ V (H ′) 6= ∅}. The weight of a vertex vi(H) ∈ V (G), i ∈ {1, . . . , d}, is
ω(vi(H)) = |V (H)|. The width of G, denoted by width(G), equals width(P) + 1.

In the following we omit a subgraph H of G and the index i ∈ {1, . . . , d} whenever they are
not important when referring to a vertex of G and we write v instead of vi(H). For brevity,
ω(X) =

∑
x∈X ω(x) for any subset X ⊆ V (G).

Figures 1(a) and 1(b) present a graph G and its path decomposition P , respectively, where
the subgraph structure in each bag Xi is also given. Figure 1(c) depicts the derived graph G.
Note that P is not connected: the subgraphs G[X1∪· · ·∪Xi] are not connected for i = 2, 3, 4.
Let C ⊆ V (G). The border δ(C) of the set C is its subset consisting of all the vertices v ∈ C
such that there exists u ∈ V (G) \ C adjacent to v in G, i.e. δ(C) = NG(V (G) \ C).

Given a set X ⊆ V (G), X 6= ∅, we define the left (right) extremity of X as l(X) =
min{i : Vi ∩X 6= ∅} (r(X) = max{i : Vi ∩X 6= ∅}, respectively).

A path P in G is progressive if |V (P ) ∩ Vi| ≤ 1 for each i = 1, . . . , d.

I Definition 3. Given G, C ⊆ V (G) and X ⊆ δ(C), a left (right) branch BL(C,X, i), where
1 ≤ i ≤ r(X) (respectively BR(C,X, i), where l(X) ≤ i ≤ d) is the subgraph of G induced by
the vertices in X and by the vertices of all progressive paths contained in (V (G) \ C) ∪X
and connecting x ∈ X ∩ Vj and v ∈ Vk \ C, where i ≤ k ≤ j (j ≤ k ≤ i, respectively).

We sometimes write B to refer to a branch whenever its ‘direction’ or C,X, i are clear from
the context. A branch B = BL(C,X, i), i ≤ r(X), (B = BR(C,X, i), i ≥ l(X)) is continuous
if Vj ∩ V (B) 6= ∅ for each j = i, . . . , r(X) (j = l(X), . . . , i, respectively). A vertex v of B
is external if NG(v) * C ∪ V (B). The branch B is proper if it has no external vertices in
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Figure 1 (a) a graph G; (b) a path decomposition P of G; (c) the graph G derived from G and P

Vi+1∪ · · ·∪Vr(X)−1 (Vl(X)+1∪ · · ·∪Vi−1, respectively), while B is maximal if it is continuous,
proper and BL(C,X, i− 1) (BR(C,X, i+ 1), respectively) is not a proper branch. An integer
j is a cut of the branch B if i ≤ j ≤ r(X) (l(X) ≤ j ≤ i, respectively). The weight of the
cut j of B is ω((V (B) ∩ Vj) ∪ (X ∩ Y )), where Y = Vl(X) ∪ · · · ∪ Vj−1 for a left branch, and
Y = Vi+1 ∪ · · · ∪ Vr(X) for a right branch. A cut of minimum weight is a bottleneck of B.

Figure 2 illustrates the above definitions. (In all cases the branch is distinguished by the
dark area.) Let X = {x1, x2, x3} be a subset of δ(C). Figure 2(a) gives BL(C,X, i2) and
this branch is continuous and proper, but not maximal for each i2, i3 < i2 ≤ i1. The branch
BL(C,X, i3) (see Figure 2(b)) is maximal (thus continuous and proper), which follows from
the fact that any branch BL(C,X, i4), where i4 < i3 is not proper, because it contains an
external vertex u2, as shown in Figure 2(c). Note that the vertices of G1 and G2 (except
for u1 and u2) do not belong to any branch BL(C,X, i), because they are not connected
by progressive paths to x2 or x3. Figure 2(d) depicts a branch BL(C,X, i7) that is not
continuous for any i7 < i5, because Vi5−1 ∩ V (BL(C,X, i7)) = ∅. In our algorithm we ensure
that each branch we use is continuous and proper.

Given C,X and i, a left (respectively right) branch B can be calculated efficiently as
follows. Initially B satisfies V (B) = X. We start with j = r(X) (j = l(X), resp.) and we
add to the vertex set of the branch all vertices in Vj−1 \ C (Vj+1 \ C, resp.) that have a
neighbor in Vj ∩ V (B). Then, we decrement (increment, resp.) j and repeat this step. The
computation stops when j < i (j > i, respectively).

3 The algorithm

The algorithm CP (Connected Pathwidth) for finding a connected path decomposition of a
graph G takes G, a vertex v of G, and a path decomposition P of G as an input. The vertex
v is guaranteed to belong to the first bag of the resulting connected path decomposition.
This flexibility is provided due to the potential application of this algorithm: in graph
searching games the bags of path decompositions correspond to the vertices occupied by the
searchers while the search proceeds; in this way the selected vertex v can be the first one
that becomes guarded in a connected search strategy and it is called the homebase. The
first step performed by CP is the construction of the derived graph G and in the subsequent
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Figure 2 G with distinguished vertex sets X = {x1, x2, x3} and C, and the corresponding branches
that are: (a) continuous and proper but not maximal; (b) maximal; (c) continuous but not proper
(thus not maximal); (d) not continuous nor proper (thus not maximal)

steps the algorithm works on G. (Also, most parts of our analysis use G rather than G.)
The algorithm computes a sequence of sets Cj ⊆ V (G), j = 1, . . . ,m, called expansions.
The expansion C1 consists of v and one of its neighbors, and Cm = V (G) at the end of the
execution of CP. Moreover, Cj ⊆ Cj+1 for each j = 1, . . . ,m− 1. Informally speaking, Cj+1
is obtained from Cj by adding to Cj some vertices from NG(Cj). This guarantees that the
final path decomposition obtained from δ(C1), . . . , δ(Cm) is valid and is connected, as proved
in Lemma 7. On the other hand, the particular vertices in NG(Cj), used to obtain Cj+1, are
selected in a way to guarantee that ω(δ(Cj)) is bounded by 2 ·width(G) for each j = 1, . . . ,m.
By construction, ω(δ(Cj)) is the size of the corresponding jth bag in the resulting connected
path decomposition.

In this section we give the statement of the algorithm and we prove that it computes a
connected path decomposition C. Then, in Section 4 we analyze the width of C. Due to the
space limitations, the proofs of several results (marked with M) are omitted.

The algorithm computes for each expansion Cj two sets called the left and right borders of
Cj , denoted by δL(Cj) and δR(Cj), respectively. It is guaranteed that δL(Cj)∪δR(Cj) = δ(Cj)
for each j = 1, . . . ,m (see Lemma 6). As it is proven later, the left and right borders are
special types of partitions of δ(Cj). In particular, there exists an integer i ∈ {1, . . . , d} such
that the left border δL(Cj) is contained in V1 ∪ · · ·Vi and the right border δR(Cj) is a subset
of Vi+1 ∪ · · · ∪ Vd. For brevity let in the following l(δL(Cj)) = r(δL(Cj)) = 0 if δL(Cj) = ∅
and l(δR(Cj)) = r(δR(Cj)) = d if δR(Cj) = ∅, where Cj is any expansion.

We start by describing a subroutine EE (Extend Expansion) that is used by the main
procedure CP given below. The input to EE consists of two integers i and k, i, k ∈ {1, . . . , d}.
Informally speaking, the procedure adds, in its subsequent iterations, to the current expansion
Cm each vertex in Vj that is connected by a progressive path to a vertex in Vj′ ∩ δ(Cm) for
each j = i to k and for some j′, i ≤ j′ ≤ j if i < k, and for each j = i down to k, j ≤ j′ ≤ i
if i > k, which we formally prove in Lemma 4 below. All the ‘intermediate’ expansions are
recorded as they will give us the corresponding bags in the final path decomposition. The
procedures EE(i, k) and CP(G,P) are as follows.
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Procedure EE (Extend Expansion)
Input: integers i and k. (G, m, Cm are used as global variables)

while k 6= i do
if k < i then

EL: Increment m, decrement i and set:
Cm = Cm−1 ∪ (Vi ∩NG(Cm−1)),
δL(Cm) = (δL(Cm−1) ∪ Vi) ∩ δ(Cm),
δR(Cm) = δR(Cm−1) ∩ δ(Cm).

else (k > i)
ER: Increment m, increment i and set:

Cm = Cm−1 ∪ (Vi ∩NG(Cm−1)),
δR(Cm) = (δR(Cm−1) ∪ Vi) ∩ δ(Cm),
δL(Cm) = δL(Cm−1) ∩ δ(Cm).

end if
end while.

end procedure EE.

Algorithm CP (Connected Pathwidth)
Input: a simple graph G, a path decomposition P of G, and a vertex v ∈ V (G).
Output: a connected path decomposition C of G.

(Initialization.)

I.1: Use G and P to calculate the derived graph G. Let v be any vertex of G. Let
C1 = {x, y}, where v ∈ C1, x, y are adjacent in G, and x ∈ Vi, y ∈ Vi+1 for
some i ∈ {1, . . . , d− 1}. Let m = 1.

I.2: If x ∈ δ(C1), then set δL(C1) = {x}, compute the maximal left branch
BL(C1, δL(C1), a0) with a bottleneck a′0 (a′0 ≥ a0) and with no external vertices
in Vi and call EE(i, a′0); otherwise δL(C1) = ∅.

I.3: If y ∈ δ(C1), then set δR(C1) = {y}, compute the maximal right branch
BR(C1, δR(C1), b0) with a bottleneck b′0 (b′0 ≤ b0) and with no external vertices
in Vi+1 and call EE(i+ 1, b′0); otherwise δR(C1) = ∅.

(Main loop.)
while Cm 6= V (G) do

if ω(δL(Cm)) > ω(δR(Cm)) then

L.1: Compute the maximal left branch B1 = BL(Cm, δL(Cm), k1). If B1
has no external vertex in Vi, i = r(δL(Cm)), then call EE(r(δL(Cm)), k1),
otherwise let k1 = r(δL(Cm)).

L.2: Compute the maximal right branch B2 = BR(Cm, δR(Cm) ∪ (Vk1 ∩
δL(Cm)), k2). Let k′2 be its minimum weight cut such that k′2 > k1. Call
EE(k1, k

′
2).

L.3: If r(δL(Cm)) = k1, then compute the maximal left branch B3 =
BL(Cm, δL(Cm), k3) with bottleneck k′3 and call EE(k1, k

′
3).

else (ω(δL(Cm)) ≤ ω(δR(Cm)))

R.1: Compute the maximal right branch B1 = BR(Cm, δR(Cm), k1). If B1
has no external vertex in Vi, i = l(δR(Cm)), then call EE(l(δR(Cm)), k1),
otherwise let k1 = l(δR(Cm)).
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R.2: Compute the maximal left branch B2 = BL(Cm, δL(Cm) ∪ (Vk1 ∩
δR(Cm)), k2). Let k′2 be its minimum weight cut such that k′2 < k1.
Call EE(k1, k

′
2).

R.3: If l(δR(Cm)) = k1, then compute the maximal right branch B3 =
BR(Cm, δR(Cm), k3) with bottleneck k′3 and call EE(k1, k

′
3).

end if
end while.
Let Zj =

⋃
vk(H)∈δ(Cj) V (H) for each j = 1, . . . ,m. Return C = (Z1, . . . , Zm).

end procedure CP.

First we briefly discuss the initialization stage of CP. In Step I.1 an expansion C1 is
constructed in such a way that it contains any two adjacent vertices (the adjacency guarantees
the connectedness of the final path decomposition) such that one of them is the input vertex
v. (W.l.o.g. v has a neighbor in G, because otherwise G contains a single vertex and therefore
P is connected.) Steps I.2 and I.3 are symmetric. In Step I.2 (I.3) the algorithm finds the
maximal left (right) branch ‘emanating’ from x (resp. y) provided that the vertex belongs to
the border of C1, otherwise the left (right, respectively) border is empty.

In the following, one iteration of CP or EE means one iteration of the ‘while’ loop in
the corresponding procedure. Thus, in the case of CP, one iteration reduces to executing
Steps L.1-L.3 or R.1-R.3 within the ‘if’ statement, while in the procedure EE one iteration
results in executing the instructions in Step EL or in Step ER. We use the symbols B1,B2,B3,
a0, a

′
0, b0, b

′
0, ki, k′i to refer to the variables used in CP, where in the case of k1 we refer

to its value at the end of Step L.1 or Step R.1. In what follows we denote for brevity
B′2 = BR(Cm, δR(Cm)∪(Vk1∩δL(Cm)), k′2) and B′3 = BL(Cm, δL(Cm), k′3) if Steps L.1-L.3 have
been executed in this particular iteration of CP, and B′2 = BL(Cm, δL(Cm)∪(Vk1∩δR(Cm)), k′2),
B′3 = BR(Cm, δL(Cm), k′3) otherwise (i.e. in Steps R.1-R.3). Informally speaking, B′2 and B′3
are the branches B2 and B3, respectively, restricted to the vertices up to the corresponding
cut k′2 or k′3. The vertex v selected to be in C1 is called the starting vertex.

The branches are used in the subsequent iterations of the algorithm in the way presented
in Figure 3, where Csi refers to the expansion obtained at the end of Step L.i of an iteration
of CP, i = 1, 2, 3 (the execution of Steps R.1-R.3 is symmetric), and Cs0 is the expansion from
the beginning of the iteration. First, a branch B1 is used to obtain Cs1 from Cs0 (during the
execution of Step L.1 of CP). It holds in particular Cs1 = Cs0 ∪ V (B1), as stated in Lemma 5
below. It is guaranteed that r(δL(Cs1)) ≤ k1. The (external) vertices in V (B1) ∩ Vk1 have
some neighbors in Vk1+1 \ Cs1 and the algorithm calculates the right branch B′2 (‘emanating’
from k1) in Step L.2. Its right extremity, k′2, may by strictly less than the left extremity
of the new right border δR(Cs2) if B′2 has no external vertices in Vk′

2
. Finally, a branch B′3

is calculated in a symmetric way (this step is omitted if the vertices in Cs1 ∩ Vk1 have no
neighbors in Vk1−1 \ Cs1 , and in such case δL(Cs3) ⊆ δL(Cs0)).

The following lemmas are used to prove that the computation stops and they also
demonstrate how the expansions change between the subsequent calls of EE.

I Lemma 4. Given an expansion Cj and X ⊆ δ(Cj), after the execution of the ith iteration
of the procedure EE(r(X), k), where k ≤ r(X) (respectively EE(l(X), k), where k ≥ l(X)) it
holds Cj+i = Cj ∪V (BL(Cj , X, r(X)− i)) (Cj+i = Cj ∪V (BR(Cj , X, l(X) + i)), respectively),
i ≥ 1. M

I Lemma 5. Let Cs0 be an expansion from the beginning of an iteration of CP, and let Csi ,
i = 1, 2, 3, be the expansions obtained at the end of Steps L.1, L.2 and L.3 or R.1, R.2



D. Dereniowski 423

Step L.1

Step L.3

Step L.2

r(δL(Cs3 )) l(δR(Cs3 ))

k′
3 k1 k′

2

Cs0

B′
2

B1

B′
3

r(δL(Cs0 ))

Figure 3 The expansion Cs3 obtained from Cs0 by including three branches B1,B′
2 and B′

3
calculated in Steps L.1,L.2 and L.3 of CP, respectively

and R.3 in this iteration, respectively. Then, Cs1 = Cs0 ∪ V (B1), Cs2 = Cs1 ∪ V (B′2) and
Cs3 = Cs2 ∪ V (B′3). Moreover, Cs3 6= Cs0 . M

Figure 4 gives an example of the execution of CP. In all cases (including the following
figures) ♦ and � are used to denote the vertices of the right and left borders, respectively. In
particular Figure 4(a) presents a graph G and C2 (this is the expansion obtained at the end
of initialization of CP, where the starting vertex and its neighbor in C1 are among the three
vertices in C2). Figures 4(b)-(d) depict the state of the algorithm at the end of the first three
iterations. (The fourth iteration executes the Steps L.1-L.3, which ends the computation.)
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Figure 4 a graph G (the integers are vertex weights) with distinguished vertices in Cm representing
the state of CP after: (a) the initialization; (b) first iteration with Steps R.1-R.3 executed; (c) second
iteration with Steps L.1-L.3 executed; (c) third iteration with Steps R.1-R.3 executed

The lemma below follows directly from the instructions in procedure EE.

I Lemma 6. δ(Cj) = δL(Cj) ∪ δR(Cj) for each j = 1, . . . ,m. M

The connectedness of C is due to the fact that G[Cj ] is connected for each j = 1, . . . ,m,
while the fact that C is a path decomposition follows from the definition of G.

I Lemma 7. Given a simple graph G and its path decomposition P = (X1, . . . , Xd), CP
returns a connected path decomposition C = (Z1, . . . , Zm) of G. M

4 The approximation guarantee of the algorithm

In this section we analyze the width of the path decomposition C calculated by CP for the
given G and P. First we introduce the concept of a nested expansion, which, informally
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speaking, is as follows. The first condition for C to be nested states that the weight of Vi ∩C
for any i ‘between’ the right extremity of the left border and the left extremity of the right
border (by Lemma 9 the former is less than the latter) is greater than or equal to the weight
of the left or the right border of C. The remaining conditions refer to the situation ‘inside’
borders and are analogous in both cases. The condition (ii) for the left border requires
that the weight of Vi ∩ C, where i ≤ r(δL(C)), is not less than the weight of the left border
restricted to the vertices in V1 ∪ · · · ∪ Vi. Finally, condition (iii) gives a ‘local’ minimality,
that is, if we take a left branch BL(C, δL(C), i) (where i by the definition is ≤ r(δL(C))) and
we include several vertices of the branch, as it is done in procedure EE, then we ‘arrive’ at
some cut of this branch, and (iii) for C guarantees that the weight of the left border of the
new expansion is greater than or equal to the weight of the left border of C.

We say that an expansion C is nested if it satisfies the following conditions:

(i) for each i = r(δL(C)), . . . , l(δR(C)), min{ω(δL(C)), ω(δR(C))} ≤ ω(Vi ∩ C),
(ii) for each i ≤ r(δL(C)), ω(Vi ∩ C) ≥

∑
j≤i ω(Vj ∩ δL(C)), and for each i ≥ l(δR(C)),

ω(Vi ∩ C) ≥
∑
j≥i ω(Vj ∩ δR(C)),

(iii) r(δL(C)) (l(δR(C))) is a bottleneck of each branch BL(C, δL(C), i) (respectively,
BR(C, δR(C), i)).

Figure 5 presents a subgraph of G on the vertices that belong to an expansion C. For
this expansion to be nested it holds in particular: (ii) implies ω(Vi+1 ∩ C) ≥ ω({x1, x2, x3}),
ω(Vi+3 ∩ C) ≥ ω({x1, x2, x3}); (i) implies ω(Vi+6 ∩ C) ≥ min{ω(δL(C)), ω(δR(C))} =
min{ω({x1, . . . , x4}), ω({y1, . . . , y4})}.

...
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Figure 5 A nested expansion with left and right borders distinguished

Not all expansions computed by CP are nested, but we prove that all of them satisfy (ii)
(Lemmas 10-12). The fact that the expansions obtained in Steps I.1-I.3 of CP satisfy (ii)
follows from the observation that both the left and right border or each such expansion is a
subset of a single set Vi. For this reason we focus on analyzing the subsequent iterations of
CP, and we proceed with an assumption that an expansion from the beginning of an iteration
(i.e. obtained at the end of the previous iteration, or at the end of Step I.3) is nested. We
justify this assumption in Lemma 12.

First we introduce the following concept of moving the borders of an expansion. We
say that Cj moves the right (left) border of Cj−1 if l(δR(Cj)) > l(δR(Cj−1)) (r(δL(Cj)) <
r(δL(Cj−1)), respectively). The following lemma states that in each iteration of CP at most
one expansion may be computed that does not move the left or right border of its predecessor.
Moreover, this is the first expansion calculated in Step L.2 or in Step R.2, depending on the
condition checked in the ‘if’ statement in the main loop of CP.

I Lemma 8. If Cj , j ∈ {2, . . . ,m}, is any expansion calculated in Step EL (Step ER) of EE
invoked in an iteration of CP, except for an expansion obtained in the first iteration of EE
executed in Step L.2 or in Step R.2 of CP, then Cj moves the left (right, resp.) border of
Cj−1. M
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Lemma 6 states that δ(Cj) = δL(Cj) ∪ δR(Cj) for each expansion obtained in CP, while the
following lemma implies that the left and right borders of any expansion obtained during the
execution of CP are disjoint.

I Lemma 9. r(δL(Cj)) < l(δR(Cj)) for each j = 1, . . . ,m. M

Provided that an expansion from the beginning of an iteration of CP is nested, the following,
together with Lemma 8, implies that if the first expansion computed in Step L.2 or R.2 of
CP satisfies (ii), then all expansions from the iteration satisfy (ii).

I Lemma 10. Let j ∈ {2, . . . ,m}. If Cj−1 satisfies (ii) and Cj moves the right or the left
border of Cj−1, then Cj satisfies (ii). M

Due to the above, we analyze the first expansion obtained in Step L.2 or R.2 of CP. Let
Cs0 be the expansion from the beginning of an iteration of CP and let Cs1 be the expansion
obtained at the end of Step L.1 or Step R.1 of this iteration. We obtain that if Cs0 is nested,
then Cs1 satisfies (i) (the proof is omitted due to lack of space). This allows us to prove
that the first expansion obtained in Step L.2 or R.2 of CP also satisfies (ii). Thus, due to
Lemmas 8 and 10 we obtain that each expansion in an iteration of CP satisfies (ii), when the
expansion from the beginning of the iteration is nested.

I Lemma 11. If an expansion Cs0 from the beginning of an iteration of CP is nested, then
each expansion computed by CP in this iteration satisfies (ii). M

Finally, we finish our argument that each expansion calculated by CP satisfies (ii), by
proving the following.

I Lemma 12. Let Cs0 and Cs3 be the expansions from the beginning of two consecutive
iterations of CP. If Cs0 is nested, then Cs3 is nested. M

Therefore, an induction on the number of iterations of CP allows us to prove the claim that
each expansion computed by CP satisfies (ii), as shown in Lemma 14. Lemma 13 below,
together with Lemma 6, gives an upper bound for ω(δ(Cj)) for each j = 1, . . . ,m.

I Lemma 13. If an expansion C satisfies (ii), then ω(δL(C)) ≤ width(G) and ω(δR(C)) ≤
width(G).

Proof. Suppose w.l.o.g. that ω(δR(C)) ≥ ω(δL(C)). Then, it is enough to argue that
ω(δR(C)) ≤ width(G). To that end observe that by (ii), where i = l(δR(C)), ω(Vi ∩ C) ≥∑
k≥i ω(δR(C)∩Vk) = ω(δR(C)). Since ω(Vi∩C) ≤ ω(Vi) ≤ width(G), the thesis follows. J

I Lemma 14. If C = (Z1, . . . , Zm) is a path decomposition calculated by CP for the given G
and P, then width(C) ≤ 2 · width(P) + 1.

Proof. The expansion obtained at the end of Step I.3 of CP is nested. Indeed, (i) and
(iii) follow from the fact that a′0 and b′0 are the bottlenecks of the corresponding branches
used in Steps I.2 and I.3, respectively, while (ii) trivially holds, for both the left and right
border is contained in a single set Vi. Using an induction (on the number of iterations
of CP) we obtain by Lemma 12 that any expansion from the beginning of an iteration
of CP is nested. Note that for each expansion Cj obtained in Steps I.1-I.3 of CP it holds
δL(Cj) ⊆ Vi and δR(Cj) ⊆ Vi′ for some i, i′ ∈ {1, . . . , d}, which implies (ii) for Cj . This,
together with Lemma 11, implies that Cj satisfies (ii) for each j = 1, . . . ,m. By Lemmas 6
and 9, ω(δ(Cj)) = ω(δL(Cj)) + ω(δR(Cj)) for each j = 1, . . . ,m. By Lemma 13, ω(δ(Cj)) ≤
2 · width(G). By the definition, width(C) = max{ω(δ(Cj)) : j = 1, . . . ,m} − 1. Thus, by the
definition, width(C) ≤ 2 · width(G)− 1 = 2 · width(P) + 1. J
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I Lemma 15. Let G be a simple connected graph and let P = (X1, . . . , Xd) be its path
decomposition of width k. The running time of CP executed for G and P is O(dk2).

Proof. Since each edge of G is contained in one of the bags of P , |E(G)| ≤ dk. The number
of vertices and edges in G is O(kd) and O(dk2), respectively. Thus, the complexity of
constructing G is O(dk2).

If a branch is given, then the weights of all its cuts can be calculated in time linear in
the number of edges and vertices of the branch. The time of finding any branch B in an
iteration of CP is O(|E(B)|). The complexity of calculating the weight of all cuts of B, and
thus finding its bottleneck, is O(|E(B)|). Whenever two branches overlap, we do not have to
repeat the computation. Therefore, the time complexity of determining all branches and
their bottlenecks is O(dk2). This includes the complexity of all executions of the procedure
EE, because, by Lemma 5, the procedure ‘follows’ the previously calculated branches by
including their vertices into the expansions Cj . It holds that m ≤ kd, because (by Lemmas 4
and 5) Cj ⊆ Cj+1 and Cj 6= Cj+1 for each j = 1, . . . ,m−1. By Lemma 14, ω(Cj) = O(k) for
each j = 1, . . . ,m. Thus,

∑
1≤j≤m |Zj | = O(dk2). Thus, the complexity of CP is O(dk2). J

I Theorem 16. There exists a O(dk2)-time algorithm that for given connected graph G and
its path decomposition P = (X1, . . . , Xd) of width k returns a connected path decomposition
C = (Z1, . . . , Zm) such that width(C) ≤ 2 · width(P) + 1 and m ≤ kd.

Proof. The correctness of CP is due to Lemma 7. The inequality width(C) ≤ 2width(P) + 1
follows from Lemma 14, and the complexity of CP is due to Lemma 15. As argued in the
proof of Lemma 15, m ≤ kd. J

I Theorem 17. For each connected graph G, cpw(G) ≤ 2 · pw(G) + 1. J

The inequalities pw(G) ≤ s(G) ≤ pw(G) + 2 and cpw(G) ≤ cs(G) ≤ cpw(G) + 2 [4] and
Theorem 17 give the following

I Corollary 18. For each graph G it holds cs(G) ≤ 2 · s(G) + 3. J

5 Conclusions

The advances in graph theory presented in this paper are three-fold:
◦ A bound for connected pathwidth is given, cpw(G) ≤ 2pw(G) + 1, where G is any

graph, which bounds the connected search number of a graph by its search number,
cs(G) ≤ 2s(G) + 3. Moreover, the input vertex v that belongs to the first bag in the
resulting connected path decomposition is selected arbitrarily, which implies a stronger
fact, namely a connected (2s(G) + 3)-search strategy can be constructed with any vertex
of G playing the role of the homebase. This provides an efficient algorithm for converting
a search strategy into a connected one with an arbitrary homebase.

◦ An efficient method is given for calculating a connected pathwidth of width at most
2k + 1, provided that a graph G and its path decomposition of width k are given.

◦ It is a strong assumption that the algorithm requires a path decomposition to be given,
because calculating pw(G) is a hard problem in general. However, this algorithm can
be used to approximate the connected pathwidth for the classes of graphs for which the
approximate algorithms for pathwidth exist.
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Abstract
Given a stream of (x, y) points, we consider the problem of finding univariate polynomials that
best fit the data. Over finite fields, this problem encompasses the well-studied problem of de-
coding Reed-Solomon codes while over the reals it corresponds to the well-studied polynomial
regression problem.

We present one-pass algorithms for two natural problems: i) find the polynomial of a given
degree k that minimizes the error and ii) find the polynomial of smallest degree that interpolates
through the points with at most a given error bound. We consider a range of error models
including the average error per point, the maximum error, and the number of points that are not
fitted exactly. Many of our results apply to both the reals and finite fields. As a consequence we
also solve an open question regarding the tolerant testing of codes in the data stream model.

Keywords and phrases Streaming, Polynomial Interpolation, Polynomial Regression

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.428

1 Introduction

In this paper we consider the following problem: given a stream of n input points (xi, yi) ∈ F2

(where all the xi’s are distinct1) for some field F, fit them with a univariate polynomial
with low error. This general problem has been intensively studied under at least two broad
specifications. The first case is when F is the set of reals and we want to minimize the least
squares or least absolute deviation errors – in this setting the problem is called (polynomial)
regression. The second case is when F is a finite field and we are trying to minimize the
number of disagreements– this corresponds to the problem of decoding Reed-Solomon codes.
Both of these problems have great practical value: regression is used to build a succinct model
of the input points and is perhaps the most widely used statistical tool. Reed-Solomon codes
are widely used to guard against corruption of data in everyday use such in communication
protocols and in storage media. We present data stream algorithms for both problems.

The case for data stream algorithms as a tool to handle massive data sets has been
well made over the last couple of decades (see, e.g., the survey by Muthukrishnan [14]).
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As polynomial fitting is an extremely basic problem, it is natural to consider its data
stream complexity. In addition, these problems also have practical motivations. Polynomial
regression dates back to work of Legendre and Gauss and can be used to make sense of large
data sets or to use a large experimental data set to accurate estimate model parameters, see,
e.g., work in epidemiology [7] and marine geography [1]. Polynomial regression is actually
a special case of multivariate linear regression since some variables may be polynomial
functions of other variables. Multivariate linear regression has been recently considered in
the data stream model but existing work is either only applicable to least squares polynomial
regression [3] (and we’ll observe that a simpler approach works in this case) or is not as
time-efficient [6]. By focusing on a special case of the regression problem we are able to a)
consider a wider range of error measures such as maximum absolute error and cardinality
of errors, b) develop faster and more space-efficient algorithms, c) consider variants of the
problem such as fitting the simplest model subject to an error budget, and d) consider fields
other than the reals.

Approximation of decoding codes under the umbrella of property testing has been
intensively studied since the the advent of interactive proofs more than two decades ago.
While Reed-Solomon codes are less interesting from a sampling perspective, the second
and third authors recently introduced the problem of designing data stream algorithms for
codeword testing [15]. They detailed applications of data stream algorithms for codeword
testing in storage systems and network systems. We discuss this further in Section 1.1.

The problems of polynomial regression and decoding of Reed-Solomon codes have in-
herently different motivations. In particular, let k be the degree of the polynomial that we
are trying to fit through the data. In polynomial regression we want to make k as small as
possible as that means that our data has a small representation. On the other hand, for
Reed-Solomon codes we want k to be as large as possible as that means we introduce as little
redundancy as possible. Further, different kinds of error make sense in the two problems.
For the Reed-Solomon case, which are defined over finite fields, the measure of error is the
Hamming distance, or the `0 norm. On the other hand, for polynomial regression, `p and
`∞ measures also make sense. These differences crop up in the kind of algorithms generally
used to tackle these two problem. Many of our solutions, however, are “oblivious" as to
whether we are working over finite fields or the reals. Some proofs were omitted for space
considerations, however, all omitted proofs are available in the full version of the paper.

1.1 Decoding of Reed-Solomon Codes and Related Problems
We now focus on the polynomial fitting problem when F is a finite field. In this case, we
will primarily consider the error distance of Hamming distance (i.e. the number of positions
where the fitted polynomial disagrees with in the input point). However, some of our results
also extend to the `p case for p > 0.

First consider the problem of error detection, i.e., we want to figure out if a polynomial
of degree at most k fits exactly through all the n input points. Even though much weaker
than the error correction problem, error detection is widely used in practice, e.g., in Internet
traffic where one uses a checksum to detect errors. In fact, the error detection algorithm
(compute the checksum of the data and compare it with the stored checksum) is a very
efficient one-pass data stream algorithm. This feature of checksums is hugely attractive
in practice even though checksums have terrible error-correction properties. One of the
motivations of [15] was to see if the Reed-Solomon code, which has excellent error-correction
capabilities, could also have data stream algorithms for error detection. It was shown in [15]
that this problem does indeed have a poly-log space, single-pass data stream algorithm if we
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allow the algorithm advance knowledge of the xi’s.
Given the somewhat surprising fact that error detection for Reed-Solomon codes does

indeed have efficient data stream algorithms, [15] also looked at the following tolerant testing
problem: Is it the case that there exists a polynomial of degree at most k that disagrees with
at most t points in the input or do all polynomials of degree at most k have to disagree in
at least 2t points? They showed that the trivial algorithm of trying out all possible error
locations can be implemented in Õ(t) space with one pass. They also used group testing
ideas to improve the running time with similar parameters under the additional constraint
of tk ≤ O(n). It was an open question whether this could be improved (and, in fact, the
second author has widely conjectured that one would need Ω̃(t) space). In this paper, we
show that one can in fact solve this problem in Õ(k) space independent of t.

The main building block for the algorithm above is an algorithm to estimate the F0
value of a vector where each coordinate is updated by an addition over the field F. This
problem of course, is very well studied for the case of the reals and has been implicitly
studied for finite fields [10]. Our algorithm is similar to existing algorithms for estimating
F0 (see, e.g., [12]) and works for any field F. The technical ingredient is a subroutine to
determine efficiently if a given subset of vector positions has a nonzero value in it (the catch
is that for fields in general nonzero elements can add up to zero). Given this subroutine,
the algorithm mentioned in the paragraph above is simple: sketch the input y values and
then cycle through all the qk possibilities for the codewords. (The latter can be done in
low space if the algorithm has full knowledge of the xi’s.) In general, trying to improve the
running time of this algorithm is hopeless as it would solve the maximum likelihood problem
for Reed-Solomon codes, i.e., computing the degree k polynomial that disagrees with the
minimum number of input points), which is known to be NP-hard [8]. In fact, there are no
known approximate maximum likelihood algorithms for any nontrivial codes, and this is a
notoriously hard problem [5]. However, under additional constraints on t, we show that one
can in a single pass, compute the closest polynomial and estimate t in space Õ(k).

We also consider the following natural problem related to polynomials: given the coef-
ficients of a degree k polynomial, compute the number of roots of the polynomial. Note
that in this case the trivial algorithm of storing the entire input takes Õ(k) space. In fact,
computing the number of non-roots is the same as computing the F0 value of the stream of
the evaluation of the polynomial over all elements of the field, which by our earlier algorithm
is easy. However, we show that the complementary problem of computing the number of
roots takes Ω(k) space. In fact, this is true even if we want to solve the simple problem of
checking if the polynomial has any roots at all. The reduction is from set-disjointness and
makes use of some properties of non-squares in fields.

1.2 Polynomial Regression
We now discuss our results for polynomial regression over the reals (though some of our
results work over any field). Given p ≥ 0, and n points (x1, y1), . . . , (xn, yn), the aim is to
find a univariate polynomial f(X) of degree at most k that minimizes the `p error, i.e. the
sum

∑
i∈[n] |yi − f(xi)|p. A fairly easy argument shows that one requires Ω(k) space to solve

this problem. We show that under many scenarios, this lower bound is indeed tight. Contrast
this with the general regression problem where the corresponding space bound is Θ̃(k2) [3].

We first consider the case when we are given a bound e on the error we are willing to
tolerate and we are interested in computing f(X) of the smallest possible degree k that
results in an error of at most e. Note that in this case k is unknown but we still want to use
space that is Õ(k). We present two one pass Õ(k + e)-space algorithms for the case when
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e = 0 and e > 0 but p = 0. In both cases, our algorithms work under extra conditions on n, k
and e. The main idea in both of these algorithms is to build an estimate k̂ on k progressively.
It is not too hard to figure out when the estimate k̂ is smaller than the actual value of k.
Our main insight is that under suitable conditions on n, k and e, when we discover that
our estimate k̂ is insufficient, we can discard all we have seen so far and start from scratch.
The conditions guarantee that we never throw away too much information. Also crucial to
our algorithms are the known observations that (i) Newton’s interpolation formula can be
implemented in an “online" fashion and uses Õ(k) space and (ii) existing decoding algorithms
for Reed-Solomon codes can be implemented in linear space.

Next we consider the case when k is specified up-front. For p = 0, our algorithm samples
O(k) points and then uses the decoding algorithm for Reed-Solomon codes mentioned in
the previous paragraph to compute the optimal polynomial. For p ∈ [1, 2), we use Indyk’s
p-stable sketching technique to sketch the y and x values. A naive approach would then be
to cycle through all possible values for the coefficients (we also provide a simple one pass
algorithm to bound the range of values each coefficient can take). While this results in an
Õ(k) space algorithm, the running time is not satisfactory. Using the convexity of the error
function, we present an algorithm that effectively does a binary search in a k-dimensional
space to compute the best values of the coefficients. This leads to a O(logk n)-pass Õ(k)
space algorithm, which we then refine to a one-pass, Õ(k) space and O(logk n) time algorithm.
Finally, we consider the case of p =∞. We observe that a result due to Chan and Chen [2]
can be used to solve the problem exactly in constant passes and sub-linear space. We also
present a one-pass Õ(k) space algorithm to approximate the `∞ error that is in turn based
on the fact that one can compute the optimal polynomial for any even p ≥ 2 with one pass
and Õ(p2k) space.

2 Finding Smallest Degree Polynomials

We first consider the following problem: Given n input points (xi, yi) (1 ≤ i ≤ n) and
an integer 0 ≤ e ≤ n, compute the polynomial f(X) of the smallest degree k such that
|{i|f(xi) 6= yi}| ≤ e.

2.1 Perfect interpolation
We begin with a one-pass Õ(k) space algorithm to compute the polynomial of minimum
degree k that interpolates through all the points, i.e., we solve the problem above with e = 0.
This will serve as a warmup for the general case (in addition to giving a slightly better result
for this special case.) Note that here we do not know k in advance and this is what makes
the problem nontrivial. Furthermore, we do not make any assumptions about the range or
order of the points nor do we know {xi : i ∈ [n]} in advance.

I Theorem 1. Let (x1, y1), . . . , (xn, yn) be n input points such that there is an unknown
polynomial f(X) such that for every 1 ≤ i ≤ n, f(xi) = yi. Then there exists a one-pass
Õ
( 1
ε · deg(f)

)
space algorithm to compute f(X), provided deg(f) ≤ (1/2−ε)n. The amortized

update time of the algorithm is O(deg(f)).

We will use the following well-known result crucially in our algorithm:

I Proposition 2. Let the points (x1, y1), · · · , (xm, ym) be explained by a polynomial P (X)
of degree at most m. Then the points (x1, y1), . . . , (xm, ym), (xm+1, ym+1) are explained by
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the unique polynomial

Q(X) = P (X) + (ym+1 − P (xm+1)) ·
m∏
i=1

X − xi
xm+1 − xi

.

Further, deg(Q) ∈ {deg(P ),m}.

It is easy to verify that the polynomial Q(X) does indeed work – its uniqueness follows
from the fact that two distinct polynomials of degree at most m can agree in at most m
points. Further, the claim on the degree of Q(X) follows from the fact that Q(X) = P (X) if
ym+1 = P (xm+1). Finally, note the following corollary that we will use later on: Q(X) can
be computed from just the knowledge of P (X), ym+1 and x1, . . . , xm+1.

Proposition 2 implies the following O(log(deg(f)))-pass algorithm: guess the degree of
f(X) in a geometric series and then use Proposition 2 to fit the data with a polynomial with
the guessed degree. Our algorithm achieves the result in a single pass.

Proof of Theorem 1. For notational simplicity define k = deg(f). The algorithm maintains
an estimate k′ of k. The algorithm also maintains a polynomial P (X) of degree at most k′
that explains the last few points (the exact number will be specified later). Now consider the
case when the algorithm sees a new point (xi, yi). Two things can happen: (i) P (xi) = yi.
In this case, we are good as the current polynomial P (X) explains the new point; or (ii)
P (xi) 6= yi. In this case we want to use Proposition 2 to compute the new polynomial Q(X).
Note that in this second case, deg(Q) = m. However, to compute Q(X), we also need to
remember all the xi’s we have seen so far.

To implement the idea for part (ii), we will need to keep track of all the xi’s we have
seen so far. However, we cannot store all the xi values if case (ii) never happens (as in that
case we would have stored ω(deg(f)) values). The main observation is to keep track of O(k′)
xi values and in case those are not sufficient enough to compute the new Q(X), we update
k′ accordingly and restart the whole process. The bound of k ≤ (1/2− ε)n is to make sure
that by the time we attain k′ = k, we still have k + 1 points left to interpolate through.

We now present the details of the algorithm. Let c = O(1/ε) be a constant that we will
fix later on.
1. Initialize k′ ← 1 and let P (X) be the line that passes through (x1, y1) and (x2, y2).
2. Set i, j ← 2 and S ← {x1, x2}. The role of i is to count the total number of points seen

so far while j counts the number of points seen since last restart.
3. Repeat until i ≤ n− k′ − 1:

a. Set i← i+ 1 and read (xi, yi).
b. If P (xi) == yi then add xi to S unless |S| == ck′. Set j ← j + 1.
c. Else if j == |S| then set k′ ← j and set P (X) as the Q(X) given by Proposition 2.
(Note that this be computed from the existing P (X) and S.) Finally, add xi to S.

d. Else set k′ ← j and j ← 0. (the “Restart")
Read the points (xi+1, yi+1), . . . , (xi+k′ , yi+k′).
Set S ← {xi, . . . , xi+k′}.
Set P (X) to be the unique degree at most k′ polynomial through (xi, yi), . . . , (xi+k′ , yi+k′).
Set i← i+ k′.

4. If P (X) explains the remaining points then output P (X),
5. Else output k > (1/2− ε)n.

Note that if the algorithm halts and outputs P (X) and k′ = k, then it indeed outputs
the correct f(X). This is because P (X) explains at least k + 1 points and there is a unique
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polynomial of degree at most k that explains any k + 1 points. Further, note that the
algorithm can be implemented in one pass and uses space O(ck) assuming k′ = k at the end
of the algorithm.

To complete the proof, we will show that assuming k ≤ (1/2− ε)n, the algorithm indeed
outputs f(X). Toward this end, we first note that in the algorithm whenever we update k′,
there exists a polynomial of degree k′ that agrees with the last k′ + 1 points. Now, if at any
update we get k′ > k, then it means that two polynomials – one of degree k′ (the polynomial
P (X)) and another of degree k < k′ (the polynomial f(X)) agree on k′ + 1 points, which is
not possible. Thus, we have that at any stage of the algorithm, k′ ≤ k. To prove that at the
end, k′ = k, we claim that the last restart happens at i ≤ n− k − 1. Assuming this claim is
true, note that the algorithm outputs a polynomial P (X) of degree k′ ≤ k that agrees with
the last k + 1 points. This implies that f(X) = P (X) (and hence k′ = k).

To complete the proof we need to prove that the last restart happens at i ≤ n− k − 1.
To this end, we will show that the number of items discarded during restarts is at most
n− k − 1. Indeed, we consider the set of indices {i1, . . . , im} ⊆ [n], where during the i`th
iteration (` ∈ [m]), the value of k′ changed. For ease of notation, let the k′ value at the i`th
iteration for ` ∈ [m] be denoted by k′(`). Note that for every 1 ≤ ` < m, k′(i`) ≤ k′(i`+1).
Further, call j ∈ [m] bad if k′ changed as a result of a restart. Further, note that the number
of discarded points is exactly

∑
` bad k′(`). Now, note that when ` is bad then since we did

not go through Step 3(c), we have the current value of j in Step 3(d) satisfying j > ck′(`− 1).
Thus, this implies that for bad `, k′(`) > ck′(`− 1). Further recall that we had shown earlier
that k′(m) ≤ k. Thus, the sum above is bounded by

∑
i=0 k/c

i = c
c−1 · k ≤ (1 + ε)k − 1,

where the last inequality follows by choosing an appropriate c ∈ O(1/ε). Thus, we would
have proved the claim if (1 + ε)k− 1 ≤ n− k− 1, which in turn is implied by the assumption
that k ≤ (1/2− ε)n. J

2.2 Interpolation with outliers
We now present a one-pass Õ(k) space algorithm to compute the polynomial of minimum
degree k that interpolates through all but e points.

I Theorem 3. Let (x1, y1), . . . , (xn, yn) ∈ F2 be n input points such that there is an unknown
polynomial f(X) such that |{i|f(xi) 6= yi}| ≤ e for some 0 ≤ e ≤ n. Then there exists a one-
pass Õ (e+ deg(f)) space algorithm to compute f(X), provided (e+ deg(f)) · log(deg(f)) ≤
O(n). The amortized update time of the algorithm is Õ(k + e).

To prove the theorem above, we will need the error-version of Proposition 2, i.e. a decoding
algorithm for Reed-Solomon codes. It is known, for example, that the Berlekamp-Massey
algorithm implies the following:

I Theorem 4. Let 1 ≤ K ≤ N be integers. Let (x1, y1), . . . , (xN , yN ) ∈ F2 be points.
There exists an Õ(N) space algorithm using Õ(N2) field operations that outputs the unique
polynomial P (X) of degree at most K such that |{i|f(xi) 6= yi)}| < (N −K)/2.

The proof of Theorem 3 follows that of Theorem 1, where we use Theorem 4 instead of
Proposition 2. The proof is a bit simpler because of the stricter bounds on deg(f).

3 Polynomial Fitting

In this section we consider finding the degree k polynomial f(x) =
∑k
i=0 aix

i that best fits a
stream (x1, y1), . . . , (xn, yn) of points. We will consider various measures of fit including the
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total number of points that are not interpolated exactly, the average error on each point,
and the maximum error over all points. We introduce the following family of functions
Ep : Rn × Rn × Rk+1 → R

Ep(x, y, a) :=
n∑
i=1
|yi − fa(xi)|p where fa(x) =

k∑
i=0

aix
i

and write E(k)
p (x, y) := minak,...,a0 Ep(x, y, a). We also write E∞(x, y, a) := maxi∈[n] |yi −

fa(xi)| and E(k)
∞ (x, y) := minak,...,a0 E∞(x, y, a).

We start by noting that the case of minimizing E2 is actually easy in O(k logn) bits
of space! This is because the optimal choices of the ai coefficients are determined by the
following k + 1 equations:

a0
∑
i∈[n]

xji + a1
∑
i∈[n]

xj+1
i + . . .+ ak

∑
i∈[n]

xj+ki =
∑
i∈[n]

xjiyi ∀ 0 ≤ j ≤ k .

The equations correspond to the derivatives of E2(x, y, a) with respect to each aj . It is
therefore sufficient to compute the following O(k) values∑

i∈[n]

xji for 0 ≤ j ≤ 2k , and
∑
i∈[n]

xjiyi for 0 ≤ j ≤ k

as the stream is processed. The resulting set of simultaneous equations are then solved in
post processing.

A similar idea works for p ∈ {4, 6, 8, . . .} but requires a bit more space. The main idea is
simple (and has been observed for the more general regression problem): if one thinks of the
coefficients a0, . . . , ak as variables then Ep(x, y, a) is a (k + 1)-variate polynomial of degree p.
Thus, if we can keep track of all the coefficients in this polynomial, then after the pass over
the input, one can estimate E(k)

p (x, y) by cycling through all possibilities for a. This requires
keeping track of roughly pk values, which is not satisfactory. However, it is easy to check
that these roughly pk coefficients only depend on the following O(p2k) sums:∑

i∈[n]

yji x
`
i for 0 ≤ j ≤ p, and 0 ≤ ` ≤ (p− j)k.

Thus, we only need to keep track of the above O(p2k) sums and E(k)
p (x, y) can be evaluated

in post-processing.
However, it is not possible to find the best coefficients in general in sublinear space. An

easy way to see this is to consider p = 1 and k = 0. Given a set of points {(xi, yi) : i ∈ [n]}
we seek the value a such that

∑
i∈[n] |xi − a| is minimized. But it is well known that the

optimal value of a is the median of the yi values and computing the median exactly in the
data stream model requires Ω(n) bits of space [9].

Another simple lower bound shows that if, rather than reporting the best k+1 coefficients,
we just want to multiplicatively estimate E(k)

p (x, y) then this requires Ω(k) bits of space. This
follows from a reduction from indexing where Alice has a set A ∈ [2k] of cardinality k and
Bob has an index j ∈ [2k]. Alice computes the degree k polynomial f(x) =

∏
a∈A(x− a) and

defines the first k + 1 elements of a stream {(2k + i, f(2k + i)) : i ∈ [k + 1]}. Bob then adds
the point (j, 0). If j ∈ A then there is a degree k polynomial, namely f , that interpolates
through all the k+ 2 points exactly. Alternatively if j 6∈ A then any interpolating polynomial
must have degree at least k + 1.
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3.1 Maximizing the number of points fitted exactly
We first consider fitting a degree k polynomial to the stream of points with the goal of
interpolating exactly through as many of the points as possible. The following result applies
to both finite fields Fq and the reals. The application to finite fields relies on the observation
that many sketching algorithms for estimating the number of distinct items, F0, can be
carefully modified to estimate |{i : fi mod p 6= 0}| for an arbitrary prime p where fi is the
frequency of the value i in the stream.2

I Theorem 5. Let n ≥ (1+2γ)k be integers for γ > 0. Assume that E0(x, y) ≤ ((1−γ)n−k)/2
for some γ > 0. Then it is possible to find the optimal polynomial and estimate E0(x, y) up
to a factor (1 + ε) with probability 1− δ (where δ ≤ exp(−Ω(γ2k))) in a single pass using
Õ(ε−2 log(1/δ) + γ−2k) space.

Proof. Let f be a degree k polynomial that interpolates through the maximum number of
points. Note that by the bound on t = E0(x, y), f will be unique. Call a point (xi, yi) good
if f(xi) = yi and bad otherwise. The idea in the algorithm is to essentially sample enough
points and run the unique decoding algorithm from Theorem 4 on the sampled points. We
next present the details.

First assume that t ≤ γk. In this case, we just run the algorithm from Theorem 4 with
K = k and N = (1 + 2γ)k on the first N points. Thus, even if in the worst case all the t
errors occur in the first N positions, the algorithm from Theorem 4 will output f in space
Õ(k). Note that once we have computed f , we can check that t ≤ γk by verifying that f
explains the remaining points. Further, we can compute t exactly.

Next we consider the case when t > γk. In this case we first sample each of the n
input points with probability 4k/(γ2n). By Chernoff, except with probability exp(−Ω(k)),
we would have sampled N = ck points with 4/γ2(1 − γ/2) < c < 5/γ2. Then we run the
algorithm from Theorem 4 on the sampled points. Note that if we sample at most (ck− k)/2
bad points, the algorithm will indeed return f . Next, we show that this is indeed the case.
Note that the expected number of bad points is µ = 4kt/(nγ2). We show by a case analysis
that the probability we get more than ∆ := (c− 1)k/2 bad points is exponentially small.

We first consider the sub-case that γk ≤ t < n/(8e). Note that in this case ∆/µ > 2e,
which implies that the probability that the number of bad points is more than ∆ is at
most 2−t = exp(−Ω(k)) [4]. Finally we consider the sub-case that t ≥ n/(8e). Note that
by the assumption on t, we also have t ≤ (1 − γ)n/2, which implies that in this case
µ ≤ 4k(1 − γ)/(2γ2). This implies that ∆ > (1 + γ/2)4k(1 − γ)/(2γ2) ≥ (1 + γ/2)µ (as
c > (1− γ/2)4/γ2 ≥ 4/γ2(1− γ/2− γ2/2) + 1). Thus, the probability that we will have at
least ∆ bad points by the “usual" Chernoff bound is upper bounded by exp(−Ω(γ2 · µ)) ≤
exp(−Ω(γ2n)). Thus, in a single pass and Õ(k/γ2) space we can compute the optimal
polynomial f(X) =

∑k
i=0 aiX

i with error probability at most exp(−Ω(γ2k)).

2 In particular, the algorithm detailed in [12] computes
∑

i∈S
fi for random subsets S and makes an

estimation based on the fraction of random subsets S such that
∑

i∈S
fi 6= 0 as this indicates that there

exists i ∈ S such that fi 6= 0. However, in the case of Fp for example, it is possible that
∑

i∈S
fi = 0

mod p while there exists i ∈ S such that fi 6= 0 mod p. One approach, as taken in Indyk [10] for the
case p = 2, is to take the probability of this event into account and adjust the estimator appropriately.
An alternative approach is to consider log(1/γ) random subsets of each S, {Sj : j ∈ log(1/γ)}: if
there exists i ∈ S such that fi 6= 0 mod p then with probability at least 1 − γ, there exists Sj such
that

∑
i∈Sj

fi 6= 0 mod p. The results in a factor log(1/γ) increase in the space and time use of the
algorithm but it suffices for γ to be O(ε−2) so this increase is not significant.
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In parallel with the algorithm above, we compute sketches to estimate the value of t.
Compute F0 sketches (e.g., [13]) of y = (y1, . . . , yn) and xj = (xj1, x

j
2, . . . , x

j
n) for 0 ≤ j ≤ k

and return an estimate based for t using sketch(y −
∑k
j=0 ajx

j) = sketch(y) −
∑k
j=0 aj ·

sketch(xj) .
Repeating the above process O(log 1/δ) times and taking the smallest estimate gives a

(1± ε) approximation on t with error probability at most δ. Note that we use Õ(ε−2 log(1/δ))
space in this part of the algorithm. The assumption on δ in the statement of the theorem
completes the proof. J

3.2 Minimizing the average error
To minimize Ep(x, y, a) for p ∈ (0, 2), we first consider the case where we may assume that
each ai comes from some set of t discrete values. Using the p-stable sketching technique
[11], construct linear sketches of the k + 1 vectors xj = (xj1, x

j
2, . . . , x

j
n) for 0 ≤ j ≤ k and

y = (y1, . . . , yn). Call these sketches sketch(xj) Then for a given setting of a0, . . . , ak, we
can estimate Ep(x, y, a) up to factor 1 + ε because the sketches are linear:

sketch(y −
k∑
j=0

ajx
j) = sketch(y)−

k∑
j=0

aj · sketch(xj) .

If the sketches are of size Õ(ε−2 log δ−1) then this procedure fails with probability at most δ.
Since there are at most tk settings for a, this procedure works for testing all settings of a
with probability at least 1− tkδ. Rescaling δ gives a Õ(ε−2k log t log δ−1) space algorithm.
A similar idea was used in Feldman et al. [6] for multivariate linear regression. The main
drawback with this approach is the O(tk) time required for post-processing.

To ameliorate the situation slightly, we first argue that if we restrict ourselves to finding
coefficients up to polynomial precision, we may assume that t is polynomial. In particular
we know how to compute a value B in one pass over the input such that all the coefficients
of the polynomial f(X) =

∑k
i=0 aiX

i minimizing Ep(x, y, a) satisfy |ai| ≤ B. Note that in
this case t = O(B/γ), where γ = 1/ poly(n) is the (additive) precision value.

I Lemma 6. Let n > k ≥ 0 be integers, p ∈ (0,∞) be a real and (x, y) be the input points.
Assume that the polynomial f(X) =

∑k
i=0 aiX

i satisfies E(k)
p (x, y) = Ep(x, y, a). Then, for

every 0 ≤ i ≤ k, |ai| ≤ 6n1/pymax/min(1, xkmin), where ymax = maxi |yi| and xmin = mini |xi|.

By applying a random shift to the x values we may ensure that the numerator is Ω(1)
and we may subsequently assume that B = poly(n). For constant k, this ensures that the
post-processing step is polynomial in n. In the remainder of this section we show that this
dependence on n can be made poly-logarithmic when k is constant and p ≥ 1.

3.2.1 Poly-logarithmic post processing for constant k:
We start by defining the family of functions hj : Rj → R for j = 1, . . . , k + 1:

hj(ak, . . . , ak−j+1) = min
a0,...,ak−j

n∑
i=1

∣∣∣∣∣yi −
k∑

m=0
amx

m
i

∣∣∣∣∣
p

and h0 = Ep(x, y) .

In other words, hj is the smallest interpolation error that can be achieved when the j highest
coefficients are fixed. We first note that hj is convex.

I Lemma 7. For any p ≥ 1, j ∈ {0, 1, . . . , k} and ak, . . . ak−j+2 ∈ R, the function h(x) =
hj(ak, . . . , ak−j+2, x) is convex.
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Evaluate[j, ak, . . . , ak−j+1]
1. If j == k + 1, return a (1 + ε) approximation based on the sketches.
2. Initialize a← −B and b← B where B upper bounds the magnitude of all coefficients.
3. Repeat

a. For x← a+ b−a
4 , y ← a+ b−a

2 , and z ← a+ 3(b−a)
4

ex ← Evaluate[j + 1, ak, . . . , ak−j+2, x]
ey ← Evaluate[j + 1, ak, . . . , ak−j+2, y]
ez ← Evaluate[j + 1, ak, . . . , ak−j+2, z]

b. If ey < ez/(1 + ε) then b← z and repeat
c. If ey < ex/(1 + ε) then a← x and repeat

4. Until ey ≥ min(ex, ez)/(1 + ε) or |b− a| < γ

5. Return ey

Figure 1 The Evaluate Algorithm

To find the minimum value of a convex function h(·) in the range [a, b], a natural approach
would evaluate h at a few intermediate points, e.g., a < x < y < z < b, and recurse on
the appropriate subinterval of [a, b] based on the intermediate valuations. If h(y) ≤ h(z),
we deduce that the minimum lies in the range [a, z] and if h(x) ≥ h(y) we deduce that the
minimum lies in the range [x, b]. Note that one of the above cases must apply since h is
convex. If x, y, z are equally spaced in the interval, after O(logn) iterations we can determine
the value that minimizes h.

As a warm-up to the main algorithm of this section, we next present a O(logk n) pass
algorithm. The algorithm is based on the recursion:

hj(ak, . . . , ak−j+2, ak−j+1) = min
a

(
hj+1(ak, . . . , ak−j+2, ak−j+1, a)

)
.

We can evaluate hk for a given ak, . . . , a1 in O(logn) as described above. By appealing to
the above recurrence, we can then determine hk−1 in O(log2 n) passes: we minimize hk−1 for
a given ak, . . . , a2 by performing the quaternary search to find a such that hk−1(ak, . . . , a2) =
hk(ak, . . . , a2, a). Since each evaluation of hk requires O(logn) passes, it takes O(log2 n)
passes to evaluate hk−1 for a given ak, . . . , a2. Continuing in this manner gives a O(logk n)
pass algorithm for evaluating h0. This leads to the following theorem.

I Theorem 8. Assume each coefficient may take only t different known values. Then there
exists a O(logk t) pass algorithm that computes Ep(x, y) exactly in Õ(k) space and O(1)
per-item processing and O(1) processing at the end of each pass.

We next transform the multiple pass algorithm into a single pass algorithm where
each of the evaluations performed in the quaternary search is computed using a single
sketch of the data. In Figure 1, we present the algorithm Evaluate for approximating hj .
Evaluate[j, ak, . . . , ak−j+1] approximates hj(ak, . . . , ak−j+1) by minimizing a sequence of
convex functions. Note that Evaluate is solely concerned with post-processing: while the
points are being streamed it suffices to construct the appropriate sketches. Before we analyze
the running time and accuracy of Evaluate, we need the following result.

In our algorithm it won’t be possible to evaluate h exactly. However, the following
lemma demonstrates that when the approximate evaluations become so close that it becomes
impossible to evaluate pairwise comparisons, we have identified a sufficiently accurate
approximation of the minimum.
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I Lemma 9. Let h : [a, b]→ R be a convex function and let h̃ : [a, b]→ R satisfy (1− γ) ≤
h(x)/h̃(x) ≤ (1 + γ) for all x ∈ R. Suppose for some a, b, (1 + ε)h̃(y) ≥ max(h̃(z), h̃(x))
where x = a+ (b− a)/4, y = a+ (b− a)/2, and z = a+ 3(b− a)/4. Then

(1 + ε)h̃(y) ≥ min
x∈[a,b]

h(x) ≥ h̃(y)/(1 + 8ε) .

Proof. Without loss of generality assume that h(x) ≤ h(z). Note that h(y) ≤ h(z) because
of convexity. We have to analyze the following two cases.
1. h(x) ≤ h(y): In this case the minimum value is at least

h(y)− 2(h(z)− h(y)) = 3h(y)− 2h(z) ≥ h̃(y)[3/(1 + ε)− 2(1 + ε)2] .

2. h(y) ≤ h(x): In this case the minimum value is at least

h(y)− (h(z)− h(y)) = 2h(y)− h(z) ≥ h̃(y)[2/(1 + ε)− (1 + ε)2] .

In either case, the minimum value is at least h̃(y)/(1 + 8ε) assuming ε < 1/15.
J

I Theorem 10. The running time of Evaluate[0] is O(logk+1 n) and returns a value that
satisfies 1/(1 +Ok(ε))k ≤ Evaluate[0]/Ep(x, y) ≤ (1 +Ok(ε))k .

Using an appropriately rescaled ε when sketching the original points leads to a (1 + ε)
approximation using O(ε−2 polylog(n)) space and O(polylogn) update and post-processing
time for constant k. We note that dependence on k is such that this approach is only practical
for small values of k.

Proof of Theorem 10. For the running time, note that in each iteration the innermost loop
is performed O(logn) times since B = O(polyn) and γ = 1/ poly(n). The result follows
because the depth of the recursion is at most k + 1. The claim on the accuracy follows by
induction on the depth and Lemma 9. J

3.3 Minimizing the maximum error
In this section, we consider the problem of finding coefficients a such that the maximum
absolute error, E∞(x, y, a), is minimized. We will present two results. The first follows from a
straight-forward observation and results in a constant pass algorithm that finds the error and
the coefficients exactly. The second algorithm only uses a single pass but returns coefficients
that minimize the maximum error up to a constant factor.

The first observation is that the problem can be expressed as a linear program in O(k)
variables,

min ε subject to − ε ≤
k∑
j=0

ajx
j
i − yi ≤ ε ∀i ∈ [n] .

Such a problem can be solved in constant passes in O(nδ) space for any constant δ using the
sub-linear time (for constant k) algorithm of Chan and Chen [2].

I Theorem 11. It is possible to minimize E∞(x, y, a) in constant passes and O(nδ) space
for any constant δ.

Our single pass algorithm is based on the following relationship between E∞ and Ep.
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I Proposition 12. For p ≥ logn
log(1+ε) , E

(k)
∞ (x, y) ≤ p

√
E(k)
p (x, y) ≤ (1 + ε)E(k)

∞ (x, y).

Proof. The result follows because for any non-negative vector z ∈ Rn with r = maxi zi,
r ≤ (

∑
i∈[n] z

p
i )1/p ≤ (nrp)1/p ≤ (1 + ε)r. J

In Section 3, we noted that it is possible to evaluate E(k)
p (x, y) (and determine the

corresponding polynomial) in O(p2k) space if p was even. Therefore, by choosing p =
2d(logn)/(2 log(1 + ε))e and appealing to Proposition 12, get the following theorem.

I Theorem 13. E(k)
∞ (x, y) can be (1+ε)-approximated in a single pass with O(ε−2k polylog(n))

space.
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Abstract
Let G be a graph with n vertices and m edges. A sparsifier of G is a sparse graph on the same
vertex set approximating G in some natural way. It allows us to say useful things about G while
considering much fewer than m edges. The strongest commonly-used notion of sparsification
is spectral sparsification; H is a spectral sparsifier of G if the quadratic forms induced by the
Laplacians of G and H approximate one another well. This notion is strictly stronger than the
earlier concept of combinatorial sparsification.

In this paper, we consider a semi-streaming setting, where we have only Õ(n) storage space,
and we thus cannot keep all of G. In this case, maintaining a sparsifier instead gives us a useful
approximation to G, allowing us to answer certain questions about the original graph without
storing all of it. In this paper, we introduce an algorithm for constructing a spectral sparsifier of
G with O(n logn/ε2) edges (where ε is a parameter measuring the quality of the sparsifier), taking
Õ(m) time and requiring only one pass over G. In addition, our algorithm has the property that
it maintains at all times a valid sparsifier for the subgraph of G that we have received.

Our algorithm is natural and conceptually simple. As we read edges of G, we add them
to the sparsifier H. Whenever H gets too big, we resparsify it in Õ(n) time. Adding edges
to a graph changes the structure of its sparsifier’s restriction to the already existing edges. It
would thus seem that the above procedure would cause errors to compound each time that we
resparsify, and that we should need to either retain significantly more information or reexamine
previously discarded edges in order to construct the new sparsifier. However, we show how to
use the information contained in H to perform this resparsification using only the edges retained
by earlier steps in nearly linear time.
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but with fewer edges, which approximates G in some respect. This enables one to approxi-
mately solve problems on G while performing calculations on a much simpler graph, which
often gives substantially faster running times. This problem has been extensively studied
by many researchers, and it has recently become a very active area of investigation as a
result of its connections with numerous topics, including the construction of fast solvers for
symmetric diagonally dominant linear systems (see, e.g., [11, 5]).

Benczúr and Karger [3] introduced the notion of combinatorial sparsification and proved
that any graph G on n vertices has a combinatorial sparsifier H with O(n logn/ε2) edges.
This H preserves the total weight of the edges crossing any cut of G up to a multiplicative
1±ε factor. (Note that this condition will require H to be weighted even if G is unweighted.)
Moreover, the authors provided an efficient algorithm for computingH by sampling the edges
of G according to certain very carefully chosen probabilities.

Recently, Spielman and Teng [10] defined the notion of spectral sparsification. A graph
H is a 1± ε spectral sparsifier of G if it preserves the quadratic form induced by the graph
Laplacian to within a multiplicative 1 ± ε factor. This definition is strictly stronger than
combinatorial sparsification. In a remarkable paper, Spielman and Srivastava [9] showed
that by sampling each edge with probability proportional to its effective resistance, adding
it in with a certain weight, and taking O(n logn/ε2) independent samples in this manner,
one obtains a 1 ± ε spectral sparsifier of G with high probability.1 Furthermore, Spielman
and Srivastava showed how to approximate all of the effective resistances to within a 1± η
factor in time Õ(m/η2), where m is the number of edges of G; using these approximate
values allows one to construct a sparsifier with only a constant blowup in the number of
edges. This leads to a nearly linear (specifically Õ(m/ε2)) time algorithm for computing
spectral sparsifiers.

Having a sparsifier allows us to approximately answer numerous algorithmic questions
about a dense graph without doing as laborious a calculation. For example, we can ap-
proximate the values of cuts, the effective resistances between pairs of vertices, and many
properties of the behavior of random walks on the graph. As such, sparsifiers can be used
to give faster approximate algorithms to numerous problems; Benczúr and Karger did this
in their paper. Additionally, in a setting where we do not have room to store a given dense
graph in its entirety, or perhaps can only access it through slow memory, a sparsifier, which
might be small enough to store in fast memory, can be a useful proxy.

This, along with the growing need to process extremely large graphs, leads us to ask if
we can also construct the sparsifier for a graph G even if we have much less work space than
it would take to represent G. In particular, we consider the semi-streaming model, where
we have Õ(n) memory available. The algorithm of [9] requires access to the entire graph G,
and thus, does not conform to the model. In this paper, we show how to build a sparsifier
almost as quickly as with the original Spielman-Srivastava algorithm, while using at most
Õ(n) space and taking only one pass over G.

In our analysis, we will consider a more general dynamic setting, where we start with a
graph G and its sparsifier H, and, as G is constantly updated, we want to maintain a 1± ε
approximation to the current graph. Specifically, we consider the case of adding edges to G.
(Setting the initial graphs G and H to be empty graphs on the vertex set V, we obtain the
semi-streaming case discussed above; for details, see Section 3.7.) It is not hard to see that as

1 Spielman and Srivastava actually showed that this holds with probability at least 1/2 using Rudelson’s
sampling theorem [7], but a straightforward application of a stronger concentration of measure result
[12, Corollary 4] yields the high probability claim.
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we add edges to G, by adding in those same edges to H, we get the desired approximation
of G. Unfortunately, as we keep doing this, our sparsifier will contain increasingly many
edges and may eventually become too large for our needs. Thus we will need to resample,
to produce a sparsifier of smaller size. We show how to periodically do this resampling very
fast, leading to amortized nearly constant update time per edge added to G. The resampling
algorithm relies on two main insights:
1. As we add new edges to G to produce a graph G′, the effective resistances of the edges

of G do not increase, and thus, neither does their probability of being selected for a
sparsifier. Thus, if we can compute their new probabilities, we can rejection sample the
edges in H and also appropriately sample the new edges to produce edges selected with
the probability distributions from G′, and hence a sparsifier of G′. Thus, we need not
consider all the probabilities in G′, but only those of edges in H and the added edges.

2. Since H with the new edges well-approximates G′, we can use it to quickly estimate the
effective resistances for the edges we need; this estimate turns out to be good enough.

On a high level, the key idea of our construction is that the original sparsifier already contains
a great deal of information, which we can reuse to save time instead of building a sparsifier
from scratch.

In addition to being a generalization of the semi-streaming problem, the dynamic setting
has numerous applications. As [2] points out, by maintaining a sparsifier of a changing
graph at all times, we will be able to perform certain calculations quickly whenever we
need to know something about the current graph. Furthermore, in some cases, it might be
that we have a family of graphs we can choose from, and all of them are variants on some
base graph G (e.g., G with extra edges). In that instance, by sparsifying G, and using our
procedure, one can produce sparsifiers of the other graphs relatively quickly.

Related work
The problem of graph sparsification in the semi-streaming setting was introduced by Ahn
and Guha [2], and it was then further studied by Goel, Kapralov, and Khanna [4] (the latter
of which is concurrent to and independent of the present paper). Ahn and Guha constructed
combinatorial sparsifiers in the semi-streaming model. However, while the space complexity
of their algorithm was Õ(n), the running time was Õ(mn), which is often too slow when the
graphs are large. This is remedied by the present work, as well as by Goel, Kapralov, and
Khanna, who obtain results that are similar to ours when one aims to construct combinatorial
sparsifiers.

However, the graphs that we produce obey the strictly stronger constraints imposed by
spectral sparsification. To our knowledge, ours is the first work to do this in the semi-
streaming setting.

Furthermore, we believe that our algorithm is conceptually cleaner and simpler than that
of [4], and our techniques are quite different from theirs. The algorithm set forth by Goel et
al. inherently requires a logarithmic number of passes through the data, and they maintain
a multi-level collection of graphs and partitions of graphs. They then, using an ingenious
construction and careful analysis, find a way to implement this in a single pass. This results
in a graph that has logarithmically more edges than necessary, which they then clean up at
the end.

Our algorithm, on the other hand, operates inherently in a single pass. We simply add
edges to our graph until it becomes large. When this occurs, we replace our graph with a
sparser version still preserving the approximation guarantee and continue. By taking advan-
tage of the stronger notion of sparsification that we are employing, and properly sparsifying
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and analyzing the probabilities, we are able to show that this simple algorithm produces the
desired sparsifiers while requiring a nearly constant amount of amortized work per edge and
maintaining at all times a graph with Õ(n/ε2) edges.

Acknowledgments This work was partially supported by NSF grant CCF-0843915. The
second author is supported by a National Science Foundation graduate fellowship.

2 Background

Throughout, let G = (V,E) be a graph on n vertices V = {1, . . . , n} and m edges. The
Laplacian of G is given by LG := AG − DG, where AG is the adjacency matrix of G and
DG is the diagonal matrix whose ith diagonal entry is the degree of vertex i. Let L+

G be the
(Moore-Penrose) pseudoinverse of LG.

For i ∈ V, we denote by χi the n × 1 characteristic vector of i (having a 1 at the ith
position and 0’s everywhere else). For an edge e of G with endpoints i, j ∈ V , we let be be the
n×1 vector χi−χj (where the choice of i or j to have the positive sign is made arbitrarily).
Further, denote by B the m × n edge-vertex incidence matrix, with rows indexed by the
edges and columns indexed by the vertices, and whose eth row is be. It is a standard fact that
the Laplacian can be decomposed as LG =

∑
e∈G beb

T
e , or, equivalently, that LG = BTB.

Finally, we discuss some notions from electrical network theory that will be relevant.
Consider the graph as an electric network of nodes (vertices) and wires (edges), where each
edge has resistance of 1. The effective resistance between vertices i and j is the voltage
difference that would be induced between i and j if one unit of current were put in i and
taken out from j. It can be shown that this is precisely equal to (χi−χj)TL+

G(χi−χj). For
an edge e of G, the effective resistance of e, denoted by Re, is defined to be the effective
resistance between the endpoints of e. Namely, we have Re = bT

e L
+
Gbe. It is a standard fact

that if G is connected, we have
∑

e∈G Re = n− 1. The sum is n− c− 1 if G has c connected
components.

2.1 Spectral sparsifiers
Fix notation as above. In what follows, we will write A � B for matrices A and B when
B −A is positive semidefinite.

I Definition 1. A 1 ± ε spectral sparsifier of G is a possibly weighted graph H such that
the edge set of H is contained in that of G and

(1− ε)LG � LH � (1 + ε)LG. (1)

In other words, for all x ∈ Rn, we have

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx.

Note that we have approximations for pseudoinverses as well. If H is a 1 ± ε sparsifier
of G, it is the case that

1
1 + ε

L+
G � L

+
H �

1
1− εL

+
G. (2)

In particular, because the effective resistance between i and j is given by evaluating the
quadratic form defined by the Laplacian pseudoinverse at χi − χj , we see that the effective
resistances between any two nodes in G and H are the same up to a 1/(1± ε) factor.
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Algorithm 1 Sparsify
Input: G = (V,E)
Set H to be the empty graph on V.
for i = 1 to N = O(n logn/ε2) do

Sample edge e ∈ G with probability pe proportional to Re, and add it in with
weight 1/(Npe) to H

end for

In [9], Spielman and Srivastava considered Algorithm 1 for generating a sparsifier of G.
They proved:

I Theorem 2. Fix ε ≥ 1/
√
n. Then, Algorithm 1 produces a 1± ε sparsifier of G with high

probability.

Additionally, the authors were able to show how to approximate all the effective resis-
tances in time Õ(m/ε2). Up to log factors, this is optimal, since it takes Ω(m) time to even
write down all of the effective resistances. This fast way of estimating resistances gives a
nearly-linear time (in m) algorithm for sparsifying G.2

Notation

Before proceeding, we make a few remarks about notation. Let G be a graph with n vertices.
Let Γ be another graph on the same vertex set as G. Then, G + Γ is the graph given by
adding the weights of the edges of Γ to the corresponding edges of G. In this paper, for the
most part G and Γ will be unweighted graphs, and Γ will be edge-disjoint from G. In this
case, G + Γ represents the graph we get when we add the edges of Γ to G. The definition
agrees with the previous one if we regard missing edges as having a weight of 0, and those
that are in the graph as having a weight of 1.

For an edge e not in G, we denote G+ e the graph obtained by adding e to G.
For convenience, we define q = q(n, ε) = O(logn/ε2) to be the quantity such that taking

nq samples in the above algorithm (using exactly correct probabilities) gives us a 1 ± ε

sparsifier H of G with probability at least 1− n−d (for some desired constant d determined
at the outset).

Finally, we note that as prescribed by [9], when we add an edge to H multiple times,
we just sum up the weights. In our presentation, it will be convenient to think instead of
keeping parallel edges, so that our sparsifiers will have have exactly nq edges.

3 The dynamic update algorithm

Throughout, for notational convenience, we will consider the setting of adding new edges
to an unweighted graph G without adding new vertices. It is straightforward to generalize
to the case where we add vertices, or where the graph is weighted and we may increase the
weights of existing edges as well as add new ones, provided that the weights are polynomially
bounded.

2 Throughout, we will use the terms “nearly constant” or “nearly linear” to mean constant or linear, up
to poly-logarithmic factors. This terminology is fairly standard.
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3.1 Setup
Initially, we assume that we are given access to the exact effective resistances when we need
them to sample. We will later relax this requirement.

Suppose that G is a graph on n vertices and H is a 1± ε sparsifier of G with nq edges.
(If G is the initial graph, we assume that H was produced using the sampling procedure in
[9], given the correct effective resistances.) Let e be an edge not in G; then it is clear that
H + e is a 1± ε sparsifier of G+ e. Indeed, we have

LG+e = LG + beb
T
e , LH+e = LH + beb

T
e ,

whence the desired statement follows.
As we add edges to G, we can add those same edges to H, until the sparsifier gets too

large, forcing us to resample. In this work, we say that this happens when it is of size Cnq
for some constant C > 1 that we can choose at will.

We will formalize this situation as follows. Let G = (V,E) be a graph, and let H be its
1± ε sparsifier with nq edges. Let Γ represent the added edges (i.e., it is a graph on V with
edges exactly those that are added to G) such that H+ := H+ Γ has Cnq edges. (Note that
H+ is a 1± ε sparsifier of G′ := G+ Γ.)

Because H+ is large, we want to construct a sparsifier H ′ of G′ of nq edges. We call
this procedure resparsification. We would like this resparsification to take much less time
than it would take to sample from scratch, namely Õ(m/ε2). Sparsifying G′ from scratch
gives us an average update time of Õ(m/n) per operation, which is Õ(n) when G′ is dense.
We want a Õ(1) amortized time instead. The key insight is to use the information already
contained in H, which will allow us to sample edges from the correct distribution in time
Õ(n/ε2), leading to the desired bound.

The main observation is that when we add a new edge to G, the effective resistances of
the other edges cannot increase. This is more or less clear from the physical model, and it
can be proven rigorously as in [6, Lecture 9]. Further, the sum of the effective resistances
of all of the edges cannot decrease. (If adding the edge reduces the number of connected
components, this quantity increases, otherwise it stays the same.) Thus, the probabilities
of choosing the edges in the sparsification procedure of [9] cannot increase.

In what follows, we let Re (resp. R′e) be the effective resistances across edge e in G (resp.
G′), and pe (resp. p′e) be the probability of selecting those edges (i.e. pe = Re/

∑
f∈G Rf ,

and similarly for p′e).
Consider Algorithm 2, which details the resparsification step in our simplified context.

Algorithm 2 Resparsification (knowing the correct probabilities)
Input: H,Γ %G, the original graph, is not given
Output: H ′, a 1± ε sparsifier of G′ with nq edges
1: Compute the effective resistances in G of all the edges of H, and from there the proba-

bilities of selecting them. %We will show how to do this later
2: Compute the effective resistances in G′ of all the edges of H+ (i.e. all the edges of H

and Γ) and the probabilities of selecting them.
3: for all edges e of H do
4: With probability p′e/pe, add e to H ′ with weight 1/(nqp′e)
5: Otherwise, pick an edge f of Γ with probability p′f/

(∑
g∈Γ p

′
g

)
and add it to H ′

with weight 1/(nqp′f )
6: end for

STACS’11



446 Spectral Sparsification in the Semi-Streaming Setting

Note that the sampling procedure is well-defined, since p′e ≤ pe. Further, we claim that
all the edges are selected with exactly the correct probabilities, giving us a proper sample,
so that H ′ is a 1 ± ε sparsifier of G′ with high probability. Indeed, imagine selecting one
edge for H ′ using a three-step process:
1. Select an edge from G with probability pe.
2. Keep it with probability p′e/pe.
3. If you reject in Step 2, pick an edge f of Γ with probability p′f/

(∑
g∈Γ p

′
g

)
.

Note that you select edge e ∈ G with probability p′e, and the overall probability of rejecting
in the second step is 1−

∑
e∈G p

′
e =

∑
g∈Γ p

′
g, hence you select f with probability p′f , as it

should be. By going through edges in H as in the algorithm and accepting them with the
desired probability, we are effectively reusing the randomness we used to construct H. This,
in turn, allows us to save time by only considering the probabilities for the Cnq edges of
H+, rather than for all the edges of G′.

The heart of algorithm then becomes correctly estimating the Re and R′e and from them,
the pe and p′e.

3.2 Estimating effective resistances
Unfortunately, we are not able to exactly compute the effective resistances (and hence se-
lection probabilities) quickly enough, so we will have to estimate them. We know that if our
estimate of each probability is guaranteed to be at least 1/α of the correct value (for some
fixed α > 1), then αnq samples are enough to get a 1 ± ε sparsifier with high probability
(see [8, Corollary 6], where this fact is proven implicitly). We will be able to provide this
guarantee for α � 2, so if we let H have 2nq edges (and take 2nq samples for computing
H ′), the same claims about the sparsification quality of H and H ′ will hold.

With that in mind, we note that our method is closely related to the one in [9] for
calculating the effective resistances quickly. We first recapitulate the ideas in that paper,
and then we describe our modifications.

Recall that

Re = bT
e L

+
Gbe = bT

e L
+
GLGL

+
Gbe = bT

e L
+
GB

TBL+
Gbe =

∥∥BL+
Gbe

∥∥2
.

Thus, if e = (i, j), then Re is the squared distance between the ith and jth columns of the
m× n matrix BL+

G. To compute this would be too slow, so Spielman and Srivastava make
the following approximations:
1. Since the effective resistances are given by distances between n × 1 vectors, we can ap-

ply the Johnson-Lindenstrauss Theorem to randomly project the vectors onto a smaller
dimensional subspace such that all the distances stay roughly the same with high prob-
ability [1].
Specifically, for k = O(logn/ε2), if we choose a k ×m matrix Q each of whose entries is
±1/
√
k uniformly at random, then, with high probability over the choice of Q, we know

that for every edge e = (i, j) of G, the squared distance between the ith and jth column
of the k × n matrix Z = QBL+

G approximates Re to within a 1± ε factor. Furthermore,
computing QB takes O(km) = Õ(m/ε2) time, since B has only 2m entries. (We remark
that the ε in the above can be the same as the parameter measuring the quality of the
sparsifier.)

2. Computing L+
G is costly, so instead, we will approximate it by approximately solving

linear systems in LG. Each solution gives us an approximation of a row of Z, and takes
O(m log(1/δ)) time (since LG has O(m) entries), using the Spielman-Teng linear system
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solver for symmetric diagonally dominant systems [11]. Here, δ is a parameter for the
quality of approximation, which can be appropriately set. Since there are k rows, we
need to solve k � n linear systems. Let Z̃ be the matrix we obtain in this fashion.

Spielman and Srivastava show that if Z encodes all the effective resistances to within a
1 ± ε factor (which happens with high probability over the choice of projection matrix Q),
then for

δ ≤ ε

3

√
2(1− ε)
(1 + ε)n3 (3)

we have that Z̃ encodes the effective resistances to within a (1 ± ε)2 factor [8, Lemma 9].
The running time of one instance of the linear system solver is thus Õ(m log(1/ε)), and since
there are at most k of them, the total time for computing Z̃ is Õ(m/ε2).

For our purposes, we need to compute a matrix encoding approximations to effective
resistances in faster time, namely Õ(n/ε2). Now, because we already have sparsifiers (H and
H+) for G and G′ of size 2nq and 2Cnq respectively, we can use their Laplacians in the place
of LG for estimating the Re and R′e respectively. With high probability, QHW

1/2
H BHL

+
H

(resp. QH+W
1/2
H+

BH+L
+
H+

) encodes the effective resistances of edges in H (resp. H+) to
within 1± ε. Here, BH is the edge-vertex incidence matrix of H, such that LH = BT

HWHBH

for WH the matrix whose diagonal entries are the weighted degrees of H; QH is a k × 2nq
matrix with entries uniform from ±1/

√
k. The definitions of BH+ , WH+ , and QH+ are

similar.
We can compute the QHW

1/2
H BH in O(kqn) = Õ(n/ε2) time, and similarly for the matrix

QH+W
1/2
H+

BH+ , up to a factor of C.
Thus, by running the linear system solver, we obtain matrices, call them Z̃H and Z̃H+ ,

encoding the approximations to effective resistances in H and H+.

Because the effective resistances in H and H+ are within a 1/(1± ε) factor of those of G,
in this manner, we approximate the effective resistances in G to within a factor of (1± 2ε)3.

Furthermore, solving the linear systems now takes Õ(n/ε2) time, since the Laplacians have
Õ(n/ε2) entries (we are absorbing the constant C into the big-Õ notation).

3.3 An alternate sparsification algorithm
We would now like to use the approximate effective resistances to run a variant of Algo-
rithm 2, which simulates the random process in Algorithm 1. For technical reasons, in this
setting, it is useful to consider the following variant of Algorithm 1, and simulate it instead:

Algorithm 3 Alternative sparsify
Input: G
Output: H, a 1± ε sparsifier of G (with high probability)

for all edges e of G do
for i from 1 to N := O(n log2 n/ε2) do %Run this loop implicitly

With probability pe = Re/(n−1) add e to H with weight 1/(Npe) %Re

is the effective resistance of e in G.
end for

end for
return H
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This algorithm produces a 1± ε sparsifier H of G with high probability. Moreover, the
number of edges in H is tightly concentrated around O(N). If we underestimate each pe by
at most an α factor, and use these estimates to run the algorithm, we will have to increase
N by the same α factor to get the high probability claim.

The inner loop is run implicitly; for each edge, given pe, it is easy to determine how many
samples of the edge will be taken, as this follows a binomial distribution. In particular, once
we know the probability, the total running time of the algorithm is proportional to the total
number of edges we select, which is O(N) with high probability.

Note that the sparsifiers we get as a result have O(logn) more edges than the sparsifiers
produced by Algorithm 1. We need the extra factor for a technical reason, and from now
on, will assume that all the sparsifiers we deal with are of size O(n log2 n/ε2).

As before, if we add multiple copies of an edge to H, we treat them as parallel edges in
what follows.

3.4 Putting it all together
Now we are ready to show the final algorithm. So, let G be a graph and H its 1±ε sparsifier
generated according to Algorithm 3, with 2N rather than N steps in the inner loop, where,
from now on, N := O(n log2 n/ε2). The sparsifier H has O(N) edges with high probability.
Let the p̃e be the estimates of the probabilities of edges in G, which were used to generate
H. As before, Γ will represent the new edges (of which there will now be O(n log2 n/ε2)),
G′ := G + Γ, and H+ := H + Γ. Denote by p̃′e the probabilities of edges in G′, computed
using H+, as described previously.

Consider Algorithm 4.

Algorithm 4 Resparsification
Input: H,Γ, as well as the p̃e for every edge e ∈ H.
Output: H ′, a 1± ε sparsifier of G′ with O(n log2 n/ε2) edges with high probability, as well

as p̃′e for every edge e ∈ H ′.
1: Estimate the effective resistances in G′ of all the edges of H+.

2: For e ∈ H+, let p̃′e = R̃′e/(n− 1) %Good approximation to true pe

3: for each edge e of H do
4: p̃′e ← min(p̃e, p̃

′
e)

5: end for
6: for all edges e of H do
7: Keep e with probability p̃′e/p̃e and add it to H ′ with weight 1/(2p̃′eN).
8: end for
9: for all edges e of Γ do
10: for i from 1 to 2N do %Do this loop implicitly
11: With probability p̃′e put e into H ′ with weight 1/(2p̃′eN)
12: end for
13: end for
14: return H ′ and the p̃′e for e ∈ H ′.

It is not hard to see that this algorithm simulates the random process for sparsifying G′
using Algorithm 3. (Again, we reuse the randomness used to generate H.) We can see that
if we keep adding edges and resparsifying, we will put edges into the resulting sparsifier with
exactly the desired probability, up to the modification in Step 4. The probability is over the
randomness of the entire algorithm up to the current step.
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We remark that we need Step 4 since approximation errors might cause the estimate of
the probability of an edge to go up after we have added Γ, even though the true probabilities
should go down. For rejection sampling to simulate the proper probability distributions, the
probabilities have to be non-increasing. We show that the change does not in fact hurt our
construction.

Indeed, suppose pe and p′e are the true probabilities of e in G and G′ respectively, and
assume that p̃e ≥ pe/α and p̃′e ≥ p′e/α for some α (which is much smaller than 2). We must
have pe ≥ p′e, hence p̃e ≥ pe/α ≥ p′e/α, and hence min(p̃e, p̃

′
e) is at least as big as p′e/α.

Therefore, the samples we take suffice to guarantee that H ′ will be a 1 ± ε sparsifier with
high probability.

Computing the matrices encoding the effective resistances takes Õ(n/ε2) times. We only
need to compute Õ(n/ε2) effective resistances (since we do this only for edges in H and
those in H+). Sampling also takes Õ(n/ε2) time. Since we resparsify every Õ(n/ε2) steps,
we conclude that the update procedure takes Õ(1) steps per added edge.

This procedure works to give resparsified graphs with the correct approximation guar-
antee with high probability as long as the previous resparsified graph was a 1± ε sparsifier.
(Note that by construction, the previous graph will always have edges drawn from a proba-
bility distribution that is close to correct; we need it to be a good sparsifier so that we can
use it to quickly obtain good approximations to effective resistances.) We can union bound
the probability of failure of any one of the resparsification steps (where we can include the
event that the sparsifier ends up too big as a failure). The other potential place for error is
when we apply the Johnson-Lindenstrauss theorem, but again, we have a high probability
guarantee there, and are free to increase the number of rows k in the projection matrices QH

and QH+ by a constant factor. Thus, by picking N and k to have a large enough constants
at the outset, we can perform this procedure any desired polynomial number of times and
be guaranteed that we always maintain a sparsifier with high probability.

By keeping careful track of the running times of the construction, we can prove:

I Theorem 3. Our dynamic update algorithm takes O(log4 n(log logn)3 log(1/ε)/ε2) opera-
tions per added edge.

Proof. The bottleneck in the algorithm is solving the linear systems in the resparsification
step. Using the recent results of Koutis, Miller, and Peng [5], which give the best asymp-
totics known to date, the solution to each linear system for the Laplacian of a graph with
O(n log2 n/ε2) edges can be approximated in time O(n log4 n(log logn)3 log(1/δ)). Solving
O(logn/ε2) linear systems with δ as in (3), requires time O(n log6 n(log logn)3 log(1/ε)/ε4).
Since we resparsify after adding O(n log2 n/ε2) edges, the amortized cost is

O(log4 n(log logn)3 log(1/ε)/ε2)

per added edge, as claimed. J

3.5 Error-forgetfulness of the construction
Before concluding this section, we note one interesting property of our construction in Al-
gorithm 4. Using H and H+, which are approximations to G and G′ respectively, we obtain
estimates on effective resistances, which are slightly worse than those we would get had we
used the full graphs G and G′ (but allow us to do the computation much faster). Despite the
approximations that we make, by taking twice as many samples as we would have needed
had we known the true probabilities, we once again obtain a high-quality sparsifier (with
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high probability), allowing us to make the approximation all over. In other words, because
we take enough samples, and do so intelligently, the errors we make in approximating the
effective resistances do not propagate; the procedure has no memory for the approximations
we made in the past.

Compare this to a more naïve approach to the problem of resparsifying. If we have G,
G′, H and H+, defined as before, it is tempting to use Algorithm 1 to sparsify H+ directly
to a graph of size nq. Unfortunately, the resulting graph H̄ is a 1± ε approximation of H+,

which is a 1 ± ε approximation of G′, so H̄ is only guaranteed to be a (1 ± ε)2 ≈ 1 ± 2ε
sparsifier of G′. In other words, the error propagates.

3.6 Straightforward generalizations
It is easy to generalize the above construction to the following cases. First, the construction
goes through almost directly for the case of weighted graphs, where we are allowed to add
weighted edges. For example, the probability of selecting an edge becomes the weight of that
edge times its effective resistance. The weights with which we add sampled edges depend on
their weights in G, so in order to do this properly, we should store the weights of the edges
in the current sparsifier.

We can also consider operations where we increase the weight of an edge e of G by some
amount w. In this case, we imagine adding an edge parallel to e and with weight w to G,
and proceed as before (we add e′ with weight w to H, and resparsify after some number of
steps). The reason for considering parallel edges here is that while increasing the weight of
an edge decreases the probabilities of other edges, it may increase the probability of that
edge, which can stymie our construction. If we instead add an independent copy of the edge,
all the arguments go through.

The only thing we have to be careful about is that in the weighted case, the value of δ
in (3) depends on the ratio of the maximum weight to the minimum weight in the graph. If
this is always bounded by some polynomial in n, then we need to add at most a factor of
logn to the running time of the linear system solver, and hence of the overall algorithm.

Secondly, we can envision adding vertices as well as edges to G. Adding a vertex and
connecting it by an edge to some existing vertex does not affect the effective resistances of
the other edges, and it does not increase the number of connected components in the graph.
Hence, once again, the probability of existing edges can only decrease, and we can use the
same arguments. Here, by adding vertices, we increase the number of times we need to
sample in the inner loop of Algorithm 3 in order to get a 1± ε approximation guarantee. If
we have an upper bound on the number of vertices we will end up with, we can ensure that
we take enough samples from the outset.

3.7 The semi-streaming setting
The dynamic algorithm described above goes through almost unchanged in the semi-streaming
case (where we start with the empty graph). After adding the first 2CN edges (where
N = O(n log2 n/ε2)), we use Algorithm 4 (with H set to the empty graph and Γ set to
the current graph, and 2N iterations in the inner loop), giving us a 1± ε approximation to
the current graph, containing of 2N edges in expectation. The number of edges is in fact
tightly concentrated around this expectation. Then we continue as before, adding edges and
resparsifying every 2CN steps.

For our algorithm to be valid in the semi-streaming model, we only need to prove that
it requires Õ(n/ε2) work space. But this is immediate, since, with high probability, we will
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only deal with graphs of Õ(n/ε2) edges throughout the run.
If we would like to end up with a sparsifier containing O(n logn/ε2) edges, we can run

Algorithm 1 on the output, which will change the final error guarantee from 1±ε to (1±ε)2.

4 Conclusions and future work

We have presented an algorithm for maintaining a sparsifier of a growing graph, such that the
average time is Õ(1) for each added edge. The main idea is a resampling procedure that uses
information in the existing sparsifier to construct a new one very quickly. Our construction
is robust and holds relatively unchanged for several natural variants. An interesting question
left open by our work is whether similar results could be obtained in a dynamic model that
permits the removal of edges as well. While this is somewhat unnatural in the semi-streaming
setting, it is a very reasonable goal in the dynamic setting where one aims to maintain a
sparsifier for a graph that is changing over time.
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Abstract
As part of his groundbreaking work on algorithmic randomness, Solovay demonstrated in the
1970s the remarkable fact that there are computable upper bounds of prefix-free Kolmogorov
complexity K that are tight on infinitely many values (up to an additive constant). Such com-
putable upper bounds are called Solovay functions. Recent work of Bienvenu and Downey [STACS
2009, LIPIcs 3, pp 147-158] indicates that Solovay functions are deeply connected with central
concepts of algorithmic randomness such as Ω numbers, K-triviality, and Martin-Löf randomess.

In what follows, among other results we answer two open problems posed by Bienvenu and
Downey about the definition of K-triviality and about the Gács-Miller-Yu characterization of
Martin-Löf randomess. The former defines a sequence A to be K-trivial if K(A�n) ≤+ K(n), the
latter asserts that a sequence A is Martin-Löf random iff C(A�n) ≥+ n−K(n). So both involve
the noncomputable function K. As our main results we show that in both cases K(n) can be
equivalently replaced by any Solovay function, and, what is more, that among all computable
functions such a replacement is possible exactly for the Solovay functions. Moreover, similar
statements hold for the larger class of all right-c.e. in place of the computable functions. These
full characterizations, besides having significant theoretical interest on their own, will be useful
as tools when working with K-trivial and Martin-Löf random sequences.
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1 Introduction

1.1 Algorithmic randomness and Kolmogorov complexity
The goal of the theory of algorithmic randomness is to give a formal meaning to the notion
of “random object”. For finite discrete objects, such as finite binary sequences or strings, this
was achieved by Solomonoff, Kolmogorov and Chaitin via the notion nowadays known as
Kolmogorov complexity, where then a string is said to be random if it is incompressible in
the sense of having roughly maximum Kolmogorov complexity. As usual, for a string w we
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distinguish the plain Kolmogorov complexity C(w) and its prefix-free variant K(w). Both
are defined as the length of the least description of w with respect to some fixed additively
optimal Turing machine U . That is, we ask for the length of a shortest string p such
that U(p) = w; however, for the prefix-free variant we restrict attention to Turing machines
with prefix-free domain [5, 10].

For infinite objects, such as infinite binary sequences (or sequences, for short), various
notions of randomness have been proposed and studied. This extensive study led to a
consensus that the “best” notion of randomness is Martin-Löf randomness, mainly because
in many respects, Martin-Löf randomness is well-behaved, in that the main properties of
Martin-Löf random sequences do match our intuition of what random sequences should look
like. Moreover, the concept of Martin-Löf randomness is robust in the sense that it admits
various equivalent definitions that are all natural and intuitively meaningful. For example,
Martin-Löf random sequences can be characterized as the sequences that are unpredictable in
the sense that certain effectively approximable betting games cannot win on these sequence.
In the early 1970s, another important characterization in terms of incompressibility was
found by Schnorr — and independently, in a slightly different form, by Levin — which asserts
that for any sequence A,

A is Martin-Löf random⇔ K(A�n) ≥+ n (1)

where K is the prefix-free Kolmogorov complexity and A�n denotes the prefix of A of length n
(here the notation ≥+ means “greater or equal up to a constant additive term that does not
depend on the variable n”, for formal definitions and more detailed explanations of this and
other notation see Section 1.3).

Solovay functions
Bienvenu and Merkle [2] observed that the incompressibility characterization (1) of Martin-
Löf randomness remains valid in case the function K is replaced by a suitable computable
function f :

A is Martin-Löf random⇔
[
f(A�n) ≥+ n

]
, (2)

where it is easy to see that in addition the function f can be chosen to be an upper bound
for K. Continuing this line of research, Bienvenu and Downey [1] considered “good” upper
bounds for K, namely those that are computable, and are tight on infinitely many values.
They called such bounds Solovay functions, as Solovay [14] was the first to show that such a
function exists.

I Definition 1. A function g : N→ N is an upper bound for K (up to an additive constant)
if K(n) ≤+ g(n), and such a bound is i.o. tight (up to an additive constant) if for infinitely
many n, g(n) ≤+ K(n). An i.o. tight upper bound g for K is a Solovay function in case g is
computable. It is a weak Solovay function in case g is right-c.e.

Thus, K itself is a weak Solovay function. Among other results to be discussed be-
low, Bienvenu and Downey demonstrated that any computable function g for which the
equivalence (2) holds true must be a Solovay function.

I Theorem 2 (Bienvenu-Downey). Any computable upper bound f of K which satisfies the
equivalence

A is Martin-Löf random⇔
[
f(A�n) ≥+ n

]
is a Solovay function.

STACS’11



454 Solovay functions and K-triviality

Left-c.e. reals and Ω numbers
Infinite binary sequences can be identified with binary expansions of reals in the unit interval
in the canonical way. Then, a sequence is called left-c.e. if the corresponding real is the
limit of an effectively given nondescending sequence of rational numbers. Martin-Löf random
sequences that are left-c.e. exist, and have very interesting properties. For example, a
left-c.e. real is Martin-Löf random if and only if it is Solovay complete, i.e., has only effective
approximations from below that are as slow as any other effective approximation from
below to any other left-c.e. real, up to a constant factor [5, 9]. Furthermore, Martin-Löf
random left-c.e. reals can be characterized as the measures of the domains of universal Turing
machines [5]. Letting

Ωg =
∑
n∈N

2−g(n)

one obtains as a variant of the latter result that a left-c.e. real is Martin-Löf random if and
only if the real can be written in the form Ω

K̃
for some variant K̃ of K obtained by using an

alternate universal prefix-free Turing machine. In particular ΩK is Martin-Löf random [5]. A
full characterization of the computable functions g such that Ωg is Martin-Löf random as the
functions that are i.o. tight upper bounds for K was obtained by Bienvenu and Downey [1],
and was extended to the class of right-c.e. functions by Hölzl et al. [8].

I Theorem 3 (Bienvenu-Downey, Hölzl-Kräling-Merkle). Let g : N→ N be a right-c.e. function.
Then g is a weak Solovay function if and only if Ωg is a Martin-Löf random real. In particular,
a computable function g is a Solovay function if and only if Ωg is a Martin-Löf random real.

Observe in this connection that by easy standard arguments, first, for any right-c.e. function g,
the real Ωg is finite if and only if g is an upper bound for K and second, a real is left-c.e.
if and only if it can be written in the form Ωg for some right-c.e. function g such that Ωg

is finite (where one exploits that left-c.e. reals have effective approximations from below
by dyadic rationals, i.e., rationals of the form p/2q where p, q ∈ N). Together, exactly the
left-c.e. reals can be written in the form Ωg for some right-c.e. upper bound g of K, and
Theorem 3 states that the upper bound can be chosen to be i.o. tight if and only if the real
is Martin-Löf random.

K-trivial sequences
From their incompressibility characterization, it can be seen that the Martin-Löf random
sequences are those which have initial segments of roughly maximal Kolmogorov complexity.
It is natural to ask which sequences have initial segments of minimal Kolmogorov complexity.
It is immediate that any computable sequence has minimal Kolgomorov complexity because
for such a sequence the prefix of any given length n will have the same Kolmorogov complexity
as n itself, up to a fixed additive constant, which is then minimal since any code for the
prefix can also be used as a code for n. Indeed, Chaitin [4] showed that the sequences A
such that C(A�n) ≤+ C(n) are exactly the computable ones. On the other hand, this is not
true any longer for the class of sequences A such that K(A�n) ≤+ K(n). While Chaitin [4]
proved that any such sequence is computable from the halting problem, Solovay [14] was
able to construct such a sequence that is noncomputable and computably enumerable. The
class of such sequences was further studied by Downey, Hirschfeldt, Nies and Stephan [6, 12],
who called these sequences K-trivial.

The K-trivial sequences turned out to have remarkable properties. Perhaps the most
striking ones are that they can be characterized as the sequences that are low for Martin-Löf



L. Bienvenu, W. Merkle and A. Nies 455

randomness, or, alternatively, as the sequences that are low for prefix-free Kolmogorov
complexity. In other words, a sequence A is K-trivial if and only if Martin-Löf randomness
relativized to A coincides with Martin-Löf randomness, if and only if the prefix-free Kol-
mogorov complexity relativized to A is within an additive constant of the unrelativized one.
There are many more interesting results about K-trivial sequences. We refer the reader to
the books by Downey and Hirschfeldt [5], and by Nies [13].

In Section 2 we will argue that in the definition of the notion of K-trivial, the upper
bound K(n) can be equivalently replaced by any weak Solovay function, and that in fact
the ability to do so characterizes the Solovay functions and the weak Solovay functions. A
preliminary result in this direction was obtained by Bienvenu and Downey [1], who showed
that K-triviality can be characterized via some particular Solovay function.

I Theorem 4 (Bienvenu-Downey). There exists a Solovay function g such that for all A,

A is K-trivial⇔
[
K(A�n) ≤+ g(n)

]
The Gács-Miller-Yu Theorem
In view of the incompressibility characterization of Martin-Löf randomness in terms of
prefix-free Kolmogorov complexity, it is suggestive to ask whether a similar characterization
in terms of plain Kolmogorov complexity is possible. A first result in this direction was
obtained by Gács [7] using conditional plain Kolmogorov complexity. He showed that for
any sequence A,

A is Martin-Löf random⇔
[
C(A�n |n) ≥+ n−K(n)

]
.

Much later, Miller and Yu [11] were able to show that this equivalence remains true when
conditional plain Kolmogorov complexity is replaced by its unconditional counterpart. That
is, for any sequence A,

A is Martin-Löf random⇔
[
C(A�n) ≥+ n−K(n)

]
.

At the same time Miller and Yu showed that in addition the equivalence remains valid in
case the term K(n) is replaced by a suitable computable function g (a variation of the
original Solovay function built by Solovay), which yields their celebrated characterization of
Martin-Löf randomness based solely on plain Kolmogorov complexity: for some computable
function g and for any sequence A,

A is Martin-Löf random⇐⇒
[
C(A�n) ≥+ n− g(n)

]
.

For a simplified proof of their result see Bienvenu et al. [3].

1.2 Overview
By results discussed above, and by many other results not mentioned here, prefix-free
Kolmogorov complexity is one of the most central notions in algorithmic randomness, and
is indeed closely related to many other fundamental concepts in this area. In particular,
as discussed above, the following assertions all become true in case we let g be equal to
prefix-free Kolmogorov complexity K.

(i) The real Ωg is Martin-Löf random.
(ii) A sequence A is K-trivial if and only if K(A�n) ≤+ g(n).
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(iii) A sequence A is Martin-Löf random if and only if C(A�n) ≥+ n− g(n).
However, known results suggest that these close relations might not just hold for prefix-free
Kolmogorov complexity but also for Solovay functions and weak Solovay functions in general.
As stated above, the first assertion is true for a right c.e. function g if and only if g is a weak
Solovay function [8]. Hence, as a special case, the first assertion is true for a computable
function g if and only if g is a Solovay function [1]. For the two other assertions, on the other
hand, it is only known that the second assertion is true for some Solovay function g [1], and,
by the aforementioned result of Miller and Yu, that the third assertion holds true for some
computable function g, while any function of the latter type must be a Solovay function [1].

In the present paper, we will investigate the question of which functions g make the second
and third assertion true. Similar to the first assertion, we obtain a full characterization in
the sense that the second as well as the third assertion is true for a right-c.e. function g if
and only if g is a weak Solovay function, hence, is true for a computable function g if and
only if g is a Solovay function.

I Remark. The result of Bienvenu and Downey that any computable upper bound f of K
which satisfies the equivalence

A is Martin-Löf random⇔
[
f(A�n) ≥+ n

]
must be a Solovay function does not extend to a characterization of Solovay functions,
i.e., there are Solovay functions for which this equivalence is wrong. Indeed one can easily
construct a Solovay function which is tight only on highly compressible sequences: take
a Solovay function g, and define f by f(0n) = g(n) for all n, and f(σ) = 3|σ| for all the
other strings σ. It is clear that f is a Solovay function, but for A = 10000 . . ., one has
f(A�n) =+ 3n ≥+ n, hence f does not characterize Martin-Löf randomness.

1.3 Notation
Here we gather some notation that will be used throughout the paper. A (binary) string
is a finite sequence over the alphabet {0, 1}. The set of all strings is denote by {0, 1}∗,
while {0, 1}n and {0, 1}≤n denote the set of strings of length n and of length at most n,
respectively. Strings are identified with natural numbers via the order isomorphism that
takes the length-lexicographical order on strings to the usual order on N = {0, 1, . . .}, for
example, the empty string λ is identified with the natural number 0. Sequence refers to
an infinite binary sequence, unless explicitly stated otherwise, and the set of sequences is
denoted by {0, 1}ω. For a sequence A, we write A = A(0)A(1) . . . and the prefix of A of
length i is denoted by A�i= A(0) . . . A(i− 1).

For a string σ, the cylinder [σ] is the set of sequences A such that σ is a prefix of A.
If S is a set of strings, we write [S] for the set of sequences having some prefix in S, i.e.
S =

⋃
σ∈S [σ]. When we talk about measure on the space {0, 1}ω of sequences, we mean

Lebesgue measure µ, which is the probability measure one gets when each bit of a sequence
is chosen at random with probability (1/2, 1/2) independently of all the other bits.

For functions f and g defined on some domain D such as the set of all strings or all
natural numbers, the notation f(n) ≤+ g(n) means that there is some constant c such that
for all n ∈ D we have f(n) ≤ f(n) + c, and f(n) ≥+ g(n) and f(n) =+ g(n) are defined
likewise. Observe that this notation comprises a universal quantifier that ranges over D,
hence it is slight abuse of notation, though straightforward, to extend to statements to
statements such as “f(n) ≤+ g(n) holds for all n in some subset D0 of D”.
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Plain Kolmogorov complexity is denoted by C, and its prefix-free variant by K; for
definitions and further explanations we refer to the literature [5, 13, 10]. Kolmogorov
complexity (plain or prefix-free) is defined on the set of finite string, but as usual we also
apply it to other objects (integers, rational numbers, pairs of strings, etc.) as long as they
can be encoded into finite strings in a computable way.

A function f : D → R is right-c.e. (a.k.a. approximable or semi-computable from above)
if there exists a computable function F : D × N → Q such that for all x ∈ D, the
values F (x, 0), F (x, 1), . . . are nonincreasing and converge to f(x) (the value F (x, t) is
called the approximation of f(x) at stage t and is often denoted by ft(x) when the choice of a
particular F is irrelevant in the argument). The plain and prefix-free variants of Kolmogorov
complexity are examples of right-c.e. functions.

A bounded request set (a.k.a. Kraft-Chaitin set) is a computably enumerable setW of pairs
(σ, n) of a string σ and a natural number n such that

∑
(σ,n)∈W 2−n is finite (enumerating

a pair (σ, n) into a request set is often said to incur a cost of 2−n; the request set being
bounded if the total cost is finite). Having such a set, the Kraft-Chaitin theorem [5, 10, 13]
asserts that for all (σ, n) ∈W , one has K(σ) ≤+ n.

2 K-triviality and Solovay functions

In this section, we prove that for any right-c.e. function g the equivalence

A is K-trivial⇐⇒ [K(A�n) ≤+ g(n)] (3)

holds if and only if g is a weak Solovay function, i.e., if and only if g is an i.o. tight upper
bound for K. Hence, in particular, for computable g, the equivalence (3) holds if and only
if g is a Solovay function. Note that any function g that satisfies equivalence (3) must already
be an upper bound of K, since K(A�n) is always greater or equal to K(n), up to an additive
constant.

2.1 Solovay functions characterize K-triviality
We begin with the first part of the equivalence result, namely that K-triviality is characterized
by weak Solovay functions and thus, in particular, by Solovay functions.
I Theorem 5. Let g be a weak Solovay function. If K(A�n) ≤+ g(n), then A is K-trivial.

As mentioned earlier (Theorem 4), this was proven by Bienvenu and Downey for a partic-
ular Solovay function, actually the one originally built by Solovay, which we call gS . Their
proof involved the construction of a bounded request set (or Kraft-Chaitin set), a standard
technique to ensure the K-triviality of a sequence. However, it relied on the particular
properties of the function gS . We now show that given any weak Solovay function h and
a sequence A such that K(A �n) ≤+ h(n), one can construct a bounded request set that
ensures K(A �n) ≤+ gS(n), hence proving the K-triviality of A. This is achieved by the
following technical proposition, which will guarantee that building a bounded request set to
ensure K(A�n) ≤+ gS(n) does not “cost more” (in a specific sense to be explained below)
than building a bounded request set to ensure K(A�n) ≤+ h(n).

I Lemma 6. Let g be a Solovay function, and h a weak Solovay function. There exists a
positive constant c and a computable partition of N into intervals (In)n∈N such that for all n

2−g(n) ≤ 2c
∑
i∈In

2−h(i)
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Proof. We design a procedure which uniformly in k tries to construct a partition (I(k)
n )n∈N

such that 2−g(n) ≤ 2k
∑
i∈In

2−h(i). The procedure goes as follows:

For n from 0 to ∞ do

(1) Let s(k, n) ∈ N be the first integer which does not belong to one of the previously
constructed intervals I(k)

j for j < n.
(2) Wait until we find some t large enough to have

t∑
i=s(k,n)

2−ht(i) ≥ 2−k2−g(n)

(3) When this happens, we define I(k)
n to be [s(k, n), t].

It is possible that for some (k, n) the procedure of parameter k waits at step 2 forever while
executing the n-loop. When this happens, we have by construction:∑

i≥s(k,n)

2−h(i) ≤ 2−k2−g(n)

Hence by the Kraft-Chaitin theorem, for all i ≥ s(k, n):

K(i) ≤+ K(k, n, s(k, n)) + h(i)− k − g(n)

Since the construction is effective, s(k, n) can be described via the pair (k, n) alone, hence
K(s(k, n)) ≤+ K(k, n) ≤+ K(n) + 2 log k. This, together with the above inequality and the
fact that K(n) ≤+ g(n) (because g is a Solovay function) yields for all i ≥ s(k, n):

K(i) ≤+ h(i)− k + 2 log k

Now, recall that h is a weak Solovay function so K(i) ≥+ h(i) for infinitely many i. Therefore
the above situation can only happen for a finite number of k. In other words, for all k large
enough, the procedure never waits forever at step 2 and hence produces effectively a partition
(I(k)
n )n∈N of N into intervals such that for all n, and each I(k)

n = [s, t] we obtain as wanted

2−k2−g(n) ≤
t∑
i=s

2−ht(i) ≤
t∑
i=s

2−h(i).

J

I Corollary 7. For every weak Solovay function h, there exists a Solovay function h̃ such
that h ≤ h̃.

Proof. Let h be a weak Solovay function and let g be any Solovay function. By Lemma 6,
there exists a constant c and a computable partition (In)n∈N of N into intervals such that
for all n

2−g(n) ≤ 2c
∑
i∈In

2−h(i)

Let h̃ : N → N be the function defined as follows. For a given i, let In be the interval to
which i belongs, and set

h̃(i) = ht(i) where t is the least integer s.t. 2−g(n) ≤ 2c
∑
i∈In

2−ht(i)
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It is clear that h̃ is computable and is an upper bound of h. Moreover, the sum∑
i

2−h̃(i) =
∑
n

∑
i∈In

2−h̃(i)

is random. Indeed, by construction for all n,
∑
i∈In

2−h̃(i) ≥× 2−g(n). Hence
∑
n 2−g(n) is

Solovay reducible to
∑
i 2−h̃(i) (the former being random, the latter must be too by the

Kučera-Slaman theorem [9]). Therefore h̃ is a Solovay function. J

We are now ready to prove Theorem 5. Let h be a weak Solovay function, d a constant
and A a sequence such that K(A�n) ≤ h(n)+d for all n. We want to prove that A is K-trivial.
Since by Corollary 7 any weak Solovay function is dominated by a Solovay function, we only
need to prove this theorem for h computable. We apply Lemma 6 to get a constant c and a
computable partition of N into intervals (In)n∈N such that for all n, 2−gS(n) ≤ 2c

∑
i∈In

2−h(i).
Without loss of generality, we also assume that for all n, n < min(In) (this can be ensured
easily in the proof of Lemma 6).

We show that A is K-trivial by building a bounded request set. For all n and all strings σ
of length n, we wait until we find an extension τ of σ whose length is max(In) and such that
for all i ∈ In, some description of τ �i of length at most h(i) + d is in the domain of U (by
“description” we mean a string p such that U(p) = τ �i, where U is the universal prefix-free
machine defining K). When (and if) this happens (we know when it does by computability
of h), we enumerate a pair (σ, gS(n) + c + d) in our request set. The cost of this for us
is 2−gS(n)−c−d, which we can account against the cost for U to enumerate descriptions of
τ �i as above, which is at least

∑
i∈In

2−h(i)−d, which in turn is at least 2−gS(n)−c−d by
construction of the intervals In. Hence, we never spend more than U does, which ensures
that our request set is bounded. Now, by assumption on A, for every n, for every i ∈ In, the
universal machine must issue a description of A �i of length at most h(i) + d, hence some
pair (A�n, gS(n) + c+ d) enters our bounded request set at some point. Therefore, for all n,
K(A�n) ≤ gS(n) + c+ d. Applying Theorem 4, this shows that A is K-trivial.

2.2 K-triviality characterizes Solovay functions
We now prove that any right-c.e. function g that makes the equivalence

A is K-trivial⇐⇒ [K(A�n) ≤+ g(n)] (4)

true is a weak Solovay function, and hence is a Solovay function in case g is computable. In
the proof of our result, we need only to consider the case where g is an upper bound for K
because otherwise the class of sequences A that satisfy the right-hand side of equivalence (4)
is empty. We then prove the stronger fact that in the case g is a right-c.e. upper bound
for K but is not a weak Solovay function, there are uncountably many sequences A such
that K(A�n) ≤+ g(n). This is enough for our purposes, since there are only countably many
K-trivial sequences (indeed, as we mentioned earlier, they are all computable in the halting
problem).

I Theorem 8. Let g be a right-c.e. function such that K(n) ≤+ g(n) but where g is not a
weak Solovay function. Then the set {A | K(A�n) ≤+ g(n)} is uncountable.

Proof. We will build an increasing sequence a1 < a2 < a3 < . . . of integers such that any
subset A of {a1, a2, a3, . . .} satisfies K(A�n) ≤+ g(n).
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The sequence is defined by induction (but not effectively), where we set a1 = 0 and where
we ensure by induction that for all k, for any subset B of the finite set {a1, . . . , ak} and for
all n ≥ ak, for some constant d that does neither depend on B nor on k we have that

K(B �n) ≤ g(n)− k + d. (5)

This suffices to prove the desired result: let A be any subset of {a1, a2, a3, . . .}, and let n
be some position. Let k be such that ak ≤ n < ak+1. Let B = A ∩ {a1, . . . , ak}. Since
B �n= A�n, one has by the above property K(A�n) ≤+ g(n)− k ≤+ g(n).

We now explain the inductive definition of the sequence ak. Suppose we have already
defined a1, . . . , ak with the property (5). Let us choose c to be a very large integer, say c >
2ak + k + 1. Consider the sum Ωg =

∑
n 2−g(n). By Theorem 3, this is not a random

real as g is not a weak Solovay function. Hence, there exists a prefix σ of Ωg such that
K(σ) ≤ |σ| − c. Let p be a shortest description for σ. Knowing p, one can effectively perform
the following operations: first, retrieve σ = U(p); then, enumerate Ωg from below and wait
until it becomes larger than the real value 0.σ (treated as a real number written in binary)
using the approximation of the values g(n) from above; when this happens, let ak+1 be the
least number m such that for all i ≥ m, so far there has been no contribution to Ωg by the
value g(i) (more precisely, via the approximation of these values from above). Since σ is a
prefix of Ωg, this means in particular that

∑
n≥ak+1

2−g(i) does not exceed 2−|σ|, so by the
Kraft-Chaitin theorem, any integer n ≥ ak+1 can be described by p and some additional
g(n) − |σ| bits of information. Therefore, if n ≥ ak+1 and B is a subset of {a1, . . . , ak+1},
then B �n can be described in a prefix-free way by
- B �ak

,
- p (from which ak+1 can be retrieved),
- the single bit B(ak+1),
- some additional g(n)− |σ| bits.
Thus K(B �n) ≤+ 2ak+|p|+1+g(n)−|σ| ≤+ g(n)−(k+1) (using the fact that c > 2ak+k+1
and |p| ≤ |σ| − c). This concludes the inductive step. J

3 Solovay functions and the Gács-Miller-Yu theorem

We now turn to the link between Solovay functions and the Gács-Miller-Yu theorem. Recall
from the introduction that this theorem states that a sequence A is Martin-Löf random if and
only if C(A�n) ≥+ n−K(n), and that moreover there exists a computable upper bound f
of K such that A is Martin-Löf random if and only if C(A�n) ≥+ n− f(n). Bienvenu and
Downey proved that any such function f must be a Solovay function. We now prove the
converse, i.e. that any Solovay function makes this equivalence true, and the same is true for
weak Solovay functions.

I Theorem 9. Let g be a (weak) Solovay function. The following are equivalent.
(i) A ∈ {0, 1}ω is Martin-Löf random.
(ii) C(A�n) ≥+ n− g(n).

We begin our proof with a combinatorial lemma.

I Lemma 10. Let σ be a string. Let I = [s, t] be a finite interval of integers with s ≥ |σ|.
Let (ai)i∈I be a finite set of integers such that∑

i∈I
ai2−i ≥ 2−|σ|+1.

Then, there exists a subset J of I and a finite set of strings S such that
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(i) [S] = [σ]
(ii) for all τ ∈ S, |τ | ∈ J
(iii) for all j ∈ J , |S ∩ {0, 1}≤j | ≤ aj
Moreover, J and S can be constructed effectively given σ, I and (ai)i∈I .

Proof. We construct J and S via the following procedure. We initialize J and S to ∅. Now
the procedure is as follows:

For all i from s to t do
If ai ≤ |S| do nothing. Otherwise:

(1) Put i into J
(2) Split [σ] \ [S] into cylinders of measure 2−i. Let T be the set of strings of length i

generating those cylinders.
(3) Let T ′ be the set containing the ci = ai − |S| first strings of T in the lexicographic

order (if ci > |T | then let T ′ = T ).
(4) Enumerate all strings of T ′ into S.

We now verify that this procedure works, i.e., that the algorithm is well-defined and that
the set S we obtain after the t-loop is as wanted. First, notice that at the beginning of
the i-loop, S contains only strings of length smaller than i, therefore [S] can be split into
cylinders of measure 2−i. Since |σ| ≤ s ≤ i, this is also the case for [σ], hence for [σ] \ [S], so
step (2) is well-defined. We also immediately see that the conditions (ii) and (iii) of the
lemma are satisfied: indeed, we only enumerate strings of a given length i after enumerating i
into J , and if we do so, we ensure that at the end of the i-loop, the cardinality of S ∩{0, 1}≤i
is at most ai. It remains to verify condition (i). First it is clear that S ⊆ [σ] as we only
enumerate cylinders that are contained in [σ]. Suppose that this inclusion is strict. Then,
when running the above procedure, at step 3, we are never in the case where ci > |T |, hence
for all i, at the end of i-loop, we have |S ∩ {0, 1}≤i| ≥ ai, whether i is in J or not. Therefore,
at the end of the procedure, we have:

t∑
i=s

ai2−i ≤
t∑
i=s
|S ∩ {0, 1}≤i|2−i ≤

t∑
i=s

i∑
k=s
|S ∩ {0, 1}k|2−i ≤

t∑
k=s
|S ∩ {0, 1}k|

t∑
i=k

2−i

<

t∑
k=s
|S ∩ {0, 1}k|2−k+1 < 2µ([S]) < 2µ([σ]) < 2−|σ|+1

and this contradicts the hypothesis of the lemma. J

Proof of Theorem 9. The part (i)→ (ii) follows directly from the Gács-Miller-Yu theorem.
We prove the converse. Let g be a weak Solovay function and A ∈ {0, 1}ω a sequence which
is not Martin-Löf random. We shall prove that C(A�n) ≤ n− g(n)− k for infinitely many n
and arbitrarily large k. By Corollary 7, we can assume that g is computable. We further
assume, for technical reasons which will become clear at the end of the proof, that for all i,
either g(i) ≤ 2 log(i) or g(i) = +∞. If it is not the case, replace g by the bigger function g̃
defined by g̃(i) = g(i) if g(i) ≤ 2 log(i), and g̃(i) = +∞ otherwise. Then we have:∑

i

2−g̃(i) =
∑
i

2−g(i) −
∑
i

g(i)≥2 log i

2−g(i)
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the third sum is a computable real number as the i-th term is bounded by 1/i2. Thus∑
i 2−g̃(i) is equal to a random real minus a computable real, hence is a random real and

thus g̃ is still a Solovay function.
Now, let (Uk)k∈N be a Martin-Löf test covering A and such that µ(Uk) ≤ 2−2k−1 for all k.

We design a procedure (Pk) which for all k tries to enumerate a set of strings Sk such that
[Sk] = Uk, with additional properties on the length of the strings it contains. We ensure
that this procedure succeeds for almost all k by building an auxiliary test Vk which tests the
randomness of

∑
i 2−g(i). The procedure (Pk) works as follows.

(1) Wait for a new cylinder [σ] to be enumerated into Uk.
(2) Choose a large integer s, say larger than 2N with N larger than any integer mentioned

so far in the construction (including k).
(3) Enumerate into Vk the real dyadic interval[∑

i<s

2−g(i), 2−|σ|+1+k +
∑
i<s

2−g(i)

]

(4) Wait for a stage t such that∑
i≤t

2−g(i) > 2−|σ|+1+k +
∑
i<s

2−g(i)

(5) When this happens, we have
∑t
i=s 2−g(i) > 2−|σ|+1+k. We then apply Lemma 10 with

ai = 2i−g(i)−k to get a finite set of strings Sσk and a finite set of integers Jσk such that
[Sσk ] = [σ], for all τ ∈ Sσk , |τ | ∈ Jσk and for all j ∈ Jσk , |Sσ ∩ {0, 1}≤j | ≤ aj . We then
put all strings of Sσk into Sk and go back to step 1.

It is possible that for some k, (Pk) will at some point reach step 4 and wait there forever.
We claim that this can only happen for finitely many k. Indeed, for a given k, we have
µ(Vk) ≤ 2−k, because whenever a cylinder [σ] enters Uk at step 1, an interval of length
2−|σ|+1+k enters Vk, hence µ(Vk) ≤ 2k+1µ(Uk) ≤ 2−k. Thus, (Vk)k∈N is a Martin-Löf test.
Furthermore, if the procedure for Sk waits forever at some step 4, this precisely means that∑
i 2−g(i) belongs to the dyadic interval which was put into Vk at step 3, and thus in that

case
∑
i 2−g(i) ∈ Vk. Since

∑
i 2−g(i) is random, it can only belong to finitely many Vk, hence

for almost all k the procedure (Pk) never waits forever at step 4. In that case, the c.e. set Sk
it builds does satisfy [Sk] = Uk by construction.

To finish the proof, let k be such that (Pk) succeeds. Since A is not Martin-Löf random,
A belongs to Uk, hence to [Sk]. This means that for some n, A�n belongs to Sk. To describe
A �n, it suffices to describe k (this can be done with 2 log k + O(1) bits), and its position
inside Sk. For its position inside Sk, we simply describe the position of A�n inside the Sσk it
belongs to, when the latter is sorted in the length-lexicographic order. By construction of
Sσk , n must be in Jσk (otherwise Sσk would be empty), and there are at most an = 2n−g(n)−k

strings of length less than or equal to n in Sσk , and therefore we can specify the position
of A �n inside Sσk with n − g(n) − k bits. Thus, our description of A �n has total length
n− g(n)− k+ 2 log k+O(1). Since k can be taken as large as wanted, this will be enough to
prove the theorem, but one last thing we need to check is that this description is enough to
retrieve A�n. Indeed, while we give the index of A�n inside the Sσk it belongs to, we do not
describe σ explicitly. However, σ can be found as follows. The description of A�n we give
has length n− g(n)− k + 2 log k +O(1). By assumption, g(n) ≤ 2 logn and by construction
of Sσk , k ≤ log s ≤ logn. Hence our description has length between n− 3 logn+O(1) and
n+O(1). Hence the length of our description gives us n with logarithmic precision. This is
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enough to find the string σ such that A�n belongs Sσk because by construction of Sk, if l is
the length of some string in Sσ′

k with σ′ 6= σ, then either 2l < n or 2n < l, and hence either
l < n− 3 logn or n < l − 3 log l. J
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probabilistic method ∗
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Abstract
The main subject of the paper is everywhere complex sequences. An everywhere complex sequence
is a sequence that does not contain substrings of Kolmogorov complexity less than αn − O(1)
where n is the length of the substring and α is a constant between 0 and 1.

First, we prove that no randomized algorithm can produce an everywhere complex sequence
with positive probability.

On the other hand, for weaker notions of everywhere complex sequences the situation is
different. For example, there is a probabilistic algorithm that produces (with probability 1)
sequences whose substrings of length n have complexity

√
n−O(1).

Finally, one may replace the complexity of a substring (in the definition of everywhere com-
plex sequences) by its conditional complexity when the position is given. This gives a stronger
notion of everywhere complex sequence, and no randomized algorithm can produce (with pos-
itive probability) such a sequence even if αn is replaced by

√
n, log∗ n or any other monotone

unbounded computable function.
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Keywords and phrases Kolmogorov complexity, everywhere complex sequences, randomized al-
gorithms, Medvedev reducibility, Muchnik reducibility
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1 Introduction

The paper considers binary sequences with substrings of high Kolmogorov complexity.
Kolmogorov complexity of a binary string is the minimal length of a program that produces
this string. We refer the reader to [1] or [2] for the definition and basic properties of
Kolmogorov complexity.

The Levin–Schnorr Theorem (see, e.g., [1]) characterizes randomness of a sequence in terms
of complexity of its prefixes. It implies that a n-bit prefix of a Martin-Löf random sequence
has complexity n−O(1). (Technically, we should consider monotone or prefix complexity here;
for plain complexity we have n−O(logn) bound, but in this paper logarithmic precision is
enough.) So sequences with complex prefixes exist (and, moreover, fair coin tossing produces
such a sequence with probability 1).

If we require all substrings (not only prefixes) to be complex, the situation changes.
Random sequences no longer have this property, since every random sequence contains
arbitrarily long groups of consecutive zeros (and these groups have very small complexity).

However, sequences with this property (“everywhere complex”) still exist. The following
Lemma (proved by Levin [3]) says that there exists a sequence where every substring has high
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complexity (though the condition is now weaker; the complexity is greater than αn−O(1)
where n is the length and 0 < α < 1).

Here is the exact statement. Let ω([i, j)) be a substring ωiωi+1ωi+2 . . . ωj−1 of a sequence
ω; let K(u) be the Kolmogorov complexity of a binary string u.

I Lemma 1 (Levin). Let α be a real number, 0 < α < 1. There exists a sequence ω such that

K(ω([k, k + n))) ≥ αn−O(1).

for all natural numbers k and n.

Here the constant O(1) may depend on α but not on n and k.
Levin’s proof in [3] used complexity arguments: informally, we construct the sequence

from left to right adding bit blocks; each new block should increase the complexity as much
as possible.

Later it became clear that this lemma has a combinatorial meaning: if for every n

some 2αn strings of length n are “forbidden”, there exists an infinite sequence without long
forbidden substrings. This combinatorial interpretation shows that the statement of the
lemma (and even a stronger statement about subsequences, not only substrings) is a corollary
of the Lovász local lemma (see [4, 5]). Recently two more proofs were suggested (by Joseph
Miller [6] and Andrej Muchnik).

Before stating our results, let us mention the following slightly generalized version of
Levin’s lemma. Though not stated explicitly in [3], it can be proved by the same argument.

I Lemma 2 (Levin, generalized). Let α be a real number, 0 < α < 1. Then there exists a
sequence ω such that

K(ω([k, k + n)) | k, n) ≥ αn−O(1).

for all integers k, n.

Here K(x|y) denotes conditional Kolmogorov complexity of a string x when y is given (i.e.,
the minimal length of a program that transforms y to x). The difference is that substrings
are now complex with respect to their position and length (so, for example, the binary
representation of k can not appear starting from position k). In combinatorial terms, we
have different sets of forbidden substrings for different positions. (In fact, n is not important
here since its complexity, O(logn), can be absorbed by changing α.)

One can ask how “constructive” the proofs of Levin’s lemma and its variants could be.
There are several different versions of this question. One may assume that the set of forbidden
strings is decidable and ask whether there exists a computable sequence that avoids all
sufficiently long forbidden strings. Miller’s argument shows that this is indeed the case,
though a similar question of 2D configurations (instead of 1D sequences, cf. [4]) is still open.

In this paper we consider a different version of this question and ask whether there exists
a probabilistic algorithm that produces a sequence satisfying the statement of Levin’s Lemma
(or some version of it) with positive probability.

2 The results

We say that a sequence ω is α-everywhere complex if

K(ω([k, k + n))) ≥ αn− c

for some constant c and for all integers k and n.
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I Theorem 3. No probabilistic algorithm can produce with positive probability a sequence ω
that is α-everywhere complex for some α ∈ (0, 1).

I Theorem 4. Let
∑∞
i=0 ai be a computable converging series of nonnegative rational numbers.

There exists a probabilistic algorithm that produces with probability 1 some sequence ω such
that

K(ω([k, k + n))) ≥ a[logn]n− c

for some c and for all k and n.

I Theorem 5. No probabilistic algorithm can produce with positive probability a sequence ω
with the following property: there exists a non-decreasing unbounded computable function
g : N→ N such that

K(ω([k, k + n)) | k, n) ≥ g(n)

for all k and n.

Theorem 3 and 4 complement each other: the first one says that α-everywhere complex
sequences for a fixed α > 0 (even very small) cannot be obtained by a probabilistic algorithm;
the second one says that if we allow sublinear growth and replace the bound αn by

√
n or

n/ log2 n, then the probabilistic algorithm exists. (There are intermediate cases where none
of these theorems is applicable, say, n/ logn bound; we do not know the answer for these
cases.)

Theorem 5 says that Theorem 4 cannot be extended to the case of the generalized Levin
lemma; here the answer is negative for any computable non-decreasing unbounded function.

3 Proof of Theorem 4

Let us start with the positive result.

Proof of theorem 4. The idea of the construction is simple. We fix some computable
function f : N→ N and then let ωi = τf(i) where τi is a sequence of random bits (recall that
we construct a probabilistic algorithm that uses random bit generator).

In other words, we repeat the same random bit τj several times at the locations ωi where
f(i) = j. Why does this help? It allows us to convert bounds for the complexity of prefixes
of τ into bounds for the complexity of substrings of ω. Indeed, if we have some substring of
ω and some additional information that tell us where several first bits of τ are located in the
substring, we can reconstruct a prefix of τ .

We now give more details. We may assume without loss of generality that n, the length
of a substring, is large enough. We may also assume that n is a power of 2, i.e., that n = 2m
for some m. Indeed, for every substring x we can consider its prefix x′ whose length is the
maximal power of 2 not exceeding the length of x. The bound for complexity of x′ gives the
same bound (up to a constant factor) for the complexity of x.

Consider the substring ω([k, k + 2m)) for some k and m. We want it to contain all the
bits from some prefix of τ , more specifically, the first am2m bits τ0, . . . , τam2m−1 of τ . (We
may assume without loss of generality that am2m is an integer.)

To achieve this, we put each of these bits at the positions that form an arithmetic
progression with common difference 2m. The first term of this progression will be smaller
than its difference, and therefore each interval of length 2m contains exactly one term of this
progression.

In this way for a given m we occupy am-fraction of the entire space of indices (each
progression has density 1/2m and we have am2m of them). So to have enough room for all
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m we need that
∑
am ≤ 1. This may be not the case at first, but we can start with large

enough m0 to make the tail small.
Technically, first we letm = m0 and split N into 2m arithmetic progressions with difference

2m. (The first progression is formed by multiples of 2m, the second is formed by numbers
that are equal to 1 modulo 2m, etc.) We use first am2m of them for level m reserving the rest
for higher levels. Then we switch to level m = m0 + 1, splitting each remaining progression
into two (even and odd terms), use some of them for level m0 + 1, convert the rest into
progressions with twice bigger difference for level m0 + 2, etc. (Note that if in a progression
the first term is less than its difference, the same is true for its two halves.)

This process continues indefinitely, since we assume that am0 + am0+1 + · · · ≤ 1. Note
that even if this sum is strictly less than 1, all natural numbers will be included in some of
the progressions: indeed, at each step we cover the least uncovered yet number. So we have
described a total computable function f (its construction depends on m0, see below).

Now we translate lower bounds for complexity of prefixes of τ into bounds for complexity
of substrings of ω: the substring ω([k, k + 2m)) contains first am2m bits of τ (for m ≥ m0),
and the positions of these bits can be reconstructed if we know k mod 2m and the function
f . This additional information uses O(m) bits (recall that m0 ≤ m and it determines f). So

K(ω([k, k + 2m))) ≥ K(τ([0, am2m)))−O(m) ≥ am2m −O(m).

The last term O(m) can be eliminated: increasing am by O(m)/2m, and even more, say, by
m2/2m, we do not affect the convergence. (The bounds presented are literally true for prefix
complexity; plain complexity of prefixes of τ is a bit smaller but the difference again can be
easily absorbed by a constant factor that does not affect the convergence.) J

4 Proof of Theorem 5

The proofs of Theorem 3 and Theorem 5 are based on the same idea. We start with proving
Theorem 5 as it is simpler.

Proof of Theorem 3. Fix some probabilistic algorithm A. We need to prove that some
property (“there exists a non-decreasing unbounded computable function g" such that
K(ω([k, k + n))|k, n) ≥ g(n) for all k and n”) has probability 0 with respect to the output
distribution of A. Since there are countably many computable functions g, it is enough
to show that for a given g this happens with probability 0. So we assume that both A

(probabilistic algorithm) and g (a computable monotone unbounded function) are fixed, and
for a given ε > 0 prove that the property “K(ω([k, k + n))|k, n) ≥ g(n) for all k and n” has
probability smaller than ε.

Assume first that probabilistic algorithm A produce an infinite output sequence with
probability 1, and therefore defines a computable probability distribution PA on the Cantor
space of infinite sequences.

Consider some n. First we prove that for large enough N it is possible to select one
“forbidden” string of length n for each starting position k = 0, 1, . . . , N −1 in such a way that
the event “output sequence avoids all the forbidden strings” (at the corresponding positions)
has probability less than ε.

This can be proved in several different ways. For example, we can use the following
probabilistic argument. Let us choose the forbidden strings randomly (independently with
the random bits used by A). For every output sequence of A the probability that it avoids all
randomly selected “forbidden” strings is (1− 2−n)N which is less than ε if N is sufficiently
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large. Therefore, the overall probability of the event “output of A avoids all forbidden strings”
(with respect to the product distribution) is less than ε. Now we use averaging in different
order and conclude that there exists one sequence of N forbidden strings with the required
property.

After the existence of such a sequence is proved, it can be found by exhaustive search
(recall that PA is computable). Let us agree that we use the first sequence with this property
(in some search order) and estimate the complexity of forbidden strings when length n and
position k are known. The value of N is a simple function of n and ε (which is fixed for
now, as well as A), and we do not need any other information to construct forbidden strings.
So their conditional complexity is bounded and is less than g(n) for large enough n. So
the probability that all the substrings in the output of A will have complexity greater than
g(their length), is less than ε.

It remains to explain how to modify this argument for a general case, without the
assumption that A generates infinite sequences with probability 1. Let us modify the function
N(ε, n) in such a way that (1− 2−n)N(n,ε) < ε/2. Consider the probability of the event “A
generates a sequence of length N(n, ε) + n”. If somebody gives us (in addition to n and ε)
an approximation from below for this probability with error at most ε/2, we may enumerate
A’s output distribution on strings of length N +n and stop when the lower bound is reached.
Then we apply the argument above using this restricted distribution and show that for this
restricted distribution the probability to avoid simple strings is less than ε/2, which gives
ε-bound for the full distribution (since they differ at most by ε/2). It is important here that
the missing information is of size log(1/ε) +O(1), so for a fixed ε we need O(1) additional
bits. J

5 Proof of Theorem 3

The proof of Theorem 3 is similar to the preceding one, but more technically involved. In
the previous argument we were allowed to choose different forbidden strings for different
positions, and it was enough to use one forbidden string for each position. Now we use the
same set of forbidden strings for all positions, and the simple bound (1− 2−n)N is replaced
by the following lemma.

I Lemma 6. Let α ∈ (0, 1). For every ε > 0 there exist natural numbers n and N (with n <
N) and random variables An,An+1, . . . ,AN whose values are subsets of Bn,Bn+1, . . . ,BN
respectively, that have the following properties:

(1) the size of subset Ai never exceeds 2αi;
(2) for every binary string x of length N the probability of the event “for some i ∈

{n, . . . , N} some element of Ai is a substring of x” exceeds 1− ε.
The number n can be chosen arbitrarily large.

(We again use the probabilistic argument; this lemma estimates the probability for every
specific x and some auxiliary probability distribution; the output distribution of randomized
algorithm A is not mentioned at all. Then we use this lemma to get an estimate for the
combined distribution, and change the order of averaging to prove the existence of finite sets
An, . . . , AN with required properties.)

Proof. First let us consider the case α > 1/2. Then we actually need only two lengths n
and N , where N � n, all other lengths are not used and the corresponding random subsets
can be empty. For length n, we consider a uniform distribution on all sets of size 2αn; all
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these sets have equal probabilities to be a value of random variable An. For length N the
set AN is chosen in some fixed way (no randomness), see below.

Assume that some string x of length N is fixed. There are two possibilities:
(a) there are at least 2n/2 different substrings of length n in x;
(b) there are less than 2n/2 different substrings.
In the first case (a) strings of length n play the main role. Let S be a set of n-bit strings

that appear in x; it contains at least 2n/2 strings. The probability that the desired event
does not happen does not exceed the probability of the following event: “making 2αn random
choices among n-bit strings, we never get into S”. (It is a bit smaller, since now we can
choose the same string several times.) This probability is at most

(1− 2−n/2)2αn = (1− 2−n/2)2n/22(α−1/2)n
≈ (1/e)2(α−1/2)n

and converges to zero (rather fast) as n→∞.
In the second case (b) strings of length N come into play. We may assume that N is a

multiple of n. Let us split x into blocks of size n. We know that x has some special property:
there are at most 2n/2 different blocks. Note that for large N the number of strings with
this special property is less than 2αN . Indeed, to encode such a string x, we first list all the
blocks that appear in x (this is a very long list, but its length is determined by n and does
not depend on N), and then specify each block by its number in this list. In this way we
need N/2 + O(1) bits (the number is half as long as the block itself) and this is less than
αN for large N . So for such a large N we may include all strings with this property in AN
and get the desired effect with probability 1.

Now let us consider the case when α > 1/3 (but can be less than 1/2). Now we need three
lengths n1 � n2 � n3. We will use n2 that is a multiple of n1, and n3 that is a multiple of
n2. For length n1 we again consider a random set of 2αn1 strings of length n1. It guarantees
success if the string x contains at least 2(2/3)n1 different blocks of length n1.

Now we compile a list of possible blocks of size n2 that are “simple”, i.e., contain at
most 2(2/3)n1 different blocks of size n1. The same argument as before shows that a simple
block can be described by (2/3)n2 +O(1) bits, where O(1) depends only on n1. Now An2

is a random set of 2αn2 simple blocks of size n2. Then the argument again splits into two
sub-cases. (Recall that we assume now that x is made of simple blocks of size n2.)

The first case happens when x contains more than 2n2/3 different simple blocks. Then
with high probability some block of x appears in An2 .

The second case happen when x contains less than 2n2/3 different simple blocks. Then x
can be encoded by the list of these blocks, and this requires n3/3 + O(1) bits. So if n3 is
large enough (compared to n2), all possibilities can be included in An3 , and this finishes the
argument for α > 1/3.

A similar argument with four layers works for α > 1/4, etc. J

This lemma will be the main technical tool in the proof of Theorem 3. But first let us
prove a purely probabilistic counterpart of Theorem 3 that is of independent interest.

I Theorem 7. Let α ∈ (0, 1). For every probability distribution P on Cantor space Ω, there
exist sets A1, A2, . . . of binary strings such that

(1) the set An contains at most 2αn strings of length n;
(2) with P -probability 1 a random sequence has substrings in Ai for infinitely many i.

The possible “philosophical” interpretation of this theorem: one cannot prove the existence
of sequences that avoid almost all Ai by a direct application of the probabilistic method;
something more delicate (e.g., Lovász local lemma) is needed.
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Proof. Let us first consider sequences of some finite length N and the induced probability
distribution on them. We claim that for every ε and for large enough N we can choose
A1, . . . , AN in such a way that they satisfy (1) and P -probability to avoid them is less than
ε.

To show this, consider the (independent) random distribution on strings of lengths
1, . . . , N provided by the lemma. What is the probability that a random string avoids a
random set (with respect to the product distribution of P and the distribution provided by
the lemma)? Since for every fixed string the probability is less than ε (assuming N is large
enough), the overall probability (the average) is less than ε. Changing the order of averaging,
we see that for some A1, . . . , AN the corresponding P -probability is less than ε.

Note that in fact we do not need short strings; strings longer than any given n are enough
(if N is large). So we can use this argument repeatedly with non-overlapping segments
[ni, Ni] and εi decreasing fast (e.g., εi = 2−i). Then for P -almost every sequence we get
infinitely many violations. Moreover, since the series

∑
εi is converging, P -almost every

sequence hits an Aj where j ∈ [ni, Ni] for all but finitely many i (Borel–Cantelli lemma). J

Now we are ready to prove the weak version of Theorem 3:

Let α ∈ (0, 1). There is no randomized algorithm that produces α-everywhere complex
sequences with probability 1.

(The difference with the full version is that here we have probability 1 instead of any
positive probability and that the value of α is fixed.)

To prove this statement, let us consider the output distribution P of this algorithm.
Since the algorithm produces an infinite sequence with probability 1, this distribution is a
computable probability distribution on the Cantor space. This measure can be then used to
effectively find sequences εi, ni, Ni and sets Aj as described so that with P -probability 1
a random sequence hits an Aj where j ∈ [ni, Ni] for all but finitely many i. Since the sets
Aj can be effectively computed and have at most 2αj elements, every element of Aj has
complexity at most αj +O(log j); the logarithmic term can be absorbed by a change in α.

This argument shows also that for every computable probability distribution P and
every α ∈ (0, 1) there exists a Martin-Löf random sequence with respect to P that is not
α-everywhere complex. One more corollary: for every α ∈ (0, 1) the (Medvedev-style) mass
problem “produce an α-everywhere complex sequence” is not Medvedev (uniformly) reducible
to the problem “produce a Martin-Löf random sequence”.

It remains to make the last step to get the proof of Theorem 3.

Proof of Theorem 3. If the probability to get an everywhere complex sequence is positive,
then for some α the probability to get an α-everywhere complex sequence for this specific α
is positive. (Indeed, we may consider only rational α and use countable additivity.)

So we assume that some α is fixed and some probabilistic algorithm produces α-everywhere
complex sequences with positive probability. We cannot apply the same argument as above.
The problem is that the output of the algorithm (restricted to the first N bits) is a distribution
on BN that is not computable (the probability that at least N bits appear at the output, is
only a lower semicomputable real). However, for applying our construction for some εi, it is
enough to know the output distribution up to precision εi/2 (in terms of statistical distance),
as explained in the proof of Theorem 5, we replace our distribution by its part, and the error
is at most ε/2. For this we need only log(1/εi) + O(1) bits of advice, which can be made
small compared to αn. J

Now we get a stronger statements for mass problems:
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I Theorem 8. The mass problem “produce an everywhere complex sequence” is not Muchnik
(non-uniformly) reducible to the problem “produce a Martin-Löf random sequence”.

Proof. Indeed, imagine that for every random sequence there is some oracle machine that
transforms it to an everywhere complex sequence. Since the set of oracle machines is
countable, some of then should work for a set of random sequences that has positive measure,
which contradicts Theorem 3. J

The author thanks Steven Simpson for asking the question, and Joseph Miller and
Mushfeq Khan for the discussion and useful remarks.
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Abstract
In the problem of Scheduling with Interval Conflicts, there is a ground set of items indexed by
integers, and the input is a collection of conflicts, each containing all the items whose index lies
within some interval on the real line. Conflicts arrive in an online fashion. A scheduling algorithm
must select, from each conflict, at most one survivor item, and the goal is to maximize the number
(or weight) of items that survive all the conflicts they are involved in. We present a centralized
deterministic online algorithm whose competitive ratio is O(lg σ), where σ is the size of the
largest conflict. For the distributed setting, we present another deterministic algorithm whose
competitive ratio is 2 lg σ, in the special contiguous case, in which the item indices constitute
a contiguous interval of integers. Our upper bounds are complemented by two lower bounds:
one that shows that even in the contiguous case, all deterministic algorithms (centralized or
distributed) have competitive ratio Ω(lg σ), and that in the non-contiguous case, no deterministic
oblivious algorithm (i.e., a distributed algorithm that does not use communication) can have a
bounded competitive ratio.
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1 Introduction

We study the following abstract problem, which we call Scheduling with Interval Conflicts.
There is a universe U of n items, each with an integer identifier. The input is a collection
C of conflicts, where each conflict C ∈ C is a set containing all the items of U within some
interval on the real line. A conflict represents an event where the specified items compete
for a resource that can be granted to only one item. Conflict resolution is carried out by a
scheduling algorithm that decides which item survives: all other items in the conflict set are
eliminated. The goal of the scheduling algorithm is to maximize the number (or weight) of
items that survive all their conflicts.

Scheduling with Interval Conflicts arises naturally in some scenarios. One interpretation
of the model is when we have a set of permanently-running stations that may interfere
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only with other neighboring stations, where the underlying metric space is a line, and the
interference range in each direction may change in every step. In each step we need to choose
a station that will win the current conflict, if any. The goal is to maximize the number of
stations that never fail.

Another example for our model are tasks that must be processed by a few bounded-
capacity servers located at different sites on the Internet. The tasks are sent to these servers
in the same order, and due to varying congestion conditions in the network, they arrive at
the servers with varying burstiness: for example, the input to server A may be such that at
step t task i arrives, at step t + 1 tasks i + 1, i + 2, i + 3 arrive together, at step t + 2 no
task arrives etc. The input to another server B may exhibit a different burst structure, e.g.,
tasks i and i+ 1 arrive together, and tasks i+ 2 and i+ 3 arrive together. Assume that the
servers can process only one task at a step, and tasks cannot be stored for later processing.
Then a time step in which more than a single task arrives can be represented as an interval
conflict. The main question in our model is which tasks to process and which to drop, so as
to maximize the total number of tasks that receive all the processing they require.

Finally, consider multiple streams of data-frames (e.g., video frames) that need to be
transmitted across the Internet. Since data frames are typically too large to fit in a single
packet, the frames are broken into a number of packets, and reconstructed at the receiver.
However, if a packet is lost in transit, its whole constituent frame (i.e., item) becomes useless.
Interval conflicts arise if the streams pass through a congested router which can forward only
one packet from each burst of packets that arrive together (all other packets are dropped).

Problem variants

In some cases, conflicts need to be resolved without knowledge of other conflicts (for example,
if conflicts arrive in different locations, or if the conflict resolution protocol must be stateless).
We call this variant oblivious (or distributed) scheduling. In some other cases, all previous
conflicts and their outcomes are known to the algorithm when a new conflict arrives. We call
this variant sequential (or centralized) scheduling. Note that both oblivious and sequential
scheduling are online, i.e., no information about future conflicts is available to the algorithm
(the offline variant of the problem is when all conflicts are given ahead of time).

An interesting special case of interval conflicts is when the universe of items contains no
gaps, i.e., the items have identifiers i0, i0 + 1, . . . , i0 + n− 1 (in general, item identifiers are
only required to be totally ordered). We refer to this as the contiguous case.

1.1 Our Contribution
In this paper we introduce and formalize the problem of Scheduling with Interval Conflict
(abbreviated sic below), and give deterministic online algorithms and lower bounds on the
competitive ratio of deterministic algorithms. We start off with the special case of contiguous
conflicts. It turns out that contiguous conflicts allow for an oblivious (and hence distributed)
algorithm, guaranteeing competitive ratio of O(lg σ), where σ is the maximal number of
items in a conflict. However, no competitive oblivious algorithm exists if item identifiers are
not contiguous, as we show. We then give a sequential algorithm whose competitive ratio is
also O(lg σ). The algorithm works also in the case of weighted items and non-contiguous item
identifiers. Both algorithms are matched by a Ω(lg σ)-lower bound on the competitive ratio
of any deterministic online algorithm, even sequential algorithms for unweighted contiguous
sic.

Several additional results are omitted for luck of space. One is a simple algorithm in
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the case of resource augmentation, that is 1-competitive when allowed to accept two items
per conflict. Another is an oblivious O(lg σ/b)-competitive algorithm for the generalized
problem when b items may survive each conflict. Finally, we present an alternative sequential
algorithm whose competitiveness is expressed in terms of the depth of the interval structure,
where depth is defined to be the maximal number of conflicts that any single item is involved
in.

1.2 Related Work
The offline version of our problem, finding a maximum subset of points with no two in a
common interval, is easily solvable in polynomial time (see Section 2). A related minimization
problem is finding the minimum number of points intersecting all intervals, or alternatively
minimum clique partition. A 2-competitive online algorithm for the latter problem is given
and shown to be the best possible in [6].

Note the unusual characteristic of our problem is that the solution only decreases as more
of the input arrives. Little is known about online maximization problems of this sort; the
only related result we are aware of is [3].

A different dual problem is the interval selection problem, where we seek a maximum
cardinality subset of disjoint intervals. In the online version, the intervals that arrive over
time must be irrevocably accepted or rejected. Randomized algorithms for different cases
are known [9, 1, 2]; the result closest in spirit to ours is an O(logm)-competitive algorithm
(originally for call control on the line) [1], where m is the number of possible interval
endpoints. In general, however, a Ω(n) lower bound holds for the competitive ratio of
randomized algorithms [2], where n is the number of intervals. Interval selection can be seen
as an instance of scheduling with conflicts, which has been studied extensively (see, e.g.,
the surveys of [7, 10]), but to the best of our knowledge, we are the first to consider online
conflicts in the form of groups of consecutive items.

The problem of multi-packet frames (sketched above) was introduced in [8], where it is
shown that if packet ordering is arbitrary (namely conflicts are not necessarily intervals), then
the competitive ratio is Ω(σ) even for two-packet frames. A general framework that deals
with transmission of multi-packet frames is described in [3]. The problem is modeled as an
online version of Set Packing, nearly tight bounds of Θ̃(k

√
σ) are proven on the competitive

ratio of randomized algorithms for Online Set Packing, and a Ω(σk−1) deterministic lower
bound is shown, where k is the maximum size of a set and σ is the maximum number of sets
that contain the same element. In our terms, it is assumed there that each item is involved
in up to k conflicts, and conflicts need not be intervals.

1.3 Paper Organization
The remainder of this paper is organized as follows. In Section 2 we formalize the problem
and present the basic arguments we use in analyzing our algorithms. We study oblivious
algorithms in Section 3, and sequential algorithms are considered in Section 4. In Section 5
we prove a lower bound on the competitive ratio of online algorithms. Some concluding
remarks are given in Section 6.

2 Preliminaries and Basic Argument

In this section we formalize the problem, define the concepts and notation we use, and present
the basic argument we employ in the analysis of our algorithms.
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1 2 3 4 5 6 7 8

(a) P = {5}

1 2 3 4 5 6 7 8

(b) P = {1, 3, 6, 8}

Figure 1 An instance of sic with two possible solutions. Rectangles represent conflicts, and dots
represent items that were selected as survivors in conflicts. The instance contains eight items and
five conflicts whose size is at most 4 (i.e., σ = 4). In Figure 1a (top), only one item survives all
conflicts, while an optimal solution can have four such items (Figure 1b).

2.1 Problem Statement and Notation

Scheduling with Interval Conflicts (abbreviated sic) is defined as follows. There is a set U of
n integer items. The input is a collection C of conflicts, where each conflict C ∈ C contains all
items of U within some interval on the real line. Namely, C = U ∩ [min(C),max(C)]. In this
paper we also consider the Contiguous Model, where U is a set of consecutive integers. The
size of the largest conflict is denoted by σC , namely σC

def= max {|C| : C ∈ C} (the subscript
is omitted when the instance is clear from the context). A feasible schedule is a set of items
P ⊆ U containing at most one item from any given conflict, i.e. |P ∩C| ≤ 1 for every C ∈ C.
An item in P is said to be a survivor of its conflicts, while the other items were eliminated.
If item i survives conflict C 3 i by algorithm A, we say that A delivers i from C. The goal is
to find a maximum cardinality feasible schedule, i.e. maximize the number of items surviving
all their conflicts (see example in Figure 1).

In the weighted case, each item i has a real-valued weight w(i) > 0 and the objective is
to find a maximum weight subset of weights satisfying the conflict constraints. For a set S of
items, w(S) def=

∑
i∈S w(i).

We consider two models of algorithms. In the oblivious model, the selection of a survivor
from a conflict is a function of that conflict only, which allows for distributed conflict
resolution. In the sequential model, conflicts arrive over time, i.e., they are ordered as a
sequence C1, C2, . . ., and the resolution of conflict Ct may be a function of the full history
C1, . . . , Ct.

We note that simple heuristics for sic may perform poorly. For example, selecting the
leftmost item in each given conflict is Ω(n)-competitive as demonstrated by the instance in
Figure 2. The same goes for the sequential strategy of picking the leftmost item among the
items that were not eliminated in previous conflicts. (We assume that the top conflict is the
first to arrive.)

2.2 Characterizing Optimal Solutions

The offline version of sic can be reduced to maximum independent set in proper intervals
graphs, which is solvable in polynomial time [5]. The reduction is as follows. First, remove
all conflicts that are properly contained in other conflicts. It follows that there is a total
order on the remaining conflicts, and therefore we may view each item as a node in a proper
interval graph, where an interval is now a contiguous sequence of conflicts. Now finding an
optimal schedule amounts to finding a maximum independent set in the above mentioned
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1 2 3 4 5 · · · n− 1 n

. .
.

Figure 2 An instance of sic with n items and n− 1 conflicts (all of size 2, i.e., σ = 2). If one
selects the leftmost item in each given conflict, only one item (number 1) survives all conflicts, while
by always picking the odd-numbered items (represented by dots in the figure), one gets an optimal
solution of size dn/2e.

interval graph. Similarly, one may find a maximum independent set in an interval graph by
solving an offline sic instance.

We give a more direct description below. First, we provide an upper bound on the optimal
solution due to duality. Let opt(C) denote an optimal solution of sic to instance C, and let
U(C) =

⋃
C∈C C denote the set of items involved in conflicts in C.

I Observation 1. For all C′ ⊆ C: If U(C′) = U(C), then |opt(C) ∩ U(C)| ≤ |C′|.

Observation 1 motivates a simple polynomial offline algorithm for sic. Briefly, the idea is to
scan the item set from left to right (the examples in Figure 1 may help the reader), initially
selecting the leftmost item. The next element selected, following a selected element ij , is then
inductively the leftmost element among those that are not in conflicts that contain ij , i.e.,
ij+1 = min{i′ : i′ > ij and ∀C, |{ij , i′} ∩ C| ≤ 1}. This forms a feasible solution, since for
any consecutively chosen items ij and ij+1, there is no conflict containing both ij and ij+1.
To prove that the selected elements constitute an optimal solution, let C ′j be the conflict that
contains ij and ij+1 − 1. Since

⋃
j C
′
j = U(C), optimality follows from Observation 1.

3 Oblivious Algorithms

In this section we consider oblivious algorithms. Oblivious algorithms are attractive because
they can be implemented in a distributed system. The main result of this section is an
oblivious algorithm for unweighted contiguous sic, whose competitive ratio is 2 lg σ. We also
show that if the instance is not contiguous, then no oblivious algorithm can be competitive.

3.1 Oblivious Algorithm for Contiguous sic
In this section we present a simple 2 lg σ-competitive algorithm for unweighted contiguous
sic. We note that the algorithm needs not know σ in advance.

The basic idea of the algorithm is to assign to each item a fixed priority, and the conflict
resolution rule is to always prefer the item with the highest priority. Specifically, our
algorithm, Priority, defines the priority of item i by

p(i) def= max
{
` ∈ Z | i is divisible by 2`

}
. (1)
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i: 1 2 3 4 5 6 7 8 9 10

p(i): 0 1 0 2 0 1 0 3 0 1

Figure 3 Execution of Algorithm Priority on an instance with ten items and seven conflicts. The
dots represent the items that were chosen by the algorithm. The computed solution is P = {4, 8, 10},
while the optimum is {1, 3, 6, 9}.

For example, if i is odd, then p(i) = 0, and if i = 2` then p(i) = `.1
One nice consequence of this definition is the following observation:

I Observation 2. If i` < ir and p(i`) = p(ir) = p for some p, then there exists i` < i < ir
such that p(i) > p.

Observation 2 implies that any conflict contains exactly one item with maximum priority,
and hence Algorithm Priority is well-defined: Upon arrival of conflict C, the algorithm
delivers the unique item with highest priority (as defined by (1)) among the items in C. See
Figure 3 for an example. Note that the algorithm makes decisions without knowing or even
estimating σ, and that it is completely distributed: the identity of the winner of a conflict is
independent of other conflicts.

Next, observe that even though σ, the size of the largest conflict, is unknown, we need
only to concern ourselves with lg σ priorities.

I Observation 3. Each conflict contains at most one item i with p(i) ≥ lg σ.

Observation 3 implies that given conflicts whose length is bounded by σ, all priorities greater
than or equal to lg σ are indistinguishable from the viewpoint of Algorithm Priority.

We now turn to prove that the competitive ratio of Algorithm Priority is at most 2 lg σ.
We use the following concept.

I Definition 4. Let C be an instance and let A be an algorithm for sic. A sequence of items
i0, i1, . . . , im is an elimination chain of length m if for all 0 < j ≤ m we have that item ij
eliminates item ij−1 when A runs on C.

Note that an elimination chain of length m contains m+ 1 items, but implies the existence
of m conflict intervals. Elimination chains have the following property.

I Lemma 5. Let C be an instance and let A be an algorithm for sic. Suppose that i0, . . . , im
is an elimination chain for C under A. Then the interval [i′, i′′] can be covered by m conflicts,
where i′ = min {ij | 0 ≤ j ≤ m} and i′′ = max {ij | 0 ≤ j ≤ m}.

Proof. By Definition 4, for any 0 < j ≤ m there exists a conflict Ij ∈ I such that ij−1 ∈ Ij

and ij ∈ Ij . It follows, by induction on m, that
⋃m

j=1 Ij ⊇ [i′, i′′]. J

1 For an efficient implementation (in AC0), e.g. to use in routers, it suffices to extract the smallest bit set,
using the bit-wise operations (i XOR (i− 1)) AND i.
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Lemma 5 implies the following consequence. Say that an algorithm is reasonable if it delivers
an item from each conflict C, i.e. it does not eliminate items without a reason.

I Proposition 6. The competitive ratio of any reasonable algorithm for sic is at most 2m−1,
where m is the length of the longest elimination chain of the algorithm.

Proof. Fix an instance C. Say that an item i′ is dominated by an item i if there is an
elimination chain that starts with i′ and ends with i. For each item i, let D(i) be the set of
items dominated by i. Now, consider a reasonable algorithm A, and let P be the set of items
delivered by A running on C. Clearly, each item i was either delivered by A, i.e., i ∈ P , or
eliminated, in which case i ∈ D(i′) for some i′ ∈ P (because A is reasonable). In addition,
we have by Lemma 5 that D(i′) can be covered by the conflicts of two elimination chains:
one starting from min(D(i′)) and one that starts from max(D(i′)). Both of them end in
the same interval. We can therefore conclude that the set of all items can be covered by
(2m− 1)|P | intervals. The result now follows from Observation 1. J

Using Proposition 6 and Observation 3 we can easily bound the competitive ratio of
Algorithm Priority.

I Theorem 7. The competitive ratio of Algorithm Priority is at most 2 lg σ.

Proof. By Observation 3 and the fact that under Priority an item i is eliminated by an
item i′ if and only p(i) < p(i′), we have that the length of any elimination chain under
Priority is at most lg σ. The theorem therefore follows directly from Proposition 6. J

In the full version of the paper we explain how to extend Algorithm Priority to the
capacitated case, where the number of survivors from a conflict may be some parameter
b ≥ 1.

3.2 A Lower Bound for the Non-Contiguous Case
One may wonder if a similar result holds in the non-contiguous case. This turns out to be
far from the case. We argue that no deterministic oblivious algorithm is competitive in the
general (non-contiguous) case even if σ = 2.

I Theorem 8. The competitive ratio of any deterministic oblivious algorithm for sic is Ω(n),
even for the unweighted case and for σ = 2.

Proof. Fix a deterministic oblivious algorithm alg. By definition of obliviousness, the
decision of alg for a given conflict C depends only on its items. Let n be a number and
let N = 2n. We 2-color the edges of an N -vertex clique KN as follows. Edge (vi, vj), for
i < j, is colored blue if alg prefers vi over vj , and otherwise red. By Ramsey’s theorem [4],
KN contains a monochromatic subgraph of logN = n vertices. If follows that there is either
an increasing or a decreasing sequence of n items i1, . . . , in such that alg prefers i` over
i`−1, for any ` ∈ {2, . . . , n}. We introduce the conflicts {i`−1, i`}, for ` ∈ {2, . . . , n}. Then,
only in will survive the execution of alg, whereas {i` : ` is odd} is a feasible solution of size
n/2. J

4 Sequential Algorithms

In this section we present an O(lg σ)-competitive sequential algorithm for sic, extending
algorithm Priority to the weighted and non-contiguous case.
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In describing our algorithm, we say that item i fired item i′ if i was the first item to
eliminate i′. In the remainder of this section we say that an item i0 is dominated by item
im if there is an elimination chain i0, i1, . . . , im such that ij fires item ij−1, for every j. Let
D(i) be the set of items that are dominated by i. Note that if i survives then D(i) 6= ∅, and
in particular i ∈ D(i). Observe that each item is dominated by exactly one surviving item,
hence D(i) ∩D(i′) = ∅ for each pair of surviving items i and i′.

We now describe the algorithm in the weighted case. Define the weight class of item i

to be c(i) = blgw(i)c, the base-2 logarithm of the item weight rounded down to an integer.
Our algorithm is called Seq, and it proceeds as follows.

With each item i, we associate two values left(i) and right(i) (initially both zero), referred
to as the left and right levels of i, respectively. When an interval I arrives, the algorithm
determines the highest weight class of active items in I. If there is only one active item of the
highest weight class, it simply survives. Otherwise, let l and r be the leftmost and rightmost
active items of the highest weight class. The algorithm compares left(l), the left level of l,
and right(r), the right level of r. If left(l) > right(r), then l survives and right(l) is set to
right(r) + 1; otherwise, r survives and left(r) is set to left(l) + 1. (The algorithm arbitrarily
favors r, in case of a tie.) Notice that left(i) and right(i) may increase and decrease during
execution.

Fix some optimal solution opt. The following upper bound is what motivates the num-
bering of the levels. Let mi be the larger of the levels of i, namely mi = max{left(i), right(i)}.
Also, let ni = maxi′∈D(i) mi′ be the largest level of an item in D(i).

I Lemma 9. w(opt ∩D(i)) = O(ni · w(i)).

Proof. Let l1, . . . , lt be the sequence of items in D(i) such that l1 is the leftmost item in
D(i) and, inductively, lj+1 is the item that fired item lj . Observe that the sequence extends
monotonically from left to i, with lt = i. According to the survival rule of the algorithm, the
weight classes of the items are monotonically non-decreasing, and for a pair of items lj and
lj+1 in the same weight class, the left levels are strictly increasing, namely left(lj+1) > left(lj).
It follows that there are at most ni items from the item set {l1, . . . , lt} in each weight class.
Hence, the sum of the weights of the items l1, . . . , lt is bounded by

t∑
j=1

w(lj) < 2
t∑

j=1
2c(lj) ≤ 2ni

∑
c≤c(i)

2c < 2ni · 2c(i)+1 ≤ 4ni · w(i) . (2)

Let D−(i) (D+(i)) be the subset of items in D(i) to the left (right) of i, up to and
including i. That is, D−(i) ∪D+(i) = D(i) and D−(i) ∩D+(i) = {i}. Partition D−(i) into
ranges [lj+1, lj ], for j = 1, . . . , t− 1. Observe that lj+1 must be in the largest weight class
among the items in the range [lj , lj+1], for all j = 1, . . . , t− 1. (Namely, if there was a item
in [lj + 1, lj+1 − 1] belonging to a larger weight class, the largest such item could not have
been eliminated without either lj or lj+1 being also eliminated.) Since opt can contain at
most one item from each range [lj , lj+1], it follows from (2) that

w(opt ∩D−(i)) < 2
t∑

j=1
w(lj) ≤ 8ni · w(i) .

Applying the same arguments to D+(i) yields that w(opt ∩D(i)) ≤ 16ni · w(i), implying
the lemma. J

We now show that high levels imply very large intervals.
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I Lemma 10. ni = O(lg σ).

Proof. Let D̂(i′) be the set of items dominated by i′ that are from the same weight class,
c(i′), as i′.

I Claim 1. |D̂(i′)| ≥ 2mi′ , for any item i′ in D(i).

Proof. The proof is by induction on mi′ . The base case mi′ = 0 is trivially true, since
i′ ∈ D̂(i′). For the inductive step, suppose that mi′ ≥ 1. Consider the most recent conflict I
that i′ survived and in which an item from class c(i′) was fired. Let l and r be the leftmost and
rightmost active items in I, respectively, such that c(l) = c(r) = c(i′), when I was presented.
Observe that i′ ∈ {l, r}. By the inductive hypothesis, |D̂(l)| ≥ 2ml and |D̂(r)| ≥ 2mr . If
mi′ = max{ml,mr}, then we are done. Suppose then that mi′ = max{ml,mr}+ 1, which
happens only when ml = mr. Since D̂(l) and D̂(r) are disjoint, we have that

|D̂(i′)| ≥ |D̂(l)|+ |D̂(r)| ≥ 2ml + 2mr = 2mi′ .

and the claim follows. J

I Claim 2. D̂(i′) is covered by at most 2mi′ intervals.

Proof. Let l1, l2, . . . , lt be the sequence of items defined such that l1 is the leftmost item in
D̂(i′) and, inductively, lj+1 is the item that fired lj , for j = 1, . . . , t− 1. Also, let Ij be the
interval presented upon which lj+1 fired lj , for j = 1, . . . , t− 1. Clearly, I1, . . . , It−1 cover
the items to the left of lt = i′, up to and including i′. According to the survival rule of the
algorithm, the left levels of the items are strictly increasing. It follows that t ≤ mi′ + 1. By
symmetry, mi′ intervals also cover the items in D̂(i′) to the right of i′. J

We resume with the proof of Lemma 10. Let i′ ∈ D(i) such that ni = mi′ . By the
two claims above, some interval covers at least |D̂(i′)|/(2mi′) ≥ 2mi′−1/mi′ items. Hence,
σ ≥ 2mi′−1/mi′ , or ni = mi′ ≤ lg σ(1 + o(1)). J

The following theorem is now immediate from Lemmas 9 and 10 when observing that the
sets {D(i) : i survived} partition the set U of items.

I Theorem 11. The competitive ratio of the oblivious algorithm Seq for the weighted and
non-contiguous case is O(lg σ).

5 A Lower Bound on the Competitive Ratio

In this section we show that the competitive ratio of any deterministic online algorithm for
contiguous sic is Ω(lg σ). Our lower bound construction is sequential, namely the conflicts
arrive one by one, and the algorithm knows the complete history when a new conflict arrives.
Since any algorithm for oblivious sic can be used in the sequential model, the lower bound
holds for oblivious sic as well.

Fix a deterministic online algorithm A. Based on the way A picks items to survive
conflicts, we construct in an online fashion a sequence of conflicts along with an optimal
scheduling denoted by opt. To facilitate the description, define a conflict I to be active with
respect to algorithm A if upon arrival, I contains a item that was not already eliminated by
A in previous conflicts. W.l.o.g., we consider only algorithms that always deliver an item
from an active interval.
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Epoch q:

Epoch q + 1:

It−1

· · ·
︷ ︸︸ ︷q − 1

a o

It

· · ·
︷ ︸︸ ︷q − 1 It+1

· · ·︸ ︷︷ ︸
q

Figure 4 Construction of epoch q + 1: The case where a < o. Gray boxes represent positive
intervals. It is split into two parts: the left part is combined with It−1, while the right part becomes
a positive interval.

In general, there can be conflicts that are active with respect to A, opt, or both. We call
a conflict interval neutral if it is active with respect to both A and opt, and positive if it is
active with respect to opt only (there will be no “negative” intervals in our construction).

The conflict sequence consists of a sequence of epochs satisfying the following epoch
invariant:

In each epoch, all conflicts are disjoint and their union is {1, . . . , n}.
The set of items delivered by A and by opt from epoch q ≥ 1 are disjoint.
In epoch q there are q− 1 positive intervals between any two consecutive neutral intervals.

Note that the last property means that after epoch q, the optimal number of surviving items
is q times larger than the number of items delivered by A.

We now describe the construction of epochs inductively. Assume that n is an even integer.
The first epoch consists of n/2 intervals of size 2: for every t ∈ [1, n/2], the tth interval
is [2t − 1, 2t]. Let A1 be the set of items that are delivered by the algorithm after the
first epoch. Clearly |A1| = n/2. The optimal solution is the complement of A1, namely
opt1 = {1, . . . , n} \ A1. It is straightforward to verify that the epoch invariant holds for
q = 1 (the last property follows from the fact that all intervals in epoch 1 are neutral).

The more interesting part is the inductive step. Let Aq and optq be the set of active
items with respect to A and opt, respectively, immediately after epoch q. Assume that the
invariant holds for epoch q. We construct epoch q + 1 and optq+1 as follows. Number the
neutral intervals of epoch q sequentially I1, I2, . . ., starting from the leftmost neutral interval.
This numbering skips the positive intervals between neutral intervals. Let It = [`t, rt] be
the tth neutral interval, where t is even. We break It into two parts as follows. Let a and
o be the indices of items that are delivered from It by Aq and optq, respectively in epoch
q. We proceed by two cases. If a < o, then we introduce the conflict interval [o, rt] and
extend It−1 to the right up to o− 1 (see Figure 4). Otherwise, if a > o, then we introduce
the conflict interval [`t, o] and extend It+1 to the left up to o+ 1 (see Figure 5). Notice that
an odd neutral interval from epoch q can be either extended to the left, or to the right, or
in both directions, or not extended at all. Finally, positive intervals from epoch q that are
not covered by the above intervals are added to epoch q + 1. Figure 6 illustrates a complete
example.

It remains to determine optq+1. Let I ′t be the extended version of an odd interval It

from epoch q. optq+1 will deliver the active item from It. Since It does not intersect any
even neutral interval, optq+1 may deliver an item in any part of an even neutral interval
that was added to epoch q + 1. Also, since It does not intersect any positive interval from
epoch q, optq+1 may deliver an item in any positive interval that was not merged with an
odd neutral interval from epoch q.

The first and second properties of the invariant are clearly satisfied by the construction.
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Epoch q:

Epoch q + 1:

It−1

· · ·
︷ ︸︸ ︷q − 1

o a

It

· · ·
︷ ︸︸ ︷q − 1 It+1

· · ·︸ ︷︷ ︸
q

Figure 5 Construction of epoch q + 1: The case where a > o. Gray boxes represent positive
intervals. It is split into two parts: the right part is combined with It+1, while the left part becomes
a positive interval.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
a o o a a o o a a o a o o a o a a o

a o o a o o a o o o a o a o

a o o o a o o o a o

Figure 6 The lower bound construction with n = 18 and three epochs. The gray boxes represent
positive intervals.

To see that the last property of the invariant holds, observe that any extended odd neutral
interval remains neutral. We claim that there are q positive intervals between any consecutive
neutral intervals. Let It be an even neutral interval that was split in the construction of
epoch q + 1. If a < o the interval [o, rt] is positive because [o, rt] ∩ Aq = ∅. Moreover, all
positive intervals between It and It+1 remain as they were. Similarly, if a > o the interval
[`t, o] is positive, because [`t, o] ∩Aq = ∅, and all positive intervals between It and It−1 are
left unchanged. Hence, there are q positive intervals between any two consecutive neutral
intervals in epoch q + 1.

The following lemma bounds the size of intervals.

I Lemma 12. Let σq be the maximum interval size in epoch q. Then σq ≤ 2 · 5q−1.

Proof. By induction on the number of epochs. In the base case (epoch 1), σ1 = 2. For the
inductive step, observe that an interval in the epoch q + 1 may consist of (i) an odd neutral
interval, (ii) parts of two even neutral intervals, (iii) 2(q− 1) positive intervals. Since positive
intervals that are created in epoch q′ are of size smaller than σq′−1 and due to the inductive
hypothesis, we have that

σq+1 < σq + 2σq + 2
q−1∑
q′=1

σq′ ≤ 3σq + 2
q−1∑
q′=1

σq′ < 5σq ,

and the lemma follows. J

We can now prove the lower bound.

I Theorem 13. The competitive ratio of any deterministic online algorithm for sequential
sic is Ω(lg σ), even in the contiguous case.

Proof. Let A be a deterministic algorithm. Construct instance I as described above. The
epoch invariant implies that after q epochs, |opt(I)| ≥ q(|A(I)|− 1). Hence, the competitive
ratio of A is Ω(q). Let σ be a given parameter. By Lemma 12 we have that σq ≤ 2 · 5q−1,
and therefore, setting q = blog5(σ/2)c = Ω(lg σ) we have σq ≤ σ, and the result follows. J
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6 Conclusion

In this paper we have introduced the problem of scheduling with interval conflicts and
proved tight bounds on the competitive ratio of online algorithms to solve them. It would
be interesting to consider other conflict topologies, and to understand to which degree
randomness can help.
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Abstract
We study algorithmic problems in multi-stage open shop processing systems that are centered
around reachability and deadlock detection questions.

We characterize safe and unsafe system states. We show that it is easy to recognize system
states that can be reached from the initial state (where the system is empty), but that in general
it is hard to decide whether one given system state is reachable from another given system state.
We show that the problem of identifying reachable deadlock states is hard in general open shop
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1. In the beginning the job is asleep and is waiting outside the system. For technical reasons,
we assume that the job occupies an artificial machine M0 of unbounded capacity.

2. After a finite amount of time the job wakes up, and starts looking for an available machine
M on which it still needs processing. If the job detects such a machine M , it requests
permission from the Central Control to move to machine M . If no such machine is
available or if the Central Control denies permission, the job falls asleep again (and
returns to the beginning of Step 2).

3. If the job receives permission to move, it releases its current machine and starts processing
on the new machine M . While the job is being processed and while the job is asleep,
it continuously occupies machine M (and blocks one of the cap(M) available places on
M). When the processing of the job on machine M is completed and in case the job still
needs processing on another machine, it returns to Step 2.

4. As soon as the processing of the job on all relevant machines is completed, the job informs
the Central Control that it is leaving the system. We assume that the job then moves
to an artificial final machine Mm+1 (with unbounded capacity), and disappears.

The described system behavior typically occurs in robotic cells and flexible manufacturing
systems. The high level goal of the Central Control is to arrive at the situation where
all the jobs have been completed and left the system. Other goals are of course to reach
a high system throughput, and to avoid unnecessary waiting times of the jobs. However
special care has to be taken to prevent the system from reaching situations of the following
type:

I Example 1. Consider an open shop system with three machines M1, M2, M3 of capacity 1.
There are three jobs that each require processing on all three machines. Suppose that the
Central Control behaves as follows:

The first job requests permission to move to machine M1. Permission granted.
The second job requests permission to move to machine M2. Permission granted.
The third job requests permission to move to machine M3. Permission granted.

Once the three jobs have completed their processing on theses machines, they keep blocking
their machines and simultaneously keep waiting for the other machines to become idle. The
processing never terminates. J

Example 1 illustrates a so-called deadlock, that is, a situation in which the system gets
stuck and comes to a halt since no further processing is possible: Every job in the system
is waiting for resources that are blocked by other jobs that are also waiting in the system.
Resolving a deadlock is usually expensive (with respect to time, energy, and resources), and
harmfully diminishes the system performance. In robotic cells resolving a deadlock typically
requires human interaction. The scientific literature on deadlocks is vast, and touches many
different areas like flexible manufacturing, automated production, operating systems, Petri
nets, network routing, etc.

The literature distinguishes two basic types of system states (see for instance Coffman,
Elphick & Shoshani [2], Gold [5], or Banaszak & Krogh [1]). A state is called safe, if there
is at least one possible way of completing all jobs. A state is called unsafe, if every possible
continuation eventually will get stuck in a deadlock. An example for a safe state is the initial
situation where all jobs are outside the system (note that the jobs could move sequentially
through the system and complete). Another example for a safe state is the final situation
where all jobs have been completed. An example for an unsafe state are the deadlock states.
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Summary of considered problems and derived results
In this article we study the behavior of safe and unsafe states in open shop scheduling
systems. In particular, we investigate the computational complexity of the four algorithmic
questions described in the following paragraphs. First, if one wants to have a smoothly
running system, then it is essential to distinguish the safe from the unsafe system states:

Problem: Safe State Recognition

Instance: An open shop scheduling system. A system state s.

Question: Is state s safe?

Section 3 provides a simple characterization of unsafe states, which leads to a (straightfor-
ward) polynomial time algorithm for telling safe states from unsafe states. Similar charac-
terizations have already been given a decade ago in the work of Sulistyono & Lawley [9] and
Xing, Lin & Hu [10]. Our new argument is extremely short and simple.

One of the most basic problems in analyzing a system consists in characterizing those
system states that can be reached while the shop is running.

Problem: Reachable State Recognition

Instance: An open shop scheduling system. A system state s.

Question: Can the system reach state s when starting from the initial situation
where all machines are still empty?

In Section 4 we derive a polynomial time algorithm for recognizing reachable system states.
The main idea is to reverse the time axis, and to make the system run backward. Then
reachable states in the original system translate into safe states in the reversed system, and
the results from Section 3 can be applied.

Hence recognizing states that are reachable from the initial situation is easy. What about
recognizing states that are reachable from some other given state?

Problem: State-to-State Reachability

Instance: An open shop scheduling system. Two system states s and t.

Question: Can the system reach state t when starting from state s?

Surprisingly, there is a strong and sudden jump in the computational complexity of the
reachability problem: Section 5 provides an NP-hardness proof for problem State-to-
State Reachability.

Another fundamental question is whether an open shop system can ever fall into a dead-
lock. In case it cannot, then there are no reachable unsafe states and the Central Control
may permit all moves right away and without analyzing them; in other words the system is
fool-proof and will run smoothly without supervision.

Problem: Reachable Deadlock

Instance: An open shop scheduling system.

Question: Can the system ever reach a deadlock state when starting from the initial
situation?

Section 6 proves problem Reachable Deadlock to be NP-hard, even for the highly re-
stricted special case where the capacity of each machine is at most three and where each job
requires processing on at most four machines. In Sections 7 and 8 we exhibit two special
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cases for which this problem is solvable in polynomial time: The special case where every job
needs processing on at most two machines is settled by a linear programming formulation
and techniques from matching theory. The special case where every machine has capacity
one is solved by analyzing cycles in certain edge-colored graphs.

Because of the page limit, some of the proofs are missing and will only appear in the full
version of the paper.

2 Basic definitions

A state of an open shop scheduling system is a snapshot describing a situation that might
potentially occur while the system is running. A state s specifies for every job Jj

the machine Ms(Jj) on which this job is currently waiting or currently being processed,
and the setMs(Jj) ⊆M(Jj)−{Ms(Jj)} of machines on which the job still needs future
processing.

The machines Ms(Jj) implicitly determine
the set J s(Mi) ⊆ {J1, . . . , Jn} of jobs currently handled by machine Mi.

The initial state 0 is the state where all jobs are still waiting for their first processing; in
other words in the initial state all jobs Jj satisfy M0(Jj) = M0 andM0(Jj) =M(Jj). The
final state f is the state where all jobs have been completed; in other words in the final state
all jobs Jj satisfy Mf (Jj) = Mm+1 andMf (Jj) = ∅.

A state t is called a successor of a state s, if it results from s by moving a single job Jj

from its current machine Ms(Jj) to some new machine in setMs(Jj), or by moving a job
Jj with Ms(Jj) = ∅ from its current machine to Mm+1. In this case we will also say that
the system moves from s to t. This successor relation is denoted s → t. A state t is said
to be reachable from state s, if there exists a finite sequence s = s0, s1, . . . , sk = t of states
(with k ≥ 0) such that si−1 → si holds for i = 1, . . . , k. A state s is called reachable, if it is
reachable from the initial state 0.

I Lemma 2. Any reachable state s can be reached from the initial state through a sequence
of at most n +

∑n
i=1 |M(Jj)| moves. J

A state is called safe, if the final state f is reachable from it; otherwise the state is called
unsafe. A state is a deadlock, if it has no successor states and if it is not the final state f .

3 Analysis of unsafe states

Unsafe states in open shop systems are fairly well-understood, and the literature contains
several characterizations for them; see for instance Sulistyono & Lawley [9], Xing, Lin & Hu
[10], and Lawley [7]. In this section we provide yet another analysis of unsafe states, which
is shorter and (as we think) simpler than the previously published arguments.

A machine M is called full in state s, if it is handling exactly cap(M) jobs. A non-empty
subset B of the machines is called blocking for state s,

if every machine in B is full, and
if every job Jj that occupies some machine in B satisfies ∅ 6=Ms(Jj) ⊆ B.

Here is a simple procedure that determines whether a given machine Mi is part of a
blocking set in state s: Let B0 = {Mi}. For k ≥ 1 let Jk be the union of all job sets J s(M)
with M ∈ Bk−1, and let Bk be the union of all machine sets Ms(J) with J ∈ Jk. Clearly
B0 ⊆ B1 ⊆ · · · ⊆ Bm−1 = Bm. Furthermore machine Mi belongs to a blocking set, if and
only if Bm is a blocking set, if and only if all machines in Bm are full. In case Bm is a
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blocking set, we denote it by Bs
min(Mi) and call it the canonical blocking set for machine

Mi in state s. The canonical blocking set is the smallest blocking set containing Mi:

I Lemma 3. If machine Mi belongs to a blocking set B in state s, then Bs
min(Mi) ⊆ B. J

The machines in a blocking set B all operate at full capacity on jobs that in the future
only want to move to other machines in B. Since these jobs are permanently blocked from
moving, the state s must eventually lead to a deadlock and hence is unsafe. The following
theorem shows that actually every deadlock is caused by such blocking sets.

I Theorem 4. A state s is unsafe if and only if it has a blocking set of machines.

Proof. The if-statement is obvious. For the only-if-statement, we classify the unsafe states
with respect to their distances to deadlock states. The set U0 contains the deadlock states.
For d ≥ 1, set Ud contains all states whose successor states are all contained in Ud−1. Note
that Ud−1 ⊆ Ud, and note that every unsafe state occurs in some Ud. We prove by induction
on d that every state in Ud has a blocking set of machines. For d = 0 this is trivial.

In the inductive step, assume for the sake of contradiction that some state s ∈ Ud is
unsafe but does not contain any blocking set. Since every move from s leads to a state in
Ud−1, all successor states of s must contain blocking sets. Whenever in state s some job J

moves to some (non-full) machine M , this machine M must become full and must then be
part of any blocking set. Among all possible moves, consider a move that yields a state t

with a newly full machine M for which the canonical blocking set Bt
min(M) is of the smallest

possible cardinality.
Note that in state t there exist a machine M ′ ∈ Bt

min(M) and a job J ′ ∈ J t(M ′) with
M ∈Mt(J ′); otherwise Bt

min(M)− {M} would be a blocking set for state s. Now consider
the successor state u of s that results by moving job J ′ from machine M to M ′. Since
Mu(J ′) ⊆ Bt

min(M), a simple inductive argument shows that Bu
min(M) ⊆ Bt

min(M). Since
job J ′ has just jumped away from M ′, this machine cannot be full in state u, and hence
M ′ ∈ Bt

min(M) − Bu
min(M). Consequently the canonical blocking set Bu

min(M) has smaller
cardinality than Bt

min(M). This contradiction completes the proof. J

I Lemma 5. For a given state s, it can be decided in polynomial time whether s has a
blocking set of machines. Consequently, problem Safe State Recognition can be decided
in polynomial time.

Proof. Create an auxiliary digraph that corresponds to state s: the vertices are the machines
M1, . . . , Mm. Whenever some job Jj occupies a machine Mi, the digraph contains an arc
from Mi to every machine inMs(Jj). Obviously state s has a blocking set of machines if and
only if the auxiliary digraph contains a strongly connected component with the following
two properties: (i) All vertices in the component are full. (ii) There are no arcs leaving the
component. Since the strongly connected components of a digraph can easily be determined
and analyzed in linear time (see for instance [3]), the desired statement follows. J

4 Analysis of reachable states

In this section we discuss the behavior of reachable system states. We say that a state t is
subset-reachable from state s, if every job Jj satisfies one of the following three conditions:

M t(Jj) = Ms(Jj) andMt(Jj) =Ms(Jj), or
M t(Jj) ∈Ms(Jj) andMt(Jj) ⊆Ms(Jj)− {M t(Jj)}, or
M t(Jj) = Mm+1 andMt(Jj) = ∅.
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Clearly whenever a state t is reachable from some state s, then t is also subset-reachable from
s. The following example demonstrates that the reverse implication is not necessarily true.
This example also indicates that the algorithmic problem Reachable State Recognition
(as formulated in the introduction) is not completely straightforward.

I Example 6. Consider an open shop system with two machines M1, M2 of capacity 1 and
two jobs J1, J2 withM(J1) =M(J2) = {M1, M2}. Consider the state s where J1 is being
processed on M1 and J2 is being processed on M2, and where Ms(J1) = Ms(J2) = ∅. It
can be seen that s is subset-reachable from the initial state 0, whereas s is not reachable
from 0. J

Our next goal is to derive a polynomial time algorithm for recognizing reachable system
states. Consider an open shop scheduling system and a fixed system state s. Without loss
of generality we assume that s is subset-reachable from the initial state. We define a new
(artificial) state t where M t(Jj) := Ms(Jj) andMt(Jj) :=M(Jj)−Ms(Jj)−{Ms(Jj)} for
all jobs Jj . Note that in both states s and t every job is sitting on the very same machine,
but the work that has already been performed in state s is exactly the work that still needs
to be done in state t.

I Lemma 7. State s is reachable if and only if state t is safe.

Proof. First assume that s is reachable, and let 0 = s0 → s1 → · · · → sk = s denote a corres-
ponding witness sequence of moves. Define a new sequence t = tk → tk−1 → · · · → t0 = f

of moves: Whenever the move s` → s`+1 (0 ≤ ` ≤ k − 1) results from moving job Jj from
machine Ma to machine Mb, then the move t`+1 → t` results from moving job Jj from
machine Mb to machine Ma. (Note that the artificial machines M0 and Mm+1 switch their
roles.) Hence t is safe. A symmetric argument shows that if t is safe then s is reachable. J

Hence deciding reachability is algorithmically equivalent to deciding safeness. Together
with Lemma 5 this yields the following theorem.

I Theorem 8. Reachable State Recognition can be decided in polynomial time. J

The following lemma states a simple sufficient condition that makes a state reachable.

I Lemma 9. Let s be a state, and let K be a subset of machines such that every job that
still needs further processing in s satisfies Ms(Jj) ∈ K and

Ms(Jj) ∪ {Ms(Jj)} = K ∩M(Jj).

Then s is a reachable system state.

Proof. By renaming the jobs we assume that the jobs Jj with 1 ≤ j ≤ k have Ms(Jj) =
Mm+1 and the jobs Jj with k + 1 ≤ j ≤ n have Ms(Jj) ∈ K. We handle the jobs one by
one in their natural order: every job moves through all machines inM(Jj)−Ms(Jj), and
ends up on machine Ms(Jj). Then the next job is handled. J

5 Analysis of state-to-state reachability

We establish NP-hardness of State-to-State Reachability by means of a reduction from
the following satisfiability problem; see Garey & Johnson [4].
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Problem: Three-Satisfiability

Input: A set X = {x1, . . . , xn} of n logical variables; a set C = {c1, . . . , cm} of m

clauses over X that each contain three literals.

Question: Is there a truth assignment for X that satisfies all clauses in C?

We start from an instance of Three-Satisfiability, and construct a corresponding in-
stance of State-to-State Reachability for it. Throughout we will use `i to denote the
unnegated literal xi or the negated literal xi for some fixed variable xi ∈ X, and we will use
` to denote a generic literal over X. Altogether there are 5n + m machines:

For every literal `i, there are three corresponding machines S(`i), T (`i), and U(`i).
Machine U(`i) has capacity 2, whereas machines S(`i) and T (`i) have capacity 1. For
every variable xi ∈ X the two machines U(xi) and U(xi) coincide, and the corresponding
machine will sometimes simply be called U(i).
For every clause cj ∈ C, there is a corresponding machine V (cj) with capacity 3.

Furthermore the scheduling instance contains 4n jobs that correspond to literals and 6m

jobs that correspond to clauses. For every literal `i there are two corresponding jobs:
Job J(`i) is sitting on machine S(`i) in state s. In state t it has moved to machine U(`i)
without visiting other machines inbetween.
Job J ′(`i) is still waiting outside the system in state s, and has already left the system
in state t. Inbetween the job visits machines S(`i), T (`i), U(`i) in arbitrary order.

Consider a clause cj that consists of three literals `a, `b, `c. Then the following six jobs
correspond to clause cj :

For ` ∈ {`a, `b, `c} there is a job K(cj , `) that in state s sits on machine V (cj), then
moves through machines S(`) and T (`) in arbitrary order, and finally has left the system
in state t. Note that in state s these three jobs block machine V (cj) to full capacity.
For ` ∈ {`a, `b, `c} there is another job K ′(cj , `) that waits outside the system in state
s, then moves through machines U(`) and V (cj) in arbitrary order, and finally has left
the system in state t.

In the full version of the paper, we will show that in the constructed scheduling instance
state t is reachable from state s if and only if the Three-Satisfiability instance has a
satisfying truth assignment. This then implies the following theorem.

I Theorem 10. State-to-State Reachability is NP-complete. J

6 Analysis of reachable deadlocks

In this section we show that Reachable Deadlock is an NP-hard problem. Our reduction
is from the following variant of the Three-Dimensional Matching problem; see Garey
& Johnson [4, p.221].

Problem: Three-Dimensional Matching

Instance: An integer n. Three pairwise disjoint sets A = {a1, . . . , an}, B =
{b1, . . . , bn}, and C = {c1, . . . , cn}. A set T ⊆ A × B × C of triples, such that
every element occurs in at most three triples in T .

Question: Does there exist a subset T ′ ⊆ T of n triples, such that every element in
A ∪B ∪ C occurs in exactly one triple in T ′?

We start from an arbitrary instance of Three-Dimensional Matching, and construct the
following corresponding instance of Reachable Deadlock for it. There are two types of
machines. Note that every machine has capacity at most three.
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There are n + 2 so-called structure machines S0, . . . , Sn+1, each of capacity 1.
For every triple t ∈ T , there is a corresponding triple machine Tt with capacity 3.

Furthermore there are 4n + 2 jobs.
For every element ai ∈ A there are two corresponding A-element jobs J+(ai) and J−(ai).
Job J+(ai) requires processing on structure machine Si, and on every triple machine Tt

with ai ∈ t. Job J−(ai) requires processing on structure machine Si−1, and on every
triple machine Tt with ai ∈ t.
For every element bi ∈ B there is a corresponding B-element job J(bi) that requires
processing on structure machine Sn+1, and on every triple machine Tt with bi ∈ t.
For every element ci ∈ C there is a corresponding C-element job J(ci) that requires
processing on structure machine Sn+1, and on every triple machine Tt with ci ∈ t.
Finally there is a dummy job D0 that needs processing on S0 and Sn+1, and another
dummy job Dn+1 that needs processing on Sn and Sn+1.

Since every element of A ∪ B ∪ C occurs in at most three triples, we note that each job
requires processing on at most four machines. For the ease of later reference, we also list for
every machine the jobs that need processing on that machine.

A triple machine Tt with t = (ai, bj , ck) handles the four jobs J+(ai), J−(ai), J(bj), and
J(ck).
Structure machine Si with 1 ≤ i ≤ n− 1 handles the jobs J+(ai) and J−(ai+1).
Structure machine S0 handles the two jobs J−(a1) and D0.
Structure machine Sn handles the two jobs J+(an) and Dn+1.
Structure machine Sn+1 handles 2n + 2 jobs: D0, Dn+1, all B-element jobs, and all
C-element jobs.

The following theorem contains the main result of this section.

I Theorem 11. Reachable Deadlock is NP-complete, even if the capacity of each ma-
chine is at most three, and if each job requires processing on at most four machines. J

Indeed, Lemma 2 yields an NP-certificate for problem Reachable Deadlock. The
hardness argument proves that the constructed scheduling instance has a reachable deadlock
if and only if the Three-Dimensional Matching instance has answer YES. All details
are provided in the full version of the paper.

7 Reachable deadlocks if jobs require two machines

Throughout this section we only consider open shop systems where |M(J)| = 2 holds for
all jobs J . We introduce for every job J and for every machine M ∈M(J) a corresponding
real variable x(J, M), and for every machine M a corresponding real variable y(M). Our
analysis is centered around the following linear program (LP):

min
∑

M max{y(M), cap(M)}

s.t.
∑

J:M∈M(J) x(J, M) = y(M) for all machines M∑
M∈M(J) x(J, M) = 1 for all jobs J

x(J, M) ≥ 0 for all J and M ∈M(J)

Although this linear program is totally unimodular, we will mainly deal with its fractional
solutions.
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I Lemma 12. One can compute in polynomial time an optimal solution for the linear
program (LP) that additionally satisfies the following property (*) for every job J with
M(J) = {Ma, Mb}: If y(Ma) ≥ cap(Ma) and x(J, Ma) > 0, then y(Mb) ≥ cap(Mb).

Proof. We determine in polynomial time an optimal solution of (LP). Then we perform
a polynomial number of post-processing steps on this optimal solution, as long as there
exists a job violating property (*). In this case y(Ma) ≥ cap(Ma), x(J, Ma) > 0, and
y(Mb) < cap(Mb).

The post-processing step decreases the values x(J, Ma) and y(Ma) by some ε > 0, and
simultaneously increases x(J, Mb) and y(Mb) by the same ε. By picking ε smaller than the
minimum of cap(Mb)−y(Mb) and x(J, Ma) this will yield another feasible solution for (LP).
What happens to the objective value? If y(Ma) > cap(Ma) at the beginning of the step,
then the step would decrease the objective value, which contradicts optimality. If y(Ma) =
cap(Ma) at the beginning of the step, then the step leaves the objective value unchanged,
and yields another optimal solution with y(Ma) < cap(Ma) and y(Mb) < cap(Mb).

To summarize, every post-processing step decreases the number of machines M with
y(M) = cap(M). Hence the entire procedure terminates after at most m steps. J

Let x∗(J, M) and y∗(M) denote an optimal solution of (LP) that satisfies the property
(*) in Lemma 12. LetM∗ be the set of machines M with y∗(M) ≥ cap(M).

I Lemma 13. The open shop system has a reachable deadlock, if and only ifM∗ 6= ∅.

Proof. (Only if). Consider a reachable deadlock state, let B′ be the corresponding blocking
set of machines, and let J ′ be the set of jobs waiting on these machines. Every job J ∈ J ′
is sitting on some machine in B′, and is waiting for some other machine in B′. Since
|M(J)| = 2, this impliesM(J) ⊆ B′ for every job J ∈ J ′. Then∑

M∈B′

y∗(M) ≥
∑

J∈J ′

∑
M∈M(J)

x∗(J, M) = |J ′|.

Since furthermore |J ′| =
∑

M∈B′ cap(M), we conclude y∗(M) ≥ cap(M) for at least one
machine M ∈ B′.

(If). Let J ∗ be the set of jobs with x∗(J, M) > 0 for some M ∈ M∗. Property (*) in
Lemma 12 now yields the following for every job J : If J ∈ J ∗, thenM(J) ⊆M∗. Construct
a bipartite graph G between the jobs in J ∗ and the machines inM∗, with an edge between
J and M if and only if M ∈M(J). For any subsetM′ ⊆M∗, the number of job neighbors
in this bipartite graph is at least

∑
M∈M′ y∗(M) ≥

∑
M∈M′ cap(M). A variant of Hall’s

theorem from matching theory [8] now yields that there exists an assignment of some jobs
from J ∗ to machines in M∗ such that every M ∈ M∗ receives cap(M) pairwise distinct
jobs.

To reach a deadlock, we first send all non-assigned jobs one by one through the system.
They are completed and disappear. Then the assigned jobs enter the system, each moving
straightly to the machine to which it has been assigned. Then the system falls into a
deadlock with blocking setM∗: All machines inM∗ are full, and all jobs are only waiting
for machines inM∗. J

Since jobs J with |M(J)| = 1 are harmless and may be disregarded with respect to
deadlocks, we arrive at the following theorem.

I Theorem 14. For open shop systems where each job requires processing on at most two
machines, Reachable Deadlock can be solved in polynomial time. J
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The following example illustrates that the above LP-based approach cannot be carried
over to the case where every job requires processing on three machines (since the only-if
part of Lemma 13 breaks down).

I Example 15. Consider a system with two jobs and four machines of unit capacity. Job
J1 needs processing on M1, M2, M3, and job J2 needs processing on M1, M2, M4. A (reach-
able) deadlock results if J1 enters the system on M3 and then moves to M1, whereas J2
simultaneously enters the system on M4 and then moves to M2.

We consider a feasible solution with x(J, M) ≡ 1/3 for every J and every M ∈ M(J),
and y(M1) = y(M2) = 2/3 and y(M3) = y(M4) = 1/3. The objective value is 4, and hence
this is an optimal solution. The post-processing leaves the solution untouched, and the
resulting setM∗ is empty. J

8 Reachable deadlocks if machines have unit capacity

Throughout this section we only consider open shop systems with cap(Mi) ≡ 1. For each
such system we define a corresponding undirected edge-colored multi-graph G = (V, E): The
vertices are the machines M1, . . . , Mm. Every job Jj induces a clique of edges on the vertex
set M(Jj), and all these edges receive color cj . Intuitively, if two machines are connected
by an edge e of color cj , then job Jj may move between these machines along edge e.

I Lemma 16. For an open shop system with unit machine capacities and its corresponding
edge-colored multi-graph the following two statements are equivalent.
(i) The multi-graph contains a simple cycle whose edges have pairwise distinct colors.
(ii) The system can reach a deadlock.

Proof. Assume that (i) holds, and consider a simple cycle C whose edges have pairwise
distinct colors. By renaming jobs and machines we may assume that the vertices in C

are the machines M1, . . . , Mk, and that the edges in C are [Mj , Mj+1] with color cj for
1 ≤ j ≤ k − 1, and [Mk, M1] with colors ck. Consider the following processing order of the
jobs:

In the first phase, the jobs Jj with k + 1 ≤ j ≤ n are processed one by one: Job Jj+1
only enters the system after job Jj has completed all its processing and has already left
the system. At the end of this phase we are left with the jobs J1, . . . , Jk.
In the second phase, the jobs J1, . . . , Jk are handled one by one. When job Jj is handled,
first all operations of Jj on machines Mi with i ≥ k+1 are processed. Then job Jj moves
to machine Mj , and stays there till the end of the second phase. Then the next job is
handled.

At the end of the second phase, for 1 ≤ i ≤ k job Ji is blocking machine Mi, and waiting for
future processing on some other machine in cycle C. The system has fallen into a deadlock,
and hence (i) implies (ii).

Next assume that (ii) holds, and consider a deadlock state. For every waiting job Jj in
the deadlock, let M ′

j be the machine on which Jj is currently waiting and let M ′′
j denote

one of the machines for which the job is waiting. Consider the sub-graph of G that for every
waiting job Jj contains the vertex M ′

j together with an edge [M ′
j , M ′′

j ] of color cj . This
sub-graph has as many vertices as edges, and hence must contain a simple cycle; hence (ii)
implies (i). J

I Lemma 17. For the edge-colored multi-graph G = (V, E) corresponding to some open shop
system with unit machine capacities, the following three statements are equivalent.
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(i) The multi-graph contains a simple cycle whose edges have pairwise distinct colors.
(ii) The multi-graph contains a 2-vertex-connected component that spans edges of at least
two different colors.
(iii) The multi-graph contains a simple cycle whose edges have at least two different colors.

Proof. We show that (i) implies (ii) implies (iii) implies (i). The implication from (i) to (ii)
is straightforward.

Assume that (ii) holds, and consider a vertex v in such a 2-vertex-connected component
that is incident to two edges with two distinct colors. These two edges can be connected to
a simple cycle, and we get (iii).

Assume (iii), and consider the shortest cycle C whose edges have at least two different
colors. If two edges [u, u′] and [v, v′] on C have the same color cj , then the vertices u, u′, v, v′

are all in the machine setM(Jj) of job Jj . Hence they span a clique in color cj , and some
edges in this clique can be used to construct a shorter cycle with edges of at least two
different colors. This contradiction shows that (iii) implies (i). J

Lemmas 16 and 17 together yield that an open shop system can fall into a deadlock state
if and only if the corresponding multi-graph contains a 2-vertex-connected component that
spans edges of at least two different colors. Since the 2-vertex-connected components of a
graph can easily be determined and analyzed in linear time (see for instance [3]), we arrive
at the following theorem.

I Theorem 18. For open shop systems with unit machine capacities, problem Reachable
Deadlock can be solved in polynomial time. J
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Abstract
In the conversion of finite automata to regular expressions, an exponential blowup in size can
generally not be avoided. This is due to graph-structural properties of automata which cannot
be directly encoded by regular expressions and cause the blowup combinatorially. In order to
identify these structures, we generalize the class of arc-series-parallel digraphs to the acyclic case.
The resulting digraphs are shown to be reversibly encoded by linear-sized regular expressions. We
further derive a characterization of our new class by a finite set of forbidden minors and argue
that these minors constitute the primitives causing the blowup in the conversion from automata
to expressions.
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1 Motivation

A fundamental result in the theory of regular languages is the equivalent descriptive power
of regular expressions and finite automata, as originally shown by Kleene [9]. While regular
expressions come natural to humans as a means of denoting such languages, automata are
the objects of choice on the machine level. Consequently, converting between these two
representations is of great practical importance. There are several linear-time algorithms to
transform regular expressions into automata with size linear in that of the input, a detailed
overview is given by Watson [16]. We shall focus on the converse construction which is
considerably more troubling.

In particular, Ehrenfeucht & Zeiger [3] give a class of automata for which the size of
any equivalent expression is exponential in that of a given automaton. These automata
are defined over an alphabet which grows with automaton size, which led Ellul et al. to
ask whether a similar blowup in expression size can be shown for automata over a fixed
alphabet [4]. An affirmative answer was given by Gruber & Holzer [5] for binary alphabets
already. This mostly rules out alphabet size as a factor contributing to the exponential
blowup, the modifier ’mostly’ giving credit to the fact that automata over unary alphabets
can be converted to expressions of quadratic size via Chrobak normal form [1, 4].

Observe that a finite automaton is merely a digraph with edge labels, accepting the
language which consists of all sequences of labels met on a directed walk from an initial to a
final state. Informally, the increase of expression- over automaton-size results from automata
being combinatorial objects, whereas expressions are terms, i.e., linear entities, that must
resort to repeated subterms in order to convey information encoded in the graph-structure
of an automaton. This was observed quite early by McNaughton [11], who remarks that
“although every regular expression can be transformed into a graph that has the same
structure, the converse is not true”. The present work aims to identify the graphs that cannot
be transformed into expressions that have the same structure.
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For automata whose underlying graphs are arc-series-parallel, Moreira & Reis [12] recently
gave an efficient conversion to expressions with size linear in that of the input. These graphs
are characterized by absence of a single minor-like substructure in acyclic graphs, as was
shown by Valdes et al. [15]. Korenblit & Levit [10] conjectured that this substructure already
causes a quadratic blowup in the size of expressions constructed from acyclic automata.

However, Moreira & Reis’s method is inherently confined to automata that accept finite
languages only. In order to accept an infinite language, an automaton needs to contain
cycles, which evades the class of arc-series-parallel digraphs. While separately dealing with
series-parallel ’parts’ of arbitrary automata has been suggested for conversion-heuristics [6],
no strict graph-theoretic analysis has been conducted for the general case as yet.

This motivates our generalization of arc-series-parallel digraphs to the non-acyclic case in
Sec. 3, yielding a class which is still efficiently recognizable. In Sec. 4 we show that such graphs
can be reversibly encoded by regular expressions and that every regular expression encodes
a graph of this class. Encoding and decoding is done in an automata-theoretic framework
and can be immediately applied to the conversion between automata and expressions. In
Sec. 5 we derive a characterization of our new class by a finite set of forbidden minors. This
implies that these minors represent the graph-structural properties of automata that cannot
be encoded by regular expressions and thus cause the blowup observed in the construction of
regular expressions from finite automata.

2 Preliminaries

We consider finite directed graphs with loops and multiple arcs. These are canonically known
as directed pseudographs but will be referred to as just graphs. Formally, a graph is a tuple
(V,A, t, h) with vertices V , arcs A, tail-map t : A → V and head-map h : A → V . If G is
not given explicitly, let G = (VG, AG, tG, hG). An xy-arc of G is any a ∈ AG with tG(a) = x

and hG(a) = y; we write this as a = xy ∈ AG. An xy-arc a leaves x and enters y, and x and
y are called the endpoints of a. Distinct xy-arcs of a graph are parallel to each other. An
xx-arc is an x-loop or just loop, every other arc is a proper arc. The in-degree of x ∈ VG,
denoted d−G(x), is the number of arcs entering x in G, the out-degree d+

G(x) is the number of
arcs leaving x. A constriction of G is any proper xy-arc where d+

G(x) = 1 = d−G(y). A vertex
x ∈ VG is simple if d−G(x) ≤ 1 and d+

G(x) ≤ 1. Subscripts are omitted if they are understood.
We write F ⊆ G is F is a subgraph of G. If F and G are subgraphs of H and a = xy ∈ AH

with x ∈ VF and y ∈ VG, then a is called an (F,G)-arc, as well as an (x,G)- or an (F, y)-arc
of H. A path of length n, denoted Pn is a graph on n+ 1 vertices and n constrictions.

The subdivision of an arc a = xy is the replacement of a with an xy-path of length 2.
More generally, a subdivision of G, referred to as a DG, is any graph H s.t. there are graphs
G1, . . . , Gn where G = G1, Gi+1 results from subdividing an arc of Gi and Gn = H. The
split of a vertex x is the replacement of x with two vertices x1 and x2 and an x1x2-arc and
redirecting all arcs that entered x to enter x1, resp. redirecting all arcs that left x to leave
x2. Two vertices x, y ∈ VG are merged by being replaced with a new vertex z and redirecting
all arcs entering or leaving x or y to enter or leave z.

A graph G is two-terminal if there are s, t ∈ VG s.t. every x ∈ VG lies on some st-path in
G. The vertices s and t are respectively called the source and sink of G; we write G = (G, s, t)
to express that G is two-terminal with source s and sink t. A two-terminal graph (G, s, t)
is a hammock if d−G(s) = d+

G(t) = 0. Let x and y be vertices of (G, s, t): x dominates y if
x lies on every sy-path, and x co-dominates y if x lies on every yt-path. Furthermore, x is
a guard of y if x dominates and co-dominates y; also, x is a guard of the arc a if x guards
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x y s⇒ x z y

(a) series expansion

x y p⇒ x y

(b) parallel expansion

x y `⇒ {x,y}

(c) loop expansion

Figure 1 Expansions of an xy-arc, resp. the containing graph.

p⇒ s⇒ s⇒ `⇒ s⇒

Figure 2 Construction of an spl-graph from P1 by a sequence of expansions.

both t(a) and h(a). More generally, x guards a subgraph F of (G, s, t) if x guards every arc
and vertex of F .

3 SPL - Graphs

I Definition 1. The relations s⇒, p⇒ and `⇒ are defined on graphs as follows: Let G be a
graph and a an xy-arc in G, then

G
s⇒ H if H is obtained by subdividing a in G

G
p⇒ H if H is obtained from G by adding an arc which is parallel to a.

G
`⇒ H if a is a constriction and H is obtained by merging x and y in G.

We say that H is derived from G by means of series-, parallel- or loop-expansion if
G

s⇒ H, G p⇒ H or G `⇒ H, respectively. The local changes in G upon expansion are
sketched in Fig. 1. We write G⇒ H if the particular expansion is irrelevant, and G⇒? H if
H is derived from G by a (possibly empty) finite sequence of expansions.

I Definition 2. The class of spl-graphs, denoted SPL, is generated by⇒ from P1 as follows

P1 ∈ SPL
Let G ∈ SPL, then H ∈ SPL if G s⇒ H or G p⇒ H, or if G `⇒ H where the `-expanded
arc is not incident to the source or the sink of G.

We call P1 the axiom of SPL. The restriction imposed on `-expansion ensures that every
spl-graph is a hammock. An example for the step-wise construction of an spl-graph is shown
in Fig. 2. The acyclic spl-graphs coincide with the arc-series-parallel graphs investigated
by Valdes et al. [15]; we resort to their results whenever possible and elaborate only on
properties of SPL that arise from its non-acyclic members.

To decide whether (G, s, t) is an spl-graph, we define a kind of dual to expansion. Some
care must be taken with the removal of loops, which is why the new operations are restricted
to hammocks.

I Definition 3. The relations s⇐, p⇐ and `⇐ are defined on hammocks as follows: Let
G = (G, s, t) be a hammock, then

i) G s⇐ H if y is simple vertex of G, incident to a1 = xy and a2 = yz, and H is derived
from G by removing y, a1 and a2 and adding an xz-arc.

ii) G p⇐ H if H is derived from G by removing one of two parallel arcs.
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iii) G `⇐ H if a is an x-loop in G s.t. x does not guard any arc besides a, and H is the split
of x in G \ {a}.

If G c⇐ H for c ∈ {s, p, `} we call both H and the replacement operation a c-reduction
of G. As before we may simply write G⇐ H for any reduction, and G⇐? H if H can be
derived from G by a sequence of reductions.

Expansion and reduction are not proper duals as the latter relation is restricted to
hammocks by definition. For hammocks we find G c⇐ H iff H

c⇐ G for c ∈ {s, p}; but while
G

`⇐ H implies H `⇒ G, the converse is not true. The asymmetry is due to the fact that
if `-expansion introduces an x-loop a, x might guard some arc besides a, so the converse
reduction is not ensured. This, however, does not happen within SPL.

I Proposition 4. Let C be a cycle of G ∈ SPL. Then exactly one vertex of C guards C.

The intuition of Prop. 4 is that every cycle in an spl-graph contains a vertex that serves
as the unique ’entry’ and ’exit’ of this cycle wrt. the source and sink (see the last two steps
in Fig. 2). Also note that a cycle might well be guarded by any number of vertices outside
the cycle.

I Theorem 5. G ∈ SPL iff G⇐? P1

Proof. Since G⇐? P1 implies P1 ⇒? G, reducibility is sufficient for membership. Necessity
is shown by induction on the structure of G. The claim holds for P1, so suppose G ∈ SPL
where G⇐? P1 and let G⇒ H. We attend to `-expansion only, the other cases are trivial.
Let a = uv be the relevant constriction of G and let l = xx be the loop introduced in H. If x
guards some distinct arc a′ = yz in H, then G contains a cycle that defies Prop. 4, contrary
to the assumption G ∈ SPL. Therefore, H `⇐ G is a valid reduction; since by assumption
G⇐? P1, we find H ⇐? P1. J

While membership in SPL can be decided by reducing a hammock to the axiom of
SPL, we do not know how to do so. Actually, there is no need for a strategy, since the
reduction-system exhibits unique normal-forms. Using a standard argument from abstract
rewriting (see e.g. [14]), we first show that reductions are locally confluent.

I Lemma 6. Let G be a hammock and suppose G⇐ H1 and G⇐ H2 hold. Then there is a
hammock J s.t. H1 ⇐? J and H2 ⇐? J hold.

Each reduction decreases the number of arcs or loops and none introduces loops, so every
sequence of reductions eventually terminates. Any graph derived from G by exhaustive
reduction is called normal-form of G and denoted R(G). A graph G that coincides with its
normal-form, G = R(G), is called reduced. Applying Newman’s lemma [13, 14] yields

I Corollary 7. The normal-form R(G) of any hammock G is unique.

Computing the normal-form of a hammock can be realized by repeatedly running the
reduction algorithm for arc-series-parallel graphs [15], interspersed with `-reductions, until no
further reduction can be applied. To this end some bookmarking about the loops occurring
in the intermediate graphs is necessary. Testing whether x is a guard can be done in linear
time by counting the components of G \x. Overall, this method computes R(G) in quadratic
time.

I Theorem 8. Membership of G in SPL is effectively decidable due to

G ∈ SPL iff G is a hammock and R(G) = P1
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4 Encoding by Regular Expressions

Syntax and semantics of regular expressions (REs) follow Hopcroft & Ullman’s textbook [8]
except that we do not allow for ∅ in REs. As for notation, Lr denotes the language described
by the RE r and reg(Σ) denotes the class of REs over Σ. An RE is simplified if it does not
contain ε as a factor. Any RE r can be converted to a simplified RE simp(r), denoting the
same language, by replacing every subexpression sε or εs with just s.

An extended finite automaton (EFA) over Σ is a 5-tuple E = (Q,Σ, δ, I, F ), whose
elements denote the set of states, the alphabet, the transition relation, the initial and the
final states, respectively. These sets are all finite and satisfy Q ∩Σ = ∅, δ ⊆ Q× reg(Σ)×Q,
I ⊆ Q, and F ⊆ Q. The relation `E is defined on Q×Σ∗ as (q, ww′) `E (q′, w′) if (q, r, q′) ∈ δ
and w ∈ Lr. The language accepted by E is

L(E) := {w | (qi, w) `∗E (qf , ε) for qi ∈ I, qf ∈ F}

Two EFAs are equivalent if they accept the same language. An EFA is normalized if
|I| = |F | = 1 and the initial and final state are distinct; any EFA can normalized by adding a
new initial (final) state and ε-transitions from (to) this new initial (final) state to (from) the
original ones. The EFA E is trim if for every state q of E there is a word w = w1w2 ∈ L(E)
s.t. (qi, w1) `∗E (q, ε) and (q, w2) `∗E (qf , ε) hold for some qi ∈ I and qF ∈ F . Any EFA
can be converted to a trim equivalent EFA by removing all states that do not meet this
requirement and adjusting the transition relation. A nondeterministic finite automaton with
ε-transitions (εNFA) is an EFA whose transition relation is restricted to δ ⊆ Q×(Σ∪{ε})×Q.

The graph underlying E is G(E) := (Q, δ, t, h) where t : (p, r, q) 7→ p and h : (p, r, q) 7→ q.
It is easy to see that E is trim and normalized iff G(E) is a hammock.

An EFA displays a compromise between the complexity of its transition-labels and that
of its underlying graph; REs and εNFAs represent the extremes in this tradeoff: an RE
can be considered as an EFA whose underlying graph is trivial, namely P1, while an εNFA
is an EFA with trivial labels. Locally relaying information about a language between the
graph-structure of an EFA and its labels lies at the heart of several conversions between REs
and εNFAs.

4.1 Expressions to Automata
We consider a fragment of the replacement-system proposed by Gulan & Fernau [7]. Let E
be an EFA with transition τ = (p, r, q) where r contains operators, then τ can be replaced
depending on the root of r, the out-degree of p and the in-degree of q. The degrees are only
relevant if r is an iteration: in this case they determine whether p and q should be merged
or a new state should be added (or neither) upon introduction of a loop. The rewriting rules,
denoted /•, /+, and /∗1 to /∗4 are shown in Fig. 3.

In order to convert an RE into an εNFA, we identify r ∈ reg(Σ) with the trivial
EFA A0

r := ({qi, qf},Σ, {(qi, r, qf )}, {qi}, {qf}), which obviously satisfies L(A0
r) = Lr. The

language accepted by an EFA is invariant under each rewriting, hence exhaustive application
of /•, /+ and /∗i yields a sequence A0

r, A
1
r, . . . of equivalent EFAs terminating in an εNFA

which we denote Ar.

I Lemma 9. Every Ai
r satisfies G(Ai

r) ∈ SPL.

Thus the graph underlying Ar is an spl-graph, too. It is shown in [7] that Ar is unique.
We thus define a map α from reg(Σ) to the class of expression-labeled spl-graphs (aka trim
normalized EFAs) by setting α(r) := Ar.
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p qst /• p ◦ qs t

(a) product

p qs+ t /+ p q
s

t

(b) sum

p qs∗ /∗1 {p,q}
s

(c) star, d+(p)=d−(q)=1

p qs∗ /∗2 p qε
s

(d) star, d+(p)>1, d−(q)=1

p qs∗ /∗3 p qε
s

(e) star, d+(p)=1, d−(q)>1

p qs∗ /∗4 p ◦ε qε
s

(f) star, d+(p)>1, d−(q)>1

Figure 3 Replacing a transition (p, r, q) based on its label and, in case r = s∗, the out-degree of
p and the in-degree of q in G(E). Either rule /•, /∗4 introduces a new state ’between’ p and q.

4.2 Automata to Expressions
The spl-reductions are augmented to handle expression-labeled arcs, which yields a second
rewriting-system on EFAs. In order to meet the requirements for loop-reduction, we consider
normalized EFAs only. The labeled reductions, denoted .•, .+, and .∗, are shown in Fig. 4.
Again, the accepted language is invariant under these transformations.

s t .• st

(a) labeled s-reduction

s

t
.+

s+ t

(b) labeled p-reduction

s
.∗

s∗

(c) labeled `-reduction

Figure 4 Labeled spl-reductions

Exhaustive reduction of a normalized EFA E terminates in an equivalent EFA which we
denote Rl(E). The graph underlying Rl(E) is the normal-form of the graph underlying E,
G(Rl(E)) = R(G(E)), and we further find

I Proposition 10. The labels of Rl(E) are unique up to associativity and commutativity.

In particular if G(E) ∈ SPL, we find G(Rl(E)) = P1, so the only label of Rl(E) is an
RE r with Lr = L(E). By Prop. 10 this RE is unique up to trivialities, so we define a map
β from EFAs with spl-structure to REs by setting β(E) := r, where r is the label of Rl(E).

4.3 Duality of the Conversions
The conversions between REs and εNFAs with spl-structure are ’almost’ duals, some extra
effort arises with the treatment of ε-factors resp. certain ε-labeled transitions. This is due to
the fact that star-expansion might introduce ε-transition that have no corresponding subterm
in the

We write r = r′ if the expressions r and r′ are identical up to associativity and commuta-
tivity of the regular operators.

I Theorem 11.

1. simp(r) = β(α(simp(r))) for any RE r

2. A = α(simp(β(A))) for any εNFA A with G(A) ∈ SPL

Thus the encoding of labeled spl-graphs by simplified expressions is unique and reversible,
and every simplified expression encodes a labeled spl-graph. Hence every RE over a non-
empty alphabet encodes an spl-graph and every spl-graph can be encoded. Informally, we
state
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I Corollary 12. G ∈ SPL iff G can be encoded by an RE

5 Forbidden Minor Characterization

We adapt the notion of topological minors, which is well-known for undirected graphs (see
e.g. [2]), to our needs.

I Definition 13. An embedding of F in G is an injection e : VF → VG satisfying that if
a = xy ∈ AF , then G contains an e(x)e(y)-path Pa, and that Pa and Pa′ are internally
disjoint for distinct a, a′ ∈ AF .

If an embedding of F in G exists, we call F a minor of G realized by the embedding.
We write F 4 G if F is a minor of G. If F 4 G does not hold then G is F -free; if M is
a set of graphs and G is F -free for every F ∈ M, then G isM-free. It is easily seen that
subdivisions allow for an equivalent characterization of minors:

I Proposition 14. F 4 G iff G contains a DF

Let F 4 G be realized by e and x ∈ VF , we call e(x) a peg of F in G wrt. e; if G and e
are known, we omit mentioning them. Observe that the in-/out-degree of a vertex in F does
not exceed the in-/out-degree of its corresponding peg in G:

I Proposition 15. If e realizes F 4G, then d−F (x)≤d−G(e(x)) and d+
F (x)≤d+

G(e(x)).

Let e realize F 4 G, a bypass of F in G wrt. e is an e(x)e(y)-path in G, where xy is
not an arc of F . An embedding of F in G is bare if G contains no bypass of F wrt. to the
embedding; we then write M v G. Observe that F 4 G might well be realized by various —
in particular bare and non-bare — embeddings. Based on Prop. 14, we also call a DF in G
bare if G contains no bypass wrt. to the embedding realizing this DF .

The existence of an xy-path is invariant under spl-expansion and -reduction if x and y
are not subject to the operation.

I Proposition 16. Let G⇒ H or G⇐ H and {x, y} ⊆ VG∩VH , then G contains an xy-path
iff H does.

’Half’ of the sought characterization is given by the set of graphs F = {C,CR,N,Q},
shown in Fig. 5. Note that Valdes et al. proved that an acyclic hammock is arc-series-parallel
iff it is N-free [15].

I Lemma 17. Every G ∈ SPL is F-free.

Proof. Clearly, P1 is F-free. Assume G ∈ SPL is F-free and let G ⇒ H. Consider any
F ∈ F : since F is free of parallel arcs, and the existence of paths among vertices in VG ∩ VH

is invariant under expansion (Prop. 16), F 4 H implies that a peg of F in H was introduced
upon expansion. Hence in case G p⇒ H, F is not a minor of H, i.e., H is F -free. The same
goes for G s⇒ H: as the new vertex in H is simple, but no vertex of F is, Prop. 15 implies
that H is F -free and therefore F -free.
If G `⇒ H, let a = xy be the relevant constriction of G and l = zz the loop of H introduced
by expansion. If F 4 H is realized by e, then z = e(q) for some q ∈ VF , as was discussed
above. Let H ′ = H \ l: since F is free of loops, F 4 H ′ holds, too, and since q is not simple
in F , z is not simple in H ′. We actually find d−H′(z) ≥ 2 and d+

H′(z) ≥ 2: if d−H′(z) = 0, then
F 4 G is realized by e′, which is defined as e except that e′(q) = y — contradicting the
assumption that G is F-free. If d−H′(z) = 1, there is exactly one arc entering z in H. Let
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(a) C (b) CR (c) N (d) Q

Figure 5 Graphs constituting F .

x

•

s • t

`⇐

x2 x1

•

s • t

Figure 6 The graph N emerges as a subgraph due to `-reduction of a hammock. Still, C is a
minor of either side.

this be a′ = z′z, then F 4 G is realized by e′′ which is as e except that, again, e′′(q) = y,
contradicting our assumption. A symmetric argument shows d+

H′(z) ≥ 2. In fact, we have
also shown that q, of which z is the peg, has in- and out-degree at least two.
But since d−G(x) = d−H′(z) and d+

G(y) = d+
H′(z), some F ′ ∈ F , constructed by splitting q in

F satisfies F ′ 4 G — contradicting the assumption that G is F -free. J

Likewise, it can be shown in general that if H ⇐ G and H is not F -free, then neither is
G. However, there is a catch: the F -minors of G and H need not coincide. This is hinted at
by the following lemma, and an explicit example is shown in Fig. 6.

I Lemma 18. If H ⇐ G for hammocks H and G, then H is F-free iff G is. More specifically:

i) F 4 H iff F 4 G for F ∈ {C,CR,Q}
ii) N 4 H only if N 4 G, whereas
iii) N 4 G only if (N 4 G or C 4 G or CR 4 G)

Still, F -freeness of a hammock is not sufficient for membership in SPL: for example, the
hammock Φ, shown in Fig. 7a, is F -free, but not included in SPL. The additional graphs
necessary for a characterization by forbidden minors are Φ, Ψ, and ΨR, shown in Fig. 7.

I Lemma 19. Every G ∈ SPL is free of bare Φ-, Ψ-, and ΨR-minors

On the other hand, each of {Φ,Ψ,ΨR} may well be a minor of certain spl-graphs.
Examples for spl-graphs with Φ and Ψ as minors are given in Fig. 8, the reader might want
to check that these can be reduced to P1. In the absence of F -minors an invariance-result
akin to Lem. 18 holds for bare subdivisions of these three graphs.

(a) Φ (b) Ψ (c) ΨR

Figure 7 Graphs that do not allow for a bare embedding in any G ∈ SPL.
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s

t

(a)

s t

(b)

Figure 8 Examples for spl-graphs with Φ and Ψ as (non-bare) minors

I Lemma 20. Let H be an F-free hammock and assume H ⇐ G, then F v H iff F v G

for F ∈ {Φ,Ψ,ΨR}.

Proof. Each of Φ, Ψ, and ΨR is free of parallel arcs, so Prop. 16 yields the claim if all pegs
occur in VG ∩ VH ; in particular, nothing needs to be done for H p⇐ G. We prove the claim
for Φ, the procedure is the same for Ψ and ΨR. In the following, let H be F -free.
Let Φ v H be realized by e. If G s⇐ H removes a peg x = e(q), q is one of the two simple
vertices of Φ; here, let q be the unique vertex with d−Φ(q) = 0 (the other case is symmetric).
Since s-reduction is applicable due to x, an arc a = yx exists in H, with y also occurring in
G. Let e′ be an embedding of Φ in G, s.t. e′(q) = y and e′ as e for the other vertices. If
e′ is bare, the claim follows for Φ and s-reduction, so assume it is not. Then G contains
a bypass of Φ wrt. e′, which is necessarily a path leaving y, otherwise H would contain a
bypass of Φ wrt. e, contradicting the assumption that e is bare. We find C 4 G, if the other
endpoint of the bypass is the peg of the vertex in Φ’s cycle that is not adjacent to q. If the
bypass is from e′(q) to the peg of the vertex with out-degree 0 in Φ, we get Q 4 G. In both
cases Lem. 18 implies that H is not F-free, contradicting our assumption. Proving that
s-reduction does not introduce new bare DΦ’s is trivial.
Again let Φ v H be realized by e with peg x ∈ VH . Considering H `⇐ G, let a = xx be the
loop that allows for reduction, and let x1x2 denote that constriction arising from it. As in
the proof of Lem. 18 our argument is based on the facts that a is irrelevant for the DΦ in H
and that d−G(x1) = d−H\a(x) and d+

G(x2) = d−H\a(x) hold. Since every of Φ has either in- or
out-degree ≤ 1, we can construct an embedding e′ of Φ in G by assigning the role of x to
either x1 or x2. J

I Definition 21. A kebab is a connected graph consisting of three arc-disjoint subgraphs: a
strong component B, called the body, and two nonempty vertex-disjoint paths S1 and S2,
called the spikes of the kebab.

We name some unique vertices in a kebab: the endpoint of a spike connecting that spike
to the body is the puncture of this spike, the other endpoint is its tip. A spike which enters
the body of a kebab is an in-spike, one that leaves the body is called an out-spike. If both
spikes of a kebab K enter (leave) the body, K is also called an in-kebab (out-kebab) if one
enters and the other leaves the body, K is called an inout-kebab. In order to prove two
lemmas concerning kebabs, some auxilliary propositions are necessary.

I Proposition 22. Let G be a reduced hammock with distinct arcs a1, a2 s.t. h(a1) = v =
t(a2). Then v is incident to a third proper arc.

I Proposition 23. Let x and y be distinct vertices of a hammock G. Then exactly one of
the following is true: 1) x dominates y, 2) y dominates x, or 3) for some z ∈ VG \ {x, y},
G contains internally disjoint zx- and zy-paths.
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I Proposition 24. Let x and y be distinct vertices of a strong graph G, then there is a cycle
C ⊆ G and distinct zx, zy ∈ VC , s.t. G contains an xzx- and a yzy-path that are disjoint.

I Lemma 25. Let (G, s, t) be an spl-reduced hammock and suppose G contains a kebab. Then
F 4 G for some F ∈ F or Φ v G.

Proof. We choose a ’biggest’ kebab K ⊆ G with the following properties

1. the body of K is arc-maximal, i.e., no kebab of G has a body with more arcs
2. the spikes of K are inclusion-maximal in G, i.e., they are not ’sub-spikes’ of a bigger

kebab with the same body as K but longer spikes than K.

We need to distinguish whether K is in an in-, an out- or an inout-kebab. Due to space
restrictions we only treat the first case, however note that the first and second case are
symmetric.

Let K ⊆ G be an in-kebab and let B denote the body of K, S1 and S2 the spikes, with
tips t1 and t2, and punctures p1 and p2, respectively (Fig. 9a). As (G, s, t) is a hammock,
according to Prop. 23 either one of t1 and t2 dominates the other, or G contains a vertex x
and internally disjoint xt1- and xt2-paths.

1. If t2 dominates t1 (the converse case is symmetric), let P be a shortest t2t1-path in
G. If P and B are disjoint, then P contains a segment P ′ from S2 to S1. Using Prop. 24
we now find C 4 G (Fig. 9b). So let P go through B, then the last segment of P is a
(B, t2)-path outside B. By the choice of K and P this segment consist of a single arc
a = bt1 for b ∈ VB (Fig. 9c). According to Prop. 22, t1 is incident to a further arc a′, as
G is reduced. Our choice of K requires that the other endpoint z of a′ lies in K, since B,
S1 and a form a strong component bigger than B. It is now easy to see (from Fig. 9c),
that z ∈ VS2 yields C 4 G (regardless of a’s orientation), and that z ∈ VB yields C 4 G

or CR 4 G (depending on a’s orientation), so let z ∈ VS1 \ {p1}. This leaves two pos-
sibilities: If a′ = zt1 we find Q 4 G, with pegs t1,p1,b and z (Fig. 9d). On the other
hand, a′ = t1z leads to a contradiction: Since G is p-reduced, there is at least one vertex
z′ between t1 and z on S1; omitting the t1z′-segment of S1 lets us identify an in-kebab
with tips z′ and t2 and a body properly containing B (Fig. 9e), contradicting maximality of B.

2. Let G contain a zt1-path P1 and a zt2-path P2 which are internally disjoint. If both
Pi are disjoint with B, we find C 4 G with help of Prop. 24 (Fig. 9f, where xi denotes the
first vertex on Pi that is also in Si). If wlog. P1 intersects B, let b denote the last vertex on
P1 that is in B and x the first vertex on P1 that is in VSi

\ {pi}. If x 6= t1, we find a kebab
in G with a body containing B, contradicting our choice of K. As the claim was already
proven for x = t1 (see Fig. 9c), the statement follows for in-kebabs.

J

I Lemma 26. Let G 6= P1 be a reduced hammock with cycles. Then F 4 G for some F ∈ F
or F ′ v G for some F ′ ∈ {Φ,Ψ,ΨR}.

We have thus found a characterization of SPL by forbidden subgraphs.

I Theorem 27. Let G be a hammock, then

G ∈ SPL iff G is F-free and no F ′ ∈ {Φ,Ψ,ΨR} is a bare minor of G.
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p1

p2

t1

t2

S1

S2 B

(a) in-kebab

P ′

(b) C 4 G

b

(c) bt1-arc

b

z
a′

(d) Q 4 G

b

z′ z

(e) a′ = t1z

z

x1

x2

(f) C 4 G

Figure 9 Cases occurring in the proof of Lem. 25 for K being an in-kebab. Solid arrows represent
arcs, dashed arrows represent paths.

Proof. Let G ∈ SPL, then Lem. 17 states that G is F -free, while Lem. 19 states that none of
{Φ,Ψ,ΨR} is a bare minor of G. Conversely if G /∈ SPL then Cor. 7 yields R(G) 6= P1. By
Valdes’ result and Lem. 26, we know F 4 R(G) for some F ∈ F and/or F ′ v R(G) for some
F ′ ∈ {Φ,Ψ,ΨR}. If G = R(G), i.e., G is already reduced, the claim follows immediately;
otherwise, induction on the length of the reduction using Lems. 18 and 20 provides the
statement. J

6 Conclusions

We generalized the class of arc-series-parallel graphs by augmenting the standard construction
with a rule that allows for loops. Members of the new class can be reversibly encoded by
regular expressions which represent the recursive structure of a graph; naturally, the size of
such an encoding is linear in that of the input. Moreover, any regular expression represents
an spl-graph under this encoding. Modulo isomorphism of graphs, resp. modulo associativity
and commutativity of operators in expressions, the encoding and decoding are unique; thus
they provide — up to trivialities — a bijection between spl-graphs and regular expressions.

The encoding is done by constructing a series of arc-labeled spl-graphs. As an automaton
can be interpreted as an arc-labeled graph, this can be immediately applied to the conversion
of finite automata with spl-structure to equivalent regular expressions whose size is linear
wrt. to the automaton. This generalizes a recent result for acyclic automata.

We further characterized our new class by means of 7 forbidden minors. Therefore the
exponential increase of expression size over automaton size, which cannot be avoided in
the general case, is due to graph-structural properties of automata that are not present
in spl-graphs. The forbidden minors can be considered as being the primitives of these
non-expressible properties, they should be further investigated in order to improve on current
conversions from automata to expressions.
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Abstract
Most modern implementations of regular expression engines allow the use of variables (also called
back references). The resulting extended regular expressions (which, in the literature, are also
called practical regular expressions, rewbr, or regex) are able to express non-regular languages.

The present paper demonstrates that extended regular-expressions cannot be minimized ef-
fectively (neither with respect to length, nor number of variables), and that the tradeoff in size
between extended and “classical” regular expressions is not bounded by any recursive function.
In addition to this, we prove the undecidability of several decision problems (universality, equiv-
alence, inclusion, regularity, and cofiniteness) for extended regular expressions. Furthermore, we
show that all these results hold even if the extended regular expressions contain only a single
variable.
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1 Introduction

Since being introduced by Kleene [18] in 1956, regular expressions have developed into a
central device of theoretical and applied computer science. On one side, research into the
theoretical properties of regular expressions, in particular various aspects of their complexity,
is still a very active area of investigation (see Holzer and Kutrib [16] for a survey with
numerous recent references). On the other side, almost all modern programming languages
offer regular expression matching in their standard libraries or application frameworks, and
most text editors allow the use of regular expressions for search and replacement functionality.

But, due to practical considerations (cf. Friedl [13]), most modern matching engines have
evolved to use an extension to regular expressions that allows the user to specify non-regular
languages. In addition to the features of regular expressions as they are mostly studied
in theory (which we, from now on, call proper regular expressions), and apart from the
(regularity preserving) “syntactic sugar” that most implementations use, these extended
regular expressions contain back references, also called variables, which specify repetitions
that increase the expressive power beyond the class of regular languages. For example,
the (non-regular) language L =

{
ww | w ∈ {a, b}∗

}
is generated by the extended regular

expression α:=
(
(a | b)∗

)
%x x.

This expression can be understood as follows (for a more formal treatment, see Defi-
nition 3): For any expression β, (β)%x matches the same expression as β, and binds the
match to the variable x. In the case of this example, the subexpression

(
(a | b)∗

)
%x can be

matched to any word w ∈ {a, b}∗, and when it is matched to w, the variable x is assigned
the value w. Any further occurrence of x repeats w, leading to the language of all words of
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the form ww with w ∈ {a, b}∗. Analogously, the expression
(
(a | b)∗

)
%x xx generates the

language of all www with w ∈ {a, b}∗.
Although this ability to specify repetitions is used in almost every modern matching

engine (e. g., the programming languages PERL and Python), the implementations differ in
various details, even between two versions of the same implementation of a programming
language (for some examples, see Câmpeanu and Santean [6]). Nonetheless, there is a
common core to these variants, which was first formalized by Aho [1], and later by Câmpeanu,
Salomaa and Yu [5]. Still, theoretical investigation of extended regular expressions has been
comparatively rare (in particular when compared to their more prominent subclass); see e. g.,
Larsen [20], Della Penna et al. [12], Câmpeanu and Santean [6], Carle and Narendran [8],
and Reidenbach and Schmid [22].

In contrast to their widespread use in various applications, extended regular expressions
have some undesirable properties. Most importantly, their membership problem (the question
whether an expression matches a word) is NP-complete (cf. Aho [1]); the exponential
part in the best known upper bounds depends on the number of different variables in the
expression. Of course, this compares unfavorably to the efficiently decidable membership
problem of proper regular expressions (cf. Aho [1]). On the other hand, there are cases
where extended regular expressions express regular languages far more succinctly than proper
regular expressions. Consider the following example:

I Example 1. For n ≥ 1, let Ln:={www | w ∈ {a, b}+, |w| = n}. These languages Ln
are finite, and hence, regular. With some effort1, one can prove that every proper regular
expression for Ln is at least of length exponential in n. In contrast to this, Ln is generated
by the extended regular expression

αn:=((a | b) · · · (a | b)︸ ︷︷ ︸
n times (a | b)

)%x xx,

which is of a length that is linear in n. 3

Due to the repetitive nature of the words of languages Ln in Example 1, it is not surprising
that the use of variables provides a shorter description of Ln. The following example might
be considered less straightforward:

I Example 2. Consider the expression α:=(a | b)+((a | b)+)%xx(a | b)+. It is a well-known
fact that every word w ∈ {a, b}∗ with |w| ≥ 4 can be expressed in the form w = uxxv, with
u, v ∈ {a, b}∗ and x ∈ {a, b}+ (as is easily verified by examining all four letter words). Thus,
the expression α matches all but finitely many words; hence, its language L(α) is regular. 3

The phenomenon used in Example 2 is strongly related to the notion of avoidable patterns
(cf. Cassaigne [9]), and involves some very hard combinatorial questions. We observe that
extended regular expressions can be used to express regular languages more succinctly than
proper regular expressions do, and that it might be hard to convert an extended regular
expression into a proper regular expression for the same language.

The two central questions studied in the present paper are as follows: First, how hard
is it to minimize extended regular expressions (both with respect to their length, and with
respect to the number of variables they contain), and second, how succinctly can extended

1 One can show this by proving that every NFA for Ln requires at least O(2n) states, e. g., by using the
technique by Glaister and Shallit [14]. Due to the construction used in the proof of Theorem 2.3 in [17],
this also gives a lower bound on the length of the regular expressions for Ln.
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regular expressions describe regular languages? These natural questions are also motivated
by practical concerns: If a given application reuses an expression many times, it might pay
off to invest resources in the search for an expression that is shorter, or uses fewer variables,
and thus can be matched more efficiently.

We approach this question through related decidability problems (e. g., the universality
problem) and by studying lower bounds on the tradeoff between the size of extended regular
expressions and proper regular expressions.

The main contribution of the present paper is the proof that all these decision problems are
undecidable (some are not even semi-decidable), even for extended regular expressions that
use only a single variable. Thus, while bounding the number of variables in extended regular
expressions (or, more precisely, the number of variable bindings) reduces the complexity of the
membership problem from NP-complete to polynomial (cf. Aho [1]), we show that extending
proper regular expressions with only a single variable already results in undecidability of
various problems.

As a consequence, extended regular expressions cannot be minimized effectively, and the
tradeoff between extended and proper regular expressions is not bounded by any recursive
function (a so-called non-recursive tradeoff, cf. Kutrib [19]). Thus, although the use of the
“right” extended regular expression for a regular expression might offer arbitrary advantages
in size (and, hence, parsing speed), these optimal expressions cannot be found effectively.
These results highlight the power of the variable mechanism, and demonstrate that different
restrictions than the number of variables ought to be considered.

The structure of the further parts of the paper is as follows: In Section 2, we introduce
most of the technical details. Section 3 consists of Theorem 9 – the main undecidability
result – and its consequences, while Section 4 contains the proof of Theorem 9 and technical
groundwork needed for that proof. The paper is concluded by Section 5. Due to space
reasons, most technical details were omitted from the present version.

2 Preliminaries

This paper is largely self-contained. Unexplained notions can be found in Hopcroft and
Ullman [17], Cutland [11], and Minsky [21].

2.1 Basic Definitions

Let N be the set of natural numbers, including 0. The function div denotes integer division,
and mod denotes its remainder (e. g., 5 div 3 = 1 and 5 mod 3 = 2). We denote the empty
string by λ. For the concatenation of two strings w1 and w2, we write w1 · w2 or simply
w1w2. We say a string v ∈ A∗ is a factor of a string w ∈ A∗ if there are u1, u2 ∈ A∗ such
that w = u1vu2. The notation |K| stands for the size of a set K or the length of a string K.

If A is an alphabet, a (one-sided) infinite word over A is an infinite sequence w = (wi)∞i=0
with wi ∈ A for every i ≥ 0. We denote the set of all one-sided infinite words over A by
Aω and, for every a ∈ A, let aω denote the word w = (wi)∞i=0 with wi = a for every i ≥ 0.
We shall only deal with infinite words w ∈ Aω that have the form w = u aω with u ∈ A∗
and a ∈ A. Concatenation of words and infinite words is defined canonically: For every
u ∈ A∗ and every v ∈ Aω with v = (vi)∞i=0, u · v := w ∈ Aω, where w0 · . . . · w|u|−1 = u and
wi+|u| = vi for every i ≥ 0, while vu is undefined. In particular, note that a aω = aω for
every a ∈ A.
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2.2 Extended Regular Expressions
We now introduce syntax and semantics of extended regular expressions. Apart from some
changes in terminology, this formalization is due to Aho [1]:

I Definition 3. Let Σ be an infinite set of terminals, let X be an infinite set of variables,
and let the set of metacharacters consist of λ, (, ), |, ∗, and %, where all three sets are
pairwise disjoint. We define extended regular expressions inductively as follows:

1. Each a ∈ Σ ∪ {λ} is an extended regular expression that matches the word a.
2. Each x ∈ X is an extended regular expression that matches the word to which x is bound.
3. If α1 and α2 are extended regular expressions, then (α1 | α2) is an extended regular

expression that matches any word matched by α1 or by α2.
4. If α1 and α2 are extended regular expressions, then (α1α2) is an extended regular

expression that matches any word of the form vw, where v matches α1 and w matches
α2.

5. If α is an extended regular expression, then (α)∗ is an extended regular expression that
matches any word of the form w1 · · ·wn with n ≥ 0, where α matches each wi with
1 ≤ i ≤ n.

6. If α is an extended regular expression that matches a word w, and x ∈ X, then (α)%x is
an extended regular expression that matches the word w, and x is bound to the value w.

We denote the set of all extended regular expressions by RegEx. For every extended regular
expression α, we use L(α) to denote the set of all words that are matched by α, and call L(α)
the language generated by α. A proper regular expression is an extended regular expression
that contains neither %, nor any variable.

Note that, as in [1], some peculiarities of the semantics of extended regular expressions are
not addressed in this definition (some examples are mentioned further down). Câmpeanu et
al. [5] offer an alternative definition that explicitly deals with some technical peculiarities
that are omitted in Aho’s definition, and is closer to the syntax of the programming language
PERL. The proofs presented in this paper are not affected by these differences and can be
easily adapted to the definition of Câmpeanu et al., or any similar definition, like the models
proposed by Bordihn et al. [3], Câmpeanu and Yu [7].

We shall use the notation (α)+ as a shorthand for α(α)∗, and freely omit parentheses
whenever the meaning remains unambiguous. When doing this, we assume that there is
a precedence on the order of the applications of operations, with ∗ and + ranking over
concatenation ranking over the alternation operator |.

We illustrate the intended semantics of extended regular expressions using the following
examples in addition to the examples in Section 1:

I Example 4. Consider the following extended regular expressions:

α1:=
(
(a | b)∗

)
%x xx

(
(a | b)∗

)
%x x, α2:=

((
(a | b)∗

)
%x x

)+
.

These expressions generate the following languages:

L(α1) =
{
vvvww | v, w ∈ {a, b}∗

}
,

L(α2) =
{
w1w1 · · ·wnwn | n ≥ 1, wi ∈ {a, b}∗

}
.

Note that both expressions rely on the fact that variables can be bound multiple times, and
implicitly assume that we parse from left to right. 3
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From a formal point of view, the fact that variables have a scope and the possibility to rebind
variables (as in Example 4) can cause unexpected side effects and would normally require a
more formal definition of semantics, instead of our “definition by example”. Furthermore,
Aho’s definition does not deal with pathological cases in which some variables might be
unbound, e. g., like ((a)%x | b)x. Although the definition by Câmpeanu et al. [5] addresses
these problems, we still use Aho’s notation, because it is more convenient for the proof of
Theorem 19, the main technical tool of the present paper. As mentioned above, all proofs
can be easily adapted to the notation and semantics of Câmpeanu et al.

In general, the membership problem for RegEx is NP-complete, as shown in Theorem 6.2
in Aho [1]. As explained in that proof, this problem is solvable in polynomial-time if the
number of different variables is bounded. It is not clear how (or if) Aho’s reasoning applies
to expressions like α2 in our Example 4; therefore, we formalize a slightly stronger restriction
than Aho, and consider the following subclasses of RegEx:

I Definition 5. For k ≥ 0, let RegEx(k) denote the class of all extended regular expressions
α that satisfy the following properties:

1. α contains at most k occurrences of the metacharacter %,
2. if α contains a subexpression (β)∗, then the metacharacter % does not occur in β,
3. for every x ∈ X that occurs in α, α contains exactly one occurrence of %x.
Intuitively, these restrictions on extended regular expressions in RegEx(k) limit not only the
number of different variables, but also the total number of possible variable bindings, to at
most k.

Note that RegEx(0) is equivalent to the class of proper regular expressions; furthermore,
observe that RegEx(k) ⊂ RegEx(k + 1) for every k ≥ 0.

Referring to the extended regular expressions given in Example 4, we observe that, as
%x occurs twice in α1, α1 is not element of any RegEx(k) with k ≥ 0, but the extended
regular expression α′1:=

(
(a | b)∗

)
%x xx

(
(a | b)∗

)
%y y generates the same language as α1,

and α′1 ∈ (RegEx(2) \ RegEx(1)). In contrast to this, α2 /∈ RegEx(k) for all k ≥ 0, as %
occurs inside a ()∗ subexpression (as we defined + through ∗).

For any k ≥ 0, we say that a language L is a RegEx(k)-language if there is some
α ∈ RegEx(k) with L(α) = L.

We also consider the class FRegEx of all extended regular expressions that do not
use the operator ∗ (or +), and its subclasses FRegEx(k):= FRegEx∩RegEx(k) for k ≥ 0.
Thus, FRegEx contains exactly those expressions that generate finite (and, hence, regular)
languages. Analogously, for every k ≥ 0, we define a class CoFRegEx(k) as the class of all
α ∈ RegEx(k) such that L(α) is cofinite. Unlike the classes FRegEx(k), these classes have
no straightforward syntactic definition – as we shall prove in Theorem 9, cofiniteness is not
semi-decidable for RegEx(k) (if k ≥ 1).

2.3 Decision Problems and Descriptional Complexity
Most of the technical reasoning in the present paper is centered around the following decision
problems:

I Definition 6. Let Σ denote a fixed terminal alphabet. For all k, l ≥ 0, we define the
following decision problems for RegEx(k):
Universality Given α ∈ RegEx(k), is L(α) = Σ∗?
Cofiniteness Given α ∈ RegEx(k), is Σ∗ \ L(α) finite?
RegEx(l)-ity Given α ∈ RegEx(k), is there a β ∈ RegEx(l) with L(α) = L(β)?
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As we shall see, Theorem 9 – one of our main technical results – states that these problems
are undecidable (to various degrees). We use the undecidability of the universality problem
to show that there is no effective procedure that minimizes extended regular expressions
with respect to their length, and the undecidability of RegEx(l)-ity to conclude the same
for minimization with respect to the number of variables. Furthermore, cofiniteness and
RegEx(l)-ity help us to obtain various results on the relative succinctness of proper and
extended regular expressions.

By definition, RegEx(l)-ity holds trivially for all RegEx(k) with k ≤ l. If l = 0, we mostly
use the more convenient term regularity (for RegEx(k)), instead of RegEx(0)-ity. Note that,
even for RegEx(0), universality is already PSPACE-complete (see Aho et al. [2]).

In order to examine the relative succinctness of RegEx(1) in comparison to RegEx(0),
we use the following notion of complexity measures:

I Definition 7. Let R be a class of extended regular expressions. A complexity measure
for R is a total recursive function c : R → N such that, for every alphabet Σ, the set of all
α ∈ R with L(α) ⊆ Σ∗ 1. can be effectively enumerated in order of increasing c(α), and
2. does not contain infinitely many extended regular expressions with the same value c(α).

This definition includes the canonical concept of the length, as well as most of its natural
extensions (for example, in our context, one could define a complexity measure that gives
additional weight to the number or distance of occurrences of variables, or their nesting
level). Kutrib [19] provides more details on (and an extensive motivation of) complexity
measures. Using this definition, we are able to define the notion of tradeoffs between classes
of extended regular expressions:

I Definition 8. Let k > l ≥ 0 and let c be a complexity measure for RegEx(k) (and thereby
also for RegEx(l)). A recursive function fc : N→ N is said to be a recursive upper bound for
the tradeoff between RegEx(k) and RegEx(l) if, for all those α ∈ RegEx(k) for wich L(α) is
a RegEx(l)-language, there is a β ∈ RegEx(l) with L(β) = L(α) and c(β) ≤ fc(c(α)).

If no recursive upper bound for the tradeoff between RegEx(k) and RegEx(l) exists, we
say that the tradeoff between RegEx(k) and RegEx(l) is non-recursive.

There is a considerable amount of literature on a wide range of non-recursive tradeoffs
between various description mechanisms; for a survey, see Kutrib [19].

3 Main Results

As mentioned in Section 1, the central questions of the present paper are whether we
can minimize extended regular expressions (under any complexity measure as defined in
Definition 7, or with respect to the number variables), and whether there is a recursive upper
bound on the tradeoff between extended and proper regular expressions. We approach these
questions by proving various degrees of undecidability for the decision problems given in
Definition 6, as shown in the main theorem of this section:

I Theorem 9. For RegEx(1), universality is not semi-decidable; and regularity and cofinite-
ness are neither semi-decidable, nor co-semi-decidable.

The proof of Theorem 9 requires considerable technical preparation and can be found in
Section 4.

Of course, all these undecidability results also hold for every RegEx(k) with k ≥ 2, and
for the whole class RegEx of extended regular expressions (as RegEx(1) is contained in all
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these classes)2. Theorem 9 also demonstrates that inclusion and equivalence are undecidable
for RegEx(1) (and, hence, all of RegEx). We also see, as an immediate consequence to
Theorem 9, that there is no algorithm that minimizes the number of variables in an extended
regular expression, as such an algorithm could be used to decide regularity.

Note that in the proof of Theorem 9, the single variable x is bound only to words that
match the expression 0∗. This shows that the “negative” properties of extended regular
expressions we derive from Theorem 9 hold even if we restrict RegEx(1) by requiring that
the variable can only be bound to a very restricted proper regular expression. Furthermore,
the proof also applies to the extension of proper regular expressions through numerical
parameters that is proposed in Della Penna et al. [12]. In addition to this, the construction
from Theorem 19 (which we shall use to prove Theorem 9, and consequently, all other results
in the present paper) can be refined to also include bounds on the number of occurrences of
the single variable.

From the undecidability of universality, we can immediately conclude that RegEx(1)
cannot be minimized effectively:

I Corollary 10. Let c be a complexity measure for RegEx(1). Then there is no recursive
function mc that, given an expression α ∈ RegEx(1), returns an expression mc(α) ∈ RegEx(1)
with 1. L(mc(α)) = L(α), and 2. c(β) ≥ c(mc(α)) for every β ∈ RegEx(1) with L(β) = L(α).

Following the classic proof method of Hartmanis [15] (cf. Kutrib [19]), we can use the fact
that non-regularity is not semi-decidable to obtain a result on the relative succinctness of
extended and proper regular expressions:

I Corollary 11. There are non-recursive tradeoffs between RegEx(1) and RegEx(0). This
holds even if we consider only the tradeoffs between CoFRegEx(1) and CoFRegEx(0), using
a complexity measure for RegEx(1).

Thus, no matter which complexity measure and which computable upper bound we assume for
the tradeoff, there is always a regular language L that can be described by an extended regular
expression from RegEx(1) so much more succinctly that every proper regular expression for L
has to break that bound. Obviously, this has also implications for the complexity of matching
regular expressions: Although membership is “easier” for proper regular expressions than for
extended regular expressions, there are regular languages that can be expressed far more
efficiently through extended regular expressions than through proper regular expressions.

Recall Example 1, where we consider extended regular expressions that describe finite
languages. In this restricted case, there exists an effective conversion procedure – hence, the
tradeoffs are recursive:

I Lemma 12. For every k ≥ 1, the tradeoff between FRegEx(k) and FRegEx(0) is recursive
(even when considering complexity measures for RegEx(k) instead of FRegEx(k)).

Although the class of RegEx-languages is not closed under complementation (Lemma 2 in
Câmpeanu et al. [5]), there are languages L such that both L and its complement Σ∗ \ L are
RegEx-languages (e. g., all regular languages). Combining Lemma 12 and Corollary 11, we
can straightforwardly conclude that there are cases where it is far more efficient to describe
the complement of a RegEx(1)-language, as opposed to the language itself:

2 Note that cofiniteness for extended regular expressions is a more general case of the question whether a
pattern is avoidable over a fixed terminal alphabet, an important open problem in pattern avoidance
(cf. Currie [10]). Example 2 illustrates this connection for the pattern xx over a binary alphabet.
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I Corollary 13. Let Σ be a finite alphabet. Let c be a complexity measure for RegEx(1). For
any recursive function fc : N → N, there exists an α ∈ RegEx(1) such that Σ∗ \ L(α) is a
RegEx(1)-language, and for every β ∈ RegEx(1) with L(β) = Σ∗ \ L(α), c(β) ≥ fc(c(α)).

With some additional technical effort, we can extend the previous results on undecidability
of RegEx(l)-ity and on tradeoffs between RegEx(k) and RegEx(0) to arbitrary levels of the
hierarchy of RegEx(k)-languages:

I Lemma 14. Let k ≥ 1. For RegEx(k + 1), RegEx(k)-ity is neither semi-decidable, nor
co-semi-decidable.

In this proof, we concatenate the languages from the proof of Theorem 9 with languages that
are RegEx(k + 1)-languages, but not RegEx(k)-languages. Non-recursive tradeoffs between
RegEx(k + 1) and RegEx(k) for every k ≥ 1 follow immediately, using Hartmanis’ proof
technique as in the proof of Corollary 11.

4 Proof of Theorem 9

On a superficial level, we prove Theorem 9 by using Theorem 19 (which we introduce further
down in the present section) to reduce various undecidable decision problems for Turing
machines to appropriate problems for extended regular expressions (the problems from
Definition 6). This is done by giving an effective procedure that, given a Turing machineM,
returns an extended regular expression that generates the complement of a language that
encodes all accepting runs ofM.

On a less superficial level, this approach needs to deal with certain technical peculiarities
that make it preferable to study a variation of the Turing machine model. An extended
Turing machine is a 3-tuple X = (Q, q1, δ), where Q and q1 denote the state set and
the initial state. All extended Turing machines operate on the tape alphabet Γ:={0, 1}
and use 0 as the blank letter. The transition function δ is a function δ : Γ × Q →
(Γ× {L,R} ×Q) ∪ {HALT} ∪ ({CHECKR} ×Q). The movement instructions L and R and
the HALT-instruction are interpreted canonically – if δ(a, q) = (b,M, p) for someM ∈ {L,R}
(and a, b ∈ Γ, p, q ∈ Q), the machine replaces the symbol under the head (a) with b, moves the
head to the left if M = L (or to the right if M = R), and enters state p. If δ(a, q) = HALT,
the machine halts and accepts.

The command CHECKR works as follows: If δ(a, q) = (CHECKR, p) for some p ∈ Q, X
immediately checks (without moving the head) whether the right side of the tape (i. e., the
part of the tape that starts immediately to the right of the head) contains only the blank
symbol 0. If this is the case, X enters state p; but if the right side of the tape contains any
occurrence of 1, X stays in qi. As the tape is never changed during a CHECKR-instruction,
this leads X into an infinite loop, as it will always read a in qi, and will neither halt, nor
change its state, head symbol, or head position. Although it might seem counterintuitive to
include an instruction that allows our machines to search the whole infinite side of a tape in
a single step and without moving the head, this command is expressible in the construction
we use in the proof of Theorem 19, and it is needed for the intended behavior.

We partition the tape of an extended Turing machine X into three disjoint areas: The
head symbol, which is (naturally) the tape symbol at the position of the head, the right tape
side, which contains the tape word that starts immediately to the right of the head symbol
and extends rightward into infinity, and the left tape side, which starts immediately left to
the head symbol and extends infinitely to the left. When speaking of a configuration, we
denote the head symbol by a and refer to the contents of the left or right tape side as the left
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tape word tL or the right tape word tR, respectively. A configuration of an extended Turing
machine X = (Q, q1, δ) is a tuple (tL, tR, a, q), where tL, tR ∈ Γ∗0ω are the left and right tape
word, a ∈ Γ is the head symbol, and q ∈ Q denotes the current state. The symbol `X denotes
the successor relation on configurations of X , i. e., C `X C ′ if X enters C ′ immediately after
C.

We define domX(X ), the domain of an extended Turing machine X = (Q, q1, δ), to be
the set of all tape words tR ∈ Γ∗0ω such that X , if started in the configuration (0ω, tR, 0, q1),
halts after finitely many steps.

The definition of domX is motivated by the properties of the encoding that we shall use.
Usually, definitions of the domain of a Turing machine rely on the fact that the end of the
input is marked by a special letter $ or an encoding thereof (cf. Minsky [21]). As we shall see,
our use of extended regular expressions does not allow us to express the fact that every input
is ended by exactly one $ symbol. Without the CHECKR-instruction in an extended Turing
machine X , we then would have to deal with the unfortunate side effect that a nonempty
domX(X ) could never be finite: Assume w ∈ Γ∗ such that w 0ω ∈ domX(X ). The machine
can only see a finite part of the right side of the tape before accepting. Thus, there is a
v ∈ Γ∗ such that both wv1 0ω ∈ domX(X ) and wv0 0ω ∈ domX(X ), as X will not reach
the part where wv1 and wv0 differ. This observation leads to wvx 0ω ∈ domX(X ) for every
x ∈ Γ∗, and applies to various other extensions of the Turing machine model. As Lemma 18 –
and thereby most of the main results in Section 3 – crucially depends on the fact that there
are extended Turing machines with a finite domain, we use CHECKR to allow our machines
to perform additional sanity checks on the input and to overcome the limitations that arise
from the lack of the input markers ¢ and $.

Using a classical coding technique for two-symbol Turing machines (see Minsky [21]) and
the correspond undecidability results, we establish the following negative results on decision
problems for extended Turing machines:

I Lemma 15. Consider the following decision problems for extended Turing machines:
Emptiness Given an extended Turing machine X , is domX(X ) empty?
Finiteness Given an extended Turing machine X , is domX(X ) finite?
Then emptiness is not semi-decidable, and finiteness is neither semi-decidable, nor co-semi-
decidable.

In order to simplify some technical aspects of our further proofs below, we adopt the following
convention on extended Turing machines:

I Convention 16. Every extended Turing machine

1. has the state set Q = {q1, . . . , qν} for some ν ≥ 1, where q1 is the initial state,
2. has δ(0, q1) = (0, L, q2),
3. has δ(a, q) = HALT for at least one pair (a, q) ∈ Γ×Q.
Obviously, every extended Turing machine can be straightforwardly (and effectively) adapted
to satisfy these criteria.

As every tape word contains only finitely many occurrences of 1, we can interpret tape
sides as natural numbers in the following (canonical) way: For sequences t = (ti)∞i=0 over
Γ, define e(t):=

∑∞
i=0 2i e(ti), where e(0):=0 and e(1):=1. Most of the time, we will not

distinguish between single letters and their values under e, and simply write a instead of e(a)
for all a ∈ Γ. It is easily seen that e is a bijection between N and Γ∗0ω, the set of all tape
words over Γ. Intuitively, every tape word is read as a binary number, starting with the cell
closest to the head as the least significant bit, extending toward infinity.
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Expressing the three parts of the tape (left and right tape word and head symbol) as
natural numbers allows us to compute the tape parts of successor configurations using
elementary integer operations. The following straightforward observation shall be a very
important tool in the proof of Theorem 19:
I Observation 17. Assume that an extended Turing machine X = (Q, q1, δ) is in some
configuration C = (tL, tR, a, qi), and δ(a, qi) = (b,M, qj) for some b ∈ Γ, some M ∈ {L,R}
and some qj ∈ Q. For the (uniquely defined) successor configuration C ′ = (t′L, t′R, a′, qj) with
C `X C ′, the following holds:

If M = L: e(t′L) = e(tL) div 2, e(t′R) = 2 e(tR) + b, a′ = e(tL) mod 2,
if M = R: e(t′L) = 2 e(tL) + b, e(t′R) = e(tR) div 2, a′ = e(tR) mod 2.

These equations are fairly obvious – when moving the head in direction M , X turns the tape
cell that contained the least significant bit of e(tM ) into the new head symbol, while the
other tape side gains the tape cell containing the new letter b that was written over the head
symbol as new least significant bit.

Using the encoding e, we define an encoding enc of configurations of X by

enc (tL, tR, a, qi) :=00e(tL)#00e(tR)#00e(a)#0i

for every configuration (tL, tR, a, qi) of X . We extend enc to an encoding of finite sequences
C = (Ci)ni=1 (where every Ci is a configuration of X ) by

enc(C):=## enc(C1)## enc(C2)## · · · ## enc(Cn)##.

A valid computation of X is a sequence C = (Ci)ni=1 of configurations of X where C1 is an
initial configuration (i. e. some configuration (0ω, w, 0, q1) with w ∈ Γ∗0ω), Cn is a halting
configuration, and for every i < n, Ci `X Ci+1. Thus, let

VALC(X ) = {enc(C) | C is a valid computation of X} ,
INVALC(X ) = {0, #}∗ \VALC(X ).

The main part of the proof of Theorem 9 is Theorem 19 (still further down), which states
that, given an extended Turing machine X , one can effectively construct an expression from
RegEx(1) that generates INVALC(X ). Note that in enc(C), ## serves as a boundary between
the encodings of individual configurations, which will be of use in the proof of Theorem 19.
Building on Convention 16, we observe the following fact on the regularity of VALC(X ) for
a given extended Turing machine X :

I Lemma 18. For every extended Turing machine X , VALC(X ) is regular if and only if
domX(X ) is finite.

The if direction is obvious, the only if direction follows from Convention 16 and the
application of a generalized sequential machine. We are now ready to state the central part
of our proof of Theorem 9:

I Theorem 19. For every extended Turing machine X , one can effectively construct an
extended regular expression αX ∈ RegEx(1) such that L(αX ) = INVALC(X ).

In the present paper, we only sketch the proof of Theorem 19. Given an extended Turing
machine X , the expression αX can be assembled from various subexpressions that describe a
complete list of sufficient criteria for membership in INVALC(X ). Intuitively, every word
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in INVALC(X ) contains (at least) one error. We first consider so-called structural errors,
where a word is not an encoding of any sequence (Ci)ni=1 over configurations of X for some n,
or the word is such an encoding, but C1 is not an initial, or Cn is not a halting configuration.
These errors can be described by a proper regular expression, which can be straightforwardly
derived from the definition of X .

If a word in INVALC(X ) does not contain any structural errors, it is an encoding of some
sequence of configurations (Ci)ni=0 of X , but there is a configuration Ci with i < n such that
Ci `X Ci+1 does not hold. We call these types of errors behavioral errors, and distinguish
state, head, and tape side errors, depending on which part of the configuration contains an
error. We can describe state and head errors in words that do not contain structural errors
using proper regular expressions; the variable is only used in the description of tape side
errors. Here, Observation 17 allows us to specify all errors where the e-value of a left or right
tape side is too small or too large. Furthermore, all these subexpressions are in RegEx(1),
and start with #0(0∗)%x. This allows us to combine them into a single expression from
RegEx(1). Then the expressions for all types of error can be combined to a single expression
αX ∈ RegEx(1) with L(αX ) = INVALC(X ), which concludes the proof of Theorem 19.

Theorem 9 follows almost immediately from Theorem 19 and Lemmas 15 and 18. Note
that the encoding enc and various parts of the proof of Theorem 19 where inspired by
the author’s proof of a similar but more narrow result on pattern languages (Bremer and
Freydenberger [4]).

5 Conclusions

The present paper shows that extending regular expressions with only a single variable
already leads to an immense increase in succinctness and expressive power. The good part of
this news is that in certain applications, using the right extended regular expression instead
of a proper regular expression can lead to far more efficient running times, even with the
same matching engine. The bad part of this news is that this additional power can only
be harnessed in full if one is able to solve undecidable problems, which greatly diminishes
the usefulness of extended regular expressions as more efficient alternative to proper regular
expressions.

Due to underlying undecidable problems, some questions of designing optimal extended
regular expressions are of comparable difficulty to designing optimal programs. For applied
computer scientists, it could be worthwhile to develop heuristics and good practices to
identify cases where the non-conventional use of extended regular expressions might offer
unexpected speed advantages. For theoretical computer scientists, the results in the present
paper highlight the need for appropriate restrictions other than the number of variables;
restrictions that lead to large and natural subclasses with decidable decision problems. One
possible approach that does not extend the expressive power of proper regular expressions
beyond regular languages would be a restriction of the length of the words on which variables
can be bound. As the results in the present paper show, any extension of proper regular
expressions that includes some kind of repetition operator needs to be approached with
utmost care.
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Abstract
By a T -star we mean a complete bipartite graph K1,t for some t ≤ T . For an undirected
graph G, a T -star packing is a collection of node-disjoint T -stars in G. For example, we get
ordinary matchings for T = 1 and packings of paths of length 1 and 2 for T = 2. Hereinafter we
assume that T ≥ 2.

Hell and Kirkpatrick devised an ad-hoc augmenting algorithm that finds a T -star packing
covering the maximum number of nodes. The latter algorithm also yields a min-max formula.

We show that T -star packings are reducible to network flows, hence the above problem is
solvable in O(m

√
n) time (hereinafter n denotes the number of nodes in G, and m— the number

of edges).
For the edge-weighted case (in which weights may be assumed positive) finding a maximum

T -packing is NP-hard. A novel 9
4

T
T +1 -factor approximation algorithm is presented.

For non-negative node weights the problem reduces to a special case of a max-cost flow. We
develop a divide-and-conquer approach that solves it in O(m

√
n logn) time. The node-weighted

problem with arbitrary weights is more difficult. We prove that it is NP-hard for T ≥ 3 and is
solvable in strongly-polynomial time for T = 2.
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1 Introduction

1.1 Preliminaries
Recall the classical maximum matching problem: given an undirected graph G the goal is
to find a collection M (called a matching) of node-disjoint edges covering as many nodes
as possible. Motivated by this definition, one may consider an arbitrary (possibly infinite)
collection of undirected graphs G, called allowed, and ask for a collectionM of node-disjoint
subgraphs of G (not necessarily spanning) such that every member of M is isomorphic to
some graph in G. Let the size ofM be the total number of nodes covered by the elements
ofM. The generalized matching problem [8] asks for a G-matching of maximum size.

Clearly, the tractability of the generalized problem depends solely on the choice of G.
The case when all graphs in G are bipartite was investigated by Hell and Kirkpatrick [8].
Roughly speaking, in this case the maximum G-matching problem is NP-hard unless G =
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{K1,1, . . . ,K1,T } for some T ≥ 1. (For a precise statement, see [8, Sec. 4].) This is exactly
the case we study throughout the paper.

I Definition 1. A T -star is a graph K1,t for some 1 ≤ t ≤ T . For an undirected graph G, a
T -star packing in G is a collection of node-disjoint subgraphs in G (not necessary spanning)
that are isomorphic to some T -stars.

Since 1-star packings are just ordinary matchings and are already extensively studied
(see, e.g., [14]), we restrict our attention to the case T ≥ 2.

The max-size T -star packing problem was addressed in [13, 1, 8] and others. An O(mn)-
time ad-hoc augmenting path algorithm (hereinafter n := |V G|, m := |EG|) and a min-max
formula are known. In [8] it is noted that a faster O(m

√
n)-time algorithm can be derived

using the blocking augmentation strategy (see [2, 9]), but we are not aware of any publicly
available exposition. A more restrictive variant of the problem, where the stars are required
to be node-induced subgraphs, is presented in [12]. An extension to node capacities is given
in [15].

1.2 Our Contribution
This paper presents an alternative treatment of T -star packings that is based on network
flows. In Section 2 we show how the max-size T -star packing problem reduces to finding a
max-value flow in a digraph with O(n) nodes and O(m) arcs. This immediately implies an
O(m

√
n)-time algorithm for the max-size T -star packing problem.

The above reduction serves two purposes. Firstly, it mitigates the need for ad-hoc tricks
and fits star packings into a widely studied field of network flows. Secondly, this reduction
provides interesting opportunities for attacking other optimization problems that are related
to T -star packings.

Let G be an edge-weighted graph and the goal is to find a T -star packing such that the
sum of weights of edges belonging to stars is maximum. This problem is NP-hard and in
Section 3 we present a 9

4
T

T +1 -factor approximation algorithm, which is based on max-cost
flows.

Finally let G be a node-weighted graph and the objective function is the sum of weights of
nodes covered by stars. This case is studied in Section 4. For non-negative weights, a divide-
and-conquer approach yields a nice O(m

√
n logn)-time algorithm. For general weights, the

complexity of the resulting problem depends on T . For T = 2, we give a strongly-polynomial
algorithm that employs bidirected network flows. If T ≥ 3, the problem is NP-hard.

2 Reduction to Network Flows

2.1 Auxiliary Digraphs
In this section we explain the core of our approach that relates star packings to network
flows. We employ some standard graph-theoretic notation throughout the paper. For an
undirected graph G we denote its sets of nodes and edges by V G and EG, respectively. For
a directed graph we speak of arcs rather than edges and denote the arc set of G by AG. A
similar notation is used for paths, trees, and etc.

For U ⊆ V G, the set of arcs entering (respectively leaving) U is denoted by δin
G (U) and

δout
G (U). Also, γG(U) denotes the set of arcs (or edges) with both endpoints in U and G[U ]
denotes the subgraph of G induced by U , i.e. G[U ] = (U, γG(U)). When the (di-)graph is
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clear from the context, it is omitted from notation. Also for a function ϕ : U → R and a
subset U ′ ⊆ U , let ϕ(U ′) denote

∑
u∈U ′ ϕ(u).

Let, as earlier, G be an undirected graph and T ≥ 2 be an integer. Replace each edge
in G by a pair of oppositely directed arcs and denote the resulting digraph by −→G . The
following definition is crucial:

I Definition 2. A subset of arcs F ⊆ A
−→
G is called T -feasible if for each node v ∈ V G at

most T arcs in F leave v and at most one arc in F enters v.

The above T -feasible arc sets are equivalent to T -star packings in the following sense:

I Theorem 3. The maximum size of a T -feasible arc set in G is equal to the maximum size
of a T -star packing. Moreover, given a T -feasible arc set F one can turn it in linear time
into a T -star packing of size at least |F |.

Before presenting the proof of Theorem 3, let us explain how a max-size T -feasible arc
set size can be found. To this aim, split each node v ∈ V−→G into two copies, say v1 and v2.
Each arc (u, v) ∈ A−→G is transformed into an arc (u1, v2). Two auxiliary nodes are added:
a source s that is connected to every node v1, v ∈ V−→G , by arcs (s, v1), and a sink t that
is connected to every node v2, v ∈ V

−→
G , by arcs (v2, t). We endow each arc (s, v1) with

capacity equal to T , each arc (v2, t) with unit capacity, and the remaining arcs with infinite
capacities. The resulting digraph is denoted by H.

We briefly remind the basic terminology and notation on network flows (see, e.g., [5, 18]
and [16, Ch. 10]). Let Γ be a digraph with a distinguished source node s and a sink node t.
The nodes in V Γ− {s, t} are called inner. Let u : AΓ→ Z+ be integer arc capacities.

I Definition 4. An integer u-feasible flow (or just feasible flow if capacities are clear from
the context) is a function f : AΓ → Z+ such that: (i) f(a) ≤ u(a) for each a ∈ AΓ; and
(ii) divf (v) = 0 for each inner node v.

Here divf (v) := f(δout(v)) − f(δin(v)) denotes the divergence of f at v. The value of f is
val(f) := divf (s). A max-value feasible integer flow can be found in strongly polynomial
time (see [18] and [16, Ch. 10]).

Let f is a feasible integer flow in H (regarded as a network with a source s, a sink t, and
capacities u). Then f(u1, v2) ∈ {0, 1} for each (u, v) ∈ A−→G , since at most one unit of flow
may leave v2. (Hereinafter we abbreviate f((u, v)) to f(u, v).) Define

F :=
{

(u, v) ∈ A−→G | f(u1, v2) = 1
}
.

Then the u-feasibility of f implies the T -feasibility of F . Moreover, this correspondence
between u-feasible integer flows f and T -feasible arc sets F is one-to-one.

The augmenting path algorithm of Ford and Fulkerson [5] computes a max-value flow
in H in O(mn) time. Applying blocking augmentations [9, 2], the latter bound can be
improved to O(m

√
n). (In fact for networks of the above “bipartite” type, one can prove

the bound of O(m
√

∆). Here ∆ := min(∆s,∆t), ∆s is the sum of capacities of arcs leaving
s, and ∆t is the sum of capacities of arcs entering t.)

Therefore by Theorem 3, a maximum T -star packing can be found in O(m
√
n) time.

(The clique compression technique [4] implies a somewhat better time bound; however, the
speedup is only sublogarithmic.)

STACS’11
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2.2 Proof of Theorem 3
The proof consists of two parts. For the easy one, let P be a T -star packing in G. To
construct a T -feasible arc set F , take every star S ∈ P. Let v be its central node (i.e. a
node of maximum degree) and u1, . . . , ut be its leafs (i.e. the remaining nodes). For S = K1,1
the notion of a central node is ambiguous but any choice will do. Add arcs (v, u1), . . . , (v, ut)
and also (u1, v) to F . Clearly F is T -feasible and its size coincides with the number of nodes
covered by P.

The reverse reduction is more involved. Consider a T -feasible arc set F . Then F decom-
poses into a collection of node-disjoint weakly connected components. We deal with each of
these components separately and construct a T -star packing P of size at least |F |. Let Q
be one of the above components. One can easily see that two cases are possible:

Case I: Q forms a directed out-tree T where each node has at most T children and the
arcs are directed towards leafs. The following pruning is applied iteratively to T . Pick an
arbitrary leaf u1 in T of maximum depth, let v be the parent of u1 and u2, . . . , ut be the
siblings of u1. Clearly t ≤ T . Remove nodes v, u1, . . . , ut together with incident arcs from
T and add to P a copy of K1,t, where v is its center and u1, . . . , ut are the leafs. Repeat the
process until T is empty or consists of a single node (the root r). Each time a star covering
t+ 1 nodes is added to P, either t+ 1 (if u 6= r) or t (if u = r) arcs are removed from T . At
the end one gets a T -star packing of size at least |AQ| nodes, as required.

Case II: Q consists of a directed cycle Ω and a number (possibly zero) of directed out-
trees attached to it (see Fig. 1(a) for an example). Let g0, . . . , gl−1 be the nodes of Ω (in the
order of their appearance on the cycle). For i = 0, . . . , l − 1, let Ti be the directed out-tree
rooted at gi in Q. (If no tree is attached to gi, then we regard Ti as consisting solely of its
root node gi.) Each node in the latter trees has at most T children, and the roots of these
trees have at most T −1 children. We process the trees T0, . . . , Tl−1 like in Case I and obtain
a partial packing P. Our final task is to modify P to satisfy the following condition: each
node v ∈ V Q that has an incoming arc in F is covered by a star in P. So far, the above
condition is only violated for nodes in Ω that are not covered by P.

Two subcases are possible. First, suppose that all nodes of Ω are not covered. Then one
can cover Ω by a collection of node-disjoint (and also disjoint from P) paths of lengths 1
and 2. Adding these paths to P finishes the job. (Note that this is exactly where we use
the condition T ≥ 2.)

Second, suppose that Ω contains both covered and not covered nodes. Let gi, . . . , gj be
a maximal consecutive segment of uncovered nodes, i.e. gi−1 and gj+1 are covered (indices
are taken modulo l). If j− i is odd, then adding (j− i+1)/2 disjoint copies of K1,1 covering
gi, . . . , gj completes the proof. Otherwise let j − i be even. Recall that gi−1 is covered by
some star S ∈ P and gi−1 is its central node. Since the degree of gi−1 in S is at most T − 1,
one can augment S by adding a new leaf gi. This way gi gets covered and the case reduces
to the previous one. An example is depicted in Fig. 1(b).

Clearly F can be converted into P in linear time. J

3 Edge-Weighted Packings

3.1 Hardness
Consider arbitrary edge weights w : EG → Q and let the edge weight w(S) of a star S be
the sum of weights of its edges. In this section we focus on finding a T -star packing P that
maximizes w(P) :=

∑
S∈P w(S). Allowing negative edge weights is redundant since such
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(a) Set F . (b) Packing P.

Figure 1 Transforming F into P (T = 2).

edges may be removed from G without changing the optimum. Therefore we assume that
edge weights are non-negative.

I Theorem 5. The problem of deciding, for given G, T , w, and λ ∈ Q+, if G contains a
T -star packing of edge weight at least λ, is NP-hard even in the all-unit weight case.

Proof. It is known (see, e.g. [8]) that deciding if G admits a perfect (i.e. covering all the
nodes) G-matching is NP-hard for G = {K1,T }. We reduce the latter to the edge-weighted
T -star packing problem as follows. If |V G| is not divisible by |T | + 1, then the answer is
negative. Otherwise set w(e) := 1 for all e ∈ EG. A T -star packing P obeys w(P) = nT

T +1
if and only if all stars in P are isomorphic to K1,T . Hence solving the edge-weighted T -star
packing problem enables to check if G has a perfect G-matching. J

3.2 Approximation
We show how to compute, in strongly-polynomial time, a T -star packing P such that w(P) ≥
OPT · 4

9
T +1

T , where OPT denotes the maximum weight of a T -star packing in G. Let us
extend the weights from G to −→G , i.e. define w(u, v) := w(v, u) := w(e) for e = {u, v} ∈ EG.
Let OPT′ be the maximum weight of a T -feasible arc set in −→G .

I Lemma 6. OPT′ ≥ OPT · T +1
T .

Proof. Fix a max-weight packing of T -stars POPT. Consider a star S ∈ POPT, and let
e1 = {u, v1}, . . . , et = {u, vt} be the edges forming S (t ≤ T ). We may assume that e1 is a
maximum-weight edge (among e1, . . . , et).

Consider the arc set {(u, v1), (v1, u), (u, v2), (u, v3), . . . , (u, vt)} (i.e. e1 generates a pair
of opposite arcs while the other edges — just a single one). Taking the union of all these
arc sets one gets a T -feasible arc set F obeying w(F ) ≥

∑
S∈P

T +1
T w(S) = OPT · T +1

T , as
claimed. J

Applying the correspondence between feasible integer flows in H and T -feasible arc sets
and regarding arc weights as costs, a max-weight T -feasible arc set F can be found by
a max-cost flow algorithm in strongly-polynomial time, see [18, Sec. 8.4]. (For arc costs
c : AH → Q and a flow f in H, the cost of f is c(f) :=

∑
a c(a)f(a).)

We turn F into a T -star packing P obeying w(P) ≥ 4
9w(F ) as follows. Consider the

weakly-connected components of F and perform a case splitting similar to that in the proof
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of Theorem 3. For each component Q, we extract a T -star packing PQ covering some nodes
of Q such that w(PQ) ≥ 4

9w(Q) and then take the union P :=
⋃

Q PQ.
Case I: Q is a directed out-tree T rooted at a node r. Call an arc (u, v) in T even

(respectively odd) if the length of the r–u path in T is even (respectively odd). Let E0

(respectively E1) denote the set of edges (in G) corresponding to even (respectively odd)
arcs of T . Sets E0 and E1 generate T -star packings P0 and P1 in G. Choose from these a
packing with the largest weight and denote it by PQ. Then w(PQ) ≥ 1

2
(
w(P0) + w(P1)

)
=

1
2w(Q) ≥ 4

9w(Q).
Case II:Q is a directed cycle Ω with a number of out-trees attached to it. Let g0, . . . , gl−1

be the nodes of Ω (numbered in the order of their appearance) and T0, . . . , Tl−1 be the
corresponding trees (Ti is rooted at gi, i = 0, . . . , l − 1).

Subcase II.1: l is even. Choose an arbitrary node r on Ω and label the arcs of Q as
even and odd as in Case I. (Note that for any node v in Q, there is a unique simple r–v path
in Q.) This way, a T -star packing PQ obeying w(PQ) ≥ 1

2w(Q) ≥ 4
9w(Q) is constructed.

Subcase II.2: l is odd. We construct a collection of 3l packings (each covering a subset
of nodes of Q) of total weight at least 3l−1

2 w(Q). To this aim, label the arcs of T0, . . . , Tl−1
as even and odd like in Case I (starting from their roots). For i = 0, . . . , l − 1, let E0

i

(respectively E1
i ) be the set of edges (in G) corresponding to even (respectively odd) arcs

of Ti. Also let ei = {gi, gi+1} be the i-th edge of Ω (hereinafter indices are taken modulo l).
Consider the (edge sets of the) following l packings (taking i = 0, . . . , l − 1):

{ei, ei+1} ∪ {ei+3, ei+5, . . . , ei+l−2}∪
(E1

i ∪ E1
i+1 ∪ E1

i+2) ∪ (E0
i+3 ∪ E1

i+4) ∪ (E0
i+5 ∪ E1

i+6) ∪ . . . ∪ (E0
i+l−2 ∪ E1

i+l−1).

Also consider the (edge sets of the) following 2l packings (taking each value i = 0, . . . , l− 1
twice):

{ei+1, ei+3, ei+5, . . . , ei+l−2}∪
E0

i ∪ (E0
i+1 ∪ E1

i+2) ∪ (E0
i+3 ∪ E1

i+4) ∪ . . . ∪ (E0
i+l−2 ∪ E1

i+l−1).

By a straightforward calculation, one can see that the total weight of these 3l packings is

3l − 1
2

l∑
i=0

w(ei) + 3l − 1
2

l∑
i=0

w(E0
i ) + 3l + 1

2

l∑
i=0

w(E1
i ) ≥

3l − 1
2

(
l∑

i=0
w(ei) +

l∑
i=0

w(E0
i ) +

l∑
i=0

w(E1
i )
)

= 3l − 1
2 w(Q).

Choosing a max-weight packing PQ among these 3l instances, one gets w(PQ) ≥ 1
3l ·

3l−1
2 w(Q) ≥ 4

9w(Q) (since l ≥ 3), as claimed.
The above postprocessing converting F into P can be done in strongly-polynomial time.

Together with Lemma 6 this proves the following:

I Theorem 7. A 9
4

T
T +1 -factor approximation to the edge-weighted T -star packing problem

can be found in strongly polynomial time.

4 Node-Weighted Packings

4.1 General Weights
Now consider a node-weighted counterpart of the problem. Let w : V G→ Q be node weights,
and let the weight of a T -star packing P be the sum of weights of nodes covered by P.
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Now one cannot freely assume that weights are non-negative. Indeed, removing a node
with a negative weight may change the optimum (consider G = K1,T , where the weight of
the central node is negative while the weights of the others are positive). In fact, for T ≥ 3
and arbitrary w, we get an NP-hard problem:

I Theorem 8. The problem of deciding, for given G, T ≥ 3, w, and λ ∈ Q, if G contains
a T -star packing of node weight at least λ, is NP-hard.

Proof. Recall (see [11] and [14, Sec.12.3]) that the following perfect 3-uniform hypergraph
matching problem is NP-hard: given a nonempty finite domain V , a collection of subsets
E ⊆ 2V , where each element X ∈ E is of size 3, and an integer µ, decide if V can be covered
by at exactly µ := |V | /3 elements of E .

We reduce this problem to node-weighted 3-star packings as follows. Construct a bipar-
tite graph G taking V as the left part. For each X = {v1, v2, v3} ∈ E add a node X to the
right part and connect it to nodes v1, v2, v3 in the left part. The weights of nodes in the left
part are set to M , where M is a sufficiently large positive integer; the weights of nodes in
the right part are −1.

Each subcollection E ′ ⊆ E obeying
⋃
E ′ = V generates a packing P of 3-stars (with

centers located in the right part and leafs — in the left one). Clearly w(P) = M · |V | − |E ′|.
Vice versa, consider a max-weight packing P of 3-stars. Assuming

⋃
E = V , P must

cover all nodes in the left part of G (since M is large enough). Let E ′ be the set of nodes
in the right part of G that are covered by P. Then

⋃
E ′ = V and w(P) = M · |V | − |E ′|.

Therefore V can be covered by µ elements of E if and only if G admits a 3-star packing of
weight at least λ := M · |V | − µ. The reduction is complete. J

4.2 Non-Negative Weights
If node weights are non-negative then the problem is tractable. Recall the construction of
the auxiliary network H and assign non-negative arc costs c : AH → Q as follows: c(v2, t) :=
w(v) for all v ∈ V G and c(a) := 0 for the other arcs a. Then by Theorem 3 computing a
max-cost flow in H also solves the maximum weight T -star packing problem. The max-cost
flow problem is solvable in strongly-polynomial time (see [6, 7] and also [16, Ch.12] for a
survey) but using a general method here is an overkill. Note that the costs are non-zero
only on arcs incident to the sink. This makes the problem essentially lexicographic.

In what follows, we employ an equivalent treatment, which involves multi-terminal net-
works. Namely, let Γ be a digraph endowed with arbitrary arc capacities u. Consider a set
of sources S and a sink t (S ⊆ V Γ, t ∈ V Γ, t /∈ S). Nodes in V Γ − S − {t} are called
inner. The notion of feasible flows (see Definition 4) extends to multi-terminal networks.
Sometimes we use the term S–t flow to emphasize that f is a multi-source flow.

The value of an S–t flow f is val(f) :=
∑

s∈S divf (s). Also let w : S → Q+ be weights
of sources. The weight of f is defined as w(f) :=

∑
s∈S w(s) divf (s). The goal is to find a

feasible S–t flow f of maximum weight w(f). When S = {s} and w(s) = 1, this coincides
with the usual max-value flow problem.

Clearly this problem is equivalent to its multi-sink counterpart (where weights are as-
signed to sinks rather than sources). Consider the digraph H constructed in Section 2.
Splitting the sink t into n copies (one for each node in V G) and assigning weights to these
new sinks appropriately, one reduces the node-weighted star packing problem to the max-
weight multi-sink flow problem.

In what follows, we deal with the max-weight multi-source flow problem in Γ. To solve the
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latter, we present a divide-and-conquer algorithm, which is inspired by [17]. Our flow-based
approach, however, is more general and is also much simpler to explain.

For S′, T ′ ⊆ V Γ, S′ ∩ T ′ = ∅, a subset X ⊆ V Γ such that S′ ⊆ X, T ′ ∩X = ∅, is called
an S′–T ′ cut. When S′ or T ′ is singleton the notation is abbreviated accordingly. A cut X
is called minimum (among all S′–T ′ cuts) if c(δout(X)) is minimum. A u-feasible flow f is
said to saturate X if f(a) = u(a) for all a ∈ δout(X) and f(a) = 0 for all a ∈ δin(X). In
other words, f(δout(X)) = u(δout(X)) and f(δin(X)) = 0.

Recall that for a u-feasible flow f in a digraph Γ, the residual graph Γf = (V Γf :=
V Γ, AΓf ) contains forward arcs a = (u, v) ∈ AΓ, where f(a) < u(a) (endowed with the
residual capacity uf (a) := u(a) − f(a)), and also backward arcs a−1 = (v, u), where a =
(u, v) ∈ AΓ, f(a) > 0 (endowed with the residual capacity uf (a−1) := f(a)). For a u-feasible
flow f is Γ and a uf -feasible flow g in Γf the sum f ⊕ g is a u-feasible flow in Γ defined
by (f ⊕ g)(a) := f(a) + g(a)− g(a−1) (where terms corresponding to non-existent arcs are
assumed to be zero).

W.l.o.g. no arc enters a source and no arc leaves a sink in Γ. Sort the sources in
the order of decreasing weight: w(s1) ≥ w(s2) ≥ . . . ≥ w(sk). For i = 1, . . . , k, define
Si := {s1, . . . , si}. We find a feasible S–t flow f and a collection of cuts X1, . . . , Xk such
that:

(1) (i) X1 ⊆ X2 ⊆ . . . ⊆ Xk;
(ii) for i = 1, . . . , k, Xi ∩ S = Si, t /∈ Xi, and f saturates Xi.

I Lemma 9. If (1) holds, then f is both a max-weight and a max-value flow.

Proof. Let di := w(si)−w(si+1) for i = 1, . . . , k−1 and dk := w(sk). For i = 1, . . . , k, define
vi := divf (s1)+. . .+divf (si). Applying Abel transformation, one gets w(f) = d1v1+. . . dkvk.

Fix i = 1, . . . , k and describe f as a sum f ′ + f ′′, where f ′ is a feasible {s1, . . . , si}–t
flow and f ′′ is a feasible {si+1, . . . , sk}–t flow (such f ′, f ′′ exist due to flow decomposition
theorems, see [5]). Clearly val(f ′) = vi, therefore vi ≤ c(δout(Xi)). Summing over i =
1, . . . , k, we get w(f) ≤ d1c(δout(X1)) + . . .+dkc(δout(Xk)). By (1)(ii), the above inequality
holds with equality, hence f is a max-weight flow. Also taking i = k in (1)(ii), we see that
Xk is an S–t cut saturated by f . Therefore f is a max-value flow. J

It remains to explain how one can find f and Xi obeying (1). Consider an instance
I = (Γ, S = {s1, . . . , sk} , t) (the capacities u and the weights w remain fixed during the
whole computation and are omitted from notation). If k = 1, then solving I reduces to
finding a max-value s1–t flow f and a minimum s1–t cut X1.

Otherwise define l := bk/2c, S1 := {s1, . . . , sl}, and S2 := {sl+1, sl+2, . . . , sk}. Compute
a max-value S1–t flow h and the corresponding minimum S1–t cut Z, which is saturated
by h. Since no arc enters a source, we may assume that Z ∩ S = S1. To proceed with
recursion, construct a pair of problem instances as follows. First, contract Z := V Γ− Z in
Γ into a new sink t1 and denote the resulting instance by I1 := (Γ1 := Γ/Z, S1, t1). Second,
remove the subset Z in Γh (together with the incident arcs) and denote the resulting instance
by I2 := (Γ2 := Γh − Z, S2, t).

Let f1 and f2 be optimal solutions to I1 and I2, respectively, which are found recursively
and satisfy (1) (for f := f1, S := S1 and for f := f2, S := S2). Construct an optimal
solution to I as follows. First, Z is a minimum S1–t1 cut in Γ1 (since Z is a minimum S1–t
cut in Γ) and by Lemma 9, f1 is a max-value flow. Hence f1 saturates Z. Second, f2 may
be regarded as an S2–t flow in Γh. The sum h ⊕ f2 forms a u-feasible S–t flow in Γ that
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also saturates Z. “Glue” f1 and h ⊕ f2 along δin(Z), δout(Z) and construct an S–t flow f

in Γ as follows:

f(a) :=


f1(a) for a ∈ γ(Z),
(h⊕ f2)(a) for a ∈ γ(Z),
u(a) for a ∈ δout(Z),
0 for a ∈ δin(Z).

Let X1
1 , X

1
2 , . . . , X

1
l and X2

l+1, X
2
l+2, . . . , X

2
k be the sequence of nested cuts (as in (1)) for f1

and f2 (respectively). Then clearly X1
1 , X

1
2 , . . . , X

1
l , Z ∪X2

l+1, Z ∪X2
l+2, . . . , Z ∪X2

k and f
obey (1). The description of the algorithm is complete.

Let Φ(n′,m′) denote the complexity of a max-flow computation in a network with n′

nodes and m′ arcs. Let the above recursive algorithm be applied to a network with n nodes,
m arcs, and k sources. Then its running time T (n,m, k) obeys the recurrence

T (n,m, k) = Φ(n,m) + T (n1,m1, bk/2c) + T (n2,m2, dk/2e) +O(n+m),

where n1 +n2 = n+1, m1 +m2 = m. For a “natural” time bound Φ this yields T (n,m, k) =
O(Φ(n,m) · log k) (see [10, Sec. 2.3]).

I Theorem 10. In a network with n nodes, m arcs, and k sources a max-weight flow can
be found in O(Φ(n,m) · log k) time.

For node-weighted star packings, Φ(n,m) = O(m
√
n) for the max-flow problems arising

during the recursive process (due to results of [2, 9]).

I Corollary 11. The node-weighted T -star packing problem with non-negative weights is
solvable in O(m

√
n logn) time.

4.3 Node-Weighted Packings of 2-Stars
We still have a case where neither a polynomial algorithm nor a hardness result are estab-
lished. Let T = 2 and node weights be arbitrary. Hence T -stars are just paths of length 1
and 2. This case is tractable but the needed machinery is of a bit different nature.

Recall the proof of Theorem 8. The latter fails for T = 2 because it shows a reduction
from a version of the set cover problem where all subsets are restricted to be of size 1 and 2.
The latter set cover problem is equivalent to finding a minimum cardinality edge cover in
a general (i.e. not necessarily bipartite) graph. Both cardinality and weighted problems
regarding edge covers are polynomially solvable (see [16, Ch.27]), so no hardness result can
be obtained this way. However, this gives a clue on what techniques may apply here.

We employ the concept of bidirected graphs, which was introduced by Edmonds and
Johnson [3] (more about bidirected graphs can be found in, e.g., [16, Ch. 36].) Recall that
in a bidirected graph edges of three types are allowed: a usual directed edge, or an arc, that
leaves one node and enters another one; an edge directed from both of its ends; and an edge
directed to both of its ends. When both ends of an edge coincide, the edge becomes a loop.

The notion of a flow is extended to bidirected graphs in a natural fashion. Namely, let
Γ is a bidirected graph whose edges are endowed with integer capacities u : EΓ → Z+ and
let s be a distinguished node (a terminal). Nodes in V Γ− {s} are called inner.

I Definition 12. A u-feasible (or just feasible) integer bidirected flow f is a function
f : EΓ → Z+ such that: (i) f(e) ≤ u(e) for each e ∈ EΓ; and (ii) divf (v) = 0 for each
inner node v.
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Figure 2 Reduction to a bidirected graph.

Here, as usual, divf (v) := f(δout(v)) − f(δin(v)), where δin(v) denotes the set of edges
entering v and δout(v) denotes the set of edges leaving v. It is important to note that a
loop e entering (respectively leaving) a node v is counted two times in δin(v) (respectively
in δout(v)) and hence contributes ±2f(e) to divf (v). Similar to flows in digraphs, f({u, v})
is abbreviated to f(u, v).

Consider an undirected graph G endowed with arbitrary node weights w : V G→ Q. We
reduce the node-weighed 2-star packing problem in G to finding a feasible max-cost integer
bidirected flow in an auxiliary bidirected graph. The latter is solvable in strongly polynomial
time [16, Ch. 36].

To construct the desired bidirected graph H, denote V+ := {v ∈ V G | w(v) ≥ 0} and
V− := V G \ V+, Like in Section 2, consider two disjoint copies of V+ and denote them by
V 1

+ and V 2
+. Also add a terminal s and define V H := V 1

+ ∪ V 2
+ ∪ V− ∪ {s}.

One may assume that no two nodes in V− are connected by an edge since these edges may
be removed without changing the optimum. For an edge {u, v} ∈ EG, u, v ∈ V+, construct
edges

{
u1, v2} (leaving u1 and entering v2) and

{
v1, u2} (leaving v1 and entering u2). For an

edge {u, v} ∈ EG, u ∈ V−, v ∈ V+, construct an edge
{
u, v2} (leaving u1 and entering v2).

All these bidirected edges are endowed with infinite capacities and zero costs.
For each node v ∈ V+, add an edge

{
s, v1} (entering v1) of capacity 2 and zero cost,

and an edge
{
v2, s

}
(leaving v2) of capacity 1 and cost w(v). For each node v ∈ V+, add a

loop {v, v} (entering v twice) of capacity 1 and cost w(v) and an edge {v, s} (leaving v) of
infinite capacity and zero cost. (Since s is a terminal, directions of edges at s are irrelevant.)
An example is depicted in Fig. 2.

I Theorem 13. The maximum cost of a feasible integer bidirected flow in H coincides with
the maximum weight of a 2-star packing in G.

Proof. We first show how to turn a max-weight 2-star packing P in G into a feasible integer
bidirected flow f in H of cost w(P). Start with f := 0. Let S be a star in P. The following
cases are possible.

Case I: S covers two nodes, say p and q, and {p, q} is the edge of S.
Subcase I.1: p, q ∈ V+. Increase f by one along the paths (s, p1, q2, s) and (s, q1, p2, s).

This preserves zero divergences at inner nodes and adds w(p) + w(q) = w(S) to c(f).
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Subcase I.2: p ∈ V+, q ∈ V−. Increase f by one along the path (s, p2, q, q, s) (where
the q, q fragment denotes the loop at q). Divergences at inner nodes are preserved, c(f) is
increased by w(p) + w(q) = w(S).

Case II: S covers three nodes, say p, q, and r, and {p, q} , {q, r} are the edges of S.
Subcase II.1: p, q, r ∈ V+. Increase f by one along the paths (s, q1, p2, s), (s, q1, r2, s),

and (s, p1, q2, s). Divergences at inner nodes are preserved, c(f) is increased by w(p)+w(q)+
w(r) = w(S).

Subcase II.2: p, r ∈ V+ and q ∈ V−. Increase f by one along the path (s, p2, q, q, r2, s)
(as above, the q, q fragment is the loop at q). Divergences at inner nodes are preserved, c(f)
is increased by w(p) + w(q) + w(r) = w(S).

Since P is optimal, the other cases are impossible. Applying the above to all S ∈ P one
gets a feasible integer bidirected flow of cost w(P), as claimed.

For the opposite direction, consider a feasible max-cost integer bidirected flow f in H

and construct a 2-star packing P obeying w(P) ≥ c(f) as follows. Define

F+ :=
{

(u, v) | u, v ∈ V+, f(u1, v2) > 0
}
,

F− :=
{

(u, v) | u ∈ V−, v ∈ V+, f(u, v2) > 0
}
.

Then F := F+ ∪ F− is a 2-feasible arc set in −→G . (Recall that −→G is obtained from G by
replacing each edge with a pair of opposite arcs.) Indeed, every arc in F leaving a node
u ∈ V+ corresponds to a unit of flow along the edge

{
s, u1} and the capacity of the latter

is 2. Every arc in F leaving a node u ∈ V− corresponds to a unit of flow along the edge{
u, v2}, v ∈ V+, and since the capacity of the loop {v, v, } is 1, there can be at most 2 such

arcs. Next, if an arc in F enters a node v ∈ V+ then this arc adds a unit of flow along the
edge

{
v2, s

}
(whose capacity is 1). Finally, no arc in F enters a node in V−.

By Theorem 3, F generates a packing of 2-stars P in G. We claim that w(P) ≥ c(f).
We show that each edge e ∈ EH with c(e) > 0 and f(e) = 1 corresponds to a node ve ∈ V G
covered by P such that c(e) = w(ve). Also each node v ∈ V− covered by P corresponds
to an edge ev ∈ EH with f(ev) = 1 such that c(ev) = w(v). (The mappings e 7→ ve and
v 7→ ev are injective.) These observations complete the proof of Theorem 13.

For the first part, consider an edge e =
{
v2, s

}
, where f(e) = 1 and v ∈ V+. Then v is

entered by an arc in F , hence P covers ve := v. For the second part, consider a node v ∈ V−
covered by P. Then v must be an endpoint of an arc a ∈ F . No arc in F can enter v (by
the construction of F ), hence a = (v, u) for u ∈ V+. Therefore a ∈ F− corresponds to the
edge

{
v, u2}. Since f(v, u2) > 0 one has f(ev) = 1, where ev := {v, v} is the loop at v. J
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Abstract
We consider the discrepancy problem of coloring n intervals with k colors such that at each point on the
line, the maximal difference between the number of intervals of any two colors is minimal. Somewhat
surprisingly, a coloring with maximal difference at most one always exists. Furthermore, we give an
algorithm with running time O(n logn + kn log k) for its construction. This is in particular interesting
because many known results for discrepancy problems are non-constructive. This problem naturally mod-
els a load balancing scenario, where n tasks with given start- and endtimes have to be distributed among
k servers. Our results imply that this can be done ideally balanced.

When generalizing to d-dimensional boxes (instead of intervals), a solution with difference at most
one is not always possible. We show that for any d ≥ 2 and any k ≥ 2 it is NP-complete to decide if such
a solution exists, which implies also NP-hardness of the respective minimization problem.

In an online scenario, where intervals arrive over time and the color has to be decided upon arrival,
the maximal difference in the size of color classes can become arbitrarily high for any online algorithm.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems—Sequencing and
scheduling

Keywords and phrases Load balancing, discrepancy theory, NP-hardness

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.531

1 Introduction

In this paper, we consider the following load balancing problem: We are given a set I = {I1, . . . , In}
of tasks, where each task is represented by an interval I = [`, r] ∈ I with starttime ` and endtime r.
Furthermore, we are given k servers and have to assign the tasks to the servers as evenly as possible.
That is, we want to minimize the maximal difference of the numbers of tasks processed by any two
servers over all times.

We formalize this in terms of an interval coloring problem: We are given a set I = {I1, . . . , In} of
n intervals on the real line and a set K = {1, . . . , k} of k colors. A k-coloring is a mapping χ : I →
K. For a fixed k-coloring χ and a point x ∈ R, let ci(x) denote the number of intervals containing
x that have color i in χ. Define the imbalance of χ at x by imb(x) = maxi,j∈K |ci(x)− cj(x)|. In
words, this is the maximum difference in the size of color classes at point x. The imbalance of χ is
given by imb(χ) = maxx∈R imb(x).

These definitions yield the following minimization problem:

MINIMUM IMBALANCE INTERVAL k-COLORING

Instance: A set of intervals I.
Task: Find a k-coloring χ with minimal imb(χ).

We call a k-coloring with imbalance at most one balanced. Observe that if the number of intervals
intersecting at some point is not divisible by k, then imbalance at least one is unavoidable. On the
other hand, if the number of intersecting intervals is divisible by k, then no coloring having imbalance
one exists. Thus, if a balanced coloring exists, its imbalance is minimal.
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As we will see shortly, it is always possible to find a balanced interval k-coloring. Hence, we will
mostly be concerned with its construction. More specifically, the questions considered in this paper
are outlined as follows:

(i) Is there always a balanced k-coloring?
(ii) If so, is it possible to construct a balanced k-coloring in polynomial time?

(iii) If we consider arcs of a circle (instead of intervals), do balanced k-colorings always exist?
(iv) How is the situation if intervals arrive online?
(v) If d-dimensional boxes (instead of intervals) are considered, can the existence of a balanced

k-coloring be decided in polynomial time?

The problem has close connections to discrepancy theory; see Doerr [9] and Matoušek [17] for
introductions to the field. Let H = (X,U) be a hypergraph consisting of a set X of vertices and
a set U ⊆ 2X of hyperedges. Analogous to the previous definitions, a k-coloring is a mapping
χ : X → K, and the imbalance imb(χ) is the largest difference in size between two color classes
over all hyperedges. The discrepancy problem is to determine the smallest possible imbalance, i. e.,
disc(H) = minχ:X→K imb(χ).

Hence our problem is to find the discrepancy of the hypergraph H = (I, U), where U is the
family of all maximal subsets of intervals intersecting at some point. It turns out that this hypergraph
has totally unimodular incidence matrix, which is useful because de Werra [22] proved that balanced
k-colorings exist for hypergraphs with totally unimodular incidence matrix. However, the proof
in [22] is only partially constructive: A balanced k-coloring is constructed by iteratively solving the
problem of balanced 2-coloring on hypergraphs with totally unimodular incidence matrix, for which
no algorithm was given in [22].

Further related work in discrepancy theory mostly considers hypergraph coloring with two colors
and often from existential, rather than algorithmic perspective. For an arbitrary hypergraph H with
n vertices and m hyperedges, the bound disc(H) ≤

√
2n ln(2m) for 2-coloring follows with the

probabilistic method; see also [9]. For m ≥ n, Spencer [20] proved the stronger result disc(H) =
O(
√
n log(m/n)), which is in particular interesting for m = O(n). If each vertex is contained

in at most t edges, the 2-coloring bound disc(H) = O(
√
t logn) was shown by Srinivasan [21]

and the bound disc(H) ≤ 2t − 1 by Beck and Fiala [5]. Biedl et al. [6] improved the bound
to disc(H) ≤ max{2t − 3, 2} for 2-colorings and established disc(H) ≤ 4t − 3 for general k-
colorings. They also showed that it is NP-complete to decide the existence of balanced k-colorings
for hypergraphs with t ≥ max{3, k − 1} and k ≥ 2.

Bansal [4] recently gave efficient algorithms that achieve 2-color imbalances similar to [20, 21]
up to constant factors. In particular, an algorithm yields disc(H) = O(

√
n log(2m/n)) matching

the result of Spencer [20] if m = O(n). Furthermore, disc(H) = O(
√
t logn) complies with the

non-constructive result of Srinivasan [21]. For general k > 2, Doerr and Srivastav [10] gave a
recursive method constructing k-colorings from (approximative) 2-colorings.

Unfortunately, these results on general discrepancy theory do not answer any of the problems
considered here, because t is only bounded by the number of vertices.

Our Contributions. We contribute the following answers to the above questions:

(i) Balanced k-colorings exist for any set I of intervals, i. e., question (i) can always be answered
in the affirmative. We establish this by showing that our hypergraph H has totally unimodular
incidence matrix and then applying a result of de Werra [22]. This also follows independently
from our algorithmic results below.
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(ii) We present an O(n logn) time algorithm for finding a balanced 2-coloring, thereby establishing
the first constructive result for intervals. Furthermore, we give an O(n logn + kn log k)
algorithm for finding a balanced k-coloring. This is an improvement in time complexity, since
the construction of de Werra [22] combined with our algorithm for 2-coloring only yields
O(n logn+ k2n). We also note that our algorithm works for any hypergraph with incidence
matrix having the consecutive-ones property.

(iii) If we consider arcs of a circle instead of intervals, balanced k-colorings do not exist in general.
However, we give an algorithm achieving imbalance at most two with the same time complexity
as in the interval case.

(iv) In an online scenario, in which we learn intervals over time, the imbalance of any online
algorithm can be made arbitrarily high.

(v) For d-dimensional boxes, it is NP-complete to decide if a balanced k-coloring exists for any
d ≥ 2 and any k ≥ 2. Our reduction is from NOT-ALL-EQUAL 3SAT. This result clearly
implies NP-hardness of the respective minimization problem.

2 Interval Colorings

In this section, we consider MINIMUM IMBALANCE INTERVAL k-COLORING, establish the existence
of balanced k-colorings, and give algorithms for 2 and k colors, respectively. Later, we consider arcs
of a circle and an online version.

2.1 Existence of Balanced k-Colorings

We begin by observing the existence of balanced k-colorings. In the proof below, we use a theorem
of de Werra [22], but the existence of balanced k-colorings also follows from our algorithmic results.

I Theorem 1. For any set I of intervals and any k ∈ N, there is a balanced k-coloring.

Proof. Let I be the set of given intervals. Define a hypergraph H = (I, U), where U is the family
of all maximal subsets of intervals intersecting at some point. For H with I = {I1, . . . , In} and
U = {U1, . . . , Um}, the incidence matrix is defined by A = (ai,j) with ai,j = 1 if Ii ∈ Uj and
ai,j = 0 otherwise.

De Werra [22] showed that any hypergraph with totally unimodular incidence matrix admits
a balanced k-coloring. It is well-known [19] that a 0–1-matrix is totally unimodular if it has the
consecutive-ones property, i. e., if there is a permutation of its columns such that all 1-entries appear
consecutively in every row. The incidence matrix A of H has this property: If we order the Uj in
increasing order of intersection points, then the entries ai,j = 1 appear consecutively in each row. J

2.2 Algorithm for Two Colors

In this section, we present an algorithm that constructs a balanced 2-coloring in polynomial time.
Since the algorithm produces a valid solution for every possible instance, Theorem 1 for k = 2 also
follows from this algorithmic result. We note in passing that a polynomial-time algorithm can also
be obtained by solving a simple Integer Linear Program (ILP) with a totally unimodular constraint
matrix. However, this gives a much worse running time bound of O(n5/ logn) [3].

The main idea of our algorithm is to simplify the structure of the instance such that the remaining
intervals have start- and endpoints occurring pairwise. We then build a constraint graph that has the
intervals as vertices. Finally, a proper 2-coloring of the constraint graph induces a solution to the
problem.
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The start- and endpoints of the intervals are called events. A region is an interval spanned by
two consecutive events and is called even (odd) if it is contained in an even (odd) number of input
intervals.

I Theorem 2. For any set I of n intervals, there is a balanced 2-coloring that can be constructed
in O(n logn) time.

Proof. W. l. o. g. we can assume that the start- and endpoints of the input intervals are pairwise
disjoint. If not, a new instance can be obtained by repeatedly increasing one of the coinciding start-
or endpoints by ε/2, where ε is the minimum size of a region. Since the new instance includes
a corresponding region for every region of the original instance, a balanced coloring for the new
instance is a balanced coloring for the old instance (the converse is not true).

Observe that a coloring that is balanced on all even regions is also balanced on all odd regions.
This is because odd regions only differ by one interval from a neighboring even region. Thus, the task
reduces to constructing a balanced coloring of the even regions. Since between two consecutive even
regions, exactly two events occur, it suffices to consider only pairs of consecutive events enclosing
odd regions.

If a pair of events consists of the start- and endpoint of the same interval, this interval is assigned
any color and is removed from the instance. If a pair consists of start- and endpoint of different
intervals, these intervals are removed from the instance and substituted by a new (minimal) interval
that covers their union. In a final step of the algorithm, both intervals will be assigned the color of
their substitution. The remaining instance consists solely of pairs of events where two intervals start
or two intervals end. Clearly, a balanced coloring has to assign opposite colors to the corresponding
two intervals of such a pair, and any such assignment yields a balanced coloring.

The remaining pairs of events induce a constraint graph. Every vertex corresponds to an interval,
and an edge is added between two vertices if there is a pair of events containing both startpoints or
both endpoints. Finding a proper vertex two-coloring of this graph gives a balanced 2-coloring. The
constraint graph is bipartite: Each edge can be labeled by “`” or “a” if it corresponds to two start- or
endpoints, respectively. Since each interval is incident to exactly two edges, any path must traverse
`- and a-edges alternatingly. Therefore, every cycle must be of even length and hence the graph is
bipartite. Thus, a proper vertex two-coloring of the constraint graph can be found in linear time by
depth-first search.

Sorting events takes O(n logn) time. Creation of the constraint graph and coloring it takes linear
time. J

Note that if intervals are given already sorted, or interval endpoints are described by small integers,
then the above algorithm can even find a balanced 2-coloring in linear time.

2.3 Algorithms for k Colors

In this section, we extend the results of the previous section to an arbitrary number of colors k and
show that a balanced interval k-coloring can be found in polynomial time.

A first polynomial time algorithm can be obtained using a construction by de Werra [22]: Start
with an arbitrary coloring and find two colors i and j for which maxx |ci(x) − cj(x)| is maximal.
Use the algorithm from Section 2.2 to find a balanced 2-coloring of all intervals that currently have
color i or j and recolor them accordingly. Repeat until the coloring is balanced. This algorithm has
running time O(n logn+ k2n), because sorting intervals is needed only once for the above algorithm
for 2 colors, and there are at most

(
k
2
)

recolorings necessary.
In the following, we present an alternative algorithm for k colors, which is faster than O(n logn+

k2n). We will first give an overview of the argument, and then a more formal description.
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As in Section 2.2, we assume w. l. o. g. that all start- and endpoints are pairwise disjoint. The idea
is to scan the events in order, beginning with the smallest, and to capture dependencies in k-tuples
of intervals that indicate pairwise different colors. That is, we reduce the MINIMUM IMBALANCE

INTERVAL k-COLORING instance to an instance of STRONG HYPERGRAPH COLORING, formally
defined as follows.

STRONG HYPERGRAPH COLORING

Instance: A ground set X , a family S of constraints S1, . . . , Sn ⊆ X , and an integer k.
Task: Find a k-coloring χ : X → K with ∀ 1 ≤ i ≤ n : x, y ∈ Si, x 6= y ⇒ χ(x) 6= χ(y).

For example, in the special case that each block of k consecutive events consists only of start- or only
of endpoints, the constraints that the corresponding k intervals have to be differently colored will
capture the whole solution. As we will see below, also different interval nesting structures can be
captured by such constraints.

STRONG HYPERGRAPH COLORING is NP-hard in general [1]. However, each interval will occur
in at most two constraints, corresponding to its start- and endpoint. Thus, we can further reduce the
STRONG HYPERGRAPH COLORING instance to EDGE COLORING, where the goal is to color edges
of a multigraph such that the edges incident to each vertex are all differently colored. More formally:

EDGE COLORING

Instance: A multigraph G = (V,E) and an integer k.
Task: Find a k-coloring χ : E → K with ∀e, e′ ∈ E, e ∩ e′ 6= ∅, e 6= e′ ⇒ χ(e) 6= χ(e′).

It is easy to see that any instance (X,S, k) of STRONG HYPERGRAPH COLORING where each element
of X occurs in at most two constraints can be reduced to EDGE COLORING as (G = (S, E), k),
where for each x ∈ X that occurs in Si and Sj with i 6= j, we add the edge {Si, Sj} to E. For our
case, a constraint corresponds to a vertex, and an interval corresponds to an edge that connects the
two constraints it occurs in. An edge coloring with k colors will thus provide a balanced interval
k-coloring.

Clearly, an edge coloring of a multigraph with maximum degree ∆ needs at least ∆ colors.
Finding an edge coloring of minimum size is NP-hard in general [14]. However, Kőnig [16] showed
that for bipartite multigraphs, ∆ colors in fact always suffice. Further, an edge coloring of a bipartite
multigraph with m edges can be found in O(m log ∆) time [8]. The multigraph we will construct has
maximum degree k and is bipartite. Thus, a balanced interval k-coloring always exists and can be
found in polynomial time.

We now describe the construction of the constraints and give a more rigorous description of
the results. From a MINIMUM IMBALANCE INTERVAL k-COLORING instance I, we construct a
STRONG HYPERGRAPH COLORING instance (I,S, k) over the ground set of the intervals. The
algorithm scans the set of events in order, beginning with the smallest. It keeps a set of active events
and adds constraints to S . The set of active events will be cleared at each region where the number of
intervals is 0 modulo k. Thus, the active events always describe the change from a situation where
each color occurs the same number of times.

The construction of the constraints can be visualized with a decision tree, depicted for the example
k = 4 in Figure 1. At the beginning, the set of active events is empty (which corresponds to the
root of the decision tree). Whenever the set of events is empty, the algorithm branches into two
cases depending on the type of the next event. Both branches are equivalent, with the roles of start-
and endpoints interchanged. Therefore, assume the next event is the start of an interval (depicted

as
a

` on the left branch). It is added to the active set. This continues until either k startpoints of
intervals I1, . . . , Ik are added, or an endpoint is encountered. In the first case, the constraint

(I1, . . . , Ik) (1)
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Figure 1 Tracking of active events for k = 4

is constructed and the set of active events is cleared (dashed arrow returning to the root). In the second
case, assume the startpoints of intervals I1, . . . , Ij have been added and the endpoint of interval Ij+1
is encountered. Then, the two constraints

(I1, . . . , Ij , xj+1, . . . , xk) (2)

(y1, . . . , yj−1, Ij+1, xj+1, . . . , xk) (3)

are constructed. Here, xj+1, . . . , xk and y1, . . . , yj−1 are new “virtual” intervals that have not been
used in previous constraints. That is, they do not correspond to actual intervals of the real line and
only serve as placeholders in the active set. Furthermore, the startpoints of the intervals I1, . . . , Ij are
replaced by the startpoints of y1, . . . , yj−1 in the active set of events (indicated by the dashed arrows
pointing one level higher in the decision tree).

We now prove the correctness of the two chained reductions.

I Lemma 3. A solution to the STRONG HYPERGRAPH COLORING instance (I,S, k), constructed
as described above, yields a balanced k-coloring for I.

Proof. Recall that a region is an interval spanned by two consecutive events. The proof is by
induction over all regions, in the order of events. At each region, we count the number of times each
of the k colors is used among the intervals containing the region. We will show that these counters
differ by at most one, i. e., the coloring is balanced. Clearly, all counters are equal to zero before the
first event.

In particular, we show that in regions where the number of intervals is 0 modulo k, all counters
are equal, and that between these regions the counters change by at most one and all in the same
direction. We distinguish the same cases as in the construction, limiting the discussion to the case
that the event first added to the empty set of active events is a startpoint.

If k startpoints of intervals I1, . . . , Ik are encountered, there is a constraint of the form (1), which
ensures that all of them have different colors. Therefore, at each startpoint, a different counter
increases by one. Hence, the counters differ by at most one in all regions up to the startpoint of Ik,
and are all equal in the region beginning with the startpoint of Ik.

Consider that only j < k startpoints of the intervals I1, . . . , Ij are encountered. Since these
startpoints were added to the set of active events during the construction, the intervals I1, . . . , Ij do
all occur in one constraint. This constraint forces them to have different colors, and therefore the
colors of I1, . . . , Ij are exactly the colors with increased count. Now, we distinguish two subcases
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Figure 2 Complete example of the constraints and bipartite EDGE COLORING instance for k = 3 with a
valid coloring.

depending on the next event. If the next event is a startpoint of some interval, denoted by Ij+1, it
will also be part of the same constraint. Hence, Ij+1 has a different color whose count is not yet
increased. The second subcase is that the next event is the endpoint of some interval, denoted by
Ij+1. The interval Ij+1 is forced to have the same color as one of the intervals I1, . . . , Ij . This is
because there is a constraint of the form (2) that collects all other colors in variables xj+1, . . . , xk,
which occur together with Ij+1 in a constraint of the form (3). Thus, the previously increased counter
for the color of Ij+1 decreases again. Because of the constraint of the form (2), the virtual intervals
y1, . . . , yj−1 must have all of the colors of I1, . . . , Ij except for the color of Ij+1. Hence, the colors
of y1, . . . , yj−1 are exactly all remaining colors with increased count. Therefore, we are in the same
situation as before encountering the endpoint of Ij+1. By repeating the above argument, the claim
follows in this case.

If the event first added is an endpoint, the argument is symmetrical. J

I Lemma 4. A STRONG HYPERGRAPH COLORING instance (I,S, k) constructed as described
above can be reduced to a bipartite EDGE COLORING instance.

Proof. We need to show that each interval occurs in at most two constraints. Once this is proved, it
is possible to build a multigraph with the constraints as vertices and edges between them if they share
a common interval. Further, it has to be shown that this multigraph is bipartite. To show both parts at
once, we color the constraints in S with the two colors ` and a. It then suffices to show that every
interval can occur in at most one `-constraint and in at most one a-constraint.

Consider Figure 2 for an illustration of the constructed constraints and the respective bipartite
EDGE COLORING instance.

We color a constraint with ` if all involved events belonging to nonvirtual intervals are startpoints,
and with a if all these events are endpoints (see Figure 1). All nonvirtual intervals therefore occur in
exactly two constraints, constructed when the start- and endpoint get removed from the active set of
events. A virtual x-interval always occurs in a pair of subsequent differently colored constraints, and
is not used anywhere else. For the left branch of the decision tree, a virtual y-interval occurs first in
a a-constraint, and its startpoint is then added to the list of active events. Then, it will be used in a
constraint of type either (1) or (2), both of which are of type `. The argument is symmetrical for the
right branch of the decision tree. J

I Theorem 5. Every set of n intervals I has a balanced k-coloring for any k ∈ N, and it can be
found in O(n logn+ kn log k) time.

STACS’11



538 Balanced Interval Coloring

Proof. By Lemmas 3 and 4, MINIMUM IMBALANCE INTERVAL k-COLORING can be reduced to
EDGE COLORING with fixed k in a bipartite multigraph. The maximum degree of this multigraph is k,
since by construction no constraint has more than k elements. By Kőnig’s theorem [16] existence
follows.

To be able to process the events, they have to be sorted inO(n logn) time. We haveO(kn) virtual
intervals and thus O(kn) edges in the EDGE COLORING instance. Finding an edge k-coloring for
this multigraph with maximum degree k can be done in O(kn log k) time [8]. J

Note that the EDGE COLORING algorithm by Cole, Ost, and Schirra [8] uses quite involved
data structures. In practice, it might be preferable to use the much simpler algorithm by Alon [2]
running in O(m logm) time for an m-edge graph, which gives a worst-case bound of O(kn logn).
An implementation of our algorithm in Python using a simple edge coloring algorithm based on
augmenting paths can be found at http://www2.informatik.hu-berlin.de/~hueffner/intcol.py.

For an extension, recall that a matrix has the consecutive-ones property if there is a permutation
of its columns such that all 1-entries appear consecutively in every row. Such a permutation can be
found in linear time by the PQ-algorithm [7]. Given such a matrix, it is straightforward to construct
an instance of MINIMUM IMBALANCE INTERVAL k-COLORING.

I Theorem 6. For any hypergraph H with an n×m incidence matrix having the consecutive ones
property, a balanced k-coloring can be found in O(nm+ kn log k) time.

2.4 Arcs of a Circle

In a periodic setting, the tasks I might be better described by a set of arcs of a circle rather than a set
of intervals. In this case, there are instances that require an imbalance of two (e. g., three arcs that
intersect exactly pairwise and k = 2). We show that two is also an upper bound and a coloring with
maximal imbalance two can be found in polynomial time.

I Theorem 7. The maximal imbalance for arcs of a circle is two, and finding a coloring with
imbalance at most two can be done in O(n logn+ kn log k) time.

Proof. Define a point on the circle, called zero, and consider counterclockwise orientation. We
build an instance of MINIMUM IMBALANCE INTERVAL k-COLORING by “unfolding” the circle at
zero in the following way. Consider only arcs that do not span the full circle. Map all such arcs not
containing zero to intervals of same length at the same distance right of zero on the real line. Map
the arcs containing zero to intervals of same length such that the positive part of the interval has the
same length as the part of the arc in counterclockwise direction from zero. Finally, map the arcs
containing the full circle to intervals spanning all of the instance constructed so far. Use the above
algorithm to obtain a coloring of the intervals with imbalance at most one at every point. By reversing
the mapping, the obtained coloring of the arcs has imbalance at most two (each point on the circle is
mapped to at most two points of the real line). J

2.5 Online Algorithms

In load balancing problems, it is often more realistic to assume an online scenario, where not all
information is known in advance, but is rather arriving piece-by-piece, and irrevocable decisions have
to be made immediately. In our setting, this means that intervals arrive in order of their startpoint,
including the information of their endpoint, and a color has to be assigned to them immediately.

The problem of finding a proper coloring (i. e., a coloring where no two intersecting intervals
have the same color) of intervals in an online setting has found considerable interest [15, 11]. In these
works, the objective is to use a minimum number of colors. In contrast, we consider a fixed number

http://www2.informatik.hu-berlin.de/~hueffner/intcol.py
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of colors and the minimization of the imbalance. We show that in contrast to the offline scenario, here
the imbalance can become arbitrarily large.

I Theorem 8. In online MINIMUM IMBALANCE INTERVAL k-COLORING, the imbalance is
unbounded.

Proof. We first consider the case k = 2 with colors “+1” and “−1”. Denote the signed imbalance
simb(x) to be the sum of the colors of the intervals containing x. Note that imb(x) = | simb(x)|.

In the following, we outline how a sequence of intervals can be constructed such that no online
algorithm can yield a bounded imbalance. Initially, simb ≡ 0. Set L = [0, 1] and R = [2, 3]. Let
L`, R`, Lr, and Rr denote the start- and endpoints of the current L and R, respectively. Repeat the
following steps.

Present the interval [(L` + Lr)/2, (R` +Rr)/2] to the online algorithm.
If it chooses color +1, set R← [R`, (R` +Rr)/2], else R← [(R` +Rr)/2, Rr].
Set L← [(L` + Lr)/2, Lr].

This sequence of intervals is legal, since the startpoints increase strictly monotonously. In each
repetition, if the algorithm chooses color +1, the signed imbalances in L and R increase by one. If
the algorithm chooses −1, the signed imbalance decreases by one in L and remains unchanged in R,
i. e., the difference of the signed imbalance in L and R increases. Therefore, the signed imbalance
diverges in L or R. Since the imbalance is the absolute value of the signed imbalance, it becomes
unbounded.

The construction easily generalizes to k > 2 colors. We only track two arbitrary colors, and
whenever the algorithm assigns an untracked color to an interval, we present the same interval (with
a slightly increased startpoint) again, forcing it to eventually assign a tracked color or to produce
unbounded imbalance. J

3 Hardness of Generalizations

We consider several generalizations of MINIMUM IMBALANCE INTERVAL k-COLORING and show
that they are NP-hard. Note that the hardness results of Biedl et al. [6] do not apply to the problems
we consider here.

d-Dimensional Boxes. Gyárfás and Lehel [13] suggest to examine d-dimensional boxes as
generalizations of intervals for coloring problems. The problem MINIMUM IMBALANCE d-BOX

k-COLORING has as input an integer k and a set I = {I1, . . . , In} of n d-dimensional boxes
Ii = ([`i,1, ri,1], [`i,2, ri,2], . . . , [`i,d, ri,d]) for 1 ≤ i ≤ n.

For every point x = (x1, . . . , xd), let S(x) be the set of boxes that include x, i. e., S(x) contains
all the elements Ii such that `i,j ≤ xj ≤ ri,j for all 1 ≤ j ≤ d. For a coloring χ : I → K, a color i,
and a point x, let ci(x) be the number of boxes in S(x) of color i. With the analog definition of
imbalance imb(χ) and balance for d-dimensional boxes, the problem statement becomes:

MINIMUM IMBALANCE d-BOX k-COLORING

Instance: A set I of d-dimensional boxes.
Task: Find a k-coloring χ with minimal imb(χ).

First note that, unlike for the case d = 1, a balanced coloring may not exist: already for three
rectangles, some instances require imbalance two. Hence, we also have a related decision problem:

BALANCED d-BOX k-COLORING

Instance: A set I of d-dimensional boxes.
Question: Is there a balanced k-coloring χ?
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Figure 3 The gadgets of the reduction.

We show that for all d ≥ 2 and k ≥ 2, it is NP-complete to decide BALANCED d-BOX k-
COLORING. This clearly implies NP-hardness of MINIMUM IMBALANCE d-BOX k-COLORING.

I Theorem 9. BALANCED d-BOX k-COLORING is NP-complete for any d ≥ 2 and any k ≥ 2.

We will reduce from NOT-ALL-EQUAL 3SAT (NAE-3SAT) [18]. Note that the classic definition
of NAE-3SAT [12] allows negated variables. However, this is not needed to make the problem
NP-complete [18]. Thus, in the sequel, we will assume that all variables occur only non-negatedly.

NOT-ALL-EQUAL 3SAT (NAE-3SAT)
Instance: A Boolean formula with clauses C1, . . . , Cm, each having at most 3 variables.
Question: Is there a truth assignment such that in every clause, not all variables have the
same value?

We first consider k = 2 and then generalize to arbitrary k. We present the gadgets of the reduction,
then show how they are combined together, and conclude by proving correctness.

For each clause Ci = (xi, yi, zi), we construct a clause gadget comprised of three rectangles (see
Figure 3a). Note that all three rectangles overlap in region Ai, and only there. Then we also construct
a separate rectangle rj for every variable. Finally, we connect each rj to all rectangles that appear in
a clause gadget, and correspond to the same variable as rj . We do this by a chain with odd number of
rectangles. This ensures that in any balanced 2-coloring, rj and the corresponding rectangle in the
clause gadget have the same color. If two chains need to cross, we introduce a crossing gadget as seen
in Figure 3b. Three rectangles are relevant for the crossing of two chains V and W . The first is V1
and contains areas q0, q1, and q2, the second is V2, containing q1, q2, and q3. Both V1 and V2 belong
to chain V . The last rectangle contains areas q1, q4 and q5 and belongs to chain W . Note that the
crossing does not induce any dependencies on the colorings between chains V and W . See Figure 4
for a construction of an instance for BALANCED 2-BOX 2-COLORING.

Observe that the above construction only requires a number of rectangles polynomial in the size
of the NAE-3SAT instance.

I Lemma 10. BALANCED d-BOX 2-COLORING is NP-complete for any d ≥ 2.

Proof. The problem is in NP, since feasibility of a color assignment can be checked in polynomial
time. For NP-hardness, we show that a NAE-3SAT instance is satisfiable if and only if the answer
to the corresponding BALANCED 2-BOX 2-COLORING instance is “yes”. This also implies NP-
completeness for every d ≥ 2 by taking intervals of length 0 in higher dimensions.

(⇒) Assume that there is a satisfying assignment of the NAE-3SAT instance. Then, color the
rectangles rj according to the truth values of their corresponding variables. This coloring can be
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Figure 4 Example for NAE-3SAT instance (x1, x2, x3), (x3, x4, x5), (x1, x5, x6).

easily extended to all the rectangles by alternatively coloring rectangles along a chain (and crossings)
starting from each rj and ending at a clause gadget. It remains to show that imb(x) ≤ 1 holds for
every point x ∈ Ai for all 1 ≤ i ≤ m. Consider Ai corresponding to clause Ci = (xi, yi, zi). The
three rectangles that intersect at Ai have the colors corresponding to the truth values of their variables
xi, yi, and zi in the solution of NAE-3SAT. Since the three variables do not have all the same truth
value, the three rectangles cannot have all the same color, and imb(x) ≤ 1.

(⇐) Assume that we have a balanced 2-coloring for the constructed BALANCED 2-BOX 2-
COLORING instance. Consider only the clause gadgets. We have already observed that rectangles
that correspond to the same variable and appear in clause gadgets must have the same color. We can
assign the truth values of the variables according to the colors in the corresponding rectangles. Since
in no Ai all three rectangles have the same color, in no Ci all three variables have the same truth
value, yielding a feasible solution for NAE-3SAT. J

Proof of Theorem 9. First apply the construction for BALANCED 2-BOX 2-COLORING and call
its rectangles reduction rectangles. Then add k − 2 additional rectangles that fully contain the
construction and all intersect at least in one point outside the construction; these are called cover
rectangles. By the latter property, cover rectangles must have distinct colors in any balanced coloring.
Observe that each reduction rectangle contains some point that does not intersect with other reduction
rectangles but only with all the cover rectangles. This implies that the reduction rectangles have
available only the two colors not used by the cover rectangles. We conclude that the problem of
k-coloring the constructed instance is equivalent to the problem of 2-coloring only the reduction
rectangles. J

Further Generalizations. The weighted version, where intervals have weights and the weighted
imbalance is to be minimized, is NP-complete by reduction from PARTITION. Furthermore, the
variant with multiple intervals [13] is NP-complete by reduction from NAE-3SAT. Both hardness
results generalize to higher dimensions. Proofs are omitted due to space constraints.

4 Open Questions

We have given a polynomial time algorithm for k-coloring hypergraphs with the consecutive-ones
property, i. e., a special case of a totally unimodular incidence matrix. It would be interesting to
generalize to arbitrary totally unimodular incidence matrices.
For arcs of a circle, we have shown how to find a coloring with imbalance at most two in
polynomial time, but it is not clear how to find an optimal one.
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It remains open how large the imbalance can become for d-dimensional boxes, and whether we
can find polynomial-time approximations for it. We were not able to find an instance requiring an
imbalance greater than 2 for the 2-dimensional case.

References

1 G. Agnarsson and M. M. Halldórsson. Strong colorings of hypergraphs. In Proc. 2nd WAOA,
volume 3351 of LNCS, pages 253–266. Springer, 2005.

2 N. Alon. A simple algorithm for edge-coloring bipartite multigraphs. Information Processing
Letters, 85(6):301–302, 2003.

3 K. M. Anstreicher. Linear programming in O( n
3

lnnL) operations. SIAM Journal on Optimization,
9(4):803–812, 1999.

4 N. Bansal. Constructive algorithms for discrepancy minimization. In Proc. 51st FOCS. IEEE
Computer Society, 2010. To appear. Also in arXiv:1002.2259v4.

5 J. Beck and T. Fiala. “Integer making” theorems. Discrete Applied Mathematics, 3(1):1–8, 1981.
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Abstract
We deploy algebraic complexity theoretic techniques for constructing symmetric determinantal
representations of weakly-skew circuits, which include formulas. Our representations produce
matrices of much smaller dimensions than those given in the convex geometry literature when
applied to polynomials having a concise representation (as a sum of monomials, or more generally
as an arithmetic formula or a weakly-skew circuit). These representations are valid in any field of
characteristic different from 2. In characteristic 2 we are led to an almost complete solution to a
question of Bürgisser on the VNP-completeness of the partial permanent. In particular, we show
that the partial permanent cannot be VNP-complete in a finite field of characteristic 2 unless the
polynomial hierarchy collapses.
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1 Introduction

1.1 Motivation
A linear matrix expression (symmetric linear matrix form, affine symmetric matrix pencil) is
a symmetric matrix with the entries being linear forms in the variables x1, . . . , xn and real
number coefficients:

A(x1, . . . , xn) = A0 + x1A1 + · · ·+ xnAn, Ai symmetric in Rt×t. (1)

A linear matrix inequality (LMI) restricts to those values ξi ∈ R of the xi such that
A(ξ1, . . . , ξn) � 0, i.e., is positive semidefinite. The set of all such values defines a spectrahe-
dron.
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A real zero polynomial is a polynomial p with real coefficients such that for every x ∈ Rn
and every µ ∈ C, p(µx) = 0 implies µ ∈ R. The Lax conjecture and generalized Lax
conjecture seek for representations of real zero polynomials f(x1, . . ., xn) (1) with f = det(A)
and A0 � 0. This is in fact an equivalent formulation of the original Lax conjecture which
was stated in terms of hyperbolic polynomials (see [11] for this equivalence). Furthermore,
the matrices are required to have dimension d where d is the degree of the polynomial.
For n = 2 such representations always exist while a counting argument shows that this is
impossible for n > 2 [8] (actually, the authors of [11] give the first proof of the Lax conjecture
in its original form based on the results of [8]). Two generalizations have been suggested to
avoid this counting argument: first, it was suggested to remove the dimension constraint and
allow for bigger matrices, and second, to permit representations of some power of the input
polynomial. Counterexamples to both generalizations have recently been constructed [3].

Another relaxation is to drop the condition A0 � 0 and represent any f as det(A) [7, 16].
However, the purely algebraic construction of [16] leads to exponential matrix dimensions
t. Here we continue the line of work initiated by [7, 16] but we proceed differently by
symmetrizing the complexity theoretic construction by Valiant [18]. Our construction yields
smaller dimensional matrices not only for polynomials represented as sums of monomials but
also for polynomials represented by formulas and weakly-skew circuits [14, 9]. Even though
in the most general case the bounds we obtained are slightly worse than Quarez’s [16], in a
lot of interesting cases such as polynomials with a polynomial size formula or weakly-skew
circuit, or in the case of the permanent, our constructions yield much smaller matrices [5,
Section 4].

Our constructions are valid for any field of characteristic different from 2. For fields of
characteristic 2, it can be shown that some polynomials (such as e.g. the polynomial xy + z)
cannot be represented as determinants of symmetric matrices [6]. Note as a result that the
2-dimensional permanent xw + yz cannot be “symmetrized” over characteristic 2 with any
dimension. It would be interesting to exactly characterize which polynomials admit such a
representation in characteristic 2. For the polynomial x+ y, we have

x+ y = det(


0 x 0 y −1
x 0 1 0 0
0 1 0 −1 0
y 0 −1 0 1/2
−1 0 0 1/2 0

) = det(


x 0 0 1
0 y 0 1
0 0 1 0
1 1 0 0

),

where the first matrix is derived from our construction, but the second is valid over any
commutative ring. It is easily shown that for every polynomial p, p2 admits a symmetric
determinantal representation in characteristic 2. This is related to a question of Bürgisser [4]:
Is the partial permanent VNP-complete over fields of characteristic 2? We give an almost
complete negative answer to this question.

Our results give as a by-product an interesting result, which was not known to the
authors’ knowledge: Let A be an (n × n) matrix with indeterminate coefficients (ranging
over a field of characteristic different from 2); then there exists a symmetric matrix B of size
0(n5) whose entries are the indeterminates from A and constants from the field such that
detA = detB. This relies on the existence of a size-O(n5) weakly-skew circuit to compute
the determinant of an (n× n) matrix [2, 14]. The size of B can be reduced to O(n4) if we
replace the weakly-skew circuits from [2, 14] by the skew circuits of size O(n4) constructed
by Mahajan and Vinay [13]. These authors construct an arithmetic branching program for
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the determinant with O(n4) edges,1 and the arithmetic branching program can be evaluated
by a skew circuit of size O(n4). After learning of our result, Meena Mahajan and Prajakta
Nimbhorkar have noticed that the arithmetic branching program for the determinant can be
transformed directly into a symmetric determinant of size O(n3) with techniques similar to
the ones used in this paper. A detailed proof will appear in the full version of this paper.

Acknowledgments: We learned of the symmetric representation problem from Markus
Schweighofer’s ISSAC 2009 Tutorial
http://www.math.uni-konstanz.de/~schweigh/presentations/dcssblmi.pdf.

We thank Meena Mahajan for pointing out [13] and sketching the construction of a
symmetric determinant of size O(n3) from a determinant of size n.

1.2 Known results and definitions
In his seminal paper Valiant [18] expressed the polynomial computed by an arithmetic
formula as the determinant of a matrix whose entries are constants or variables. If we define
the skinny size e of the formula as its number of arithmetic operations then the size of the
matrix is at most e+ 2. The proof uses a weighted digraph construction where the formula
is encoded into paths from a source vertex to a target, sometimes known as an Algebraic or
Arithmetic Branching Program [15, 1]. This theorem shows that every polynomial with a
sub-exponential size formula can be expressed as a determinant with sub-exponential size
formula, enhancing the prominence of linear algebra. A slight variation of the theorem is
also used to prove the universality of the permanent for formulas which is one of the steps in
the proof of its VNP-completeness. In a tutorial, von zur Gathen [21] gives another way to
express a formula as a determinant: his proof does not use digraphs and his bound is 2e+ 2.
Refining von zur Gathen’s techniques, Liu and Regan [12] gave a construction leading to a
e+ 1 bound and an extra property: multiplications by constant are not counted in e.

In [17, 14], results of the same flavor were proved for a more general class of circuits, namely
the weakly-skew circuits. Malod and Portier [14] can deduce from those results a fairly simple
proof of the VQP-completeness of the determinant (under qp-projection). Moreover, they
define a new class VPws of polynomials represented by polynomial-size weakly-skew circuits
(with no explicit restriction on the degree of the polynomials) for which the determinant is
complete under p-projection. (See [4, 14] for the definitions.) A formula is a circuit in which
every vertex has out-degree 1 (but the output). This means in particular that the underlying
digraph is a tree. A weakly-skew circuit is a kind of generalization of a formula, with a
less constrained structure on the underlying digraph. For an arithmetic circuit, the only
restriction on the digraph is the absence of directed cycles (that is the underlying digraph is
a directed acyclic graph). A circuit is said weakly-skew if every multiplication gate α has the
following property: the sub-circuit associated with one of its arguments β is connected to
the rest of the circuit only by the arrow going from β to α. This means that the underlying
digraph is disconnected as soon as the multiplication gate α is removed. In a sense, one of
the arguments of the multiplication gate was separately computed for this gate.

Toda [17] proved that the polynomial computed by a weakly-skew circuit of skinny size e
can be represented by the determinant of a matrix of size (2e+ 2). This result was improved
by Malod and Portier [14]: The construction leads to a matrix of size (m+ 1) where m is
the fat size of the circuit (i.e. its total number of gates, including the input nodes). Note
that for a circuit in general and for a weakly-skew circuit in particular m ≤ 2e + 1. The

1 This bound can be found on p.11 of their paper.

STACS’11

http://www.math.uni-konstanz.de/~schweigh/presentations/dcssblmi.pdf


546 Symmetric Determinantal Representation

latter construction uses negated variables in the matrix. It is actually possible to get rid
of them [9]. Although the skinny size is well suited for the formulas, the fat size appears
more appropriate for weakly-skew circuits. In Section 2, we symmetrize this construction so
that a polynomial expressed by a weakly-skew circuit equals the determinant of a symmetric
matrix. Our construction yields a size-(2m+ 1) symmetric matrix.

Let us now give some formal definitions of the arithmetic circuits and related notions.

I Definition 1. An arithmetic circuit is a directed acyclic graph with vertices of in-degree 0
or 2 and exactly one vertex of out-degree 0. Vertices of in-degree 0 are called inputs and
labelled by a constant or a variable. The other vertices, of in-degree 2, are labeled by × or +
and called computation gates. The vertex of out-degree 0 is called the output. The vertices
of a circuit are commonly called arithmetic gates and its arcs arrows.

A (division-free) arithmetic circuit with constants in a field k and input variables x1, . . . , xn
naturally computes a polynomial f ∈ k[x1, . . . , xn].

If α is a gate of a circuit C, the sub-circuit associated to α is the subgraph of C made of
all the gates β such that there exists a oriented path from β to α in C, including α. The
gates β and γ are called the arguments of α.

An arithmetic circuit is said weakly-skew if for any multiplication gate α, the sub-circuit
associated to one of its arguments β is only connected to the rest of the circuit by the arrow
going from β to α: it is called the closed sub-circuit of α. A gate which does not belong to
a closed sub-circuit of C is said to be reusable in C. The reusability of a gate depends, of
course, on the considered circuit C.

In our constructions, we shall use graphs and digraphs. In order to avoid any confusion
between directed and undirected graphs, we shall exclusively use the term graph for undirected
ones, and otherwise use the term digraph. It is well-known that cycle covers in digraphs
are in one-to-one correspondence with permutations of the vertices and therefore that the
permanent of the adjacency matrix of a digraph can be defined in terms of cycle covers of
the graph. Let us now give some definitions for those facts, and see how it can be extended
to graphs.

I Definition 2. A cycle cover of a digraph G = (V,A) is a set of cycles such that each vertex
appears in exactly one cycle. The weight of a cycle cover is defined to be the product of
the weights of the arcs used in the cover. Let the sign of a vertex cover be the sign of the
corresponding permutation of the vertices, that is (−1)N where N is the number of even
cycles. Finally, let the signed weight of a cycle cover be the product of its weight and sign.

For a graph G = (V,E), let Gd = (V,A) be the corresponding symmetric digraph. Then
a cycle cover of G is a cycle cover of Gd, and the definitions of weight and sign are extended
to this case. In particular, if there is a cycle cover of G with a cycle C = (u1, . . . , uk), then a
new cycle cover is defined if C is replaced by the cycle (uk, . . . , u1). Those two cycle covers
are considered as different cycle covers of G.

I Definition 3. Let G be a digraph. Its adjacency matrix is the (n× n) matrix A such that
Ai,j is equal to the weight of the arc from i to j (Ai,j = 0 is there is no such arc). The
definition is extended to the case of graphs, seen as symmetric digraphs. In particular, the
adjacency matrix of a graph is symmetric.

I Lemma 4. Let G be a (di)graph, and A its adjacency matrix. Then the permanent of A
equals the sum of the weights of all the cycle covers of G, and the determinant of A is equal
to the sum of the signed weights of all the cycle covers of G.
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Proof. The cycle covers are obviously in one-to-one correspondence with the permutations
of the set of vertices, and the sign of a cycle cover is defined to match the sign of the
corresponding permutation. Suppose that the vertices of V are {1, . . . , n} and let Ai,j be
the weight of the arc (i, j) in G. Let C a cycle cover and σ the corresponding permutation.
Then it is clear that the weight of C is A1,σ(1) · · ·An,σ(n), hence the result. J

The validity of this proof for graphs follows from the definition of the cycle covers of a
graph in terms of the cycle covers of the corresponding symmetric digraph. In the following,
the notion of perfect matching is used. A perfect matching in a graph G is a set M of edges
of G such that every vertex is incident to exactly one edge of M . The weight of a perfect
matching is defined in this paper as the weight of the corresponding cycle cover (with length-2
cycles). This means that it is the product of the weights of the arcs it uses, or equivalently it
is the square of the product of the weights of the edges it uses. Note that this is the square
of the usual definition.

A path P in a digraph is a subset of vertices {u1, . . . , uk} such that for 1 ≤ i ≤ k − 1,
there exists an arc from ui to ui+1 with nonzero weight. The size |P | of such a path is k.

2 Weakly-skew circuits

In this section, we extend the construction of [14] to the case of symmetric matrices: given
a weakly-skew circuit computing a polynomial p, a symmetric matrix M which entries
are variables and constants is built such that p = detM . Malod and Portier [14] express
a polynomial as a determinant of a non-symmetric matrix. Their construction relies on
the construction of a digraph whereas ours relies on the construction of a (non-directed)
graph. Recall that a weakly-skew circuit has several reusable gates. This means that when a
weakly-skew circuit is recursively turned into a (di)graph, some vertices have to be reusable.
This is ensured in [14] by the property that the digraph is acyclic. As we are dealing with a
graph instead of a digraph, this cannot be used anymore. A solution to this problem is given
in Lemma 6 by introducing the notion of acceptable paths: A path P in a graph G is said
acceptable if G \ P admits a cycle cover.

As in [14], the size bounds of the constructed matrix and graph are given in terms of
the fat size of the weakly-skew circuit: the fat size of a circuit is its total number of gates,
including the input gates. Note that one can refine these bounds using the notion of green
size defined in the long version of this paper [5, Section 3.2]. Furthermore, if the polynomial
is given as a formula instead of a weakly-skew circuit, it is possible to get tighter bounds [5,
Section 2].

Let us fix a field k of characteristic different from 2 and a countable set x̄ = {x1, x2, . . . }
of variables. The circuits we consider are supposed to have inputs in k ∪ x̄.

I Theorem 5. Let f be a polynomial computable by a weakly-skew circuit of fat size m.
Then there exists a symmetric matrix A of size at most 2m+ 1 whose entries are inputs of
the circuit and elements from {0, 1,−1, 1/2} such that f = detA.

The proof relies on the following lemma. It applies to so-called multiple-output weakly-
skew circuits. This generalization just consists in circuits for which there exist several
out-degree-0 gates.

I Lemma 6. Let C be a multiple-output weakly-skew circuit of fat size m. There exists a
graph G with at most 2m+ 1 vertices and a distinguished vertex s such that |G| is odd, every
cycle in G is even, and for every reusable gate α ∈ C there exists a vertex tα ∈ G such that
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1. Every s-tα-path (whether acceptable or not) has an odd number of vertices;
2. For every acceptable s-tα-path P in G, the subgraph G\P is either empty or has a unique

cycle cover, which is a perfect matching of weight 1;
3. The following equality holds in G:∑

acceptable
s-tα-path P

(−1)
|P |−1

2 w(P ) = fα (2)

where fα is the polynomial computed by the gate α.
Furthermore, the graph G \ {s} has a unique cycle cover which is a perfect matching of weight
1.

Proof sketch. The graph G is built by induction on the (fat) size of the circuit. We only
sketch here its construction. For a proof that G satisfies the conditions of the lemma, refer
to [5, Lemma 4]. If α is a reusable gate of C, then tα is said to be a reusable vertex of G.

A size-1 circuit is an input gate α with label x. The corresponding graph G has three
vertices: s, tα and an additional vertex vα. There is an edge between s and vα of weight x,
and an edge between vα and tα of weight −1.

Let m > 1 and suppose that the lemma holds for any multiple-output weakly-skew circuit
of size less than m. Let C be a multiple output weakly-skew circuit of size m, and α be any
of its outputs.

If α is an input gate with label x, let C ′ = C \ {α} and G′ the corresponding graph with
a distinguished vertex s. The graph G is obtained from G′ by adding two new vertices vα
and tα, an edge of weight x between s and vα and an edge of weight −1 between vα and tα
(see Fig. 1). The vertex s is the distinguished vertex of G.

If α is an addition gate, let C ′ = C \ {α} and suppose that α receives arrows from gates
β and γ. Note that β and γ are reusable. Let G′ be the graph corresponding to C ′, and
s be its distinguished vertex. G′ contains two reusable vertices tβ and tγ . The graph G is
obtained by adding two vertices vα and tα, and the following edges: tβvα and tγvα of weight
1, and vαtα of weight −1 (see Fig. 3). If β = γ, then G′ contains a vertex tβ , and we merge
the two edges adjacent to tβ and tγ into an edge tβvα of weight 2.

If α is a multiplication gate, α receives arrows from two distinct gates β and γ. Exactly
one of those gates, say β, is not reusable and removing the gate α yields two disjoint circuits
C1 and C2 (say β belongs to C1 and γ to C2). Let G1 and G2 be the respective graphs
obtained by induction from C1 and C2, with distinguished vertices s1 and s2 respectively.
The graph G is obtained as in Fig. 2 as the union of G1 and G2 where tγ and s1 are merged,
the distinguished vertex s of G being the distinguished vertex s2 of G2, and tα being equal
to tβ . J

x C ′

s
x

vα

−1 G′

tα

Figure 1 Input gate

β

C1

s

γ tγ

G1

tα = tβ

C2
G2

Figure 2 Multiplication gate
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β

C ′

s

γ tγ
G′

tα

C ′

G′
β

s

tβ tβ

tα

vα vα−1 −1
2

Figure 3 Both cases for an addition gate

Proof of Theorem 5. Let C be a weakly-skew circuit computing the polynomial f , and G
be the graph built from C in Lemma 6. The circuit C has a unique output, and there exists
in G a vertex t corresponding to this output. Let G′ be the graph obtained from G by adding
an edge between t and s of weight 1

2 (−1)
|G|−1

2 .
There is no cycle cover of G′ containing the 2-cycle st. Indeed, |G′ \ {s, t}| is odd and

G contains only even cycles. This means that a cycle cover of G′ contains a cycle made of
a s-t-path plus (t, s) or a t-s-path plus (s, t). Let P be such a path. Then G′ \ P = G \ P .
Hence, by Lemma 6, there is exactly one cycle cover of G′ \ P and it is a perfect matching of
weight 1. This means that there is a one-to-one correspondence between the cycle covers
of G′ and the paths from s to t or from t to s. There is also a one-to-one correspondence
between the paths from s to t and the paths from t to s.

Let us recall that the sign of a cycle cover is the sign of the underlying permutation and
its signed weight is the product of its sign and weight. Let C be a cycle cover of G′ involving
the s-t-path P . The previous paragraph shows that the weight of C equals 1

2 (−1)
|G|−1

2 w(P ).
As C has an odd cycle and a perfect matching, its sign is (−1)|G\P |/2, that is the number of
couples in the perfect matching. The inverse cycle cover C̄ of G′ has the same signed weight
as C. Hence the sum of the signed weights of all cycle covers of G′ equals twice the sum over
all s-t-paths P of 1

2 (−1)
|G|−1

2 (−1)
|G\P |

2 w(P ) = 1
2 (−1)

|P |−1
2 w(P ). By Lemma 6, this equals f

and Lemma 4 concludes the proof.
J

3 Characteristic 2

In characteristic 2, the construction of Section 2 fails because of the scalar 1/2 it uses.
Nevertheless, for a polynomial computable by a weakly-skew circuit, it is possible to represent,
by the usual symmetrization, its square as the determinant of a symmetric matrix. On the
other hand, as pointed out in the introduction representing the polynomial itself is not always
possible. Related to these problems, the VNP-completeness of the partial permanent is also
studied. Actually, we give an almost complete answer to an open question of Bürgisser [4,
Problem 3.1] showing that if the partial permanent is complete in finite fields of characteristic
2, then the (boolean) polynomial hierarchy collapses. For any field of characteristic 2 (finite
or infinite), we show that the VNP-completeness of this family would imply that every VNP
family of polynomials has its square in VPws. This also seems unlikely to happen unless
VPws = VNP.

Let G be an edge-weighted graph with vertices {v1, . . . , vn}. Recall that the adjacency
matrix A of G is the (n× n) symmetric matrix defined by Aij = Aji = wij where wij is the
weight of the edge vivj . Suppose now that G is bipartite with two independent sets of vertices
Vr and Vc of cardinality m and n respectively. Let Vr = {r1, . . . , rm} and Vc = {c1, . . . , cn}.
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The biadjacency matrix of G (also known as the bipartite adjacency matrix) is the (m× n)
matrix B such that Bij is the weight of the edge between ri and cj . This means that the
rows of B are indexed by Vr and its columns by Vc. For a bipartite graph G of adjacency
and biadjacency matrices A and B respectively,

A =
(

0 B

Bt 0

)
.

Throughout this section, we shall use the usual definition of the weight of a partial
matching: it is the product of the weights of the edges it uses.

3.1 Symmetric determinantal representation of the square of a
polynomial

I Lemma 7. Let G be an edge-weighted graph and A its adjacency matrix. In characteristic
2, the determinant of A is the sum of the weights of the cycle covers with cycles of length at
most 2.

Proof. Let us consider G as a symmetric digraph (that is an edge uv is seen as both arcs
(u, v) and (v, u)). In Lemma 4, the signs of the cycle covers are considered. In characteristic
2, this is irrelevant. Therefore, the determinant of A is the sum of the weights of the cycle
covers of G.

Let C be a cycle cover of G containing a (directed) cycle of length at least 3 denoted by
(v1, v2, . . . , vk, v1). One can change the direction of this cycle (as G is symmetric) and obtain
a new cycle cover C ′ containing the same cycles as C, but (vk, vk−1, . . . , v1, vk) instead of
(v1, v2, . . . , vk, v1). Clearly, the weights of C and C ′ are the same as the graph is symmetric.
Therefore, when the determinant of A is computed in characteristic 2, the contributions of
those two cycle covers to the sum cancel out. This shows that the determinant of a matrix in
characteristic two is obtained as the sum of the weights of cycle covers with cycles of length
1 (loops) or 2. J

I Proposition 8. Let p be a polynomial over a field of characteristic 2, represented by a
weakly-skew circuit of fat size m. Then there exists a symmetric matrix A of size (2m+ 2)
such that p2 = det(A).

Proof. Let C be a weakly-skew circuit representing a polynomial p over a field of characteristic
2. Let M be the matrix obtained by Malod and Portier’s construction [14] such that
p = det(M). Let G be the digraph represented by M , and let G′ be the bipartite graph
obtained from G by the two following operations: Each vertex v of G is turned into two
vertices vs and vt in G′, and each arc (u, v) is turned into the edge {us, vt}. A loop on a
vertex u is simply represented as the edge {us, ut}. Let A be the symmetric adjacency matrix
of G′ (when the vertices are ordered vs0, vs1, . . . , vsm, vt0, . . . , vtm).

It is well-known that cycle covers of G and perfect matchings of G′ are in one-to-one
correspondence. This one-to-one correspondence shows that the determinant of M equals the
sum of the weights of the perfect matchings in G′. If a perfect matching in G′ is considered
as a cycle cover with length-2 cycles, the weight of the cycle cover is the square of the weight
of the perfect matching. Indeed, in the cycle cover, all the arcs of the length-2 cycles have to
be considered, that is each edge contributes twice to the product. Lemma 7 and the fact
that there is no loop in G′ show that

det(A) =
∑
µ

w(µ)2 =
(∑

µ

w(µ)
)2
,
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where µ ranges over all perfect matchings of G′ and w(µ) is the weight of the perfect matching
µ. The second equality holds as the field has characteristic 2.

Finally, it is shown in [14] that p = det(M), and we showed that det(M) =
∑
µ w(µ) and

det(A) =
(∑

µ w(µ)
)2. Therefore, det(A) = det(M)2 = p2. J

This proposition raises the following question: Let f be a family of polynomials such
that f2 ∈ VPws. Does f belong to VPws? This question is discussed with more details in
the next section.

3.2 Is the partial permanent complete in characteristic 2?
I Definition 9. Let X = (Xij) be an (n×n) matrix. The partial permanent of X, as defined
by Bürgisser [4], is

per∗(X) =
∑
π

∏
i∈def(π)

Xiπ(i),

where the sum ranges over the injective partial maps from [n] = {1, . . . , n} to [n] and def(π)
is the domain of the partial map π.

The family (PER∗n) is the family of polynomials such that PER∗n is the partial permanent
of the (n× n) matrix whose coefficients are the indeterminates Xij .

I Lemma 10. Let G be the complete bipartite graph with two independent sets of vertices Vr
and Vc such that the edge between ri and cj is labelled by Bij (the matrix B is the biadjacency
matrix of G). Then the partial permanent of B is equal to the sum of the weights of the
partial matchings of G.

A partial matching in a graph G is a set of pairs of vertices connected by an edge such
that no vertex appears in more than a pair. Equivalently, a partial matching can be seen as
a set of disjoint edges. The weight of a partial matching is the product of the weights of its
edges.

The proof of the lemma is quite straightforward as a injective partial map π from [n] to
[n] exactly defines a partial matching in G such that for i ∈ def(π), ri is matched with cπ(i).

I Lemma 11. Let G be the complete bipartite graph with two independent sets of vertices Vr
and Vc such that the edge between ri and cj is labelled by Bij (the matrix B is the biadjacency
matrix of G). Let A be its adjacency matrix. Then in characteristic 2,

det(A+ I2n) = (per∗(B))2,

where I2n is the identity matrix of size 2n.

Proof. By Lemma 7, to compute a determinant in characteristic 2, one can focus only on
cycles of length at most 2. A cycle cover with such cycles actually is a partial matching
when the graph is symmetric (length-2 cycles define the pairs of vertices, and length-1 cycles
are isolated vertices). Considering G as a symmetric digraph, the weight of a cycle cover is
equal to the product of the weights of its loops and the square of the weights of the edges it
uses (a length-2 cycle corresponds to an edge).

Consider the graph G′ obtained from G by adding weight-1 loops on all its vertices. In
other words, G′ is the graph whose adjacency matrix is A+ I2n. By the previous remark,
and by the fact that the loops have weight 1, the determinant of A+ I2n is

det(A+ I2n) =
∑
µ

w(µ)2 =
(∑

µ

w(µ)
)2
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where µ ranges over the partial matchings of G′ and w(µ) is the weight of the partial matching
µ. The second equality is true as the characteristic of the field is 2.

Recall now that G is bipartite. Of course, the partial matchings of G and G′ are the
same. So

per∗(B) =
∑
µ

w(µ),

where µ ranges over the partial matchings of G. This proves the lemma. J

This lemma shows in particular that for computing the parity of the number of partial
matchings in a bipartite graph, it is sufficient to compute a determinant (this is the case
where G is not edge-weighted). Therefore, this problem is solvable in polynomial time. This
was already mentioned by Valiant [19] but without any proof or reference.

I Theorem 12. In characteristic 2, the family ((PER∗)2
n) is in VPws.

Proof. The previous lemma shows that the polynomial (PER∗)2
n is a p-projection of DET2n

in characteristic 2. Thus, ((PER∗)2
n) is in VPws as (DETn) ∈ VPws [14]. J

Suppose that (PER∗n) is VNP-complete. Then every VNP family (fn) is a p-projection of
(PER∗n), and thus (f2

n) is a p-projection of ((PER∗)2
n). Let VNP2 = {(f2

n) : (fn) ∈ VNP} be
the class of squares of VNP families. This implies the following corollary of the theorem:

I Corollary 13. In any field of characteristic 2, if (PER∗n) is VNP-complete, then VNP2 ⊆
VPws.

This situation is unlikely to happen. In particular, it would be interesting to investigate
whether this inclusion implies that VPws = VNP in characteristic 2. Let us now give another
consequence of (PER∗n) being VNP-complete. This only holds for finite fields of characteristic
2 but may give a stronger evidence that (PER∗n) is unlikely to be VNP-complete.

I Theorem 14. If the partial permanent family is VNP-complete in a finite field of charac-
teristic 2, then ⊕P/poly = NC2/poly, and the polynomial hierarchy collapses to the second
level.

The proof of this theorem uses the boolean parts of Valiant’s complexity classes defined
in [4]. In the context of finite fields of characteristic 2, the boolean part of a family (fn) of
polynomials with coefficients in the ground field F2 is the function bpf : {0, 1}∗ → {0, 1}
such that for x ∈ {0, 1}n, bpf (x) = fn(x) (mod 2). The boolean part BP(C) of a Valiant’s
class C is the set of boolean parts of all f ∈ C.

Proof. Let (fn) be a VNP family and (ϕn) its boolean part. As ϕn(x) ∈ {0, 1} for all
x ∈ {0, 1}n, (ϕn) is the boolean part of (f2

n) too. This shows that BP(VNP) ⊆ BP(VNP2).
By Corollary 13, VNP2 ⊆ VPws ⊆ VP. Thus, BP(VNP) ⊆ BP(VNP2) ⊆ BP(VP) and as
VP ⊆ VNP

BP(VP) = BP(VNP).

Bürgisser [4] shows that in a finite field of characteristic 2, ⊕P/poly = BP(VNP), and
BP(VP) ⊆ NC2/poly. Hence, ⊕P/poly ⊆ NC2/poly. Moreover, NC2/poly ⊆ P/poly ⊆
⊕P/poly hence we conclude that

⊕P/poly = NC2/poly.
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The collapse of the polynomial hierarchy follows from a non uniform version of the Valiant-
Vazirani Theorem [20]: Theorem 4.10 in [4] states that NP/poly ⊆ ⊕P/poly. Therefore,

NC2/poly ⊆ NP/poly ⊆ ⊕P/poly = NC2/poly.

In particular, P/poly = NP/poly and Karp and Lipton [10] showed that this implies the
collapse of the polynomial hierarchy to the second level. J

4 Conclusion

As was already mentioned, our results can be refined by using a modified version of the
skinny size in which multiplications by constants do not count (this is the size considered in
[12]). Let us call green size this variant. Furthermore, if the polynomial is given as a formula
rather than as a weakly-skew circuits, some better bounds can be obtained. These two
improvements are detailed in [5, Sections 2 and 3]. Table 1 compares the results obtained, in
this paper and in previous ones. The bounds are given for a formula of green size e and for a
weakly-skew circuit of green size e with i input gates labelled by a variable, and take into
account the improvements explained in the long version.

Non-symmetric Symmetric
matrix matrix

Formula e + 1 2e + 1a

Weakly-skew circuit (e + i) + 1 2(e + i) + 1

a The bound is achieved if and only if the entries can be complex numbers. Else, the bound is 2e + 2.
Table 1 Bounds for determinantal representations of formulas and weakly-skew circuits. The

bounds for symmetric representations are new, and the bound for a non-symmetric representation of
a weakly-skew circuit is a slight improvement of known bounds.

The (e + 1) bound for the representation of a formula by a (non-symmetric) matrix
determinant was given in [12] by a method purely based on matrices. We show in [5,
Section 2.1] that this bound can also be obtained directly from Valiant’s original proof [18].
Along the way, we show that Valiant’s proof contained a little flaw that was surprisingly
never pointed out in the literature (and is present in more recent texts such as [4]). The
(e+ i+ 1) bound for the representation of a polynomial computed by a weakly-skew circuit
can be obtained from the (m+ 1) bound (where m is the fat size of the circuit) obtained
in [14] if we use our minimization lemma [5, Lemma 15] as well as a similar trick as in the
proof of [5, Theorem 5]. Both bounds for the symmetric cases are given in the long version
of this paper.

All of these results are valid for any field of characteristic different from 2. We showed
that there are some important differences in fields of characteristic 2 for the complexity of
polynomials. The open question of characterizing which polynomials can be represented as
determinants of symmetric matrices is quite intriguing. Note that a lot of variants of the
irreprensentable polynomial xy+ z (such as xy+ z+xyz+ 1 and xy+ 1) do admit symmetric
determinantal representations.
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Abstract
We construct a hitting set generator for sparse multivariate polynomials over the reals. The seed
length of our generator is O(log2(mn/ε)) where m is the number of monomials, n is number of
variables, and 1− ε is the hitting probability. The generator can be evaluated in time polynomial
in logm, n, and log 1/ε. This is the first hitting set generator whose seed length is independent
of the degree of the polynomial. The seed length of the best generator so far by Klivans and
Spielman [16] depends logarithmically on the degree.

From this, we get a randomized algorithm for testing sparse black box polynomial identities
over the reals using O(log2(mn/ε)) random bits with running time polynomial in logm, n, and
log 1

ε .
We also design a deterministic test with running time Õ(m3n3). Here, the Õ-notation sup-

presses polylogarithmic factors. The previously best deterministic test by Lipton and Vishnoi
[18] has a running time that depends polynomially on log δ, where δ is the degree of the black
box polynomial.
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Keywords and phrases Descartes’ rule of signs, polynomial identity testing, sparse polynomials,
black box testing
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1 Introduction

Polynomial identity testing is the problem of testing if a polynomial P is equal to zero.
Applications include primality testing [1] and testing if a graph has a perfect matching [21],
just to mention a few. There are also results in complexity theory which use identity testing
as an ingredient. This includes IP = PSPACE [23] and the PCP theorem [5, 6].

Of course, if we are given the coefficients of the polynomial, this is an easy problem. The
problem gets interesting if the polynomial is given in a compact form, either by a circuit
or by a black box. Though these two variants look similar, they are of a very different
nature. If we are given an arithmetic circuit C that computes the polynomial P , it is easy
to find a point ξ with P (ξ) 6= 0 provided that P 6≡ 0. For some constant c, the point
ξ = (22c·|C| , 222·c·|C|

, . . . , 22n·c·|C|) is such a point: First note that the degree d of P and the
size of the coefficients of P are bounded by 2|C| and 22|C| , resp. The Kronecker substitution,
which maps each variable Xi to Y d

i for 1 ≤ i ≤ n, is an injective mapping of the set of
n-variate polynomials of degree ≤ d to univariate polynomials such that the degree of the
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univariate polynomial is bounded by dn+1 and the coefficients are preserved. It is easy to see
that for a nonzero univariate monic polynomial, every real number larger than the absolute
values of all coefficients cannot be a root. The point ξ is obtained by performing a Kronecker
substitution and then plugging in a large enough number.

This point ξ is too large to be constructed explicitly in polynomial-time but it can be
computed by a polynomial size circuit via repeated squaring. But we do not know how to
evaluate the circuit at this point. This means that in the circuit model, the polynomial
identity testing problem is equivalent to deciding whether a circuit that computes a number
computes the value zero, see [3]. There is an efficient randomized algorithm for this problem
which chooses a random prime with a polynomial number of bits and evaluates the circuit
modulo this prime. In particular, if RP = P, then there is an efficient deterministic algorithm
for this problem. On the other hand, derandomizing this algorithm implies circuit lower
bounds [14].

In the black box model, evaluation is of course no problem at all; the black box does it
for us. It is even sufficient that the black box only tells us whether the polynomial evaluated
at the query point is zero or not. In the black box model, randomization is inherently needed
for polynomial-time algorithms (see [16]). Why? First consider a deterministic algorithm.
We claim that when the only information that we have is that the polynomial in the black
box P has ≤ m monomials, then the algorithm has to query the black box at least m
times. This is shown by an adversary argument: Every query at a point ξ is answered
with zero. Each answer gives a linear equation P (ξ) =

∑m
µ=1 αµξ

eµ,1
1 · · · ξeµ,nn = 0 on the

coefficients α1, . . . , αm. As long as less than m queries are done, the system of equations has
a nontrivial solution. So the answer to the queries can be produced by two polynomials,
the zero polynomial and a nonzero polynomial given by the nontrivial solution above. If
now a polynomial-time randomized algorithm would use less than (1 − ε) · logm random
bits, then derandomizing it trivially by running over all choices for the random bits will
give a deterministic algorithm making less than m queries, which does not exist. (Note
that our adversary argument did not make any assumption about the running time of the
deterministic algorithm.)

We will focus on the problem in the black box model. Here we are given a black box
which we can query at specific points. This black box will evaluate our polynomial at
the points and return the value in one time step. For identity testing, it is of course
sufficient to know whether the polynomial evaluates at the query point to zero or not.
Since we cannot inspect the polynomial other than by querying values, we need a hitting
set, that is, a set H such that for every potential polynomial P in the black box, there
is a point x ∈ H with P (x) 6= 0 or, stronger, for some fraction of all x ∈ H, P (x) 6= 0.
A hitting set generator even allows us to sample from a hitting set at random. We will
call the number of random bits used by a hitting set generator its seed length. For a
formal definition, see Definition 2.4. The so-called Schwartz-Zippel test [22, 24] was one
of the first hitting set generators (see [20] for an alternative proof over finite fields). It
is designed for dense polynomials and works over arbitrary (large enough) fields. If the
polynomial has degrees δ1, . . . , δn in the variables X1, . . . , Xn, then the seed length of the
generator is

∑n
i=1dlog(δi + 1)e+ n logn. This seed length was improved by Chen and Kao

[13] to
∑n
i=1dlog(δi + 1)e. However, their test works only for integer coefficients and makes

some assumptions on the size of the coefficients. So strictly speaking, their generator is
incomparable. Lewin and Vadhan [17] extended the work by Chen and Kao to fields of
positive characteristic. Bläser, Hardt, and Steurer [12] constructed a hitting set generator
with asymptotically optimal seed length (1 + o(1))

∑n
i=1 log(δi + 1). Note that a polynomial
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with degrees δ1, . . . , δn can have (δ1 + 1) · · · (δn + 1) monomials, so we get a matching lower
bound on the seed length by the argument outlined above. Prior to this, Agrawal and Biswas
[1] achieved the same seed length, but only if the polynomial is given by a circuit.

Klivans and Spielman [16] considered the case of sparse polynomials. This means that the
number of monomials is bounded by some parameter m. For polynomials with a bound of δ
on the total degree, the running time of their algorithm is polynomial in logm, n, log δ, and
log 1

ε . The algorithm needs O(log(mnδ/ε)) random bits and has error probability bounded
by ε. In this paper, we focus on sparse polynomials over the reals. Here Descartes’ rule of
signs says that a univariate polynomial with at most m monomials has a most m− 1 positive
real roots. This gives an efficient hitting set generator (“plug in a random integer between 1
and 2m”) for univariate polynomials with optimal seed length, which is independent of the
degree. This suggests that there should also be hitting set generators for sparse multivariate
polynomials over the reals that are independent of the degree. There are multivariate versions
of Descartes’ rule of signs like Khovanskii’s theorem [15] (see also [9, 10] for improvements).
However, the size of the resulting hitting set is exponential in the number of variables, which
is far too large.

In this work, we give an efficient hitting set generator for sparse polynomials over the reals
with running time and seed length independent of the degree of the polynomial. This results
in a faster algorithm for real polynomials with high degree but few monomials. In particular,
we obtain a randomized algorithm that uses O(log2(mn/ε)) = O(log2 m + log2 n + log2 1

ε )
random bits, has running time polynomial in logm, n, and log 1/ε, and error probability
≤ 1/ε. So compared to the algorithm by Klivans and Spielman, the dependence on logm and
logn is slightly worse but we are completely independent of the degree δ. We also construct
a deterministic algorithm with running time Õ(m3n3). Here, the Õ-notation suppresses
polylogarithmic factors. The previously best deterministic test by Lipton and Vishnoi [18]
has a running time that depends polynomially on log δ (see also [11]).

We conclude by pointing out that the situation over the reals is a special one. Over
arbitrary fields, the runtime dependence on the degree is necessary. A short example will show
this. Given a field Fpk for some prime p and a polynomial P (X) = Xpck−X, P (X) ∈ Fpk [X].
The polynomial is not equal to 0 ∈ Fpk [X]; however, it evaluates to zero at every a ∈ Fpk
and even at every b ∈ Fpck . Hence, the running time and number random bits will depend
on the degree of the polynomial. Otherwise, we could not distinguish P (X) from zero.

2 Hitting Set Generators and Transformations

I Definition 2.1. We will denote by Rm[X1, . . . , Xn] the set of all polynomials with at most
m monomials in the variables X1, . . . , Xn.

We consider the polynomial identity testing problem restricted to sparse polynomials.

I Definition 2.2. PIT (n,m) is the problem of deciding if a polynomial in Rm[X1, . . . , Xn]
given by a black box is identically zero.

I Definition 2.3. A set H ⊆ Rn is a hitting set for PIT (n,m) with hitting probability 1− ε,
if for all nonzero P ∈ Rm[X1, . . . , Xn],

Pr
x∈H

[P (x) 6= 0] ≥ 1− ε.

In the definition above, x is drawn uniformly at random from H. While a hitting set is
nice, we also want to be able to efficiently generate elements from the hitting set. Furthermore,
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the elements in the hitting set should be integers (or from any other subset from R that can
be efficiently represented. But for our purposes, Z is fine.)

I Definition 2.4. A function H : {0, 1}ρ → Zn is called a hitting set generator for PIT (n,m)
with hitting probability 1− ε and seed length ρ if the image of H is a hitting set with hitting
probability 1 − ε. We denote the image of H, that is, the hitting set generated by H, by
im(H).

Of course, we would like to have hitting set generators for PIT (n,m) for each choice of n
and m. We call this a uniform hitting set generator. It gets three inputs: n, m, and a seed r
of length ρ(n,m). Instead of H(n,m, r) we will often write Hn,m(r). If we keep n and m
fixed and run over all seeds r, we get a hitting set for PIT (n,m). The evaluation time of a
hitting set generator is the maximal time needed to compute Hn,m(r) for all r ∈ {0, 1}ρ(n,m).
The evaluation time is a function of n and m.

I Theorem 2.5. If there is a uniform hitting set generator for PIT (n,m) with hitting
probability 1− ε > 0, seed length ρ(n,m), and evaluation time t(n,m), then there is
1. a deterministic algorithm for PIT (n,m) with running time O(2ρ(n,m) · t(n,m)) and
2. a randomized algorithm for PIT (n,m) using ρ(n,m) random bits with running time

O(t(n,m)) and error probability 1− ε.

Proof. For the deterministic algorithm, we just run over all seeds r, compute Hn,m(r) for
each r and check whether the black box polynomial evaluates to zero at Hn,m(r) for all r. If
not, P is of course not identically zero. Otherwise, P is identically zero by the definition
of hitting set. In the randomized case, we just take a random seed r and evaluate P at
Hn,m(r). J

I Definition 2.6. A function T : {0, 1}ρ × Zn′ → Zn is called a hitting set transformation
from PIT (n′,m′) to PIT (n,m) with success probability 1− β if for every hitting set H for
PIT (n′,m′) with hitting probability 1− ε,

{T (r, x) | r ∈ {0, 1}ρ, x ∈ H}

is a hitting set with hitting probability ≥ (1− β)(1− ε).

A hitting set transformation transforms a hitting set for PIT (n′,m′) into a hitting set
for PIT (n,m). It gets an additional random string r of length ρ. The size of the hitting set
is extended by a factor of at most 2ρ and we need an additional ρ random bits to draw a
sample from the transformed hitting set. The parameter β measures the loss of “quality”.

Of course, we again want uniform transformations, that is, T gets n and m as additional
inputs and ρ(n,m), n′(n,m) and m′(n,m) are functions depending on n and m. There is one
algorithm that computes T for all choices of n and m. Again, we will write Tn,m(r, x) instead
of T (n,m, r, x). For fixed n and m, T is a hitting set transformation in the sense of the
definition above. For fixed n and m, the time needed to evaluate a hitting set transformation
depends on the size of the elements in the hitting set we apply the transformation to. For a
hitting set H ⊆ Zn′ , the size of an element x ∈ H is the bit length of an encoding of x. (We
use some standard encoding here, e.g., integers are encoded by a signed binary representation,
thus the size is log |x|+ O(1). The size of tuples of integers is the sum of the sizes of the
integers in it.)

I Theorem 2.7. Let Hn′,m′ : {0, 1}ρ′ → Zn′ be a uniform hitting set generator for
PIT (n′,m′) with hitting probability 1− ε the evaluation time of which is bounded by t(n′,m′).
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Let Tn,m : {0, 1}ρ × Zn′ → Zn be a uniform hitting set transformation from PIT (n′,m′) to
PIT (n,m) with success probability 1− β which can be computed in time g(n,m, s) where s
is the maximal size of an element in the input hitting set. Then there are
1. a deterministic algorithm for PIT (n,m) the running time of which is O(2ρ(n,m)+ρ′(n′,m′) ·

(g(n,m, t(n′,m′)) + t(n′,m′))) and
2. a randomized algorithm for PIT (n,m) using ρ(n,m)+ρ′(n′,m′) random bits with running

time O(g(n,m, t(n′,m′)) + t(n′,m′)) and success probability (1− β)(1− ε).
Above, n′ and m′ are functions of n and m.
Proof. We start with the randomized algorithm. By the definition of hitting set transforma-
tion,

{Tn,m(r, x) | r ∈ {0, 1}ρ, x ∈ im(Hn′,m′))

will be a hitting set for PIT (n,m) with hitting probability (1− β)(1− ε). To sample from
this set, we choose two seeds r ∈ {0, 1}ρ(n,m) and r′ ∈ {0, 1}ρ′(n′,m′) uniformly at random.
We evaluate P at Tn,m(r,Hn′,m′(r′)) and claim that P is identically zero if the result is zero.
Otherwise, P is obviously not identically zero. By the definition of hitting probability, this
algorithm succeeds with probability (1− β)(1− ε).

For the running time, note that we evaluate Hn′,m′ once (in time O(t(n′,m′)) and Tn,m
once (in time O(g(n,m, t(n′,m′)). Note that the size of Hn′,m′(r′) can be at most t(n′,m′).

We get the deterministic algorithm by derandomizing this algorithm in a straight forward
manner: Just run over all seeds. J

Let X1, . . . , Xn and Y1, . . . , Yn′ be two sets of variables. A monomial substitution σ is
a mapping that maps each Xν to a monomial in Y1, . . . , Yn′ . Such a substitution naturally
induces a ring homomorphism, which we also call σ, from R[X1, . . . , Xn] to R[Y1, . . . , Yn′ ].
Since a monomial substitution cannot increase the number of monomials of a polynomial, this
ring homomorphism maps polynomials in Rm[X1, . . . , Xn] to polynomials in Rm[Y1, . . . , Yn′ ],
too. A randomized monomial substitution gets an additional seed r ∈ {0, 1}ρ and maps each
Xi to a monomial σr(Xi) in Y1, . . . , Yn′ that depends on the chosen r.
I Lemma 2.8. If there is a randomized monomial substitution as above such that for every
nonzero polynomial P ∈ Rm[X1, . . . , Xn],

Pr
r∈{0,1}ρ

[σr(P ) 6≡ 0] ≥ 1− β

then there is a hitting set transformation from PIT (n′,m) to PIT (n,m) with seed length ρ
and success probability 1− β.
Proof. Let H ′ be a hitting set for PIT (n′,m) with hitting probability 1− ε. We claim that

H := {(σr(X1)(y), . . . , σr(Xn)(y)) | r ∈ {0, 1}ρ, y ∈ H ′}

is a hitting set with hitting probability (1− β)(1− ε). Let P ∈ Rm[X1, . . . , Xn] be nonzero.
Note that evaluating P (x) for some x ∈ H is the same as first computing σr(P ) and then
plugging in y, where r and y are chosen such that x = σr(X1)(y), . . . , σr(Xn)(y).

With probability ≥ 1 − β, σr(P ) is nonzero. In this case, σr(P )(y) is nonzero with
probability 1− ε. Therefore, H has hitting probability (1− β)(1− ε). J

The time needed to compute the transformation depends on the degree of the monomials
generated by the substitution (and on the time needed to compute the monomials, but this
will be negligible in the following). If we have a uniform monomial substitution, that is, a
substitution that gets n as an additional parameter and n′ depends on n, then we also get a
uniform hitting set transformation with m′ = m.
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3 Deterministic Algorithm

We continue with presenting our deterministic algorithm. It will have a running time
of Õ

(
m3n3), which is independent of the degree of the polynomial. We start with a

simple hitting set generator for PIT (1,m) and build a hitting set transformation from
PIT (1,m) to PIT (n,m). The running time of the transformation will depend polynomially
on m. Therefore, we only get a good deterministic algorithm with this approach but not a
randomized one (which should have a running time that is polynomial in logm).

Algorithm 1 Descartes Generator for PIT (1,m)

1: Input: Seed r ∈ {0, 1}log(m/ε)

2: Use the seed r to choose y ∈ {1, . . . , mε } uniformly at random.
3: Output: y

I Theorem 3.1. Algorithm 1 is a uniform hitting set generator for PIT (1,m) with hitting
probability 1− ε. The seed length is log m

ε , the evaluation time is O(log m
ε ) and the output

size is log m
ε + O(1).

Proof. A real polynomial P with m monomials can have at most m− 1 positive real roots
by Descartes’ rule of signs (see e.g., [8]). Hence, the hitting probability is ≥ m/ε−m

m/ε = 1− ε.
The other statements are clear from the construction. J

3.1 Hitting Set Transformation
Next, we design a hitting set transformation from PIT (1,m) to PIT (n,m). The construction
is based on results by Klivans and Spielman [16, Section 3]. However, the construction by
Klivans and Spielman depends on the degree. We refine the construction in such a way that
it becomes independent of the degree.

In the following, x · y denotes the standard inner product
∑n
ν=1 xνyν of two vectors x

and y in an n-dimensional vector space. Let N = mn
β and q be a prime with N < q ≤ 2N .

For 1 ≤ i ≤ N , let ai denote the vector
(
1, i mod q, i2 mod q, . . . , in−1 mod q

)T ∈ Znq . The
entries of ai are denoted by ai,1, . . . , ai,n.

I Lemma 3.2. Let N = mn
β and q be a prime such that N ≤ q ≤ 2N . Let b = (b1, . . . , bn)T ∈

Zn be a vector not equal to zero. Then ai · b is zero for at most n− 1 indices i.

Proof. Let e be the largest exponent such that qe|bν for every 1 ≤ ν ≤ n. Let cν = bν
qe and c

be the vector (c1, . . . , cn)T . We now reduce every entry of c modulo q and call this vector ĉ.
This is a nonzero vector by the choice of e.

Let i1, . . . , in be n pairwise distinct indices. Consider the matrix

M :=

 ai1,1 · · · ai1,n
...

. . .
...

ain,1 · · · ain,n

 .

This is a Vandermonde matrix over Zq. Since i1, . . . , in are pairwise distinct, M is invertible.
Hence M · ĉ is nonzero as ĉ is nonzero. This means that there exists an ` ∈ {1, . . . , n} such
that ai` · ĉ 6= 0 over Zq. Therefore ai` · c 6= 0 over Z. This implies ai` · b = ai` · qec 6= 0. Thus,
we found at least one i, namely i`, for which ai` · b is not equal to zero. Since i1, . . . , in were
arbitrary, the claim of the lemma follows. J
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Algorithm 2 Transformation from PIT (1,m) to PIT (n,m)

1: Input: Seed r ∈ {0, 1}log(mn/β), y ∈ Z
2: Let N = mn

β and N < q ≤ 2N be a prime.
3: Use the seed r to choose i ∈ {1, . . . , N} uniformly at random.
4: Compute yai,ν for every 1 ≤ ν ≤ n.
5: Output: (yai,1 , yai,2 , . . . , yai,n)

Algorithm 2 is our hitting set transformation. It implements a randomized monomial
substitution: We pick one ai uniformly at random and replace every variable Xν in our
polynomial by Y ai,ν . Our substitution is similar to the one by Klivans and Spielman; however,
our choice of the prime q is independent of δ.

I Lemma 3.3 (Correctness). Algorithm 2 is a uniform hitting set transformation from
PIT (1,m) to PIT (n,m) with success probability 1− β.

Proof. Let P =
∑m
µ=1 αµX

δµ,1
1 · · ·Xδµ,n

n be a nonzero polynomial in Rm[X1, . . . , Xn]. Let
bµ be the vector (δµ,1 − δ1,1, . . . , δµ,n − δ1,1)T for 2 ≤ µ ≤ m. These vectors are nonzero and
there are at most m− 1 of these vectors.

Let us now look at ai · bµ. Lemma 3.2 tells us that for every µ at most n− 1 choices of i
set this scalar product to zero. Therefore, for at most (m− 1)(n− 1) indices i, there is a µ
with ai · bµ = 0. There are N possible values for i.

For a randomly chosen i the probability that ai · bµ 6= 0 for all µ is at least

N − (m− 1)(n− 1)
N

≥ 1− β.

So with probability ≥ 1− β, ai · bµ 6= 0 for 2 ≤ µ ≤ m. Let us denote by δµ the vector
(δµ,1, . . . , δµ,n)T . By the definition of bµ, ai · δµ 6= ai · δ1 for 2 ≤ µ ≤ m. This means that our
monomial α1X

δ1,1
1 · · ·Xδ1,n

n is not canceled by αµX
δµ,1
1 · · ·Xδµ,n

n for every 2 ≤ µ ≤ m. This
implies that the image P̂ of P under the monomial substitution Xν 7→ Y ai,ν , 1 ≤ ν ≤ n, is
nonzero with probability 1 − β. Hence, the algorithm computes a randomized monomial
substitution. Lemma 2.8 finishes the proof. J

I Lemma 3.4 (Runtime and Randomness). Algorithm 2 has a seed length of log mn
β and a

running time of O
(
mn
β log2 mn

β log log mn
β + mn2

β log y
)
, where y is the input.

Proof. Let us start with the runtime. We need O(N log2 N log logN) bit operations to
find all primes from 2 to 2N by the Sieve of Eratosthenes (see e.g., [7]). Hence, we need
O(mnβ log2 mn

β log log mn
β ) steps for finding our prime number.

A prime q with N < q ≤ 2N exists by Bertrand’s postulate. The entries of one ai have
at most log(mnβ ) + O(1) bits. To compute the entries, we need to multiply two numbers of
at most log(mnβ ) + O(1) bits because we compute modulo q. We do n multiplications of this
form. Hence the computation of one vector ai takes at most O(n log2 mn

β ) steps. The values
yai,ν are numbers with mn

β log y bits. By using repeated squaring, we can compute one of
the entries in time O(mnβ log y) and all values yai,ν , 1 ≤ ν ≤ n, in time O(n · mnβ log y).

The number of random bits used is clear from the construction. J

3.2 Final Algorithm
We now have all the necessary pieces to construct our deterministic algorithm.
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I Theorem 3.5. There exists a deterministic algorithm which tests if a polynomial given as
a black box is equivalent to the zero polynomial in Õ

(
m3n3) steps.

Proof. We take Algorithm 1 and Algorithm 2 to construct a deterministic algorithm for
PIT (n,m) using Theorem 2.7. Choose arbitrary ε, β, both smaller than 1

4 . Plugging theses
values into Theorem 2.7 yields an algorithm with a running time of

O
(
2logmn+logm · (mn log2 mn log logmn+mn2 logm+ logm)

)
= Õ

(
m3n3) .

Note that t (1,m) is logm. J

This construction gives us an efficient deterministic algorithm which has a runtime
independent of the degree.

4 Randomized Algorithm

Let us continue with our randomized algorithm. Instead of starting with univariate poly-
nomials, as in the deterministic case, we start with multivariate polynomials that have a
significantly smaller number of variables, namely dlog qe + 1. Note that log q is roughly
logm+ logn.

Our transformation from PIT (dlog qe+ 1,m) to PIT (n,m) will be very helpful as the
number of random bits that the hitting set generator uses is linear in the number of variables.
With the transformation mentioned above, we can efficiently reduce the number of variables
our underlying hitting set generator has to work on.

Again, we divide the construction into three parts. First, we present a hitting set generator
for multivariate polynomials. We continue with our transformation which uses the vectors ai
defined in the previous section. Finally, we combine the generator and the transformation
yielding a hitting set generator with runtime polynomial in n, logm and log 1

ε and seed
length O(log2 mn

ε ).

4.1 Hitting Set Generator for Multiple Variables

Our hitting set generator is a modified version of the Schwartz-Zippel generator. We adapt
it to sparse polynomials over the reals in such a way that the runtime and the seed length
become independent of the degree.

I Lemma 4.1. Let P ∈ Rm[X1, . . . , Xn] be a nonzero polynomial. Let zν , 1 ≤ ν ≤ n, be
drawn independently and uniformly at random from Z ⊆ Z and let z = (z1, . . . , zn). Then

Pr
z∈Zn

[P (z) = 0] ≤ mn

|Z|
.

Proof. We prove the lemma by induction in n, in a similar fashion to the proof of the original
lemma. If n = 1 then the claim follows from Descartes’ rule of signs.

If n > 1, we can write P as
∑m′

µ=1 X
δµ,1
1 Pµ (X2, . . . , Xn) where m′ ≤ m. We look at the

polynomial as a polynomial in R[X2, . . . , Xn][X1], a polynomial in X1 with coefficients from
R[X2, . . . , Xn].
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We have

Pr
z

[P (z) = 0] = Pr
z

[P (z1, . . . , zn) = 0|P1 (z2, . . . , zn) = 0] · Pr
z

[P1 (z2, . . . , zn) = 0]

+ Pr
z

[P (z1, . . . , zn) = 0|P1 (z2, . . . , zn) 6= 0] · Pr
z

[P1 (z2, . . . , zn) 6= 0]

≤ Pr
z

[P1 (z2, . . . , zn) = 0] (1)

+ Pr
z

[P (z1, . . . , zn) = 0|P1 (z2, . . . , zn) 6= 0] . (2)

We can bound (1) using the induction hypothesis and (2) by Descartes’ rule of signs, as P ,
after plugging in z2, . . . , zn, is a nonzero univariate polynomial with at most m monomials.
This yields the bound

Pr
z

[P (z) = 0] ≤ (n− 1)m
|Z|

+ m

|Z|
= nm

|Z|
,

which proves the lemma. J

Algorithm 3 Schwartz-Zippel Hitting Set Generator
1: Input: Seed r ∈ {0, 1}n log(mn/ε)

2: Use the seed r to choose z ∈ {1, . . . , mnε }
n

3: Output: z

I Theorem 4.2. Algorithm 3 is a uniform hitting set generator for PIT (n,m) with hitting
probability 1− ε. The seed length is n log mn

ε , the evaluation time is O
(
n log mn

ε

)
and the

output size is O
(
n log mn

ε

)
.

Proof. The running time and randomness used are clear from the construction. We can use
Lemma 4.1 for bounding the error probability: For nonzero P ,

Pr
z

[P (z) = 0] ≤ mn

|Z|

which in our case can be bounded by mn
mn/ε = ε. J

As it is, the Schwartz-Zippel hitting set generator is very inefficient. The number of
random bits used depends linearly on the number of variables. The reason for this is that in
the proof, we assume that P1 has m monomials but also P as a univariate polynomial in X1
has m monomials. If we knew tighter bounds then we would be able to reduce the number
of random bits used. However, we cannot assume that we know such bounds in the black
box model. Therefore, we will try to reduce the number of variables instead by a suitable
monomial substitution.

4.2 Hitting Set Transformation
We will use our ai as previously defined. Let ai = (ai,1, . . . , ai,n), N , and q be as in Lemma 3.2.
We define ai,ν,κ by

ai,ν =
dlog qe∑
κ=0

ai,ν,κ2κ,

that is, ai,ν,κ, 0 ≤ κ ≤ s is the binary expansion of ai,ν . For the rest of the paper let
s = dlog qe.
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Algorithm 4 Transformation from PIT (s+ 1,m) to PIT (n,m)

1: Input: Seed r ∈ {0, 1}log(mn/β), y0, . . . , ys
2: Let N = mn

β and N < q ≤ 2N be a prime.
3: Use the seed r to choose i ∈ {1, . . . , N} uniformly at random.
4: Set zν to yai,ν,00 · · · yai,ν,ss for every 1 ≤ ν ≤ n.
5: Output: (z1, . . . , zn)

I Lemma 4.3 (Correctness). Algorithm 4 is a uniform hitting set transformation from
PIT (s+ 1,m) to PIT (n,m) with success probability 1− β.

Proof. Let T be our transformation and let P be a nonzero polynomial. T essentially
implements the following monomial substitution: Xν 7→ Y

ai,ν,0
0 · · ·Y ai,ν,ss , 1 ≤ ν ≤ n. If we

now replace each Yj by Y 2j , then Xν 7→ Y

∑s

j=1
ai,ν,j2j = Y ai,ν , 1 ≤ ν ≤ n and we get the

same substitution as used in the transformation for the deterministic algorithm in Section 4.1.
Since for this combined substitution, the probability that P is mapped to zero is at most β,
this has to be true for the substitution Xν 7→ Y

ai,ν,0
0 · · ·Y ai,ν,ss , too. Now the claim follows

from Lemma 2.8. J

Before we prove the bounds on our transformation we need to take a short excursion on
finding prime numbers. We state a proof of this well-known result for the sake of completeness.

I Lemma 4.4 (Finding primes with few random bits). We can find a prime q of size N < q ≤
2N with success probability 1 − ε in time poly

(
logN, log 1

ε

)
steps using O

(
logN + log 1

ε

)
random bits.

Proof. We construct log2 N pairwise independent bit strings of length logN . We can do this
using only 2 logN random bits as stated by Luby and Wigderson [19]. We deterministically
test whether each number is prime by using the algorithm developed by Agrawal, Kayal and
Saxena [2] using O(log6 N) steps. By the Chebyshev bound, one of these number is prime
with probability 1− o(1).

We can increase the probability to 1− ε (think of ε being a small function) by doing a
random walk on an expander graph which costs us O

(
log 1

ε

)
extra random bits [4]. J

I Lemma 4.5 (Runtime and Randomness). Our hitting set transformation has a seed
length of O(log mn

β ) bits and a runtime polynomial in logm, n, log 1
β , and log y, where

y = max{|y0|, . . . , |ys|}

Proof. If we want to have an overall error probability of β we have to set the error for the
prime finding algorithm to β/2 and adjust our choice of β in the transformation to β/2.

Let us take a closer look at the runtime bounds. We need

O
(

log8 2mn
β

+ log 2
β

)
= O

(
log8 mn

β

)
steps for finding the prime number. Computing the ai takes us, as seen in the previous
transformation, O(n log2 2mn

β ) steps. To calculate the zν , we multiply at most s+ 1 numbers
with log y bits. This needs total time of O(n · s · log y). Since s = O(logm+ logn+ log 1

β ),
the total running time is poly(logm,n, log 1

β , log y).
The randomness used is clear. We need O(log mn

β ) random bits for generating the ai as
in Lemma 3.4. Our prime finding needs O(log mn

β ) random bits as well. J
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4.3 Final Algorithm
Again, we combine our hitting set generator with our hitting set transformation to get our
randomized algorithm.

I Theorem 4.6. There exists a probabilistic algorithm for PIT (n,m). It has success proba-
bility ≥ 1 − ε, uses O(log2 mn

ε ) random bits, and has runtime polynomial in n, logm and
log 1

ε .

Proof. We combine Algorithm 3 with Algorithm 4 and use again Theorem 2.7. We set both
error parameters to be ε

2 . Let us look at the running time. Note that Algorithm 3 now works
on s+ 1 variables which is dlog qe+ 1. This is of course in O

(
log mn

ε

)
. The total running

time is

poly
(

logm,n, log 1
ε
, s, log y

)
+ O(s log ms

ε
).

In our case log y is at most logN . This gives us a runtime bound of poly
(
logm,n, log 1

ε

)
.

The algorithm uses

O
(

(s+ 1) log 2m (s+ 1)
ε

+ log mn
ε

)
random bits. It is easy to see that this O(log2 mn

ε ), as s = O(log mn
ε ). J

Note that our algorithm also allows for a so-called time-randomness tradeoff like some of
the previous tests mentioned in the introduction do. When ε > 1

mn , then we just run the
algorithm with some constant error probability and decrease the error probability to 1

mn

by doing a random walk on an expander with an additional O(logmn) random bits. When
ε ≤ 1

mn then increase the success probability by just spending more time instead of more
random bits by just running over all choices for the extra O(log2 1

ε ) random bits and doing a
majority vote. The running time in the second case is only quasipolynomial in 1

ε , however.
It remains an open problem whether we can bring down the number of random bits to

O(logm), which would match the lower bound of (1 − ε) · logm. One approach could be
to decrease the number of random bits used in the Schwartz-Zippel Hitting Set Generator.
While it is clear that we do an overapproximation on the number of monomials for many
polynomials in the proof, it is not clear how we can use this fact.
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Abstract
A normal Hall subgroup N of a group G is a normal subgroup with its order coprime with

its index. Schur-Zassenhaus theorem states that every normal Hall subgroup has a complement
subgroup, that is a set of coset representatives H which also forms a subgroup of G. In this paper,
we present a framework to test isomorphism of groups with at least one normal Hall subgroup,
when groups are given as multiplication tables. To establish the framework, we first observe that
a proof of Schur-Zassenhaus theorem is constructive, and formulate a necessary and sufficient
condition for testing isomorphism in terms of the associated actions of the semidirect products,
and isomorphisms of the normal parts and complement parts.

We then focus on the case when the normal subgroup is abelian. Utilizing basic facts of
representation theory of finite groups and a technique by Le Gall in [9], we first get an efficient
isomorphism testing algorithm when the complement has bounded number of generators. For
the case when the complement subgroup is elementary abelian, which does not necessarily have
bounded number of generators, we obtain a polynomial time isomorphism testing algorithm by
reducing to generalized code isomorphism problem. A solution to the latter can be obtained
by a mild extension of the singly exponential (in the number of coordinates) time algorithm
for code isomorphism problem developed recently by Babai in [3]. Enroute to obtaining the
above reduction, we study the following computational problem in representation theory of finite
groups: given two representations ρ and τ of a group H over Zdp , p a prime, determine if there
exists an automorphism φ : H → H, such that the induced representation ρφ = ρ ◦ φ and τ are
equivalent, in time poly(|H|, pd).
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Complexity
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1 Introduction

The Group Isomorphism problem(GpI) is a computational problem intriguing for both com-
plexity theorists as well as computational group theorists. Given two finite groups G and H,
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preserving group operations, namely ∀g, h ∈ G, φ(g · h) = φ(g) · φ(h). Naturally, the com-
plexity of the problem depends on how the group is represented: if the groups are given
as presentations (generators and relations), then it is undecidable [8, 1]. For permutation
groups given as generators, the best upper bound known [6] is PSPACE.

The least succinct input format, multiplication table (Cayley table), gives rise to a more
interesting scenario from a complexity theoretic perspective. For this case, the problem is
known to be easier than the well-known Graph Isomorphism problem (GrI) [13], thus giving
an upper bound of NP ∩ coAM. However, unlike many other isomorphism-type problems, a
reduction in the reverse direction is not known[13]. A recent work [7] shows that GrI can not
be AC0 reducible to GpI. Another distinction between GpI and GrI lies in the best known
algorithms for them. The best known algorithm for GrI is 2Õ(

√
n) [5], where n is the size of

the graph. For groups of size n with b generators, in [16] Tarjan is credited for pointing out
an nb+O(1) algorithm. Then by the observation that every group has a generating set of size
dlogne, we get an nlogn+O(1) algorithm for testing isomorphism of general groups. This is
improved by Lipton, Snyder and Zalcstein [14], who gave an algorithm running in O(log2 n)
space. However, whether a polynomial time algorithm exists is still open.

1.1 Progress for testing isomorphism of restricted classes of groups
There has been some progress on group isomorphism problem for restricted classes of groups.
The class of groups with bounded number of generators (say, of size b) can be tested efficiently
by the nb+O(1) algorithm. For abelian groups, Savage [19] first gave an O(n2) algorithm,
which was improved to O(n logn) by Vikas [24] and finally to O(n) by Kavitha [11]. Little
is known beyond abelian groups until 2008, when Le Gall [9] showed that isomorphism of
groups in the form of semidirect products of an abelian group and a cyclic group, whose
orders are coprime, can be tested in almost linear time even in the model of black-box groups.
The class of p-groups seems to be the current barrier, though recent works by Wilson [25, 26]
on the structure of p-groups are noteworthy.

Recently, Kayal and Nezhmetdinov [12] and Wilson [27] address the problem of finding
the factors of a group under the direct product operation (Wilson [27] considers a stronger
model, that is permutation groups given as generators). They show that given a group,
all its direct factors can be computed efficiently. As pointed out in [12], this result can
be interpreted in the context of isomorphism testing as follows: by Remak-Krull-Schmidt
theorem, two groups are isomorphic if and only if their direct factors are isomorphic up to
appropriate correspondence of the factors. Thus, the class of groups that are direct products
of groups with known efficient isomorphism testing procedure can be tested efficiently.

This argument suggests the following strategy: suppose for some group class, the groups
can be decomposed into smaller subgroups in some canonical way. Then after decomposition,
isomorphism testing of the original groups may reduce to testing isomorphism of the building
blocks, and then pasting solutions of building blocks back together. In the case of direct
product, decomposition is solved in [12] and [27], and “pasting” is trivial due to Remak-
Krull-Schmidt theorem. Now it is natural to ask if this strategy can be extended to the case
of less stringently defined products. The next natural target is that of semidirect products,
which is already considered in [9]. A group G is the semidirect product of a normal subgroup
N by a subgroupH ifG = NH andN∩H = {id}. Every h ∈ H can act onN by conjugation,
giving rise to a homomorphism from H to Aut(N), called the action associated with the
semidirect product. Unlike direct product, a semidirect product G = N oτ H is canonical
only with respect to the associated action. For the special class considered in [9], due to this
reason Le Gall needs to solve the problem of testing whether two automorphisms of abelian
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groups are conjugate or not (when the automorphisms satisfy some property), for which he
gives an efficient algorithm.

1.2 Our result: a framework for testing isomorphism of groups with
normal Hall subgroups

A Hall divisor m of an integer n is a divisor of n such that (m,n/m) = 1. A normal Hall
subgroup is a normal subgroup whose order is a Hall divisor of the order of the group. In
this paper, we consider the class of groups with at least one normal Hall subgroup, and use
H to denote this group class. It turns out this condition suggests some interesting properties
of the group structure. For a given Hall divisor of the size of the group, if the normal Hall
subgroup of this size exists then it is a characteristic subgroup. Schur-Zassenhaus theorem
states that a normal Hall subgroup always has a complement, that is a set of representatives
forming a subgroup. Thus the semidirect product arises naturally for groups in H. Note
that H contains all groups of order 2 · pk, p a prime other than 2, and all nilpotent groups
that are not p-groups. To see the first point, note that a Sylow p-subgroup is normal as it
is of index 2, and the second point follows due to that a nilpotent group is direct product
of its Sylow subgroups.

Inspired by [9], we begin with formalizing the strategy for isomorphism testing discussed
in Section 1.1 for the class H. As a first step, we need to have an efficient decomposition
procedure. The observation is that the proof of Schur-Zassenhaus theorem is efficiently
constructive, establishing the following theorem about finding a complement of a normal
Hall subgroup.

I Theorem 1.1. (Algorithmic Schur-Zassenhaus theorem) For a group G of order n, given
as multiplication table, all its normal Hall subgroups can be computed in time O(n4). Given
a specific normal Hall subgroup, one of its complements can be computed in time O(n4).

In the second step, we need to consider how isomorphism of the original groups connects
isomorphisms of the components. Our next result, which has been discovered by Taunt [23]
in the context of construction of finite groups, is the formulation of a necessary and sufficient
condition of the original groups being isomorphic in Theorem 4.1. That condition involves
the actions associated with the semidirect products, and the isomorphisms of the normal and
complement parts. It is not listed here, partly due to its technicality, but the main reason
is that as discussed, we need to turn our focus to the case when the factors of semidirect
product are efficiently testable. The following notations will help us to talk about the group
classes of the factors in the semidirect product. Given two groups X and Y whose orders
are coprime, H(X,Y ) is the class of groups with a normal Hall subgroup isomorphic with
X, and a complement isomorphic with Y . For two group classes X and Y, H(X ,Y) is the
class of groups with a normal Hall subgroup X from X and the complement Y from Y.
Note that X being a Hall subgroup implies that the orders of X and Y are coprime. That
is H(X ,Y) =

⋃
X∈X ,Y ∈Y,gcd(|X|,|Y |)=1H(X,Y ).

We set notations for some group classes with known isomorphism testing/computing
procedure. Let A be the class of abelian groups. As subclasses of A, Ap is the class
of abelian p-groups, and E is the class of elementary abelian groups.

∏
E is the class of

direct products of elementary abelian groups. Bb is the class of groups with the number
of generators bounded by b. Note that B2 includes all finite simple groups1, symmetric

1 For readers unfamiliar with this fact, c.f. the first theorem in [15], and note that a simple abelian group
must be a cyclic group with prime order.
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groups and cyclic groups. When the specific number of generators is not of our concern, we
will simply write B. C = B1 is the class of cyclic groups. Finally, we let K be a variable
taking values from the class of groups with known efficient isomorphism testing/computing
procedure. In this article, we mainly consider the case when K is A or B, or subclasses of
A or B. To give an example of the use of the notations, the main result of [9] is an efficient
isomorphism testing/computing algorithm of H(A, C), while our main concrete results are
efficient algorithms for H(A,B) (when the complement has bounded number of generators),
and H(A, E) (when the complement is elementary abelian). H(A,B) improves the class
H(A, C) studied in [9].

1.3 Our result: efficient isomorphism testing of H(A, E), H(A,B)
Representation theory of finite groups studies the homomorphisms from abstract groups to
general linear groups. Such a homomorphism is called a representation. In Theorem 4.1,
when the normal subgroup is an elementary abelian group Zkp, p a prime, it naturally gives
rise to the following algorithmic problem in representation theory of finite groups which may
be of independent interest, which we call AutoInducedRepEquiv (short for finding the
Automorphism Induced Representation Equivalence).
I Problem 1. (AutoInducedRepEquiv) Given two representations ρ and τ of a group H
over Zdp, p a prime, determine if there exists an automorphism φ : H → H, such that the
induced representation ρφ = ρ ◦ φ and τ are equivalent, in time poly(|H|, pd).

The following theorem suggests that AutoInducedRepEquiv can not be got around
in order to solve isomorphism of groups from H(E ,K).

I Theorem 1.2. For groups from H(E ,K), isomorphism testing is many-one equivalent to
AutoInducedRepEquiv.

Using basic facts from representation theory, it is not hard to solve AutoInducedRepE-
quiv when the number of generators is bounded, giving an efficient testing algorithm of
H(E ,B). The non-trivial case is when the number of generators is not bounded. When the
complement is an elementary abelian group, we further reduce AutoInducedRepEquiv to
a mild generalization2 of the linear code isomorphism problem in singly exponential time,
which asks whether two linear subspaces are the same up to permutation of coordinates in
time exponential to the number of coordinates.

I Theorem 1.3. For groups from H(E , E), AutoInducedRepEquiv reduces to generalized
code isomorphism problem.

In a recent work [3], Babai presents an algorithm solving the code isomorphism problem
in singly exponential time in the number of coordinates, which is logarithmic of the size of
the group in our case, allowing us to establish the following.

I Corollary 1.4. There is an O(n6) algorithm testing isomorphism of groups from H(E , E).

It is worth noting that the number of groups in this class is lower bounded by nΩ(logn),
for certain infinite sequence of group size n. Applying a technique in [9], we extend this
further to provide an efficient isomorphism testing of groups from H(A, E). An O(nb+5)
algorithm for H(A,Bb) can also be derived in this framework, rediscovering what is known
in Section 8.9, [10] (see Section 4.2).

2 See Section 5 for specific points of generalization.
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I Theorem 1.5. For groups of size n from H(A, E), there is an algorithm in time O(n6)
testing isomorphism.

The rest of the paper is organized as follows. Section 2 contains the preliminaries. In
Section 3 we present the decomposition procedure into normal and complement parts ,
proving Theorem 1.1. In Section 4, we first present the condition that shows how testing
isomorphism of the original groups relates to that of the small groups. Then we prove
Theorem 1.2, elaborate on the framework, and show that how a technique from [9] allows us
to reduce from H(

∏
E , E) to H(A, E). Finally, in Section 5, we introduce generalized code

isomorphism, the reductions (Theorem 1.3) and show how to test isomorphism of H(A, E).
Due to the page constraints, we only give sketches of proofs for some propositions. We refer
the interested readers to a full version of this article for the detailed proofs and complete
algorithms.

2 Preliminaries

In this section we introduce some preliminary concepts and notations that we will be using.
We refer the reader to a standard text book [18] for basic concepts in Group theory.

An abelian group is a group with group operation commutative. Given a prime p, an
abelian p-group is an abelian group of order pk, k ∈ Z+, and an elementary abelian p-group
is Zkp. Every abelian group can be decomposed as direct product of cyclic groups by the
fundamental theorem of abelian groups.

For a group G, we say that G is the semidirect product of N by H, for N � G and
H ≤ G, written as G = N oH, if G = NH and N ∩H = {id}. For a given decomposition of
G = N oH, we call N the normal subgroup of this decomposition, and H the complement
subgroup. For a given N �G, from the definition of semidirect product it can be seen that
G = N oH if and only if there is a set of coset representatives of G/N closed under group
operation. We use CNh to denote the automorphism of N induced by h by conjugating action.
Formally, CNh : N → N by n→ hnh−1. This gives an homomorphism of τ : H → Aut(N), by
sending h to CNh . When we write G = NoτH, τ is the associated homomorphism from H to
Aut(N) acting by conjugation. Conversely, given two groupsN andH, and a homomorphism
τ : H → Aut(N) (we will use τh to denote the image of h under τ), a group G can be formed
as follows: elements in G are from N ×H, and we let (n, h) · (n′, h′) = (nτh(n′), hh′). This
gives a construction of (outer) semidirect product G = N oτ H.3

I Theorem 2.1. (Schur-Zassenhaus theorem, c.f. [18]) Let G be a finite group of order n,
and m is a Hall divisor of n. If there exists N � G, |N | = m, then we have H ≤ G such
that G = N oH. If H and H ′ are two complements of N , then H and H ′ are conjugate.

Representation theory of finite groups: we list basic notions and facts about rep-
resentation theory of finite groups, and we refer the reader to a standard text book [20] for
further details.

For a finite group G and a vector space V , a representation of G over V is a group
homomorphism φ : G→ GL(V ). There is always a trivial representation by mapping every
element in G to 1. If the underlying field of V is F, and V is of finite dimension d, a
homomorphism φ : G→ GL(d,F) is called a representation of G over F of dimension d. For

3 Note that actually G = N ′ oτ H ′, where N ′ = {(n, 1) | n ∈ N} and H ′ = {(1, h) | h ∈ H}. τ also
maps H ′ to Aut(N ′) naturally. As this is a simple embedding, for convenience we write G = N oτ H.
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a given representation φ : G → GL(d,F), a subspace of V , L is an invariant subspace, or a
sub-representation if ∀g ∈ G, φg(L) = L. ~0 and V are called trivial invariant subspaces. A
representation without non-trivial invariant subspaces is called an irreducible representation.
If φ and ρ are representations of a group G over spaces V and W (over a field F), then the
direct sum φ ⊕ ρ is the representation of G over V ⊕ W defined as: (φ ⊕ ρ)g(u + v) :=
φg(u) + ρg(v) for g ∈ G. A representation is completely reducible if it is a direct sum
of irreducible representations. Maschke’s theorem states that if characteristic of F is 0 or
coprime with |G|, then the representation over F is completely reducible.

Two representations φ : G→ GL(V ) and ψ : G→ GL(V ) are equivalent if there exists a
general linear map T : V → V such that φ(g) = Tψ(g)T−1 for every g ∈ G. A fact about
completely reducible representations is that two representations are equivalent if and only
if irreducible representations (up to equivalence) that appear in their decompositions are
the same. Specifically, decomposing a representation gives for every irreducible represen-
tation (up to equivalence) its multiplicity in that representation, and two representations
are equivalent if and only if for every irreducible representation the multiplicities are the
same. For a representation φ : G→ GL(F, d), and i ∈ [d], let Lφ(i) be the set of irreducible
representations with multiplicity i in the decomposition φ, and Lφ = (Lφ(i))i∈[d]. We say
Lφ = Lψ if and only if Lφ(i) = Lψ(i) for every i ∈ [d].

We use this straightforward criterion to test whether a representation is irreducible.
I Proposition 1. Let φ : G → GL(V ) be a representation. φ is irreducible if and only if
∀v ∈ V , v 6= ~0, 〈gv | g ∈ G〉 = V .

I Theorem 2.2. (Maschke’s theorem. Adaptation of [20], page 6, Theorem 1) Let φ : G→
GL(F, d) be a representation, gcd(|G|, char(F)) = 1. W ≤ V is a sub-representation of V .
Let p : V →W be a projection of V onto W , and the image of p′ = 1

|G|
∑
g∈G φ(g)◦p◦φ(g−1)

be W ′. Then W ′ is a sub-representation and V = W ⊕W ′.

Proposition 1 and Theorem 2.2 suggest the following procedure to decompose a represen-
tation into its irreducible components. Let φ : G → GL(V ) be a representation. For every
v ∈ V , test if 〈gv | g ∈ G〉 generates V . If so, it is an irreducible representation. Otherwise,
for a specific v, 〈gv | g ∈ G〉 is a sub-representation W . Then Theorem 2.2 helps to identify
a sub-representation W ′ such that V = W ⊕W ′. Recursively using the above procedure on
W and W ′ decomposes V into its irreducible components. This gives:
I Proposition 2. Given a representation φ : G→ GL(V ), its irreducible components can be
listed in time O(dim(V )2 · |V | · |G|).

Proposition 2 is sufficient for our purpose. But we remark that, in general, the decom-
position of modular representation (representations over fields of finite characteristic) can
be done much more efficient (c.f. [17] and Chapter 7.4 of [10]). Given two irreducible repre-
sentations, there is an efficient algorithm to determine whether they are equivalent (c.f.[10],
Chapter 7.5.3). For factoring polynomials of degree n over Zp, we use theO(p1/2(log p)2n2+ε)
algorithm in [21]. For computing canonical normal form of a linear transformation, Steel’s
algorithm [22] in time O(n4) suffices.

3 Decomposition into normal and complement parts

In this section we describe that for a given group, all its normal Hall subgroups and their
complements can be listed, proving Theorem 1.1, by providing the following two propositions.
I Proposition 3. Let G be a group of size n. For a Hall divisor m, if a normal Hall subgroup
of order m exists then it can be computed in time O(n3).
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I Proposition 4. Let G be a group of order n, and N a normal Hall subgroup of order m.
Then a complement of N can be found in time O(n4).

The two propositions give a natural way of listing the normal Hall subgroups and their
complements: for a given Hall divisor m of the group size n, compute the normal Hall sub-
group of sizem by Proposition 3 if it exists. Then compute its complement by Proposition 4.
Going over all Hall divisors lists all normal Hall subgroups and their complements.

Proposition 3 follows from that for a specific Hall divisor m, if the normal Hall subgroup
of m exists then it is generated by 〈gn/m | g ∈ G〉. Proof of Proposition 4 follows from the
constructive proof of Schur-Zassenhaus theorem [18], which can be rephrased as a recursive
algorithm. The base case of the algorithm is abelian groups, for which a complement can be
found starting with an arbitrary set of representatives. When the input is not abelian, the
algorithm branches into two cases depending on whether the normal subgroup is minimal.
The case using the Hall condition is when the normal subgroup is minimal, and we use the
Frattini argument and second isomorphism theorem to reduce to an instance of smaller size.

4 Condition for isomorphism testing

The next theorem shows how isomorphism of big groups reduces to that of components for
groups with normal Hall subgroups. This has been discovered by Taunt [23] in the context of
construction of finite groups, though he did not apply it to normal Hall subgroups explicitly.

I Theorem 4.1. (Theorem 3.3, [23]) Given G1 = N1 oτ H1, G2 = N2 oγ H2, with |N1| =
|N2|, |H1| = |H2|. N1 and N2 are normal Hall. Then G1 ∼= G2 if and only if there exist an
isomorphism ψ : N1 → N2, and an isomorphism φ : H1 → H2, such that, ∀h ∈ H1,

τ(h) = ψ−1 ◦ γ(φ(h)) ◦ ψ. (1)

4.1 Proof of Theorem 1.2
Theorem 1.2 states that isomorphism of H(E ,K) is equivalent to AutoInducedRepEquiv.
In this section we show the two reductions here.
Isomorphism of groups in H(E ,K) to AutoInducedRepEquiv: By listing all normal Hall
subgroups and their complements we can find two normal Hall subgroups of the same size
from two groups. Then to test isomorphism of the original group, we first use known
isomorphism procedure for normal and complement parts. Given the isomorphisms of the
normal and complement parts, the only task left is to test Equation 1, which, by composing
the isomorphisms of the normal and complement parts, becomes AutoInducedRepEquiv
naturally.
AutoInducedRepEquiv to isomorphism of groups in H(E ,K): In Section 2 we described
the standard construction that, given groups N , H and τ : H → Aut(N), defines a group
G = N oτ H. Thus, given two representations τ and γ of H over Zkp, we can construct
G1 = Zkp oτ H and G2 = Zkp oγ H, and then call the oracle to test if G1 and G2 are
isomorphic. By Theorem 4.1, the two representations are equivalent up to automorphism
action if and only if G1 and G2 are isomorphic. This gives the reduction.

4.2 A framework for testing isomorphism of groups from H(K,K)
Suppose we want to test isomorphism of two groups G1 and G2 from H(K,K). Given Theo-
rem 1.1, for any group all its normal Hall subgroups can be listed efficiently, so we can first
compare the orders of the normal Hall subgroups of G1 and G2, and output “not isomorphic”
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if there are no normal Hall subgroups of the same size. For normal Hall subgroups with
the same order, compute their complements using Proposition 4. Suppose we decompose
G1 = N1 oH1 and G2 = N2 oH2, with |N1| = |N2|. As the normal and complement parts
are from groups with known isomorphism computing procedure, run the isomorphism tests
between N1, N2 and H1, H2. If they are not isomorphic output “not isomorphic”. Now the
only task left is to test Equation 1. Recall that

∏
E denotes the class of direct products of

elementary abelian groups. The cases H(E ,B) and H(
∏
E ,B) are immediate: for H(E ,B),

the automorphisms of complements can be enumerated. For a given automorphism of the
complement, the problem is to test if two representations are equivalent. It can be solved by
decomposing the representations, and then noticing that equivalence of irreducible represen-
tations can be determined efficiently. For H(

∏
E ,B), like in H(E ,B), as the automorphisms

of the complement can be enumerated, for a given automorphism, the problem is to test
if the representations over the direct factors of the normal subgroup are equivalent. These
instances can be solved separately.

We remark that when the complement is in B, to find the complement it is easy to come
up with an efficient enumeration procedure (without using algorithmic Schur-Zassenhaus).
It is also noted that when the normal subgroup is

∏
E , the idea of treating the represen-

tations over the factors separately does not work in general unless an automorphism of the
complements is fixed as a priori. From the above discussion, the difficult case is when the
complement has no generating set of size O(1).

4.3 From H(∏ E ,K) to H(A,K): Le Gall’s technique
In [9], Le Gall presented a technique that reduces testing conjugation of automorphisms
of an abelian group to that of linear mappings, when the orders of the automorphisms are
coprime with that of the abelian group. We refer it as Le Gall’s technique in this paper.

I Lemma 4.2. (Le Gall’s technique) For a given abelian p-group A, and a generating set
S ⊆ A, let φ1 and φ2 be two automorphisms of A, given by listing the images of the generating
set. If p - |φ1| = |φ2|, there exists an efficiently-computable map Λp : Aut(A)→ GL(Zp, |S|),
such that φ1 and φ2 are conjugate if and only if Λp(φ1) and Λp(φ2) are conjugate.

We show that Le Gall’s technique allows us to reduce testing isomorphism of H(A,K)
to that of H(

∏
E ,K). For convenience we first explain how Le Gall’s technique allows us to

reduce isomorphism of H(Ap,K) to H(E ,K). Let G1 and G2 be decomposed as N1 oτ H1
and N2 oγH2, where N1 and N2 are abelian p-groups. Then decompose N1 and N2 into the
canonical form, and identify H1 and H2 as isomorphic. Now by Theorem 4.1, we need to
test if there exist ψ ∈ Aut(N1), and φ ∈ Aut(H), such that τ(h) and γ(φ(h)) are conjugate
by ψ, for every h ∈ H. Noting that p - |H|, Lemma 4.2 tells that this happens if and only
if Λp(τ(h)) and Λp(γ(φ(h))) are conjugate. Thus composing Λp with τ and γ, noting that
Λp ◦ τ and Λp ◦ γ send H to GL(Zp, k), we reduce the case of H(Ap,K) to H(Zkp,K). To
go from H(A,K) to H(

∏
E ,K) we just need to consider the factors of

∏
E separately and

apply the appropriate Λp.

5 Isomorphism of H(A, E)

The main result of this section is a reduction of the isomorphism testing problem for groups
in H(A, E) to the problem of generalized code isomorphism problem. We first introduce this
problem. For Fn, a linear code of dimension d is a subspace of dimension d. A generating
matrix of a code C of dimension d is a d by n matrix with row vectors being a basis of
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C. With abuse of notation we will also use C to denote the generating matrix of the code
C. Two codes C and D of dimension d over F are isomorphic if they are equivalent up to
permutation of coordinates. Formally, if there exists a d by d non-singular matrix G and an
n by n permutation matrix P such that GCP = D.

I Theorem 5.1. ([3]) For C and D be two linear codes given as generating matrices, their
isomorphism can be tested, and the coset of isomorphism be computed, in time (2 + o(1))n.

We generalizes code isomorphism problem slightly to get:
I Problem 2. (Generalized code isomorphism problem) Given two matrices d′ × n matrices
C ′ and D′ over the field F, and a permutation group S ≤ Sn, if there exists G ∈ GL(F, d′)
and a permutation matrix P ∈ S, such that GC ′P = D′.

The generalized code isomorphism problem generalizes code isomorphism problem in two
ways: first we do not require row vectors of C ′ and D′ to be linearly independent. Secondly
the permutation matrix P must come from a certain permutation group S. Its solution in
singly exponential time can be viewed as a corollary to Theorem 5.1, by applying a coset
intersection running in singly exponential time[2].

I Corollary 5.2. Given two d′×n matrices C ′ and D′, and a permutation group S, whether
C ′ and D′ are isomorphic can be tested, the coset of permutation matrices be computed, in
time (2 + o(1))n.

5.1 Representation of Z`
q over Zp

In this section, we recall basic facts concerning representations of Z`q over Zp, p, q two
different primes, and we refer the reader to standard textbooks for more details. First
suppose the cyclotomic polynomial Φq(x) factors as g1 · g2 · . . . · gr over Zp, in which gi’s are
monic polynomials with the same degree d = (q − 1)/r. It is noted that d is the order of p
in the multiplicative group (Z/qZ)×. Let M ∈ GL(Zp, d) be the companion matrix of g1.4
For v ∈ Z`q, v 6= ~0, we define v∗ : Z`q → Zq by mapping v∗(u) = (v, u) (the inner product of
v and u). Now define fv : Z`q → GL(Zp, d) by sending u → Mv∗(u). To unify notation let
f~0 : Z`q → Zp be the trivial representation. Then fv gives an irreducible representation of
Z`q over Zp, and {fv | v ∈ V } is the set of all irreducible representations. However, fv and
fu may be equivalent, for u, v ∈ V , as described in the following claim.
I Claim 1. Let fv and fu be two irreducible representations of Z`q over Zp induced from
v, u ∈ Z`q, v, u 6= ~0 as above. fv and fu are equivalent if and only if u = sv for s ∈ Zq, and
Ms and M are conjugate.

I Corollary 5.3. Let Sp,q be the set of s satisfying the condition in Claim 1, and d be the
order of p in the multiplicative group (Z/qZ)×. Then |Sp,q| = d.

Let τ : Z`q → GL(Zp, k) be a representation. Due to Maschke’s theorem, representations
of Z`q over Zp are completely reducible. Suppose τ = fk1

v1
⊕ · · · ⊕ fkt

vt
, for vi ∈ V , i ∈ [t],

k1 ≥ · · · ≥ kt ≥ 1. Note that t is bounded by 1 + b(k− 1)/dc or k/d, depending on whether
the trivial representation exists or not. We will assume when a representation is decomposed
as such, the multiplicities of irreducible components are arranged to be non-increasing. For

4 In fact, any d by d matrix with characteristic polynomial as g1 would suffice, and it does not matter if
we choose, say companion matrix of gi, for any i ∈ [r].
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a given multiplicity w ∈ [k], recall that Lτ (w) is the set of irreducible representations with
multiplicity w appearing in τ , and Lτ = (Lτ (w))w∈[k] determines a representation up to
equivalence. The problem of working with Lτ is that the irreducible representations are
“abstract”, while we need to actually know the form of the irreducible representations. The
idea is to use vectors to index irreducible representations, at the cost of losing uniqueness.

I Definition 5.4. Given a representation τ : Z`q → GL(Zp, k), and w ∈ [k], Lτ (w) is a set
of vectors such that for every irreducible representation f ∈ Lτ (w), there is a unique vector
v ∈ Lτ (w) such that fv and f are equivalent. Lτ = (Lτ (w))w∈[k]. Such a tuple of sets of
vectors is called an indexing tuple of Lτ .

I Remark. By Corollary 5.3, the number of different indexing tuples of Lτ is bounded by
dk/d ≤ (e1/e)k < 2k. (Note that we do not need to consider f~0.)

For two representations τ : Z`q → GL(Zp, k) and γ : Z`q → GL(Zp, k), τ and γ are
equivalent if and only if Lτ = Lγ . For two indexing tuples Lτ and Lγ of τ and γ, we also
use Lτ = Lγ to denote for every w ∈ [k], Lτ (w) = Lγ(w). An immediate consequence is the
following claim.
I Claim 2. Let τ : Z`q → GL(Zp, k) and γ : Z`q → GL(Zp, k) be two representations. τ and
γ are equivalent if and only if there exist indexing tuples of τ and γ, Lτ and Lγ , such that
Lτ = Lγ .

The induced representation of fv by φ ∈ GL(Zq, l) has a nice form: (fv ◦ φ)(u) =
fv(φ(u)) = Mv∗(φ(u)) = M (φT (v))∗(u) = fφT (v)(u). That is fv ◦φ = fφT (v). Note that for any
two representations g and h of an arbitrary group G and φ′ ∈ Aut(G), (g⊕h)◦φ′ = (g◦φ′)⊕
(h ◦ φ′). If follows that τ ◦ φ = fk1

φT (v1) ⊕ · · · ⊕ f
kt

φT (vt). For φ ∈ GL(Zq, l), and S ⊆ Z`q, Sφ is
the set obtained by applying φT to every vector in S. Thus Lτ◦φ = Lφτ

.= (Lτ (w)φ | w ∈ [k]).

5.2 Isomorphism of H(E , E): proof of Theorem 1.3
To test isomorphism of two groups G1 and G2 identified as Zkp oτ Z`q and Zkp oγ Z`q, by
Theorem 1.2 we can view τ and γ as two representations of Z`q over Zp of dimension k.
Then we need to solve AutoInducedRepEquiv problem for τ and γ. This is done, as
shown in Theorem 1.3, by reducing to generalized code isomorphism problem.

Since τ and γ are equivalent if and only if Lτ = Lγ , using Proposition 2 we decompose
τ and γ as τ = fk1

v1
⊕ · · · ⊕ fkt

vt
and γ = f `1

u1
⊕ · · · ⊕ f `t′

ut′ to get two specific indexing sets Lτ
and Lγ . Along with the decomposition, we can calculate the change of basis matrices S and
T , such that, the images of S(τ ◦φ)S−1 and TγT−1 are sets of block diagonal matrices with
blocks representing the irreducible representations. Also note that for a specific irreducible
representation, it is easy to identify an indexing vector of it, by examining which vector
maps to M , the companion matrix of some pre-determined factor of Φq(x) over Zp.

Given the decomposition, we first need to test if t = t′, and |Lτ (w)| = |Lγ(w)|, ∀w ∈ [k].
If the conditions are not satisfied τ and γ can not be equivalent under automorphism. For
now assume that the conditions are satisfied. By Lτ◦φ = Lφτ , we know the indexing tuple
of Lτ◦φ is to apply φT to the vectors in Lτ . From a specific indexing tuple Lτ , all indexing
tuples of Lτ can be enumerated based on Claim 1. From Remark 5.1, we can afford the
enumeration of all indexing tuples. Finally, by Claim 2, the only task left is to determine
whether there exists φ ∈ GL(Zp, `), such that Lφτ is a specific indexing tuple of Lγ , in time
poly(pk, q`), where pk · q` is the size of the original group.
I Proposition 5. Testing the existence of φ so that of LφT

τ = Lγ in time poly(pk, q`) reduces
to generalized code isomorphism problem in singly exponential time.



Y. Qiao, J. Sarma and B. Tang 577

Proof. Expand Lτ = (Lτ (1), . . . ,Lτ (k)) as

({v1, . . . , vs1}, {vs1+1, . . . , vs2}, . . . , {vsk−1+1, . . . , vsk
}),

in which s1 ≤ s2 ≤ · · · ≤ sk = t. Similarly expand Lγ as

({u1, . . . , us1}, {us1+1, . . . , us2}, . . . , {usk−1+1, . . . , usk
}).

LφT

τ is just ({φ(v1), . . . , φ(vs1)}, {φ(vs1+1), . . . , φ(vs2)}, . . . , {φ(vsk−1+1), . . . , φ(vsk
)}), LφT

τ =
Lγ can be formulated as finding φ ∈ GL(Zq, `) and σ ∈ Ss1 × Ss2−s1 × · · · × Ssk−sk−1 such
that φ(v1, . . . , vt)σ = (u1, . . . , ut). This is just generalized code isomorphism problem with
the permutation group Ss1 × Ss2−s1 × · · · × Ssk−sk−1 , whose the generators can be com-
puted as symmetric groups can be generated by two elements. The reduction takes time
poly(k, `). J

Thus the solution for generalized code isomorphism in singly exponential time gives the
algorithm for AutoInducedRepEquiv for elementary abelian groups, finishing the proof
of Theorem 1.3.

5.3 Isomorphism of H(A, E)
The idea for H(E , E) can be extended to H(

∏
E , E), as follows. Suppose we have G1 and

G2 identified as (
∏
i∈[s] Z

ki
pi

) o Z`q, with the associated actions as τ and γ, respectively.
Now we need to test if there exist ψ ∈

∏
i∈[s] GL(Zpi , ki) and φ ∈ GL(Zq, l) such that

τ(h) = ψ−1 ◦ γ(φ(h)) ◦ ψ, for every h ∈ Z`q. Let τi : H1 → GL(Zpi
, ki) be the projection

of τ into the ith component, and similarly we have γi : H2 → GL(Zpi , ki). This reduces
to testing for every i ∈ [s], if τi(h) and γi(φ(h)) are conjugate by ψi ∈ GL(Zpi

, ki), for
every h ∈ Z`q. Viewing τi’s and γi’s as representations and going through the decomposition
into irreducibles, we get Lτi

’s and Lγj
’s and similarly we need to determine if there exists

φ ∈ GL(Zq, l) such that LφT

τi
= Lγi

, for every i ∈ [s]. Now it is enough to group Lτi
’s

and Lγj ’s respectively, and view them as a single generalized code isomorphism instance.
Finally, Le Gall’s technique gives an efficient algorithm for groups from H(A, E).
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Abstract
We investigate the space complexity of certain perfect matching problems over bipartite graphs
embedded on surfaces of constant genus (orientable or non-orientable). We show that the prob-
lems of deciding whether such graphs have (1) a perfect matching or not and (2) a unique perfect
matching or not, are in the logspace complexity class SPL. Since SPL is contained in the logspace
counting classes ⊕L (in fact in ModkL for all k ≥ 2), C=L, and PL, our upper bound places the
above-mentioned matching problems in these counting classes as well. We also show that the
search version, computing a perfect matching, for this class of graphs is in FLSPL. Our results
extend the same upper bounds for these problems over bipartite planar graphs known earlier.

As our main technical result, we design a logspace computable and polynomially bounded
weight function which isolates a minimum weight perfect matching in bipartite graphs embedded
on surfaces of constant genus. We use results from algebraic topology for proving the correctness
of the weight function.
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1 Introduction

The perfect matching problem and its variations are one of the most well-studied prob-
lems in theoretical computer science. Research in understanding the inherent complexity of
computational problems related to matching has lead to important results and techniques
in complexity theory and elsewhere in theoretical computer science. However, even after
decades of research, the exact complexity of many problems related to matching is not yet
completely understood.

We investigate the space complexity of certain well studied perfect matching problems
over bipartite graphs. We prove new uniform space complexity upper bounds on these
problems for graphs embedded on surfaces of constant genus. We prove our upper bounds
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by solving the technical problem of ‘deterministically isolating’ a perfect matching for this
class of graphs.

Distinguishing a single solution out of a set of solutions is a basic algorithmic problem
with many applications. The Isolation Lemma due to Mulmulay, Vazirani, and Vazirani
provides a general randomized solution to this problem. Let F be a non-empty set system on
U = {1, . . . , n}. The Isolation Lemma says, for a random weight function on U (bounded by
nO(1)), with high probability there is a unique set in F of minimum weight [14]. This lemma
was originally used to give an elegant RNC algorithm for constructing a maximum matching
(by isolating a minimum weight perfect matching) in general graphs. Since its discovery,
the Isolation Lemma has found many applications, mostly in discovering new randomized or
non-uniform upper bounds, via isolating minimum weight solutions [14, 15, 8, 1]. Clearly,
derandomizing the Isolation Lemma in sufficient generality will improve these upper bounds
to their deterministic counterparts and hence will be a major result. Unfortunately, recently
it is shown that such a derandomization will imply certain circuit lower bounds and hence
is a difficult task [3].

Can we bypass the Isolation Lemma altogether and deterministically isolate minimum
weight solutions in specific situations? Recent results illustrate that one may be able to
use the structure of specific computational problems under consideration to achieve non-
trivial deterministic isolation. In [4], the authors used the structure of directed paths in
planar graphs to prescribe a simple weight function that is computable deterministically in
logarithmic space with respect to which the minimum weight directed path between any two
vertices is unique. In [6], the authors isolated a perfect matching in planar bipartite graphs.
In this paper we extend the deterministic isolation technique of [6] to isolate a minimum
weight perfect matching in bipartite graphs embedded on constant genus surfaces.

Our Contribution

Let G be a bipartite graph with a weight function w on it edges. For an even cycle C =
e1e2 · · · e2k, the circulation of C with respect to w is the sum

∑2k
i=1(−1)iw(ei). The main

technical contribution of the present paper can be stated (semi-formally) as follows.

Main Technical Result. There is a logspace matching preserving reduction f , and a
logspace computable and polynomially bounded weight function w, so that given a bipartite
graph G with a combinatorial embedding on a surface of constant genus, the circulation of
any simple cycle in f(G) with respect to w is non-zero. (This implies that the minimum
weight perfect matching in f(G) is unique [6]).

We use this result to establish (using known techniques) the following new upper bounds.
Refer to the next section for definitions.

New Upper Bounds. For bipartite graphs, combinatorially embedded on surfaces of con-
stant genus the problems Decision-BPM and Unique-BPM are in SPL, and the problem
Search-BPM is in FLSPL.

SPL is a logspace complexity class that was first studied by Allender, Reinhardt, and
Zhou [1]. This is the class of problems reducible to the determinant with the promise that
the determinant is either 0 or 1. In [1], the authors show, using a non-uniform version of
Isolation Lemma, that perfect matching problem for general graphs is in a ‘non-uniform’
version of SPL. In [6], using the above-mentioned deterministic isolation, the authors show
that for planar bipartite graphs, Decision-BPM is in fact in SPL (uniformly). Recently,
Hoang showed that for graphs with polynomially many matchings, perfect matchings and
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many related matching problems are in SPL [9]. SPL is contained in logspace counting
classes such as ModkL for all k ≥ 2 (in particular in ⊕L), PL, and C=L, which are in turn
contained in NC2. Thus the upper bound of SPL that we prove implies that the problems
Decision-BPM and Unique-BPM for the class of graphs we study are in these logspace
counting classes as well.

The techniques that we use in this paper can also be used to isolate directed paths in
graphs on constant genus surfaces. This shows that the reachability problem for this class
of graphs can be decided in the unambiguous class UL, extending the results of [4]. But this
upper bound is already known since recently Kynčl and Vyskočil show that reachability for
bounded genus graphs logspace reduces to reachability in planar graphs [11].

Matching problems over graphs of low genus have been of interest to researchers, mainly
from a parallel complexity viewpoint. The matching problems that we consider in this
paper are known to be in NC. In particular in [10], the authors present an NC2 algorithm
for computing a perfect matching for bipartite graphs on surfaces of O(logn) genus (readers
can also find an account of known parallel complexity upper bounds for matching problems
over various classes of graphs in their paper). However, the space complexity of matching
problems for graphs of low genus has not been investigated before. The present paper takes
a step in this direction.

Proof Outline. We assume that the graph G is presented as a combinatorial embedding on
a surface (orientable or non-orientable) of genus g, where g is a constant. This is a standard
assumption when dealing with graphs on surfaces, since it is NP-complete to check whether
a graph has genus ≤ g [16]. We first give a sequence of two reductions to get, from G, a
graph G′ with an embedding on a genus g ‘polygonal schema in normal form’. These two
reductions work for both orientable and non-orientable cases. At this point we take care of
the non-orientable case by reducing it to the orientable case. Once we have the embedding
on an orientable polygonal schema in normal form, we further reduce G′ to G′′ where G′′
is embedded on a constant genus ‘grid graph’. These reductions are matching preserving,
bipartiteness preserving and computable in logspace. Finally, for G′′, we prescribe a set of
4g+ 1 weight functions, W = {wi}1≤i≤4g+1, so that for any cycle C in G′′, there is a weight
function wi ∈ W with respect to which the circulation of C is non-zero. Since g is constant,
we can take a linear combination of the elements in W, for example

∑
wi∈W wi × (nc)i

(where n is the number of vertices in the grid) for some fixed constant c (say c = 4), to get
a single weight function with respect which the circulation of any cycle is non-zero.

The intuition behind these weight functions is as follows (for some of the definitions,
refer to later sections). The set W is a disjoint union W1 ∪W2 ∪ {w} of the sets of weight
functions W1, W2, and {w}. Consider a graph G embedded on a fundamental polygon with
2g sides. There are two types cycles in G: surface separating and surface non-separating.
A basic theorem from algebraic topology implies that a surface non-separating cycle will
intersect at least one of the sides of the polygon an odd number of times. This leads to
2g weight functions in W1 to take care of all the surface non-separating cycles. There are
two types of surface separating cycles: (a) ones which completely lie inside the polygon and
(b) the ones which cross some boundary. Cycles of type (a) behave exactly like cycles in
the plane so the weight function w designed for planar graphs works (from [6]). For dealing
with cycles of type (b), we first prove that if such a cycle intersects a boundary, it should
alternate between ‘coming in’ and ‘going out’. This leads to 2g weight functions inW2 which
handle all type (b) cycles.

Figure 1 gives a pictorial view of the components involved in the proof of our main
technical result.
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The rest of the paper is organized as follows. In Section 2 we give the necessary definitions
and state results from earlier work, that we use in this paper. In Section 3 we give matching
preserving, logspace reductions from a combinatorial embedding of the graph on a surface of
genus g, to a grid embedding. Due to space constraints we omit the proof of the reductions
(for more details regarding the proofs please refer to the ECCC version of this paper [7]).
In Section 4 we state and prove our upper bounds assuming a grid embedding. In Section
5 we reduce the non-orientable case to the orientable one.

Combinatorial embed-

ding of a graph on a

genus g orientable sur-

face

Combinatorial embed-

ding on an orientable

polygonal schema with

O(g) sides

Combinatorial embed-

ding on an orientable

polygonal schema in

normal form

Embedding on a “genus

g grid graph”

Assignment of weight

function W , w.r.t

which circulations be-

come non-zero

Minimum weight per-

fect matching w.r.t. W

is unique

Combinatorial embed-

ding of a graph on a

genus g non-orientable

surface

Combinatorial em-

bedding on a non-

orientable polygonal

schema with O(g) sides

Combinatorial em-

bedding on a non-

orientable polygonal

schema in normal form

Lemma 8 Theorem 9

Lemma 10

Theorem 12
(Main Theorem)

Lemma 8 Theorem 9

The
orem

21

Lemma 5

Orientable case

Non-orientable case

Figure 1 Outline of the steps. Note that all reductions are matching preserving and logspace
computable.

2 Preliminaries

2.1 Topological graph theory
We introduce the necessary terminology from algebraic topology. For a more comprehensive
understanding of this topic, refer to any standard algebraic topology book such as [12].

A 2-manifold is a topological space such that every point has an open neighborhood
homeomorphic to R2 and two distinct points have disjoint neighborhoods. A 2-manifold is
often called a surface. The genus of a surface Γ is the maximum number g, such that there
are g cycles C1, C2, . . . , Cg on Γ, with Ci ∩ Cj = ∅ for all i, j and Γ \ (C1 ∪ C2 ∪ . . . ∪ Cg)
is connected. A surface is called orientable if it has two distinct sides, else it is called non-
orientable. A cycle C in Γ is said to be non-separating if there exists a path between any
two points in Γ \ C, else it is called separating.

A polygonal schema of a surface Γ, is a polygon with 2g′ directed sides, such that the sides
of the polygon are partitioned into g′ classes, each class containing exactly two sides and
glueing the two sides of each equivalence class gives the surface Γ (upto homeomorphism).
A side in the ith equivalence class is labelled σi or σ̄i depending on whether it is directed
clockwise or anti-clockwise respectively. The partner of a side σ is the other side in its
equivalence class. By an abuse of notation, we shall sometimes refer to the symbol of a side’s
partner, as the partner of the symbol. Frequently we will denote a polygonal schema as a
linear ordering of its sides moving in a clockwise direction, denoted by X. For a polygonal
schema X, we shall refer to any polygonal schema which is a cyclic permutation, or a reversal
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of the symbols, or a complementation (σ mapped to σ̄ and vice versa) of the symbols, as
being the same as X. A polygonal schema is called orientable (resp. non-orientable) if the
corresponding surface is orientable (resp. non-orientable).

I Definition 1. An orientable polygonal schema is said to be in normal form if it is in one
of the following forms:

σ1τ1σ̄1τ̄1σ2τ2σ̄2τ̄2 . . . σmτmσ̄mτ̄m (2.1)
σσ̄ (2.2)

A non-orientable polygonal schema is said to be in normal form if it is of one of the
following forms:

σσX (2.3)
στσ̄τX (2.4)

where, X is a string representing an orientable schema in normal form (i.e. like Form 2.1 or
2.2 above) or possibly an empty string.

We denote the polygonal schema in the normal form of a surface Γ as Λ(Γ). We will refer to
two orientable symbols σ, τ which form the following contiguous substring: στσ̄τ̄ as being
clustered together while a non-orientable symbol σ which occurs like σσ as a contiguous
subtring is said to form a pair. Thus, in the first and third normal forms above all symbols
are clustered. The first normal form represents a connected sum of torii and the third of a
projective plane and torii. In the fourth normal form all but one of the orientable symbols are
clustered while the only non-orientable symbol is sort of clustered with the other orientable
symbol. This form represents a connected sum of a Klein Bottle and torii. The second
normal form represents a sphere.

We next introduce the concept of Z2-homology. Given a 2-manifold Γ, a 1-cycle is a
closed curve in Γ. The set of 1-cycles forms an Abelian group, denoted as C1(Γ), under
the symmetric difference operation, ∆. Two 1-cycles C1, C2 are said to be homologically
equivalent if C1∆C2 forms the boundary of some region in Γ. Observe that this is an
equivalence relation. Then the first homology group of Γ, H1(Γ), is the set of equivalence
classes of 1-cycles. In other words, if B1(Γ) is defined to be the subset of C1(Γ) that are
homologically equivalent to the empty set, then H1(Γ) = C1(Γ)/B1(Γ). If Γ is a genus g
surface thenH1(Γ) is generated by a system of 2g 1-cycles, having only one point in common,
and whose complement is homeomorphic to a topological disk. Such a disk is also referred
to as the fundamental polygon of Γ.

An undirected graph G is said to be embedded on a surface Γ if it can be drawn on Γ so
that no two edges cross. We assume that the graph is given with a combinatorial embedding
on a surface of constant genus. Refer to the book by Mohar and Thomassen [13] for details.
The genus of a graph G is the minimum number g such that G has an embedding on a
surface of genus g. We shall also refer to such an embedding as the minimal embedding of G.
A genus g graph is said to be orientable (non-orientable) if the surface is orientable (non-
orientable). A 2-cell embedding of a graph is a combinatorial embedding of the graph on a
surface such that every face is homeomorphic to the disk. Note that a minimal embedding
of a graph is always a 2-cell embedding but the converse is not true. For our purposes it is
enough to assume a 2-cell embedding of the given graph.

I Definition 2. The polygonal schema of a graph G is a combinatorial embedding given on
the polygonal schema of some surface Γ together with the ordered set of vertices on each
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side of the polygon. Formally it is a tuple (φ,S), where φ is a cyclic ordering of the edges
around a vertex (also known as the rotation system of G) and S = (S1, S2, . . . , S2g) is the
cyclic ordering of the directed sides of the polygon. Each Si is an ordered sequence of the
vertices, from the tail to the head of the side Si. Moreover every Si is paired with some
other side, say S−1

i in S, such that the jth vertex of Si (say from the tail of Si) is the same
as the jth vertex of S−1

i (from the tail of S−1
i ).

2.2 Complexity Theory
For a nondeterministic machineM , let accM (x) and rejM (x) denote the number of accepting
computations and the number of rejecting computations respectively on an input x. Denote
gapM (x) = accM (x)− rejM (x).

I Definition 3. A language L is in SPL if there exists a logspace bounded nondeterministic
machine M so that for all inputs x, gapM (x) ∈ {0, 1} and x ∈ L if and only if gapM (x) = 1.
FLSPL is the class of functions computed by a logspace machine with an SPL oracle. UL is
the class of languages L, decided by a nondeterministic logspace machine (sayM), such that
for every string in L, M has exactly one accepting path and for a string not in L, M has no
accepting path.

Alternatively, we can define SPL as the class of problems logspace reducible to the prob-
lem of checking whether the determinant of a matrix is 0 or not under the promise that the
determinant is either 0 or 1. For definitions of other complexity classes refer to any standard
textbooks such as [2, 17]. All reductions discussed in this paper are logspace reductions.

Given an undirected graph G = (V,E), a matching M is a subset of E such that no two
edges in M have a vertex in common. A maximum matching is a matching of maximum
cardinality. M is said to be a perfect matching if every vertex is an endpoint of some edge
in M .

I Definition 4. We define the following computational problems related to matching:
- Decision-BPM : Given a bipartite graph G, checking if G has a perfect matching.
- Search-BPM: Given a bipartite graph G, constructing a perfect matching, if one exists.
- Unique-BPM: Given a bipartite graph G, checking if G has a unique perfect matching.

2.3 Necessary Prior Results
I Lemma 5 ([6]). For any bipartite graph G and a weight function w, if all circulations of
G are non-zero, then G has a unique minimum weight perfect matching.

I Lemma 6 ([1]). For any weighted graph G assume that the minimum weight perfect
matching in G is unique and also for any subset of edges E′ ⊆ E, the minimum weight
perfect matching in G \ E′ is also unique. Then deciding if G has a perfect matching is in
SPL. Moreover, computing the perfect matching (in case it exists) is in FLSPL.

3 Embedding on a Grid

We define k-ori-GG to be the class of genus g graphs such that: for every G ∈ k-ori-GG,
G is a grid graph embedded on a grid of size 2m × 2m. We assume that the distance
between adjacent horizontal (and similarly vertical) vertices is of unit length. The entire
boundary of the grid is divided into 4g segments, and each segment has even length, for
some constant g. The 4g segments are labeled as (S1, S2, S

′
1, S
′
2, . . . S2i−1, S2i, S

′
2i−1, S

′
2i,



S. Datta, R. Kulkarni, R. Tewari, and N.V. Vinodchandran 585

. . . , S2g−1, S2g, S
′
2g−1, S

′
2g), together with a direction, namely, Si is directed from counter-

clockwise and S′i is directed from clockwise for each i ∈ [2g]. The jth vertex on a segment
Si is the jth vertex on the border of the grid, starting from the tail of the segment Si and
going along the direction of the segment. Finally the segments Si and S′i are glued to each
other for each i ∈ [2g] in the same direction. In other words, the jth vertex on segment Si

is the same as the jth vertex on segment S′i. Also there are no edges along the boundary of
the grid. In Theorem 7 we show that it is enough to consider graphs in k-ori-GG.

I Theorem 7. Given a 2-cell embedding of a graph G of constant genus, there is a logspace
transducer that constructs a graph G′ ∈ k-ori-GG, such that, there is a perfect matching
in G iff there is a perfect matching in G′. Moreover, given a perfect matching M ′ in G′, in
logspace one can construct a perfect matching M in G.

We divide the construction in Theorem 7 in an iterative manner starting from a 2-cell
embedding. Applying Lemma 8 we first get an embedding on the polygonal schema of the
graph. Then we normalize the obtained polygonal schema by applying Theorem 9. Finally
we give an embedding of the graph on a grid by applying Lemma 10.

I Lemma 8. Given the combinatorial embedding of a constant genus graph we can find a
polygonal schema for the graph in logspace.

I Theorem 9. Given a combinatorial embedding of constant genus, say g (which is positive
or otherwise), for a graph G, in logspace we can find a polygonal schema for the graph
in normal form. of genus O(|g|) in magnitude, and also the corresponding combinatorial
embedding.

Let k-gon-bi be the class of constant genus, bipartite graphs along with an embedding
given on the polygonal schema in normal form of the surface in which the graph has an
embedding. Moreover, for every graph in this class, no edge has both its end points incident
on the boundary of the polygon.

I Lemma 10. If G is an orientable graph in k-gon-bi, then one can get a logspace,
matching-preserving reduction form G to a graph H ∈ k-ori-GG

4 New Upper Bounds

In this section we establish new upper bounds on the space complexity of certain matching
problems on bipartite constant genus graphs, embedded on a ‘genus g grid’.

I Definition 11. If C is a cycle in G, we denote the circulation of C with respect to a weight
function w as circw(C). For any subset E′ ⊆ C, circw(E′) is the value of the circulation
restricted to the edges of E′. An example of a cycle on a grid is given in Figure 2.

I Theorem 12 (Main Theorem). Given a graph G ∈ k-ori-GG, there exists a logspace
computable and polynomially bounded weight function W : E(G) → Z, such that for any
cycle C ∈ G, circW (C) 6= 0.

I Theorem 13. For a graph embedded on a constant genus surface,
(a) Decision-BPM is in SPL,
(b) Search-BPM is in FLSPL and
(c) Unique-BPM is in SPL.
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Proof. As a result of Theorem 7, we can assume that our input graph G ∈ k-ori-GG.
Using Theorem 12 and Lemma 5 we get a logspace computable weight function W , such
that the minimum weight perfect matching in G with respect to W is unique. Moreover, for
any subset E′ ⊆ E, Theorem 12 is valid for the subgraph G \ E′ also, with respect to the
same weight function W . Now (a) and (b) follows from Lemma 6. Checking for uniqueness
can be done by first computing a perfect matching, then deleting an edge from the matching
and rechecking to see if a perfect matching exists in the new graph. If it does, then G did
not have a unique perfect matching, else it did. Note that Theorem 12 is valid for any graph
formed by deletion of edges of G. J

Theorem 12 also gives an alternative proof of directed graph reachability for constant
genus graphs.

I Theorem 14 ([4, 11]). Directed graph reachability for constant genus graphs is in UL.

The proof of Theorem 14 follows from Lemma 15 and [4]. We adapt Lemma 15 from [6].

I Lemma 15. There exist a logspace computable weight function that assigns polynomially
bounded weights to the edges of a directed graph such that: (a) the weights are skew sym-
metric, i.e., w(u,v) = - w(v,u), and (b) the sum of weights along any (simple) directed cycle
is non-zero.

I Lemma 16. In any class of graphs closed under the subdivision of edges, Theorem 12
implies the hypothesis of Lemma 15.

4.1 Proof of Main Theorem
Proof of Theorem 12. For a graph G ∈ k-ori-GG, we define W is a linear combination of
the following 4g + 1 weight functions defined below. This is possible in logspace since g is
constant.

Define 4g + 1 weight functions as follows:

- For each i ∈ [2g],

wi(e) =
{

1 if e lies on the segment Si

0 otherwise (4.1)

- For each i ∈ [2g],

w′i(e) =


j if e lies on the segment Si at index j from the head of Si and j is odd
−j if e lies on the segment Si at index j from the head of Si and j is even
0 otherwise

(4.2)

-

w′′(e) =


(−1)i+j(i− 1) if e is the jth horizontal edge from left, lying in row i

from bottom, and not lying on the boundary
0 otherwise

(4.3)
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S1 S2

S4 S3

S′1

S′2S′3

S′4
P1

P2

P3

P4

P5

P6

P7

P8

1 −2 3 −4 5 −6

Figure 2 Example of a cycle on the grid that crosses each segment an even number of times with
the weights w′

1

Q2
Q1

Q′
2

Q′
1

C C

P1

P2 Cj

Figure 3 Construction of a path from Q1 to Q2 in Γ \ C (the dotted path is a path between Q1

and Q′
1 (resp. between Q2 and Q′

2).

Note that if e does not lie on the boundary of the grid then w′′(e) is same as the weight
function defined in [6].

Let C be a simple cycle in G. If C does not intersect any of the boundary segments,
then C does not have any edge on the boundary since there are no edges along the boundary
by definition of k-ori-GG. Therefore circw′′(C) 6= 0 by [6]. Now suppose there exists a
segment Si, such that C crosses Si an odd number of times. Then circwi

(C) 6= 0. Otherwise
C crosses each segment an even number of times. Now without loss of generality, assume
C intersects segment S1. Let EC

1 be the set of edges of C that intersect S1. Note that
circw′1

(C) = circw′1
(EC

1 ). By Lemma 18 it follows that the edges of EC
1 , alternate between

going out and coming into the grid. Then using Lemma 19 we get that circw′1
(EC

1 ) 6= 0 and
thus circw′1

(C) 6= 0. (See below for Lemma 18 and 19) J

To establish Lemma 18 we use an argument (Lemma 17) from homology theory. For two
cycles (directed or undirected) C1 and C2, let I(C1, C2) denote the number of times C1 and
C2 cross each other (that is one of them goes from the left to the right side of the other, or
vice versa).

Next we adapt the following Lemma from Cabello and Mohar [5]. Here we assume we
are given an orientable surface (Cabello and Mohar gives a proof for a graph on a surface).

I Lemma 17 ([5]). Given a genus g orientable, surface Γ, let C = {Ci}i∈[2g] be a set of
cycles that generate the first homology group H1(Γ). A cycle C in Γ is non-separating if and
only if there is some cycle Ci ∈ C such that I(C,Ci) ≡ 1(mod2).

Proof. Let C̃ be some cycle in Γ. We can write C̃ =
∑

i∈[2g] tiCi since C generates H1(Γ).
Define IC̃(C) =

∑
i∈[2g] tiI(C,Ci)( mod 2). One can verify that IC̃ : C1(Γ)→ Z2 is a group

homomorphism. Now since B1(Γ) is a normal subgroup of B1(Γ), IC̃ induces a homomorph-
ism from H1(Γ) to Z2.
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Any cycle is separating if and only if it is homologous to the empty set. Therefore if C
is separating, then C ∈ B1(Γ) and thus every homomorphism from H1(Γ) to Z2 maps it to
0. Hence for every i ∈ [2g], I(C,Ci) ≡ ICi

(C) = 0.
Suppose C is non-separating. One can construct a cycle C ′ on Γ, that intersects C

exactly once. Let C ′ =
∑

i∈[2g] t
′
iCi. Now 1 ≡ IC′(C) ≡

∑
i∈[2g] t

′
iI(C,Ci)(mod2). This

implies that there exists i ∈ [2g] such that I(C,Ci) ≡ 1(mod2). J

I Lemma 18. Let C be a simple directed cycle on a genus g orientable surface Γ and let
C = {Ci}i∈[2g] be a system of 2g directed cycles on Γ, having exactly one point in common
and Γ \ C is the fundamental polygon, say Γ′. If I(C,Ci) is even for all i ∈ [2g] then for all
j ∈ [2g], C alternates between going from left to right and from right to left of the cycle Cj

in the direction of Cj (if C crosses Cj at all).

Proof. Suppose there exists a j ∈ [2g] such that C does not alternate being going from
left to right and from right to left with respect to Cj . Thus if we consider the ordered set
of points where C intersects Cj , ordered in the direction of Cj , there are two consecutive
points (say P1 and P2) such that at both these points C crosses Cj in the same direction.

Let Q1 and Q2 be two points in Γ \ C. We will show that there exists a path in Γ \ C
between Q1 and Q2. Consider the shortest path from Q1 to C. Let Q′1 be the point on
this path that is as close to C as possible, without lying on C. Similarly define a point Q′2
corresponding to Q2. Note that it is sufficient for us to construct a path between Q′1 and
Q′2 in Γ \ C. If both Q′1 and Q′2 locally lie on the same side of C, then we get a path from
Q′1 to Q′2 not intersecting C, by traversing along the boundary of C. Now suppose Q′1 and
Q′2 lie on opposite sides (w.l.o.g. assume that Q′1 lies on the right side) of C. From Q′1 start
traversing the cycle until you reach cycle Cj (point P1 in Figure 3). Continue along cycle Cj

towards the adjacent intersection point of C and Cj , going as close to C as possible, without
intersecting it (point P2 in Figure 3). Essentially this corresponds to switching from one
side of C to the other side without intersecting it. Next traverse along C to reach Q′2. Thus
we have a path from Q′1 to Q′2 in Γ \ C. We give an example of this traversal in Figure 3.
This implies that C is non-separating.

It is well known that C forms a generating set of H1(Γ), the first homology group of the
surface. Now from Lemma 17 it follows that I(C,Cl) ≡ 1(mod2) for some l ∈ [2g], which is
a contradiction. J

I Lemma 19. Let G be a graph in k-ori-GG with C being a simple cycle in G and EC
1

being the set of edges of C that intersect segment S1. Assume |EC
1 | is even and the edges in

EC
1 alternate between going out and coming into the grid. Let i1 < i2 < . . . < i2p−1 < i2p be

the distinct indices on S1 where C intersects it. Then,
∣∣circw′1

(EC
1 )
∣∣ = |

∑p
k=1(i2k − i2k−1)|

and thus non-zero unless EC
1 is empty.

Proof. Let ej = (uj , vj) for j ∈ [2p] be the 2p edges of G incident on the segment S1.
Assume without loss of generality that the vertices vj ’s lie on S1. Assign an orientation to
C such that e1 is directed from u1 to v1. Also assume that i1 is even and the circulation
gives a positive sign to the edge e1. Therefore circw′1

({e1}) = −i1.
Now consider any edge ej such that j is even. By Lemma 18, the edge enters the segment

S1 (i.e., the head of the edge with respect to the assigned orientation is incident on S1).
Suppose ij is odd. Then consider the following cycle C ′ formed by tracing C from uj to u1,
without the edges e1 and ej and then moving along the segment S1 back to uj . Since ij is
odd therefore the latter part of C ′ has odd length. Note that C ′ need not be a simple cycle.
By Lemma 20, |C ′| is even, therefore the part of C ′ from u1 to uj also has odd length. This
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implies that the circulation gives a positive sign to the edge ej . Therefore, circw′1
({ej}) = ij .

Similarly, if ij is odd, then the part of C ′ from u1 to uj will have even length. Thus the
circulation gives a negative sign to the edge ej and therefore circw′1

({ej}) = −(−ij) = ij .
If j is odd, the above argument can be applied to show that circw′1

({ej}) = −ij . There-
fore we have, circw′1

(EC
1 ) =

∑p
k=1(i2k − i2k−1).

Now removing the assumptions at the beginning of this proof would show that the LHS
and RHS of the above equation is true modulo absolute value as required. J

To prove Lemma 19 we need to argue that any graph in a“genus g grid" is bipartite and
thus any cycle will have even length. Lemma 20 establishes this fact.

I Lemma 20. Any graph G ∈ k-ori-GG is bipartite.

It is interesting to note here that similar method does not show that bipartite matching
in non-orientable constant genus graphs is in SPL. The reason is that Lemma 18 crucially
uses the fact that the surface is orientable. In fact, one can easily come with counterexample
to the Lemma if the surface is non-orientable.

5 Reducing the non-orientable case to the orientable case

Let G be a bipartite graph embedded on a genus g non-orientable surface. As a result of
Theorem 9 we can assume that we are given a combinatorial embedding (say Π) of G on a
(non-orientable) polygonal schema, say Λ(Γ), in the normal form with 2g′ sides. (Here g′ is
a function of g.)

Let Y = (X1, X2) be the cyclic ordering of the labels of the sides of Λ(Γ), where X2 is
the ‘orientable part’ and X1 is the ‘non-orientable part’. More precisely, for the polygonal
schema in the normal form, we have: X1 is either (σ, σ) (thus corresponds to the projective
plane) or it is (σ, τ, σ̄, τ) (thus corresponds to the Klein bottle). See Figure 4.

σ

σ

X2 X1

(a)

σ
τ

σ̄

τ

X2 X1

(b)

Figure 4 (a) Λ(Γ) when the surface is a sum of an orientable surface and the projective plane.
(b) Λ(Γ) when the surface is a sum of an orientable surface and the Klein bottle.

Now let G be a bipartite graph embedded on a non-orientable polygonal schema Λ(Γ)
with 2g′ sides. We will construct a graph G′ embedded on an orientable polygonal schema
with 4g′−2 sides such that G has a perfect matching iff G′ has a perfect matching. Moreover,
given a perfect matching in G′ one can retrieve in logspace a perfect matching in G. This is
illustrated in Theorem 21.

I Theorem 21. Let G be a bipartite graph given with its embedding on a non-orientable
polygonal schema in normal form Λ(Γ), with 2g′ sides as above. One can construct in log-
space, another graph G′ together with its embedding on the polygonal schema of an orientable
surface Γ′ of genus 4g′−2 such that: G has a perfect matching iff G′ has a perfect matching.
Moreover, given a perfect matching in G′, one can construct in logspace a perfect matching
in G.
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Thus we see that the non-orientable case can be reduced to the orientable case. The
resulting polygonal schema need not be in the normal form. Once again we apply Theorem
9 to get a combinatorial embedding on a polygonal schema in the normal form.

Acknowledgment

The third author would like to thank Prof. Mark Brittenham from the Mathematics depart-
ment at the University of Nebraska-Lincoln, for numerous discussions that they had and for
providing valuable insight into topics in algebraic topology. We would also like to thank the
anonymous referees for their valuable comments and suggestions which helped in improving
the overall presentation of the paper.

References
1 Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, matching, and counting: Uni-

form and nonuniform upper bounds. Journal of Computer and System Sciences, 59:164–181,
1999.

2 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cam-
bridge University Press, 1 edition, 2009.

3 V. Arvind and Partha Mukhopadhyay. Derandomizing the isolation lemma and lower
bounds for circuit size. In Proceedings of RANDOM ’08, pages 276–289, 2008.

4 Chris Bourke, Raghunath Tewari, and N. V. Vinodchandran. Directed planar reachability
is in unambiguous log-space. ACM Trans. Comput. Theory, 1(1):1–17, 2009.

5 Sergio Cabello and Bojan Mohar. Finding shortest non-separating and non-contractible
cycles for topologically embedded graphs. Discrete Comput. Geom., 37(2):213–235, 2007.

6 Samir Datta, Raghav Kulkarni, and Sambuddha Roy. Deterministically isolating a perfect
matching in bipartite planar graphs. Theory of Computing Systems, 47(3):737–757, 2010.

7 Samir Datta, Raghav Kulkarni, Raghunath Tewari, and N. V. Vinodchandran. Space
complexity of perfect matching in bounded genus bipartite graphs. Technical Report TR10-
079, Electronic Colloquium on Computational Complexity, 2010.

8 Anna Gal and Avi Wigderson. Boolean complexity classes vs. their arithmetic analogs.
Random Structures and Algorithms, 9:1–13, 1996.

9 Thanh Minh Hoang. On the matching problem for special graph classes. In IEEE Confer-
ence on Computational Complexity, pages 139–150, 2010.

10 Raghav Kulkarni, Meena Mahajan, and Kasturi R. Varadarajan. Some perfect match-
ings and perfect half-integral matchings in NC. Chicago Journal of Theoretical Computer
Science, 2008(4), September 2008.

11 Jan Kynčl and Tomáš Vyskočil. Logspace reduction of directed reachability for bounded
genus graphs to the planar case. ACM Trans. Comput. Theory, 1(3):1–11, 2010.

12 William S. Massey. A Basic Course in Algebraic Topology. Springer-Verlag, 1991.
13 Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. John Hopkins University Press,

2001.
14 Ketan Mulmuley, Umesh Vazirani, and Vijay Vazirani. Matching is as easy as matrix

inversion. Combinatorica, 7:105–113, 1987.
15 Klaus Reinhardt and Eric Allender. Making nondeterminism unambiguous. SIAM Journal

of Computing, 29:1118–1131, 2000. An earlier version appeared in FOCS 1997, pp. 244–253.
16 C. Thomassen. The graph genus problem is np-complete. J. Algorithms, 10(4):568–576,

1989.
17 Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach. Springer-

Verlag, 1999.



The Recognition of Triangle Graphs
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Abstract
Trapezoid graphs are the intersection graphs of trapezoids, where every trapezoid has a pair of
opposite sides lying on two parallel lines L1 and L2 of the plane. Strictly between permutation and
trapezoid graphs lie the simple-triangle graphs – also known as PI graphs (for Point-Interval) –
where the objects are triangles with one point of the triangle on L1 and the other two points
(i.e. interval) of the triangle on L2, and the triangle graphs – also known as PI∗ graphs – where
again the objects are triangles, but now there is no restriction on which line contains one point
of the triangle and which line contains the other two. The complexity status of both triangle and
simple-triangle recognition problems (namely, the problems of deciding whether a given graph is a
triangle or a simple-triangle graph, respectively) have been the most fundamental open problems
on these classes of graphs since their introduction two decades ago. Moreover, since triangle and
simple-triangle graphs lie naturally between permutation and trapezoid graphs, and since they
share a very similar structure with them, it was expected that the recognition of triangle and
simple-triangle graphs is polynomial, as it is also the case for permutation and trapezoid graphs.
In this article we surprisingly prove that the recognition of triangle graphs is NP-complete, even
in the case where the input graph is known to be a trapezoid graph.

1998 ACM Subject Classification F.2.2 Computations on discrete structures, G.2.2 Graph the-
ory

Keywords and phrases Intersection graphs, trapezoid graphs, PI graphs, PI∗ graphs, recognition
problem, NP-complete

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.591

1 Introduction

A graph G = (V,E) with n vertices is the intersection graph of a family F = {S1, . . . , Sn}
of subsets of a set S if there exists a bijection µ : V → F such that for any two distinct
vertices u, v ∈ V , uv ∈ E if and only if µ(u)∩µ(v) 6= ∅. Then, F is called an intersection model
of G. Note that every graph has a trivial intersection model based on adjacency relations [18].
However, some intersection models provide a natural and intuitive understanding of the
structure of a class of graphs, and turn out to be very helpful to obtain structural results,
as well as to find efficient algorithms to solve optimization problems [18]. Many important
graph classes can be described as intersection graphs of set families that are derived from
some kind of geometric configuration.

Consider two parallel horizontal lines on the plane, L1 (the upper line) and L2 (the lower
line). Various intersection graphs can be defined on objects formed with respect to these
two lines. In particular, for permutation graphs, the objects are line segments that have one
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endpoint on L1 and the other one on L2. Generalizing to objects that are trapezoids with
one interval on L1 and the opposite interval on L2, trapezoid graphs have been introduced
independently in [5] and [6]. Given a trapezoid graph G, an intersection model of G with
trapezoids between L1 and L2 is called a trapezoid representation of G. Trapezoid graphs
are perfect graphs [3, 9] and generalize in a natural way both interval graphs (when the
trapezoids are rectangles) and permutation graphs (when the trapezoids are trivial, i.e. lines).
In particular, the main motivation for the introduction of trapezoid graphs was to generalize
some well known applications of interval and permutation graphs on channel routing in
integrated circuits [6].

Moreover, two interesting subclasses of trapezoid graphs have been introduced in [5]. A
trapezoid graph G is a simple-triangle graph if it admits a trapezoid representation, in which
every trapezoid is a triangle with one point on L1 and the other two points (i.e. interval)
on L2. Similarly, G is a triangle graph if it admits a trapezoid representation, in which every
trapezoid is a triangle, but now there is no restriction on which line between L1 and L2
contains one point of the triangle and which one contains the other two points (i.e. the interval)
of the triangle. Such an intersection model of a simple-triangle (resp. triangle) graph G with
triangles between L1 and L2 is called a simple-triangle (resp. triangle representation of G).
Simple-triangle and triangle graphs are also known as PI and PI∗ graphs, respectively [3–5,15],
where PI stands for “Point-Interval”; note that, using this notation, permutation graphs
are PP (for “Point-Point”) graphs, while trapezoid graphs are II (for “Interval-Interval”)
graphs [5]. In particular, both interval and permutation graphs are strictly contained in
simple-triangle graphs, which are strictly contained in triangle graphs, which are strictly
contained in trapezoid graphs [3, 5].

Due to both their interesting structure and their practical applications, trapezoid graphs
have attracted many research efforts. In particular, efficient algorithms for several opti-
mization problems that are NP-hard in general graphs have been designed for trapezoid
graphs [2, 7, 10, 12, 13, 16, 25], which also apply to triangle and simple-triangle graphs.
Furthermore, several efficient algorithms appeared for the recognition problems of both
permutation [9, 17] and trapezoid graphs [14,16,21]; see [26] for an overview.

In spite of this, the complexity status of both triangle and simple-triangle recognition
problems have been the most fundamental open problems on these classes of graphs since
their introduction two decades ago [3]. Since, on the one hand, very few subclasses of perfect
graphs are known to be NP-hard to recognize (for instance, perfectly orderable graphs [23],
EPT graphs [11], and recently tolerance and bounded tolerance graphs [22]) and, on the
other hand, triangle and simple-triangle graphs lie naturally between permutation and
trapezoid graphs, while they share a very similar structure with them, it was expected that
the recognition of triangle and simple-triangle graphs was polynomial.

Our contribution

In this article we establish the complexity of recognizing triangle graphs. Namely, we prove
that this problem is surprisingly NP-hard, by providing a reduction from the 3SAT problem.
Specifically, given a boolean formula formula φ in conjunctive normal form with three literals
in every clause (3-CNF), we construct a trapezoid graph Gφ, which is a triangle graph if and
only if φ is satisfiable. Therefore, as the recognition problems for both triangle and simple-
triangle graphs are in the complexity class NP, it follows in particular that the triangle graph
recognition problem is NP-complete. This complements the recent surprising result that the
recognition of parallelogram graphs (i.e. the intersection graphs of parallelograms between two
parallel lines L1 and L2), which coincides with bounded tolerance graphs, is NP-complete [22].
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Organization of the paper.

Background definitions and properties of trapezoid graphs and their representations are
presented in Section 2. In Section 3 we introduce the notion of a standard trapezoid
representation, the existence of which is a sufficient condition for a trapezoid graph to be a
triangle graph. In Sections 4 and 5, we investigate the structure of some specific trapezoid
and triangle graphs, respectively, and prove special properties of them. We use these graphs
as parts of the gadgets in our reduction of 3SAT to the recognition problem of triangle
graphs, which we present in Section 6. Finally, we discuss the presented results and further
research in Section 7. Due to space limitations, some proofs are omitted; a full version can
be found in [19].

2 Triangle and simple-triangle graphs

In this section we provide some notation and properties of trapezoid graphs and their
representations, which will be mainly applied in the sequel to triangle and simple-triangle
graphs.

Notation. We consider in this article simple undirected and directed graphs with no
loops or multiple edges. In an undirected graph G, the edge between vertices u and v

is denoted by uv, and in this case u and v are said to be adjacent in G. Given a graph
G = (V,E) and a subset S ⊆ V , G[S] denotes the induced subgraph of G on the vertices in S.
Furthermore, we denote for simplicity by G−S the induced subgraph G[V \S] of G. Moreover,
given a graph G, we denote its vertex set by V (G). A connected graph G = (V,E) is called
k-connected, where k ≥ 1, if k is the smallest number of vertices that have to be removed from
G such that the resulting graph is disconnected. Furthermore, a vertex v of a 1-connected
graph G is called a cut vertex of G, if G−{v} is disconnected. By possibly performing a small
shift of the endpoints, we assume throughout the article without loss of generality that all
endpoints of the trapezoids (resp. triangles) in a trapezoid (resp. triangle or simple-triangle)
representation are distinct [8, 10, 12]. Given a trapezoid (resp. triangle or simple-triangle)
graph G along with a trapezoid (resp. triangle or simple-triangle) representation R, we may
not distinguish in the following between a vertex of G and the corresponding trapezoid
(resp. triangle) in R, whenever it is clear from the context. Moreover, given an induced
subgraph H of G, we denote by R[H] the restriction of the representation R on the trapezoids
(resp. triangles) of H.

Consider a trapezoid graph G = (V,E) and a trapezoid representation R of G, where
for any vertex u ∈ V the trapezoid corresponding to u in R is denoted by Tu. Since
trapezoid graphs are also cocomparability graphs (there is a transitive orientation of the
complement) [9], we can define the partial order (V,�R), such that u�R v, or equivalently
Tu �R Tv, if and only if Tu lies completely to the left of Tv in R (and thus also uv /∈ E).
Otherwise, if neither Tu �R Tv nor Tv �R Tu, we will say that Tu intersects Tv in R (and
thus also uv ∈ E). Furthermore, we define the total order <R on the lines L1 and L2 in R as
follows. For two points a and b on L1 (resp. on L2), if a lies to the left of b on L1 (resp. on L2),
then we will write a <R b.

There are several trapezoid representations of a particular trapezoid graph G. For
instance, given one such representation R, we can obtain another one R′ by vertical axis
flipping of R, i.e. R′ is the mirror image of R along an imaginary line perpendicular to L1
and L2. Moreover, we can obtain another representation R′′ of G by horizontal axis flipping
of R, i.e. R′′ is the mirror image of R along an imaginary line parallel to L1 and L2. We will
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L1

L2

R1 :

(a)

L1

L2

R2 :

(b)

Figure 1 (a) A simple-triangle representation R1 and (b) a triangle representation R2.

use extensively these two basic operations throughout the article. For every trapezoid Tu
in R, where u ∈ V , we define by l(u) and r(u) (resp. L(u) and R(u)) the lower (resp. upper)
left and right endpoint of Tu, respectively (cf. the trapezoid Tv in Figure 2). Since every
triangle and simple-triangle representation is a special type of a trapezoid representation, all
the above notions can be also applied to triangle and simple-triangle graphs. Note here that,
if R is a simple-triangle representation of G = (V,E), then L(u) = R(u) for every u ∈ V ;
similarly, if R is a triangle representation of G, then L(u) = R(u) or l(u) = r(u) for every
u ∈ V . An example of a simple-triangle and a triangle representation is shown in Figure 1.

It can be easily seen that every triangle (resp. single-triangle) graph G has a triangle
(resp. single-triangle) representation of G, in which the endpoints of the triangles in both
lines L1 and L2 are integers. That is, every triangle (resp. single-triangle) graph G with n
vertices has a representation with size polynomial on n, and thus the recognition problems
of both both triangle and simple-triangle graphs are in NP, as the next observation states.

I Observation 1. The triangle and simple-triangle graph recognition problems are in the
complexity class NP.

3 Standard trapezoid representations

In this section we investigate several properties of trapezoid and triangle graphs and their
representations. In particular, we introduce the notion of a standard trapezoid representation.
We prove that a sufficient condition for a trapezoid graph G to be a triangle graph is that G
admits such a standard representation. These properties of trapezoid and triangle graphs, as
well as the notion of a standard trapezoid representation will then be used in our reduction for
the triangle graph recognition problem. In order to define the notion of a standard trapezoid
representation (cf. Definition 3), we first provide the following two definitions regarding an
arbitrary trapezoid Tv in a trapezoid representation.

I Definition 1. Let R be a trapezoid representation of a trapezoid graph G = (V,E) and
Tv be a trapezoid in R, where v ∈ V . Let R′ and R′′ be the representations obtained by
vertical axis flipping and by horizontal axis flipping of R, respectively. Then,

Tv is upper-right-closed in R if there exist two vertices u,w ∈ N(v), such that Tu �R Tw,
L(w) <R R(v), and r(v) <R l(w); otherwise Tv is upper-right-open in R,
Tv is upper-left-closed in R if Tv is upper-right-closed in R′; otherwise Tv is upper-left-open
in R,
Tv is lower-right-closed in R if Tv is upper-right-closed in R′′; otherwise Tv is lower-right-
open in R,
Tv is lower-left-closed in R if Tv is lower-right-closed in R′; otherwise Tv is lower-left-open
in R.
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I Definition 2. Let R be a trapezoid representation of a trapezoid graph G = (V,E) and
Tv be a trapezoid in R, where v ∈ V . Then,

Tv is right-closed in R if Tv is both upper-right-closed and lower-right-closed in R;
otherwise Tv is right-open in R,
Tv is left-closed in R if Tv is both upper-left-closed and lower-left-closed in R; otherwise Tv
is left-open in R,
Tv is closed in R if Tv is both right-closed and left-closed in R; otherwise Tv is open in R.

As an example for Definitions 1 and 2, consider the trapezoid representation R in Figure 2.
In this figure, the trapezoid Tv is upper-left-closed and lower-left-closed, as well as upper-
right-closed and lower-right-open. Therefore, Tv is left-closed and right-open in R, i.e. Tv
is open in R. For better visibility, we place in Figure 2 three bold bullets on the upper
right, upper left, and lower left endpoints of the trapezoid Tv, in order to indicate that Tv is
upper-right-closed, upper-left-closed, and lower-left-closed, respectively.

L1

L2

Tv
Tv1

Tv2

Tv3

Tv4

L(v) R(v)

l(v) r(v)

R :

Figure 2 A standard trapezoid representation R, in which the trapezoid Tv is left-closed, upper-
right-closed, and lower-right-open.

We are now ready to define the notion of a standard trapezoid representation.

I Definition 3. Let G = (V,E) be a trapezoid graph and R be a trapezoid representation
of G. If, for every v ∈ V , the trapezoid Tv is open in R or Tv is a triangle in R, then R is a
standard trapezoid representation.

For example, the trapezoid representation R in Figure 2 is a standard. Indeed, none of
the trapezoids Tv1 , Tv2 , Tv3 is right-closed or left-closed, while Tv is lower-right-open (and
therefore also right-open by Definition 2). Thus, each of the trapezoids Tv, Tv1 , Tv2 , and Tv3

is open in R. Moreover, Tv4 is a triangle in R.
Note that every triangle representation is a standard trapezoid representation by Defini-

tion 3. We now provide the main theorem of this section, which states a sufficient condition
for a trapezoid graph to be triangle.

I Theorem 4. Let G = (V,E) be a trapezoid graph. If there exists a standard trapezoid
representation of G, then G is a triangle graph.

4 Basic constructions of trapezoid graphs

In this section we investigate some small trapezoid graphs and prove special properties of
them. These graphs will then be used as parts of the gadgets in our reduction of 3SAT to
the recognition problem of triangle graphs in Section 6. For simplicity of the presentation,
we do not distinguish in the sequel of the article between a vertex v of a trapezoid graph G
and the trapezoid Tv of v in a trapezoid representation of G.
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I Lemma 5. Let G = (V,E) be the trapezoid graph induced by the trapezoid representation
of Figure 3a. Then, in any trapezoid representation R of G, such that v �R v

′,
v is upper-right-closed in R and v′ is lower-left-closed in R, or
v is lower-right-closed in R and v′ is upper-left-closed in R.

v′v

L1

L2

v1

v2
R1 :

(a)

v′v

L1

L2

v1
v2

R2 :

(b)

v′v

L1

L2

v1
v2 v3

v4
R3 :

(c)

v′v

L1

L2

v1
v2 v3

v4R4 :

(d)

v′v

L1

L2

v1

v2 v3
v4

v5

v6
R5 :

(e)

v′v

L1

L2

v1
v2 v3

v4 v5

v6

R6 :

(f)

Figure 3 Six basic trapezoid representations.

The next two lemmas concern similar properties of the graphs induced by the trapezoid
representations of Figures 3c and 3e, respectively.

I Lemma 6. Let G = (V,E) be the trapezoid graph induced by the trapezoid representation
of Figure 3c. Then, in any trapezoid representation R of G, such that v �R v

′,
v is upper-right-closed in R and v′ is upper-left-closed in R, or
v is lower-right-closed in R and v′ is lower-left-closed in R.

I Lemma 7. Let G = (V,E) be the trapezoid graph induced by the trapezoid representation
of Figure 3e. Then, in any trapezoid representation R of G, such that v �R v

′,
v is upper-right-closed in R and v′ is lower-left-closed in R, or
v is lower-right-closed in R and v′ is upper-left-closed in R.

5 Basic constructions of triangle graphs

In this section we investigate the structure of some specific triangle graphs and devise special
properties of them. As triangle graphs are also trapezoid graphs, in order to prove these
properties, we use some of the results provided in Section 4. Similarly to the trapezoid graphs
investigated in Section 4, also the investigated graphs of the present section will then be used
as gadgets in our reduction for the triangle graph recognition problem in Section 6. Before
investigating any specific triangle graph, we first provide in the next theorem a generic result
that concerns the triangle representations of the 1-connected triangle graphs.
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I Theorem 8. Let G = (V,E) be a 1-connected triangle graph and v ∈ V be a cut vertex
of G. Then, in any triangle representation R of G, the trapezoid of v is open in R.

We now use the generic Theorem 8, as well as the results of Section 4, in order to
prove some properties of the trapezoid representations of Figure 4. Note that, although the
representations of Figure 4 are not triangle representations, they are standard trapezoid
representations, and thus the graphs induced by these representations are triangle graphs by
Theorem 4.

I Lemma 9. Let G = (V,E) be the triangle graph induced by the trapezoid representation of
Figure 4a. Then, in any triangle representation R of G, such that a7 �R u, u is left-open
in R if and only if w is right-open in R.

Proof. Let R be a triangle representation of G, such that a7 �R u. Note that
G − {u,w} has the two connected components G1 = G[a1, a2, a3, a4, a5, a6, a7] and G2 =
G[v, b1, b2, b3, b4, b5, b6], and thus one of these two induced subgraphs of G lies completely
to the left of the other in R. If v �R a7 �R u, then a7 would intersect with a triangle
of G2, which is a contradiction, since a7 ∈ V (G1). Furthermore, if a7 �R v �R u, then
v would intersect with a triangle of G1, which is a contradiction, since v ∈ V (G2). There-
fore a7 �R u �R v; similarly, a7 �R w �R v. Therefore, every triangle of G1 must lie
completely to the left of every triangle of G2 in R.

(⇒) Suppose that u is left-open in R, i.e. u is upper-left-open or lower-left-open in R. By
possibly performing a horizontal axis flipping of R, we may assume without loss of generality
that u is lower-left-open in R. Consider the induced subgraphs H1 = G[{a7, a1, a2, u}]
and H2 = G[{a7, a1, a2, w}] of G. Note that both H1 and H2 are isomorphic to the graph
investigated in Lemma 5. Since u is assumed to be lower-left-open in R (and thus also in the
restriction R[H1] of the triangle representation R), Lemma 5 implies that u is upper-left-closed
and a7 is lower-right-closed in R[H1]. Therefore, a7 is lower-right-closed also in the restriction
R[H1 − {u}] = R[H2 − {w}] of R. Thus, Lemma 5 implies that a7 is lower-right-closed and
w is upper-left-closed in the restriction R[H2] of R, and thus w is upper-left-closed in R.

Consider now the induced subgraphs H3 = G[{a7, a3, a4, u}] and H4 =
G[{a7, a3, a4, a5, a6, w}] of G. Note that H3 is isomorphic to the graph investigated in
Lemma 5, while H4 is isomorphic to the graph investigated in Lemma 6. Since u is assumed
to be lower-left-open in R (and thus also in R[H3]), Lemma 5 implies that u is upper-
left-closed and a7 is lower-right-closed in R[H3]. Therefore, a7 is lower-right-closed also in
the restriction R[H3 − {u}] = R[H4 − {a5, a6, w}] of the triangle representation R. Thus,
Lemma 6 implies that a7 is lower-right-closed and w is lower-left-closed in the restriction
R[H4] of R, and thus w is lower-left-closed in R. Therefore, since w is also upper-left-closed
in R by the previous paragraph, it follows that w is left-closed in R.

Recall that R is a triangle representation by assumption, and thus the restric-
tion R[G− {u}] is also a triangle representation. Moreover, since w is left-closed in R,
it follows that w is also left-closed in R[G − {u}]. Note now that the connected graph
G − {u} satisfies the conditions of Theorem 8. Indeed, w is a cut vertex of G − {u} and
(G − {u}) − {w} has the two connected components G1 = G[a1, a2, a3, a4, a5, a6, a7] and
G2 = G[v, b1, b2, b3, b4, b5, b6]. Therefore, since w is left-closed in R[G − {u}], Theorem 8
implies that w is right-open in R[G− {u}], and thus also w is right-open in R.

(⇐) Consider the triangle representation R′ of G that is obtained by performing a vertical
axis flipping of R. Note that v �R′ w, since w �R v. Furthermore, note that there is
a trivial automorphism of G, which maps vertex u to w, vertex a7 to v, and the vertices
{a1, a2, a3, a4, a5, a6} to the vertices {b1, b2, b3, b4, b5, b6}. That is, the relation a7 �R u
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in the representation R is mapped by this automorphism to the relation v �R′ w in the
representation R′. It follows now directly by the necessity part (⇒) that, if w is left-open
in R′, then u is right-open in R′. That is, if w is right-open in R, then u is left-open in R. J

L1

L2

u

w

a7

a1 a2

a3 a4 a5 a6 b1 b2

v

b3 b4 b5 b6

(a)

L1

L2

u

w v

a7

a1 a2

a3 a4 a5 a6 b1 b2 b7 b8

b3 b4 b5 b6

(b)

Figure 4 Two basic trapezoid representations.

Now, using Lemma 9, we can prove the next two lemmas.

I Lemma 10. Let G = (V,E) be the triangle graph induced by the trapezoid representation
of Figure 4a. Then, in any triangle representation R of G, such that a7 �R u, u is left-open
in R if and only if v is left-open in R.

I Lemma 11. Let G = (V,E) be the triangle graph induced by the trapezoid representation
of Figure 4b. Then, in any triangle representation R of G, such that a7 �R u, u is left-open
in R if and only if v is left-closed in R.

6 The recognition of triangle graphs

In this section we provide a reduction from the three-satisfiability (3SAT) problem to the
problem of recognizing whether a given graph is a triangle graph. Given a boolean formula
φ in conjunctive normal form with three literals in each clause (3-CNF), φ is satisfiable if
there is a truth assignment of φ, such that every clause contains at least one true literal. The
problem of deciding whether a given 3-CNF formula φ is satisfiable is one of the most known
NP-complete problems. We can assume without loss of generality that each clause has literals
that correspond to three distinct variables. Given the formula φ, we construct in polynomial
time a trapezoid graph Gφ, such that Gφ is a triangle graph if and only if φ is satisfiable.
Before constructing the whole trapezoid graph Gφ, we construct first some smaller trapezoid
graphs for each clause and each variable that appears in the given formula φ.
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6.1 The construction for each clause

Consider a 3-CNF formula φ = α1 ∧ α2 ∧ . . . ∧ αk with k clauses α1, α2, . . . , αk and n

boolean variables x1, x2, . . . , xn, such that αi = (`i,1 ∨ `i,2 ∨ `i,3) for i = 1, 2, . . . , k. For
the literals `i,1, `i,2, `i,3 of the clause αi, let `i,1 ∈ {xri,1

, xri,1}, `i,2 ∈ {xri,2
, xri,2}, and

`i,3 ∈ {xri,3
, xri,3}, where 1 ≤ ri,1 < ri,2 < ri,3 ≤ n. Let L1 and L2 be two parallel lines

in the plane. For every clause αi, where i = 1, 2, . . . , k, we correspond the trapezoid repre-
sentation Rαi

with 7 trapezoids that is illustrated in Figure 5. Note that the trapezoid of
the vertex zi in Rαi

is trivial, i.e. line. In this construction, the trapezoids of the vertices
vi,1, vi,2, and vi,3 correspond to the literals `i,1, `i,2, and `i,3, respectively. Furthermore, by
the construction of Rαi

, the left line of vi,1 lies completely to the left of the left line of vi,2
in Rαi , while the left line of vi,2 lies completely to the left of the left line of vi,3 in Rαi .

L1

L2

zi
vi,1 vi,2 vi,3 v′i,1 v′i,2 v′i,3

Rαi
:

Figure 5 The construction Rαi that corresponds to the clause αi of the formula φ,
where i = 1, 2, . . . , k.

We prove now two basic properties of the construction Rαi
in Figure 5 for the clause αi

that will be then used in the proof of correctness of our reduction.

I Lemma 12. Let Gαi
be the trapezoid graph induced by the trapezoid representation Rαi

of Figure 5. Then, in any trapezoid representation R of Gαi , such that vi,1 �R zi, one of
vi,1, vi,2, vi,3 is right-closed in R.

I Corollary 13. Consider the trapezoid representation Rαi
of Figure 5. For every p ∈

{1, 2, 3}, we can locally change appropriately in Rαi the right lines of vi,1, vi,2, vi,3 and the
left lines of v′i,1, v′i,2, v′i,3, such that vi,p is right-closed and vi,p′ is right-open, for every
p′ ∈ {1, 2, 3} \ {p}.

6.2 The construction for each variable

Let xj be a variable of the formula φ, where 1 ≤ j ≤ n. Let xj appear in φ (either as xj or
negated as xj) in the mj clauses αij,1 , αij,2 , . . . , αij,mj

, where 1 ≤ ij,1< ij,2< . . . < ij,mj≤ k.
Then, we correspond to the variable xj the trapezoid representation Rxj

with 2mj + 7
trapezoids that is illustrated in Figure 6. In this construction, the trapezoids of the vertices
uj,t and wj,t, where 1 ≤ t ≤ mj , correspond to the appearance of the variable xj (either as xj
or negated as xj) in the clause αij,t

in φ. Note that the trapezoids of the vertices a1
j , a

2
j , . . . , a

7
j

are trivial, i.e. lines. By the construction of Rxj
, the right line of uj,t lies completely to the

left of the right line of wj,t for all values of j = 1, 2, . . . , n and t = 1, 2, . . . ,mj . Furthermore,
the right line of each of {uj,t, wj,t} lies completely to the left of the right line of each of
{uj,t′ , wj,t′} in Rxj

, whenever t < t′.
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L1

L2

a3j a4j a5j a6j

a1j a2j

. . .
a7j

uj,1

wj,1

uj,mj

wj,mj. . .

. . .

Rxj :

Figure 6 The construction Rxj that corresponds to the variable xj of the formula φ,
where j = 1, 2, . . . , n.

6.3 The construction the trapezoid graph Gφ

We construct now a trapezoid representation Rφ of the whole trapezoid graph Gφ, by
composing the constructions Rαi

and Rxj
presented in Sections 6.1 and 6.1, as follows.

First, we place in Rφ the k trapezoid representations Rαi , where i = 1, 2, . . . , k, between
the lines L1 and L2 such that, whenever i < i′, every trapezoid of Rαi

lies completely to
the left of every trapezoid of Rαi′ . Then, we place in Rφ the n trapezoid representations
Rxj , where j = 1, 2, . . . , n, between the lines L1 and L2 such that, whenever j < j′, the lines
of a1

j , a
2
j , . . . , a

7
j and the left lines of all uj,t, wj,t, lie completely to the left of the lines of

a1
j′ , a2

j′ , . . . , a7
j′ and the left lines of all uj′,t′ , wj′,t′ . Moreover, for every j, j′ = 1, 2, . . . , n, the

lines of a1
j , a

2
j , . . . , a

7
j and the left lines of all uj,t, wj,t, lie in Rφ completely to the left of the

right lines of all uj′,t′ , wj′,t′ . Thus, note in particular that every uj,t intersects every other
uj′,t′ and every wj′,t′ in Rφ.

Let j ∈ {1, 2, . . . , n} and t ∈ {1, 2, . . . ,mj}. Recall that, by the construction of Rxj
in

Section 6.2, the pair of trapezoids {uj,t, wj,t} corresponds to the appearance of the variable
xj in a clause αi of φ, where i = ij,t ∈ {1, 2, . . . , k}. That is, either `i,p = xj or `i,p = xj for
some p ∈ {1, 2, 3}, where αi = (`i,1 ∨ `i,2 ∨ `i,3). Then, we place in Rφ the right lines of the
trapezoids uj,t and wj,t directly before the left line of vi,p (i.e. no line of any other trapezoid
intersects with or lies between the right lines of uj,t and wj,t and the left line of vi,p).

In order to finalize the construction of Rφ, we distinguish now the two cases regarding the
literal `i,p of the clause αi, in which the variable xj appears. If `i,p = xj , then we add to Rφ
six trivial trapezoids (i.e. lines) {b1

j,t, b
2
j,t, . . . b

6
j,t}, as it is shown in Figure 7a. On the other

hand, if `i,p = xj , then we add to Rφ eight trivial trapezoids (i.e. lines) {b1
j,t, b

2
j,t, . . . , b

8
j,t}, as

it is shown in Figure 7b. In particular, we place these six (resp. eight) new lines in Rφ such
that they intersect only the right lines of uj,t and wj,t and the left line of vi,p in Rφ. Note that
the trapezoid graphs induced by the representations in Figures 7a and 7b are isomorphic to
the graphs investigated in Lemmas 10 and 11, respectively. This completes the construction
of the trapezoid representation Rφ, while Gφ is the trapezoid graph induced by Rφ.

It is now easy to verify that, by the construction of Rφ, all the trapezoids uj,t are
upper-left-closed and right-closed in Rφ, while all the trapezoids wj,t are lower-right-closed
and left-closed in Rφ. Furthermore, all the trapezoids uj,t are lower-left-open in Rφ and all
the trapezoids wj,t are upper-right-open in Rφ. Consider now a trapezoid vi,p in Rφ. If vi,p
corresponds to a positive literal `i,p = xj (for some variable xj), then vi,p is upper-left-closed
and lower-left-open in Rφ (cf. Figure 7a). On the other hand, if vi,p corresponds to a negative
literal `i,p = xj , then vi,p is left-closed in Rφ (cf. Figure 7b).

We can prove that the formula φ is satisfiable if and only if Gφ is a triangle graph, cf. [19].
Therefore, since 3SAT is NP-complete, it follows that the recognition of triangle graphs
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L1

L2

wj,t

uj,t

a3j a4j a5j a6j

a1j a2j

a7j

b3j,t b4j,t b5j,t b6j,t

b1j,t b2j,t

`i,p = xj :
vi,p

(a)

L1

L2

wj,t

uj,t

a3j a4j a5j a6j

a1j a2j

a7j

b3j,t b4j,t b5j,t b6j,t

b2j,t b7j,tb1j,t b8j,t

`i,p = xj :
vi,p

(b)

Figure 7 The composition of the trapezoids of Rxj with the trapezoid vi,p of Rαi , in the cases
where (a) `i,p = xj and (b) `i,p = xj .

is NP-hard. Moreover, since the recognition of triangle graphs lies in NP by Observation 1,
and since Gφ is a trapezoid graph, we can summarize our main result in the next theorem.

I Theorem 14. Given a graph G, it is NP-complete to decide whether G is a triangle graph.
The problem remains NP-complete even if the given graph G is known to be a trapezoid graph.

7 Concluding Remarks

In this article we proved that the triangle graph (known also as PI∗ graph) recognition
problem is NP-complete, by providing a reduction from the 3SAT problem, thus answering a
longstanding open question. Our reduction implies that this problem remains NP-complete
even in the case where the input graph is a trapezoid graph. The recognition of simple-
triangle graphs [3], as well as the recognition of the related classes of unit and proper tolerance
graphs [1,10] (these are subclasses of bounded tolerance, i.e. parallelogram, graphs [1]), proper
bitolerance graphs [2, 10] (they coincide with unit bitolerance graphs [2]), and multitolerance
graphs [20] (they naturally generalize trapezoid graphs [20, 24]) remain interesting open
problems for further research.
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Abstract
We show that collapsible deterministic second level pushdown automata can recognize more
languages than deterministic second level pushdown automata (without collapse). This implies
that there exists a tree generated by a second level recursion scheme which is not generated by
any second level safe recursion scheme.
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1 Introduction

In verification we often approximate an arbitrary program by a program with variables
from a finite domain, remembering only a part of information. Then the outcome of some
conditions in the program (e.g. in the if or while statements) cannot be determined, hence
they are replaced by a nondeterministic choice (branching). If the program does not use
recursion, the set of its possible control flows is a regular language, and the program itself
is (in a sense) a deterministic finite automaton recognizing it. If the program contains
recursion, we get a deterministic context free language, and from the program one can
construct a deterministic pushdown automaton (PDA for short) recognizing this language.
In other words, stack can be used to simulate recursion (notice that the same is true for
compilers: they convert a recursive program into a program using stack). In verification it
is interesting to analyze the possibly infinite tree of all possible control flows of a program.
This tree has a decidable MSO theory [4].

A next step is to consider higher order programs, i.e. programs in which procedures can
take procedures as parameters. Such programs closely correspond to so-called higher order
recursion schemes and to typed λ-terms. They no longer can be simulated by classical PDA.
Here higher order PDA come into play. They were originally introduced by Maslov [10]. In
automata of level n we have a level n stack of level n− 1 stacks of ... of level 1 stacks. The
idea is that the PDA operates only on the topmost level 1 stack, but additionally it can
make a copy of the topmost stack of some level, or can remove the topmost stack of some
level. However the correspondence between higher order automata and recursion schemes
(programs) is not perfect. Trees recognized (in suitable sense) by a deterministic PDA of
level n coincide with higher order recursion schemes of level n with safety restriction [7]. See
[3, 5] for another characterizations of the same hierarchy. It is important that these trees
have decidable MSO theory [7].

To overcome the safety restriction, a new model of pushdown automata were introduced,
called collapsible higher order PDA [8, 1]. These automata are allowed to perform an
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additional operation called collapse (or panic in [8]); it allows to remove all stacks on which
a copy of the currently topmost stack symbol is present. These automata correspond to all
higher order recursion schemes (not only safe ones) [6], and trees generated by them also
have decidable MSO theory [11]. It is also worth to mention that verification of some real
life higher order programs can be performed in reasonable time [9].

A question arises if these two hierarchies are possibly the same hierarchy? This is an open
problem stated in [7] and repeated in other papers concerning higher order PDA [8, 2, 11, 6].
We give a negative answer to this question, which is our main theorem.

I Theorem 1. There exists a language recognized by a collapsible deterministic second level
pushdown automaton, which is not recognized by any deterministic second level pushdown
automaton without collapse.

From the equivalences mentioned above we get the following.

I Corollary 2. There exists a tree generated by a second level recursion scheme, which is
not generated by any safe second level recursion scheme.

This confirms that the correspondence between higher order recursion schemes and de-
terministic higher order PDAs is not perfect. The language used in Theorem 1 comes from
[7] and from that time was conjectured to be a good candidate.

Related work

One may ask a similar question for nondeterministic automata rather than for deterministic
ones. This is an independent problem. The answer is known only for level 2 and is opposite.
One can see that for level 2 the collapse operation can be simulated by nondeterminism,
hence normal and collapsible nondeterministic level 2 PDA recognize the same languages [2].
However it seems that in context of verification considering deterministic automata is a more
natural choice, for the following reasons. First, most problems for nondeterministic PDA are
not decidable: even the very basic problem of universality for level 1 PDA is undecidable.
Second, we want to verify deterministic programs (possibly with some not deterministic
input). A nondeterministic program is something rather strange: it has an oracle which
says what to do in order to accept. Normally, when a program is going to make some not
deterministic choice, we want to analyze all possibilities, not only these which are leading
to some „acceptance” (hence we have branching, not nondeterminism).

2 Definition

A deterministic second level pushdown automaton (D2PDA for short) is given by a tuple
(A,Γ, γI , Q, qI , δ) where A is an input alphabet, Γ is a stack alphabet, γI is an initial stack
symbol, Q is a set of states, qI is an initial state, and δ : Q × Γ → Ops is a transition
function. The set Ops contains the following operations: (pop, q), (push(γ), q), (copy, q),
read0(t), readacc(t) for each q ∈ Q, γ ∈ Γ, and t : A→ Q.

A first level stack is a nonempty sequence of elements of Γ. A second level stack is a
nonempty sequence of first level stacks. A configuration of a D2PDA consists of a second
level stack, a state from Q, and a head position over the input word. At the beginning on
the second level stack there is one first level stack, which contains one γI symbol, the state
is qI , and the head is before the first letter of the input word. The automaton always sees
only the last (topmost) symbol on the last (topmost) stack. When the current state is q and
the last stack symbol is γ, the automaton looks at the transition δ(q, γ) and:
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if δ(q, γ) = (pop, q′), it removes the last symbol from the last first level stack; when the
stack becomes empty, it is removed from the second level stack; when the second level
stack becomes empty, the automaton fails; the state becomes q′;
if δ(q, γ) = (push(γ′), q′), it places symbol γ′ on the end of the last first level stack; the
state becomes q′;
if δ(q, γ) = (copy, q′), it places a copy of the last first level stack on the end of the second
level stack; the state becomes q′;
if δ(q, γ) = read0(t), it moves the head to the next letter of the input word; if it is a, the
state becomes t(a); if we are on the end of the word, the automaton fails;
if δ(q, γ) = readacc(t), it moves the head to the next letter of the input word; if it is
a, the state becomes t(a); if we are on the end of the word, the automaton accepts the
word.

Notice that none of the stacks is empty; if the last element of a stack is removed, we remove
also the whole stack from the second level stack.

Now we are going to define collapsible D2PDA. Its first level stacks together with each
symbol γ ∈ Γ contain a number n ∈ N (hence stacks contain pairs (γ, n)). The operation
push(γ) places a pair (γ, n) on the end of the last first level stack, where n is the number of
first level stacks. We additionally have an operation (collapse, q′) for each q′ ∈ Q. When the
last element of the last stack is (γ, n) and this operation is performed, we remove all stacks
except the first n− 1 stacks; if n− 1 = 0 the automaton fails; the state becomes q′. In other
words, collapse removes all stacks on which a copy of this (γ, n) symbol is present.

An example of a collapsible D2PDA is given in the next section. In the literature one
can find some slightly different definitions of a D2PDA and a collapsible D2PDA, but one
can see that they are equivalent to ours, through some encodings.

3 The language

Let A = {[, ], ∗}. A word w ∈ {[, ]}∗ is called a prefix of a bracket expression if in each prefix
v of w the number of closing brackets is not greater than the number of opening brackets.
A word w ∈ {[, ]}∗ is called a bracket expression if it is a prefix of a bracket expression and
the number of opening brackets in w is equal to the number of closing brackets in w. Let
PBE and BE be the set of all prefixes of bracket expressions and of all bracket expressions,
respectively. For w ∈ PBE by open(w) we denote the number of [ characters in w minus
the number of ] characters in w (i.e. the number of opened brackets which are not closed).
For each w ∈ PBE we define a number char(w) as |w| − |v| where v is the longest suffix of
w, which is a bracket expression. This number is called later a characteristic of the word w.
We consider the following language over A:

U = {w∗char(w)+1 : w ∈ PBE}.

The words [ ][[ ]∗∗∗∗, [[[∗∗∗∗, [ ]∗ are examples of words in U , and [[[∗∗∗ and [ ]]∗ are
examples of words not in U (moreover, no word beginning with [[ ] is in U).

It is known that U can be recognized by a collapsible D2PDA, but for completeness we
show it below. The collapsible D2PDA will use three stack symbols: X (used to mark the
bottom of stacks), Y (used to count brackets), Z (used to mark the first stack). Initially,
the only stack contains one X symbol. The automaton first pushes Z, makes a copy, and
pops Z (hence the first stack is marked with Z, the other stacks are used later). Then, for
an opening bracket we push Y and we make a copy; for a closing bracket we pop Y and we
make a copy. Hence for each bracket we have a stack and on the last stack we have as many
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Y symbols as the number of currently open brackets. If for a closing bracket the topmost
symbol is X, we fail: it means that the input is not a prefix of a bracket expression.

Finally a star is read. If the topmost symbol is X, we have read a bracket expression,
hence we should accept after one star. Otherwise, the topmost Y symbol corresponds to the
last opening bracket which is not closed. We do the collapse operation. It leaves the stacks
corresponding to the earlier brackets (and the first stack), hence the number of stacks is
precisely equal to the characteristic. Now we should read as many stars as we have stacks,
and accept (after each star we remove one stack).

4 The proof

In this section we show that U is not recognized by any D2PDA. Assume otherwise: there
exists a D2PDA A recognizing U .

By ∼ we denote the Myhill-Nerode relation with respect to U : we have v ∼ w if for all
u it holds vu ∈ U ⇔ wu ∈ U . Notice, in particular, that open(v) 6= open(w) implies v 6∼ w.

Our first goal is to eliminate situations in which the number of stacks decreases. As a
first step we will eliminate situations in which the number of stacks is first increased and
later after a long time decreased to the same value. The intuition is as follows. Consider a
run of A on a word w and a moment when the number of stacks increases from some s to
s + 1. It happens when the head is over some position i of the input word. Let j be the
position of the head in the moment when the number of stacks becomes again s (for the
first time). Assume that such j exists and that j − i is big. This can happen only if we
have a very bad luck. Indeed, consider a word w′ get from w by some modification between
positions i and j, and assume that in w′ the number of stacks also comes down to s at some
moment. Notice that in the moment when the number of stacks becomes s, we have the
same stacks content for w and for w′, the only difference is the state. We have only a fixed
number of states and very many nonequivalent modifications of w, which have to give a
different state. Hence in most cases either the number of stacks goes down to s very quickly
after i, or it stays always above s.

It is formalized using fillings. We say that a function σ : PBE → PBE is a filling, when
σ(ε) = ε, and
for any vb ∈ PBE (where b ∈ {[, ]}), it holds that σ(vb) = σ(v)eb for some bracket
expression e (which may depend on both v and b).

Hence a filling of a word is received by inserting a bracket expression before each letter, but
in a deterministic way. A filling is called a k-filling, when additionally the length of each
inserted bracket expressions e is at most k. We have the following lemma.

I Lemma 3. Assume A is a D2PDA recognizing U . Then there exist constants k, l and a
k-filling σ such that if A reading σ(w) for some w ∈ PBE increases the number of stacks
from some s to s + 1 with the head over a position i, then either the number of stacks is
decreased to s for the head over a position ≤ i+ l, or it stays above s for the rest of the run.

Proof. The constant k = O(|Q|2) will follow from the proof; we take l = 2(k + 1). Our
filling σ will satisfy the following additional assumption for any w ∈ PBE:
? Let s0 be the minimal number of stacks when the head of A is over one of the last k+ 1

positions of σ(w). Then for any e ∈ PBE, the number of stacks never goes below s0
while A reads the suffix [e of σ(w)[e.

We will not define the filling explicitly. Instead, we define it in a non explicit way by
induction. We construct the values of filling σ starting from shorter words and going towards
longer.
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For the empty word we take σ(ε) = ε; property ? is satisfied (s0 = 1 and we can not
have less than one stack), as well as the thesis of the lemma.

Now consider any longer word vb ∈ PBE (where b is a letter). Let first define some
words. For any number n and any function f : {1, . . . , n} → {0, 1} we define inductively

on
f =


ε when n = 0,
on−1

f [ when f(n) = 0,
on−1

f [ ][ when f(n) = 1.

Hence on
f consists of n opening brackets, and before i-th of them we insert [ ] if f(i) = 1. Let

s0 be the minimal number of stacks when the head of A is over one of the last k+1 positions
of σ(v). Let s1 be the number of stacks after σ(v) is read (precisely, in the moment of the
read operation moving the head from the last letter of σ(v)). Let d be the greatest number
(s0 ≤ d ≤ s1) such that for some f : {1, . . . , |Q| + 1} → {0, 1} the number of stacks never
goes below d while A reads the added suffix of σ(v)[o|Q|+1

f (by the added suffix we mean the
part after σ(v)). From the ? property it follows that s0 satisfies this, hence d exists. Fix the
particular function f , for which the number of stacks never goes below d while A reads the
added suffix of σ(v)[o|Q|+1

f .
Consider the functions f1, . . . , f|Q|+1 which differ from f only on one position, namely

fi(i) 6= f(i) and fi(j) = f(j) for all j 6= i. We will show that for at most |Q| of them
the number of stacks goes below d while A reads the added suffix of σ(v)[o|Q|+1

fi
e for some

e ∈ PBE. To see this, for each such fi fix some ei (if exists) such that the number of
stacks goes below d while A reads the added suffix of σ(v)[o|Q|+1

fi
ei. Consider any two such

functions fi and fj (i < j). Let xi be the prefix of σ(v)[o|Q|+1
fi

ei such that the number of
stacks decreases to d − 1 when the head is over the last letter of xi. Similarly for j. The
key point is that neither xi nor xj can be a prefix of σ(v)[o|Q|+1

f (i.e. xi has to contain
some letters which are different for fi than for f), as for this word the number of stacks
stays at least d. Assume first that xi = σ(v)[oi−1

fi
[ ] (which is possible for fi(i) = 1).

But xj contains at least σ(v)[oj−1
fj

, so open(xi) < open(xj), hence xi 6∼ xj (recall that
∼ is the Myhill-Nerode relation). The other case is that xi contains at least σ(v)[oi

fi
.

When open(xi) 6= open(xj), we also have xi 6∼ xj . When open(xi) = open(xj), consider
z which closes open(xi) − open(σ(v)[oi

fi
) brackets. We have char(xiz) = |σ(v)[oi

fi
| and

char(xjz) = |σ(v)[oi
fj
| = char(xiz) ± 2, hence in this case also xi 6∼ xj . This means that

in the moment when the number of stacks becomes d − 1, the state has to be different for
i and j (as the stacks content is the same, but the read inputs are not equivalent). As we
have only |Q| states, the number of stacks may become d− 1 only for at most |Q| functions
fi. Thus there is g (one of f1, . . . , f|Q|+1) such that for each e ∈ PBE, the number of stacks
stays at least d while A reads the added suffix of σ(v)[o|Q|+1

g e.
Now consider the words (in BE)

ui = σ(v)[o|Q|+1
g [i]i+|Q|+2b

for i being a multiple of |Q|+ 3. We will show that for at most |Q| of them the number of
stacks goes below d while A reads their added suffixes. To see this take any two such words
ui and uj (i < j). Let xi be the prefix of ui such that the number of stacks decreases to
d − 1 when the head is over the last position of xi; similarly xj for uj . We know from the
above that the number of stacks can not be decreased to d−1 inside [o|Q|+1

g [j ]j (it is true for
[o|Q|+1

g e for any e ∈ PBE, in particular for e = [j ]j), hence |xj | ≥ |uj | − |Q| − 2. However
|uj | ≥ |ui| + |Q| + 3 and |ui| ≥ |xi|, which gives |xj | > |xi|. Thus the characteristics of xi[
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and xj [ are different, xi 6∼ xj . This means that the number of stacks is decreased to d − 1
in a different state in these two words. Thus only in |Q| words ui the number of stacks may
go below d.

Observe also that there are at most |Q| words ui in which for some e ∈ PBE the number
of stacks goes below d in the part [e of ui[e, but stays at least d inside the added suffix of ui.
To see this, for each such i fix some ei ∈ PBE (if exists) such that the number of stacks goes
below d in the part [ei of ui[ei. We may assume that this happens when the head is over the
last letter of ui[ei; otherwise the last letter of ei is redundant and can be cut off. Take any two
such words ui and uj (i < j). If open(ei) 6= open(ej), we have ui[ei 6∼ uj [ej . Otherwise, let
z consist of open(ei) closing brackets; see that char(ui[eiz) = |ui[| and char(uj [ejz) = |uj [|.
But the lengths of ui and uj are different, hence ui[ei 6∼ uj [ej . Thus when the number of
stacks is decreased to d − 1, the state for i and for j has to be different. As we have only
|Q| states, there are at most |Q| such words.

From the above two paragraphs it follows that we may choose ui for i ≤ (2|Q|+1)(|Q|+3)
such that for each e ∈ PBE the number of stacks stays at least d while A reads the added
suffix of ui[e (both inside and outside ui). As k we take the maximal length of the expression
inserted for any such ui. Observe that this ui satisfies both the thesis of the lemma and
property ?. Indeed, whenever the number of stacks decreases from some s+1 to s during the
added suffix of ui, then s ≥ d ≥ s0, hence the number of stacks was increased from s to s+1
during the last l = 2(k + 1) letters of ui (and when the decrease is inside σ(v), everything
is OK from the induction assumption). From the method how d was chosen follows that at
some moment while A reads the added suffix of ui, the number of stacks is d (even inside
the [o|Q|+1

g fragment). On the other hand, for each e ∈ PBE the number of stacks never
goes below d while reading the part [e of ui[e. Thus the ? property is also satisfied. J

The next lemma eliminates also all other situations in which the number of stacks is
increased from some s to s + 1 for the head over one position of the word, and then it is
decreased from s+ 1 to s over any of the next positions of the word (not only farther than
l letters).

I Lemma 4. Assume there exists a D2PDA recognizing U . Then there exists a constant k, a
k-filling σ and a D2PDA A′ recognizing U such that if A′ reading σ(w) for some w ∈ PBE
increases the number of stacks from some s to s + 1 with the head over a position i, then
either the number of stacks is decreased to s for the head over the position i, or it stays
above s for the rest of the run.

Proof. Let A be a D2PDA recognizing U . The constant k and the k-filling σ are taken from
Lemma 3. We have to improve A such that the stronger property will be satisfied. The
automaton A′ remembers a state q of A and up to l previous letters of the input (where l is
the constant from Lemma 3), i.e. a state of A′ contains a state of A and a sequence of up to
l letters (called a buffer). We begin with the initial state of A, and no letters in the buffer.
When the number of remembered letters is smaller than l, we read the next letter and we
append it to our buffer. When the buffer is full (contains l letters), we start executing A.
First, we execute A from the remembered state q until the moment when it reads a letter
(we give him the first letter from the buffer). Then, consider also the further run of A,
which reads all the next letters of the buffer (until the moment when A wants to make a
read operation when no more letters are in the buffer). We execute the part of this run up
to the moment when the number of stacks is minimal (to the last such moment if there are
more than one); we describe below how to detect this moment. Denote this minimal number
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of stacks as s0. Of course after a letter is read by the run of A being simulated, we remove
it from the buffer.

When A′ sees a star, it executes A on the letters left in the buffer, and then it simply
emulates A on the rest of the word. Of course A and A′ accept the same language, as they
in fact perform the same operations on a given input word, the only difference is when the
read operations are done (in A′ we earlier read more letters and later perform the other
operations). Note, in particular, that in the part reading brackets, A′ may always use the
read0 operation, as all words in U have at least one star.

Observe that when such A′ reads a word σ(w), the thesis of our lemma is satisfied.
Indeed, when the number of stacks is increased from some s ≥ s0 to s+ 1, then it decreases
back to s before the head is moved (as the head is moved with s0 stacks). On the other
hand, when the number of stacks is increased from some s < s0 to s + 1, it is done by A
before reading the first letter of the buffer. Later A does not decrease the number of stacks
below s0 (hence to s) when the head is over any of the next l positions. Thus A never does
this (from the thesis of Lemma 3), hence A′ also.

How to create such A′? The difficulty is that A′ has to find the moment in which the
number of stacks is minimal. However it can be done. The part always executed (i.e. up to
the first read) is executed in a normal way. Then the rest is executed, but each new stack
(created by the copy operation) is marked by the state of A before the copy operation and
by the head position of A (i.e. how many letters of the buffer were read). More precisely,
for the last stack the marking is remembered in the state of A′; for the previous stacks a
special stack symbol is put on the top of a stack when the number of stacks is increasing,
and is taken from the top of a stack after the number of stacks decreases. Finally, after the
whole run reading the buffer is executed, we remove all the stacks with the markings. This
gives us s0 stacks (the minimal number of stacks during the second part of the run). The
marking of the last removed stack gives us the new state q of A, and the number of letters
which should be removed from the buffer. J

In the next lemma we go even further and we eliminate all situations in which the number
of stacks is decreased.

I Lemma 5. Assume there exists a D2PDA recognizing U . Then there exists a constant k,
a k-filling σ and a D2PDA A recognizing U such that A reading σ(w) for some w ∈ PBE
never decreases the number of stacks.

Proof. The constant k and the filling σ is taken from Lemma 4 (hence also from Lemma
3). Let A′ be the automaton from Lemma 4; we will improve it, getting an automaton
A. We enrich the stack alphabet: together with each stack symbol we keep a function
f : Q→ Q ∪ {nr}, where Q is the set of states of A′. The function lying on an i-th place of
an s-th stack is defined in the following way. Consider the situation when all stacks after s
are removed and all symbols from the s-th stack above the i-th symbol are removed (i.e. the
function lies on the topmost place of the last stack). Let start the automaton from a state
q. We look at the run until it tries to do a read operation, or until the number of stacks is
decreased to s−1. When the read operation is first, we assign f(q) = nr. When the decrease
is first, and it results in a state p, we assign f(q) = p. It is also possible that the run is
infinite (it loops in some stupid way), then we also assign f(q) = nr.

The claim is that we can modify the automaton A′ (getting A′′) so that it puts on the
stack the correct f function together with each symbol. This is because f lying together
with some symbol somewhere on a stack depends only on this symbol and on the function
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f one place below. In particular it depends only on the contents of the current stack, hence
after making a copy of a stack, the functions in the copy stay correct.

Now we make one more modification of A′′, getting A. Whenever A′′ is going to do the
copy operation, we look at the f function of the topmost stack symbol. When f(q) = nr
we really do the copy operation. Otherwise we immediately move to state f(q) without any
operation (formally, as each transition has to do some operation, we may for example push
something to the stack and then pop it). We may do this, since the automaton A′′, after
some work with the copy, would also return to the same stack configuration in state f(q).
Hence A accepts the same words as A′.

Observe that the automaton A never increases and then decreases the number of stacks,
without reading any letter in between (as in such situation it makes the „shortcut” described
above). When a word σ(w) is read, the decrease can not happen also after reading a letter
(from Lemma 4). Hence A never decreases the number of stacks while reading σ(w). J

The next lemma says that the automaton can know at each moment if the word read
already is a prefix of a bracket expression or not. To formalize this, we replace the read0
operation by two operations: readP BE

0 and readbad
0 .

I Lemma 6. Assume there exists a D2PDA recognizing U . Then there exists a D2PDA A
recognizing U , which instead of read0 operation uses readP BE

0 if the word already read is a
prefix of a bracket expression, and readbad

0 otherwise. Moreover, there exists a constant k
and a k-filling σ such that A reading σ(w) for some w ∈ PBE never decreases the number
of stacks.

Proof. The constant k and the filling σ is taken from Lemma 5. Let A′ be the automaton
from Lemma 5; we will improve it, getting an automaton A. We enrich the input alphabet
by a # symbol and we consider the language

U ′ = U ∪ {w# : w ∈ PBE}.

We construct first a D2PDA B recognizing U ′. Observe that w ∈ PBE if w ∈ {[, ]}∗ and
w∗k ∈ U for some k. Of course B in its state can remember if the input contained only
brackets. Hence, after a # is read, it is enough to check if, after reading some number of
stars, the automaton A′ would accept (additionally, when something appears after the #
symbol, B can not accept). It is easy to do so. We make a copy of A′, in which instead of
doing a read0 operation, we assume that a star was read. When A′ does readacc, we accept
our word.

An automaton C (also recognizing U ′) is constructed using a trick like in the previous
lemma. Together with each stack symbol we remember a function f : Q → Q ∪ {acc, na},
where Q is the set of states of B. It is defined in the same way as in the proof of the previous
lemma, but it distinguishes an accepting and a non accepting read operation: when a run
from q leads to a readacc operation, we assign f(q) = acc, and when it leads to read0 (or
the run is infinite), we assign f(q) = na. The automaton can put on the stack the correct
function together with each symbol. (One may ask if it is possible that f(q) ∈ Q, i.e. that
the automaton decreases the number of stacks. It is possible, because it does not decrease
the number of stacks only while reading the filling; here we can read arbitrary words, in
particular containing ∗ or # symbols.)

Moreover on the top of each stack except the last we keep a function g : Q→ {acc, na};
for the last stack the function is kept in the state of C. The function for an s-th stack is
defined in the following way: Assume that there are only the first s− 1 stacks; start a run
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of B from a state q and continue it to the first read operation. If it is the readacc operation,
we take g(q) = acc, otherwise g(q) = na. Notice that g for an s-th stack depends only on
g for the s − 1-th stack (which „describes” first s − 2 stacks) and on f on the top of the
s− 1-th stack (which „describes” the s− 1-th stack). Hence g can be computed whenever a
copy operation is done.

Finally we construct A. It works like C, but when a read0 operation is going to be
done, we look at f at the current character and g for the current stack. Assume reading
a # character would end in a state q. If f(q) = acc we make the readP BE

0 operation, if
f(q) = na we make the readbad

0 operation. Otherwise f(q) is a state; if g(f(q)) = acc we
make the readP BE

0 operation, if g(f(q)) = na we make the readbad
0 operation. Note that A

still recognizes U ′. Hence when the input alphabet is limited to {[, ], ∗}, it recognizes U .
Moreover, it uses the operation readP BE

0 after a word w, when w# ∈ U ′, hence when w is
a prefix of a bracket expression. J

For the rest of the proof fix the automaton A, the constant k and the k-filling σ, which
are the result of Lemma 6.

For any number n ≥ 1, let

wn = [n+1]n[n+1]n . . . [n+1]n︸ ︷︷ ︸
|Q|+1 times

.

We will see that after reading a word σ(wn), the number of symbols on the last stack has
to be small.

I Lemma 7. There exists a constant H such that for any n ≥ 1 after reading the word
σ(wn) the number of symbols on the last stack of A is not greater than H.

Proof. For each prefix u of the word σ(wn) we define a block number: u is in the first block
if u is a prefix of σ([n+1), in the second block if u is a prefix of σ([n+1]n) but not of σ([n+1),
in the third block if u is a prefix of σ([n+1]n[n+1) but not of σ([n+1]n), etc. Observe the
following property ??. Consider two prefixes u1 and u2 of σ(wn) in the same block such that
|u2| ≥ |u1|+ (a+ 2k)(k + 1) for some a ≥ 0. We have

open(u2) ≥ open(u1) + a if the block number is odd,
open(u2) ≤ open(u1)− a if the block number is even.

Indeed, assume the block number is odd. Consider the word u−1
1 u2 (the suffix of u2 which

is after u1). At the beginning it contains a suffix of a bracket expression (up to k letters),
then opening brackets (coming from wn) alternating with short (up to k letters) bracket
expressions, and finally a prefix of a bracket expression (up to k letters). There are at
least a + 2k opening brackets coming from wn (as |u2| ≥ |u1| + (a + 2k)(k + 1)). In the
bracket expressions the number of opening and closing brackets is the same. In the initial
fragment the balance is violated by at most k; the same for the final fragment.1 Thus
open(u2) ≥ open(u1) + a. For even block number (having closing brackets) we get the
opposite inequality.

Now come to a proof of the lemma. It is important that the automaton never decreases
the number of stacks (thesis of Lemma 6). Hence, as long as it reads brackets, it can
access only symbols on the last stack. Consider the run reading some σ(wn); assume its

1 In fact, only the prefix or the suffix mattes, not both of them, so we could replace a + 2k by a + k.
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configurations are numbered from 1 to some l, and in the last configuration the number
of symbols on the last stack is h. From the last configuration the automaton tries to do
the readP BE

0 operation. For each i (1 ≤ i ≤ h) let p(i) − 1 denote the number of the last
configuration in the run such that the number of symbols on the last stack is smaller than
i. Hence in the operation leading to configuration p(i) the i-th symbol is pushed on the last
stack and later it is never poped. To each i (1 ≤ i ≤ h) we assign a triple (x, q, γ), where
1 ≤ x ≤ 2(|Q|+ 1), q ∈ Q, γ ∈ Γ. Here x is the block number of the prefix already read in
configuration p(i), q is the state in configuration p(i), and γ is the stack symbol on position
i on the last stack (in all moments between p(i) and l).

There is a constant H (depending on k and |Q|) such that whenever h > H, some triple
(x, q, γ) has to repeat at least (2k + |Q| + 2)(k + 1) + 1 times. Assume first that x in this
triple is even (i.e. it corresponds to a block of closing brackets). Take any c = (2k+1)(k+1)
numbers i1 < i2 < · · · < ic to which this triple is assigned. For each j, the run after p(ij)
has no access to the symbols below ij on the last stack (as well as to the symbols on the
earlier stacks). Thus it depends only on the ij-th stack symbol, the state, and the input
word. Notice that the run between p(ij) and p(ij+1) does at least one read operation, as
otherwise the fragment between p(ij) and p(ij+1) would repeat forever (the automaton is
deterministic). Let r be the number of read operations in the run between p(i1) and p(ic).
We have r ≥ c − 1. From ?? it follows that the part of the input returned by these r read
operations contains more closing brackets than opening brackets. Let repeat |Q| + 2 more
times the fragment of the run from p(i1) to p(ic) (precisely, we repeat the operations done
in this fragment, together with the part of the input returned by the read operations, and
we leave the operations done later). We get a correct run on a new word, in particular after
the last configuration it also does the readP BE

0 operation. But the new input word is not
a prefix of a bracket expression, as it has too many closing brackets. This contradicts with
the assumption that our automaton satisfies the thesis of Lemma 6, i.e. that it should end
now doing the readbad

0 operation.
The argument is similar for odd x, but we have to consider c = (2k+ |Q|+ 2)(k+ 1) + 1

numbers i1 < · · · < ic to which the repeating triple (x, q, γ) is assigned. As previously, there
is at least one read operation between p(ij) and p(ij+1) for each j. Thus the number r of
read operations between p(i1) and p(ic) is at least c− 1. This time we remove the fragment
of the run from p(i1) to p(ic). From ??, the part of the input read between p(i1) and p(ic)
contained at least |Q| + 2 more opening brackets than closing brackets. We get the same
contradiction as previously, as the new word is not a prefix of a bracket expression. J

For any n ≥ 1, 0 ≤ c ≤ |Q| we will define a number d(n, c). Assume that after reading
σ(wn) there are s stacks. Now see what happens when we read the word σ(wn]c)∗ω, where
∗ω means that we give infinitely many stars to the automaton and we look at the infinite
run. We look for the first of the two situations:
1. the automaton accepts (i.e. makes a readacc operation), or
2. the number of stacks goes below s.
Note that for sure the automaton accepts after some number of stars (but possibly the
second situations appears earlier). Note also that none of these situations can appear before
we start reading the stars: during reading σ(v) for any v ∈ PBE the number of stacks does
not decrease, and no word without stars can be accepted. Let d(n, c) be the number of stars
after which the earlier of these two situations appears.

Observe that d(n, c) depends only on the content of the last stack (stack s) after reading
σ(wn), on the state in this moment, and on the suffix of the filling σ(wn]c) which appears
after σ(wn). This is because the run reading σ(wn]c)∗ω never accesses stacks below s,
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until some of the two interesting situations appear. Hence there are only finitely many
possibilities: The number of the suffixes is finite, as their length is bounded by |Q|(k + 1).
Thanks to Lemma 7 after reading σ(wn) stack s has height not greater than H, so the
number of its different contents is finite. Thus there is a common upper bound D for all
d(n, c).

Let now fix n = D. Let s be the number of stacks after reading σ(wn). We define a
partial function a : Q→ N. Let us remove the stack s and start the automaton from a state
q on the input word ∗ω. If in this infinite run A makes the readacc operation only once, then
let a(q) denote the number of stars after which this happens. In the other cases (A never
accepts or accepts multiple times) a(q) is undefined. Let uc = σ(wn]c) for 0 ≤ c ≤ |Q|.
Consider the run on some of the words uc∗char(uc)+1. Note that char(uc) ≥ 2D + 1 > D

(we count at least the length of prefix σ([n+1]n)), hence after reading d(n, c) ≤ D stars A
can not accept. Thus the number of stacks becomes s− 1. The rest of the run depends only
on the state q in this moment (as the content of the first s − 1 stacks is the same for each
c); the readacc operation will appear after a(q) more stars (in particular a(q) is defined for
this q). Hence char(uc) −D ≤ a(q) ≤ char(uc). As there are only |Q| states, and |Q| + 1
values of c, some state q has to be used for two values of c, say c1 and c2 (c1 < c2). Note
that char(uc1) ≥ char(uc2) + 2D+ 1 > char(uc2) +D as to char(uc1) we count at least two
blocks of brackets more than to char(uc2). This is a contradiction, as

a(q) ≤ char(uc2) < char(uc1)−D ≤ a(q).

5 Future work

The following question remains open: is there a language recognized by a collapsible de-
terministic higher order pushdown automaton which is not recognized by any deterministic
higher order pushdown automaton without collapse of any level? It is possible that the
language U from Theorem 1 has this property.

References
1 Klaus Aehlig, Jolie G. de Miranda, and C.-H. Luke Ong. The monadic second order theory

of trees given by arbitrary level-two recursion schemes is decidable. In TLCA, pages 39–54,
2005.

2 Klaus Aehlig, Jolie G. de Miranda, and C.-H. Luke Ong. Safety is not a restriction at level
2 for string languages. In FoSSaCS, pages 490–504, 2005.

3 Didier Caucal. On infinite terms having a decidable monadic theory. In MFCS, pages
165–176, 2002.

4 Bruno Courcelle. The monadic second-order logic of graphs ix: machines and their beha-
viours. Theor. Comput. Sci., 151(1):125–162, 1995.

5 Bruno Courcelle and Teodor Knapik. The evaluation of first-order substitution is monadic
second-order compatible. Theor. Comput. Sci., 281(1-2):177–206, 2002.

6 M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible pushdown automata
and recursion schemes. In LICS ’08, pages 452–461, Washington, DC, USA, 2008. IEEE
Computer Society.

7 Teodor Knapik, Damian Niwinski, and Pawel Urzyczyn. Higher-order pushdown trees are
easy. In FoSSaCS ’02, pages 205–222, London, UK, 2002. Springer-Verlag.

8 Teodor Knapik, Damian Niwinski, Pawel Urzyczyn, and Igor Walukiewicz. Unsafe gram-
mars and panic automata. In ICALP, pages 1450–1461, 2005.

STACS’11



614 Collapse Increases Expressive Power of Deterministic Higher Order PDA

9 Naoki Kobayashi. Model-checking higher-order functions. In PPDP ’09: Proceedings of the
11th ACM SIGPLAN conference on Principles and practice of declarative programming,
pages 25–36, New York, NY, USA, 2009. ACM.

10 A. N. Maslov. The hierarchy of indexed languages of an arbitrary level. Soviet Math. Dokl.,
15:1170–1174, 1974.

11 C.-H. L. Ong. On model-checking trees generated by higher-order recursion schemes. In
LICS ’06, pages 81–90, Washington, DC, USA, 2006. IEEE Computer Society.



Temporal Synthesis for Bounded Systems and
Environments∗

Orna Kupferman1, Yoad Lustig2, Moshe Y. Vardi2, and Mihalis Yannakakis3

1 Hebrew University
2 Rice University
3 Columbia University

Abstract
Temporal synthesis is the automated construction of a system from its temporal specification. It is by
now realized that requiring the synthesized system to satisfy the specifications against all possible envir-
onments may be too demanding, and, dually, allowing all systems may be not demanding enough. In this
work we study bounded temporal synthesis, in which bounds on the sizes of the state space of the system
and the environment are additional parameters to the synthesis problem. This study is motivated by the
fact that such bounds may indeed change the answer to the synthesis problem, as well as the theoretical
and computational aspects of the synthesis problem. In particular, a finer analysis of synthesis, which
takes system and environment sizes into account, yields deeper insight into the quantificational structure
of the synthesis problem and the relationship between strong synthesis – there exists a system such that for
all environments, the specification holds, and weak synthesis – for all environments there exists a system
such that the specification holds.

We first show that unlike the unbounded setting, where determinacy of regular games implies that
strong and weak synthesis coincide, these notions do not coincide in the bounded setting. We then turn to
study the complexity of deciding strong and weak synthesis. We show that bounding the size of the system
or both the system and the environment, turns the synthesis problem into a search problem, and one cannot
expect to do better than brute-force search. In particular, the synthesis problem for bounded systems
and environment is ΣP

2 -complete (in terms of the bounds, for a specification given by a deterministic
automaton). We also show that while bounding the environment may lead to the synthesis of specifications
that are otherwise unrealizable, such relaxation of the problem comes at a high price from a complexity-
theoretic point of view.
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1 Introduction

Temporal synthesis is the automated construction of a system from its temporal specification. The
basic idea is simple and appealing: instead of developing a system and verifying that it satisfies its
specification, we would like to have an automated procedure that, given a specification, constructs a
system that is correct by construction. The first formulation of synthesis goes back to Church [4]; the
modern approach was initiated by Pnueli and Rosner, who introduced LTL (linear temporal logic)
synthesis [22]. The LTL synthesis problem receives as input a specification given by means of an
LTL formula and outputs a reactive system modeled by a finite-state transducer satisfying the given
specification — if such exists.

In the specification to the system, it is important to distinguish between output signals, controlled
by the system, and input signals, controlled by the environment. A system should satisfy its specifica-
tion against all possible environments. Therefore, the quantification structure on input and output
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signals is different. Output signals are existentially quantified while input signals are universally
quantified [22]. It is by now realized that requiring the synthesized system to satisfy the specification
against all possible environments is often too demanding. Dually, allowing all possible systems is
perhaps not demanding enough. This issue is traditionally approached by adding assumptions on the
system and/or the environment, which are modeled as part of the specification (c.f., [3]). 1

In this work we study bounded temporal synthesis, in which assumptions on the system and its
environment are given by means of bounds on the sizes of their state space. Thus, in addition to
a specification ψ, the input to the bounded synthesis problem contains two parameters n,m ≥ 1,
and a specification ψ is (n,m)-realizable, if there is a transducer T with n states such that for all
transducers T ′ with m states, the computation T ‖T ′ – generated by the interaction of T with T ′,
satisfies ψ. Note that traditional synthesis corresponds to the case n = m = ∞. 2 Also note that
by setting only one of n or m to∞, we can consider a setting in which only one of the components
is bounded. In particular, [25] studies the setting in which only the system is bounded. We note
that the need to bound the environment is of interest in several other paradigms in computer science.
For example, in cryptography, one studies the security of a given cryptosystem with respect to
attackers with bounded (typically polynomial) computational power [18], and in the analysis of
on-line algorithms one sometimes care for the competitive ratio of a given on-line algorithm with
respect to requests issued by a bounded adversary [1]. Even closer to the work here is the study of
bounded rationality in games, where bounds are placed on the power of the players. In particular,
having the players be automata with a bounded number of states is a natural way of doing this. As
shown in [20], such bounds affect the kind of equilibria one gets, and gives in fact a way of getting
around some of the problematic cases of equilibria, (e.g., in the Prisoner’s Dilemma [24]).

It is not hard to see that bounding the size of the system or its environment may indeed change
the answer to the synthesis problem. Clearly, already in a setting with no interaction, bounding the
size of a system may prevent it from satisfying some specifications. In the presence of interaction,
bounding the size of the environment both restricts the possible behaviors of the environment and
enables the system to “learn” the environment. For example, knowing that the environment has a
single state implies that the input to the system is fixed, thus a specification like “if p holds in the
present, then p holds always", for an input signal p, is realizable against environments with a single
state, while it is clearly not realizable in general.

Traditional temporal synthesis is determined, in the sense that for every specification ψ, either
there is a system that realizes ψ, or there is an environment that realizes ¬ψ. Note that not having a
system that realizes ψ only means that for every system T , there is an environment T ′ such that the
computation T ‖T ′ does not satisfy ψ. This by itself does not imply that there is an environment T ′
such that for all systems T , the computation T ‖T ′ satisfies ¬ψ. However, by determinacy of Borel
games [17], we know that the lack of T that realizes ψ does imply the existence of T ′ that realizes
¬ψ. We show that determinacy no longer holds in the bounded setting. In particular, for every k ≥ 1
there is a specification ψk such that ψk cannot be realized against environments of size k, nor can
¬ψk be realized by an environment of size k.

The observation about determinacy, which uses the theory of checking sequences for transducers
[16], yields deeper insight into the quantificational structure of the synthesis problem and the re-
lationship between two possible definitions of synthesis in the bounded setting: strong synthesis,
where there is a system T such that for all environments T ′, the computation T ‖T ′ satisfies the

1 A different, more conceptual, way to restrict the range of environments with respect to which the system has to
satisfy the specification is to assume that the environment has objectives of its own, and is therefore rational, rather
than hostile [9].

2 In fact, by the small model property, already to the case n and m are doubly exponential in the length of |ψ| [7, 22].
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specification, and weak synthesis, where for all environments T ′ there exists a system T such that the
computation T ‖T ′ satisfies the specification. In contrast, in the unbounded setting, strong and weak
synthesis coincide.

We study the complexity of strong and weak synthesis. Recall that LTL synthesis is 2EXPTIME-
complete [22]. This high complexity, along with technical challenges in the implementation of
synthesis algorithms [12, 30], have led researchers to develop synthesis algorithms for fragments
of LTL or alternative specification formalisms [15, 21]. A different approach for coping with the
complexity of LTL synthesis, tightly related to our work here, is to restrict attention to systems
of a bounded size [25]. As argued in [25], bounding the size of the system enables a reduction
of the synthesis problem to the SAT problem, and also leads to the decidability of synthesis of
distributed systems. For the bounded setting, researchers were also able to come up with a symbolic
implementation [6, 8]. 3

Recall that the bounded synthesis problem has three parameters: ψ, n, and m. We would like
to study the complexity in terms of each of n and m. One standard way to analyze the complexity
in terms of one parameter is to fix the other parameters. This standard way does not work in our
setting, as fixing ψ implies fixing also n and m. Indeed, by [7, 22], if ψ is realizable, then it is also
realizable by a transducer with doubly-exponentially many states. Also, by determinacy, ψ is not
realizable if the environment can realize ¬ψ by a transducer that is doubly-exponential in the length
of ψ. Accordingly, we have to neutralize the dominance of ψ in the complexity analysis in a different
way. We do so by assuming that the temporal specification is given, instead of as an LTL formula, as a
deterministic Büchi automaton. For such specifications, the unbounded realizability problem amounts
to checking the nonemptiness of a deterministic Büchi automaton, and can therefore be solved in
quadratic time [28]. In Section 4, we justify the choice of deterministic Büchi automata further.

We first show that bounding the size of the system enables an easy reduction from the synthesis
problem to the model-checking problem. At the same time, one cannot expect to do better than
brute-force search in synthesizing bounded-size systems. Formally, we show that deciding whether a
specification A givens by means of a deterministic Büchi automaton is realizable by a system with
n states is NP-complete, for n given in unary. The proof of NP-hardness is technically easy and
is similar to known NP-hardness proofs in the context of formal methods [5, 13]. Still, it justifies
the reduction to SAT given in [25] without a lower bound, and it sets the stage to the much more
challenging lower bound, for the case both the system and the environment are bounded: we show
that deciding whether a specification A is realizable by a system with n states against all environment
with m states is ΣP

2 -complete, for n and m given in unary. Thus, brute-force search is the best we can
do also here, and one cannot expect to do better than model checking the interaction of all systems
with n states with all environments with m states.

We also show that while bounding the environment may indeed lead to the synthesis of specifica-
tions that are otherwise unrealizable, such relaxation of the problem comes at a high price from a
complexity-theoretic point of view. As pointed above, synthesis with respect to specifications given
by deterministic Büchi automata is quadratic. Adding a bound on the size of the environment seems
to add a cost that is doubly exponential in that size. In fact, we show that even model checking against
bounded environments is apparently harder than standard model checking. Finally, we formalize the
intuition of the system being able to learn the bounded environment by showing that for absolute
liveness properties, which are insensitive to additions of prefixes [26], weak and strong realizability

3 As mentioned above, [25] also studies synthesis of bounded systems. The contributions here and in [25] are, however,
different. In [25], the focus is on practical algorithm for the setting of a bounded system. Here, the focus is on the
theoretical aspects of the problem and its complexity, and rather than studying bounded systems, we consider bounds
on the system, the environment, and both.
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coincide, and the complexity of the problem is only exponential in the bound for the environment.
Due to the lack of space, some proofs are omitted, and can be found in the full version in the

authors’ home pages.

2 Preliminaries

Consider finite sets I and O of input and output signals, respectively. We model finite-state reactive
systems with inputs in I and outputs in O by transducers (I/O-transducers, when I and O are not
clear from the context). A transducer is a finite graph with a designated start state, where the edges
are labeled by letters in 2I and the states are labeled by letters in 2O. Formally, a transducer is a tuple
T = 〈I,O, S, sin, η, L〉, where I and O are the sets of input and output signals, S is a finite set of
states, sin ∈ S is an initial state, η : S×2I → S is a deterministic transition function, andL : S → 2O

is a labeling function. We extend η to words in (2I)∗ in the straightforward way. Thus, η : (2I)∗ → S

is such that η(ε) = sin, and for x ∈ (2I)∗ and i ∈ 2I , we have η(x · i) = η(η(x), i). Each transducer
T induces a strategy fT : (2I)∗ → 2O where for all w ∈ (2I)∗, we have fT (w) = τ(L(w)). Thus,
fT (w) is the letter that T outputs after reading the sequence w of input letters. A transducer with at
most k states is referred to as a k-transducer.

Consider an infinite sequence w = i0, i1, i2, i3, . . . ∈ (2I)ω of input letters. The computation of
T on w, denoted T (w), is ρ = (o0 ∪ i0), (o1 ∪ i1), (o2 ∪ i2), . . . ∈ (2I∪O)ω such that for all j ≥ 0,
we have oj = fT (i0 · i1 · · · ij−1). Note that, in particular, o0 = fT (ε). Thus, the mode of interaction
we assume is that the transducer initiates the interaction with the environment by outputting fT (ε),
the environment then responds with i0 (making fT (ε) ∪ i0 the set of signals that are valid in the first
time unit), then the transducer responds with fT (i0), the environment with i1, and so on. In order to
emphasize the fact that the transducer moves first, we sometimes refer to ρ as a 1-computation of T .
Also, we sometimes refer to ρ as w/y, for y = o0, o1, o2 . . ..

One could also consider a dual type of interaction, in which the environment moves first. Then,
a 2-computation of T is ρ = (o0 ∪ i0), (o1 ∪ i1), (o2 ∪ i2), . . . where for all j ≥ 0, we have
oj = fT (i0 · i1 · · · ij). In particular, o0 = fT (i0). Note that when two transducers interact with each
other, one of them initiates the interaction and moves first, thus its computations are 1-computations,
and the second moves second, and its computations are 2-computations. We say that ρ ∈ (2I∪O)ω is
a computation of T if there is w ∈ (2I)ω such that ρ = T (w). Finally, we sometimes refer also to
finite sequences of input letters and the finite computations of T on them.

We specify on-going behaviors of I/O-transducers by means of LTL formulas over the set I ∪O
of atomic propositions, or automata on infinite words over the alphabet 2I∪O. For a specification
ψ over I ∪ O and a “who moves first" flag b ∈ {1, 2}, we use realI,O,b(ψ) to indicate that there is
an I/O transducer T such that all the b-computations of T satisfy ψ. Given a specification ψ over
the sets I and O of input and output signals, the realizability problem for ψ is to decide whether
realI,O,1(ψ) [22]. For b ∈ {1, 2} let b̃ dualize b (that is, b̃ = 3− b). By determinacy of Borel games
[17], we have the following (see also [10]).

I Theorem 1. For every specification ψ, precisely one of realI,O,b(ψ) or realO,I,b̃(¬ψ) holds.

3 Strong and Weak realizability

The traditional definition of realizability requires ψ to be satisfied in all the computations of T ,
ignoring the ability of the environment to feasibly generate the sequences of input letters that induce
these computations. In this work, we are interested in realizability with components of a bounded size.
In order to define this setting, let us first formalize the interaction between two transducers. For an
I/O-transducer T that induces a strategy fT : (2I)∗ → 2O and an O/I-transducer T ′ that induces a



Orna Kupferman, Yoad Lustig, Moshe Y. Vardi, and Mihalis Yannakakis 619

strategy fT ′ : (2O)∗ → 2I , the single 1-computation of T ‖T ′ is ρ = (o0∪i0), (o1∪i1), (o2∪i2), . . .
where for all j ≥ 0, we have oj = fT (i0 · i1 · · · ij−1) and ij = fT ′(o0 · o1 · · · oj). The single 2-
computation of T ‖T ′ is ρ = (o0 ∪ i0), (o1 ∪ i1), (o2 ∪ i2), . . . where for all j ≥ 0, we have
ij = fT ′(o0 · o1 · · · oj−1) and oj = fT (i0 · i1 · · · ij).

Recall that a specification ψ is realizable if there is an I/O-transducer T such that all the 1-
computations of T satisfy ψ. It is known that if a transducer T does have a computation that violates
ψ, then T also has a computation that violates ψ and is induced by an input sequence that is generated
by a transducer [2]. Accordingly, ψ is realizable iff there is an I/O-transducer T such that for allO/I
transducers T ′, the 1-computation of T ‖T ′ satisfies ψ. In Definition 2 below, we call this “strong
realizability” and introduce also a weaker type of realizability.

I Definition 2. [Strong and Weak Realizability] Consider a specification ψ over I ∪O, a first-move
flag b ∈ {1, 2}, and m,n ∈ N ∪ {∞}.

We say that ψ is strongly (I,O, b)-realizable with respect to systems with n states and environ-
ments with m states, denoted s_realI,O,b(ψ, n,m), if there is an I/O-transducer T with at most
n states such that for every O/I-transducer T ′ with at most m states, the b-computation of T ‖T ′
satisfies ψ.
We say that ψ is weakly (I,O, b)-realizable with respect to systems with n states and environments
with m states, denoted w_realI,O,b(ψ, n,m), if for every O/I-transducer T ′ with at most m
states, there is an I/O-transducer T with at most n states such that the b-computation of T ‖T ′
satisfies ψ.

Strong realizability means that the system can defeat all environment’s strategies under consideration.
Weak realizability means that the environment does not have a strategy to defeat all the strategies of
the system. When strong realizability is impossible, a designer may settle for a weak one. Also, weak
realizability of ¬ψ by the environment explains why ψ is not realizable by the system. Formally, we
have the following.
I Lemma 3. w_realI,O,b(ψ, n,m) iff not s_realO,I,b̃(¬ψ,m, n).

As discussed above, realI,O,b(ψ) iff s_realI,O,b(ψ,∞,∞). In fact, as we state below, weak and
strong realizability coincide in the unbounded setting.
I Theorem 4. For every specification ψ, we have that w_realI,O,b(ψ,∞,∞) iff s_realI,O,b(ψ,∞,
∞).

Proof. By definition, s_realI,O,b(ψ,∞,∞) implies w_realI,O,b(ψ,∞,∞). For the other dir-
ection, assume that s_realI,O,b(ψ,∞,∞) does not hold. Then, by Theorem 1, we have that
s_realO,I,b̃(¬ψ,∞,∞). Thus, by Lemma 3, we have that w_realI,O,b(ψ,∞,∞) does not hold,
and we are done. J

I Example 5. Let I = {p}, O = {q}, and ψ = G(q ↔ Xp). Note that the specification requires
the next value of the input signal p to depend on the current value of the output signal q. Since the
system has no control on the input signals, we have that not s_realI,O,1(ψ,∞,∞), and in fact even not
s_realI,O,1(ψ,∞, 1). To formally prove this, we use Lemma 3 and show that w_realO,I,2(¬ψ, 1,∞).
Note that ¬ψ = F ((q ∧X¬p)∨ (¬q ∧Xp)). Now, for every I/O-transducer T , if T outputs q in its
initial state, the O/I-1-transducer T ′ that always outputs ¬p is such that the unique 2-computation of
T ′‖T satisfies ¬ψ. Similarly, if T outputs ¬q in its initial state, the corresponding O/I-1-transducer
T ′ always outputs p.

On the other hand, w_realI,O,1(ψ,∞, 1). Indeed, there are two possible O/I-1-transducers: T ′1
that always outputs p, and T ′2 that always outputs ¬p. For T ′1 , the I/O-transducer T that always
outputs q is such that the unique 1-computation of T ‖T ′2 is {p, q}ω. For T ′2 , the I/O-transducer T
that always outputs ¬q is such that the unique 1-computation of T ‖T ′2 is ∅ω . Since both satisfy ψ, we
are done.
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Example 5 shows that strong and weak realizability do not coincide in the bounded setting. We
now generalize the example to all bounds, and show that it implies that the games that correspond to
bounded synthesis are not determined. We first need some notations.

For two I/O-transducers T1 and T2, we say that T1 and T2 are equivalent, denoted T1 ≡ T2, if
T1(w) = T2(w) for every word w ∈ (2I)∗; otherwise, T1 and T2 are inequivalent. If T is a transducer
and s an state of T , then denote by T /s the transducer that is the same as T except that it has s as
the start state. We say that T is minimized if there is no transducer T ′ such that T ≡ T ′ and T ′ has
strictly fewer states than T . We say that two transducers T1, T2 are structurally equivalent, denoted
T1 ∼ T2, if (i) for every state s1 of T1 there is a state s2 of T2 such that T1/s1 ≡ T2/s2, and (ii)
conversely, for every state s2 of T2 there is a state s1 of T1 such that T1/s1 ≡ T2/s2. Note that two
minimized transducers are structurally equivalent iff they are isomorphic (but their start states do not
need to map to each other in the isomorphism) [16].

Consider an I/O-transducer T with k states. A checking sequence for T is a word w ∈ (2I)∗
such that for all transducers T ′ with at most k states, if T ′(w) = T (w) then T ′ ∼ T . A transducer is
strongly connected if every state can reach every other state. It is known that every strongly connected
k-state transducer T has a checking sequence (of length at most exponential in k), and furthermore, if
T is minimized, then it has one of length polynomial in k; see [16] for background and an overview
on checking and other test sequences of transducers.

For a word w ∈ (2I)∗, let θ(w) be an LTL formula over I that holds in exactly all computations
in (2I∪O)ω whose prefix agrees with w on the signals in I . Thus, if w = i0, i1, . . . , il, then
θ(w) =

∧
0≤j≤l X

j((∧x∈ij
x) ∧ (∧x 6∈ij

¬x)). We define θ(y) similarly, for y ∈ (2O)∗.
We now use checking sequences in order to show that bounding the sizes of the components,

strong and weak synthesis no longer coincide, and determinacy fails.

I Theorem 6. For every k ≥ 1 there is an LTL formula ψk such that w_realI,O,1(ψk,∞, k) but
not s_realI,O,1(ψk,∞, k); equivalently, neither s_realI,O,1(ψk,∞, k) nor s_realI,O,2(¬ψk, k,∞).

Proof. We give first a high level idea of the approach. We construct an LTL formula ψk that is weakly
realizable, and is “almost strongly realizable", in the sense that the system can succeed in ensuring
the formula by using one of two strategies (transducers): the first strategy works for all environment
k-transducers except for those that are isomorphic to a specific one T ′1 , and the second strategy
works for all environment k-transducers except for those isomorphic to a second one T ′2 . However,
no system strategy works for both T ′1 , T ′2 , and thus if the system does not know the environment
transducer, then it cannot ensure ψk, i.e. ψk is not strongly realizable. In our construction, we pick
suitable transducers T ′1 and T ′2 and construct from them a formula ψk that has the desired properties.
Note that the presence of a bound on the size of the transducers is critical for this to be possible (and
is obviously essential for the construction), i.e. there is no such formula ψ∞, since weak and strong
realizability coincide in the unbounded case.

We proceed now with the details of the construction. For an O/I transducer T ′i with k states that
is minimized and strongly connected, let yi ∈ (2O)∗ be a checking sequence for T ′i , let yi/wi be the
2-computation of T ′i on yi, and let ϕi = θ(yi) ∧ ¬θ(wi). Note that s_realI,O,1(ϕi,∞, k − 1). To
see why, consider an I/O-transducer T that ignores the input and outputs yi. Since yi is a checking
sequence for T ′i , and T ′i has k states and is minimized, the sequence yi/wi cannot be generated in an
interaction with an O/I-transducer with at most k states that is not isomorphic with T ′i . Hence, for
every transducer T ′ with k − 1 states, the 1-computation of T ‖T ′ satisfies both θ(yi) and ¬θ(wi).
On the other hand, note also that ¬s_realI,O,1(ϕi,∞, k) and even ¬w_realI,O,1(ϕi,∞, k). Indeed,
the O/I-transducer T ′i is such that for all I/O-transducers T , if the 1-computation of T ‖T ′i satisfies
θ(yi), then it also satisfies θ(wi).

We would like to use ϕi in order to construct a specification ψk as required. Let T ′1 and T ′2 be
two nonisomorphic minimized strongly connected O/I transducers with k states; thus T ′1 , T ′2 are not
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structurally equivalent (since they are minimized). Let o1 and o2 be two different letters in 2O, let s1
be the state that T ′1 reaches when it reads o1 from its initial state, and let s2 be the state that T ′2 reaches
when it reads o2 from its initial state. Finally, let y1 be a checking sequence for the transducer T ′1/s1
(i.e., T ′1 with initial state s1) with corresponding output w1, and let y2 be a checking sequence for
T ′2/s2 with corresponding output w2. We define ψk = (o1 ∧X(θ(y1)∧¬θ(w1)))∨ (o2 ∧X(θ(y2)∧
¬θ(w2))). In the full version we prove that w_realI,O,1(ψk,∞, k) but ¬s_realI,O,1(ψk,∞, k).

J

4 Bounded Systems

We start by studying the strong-realizability problem for bounded systems. This problem is first
studied in [25]. The motivation there is to deal with the computational complexity of temporal
synthesis: the complexity of deciding whether realI,O,b(ψ) holds is known to be 2EXPTIME-
complete [22]. Furthermore, for each n > 0 one can construct an LTL formula ϕn of length O(n)
such that the smallest transducer T realizing ϕn has at least 22n

states [23]. In practice, therefore,
we may want to bound the size of the systems under consideration, motivating us to ask whether
s_realI,O,b(ψ, k,∞) holds, instead of asking whether realI,O,b(ψ) holds.

Note that the strong realizability problem for bounded systems has two parameters: a specification
ψ and a bound k. Here we would like to understand the complexity with respect to k. Thus, we would
like to “neutralize” here the effect of ψ on the complexity of checking whether s_realI,O,b(ψ, k,∞)
holds. Fixing ψ would not help us, as, by the small model property, it induces a fixed bound on the
size of a realizing transducer for ψ, if one exists. The complexity of the unbounded synthesis problem
for LTL follows from the need to translate the LTL specification to a deterministic automaton on
infinite words. Such a translation involves a doubly exponential blow-up [14], and is the source of the
complexity of the synthesis problem. Indeed, for specifications given by means of nondeterministic
or deterministic Büchi automata, the synthesis problem is complete in EXPTIME and PTIME,
respectively [28].

Accordingly, we neutralize the dominance of the specification ψ by considering, instead of a
specification given by an LTL formula, a specification given by a deterministic Büchi automaton A
over the alphabet 2I∪O. We denote classes of automata by acronyms in {D,N} × {F,B} × {W,T}.
The first letter stands for the branching mode of the automaton (deterministic or nondeterministic);
the second letter stands for the acceptance-condition type (finite words or Büchi); the third letter
stands for the object over which the automaton runs (words or trees). For example, NFW stands for
nondeterministic automata on finite words, and DBT stands for deterministic Büchi tree automata.
We note that while DBWs are less expressive than NBWs, we still work with DBW rather than, say,
deterministic parity word automata. The reason is that the nonemptiness problem for deterministic
parity tree automata is not known to be polynomial, and we want to emphasize the fact that the
hardness results we are going to prove are not due to the automaton and are due to k; the upper
bounds we are going to present for DBWs are valid also for specifications given by a deterministic
parity word automata.

Working with specifications that are automata, it is convenient to talk about alphabets ΣI and ΣO,
where the transducers are ΣI/ΣO-transducers, in which the transitions are labeled by letters in ΣI

and the states are labeled by letters in ΣO (or dually, are ΣO/ΣI -transducers). The alphabet of the
specification DBW is then ΣO × ΣI when we specify 1-computations, and is ΣI × ΣO when we
specify 2-computations.

I Theorem 7. Deciding s_realΣI ,ΣO,b(A, k,∞), for b ∈ {1, 2}, is NP-complete.

The proof of Theorem 7 is given in the full version. The lower bound is by a simple reduction
from the Vertex Cover problem: the states of the system correspond to the cover, and whenever the

STACS’11



622 Temporal Synthesis for Bounded Systems and Environments

environment gives an edge of the graph to the system, the system should respond with the vertex that
covers it.

By Lemma 3, we have that w_realΣI ,ΣO,b(A,∞, k) iff not s_realΣO,ΣI ,b̃(A, k,∞). Theorem 7
then immediately implies the following.

I Corollary 8. Deciding w_realΣI ,ΣO,b(A,∞, k), for b ∈ {1, 2}, is co-NP-complete.

The implication of Theorem 7 and Corollary 8 is that deciding strong realizability with bounded
systems (resp., weak realizability of bounded environments) amounts to search for a bounded system
(resp., environment) that satisfies (resp., falsifies) the specification. Thus, what we have is essentially
exhaustive search combined with model checking. The (co)-NP lower bounds tell us that there is no
way of getting around the need to do an exhaustive search. Note that Corollary 8 already refers to the
setting in which the environment is bounded, and it studies weak realizability there. In Section 5
below we study strong realizability in this setting.

5 Bounded Environments

We now turn to study the case of strong realizability in a setting of bounded environments (or,
dually, weak realizability in a setting of bounded systems). In fact, bounding the environment is of
interest already in the context of model-checking. For a system modeled by an I/O-transducer T , a
specificationA given by a DBW, and k ≥ 1, we say that T satisfiesA with respect to k-environments
if for all O/I-k-transducers T ′, the computation T ‖T ′ satisfies A.

I Theorem 9. Given an I/O-transducer T , a DBW A over the alphabet 2I∪O, and k ≥ 1, the
problem of deciding whether T satisfies A with respect to k-environments is co-NP-complete.

The proof of Theorem 9 is given in the full version. The lower bound is by a reduction from the
complement of the Hamiltonian Circle Problem [11].

We now turn to study the strong realizability problem when both the system and the environment
are bounded.

I Theorem 10. Deciding s_realΣI ,ΣO,1(A, n,m) and s_realΣI ,ΣO,2(A, n,m), for a given DBW
A over alphabets ΣI ,ΣO, and positive integers n,m in unary, is ΣP

2 -complete.

Proof. We prove the claim for b = 1. The argument for b = 2 is analogous. The strong realizability
property s_realΣI ,ΣO,1(A, n,m) holds iff there exists a ΣI/ΣO transducer T with at most n states
such that for every ΣO/ΣI transducer T ′ with at most m states, the 1-execution of T ‖T ′ satisfies the
DBW specification A. Membership in ΣP

2 follows from the fact that the sizes of the existentially and
universally quantified transducers T and T ′ respectively are polynomially bounded in the size of the
input, and the fact that we can check in polynomial time whether the 1-execution of T ‖T ′ satisfies A
for given T , T ′, and A [27].

To prove the hardness we reduce from the problem of deciding the truth of a formula of the
form ∃x∀yΦ(x, y), where x and y are vectors of Boolean variables and Φ is a formula in disjunctive
normal form [11]. Let x = (x1, . . . , xk), y = (y1, . . . yk) (we assume without loss of generality that
x, y have the same number k of variables), and let Φ = C1 ∨ C2 ∨ . . . ∨ Cp, where each term Ci is a
conjunction of literals (variables in x or y or their negations). We construct an instance (A, n,m) of
the strong realizability problem such that s_realΣI ,ΣO,1(A, n,m) iff ∃x∀yΦ(x, y).

We describe the reduction in detail in the full version. Here we describe the general idea. The
integers n,m are both set to 2p+ 1 + k. The input and output alphabets have size 2p+ 1 + 2k: The
input alphabet is ΣI = {d0} ∪ {di, d

′
i|1 ≤ i ≤ p} ∪ {yj , ȳj |1 ≤ j ≤ k}, and the output alphabet is

ΣO = {c0} ∪ {ci, c
′
i|1 ≤ i ≤ p} ∪ {xj , x̄j |1 ≤ j ≤ k}.
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Recall that the alphabet of the DBW A is ΣO × ΣI and it specifies the expected behavior of the
system with respect to all input sequences. Thus, A should not limit the behavior of the environment.
Since, however, the interaction between the system and the environment would be of interest only for
some behaviors of the environment, we are going to describe how A prescribe an expected format of
interaction for both the system and the environment, and we assume that if, during the interaction, the
system deviates from this format then A moves to rejecting sink, and if the system follows the format
but the environment deviates, then A accepts.

The DBW A prescribes the expected format in two phases. The goal of Phase 1 is to force the
system and the environment to commit to a truth assignments for the variables in x and y, respectively,
and to set aside states that output c1, c′1, . . . , cp, c

′
p, and d1, d

′
1, . . . , dp, d

′
p, respectively. Thus, if the

system follows the prescribed format in Phase 1, then it outputs 2p+ 1 + k different symbols during
this phase: c0, ci, c

′
i for i = 1, . . . , p, and either xj or x̄j for j = 1, . . . , k. Since the bound n on its

number of states is 2p+1+k, this implies that each state of the system has as output one of the letters
above. In particular, this means that for each variable xj , the system has exactly one corresponding
state that outputs xj or x̄j , which corresponds to assigning value true or false, respectively, to the
variable xj . Similarly, if the environment follows the prescribed format in Phase 1, and then it has
exactly 2p + 1 + k states, corresponding to the n letters generated d0, di, d

′
i for i = 1, . . . , p, and

either yj or ȳj for j = 1, . . . , k, and they induce a truth assignment for the y variables.
During Phase 2, the DBW A checks that the assignment to which the system and environment

commit in Phase 1 satisfies Φ. Phase 2 consists of p stages, one for each term Ci of Φ. In the stage
for Ci, the DBW A goes over the 2k variables and checks whether the assignment for them satisfies
Ci. Recall that Ci is a conjunction. When A detects that the assignment contradicts a requirement
imposed by Ci, it moves to the phase for Ci+1, or rejects, if i = p. When A concludes that the
assignment satisfies Ci, it accepts. J

We can now turn to the problem of synthesis with bounded environments. We first need some
definitions. For a word w/y ∈ (ΣI × ΣO)∗ and k ≥ 1, we say that w/y is k-generable if there is a
ΣI/ΣO-transducer T with at most k states such that T (w) = w/y. Let Lk ⊆ (ΣI ×ΣO)∗ be the set
of k-generable words.

I Lemma 11. There is a DFW with 2kO(k)
states that recognizes Lk.

Proof. We prove that there is an NFW with kO(k) states that recognizes Lk. The NFW guesses a
ΣI/ΣO-transducer T with at most k states and then simulates it, checking that the y track is indeed
the output of the w track. The number of ΣI/ΣO-transducers T with exactly k states is k|ΣO|kkk|ΣI |,
and the number of transducers with at most k states, is no more than k times this expression. J

We can now solve the strong realizability problem for bounded environments.

I Theorem 12. Deciding s_realΣI ,ΣO,b(A,∞, k), for b ∈ {1, 2} is in 2EXPTIME.

Proof. We prove the claim for b = 1. The argument for b = 2 is analogous.
We recall first how ones decides s_realΣI ,ΣO,1(A,∞,∞). The key idea is to consider the

following game between two players, called System and Environment. In each round, System first
chooses a letter in ΣI and Environment then chooses a letter in ΣO. System wins if the play, which is
the infinite word in (ΣI ×ΣO)ω that results from the choices of System and Environment is accepted
byA. Checking if System wins the game is equivalent to testing nonemptiness of Büchi tree automata
and can be done in quadratic time [29]. Furthermore, if System wins the game, then there is a strategy
that depends only on the states of A. Thus, if A = 〈ΣI × ΣO, Q, q0, ρ, F 〉, then the nonemptiness
algorithm yields a function L : Q→ ΣO, which means that A is strongly realized by the transducer
T = 〈ΣI ,ΣO, Q, q0, η, L〉, where η(q, σ) = ρ(q, 〈σ, L(q)〉).
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In deciding s_realΣI ,ΣO,b(A,∞, k), System only has to win against environments with at most
k states. Thus, if a prefix of the play is not k-generable then System wins immediately, since no
transducer with at most k states can generate such a play. Let Dk be a DFW that accepts exactly all
words that are not k-generable. By Lemma 11, such a DFW with 22O(k)

states exists.
Then, s_realΣI ,ΣO,b(A,∞, k) holds iff s_realΣI ,ΣO,b(A × Dk,∞,∞), where A × Dk is the

product of A and Dk, which accepts a word w ∈ (ΣI × ΣO)ω if w is accepted by A or is not
k-generable. It follows that if s_realΣI ,ΣO,b(A,∞, k), then A is realized by a transducer who states
space is that of A×Dk. J

Theorem 12 tells us that we can solve strong realizability against bounded transducers, but at a cost
that is doubly exponential in k. Thus, on the one hand, we expect more specifications to be realizable
when we bound the size of the adversaries, but, on the other hand, deciding such realizability comes
at a considerable cost. The question is whether this cost is unavoidable. To prove this, we would have
to show that deciding s_realΣI ,ΣO,b(A,∞, k) is 2EXPTIME-hard.
OPEN QUESTION: Is deciding s_realΣI ,ΣO,b(A,∞, k) 2EXPTIME-hard?

As in the case of bounded systems, we can show that the strong realizability problem for bounded
environment is at least NP-hard. The problem, however, seems to be much harder. As supporting
evidence for the hardness of the problem, we show that recognizing k-generable words by an
automaton requires doubly-exponential size.

For a word x = x1, . . . xn ∈ Σ∗I , a combination lock transducer for x is Tx = 〈ΣI ,ΣO, {0, . . . , n},
0, τ〉, where ΣO = {0, 1}, and for all 0 ≤ j < n, we have ρ(j, xj+1) = j + 1 and ρ(j, σ) = 0, for
all σ 6= xj+1. Also, ρ(n, σ) = n, for all σ ∈ ΣI . Finally, τ(j) = 0 for all 0 ≤ j < n and τ(n) = 1.
Thus, Tx outputs 0 in all states but n. It can read x from its initial state, in which case it reaches the
state n, where it outputs 1. When a violation of x is detected, Tx goes back to its initial state.

I Theorem 13. A DFW that recognizes Lk has at least 22k

states.

Proof. Recall that two words x1, x2 ∈ (ΣI × ΣO)∗ are Lk-equivalent, in the Myhill-Nerode sense,
iff for all z ∈ (ΣI × ΣO)∗, we have that x1 · z ∈ Lk iff x2 · z ∈ Lk. The number of states in a
minimal DFW for Lk is the number of equivalence classes of the Lk-equivalence relation.

Let ΣI = {a, b,#} and ΣO = {0, 1}. For a word x ∈ (a+ b)k, let Tx be the transducer obtained
from the combination lock {a, b}/{0, 1}-transducer for x by adding #-transitions from all states to
the initial state. Thus, # is an input reset symbol that resets to the initial state from all states. For
every subset P of (a + b)k, let w(P ) be the ΣI/ΣO word in which the input part consists of the
words in P in some order, say lexicographic, with each word preceded by a reset, and the output part
is all 0. We claim that all the words w(P ), for different subsets P , are not Lk-equivalent. Let P and
Q be two different subsets. Assume, without loss of generality, that x ∈ Q \ P .

Note that the transducer Tx is strongly connected, and it is easy to see also that it is minimized.
Let w be a checking sequence for Tx, and let Tx(w) = w/y. That is, the only k-state transducer that
can generate w/y (including k-transducers that are not combination locks) is Tx starting from some
state. If we append to w(P ) the word #/0 · w/y, then the resulting word is in Lk, as Tx generates it.
On the other hand, if we append the word #/0 · w/y to w(Q), then the resulting word is not in Lk.
Indeed, because of the w/y portion, the only k-transducer that could possibly generate the resulting
word is Tx, but since x ∈ Q, the transducer Tx cannot generate w(Q), as it would output 1 after
reading #x. 4 J

4 A small variant of the argument holds also for binary input alphabet, i.e., without the additional reset symbol. Restrict
to combination locks where the first and the last symbol of the combination word is a, and replace the reset symbol
by bk. Then, bk acts like a reset for these machines.
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5.1 Absolute liveness properties

A specification ψ is of an absolute liveness property if for every computation π, we have that π |= ψ

iff π |= Fψ [26]. In this section we show that for absolute liveness properties, weak and strong
realizability against bounded environments coincide, and the complexity of deciding realizability is
only exponential in the bound. Intuitively, it follows from the fact that the system can take its time to
learn the environment with which it interacts, and then follow a strategy against that environment.

We formalize this intuition by means of the so-called machine identification problem: Given
k ≥ 1, we say that a word w is a k-identifier for every two O/I-k-transducers T ′1 , T ′2 , if the two
transducers produce the same output sequence y in response to w, and if s1, s2 are their states
respectively after processing w, then T ′1/s1 ≡ T ′2/s2. In other words, observing the response of the
environment to w, identifies uniquely up to equivalence the part of the environment transducer that is
reachable from the final state after w. The machine identification problem was formulated and solved
by Moore in his classical paper [19]. It is shown there that for every k ≥ 1, there is a k-identifier of
length exponential in k, and it can be constructed in exponential time. (The word w is essentially a
homing sequence of the disjoint union of all k-transducers.)

I Theorem 14. Let ψ be an absolute liveness specification. Then
1. w_realI,O,1(ψ,∞, k) iff s_realI,O,1(ψ,∞, k).
2. If ψ is given as a DBW, we can decide s_realI,O,1(ψ,∞, k) in time polynomial in ψ and expo-

nential in k.

Proof. Clearly s_realI,O,1(ψ,∞, k) implies w_realI,O,1(ψ,∞, k). For the other direction, assume
that w_realI,O,1(ψ,∞, k) holds. Then, for each O/I-k-transducer T ′ there is an I/O-transducer T
that guarantees that ψ holds. We need, however, one I/O-transducer T that can guarantee ψ against
all O/I-k-transducers. What T can do is first output a k-identifier sequence w. After observing
the response y of the k-transducer T ′ of the environment, we can construct a transducer T ′′ with at
most k states that is equivalent to T ′/s where s is the current state of T ′ after w. Then, using weak
realizability, T can simulate the I/O-transducer that wins against T ′′. This proves the first claim.

The second claim follows from the fact that, for every given k-transducer T ′ for the environment,
we can determine in polynomial time whether there is a system that satisfies a DBW specification
ψ with environment T ′, hence w_realI,O,1(ψ,∞, k) (and s_realI,O,1(ψ,∞, k)) can be decided in
time polynomial in ψ and exponential in k. If s_realI,O,1(ψ,∞, k) holds, then a transducer T for
the system that realizes ψ can be constructed also in time polynomial in ψ and exponential in k, as
explained above. J
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Linear temporal logic for regular cost functions
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Abstract

Regular cost functions have been introduced recently as an extension to the notion of regular languages
with counting capabilities, which retains strong closure,equivalence, and decidability properties. The
specificity of cost functions is that exact values are not considered, but only estimated.

In this paper, we define an extension of Linear Temporal Logic(LTL) over finite words to describe
cost functions. We give an explicit translation from this new logic to automata. We then algebraically
characterize the expressive power of this logic, using a newsyntactic congruence for cost functions intro-
duced in this paper.
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1 Introduction

Since the seminal works of Kleene and Rabin and Scott, the theory of regular languages is one of
the cornerstones in computer science. Regular languages have many good properties, of closure, of
equivalent characterizations, and of decidability, whichmakes them central in many situations.

Recently, the notion of regular cost function for words has been presented as a candidate for being
a quantitative extension to the notion of regular languages, while retaining most of the fundamental
properties of the original theory such as the closure properties, the various equivalent characteriz-
ations, and the decidability [2]. A cost function is an equivalence class of the functions from the
domain (words in our case) toN∪{∞}, modulo an equivalence relation≈ which allows some dis-
tortion, but preserves the boundedness property over each subset of the domain. The model is an
extension to the notion of languages in the following sense:one can identify a language with the
function mapping each word inside the language to 0, and eachword outside the language to∞. It is
a strict extension since regular cost functions have counting capabilities, e.g., counting the number
of occurrences of letters, measuring the length of intervals, etc...

Linear Temporal Logic (LTL), which is a natural way to describe logical constraints over a linear
structure, have also been a fertile subject of study, particularly in the context of regular languages and
automata [10]. Moreover quantitative extensions of LTL have recently been successfully introduced.
For instance the model Prompt-LTL introduced in [8] is interested in bounding the waiting time of
all requests of a formula, and in this sense is quite close to the aim of cost functions.

In this paper, we extend LTL (over finite words) into a new logic with quantitative features
(LTL≤), in order to describe cost functions over finite words with logical formulae. We do this by
adding a new operatorU≤N : a formulaφU≤Nψ means thatψ holds somewhere in the future, and
φ has to hold until that point, except at mostN times (we allow at mostN "mistakes" of the until
formula).

Related works and motivating examples

Regular cost functions are the continuation of a sequence ofworks that intend to solve difficult
questions in language theory. Among several other decisionproblems, the most prominent example
is the star-height problem: given a regular languageL and an integerk, decide whetherL can be
expressed using a regular expression using at mostk-nesting of Kleene stars. The problem was
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resolved by Hashigushi [5] using a very intricate proof, andlater by Kirsten [7] using an automaton
that has counting features.

Finally, also using ideas inspired from [1], the theory of those automata over words has been
unified in [2], in which cost functions are introduced, and suitable models of automata, algebra, and
logic for defining them are presented and shown equivalent. Corresponding decidability results are
provided. The resulting theory is a neat extension of the standard theory of regular languages to a
quantitative setting.

On the logic side, Prompt-LTL, introduced in [8], is an interesting way to extend LTL in order
to look at boundedness issues, and already gave interestingdecidability and complexity results.
Prompt-LTL would correspond in the framework of regular cost functions to a subclass of temporal
cost functions introduced in [3]; in particular it is weakerthan LTL≤ introduced here.

Contributions

It is known from [2] that regular cost functions are the ones recognizable by stabilization semigroups
(or in an equivalent way, stabilization monoids), and from [3] than there is an effective quotient-wise
minimal stabilization semigroup for each regular cost function. This model of semigroups extends
the standard approach for languages.

We introduce a quantitative version of LTL in order to describe cost functions by means of lo-
gical formulas. The idea of this new logic is to bound the number of "mistakes" of Until operators,
by adding a new operatorU≤N . The first contribution of this paper is to give a direct translation from
LTL≤-formulas toB-automata, which is an extension of the classic translationfrom LTL to Büchi
automaton for languages. This translation preserves exactvalues (i.e. not only cost functions equi-
valence), which could be interesting in terms of future applications. We then show that regular cost
functions described by LTL formulae are the same as the ones computed by aperiodic stabilization
semigroups, and this characterization is effective. The proof uses a syntactic congruence for cost
functions, introduced in this paper.

This work validates the algebraic approach for studying cost functions, since the analogy extends
to syntactic congruence. It also allows a more user-friendly way to describe cost functions, since LTL
can be more intuitive than automata or stabilization semigroups to describe a given cost function.

As it was done in [3] for temporal cost functions, the characterization result obtained here for
LTL≤-definable cost functions follows the spirit of Schützenberger’s theorem which links star-free
languages with aperiodic monoids [9].

Organisation of the paper

After some notations, and reminder on cost functions, we introduce in Section 3 LTL≤ as a quantit-
ative extension of LTL, and give an explicit translation from LTL≤-formulae toB-automata. We then
present in Section 4 a syntactic congruence for cost functions, and show that it indeed computes the
minimal stabilization semigroup of any regular cost function. We finally use this new tool to show
that LTL≤ has the same expressive power as aperiodic stabilization semigroups.

Notations

We will noteN the set of non-negative integers andN∞ the setN∪{∞}, ordered by 0< 1< · · ·< ∞.
If E is a set,EN is the set of infinite sequences of elements ofE (we will not use here the notion
of infinite words). Such sequences will be denoted by bold letters (~a,~b,...). We will work with a
fixed finite alphabetA. The set of words overA is A∗ and the empty word will be notedε. The
concatenation of wordsu andv is uv. The length ofu is |u|. The number of occurrences of lettera
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in u is |u|a. FunctionsN→ N will be denoted by lettersα,β, . . . , and will be extended toN∪{∞}
by α(∞) = ∞.

2 Regular Cost functions

2.1 Cost functions and equivalence

If L⊆A∗, we will noteχL the function defined byχL(u) = 0 if u ∈ L, ∞ if u /∈ L. LetF be the set of
functions :A∗→N∞. For f ,g ∈ F andα a function (see Notations), we say thatf ≤α g if f ≤ α◦g,
and f ≈α g if f ≤α g andg ≤α f . Finally f ≈ g if f ≈α g for someα. This equivalence relation
doesn’t pay attention to exact values, but preserves the existence of bounds.

A cost function is an equivalence class ofF /≈. Cost functions are notedf ,g, . . . , and in practice
they will be always be represented by one of their elements inF .

2.2 B-automata

A B-automaton is a tuple〈Q,A, In,Fin,Γ,∆〉 whereQ is the set of states,A the alphabet,In andFin
the sets of initial and final states,Γ the set of counters, and∆⊆Q×A× ({i,r,c}∗)Γ×Q is the set of
transitions.

Counters have integers values starting at 0, and an actionσ ∈ ({i,r,c}∗)Γ performs a sequence of
atomic actions on each counter, where atomic actions are either i (increment by 1),r (reset to 0) or
c (check the value). In particular we will noteε the action corresponding to the empty word : doing
nothing on every counter. Ife is a run, letC(e) be the set of values checked duringe on all counters
of Γ.

A B-automatonA computes a regular cost function[[A ]] via the following semantic :[[A ]](u) =
inf {supC(e),e run ofA overu}.

With the usual conventions that sup/0 = 0 and inf/0 = ∞. There exists also a dual model ofB-
automata, namelyS-automata, that has the same expressive power, but we won’t develop this further
in this paper. See [2] for more details.

◮ Example 1. Let A = {a,b}. The cost function| · |a is the same as 2| · |a + 5, it is computed by
the following one-counterB-automaton on the left-hand side. The cost functionu 7→min{n ∈ N, an

factor ofu} is computed by the nondeterministic one-counterB-automaton on the right-hand side.

a : ic

b : ε

a,b : ε a : ic a,b : ε

b : ε b : r

Moreover, as in the case of languages, cost functions can be recognized by an algebraic structure
that extends the classic notion of semigroups, called stabilization semigroups. A stabilization semig-
roupS= 〈S, ·,≤, ♯〉 is a partially ordered setS together with an internal binary operation· and an
internal unary operationa 7→ a♯ defined only on idempotent elements (elementsa such thata ·a= a).
The formalism is quite heavy, see appendix for all details onaxioms of stabilization semigroups and
recognition of regular cost functions.

STACS’11
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3 Quantitative LTL

We will now use an extension of LTL to describe some regular cost functions. This has been done
successfully with regular languages, so we aim to obtain thesame kind of results. Can we still go
efficiently from an LTL-formula to an automaton?

3.1 Definition

The first thing to do is to extend LTL so that it can decribe costfunctions instead of languages. We
must add quantitative features, and this will be done by a newoperatorU≤N . Unlike in most uses of
LTL, we work here over finite words.

Formulas of LTL≤ (on finite words on an alphabetA) are defined by the following grammar :

φ := a | φ∧φ | φ∨φ | Xφ | φUφ| φU≤Nφ | Ω

Note the absence of negation in the definition of LTL≤. The negations have been pushed to the
leaves.

a means that the current letter isa, ∧ and∨ are the classic conjunction and disjunction;
Xφ means thatφ is true at the next letter;
φUψ means thatψ is true somewhere in the future, andφ holds until that point;
φU≤Nψ means thatψ is true somewhere in the future, andφ can be false at mostN times before
ψ. The variableN is unique, and is shared by all occurrences ofU≤N operator;
Ω means that we are at the end of the word.

We can define⊤ = (
∨

a∈A a)∨Ω and⊥ = ¬⊤, meaning respectively true and false, and¬a =

(
∨

b 6=a b)∨Ω to signify that the current letter is nota.
We also define connectors "eventually" :Fϕ =⊤Uϕ and "globally" :Gϕ = ϕUΩ.

3.2 Semantics

We want to associate a cost function[[φ]] on words to any LTL≤-formulaφ.
We will say thatu,n |= φ (u,n is a model ofφ) if φ is true onu with n as valuation forN, i.e. as

number of errors for all theU≤N ’s in the formulaφ. We finally define

[[φ]](u) = inf {n ∈ N/u,n |= φ}

We can remark that ifu,n |= φ, then for allk≥ n,u,k |= φ, since theU≤N operators appear always
positively in the formula (that is why we don’t allow the negation of an LTL≤-formula in general).
In particular,[[φ]](u) = 0 means that∀n ∈ N,u,n |= φ, and[[φ]](u) = ∞ means that∀n ∈ N,u,n 6|= φ
(since inf/0 = ∞).

◮ Proposition 2.

[[a]](u) = 0 if u ∈ aA∗, and∞ otherwise
[[Ω]](u) = 0 if u = ε, and∞ otherwise
[[φ∧ψ]] = max([[φ]], [[ψ]]), and[[φ∨ψ]] = min([[φ]], [[ψ]])
[[Xφ]](au) = [[φ]](u), [[Xφ]](ε) = ∞
[[⊤]] = 0, and[[⊥]] = ∞

◮ Example 3. Let φ = (¬a)U≤NΩ, then[[φ]] = | · |a
We use LTL≤-formulae in order to describe cost functions, so we will always work modulo cost

function equivalence≈.

◮ Remark 4. If φ does not contain any operatorU≤N , φ is a classic LTL-formula computing a
languageL, and[[φ]] = χL.
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3.3 From LTL ≤ to B-Automata

We will now give a direct translation from LTL≤-formula toB-automata, i.e. given an LTL≤-formula
φ on a finite alphabetA, we want to build aB-automaton recognizing[[φ]]. This construction is
adapted from the classic translation from LTL-formula to Büchi automata [4].

Let φ be an LTL≤-formula. We define sub(φ) to be the set of subformulae ofφ, andQ = 2sub(φ)

to be the set of subsets of sub(φ).
We want to define aB-automatonA φ = 〈Q,A, In,Fin,Γ,∆〉 such that[[A ]]B ≈ [[φ]].
We set the initial states to beIn = {{φ}} and the final ones to beFin = { /0,{Ω}} We choose

as set of countersΓ = {γ1, . . . ,γk} wherek is the number of occurences of theU≤N operators inφ,
labeled fromU≤N

1 to U≤N
k .

A state is basically the set of constraints we have to verify before the end of the word, so the
only two accepting states are the one with no constraint, or with only constraint to be at the end of
the word.

The following definitions are the same as for the classical case (LTL to Büchi automata) :

◮ Definition 5. An atomic formula is either a lettera ∈ A or Ω
A setZ of formulae is consistent if there is at most one atomic formula in it.
A reduced formula is either an atomic formula or a Next formula (of the formXϕ).
A setZ is reduced if all its elements are reduced formulae.
If Z is consistent and reduced, we define next(Z) = {ϕ/Xϕ ∈ Z}.

◮ Lemma 6 (Next Step). If Z is consistent and reduced, for allu ∈A∗,a ∈ A andn ∈ N,

au,n |=
∧

Z iff u,n |=
∧

next(Z) andZ∪{a} consistent

We would like to defineA φ with Z −→ next(Z) as transitions.
The problem is that next(Z) is not consistent and reduced in general. If next(Z) is inconsistent

we remove it from the automaton. If it is consistent, we need to apply some reduction rules to get
a reduced set of formulae. This consists in addingε-transitions (but with possible actions on the
counter) towards intermediate sets which are not actual states of the automaton (we will call them
"pseudo-states"), until we reach a reduced set.

Let ψ be maximal (in size) not reduced inY , we add the following transitions
If ψ = ϕ1∧ϕ2 : Y

ε:ε
−→ Y \ {ψ}∪{ϕ1,ϕ2}

If ψ = ϕ1∨ϕ2 :

{
Y

ε:ε
−→ Y \ {ψ}∪{ϕ1}

Y
ε:ε
−→ Y \ {ψ}∪{ϕ2}

If ψ = ϕ1Uϕ2 :

{
Y

ε:ε
−→ Y \ {ψ}∪{ϕ1,Xψ}

Y
ε:ε
−→ Y \ {ψ}∪{ϕ2}

If ψ = ϕ1U≤N
j ϕ2 :




Y
ε:ε
−→ Y \ {ψ}∪{ϕ1,Xψ}

Y
ε:ic j
−→ Y \ {ψ}∪{Xψ} (we count one mistake)

Y
ε:r j
−→ Y \ {ψ}∪{ϕ2}

where actionr j (resp.ic j) performr (resp.ic) on counterγ j andε on the other counters.
The pseudo-states don’t (a priori) belong toQ= 2sub(φ) because we add formulaeXψ for ψ∈ sub(φ),
so if Z is a reduced pseudo-state, next(Z) will be in Q again since we remove the new next operators.

The transitions of automatonA φ will be defined as follows:

∆ =
{

Y
a:σ
−→ next(Z) | Y ∈ Q,Z∪{a} consistent and reduced,Y

ε:σ
−→∗ Z

}
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whereY
ε:σ
−→∗ Z means that there is a sequence ofε-transitions fromY to Z with σ as combined

action on counters.

◮ Definition 7. If σ is a sequence of actions on counters, we will call val(σ) the maximal value
checked on a counter duringσ with 0 as starting value of the counters, and val(σ) = 0 if there is no
check inσ. It corresponds to the value of a run of aB-automaton withσ as combined action of the
counter.

◮ Lemma 8. Let u = a1 . . .am be a word onA andY0
a1:σ1→ Y1

a2:σ2→ . . .
am:σm→ Ym an accepting run of

A φ.

Then for allψ ∈ sub(φ), for all n ∈ {0, . . . ,m}, for all Yn
ε:σ
→∗ Y

ε:σ′
→∗ Z with Z∪{an+1} consistent

and reduced, andYn+1 = next(Z)

ψ ∈ Y =⇒ an+1an+2 . . .am,N |= ψ

whereN = val(σ′σn+1 . . .σm).

Lemma 8 implies the correctness of the automatonA φ :

Let Y0
a1:σ1→ Y1

a2:σ2→ . . .
am:σm→ Ym be a valid run ofA φ on u of valueN = [[A φ]]B, applying Lemma 8

with n = 0 andY = Y0 = {φ} gives usu,N |= φ. Hence[[φ]]≤ [[A φ]]B.
Conversely, letN = [[φ]](u), thenu,N |= φ so by definition ofA φ, it is straightforward to verify

that there exists an accepting run ofA φ overu of value≤N (each counterγi doing at mostN mistakes
relative to operatorU≤N

i ). Hence[[A φ]]B ≤ [[φ]].
We finally get[[A φ]]B = [[φ]], the automatonA φ computes indeed the exact value of function[[φ]]

(and so we have obviously[[A φ]]B ≈ [[φ]]).

4 Algebraic characterization

We remind that as in the case of languages, stabilization semigroups recognize exactly regular cost
functions, and there exists a quotient-wise minimal stabilization semigroup for each regular cost
function [3].

In standard theory, it is equivalent for a regular language to be described by an LTL-formula,
or to be recognized by an aperiodic semigroup. Is it still thecase in the framework of regular cost
functions? To answer this question we first need to develop a little further the algebraic theory of
regular cost functions.

4.1 Syntactic congruence

In standard theory of languages, we can go from a descriptionof a regular languageL to a description
of its syntactic monoid via the syntactic congruence. Moreover, when the language is not regular,
we get an infinite monoid, so this equivalence can be used to “test” regularity of a language.

The main idea behind this equivalence is to identify wordsu andv if they “behave the same”
relatively to the languageL, i.e. L cannot separateu from v in any context :∀(x,y),xuy ∈ L⇔ xvy ∈
L.

The aim here is to define an analog to the syntactic congruence, but for regular cost functions
instead of regular languages. Since cost functions look at quantitative aspects of words, the notions
of "element" and "context" have to contain quantitative information : we want to be able to say
things like “words with a lot ofa’s behave the same as words with a fewa’s”.

That is why we won’t define our equivalence over words, but over ♯-expressions, which are a
way to describe words with quantitative information.
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4.2 ♯-expressions

We first define general♯-expressions as in [6] and [3] by just adding an operator♯ to words in order
to repeat a subexpression “a lot of times”. This differs fromthe stabilization monoid definition, in
which the♯-operator can only be applied to specific elements (idempotents).

The set Expr of♯-expressions on an alphabetA is defined as follows:

e := a ∈ A | ee | e♯

If we choose a stabilization semigroupS= 〈S, ·,≤, ♯〉 together with a functionh : A→ S, the
eval function (from Expr toS) is defined inductively by eval(a) = h(a),eval(ee′) = eval(e) ·eval(e′),
and eval(e♯) = eval(e)♯ (eval(e) has to be idempotent). We say thate is well-formed for S if eval(e)
exists. Intuitively, it means that♯ was applied to subexpressions that corresponds to idempotent
elements inS.

If f is a regular cost function,e is well-formed for f iff e is well-formed for the minimal stabil-
ization semigroup off .

◮ Example 9. Let f be the cost function defined over{a}∗ by

f (an) =

{
n if n even
∞ otherwise

The minimal stabilization semigroup off is :
{

a,aa,(aa)♯,(aa)♯a
}

, with aa ·a = a and(aa)♯a ·
a = (aa)♯. Hence the♯-expressionaaa(aa)♯ is well-formed for f but the♯-expressiona♯ is not.

The♯-expressions that are not well-formed have to be removed from the set we want to quotient,
in order to get only real elements of the syntactic semigroup.

4.3 ω♯-expressions

We have defined the set of♯-expressions that we want to quotient to get the syntactic equivalence
of cost functions. However, we saw that some of these♯-expressions may not be well-typed for the
cost functionf we want to study, and therefore does not correspond to an element in the syntactic
stabilization semigroup off .

Thus we need to be careful about the stabilization operator,and apply it only to “idempotent
♯-expressions”. To reach this goal, we will add an “idempotent operator”ω on ♯-expressions, which
will always associate an idempotent element (relative tof ) to a ♯-expression, so that we can later
apply♯ and be sure of creating well-formed expressions forf .

We define the set Oexpr ofω♯-expressions on an alphabetA :

E := a ∈A | EE | Eω | Eω♯

The intuition behind operatorω is thatxω is the idempotent obtained by iteratingx (which always
exists in finite semigroups).

A context C[x] is a ω♯-expression with possible occurrences of a free variablex. Let E be a
ω♯-expression,C[E] is theω♯-expression obtained by replacing all occurrences ofx by E in C[x], i.e.
C[E] =C[x][x← E]. Let COE be the set of contexts onω♯-expressions.

We will now formally define the semantic of operatorω, and useω♯-expressions to get a syntactic
equivalence on cost functions, without mistyped♯-expressions.

◮ Definition 10. If E ∈Oexpr andk,n ∈N, we defineE(k,n) to be the wordE[ω← k, ♯← n], where
the exponential is relative to concatenation of words.
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◮ Lemma 11. Let f be a regular cost function, there existsK f ∈N such that for anyE ∈Oexpr, the
♯-expressionE[ω← K f !] is well-formed for f , and we are in one of these two cases
1. ∀k ≥ K f ,{ f (E(k!,n)),n ∈ N} is bounded : we say thatE ∈ f B.
2. ∀k ≥ K f , limn→∞ f (E(k!,n)) = ∞ : we say thatE ∈ f ∞.

Proof. The proof is a little technical, since we have to reuse the definition of recognization by
stabilization semigroup.K f can simply be taken to be the size of the minimal stabilization semigroup
of f . ◭

Here, f B and f ∞ are the analogs for regular cost functions of “being inL” and “not being in
L” in language theory. But this notion is now asymptotic, since we look at boundedness properties
of quantitative information on words. Moreover,f ∞ and f B are only defined here for regular cost
functions, sinceK f might not exist if f is not regular.

◮ Definition 12. Let f be a regular cost function, we writeE ⇋ f E ′ if (E ∈ f B⇔ E ′ ∈ f B). Finally
we define

E ≡ f E ′ iff ∀C[x] ∈ COE,C[E]⇋ f C[E ′]

◮ Remark 13. If u,v ∈ A∗, andL is a regular language, thenu ∼L v iff u ≡χL v ( ∼L being the
syntactic congruence ofL). In this sense,≡ is an extension of the classic syntactic congruence on
languages.

Now that we have properly defined the equivalence≡ f over Oexpr, it remains to verify that it is
indeed a good syntactic congruence, i.e. Oexpr/≡ f is the syntactic stabilization semigroup off .

Indeed if f is a regular cost function, letSf = Oexpr/≡ f . We can provideSf with a structure of
stabilization semigroup〈Sf , ·,≤, ♯〉.

◮ Theorem 14. Sf is the minimal stabilization semigroup recognizing f .

The proof consists basically in a bijection between classesof Oexpr for≡ f , and elements of the
minimal stabilization semigroup as defined in appendix A.7 of [3].

4.4 Expressive power of LTL ≤

If f is a regular cost function, we will callSf the syntactic stabilization semigroup off .
A finite semigroupS= 〈S, ·〉 is calledaperiodic if ∃k ∈N,∀s ∈ S,sk+1 = sk. The definition is the

same ifS is a finite stabilization semigroup.

◮ Remark 15. For a regular cost functionf , the statements “f is recognized by an aperiodic sta-
bilization semigroup” and “Sf is aperiodic” are equivalent, sinceSf is a quotient of all stabilization
semigroups recognizingf .

◮ Theorem 16. Let f be a cost function described by a LTL≤-formula, then f is regular and the
syntactic stabilization semigroup of f is aperiodic.

The proof of this theorem will be the first framework to use thesyntactic congruence on cost func-
tions.

If φ is a LTL≤-formula, we will say thatφ verifies propertyAP if there existsk ∈N such that for
anyω♯-expressionE, Ek ≡[[φ]] Ek+1, which is equivalent to “[[φ]] has an aperiodic syntactic stabiliz-
ation semigroup”.

With this in mind, we can do an induction on LTL≤-formulaes : we first show thatSΩ and allSa

for a ∈ A are aperiodic.
We then proceed to the induction onφ : assuming thatϕ andψ verify propertyAP, we show that

Xψ, ϕ∨ψ, ϕ∧ψ, ϕUψ andϕU≤Nψ verify propertyAP.
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◮ Theorem 17. Let f be a cost function recognized by an aperiodic stabilization semigroup, then f
can be described by an LTL≤-formula.

The proof of this theorem is a generalization of the proof of Wilke for aperiodic languages in
[11]. However difficulties inherent to quantitative notions appear here.

The main issue comes from the fact that in the classical setting, computing the value of a word in
a monoid returns a single element. This fact is used to do an induction on the size of the monoid, by
considering the set of possible results as a smaller monoid.The problem is that with cost functions,
there is some additional quantitative information, and we need to associate a sequence of elements
of a stabilization monoid to a single word. Therefore, it requires some technical work to come back
to a smaller stabilization monoid from these sequences.

◮ Corollary 18. The class of LTL≤-definable cost functions is decidable.

Proof. Theorems 16 and 17 imply that it is equivalent for a regular cost function to be LTL≤-
definable or to have an aperiodic syntactic stabilization semigroup. If f is given by an automaton
or a stabilization semigroup, we can compute its syntactic stabilization semigroupSf (see [3]) and
decide if f is LTL≤-definable by testing aperiodicity ofSf . This can be done simply by iterating
at most|Sf | times all elements ofSf and see if each elementa reaches an elementak such that
ak+1 = ak. ◭

5 Conclusion

We first defined LTL≤ as a quantitative extension of LTL. We started the study of LTL≤ by giving an
explicit translation from LTL≤-formulae toB-automata, which preserves exact values (and not only
boundedness properties as it is usually the case in the framework of cost functions). We then showed
that the expressive power of LTL≤ in terms of cost functions is the same as aperiodic stabilization
semigroups. The proof uses a new syntactic congruence, which has a general interest in the study
of regular cost functions. This result implies the decidability of the LTL≤-definable class of cost
functions.

As a further work, we can try to putω♯-expressions in a larger framework, by doing an axio-
matization ofω♯-semigroups. We can also extend this work to infinite words, and define an analog
to Büchi automata for cost functions. To continue the analogy with classic languages results, we
can define a quantitative extension of FO describing the sameclass as LTL≤, and search for ana-
log definitions of counter-freeB-automata and star-freeB-regular expressions. The translation from
LTL≤-formulae toB-automata can be further studied in terms of optimality of number of counters
of the resultingB-automaton.
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1 Introduction

Let P be a set of n points in the plane in general position, i.e., no three points lie on a
common line. A geometric graph G = (P,E) is a graph drawn in the plane so that the vertex
set consists of the points in P and the edges are drawn as straight line segments between
points in P . All graphs we consider in this paper are geometric graphs. We call a graph
non-crossing if edges intersect only at common endpoints.

It is a fundamental question to determine the maximum number of non-crossing geometric
graphs on n points in the plane. We follow common conventions (see e.g., [19]) and denote by
pg(P ) the number of non-crossing (plane) graphs on P , and by pg(n) = max|P |=n pg(P ) the
maximum number of non-crossing graphs an n-element point set can admit. Analogously, we
introduce shorthand notation for the maximum number of triangulations, perfect matchings,
spanning trees, and spanning cycles (i.e., Hamiltonian cycles); see Table 1.

Abbr. Graph class Lower bound Upper bound

pg(n) graphs Ω(41.18n) [1, 13] O(207.85n) [14, 21]
cf(n) cycle-free graphs Ω(12.23n) [new, Thm. 2] O(164.49n) [14, 21]
pm(n) perfect matchings Ω∗(3n) [13] O(10.07n) [19]
st(n) spanning trees Ω(11.97n) [new, Thm. 2] O(146.37n) [14, 21]
sc(n) spanning cycles Ω(4.64n) [13] O(68.664n) [new, Thm. 3]
tr(n) triangulations Ω(8.65n) [new, Thm. 1] O(30n) [21]

Table 1 Classes of non-crossing geometric graphs, current best upper and lower bounds.

In the past 30 years numerous researchers have tried to estimate these quantities. In
a pivotal result, Ajtai et al. [2] showed that pg(n) = O(cn) for an absolute, but very large
constant c > 0. The constant c has been improved several times since then, the best bound
today is c < 207.85, which follows form the combination of the result of Sharir and Sheffer [21]
with the result of Hoffmann et al. [14]. Interestingly, this upper bound, as well as the currently
best upper bounds for st(n), sc(n), and cf(n), are derived from upper bounds on tr(n).
This underlines the importance of the bound for tr(n) in this setting. For example, the
best known upper bound for st(n) is the combination of tr(n) ≤ 30n [21] with the ratio
sc(n)/tr(n) = O∗ (4.879n) [14]; see also previous work [17, 18, 19, 20]. To our knowledge,
the only upper bound derived via a different approach is for the number of perfect matchings
by Sharir and Welzl [19], pm(n) = O(10.07n).

So far, we recalled various upper bounds on the maximum number of geometric graphs
in certain classes. In this paper we mostly conduct our offensive from the other direction,
on improving the corresponding lower bounds. Lower bounds for unweighted non-crossing
graph classes were obtained in [1, 7, 13]. García, Noy, and Tejel [13] were the first to
recognize the power of the double chain configuration in establishing good lower bounds
for the maximum number of matchings, triangulations, spanning cycles and trees. It was
widely believed for some time that the double chain gives asymptotically the highest number
of triangulations, namely Θ∗(8n). This was until 2006, when Aichholzer et al. [1] showed
that another configuration, the so-called double zig-zag chain, admits Θ∗(

√
72n) = Ω(8.48n)

triangulations1. In this paper we further exploit the power of almost convex polygons and
establish a new lower bound tr(n) = Ω(8.65n). For matchings, spanning cycles, and plane
graphs, the double chain still holds the current record.

1 We use the Θ∗, O∗, Ω∗ notation for the asymptotic growth of functions ignoring polynomial factors.
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Less studied are multiplicities of weighted geometric graphs. The weight of a geometric
graph is the sum of its (Euclidean) edge lengths. This leads to the question how many
graphs of a certain type (e.g., matchings, spanning trees, or tours) with minimum or
maximum weight can be realized on an n-element point set. The notation is analogous; see
Table 2. Dumitrescu [8] showed that the longest and shortest matchings can have exponential
multiplicity, 2Ω(n), for a point set in general position. Furthermore, the longest and shortest
spanning trees can also have multiplicity of 2Ω(n). Both bounds count explicitly geometric
graphs with crossings; however these minima are automatically non-crossing. The question
for the maximum multiplicity for non-crossing geometric graphs remained open for most of
the geometric graph classes. Since we do not have any upper bounds that are better than
those for the corresponding unweighted classes, the “upper bound” column is missing from
Table 2.

Abbr. Graph class Lower bound

pmmin(n) shortest perfect matchings Ω(2n/4) [8]
pmmax(n) longest perfect matchings Ω(2n/4) [new, Theorem 4]
stmin(n) shortest spanning trees Ω(2n/2) [8]
stmax(n) longest spanning trees Ω(2n) [new, Theorem 7]
scmin(n) shortest spanning cycles Ω(2n/3) [new, Theorem 8]
scmax(n) longest spanning cycles Ω(2n/3) [new, Theorem 5]

Table 2 Classes of weighted non-crossing geometric graphs: exponential lower bounds.

Our results. Due to space constraints, some of the proofs are omitted from this extended
abstract (all proofs are available in the full version of this paper [10]).
(I) A new lower bound, Ω(8.65n), for the maximum number of triangulations a set of n

points can have. We first re-derive the bound given by Aichholzer et al. [1] with a simpler
analysis, which allows us to extend it to more complex point sets. Our estimate might be
the best possible for the type of construction we consider.

(II) A new lower bound, Ω(11.97n), for the maximum number of non-crossing spanning trees
a set of n points can have. This is obtained by refining the analysis of the number of
such trees on the “double chain” point configuration. The previous bound was Ω(10.42n).
A slight modification of the construction improves also the lower bound for cycle-free
non-crossing graphs. In particular, we improve the old bound of Ω(11.62n) to Ω(12.23n),

(III) A new upper bound, O(68.664n), for the number of non-crossing spanning cycles on
n points in the plane. This improves the latest upper bound of 70.21n obtained by a
combination of the results of Buchin et al. [4] and a recent upper bound of 30n on the
number of triangulations by Sharir and Sheffer [21].

(IV) Bounds on the maximum multiplicity of various weighted geometric graphs (weighted
by Euclidean length). We show that the maximum number of longest non-crossing perfect
matchings, spanning trees, spanning cycles, as well as shortest tours are all exponential
in n. We also derive tight bounds, as well as a combinatorial characterization of longest
tours over points in convex position. This yields an O(n logn) algorithm to compute a
longest tour for such sets.

1.1 Preliminaries
Asymptotics of multinomial coefficients. Denote by H(q) = −q log q− (1−q) log(1−q)
the binary entropy function, where log stands for the logarithm in base 2 (by convention,
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0 log 0 = 0). For a constant 0 ≤ α ≤ 1, the following estimate can be easily derived from
Stirling’s formula for the factorial:(

n

αn

)
= Θ(n−1/22H(α)n), (1)

We also need the following bound on the sum of binomial coefficients; see [3] for a proof
and [9, 11] for an application. If 0 < α ≤ 1

2 is a constant,

k≤αn∑
k=0

(
n

k

)
≤ 2H(α)n. (2)

Define similarly the generalized entropy function of k parameters α1, . . . , αk, satisfying

k∑
i=1

αi = 1, α1, . . . , αk ≥ 0, as Hk(α1, . . . , αk) = −
k∑
i=1

αi logαi. (3)

Clearly, H(q) = H2(q, 1− q). Recall, the multinomial coefficient(
n

n1, n2, . . . , nk

)
= n!
n1!n2! . . . nk! ,

where
∑k
i=1 ni = n, counts the number of distinct ways to permute a multiset of n elements,

k of which are distinct, with ni, i = 1, . . . , k, being the multiplicities of each of the k distinct
elements.

Assuming that ni = αin, i = 1, . . . , k, for constants α1, . . . , αk, satisfying (3), again by
using Stirling’s formula for the factorial, one gets an expression analogous to (1):(

n

n1, n2, . . . , nk

)
= Θ(n−(k−1)/2) ·

(
k∏
i=1

α−αii

)n
= Θ(n−(k−1)/2) · 2Hk(α1,...,αk)n. (4)

Notations and conventions. For a polygonal chain P , let |P | denote the number of
vertices. If 1 < c1 < c2 are two constants, we frequently write Ω∗(cn2 ) = Ω(cn1 ). We also write
f(n) ∼ g(n) whenever f(n) = Θ(g(n)).

2 Lower bound on the maximum number of triangulations

Following the notation from [15], we denote by P (n, kr) the class of almost convex polygons
with n vertices, formed by concatenating r flat reflex chains, each having k interior vertices.
For example, P (n, 0r) is the class of convex polygons with n = r vertices. Note that, for
r ≥ 3 and k ≥ 0, every polygon in P (n, kr) has n = r(k + 1) vertices, r of which are convex.
See Fig. 1 for a small example. To further simplify notation, we denote by P (n, kr) any
polygon in this class; note they are all equivalent in the sense that they have the same
visibility graph.

In establishing our new bound on the maximum number of triangulations, we go through
the following steps: We first describe the double zig-zag chain from [1] in our framework,
and re-derive the Θ∗(

√
72n) bound of [1] for the number of its triangulations. Our simpler

analysis extends to some variations of the double zig-zag chains, and leads to a new lower
bound of tr(n) = Ω(8.65n).

Two x-monotone polygonal chains L and U are said to be mutually visible if every pair of
points p ∈ L and q ∈ U , are visible from each other. Let us call D(n, kr) the generalized double
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Figure 1 Two (flat) mutually visible copies of P (18, 26) that form D(36, 212). Two consecutive
hull vertices of P (18, 26) with a reflex chain of two vertices in between are indicated in both the
upper and the lower chain.

chain of n points made up of the set of points in two mutually visible copies of P (n/2, kr),
each with n/2 = r(k+ 1) vertices, with opposite concavities as in Fig. 12. Generalized double
chains are a family of point configurations, containing, among others, the double chain and
double zig-zag chain configurations. In particular, D(n, 1r) is the double zig-zag chain used
by Aichholzer et al. [1].

I Theorem 1. The point set D(n, 3r) with n = 8r points admits Ω(8.65n) triangulations.

Proof. We start by estimating the number of triangulations of P (n, kr). Denote this number
by t(n, kr) = tr(P (n, kr)). Recall that P (n, kr) has n = r(k + 1) vertices. According to [15,
Theorem 3],

t(n, kr) ∼
(

1 + k/2
2k

)r
· t(n) ∼

(
k + 2
2k+1

)r
· 4r(k+1) =

(
(k + 2)

1
k+1 · 2

)n
.

In particular,
for k = 1, t(n, 1r) ∼ (2

√
3)n =

√
12n. This estimate was used for counting triangulations

in the construction D(n, 1r) with Ω(8.48n) triangulations from [1].
for k = 2, t(n, 2r) ∼ (25/3)n.
for k = 3, t(n, 3r) ∼ (51/4 · 2)n.
for k = 4, t(n, 4r) ∼ (61/5 · 2)n.

The following estimate is used in all our triangulation bounds. Consider two mutually
visible polygonal chains, L and U , with m vertices each (L is the lower chain and U is
the upper chain). As in the proof of [13, Theorem 4.1], the region between the two chains
consists of 2m− 2 triangles, such that exactly m− 1 triangles have an edge along L and the
remaining m− 1 triangles have an edge adjacent to U . It follows that the number of distinct
triangulations of this middle region is(

2m− 2
m− 1

)
= Θ(m−1/2 · 4m). (5)

The old Ω(8.48n) lower bound in a new perspective. We estimate from below the
number of triangulations of D(n, 1r) as follows. Recall that |L| = |U | = n/2 = 2r. Include
all edges of L and U in any of the triangulations we construct. Now construct different
triangulations as follows. Independently select a subset of α1r short edges of conv(U) and

2 For convenience, an extra vertex is added to each chain to complete the last group in the figure.
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similarly, a subset of α1r short edges of conv(L). Here α1 ∈ (0, 1) is a constant to be
determined later. According to (1), this can be done in(

r

α1r

)
= Θ(r−1/2 · 2H(α1)r)

ways in each of the two chains. Include these edges in the triangulation. Observe that
after adding these short edges the middle region between the (initial) chains L and U is
sandwiched between two mutually visible shorter chains, say L′ ⊂ L and U ′ ⊂ U , where

|L′| = |U ′| = 2r − α1r = (2− α1)r. (6)

Triangulate this middle region in all possible ways, as outlined in the paragraph above (5).
Let N denote the total number of triangulations of D(n, 1r) obtained in this way. By the
above estimate, we have t(n, 1r) ∼ (2

√
3)n. Combining this with (5) and (6),

N = Ω∗
([

(2
√

3)2r2H(α1)r
]2

4(2−α1)r
)

= Ω∗
([

22r3r2(2−α1)r2H(α1)r
]2)

=

= Ω∗
([

22 · 3 · 2(2−α1)2H(α1)
]2r)

= Ω∗
([

24−α1+H(α1) · 3
]n/2)

= Ω∗ (an) ,

where
a =

[
24−α1+H(α1) · 3

](1/2)
.

By setting α1 = 1/3, as in [1], this yields a = 6
√

2 = 8.485 . . ., and N = Ω∗(8.485n) =
Ω(8.48n).

Applying a similar analysis for a generalized double chain with reflex chains of length 3
implies Theorem 1. The details are in the full paper [10]. J

3 Lower bound on the maximum number of non-crossing spanning
trees and forests

In this section we derive a new lower bound for the number of non-crossing spanning trees
on the double-chain D(n, 0r), hence also for the maximum number of non-crossing spanning
trees an n-element planar point set can have. The previous best bound, Ω(10.42n), is due to
Dumitrescu [8]. By refining the analysis of [8] we obtain a new bound Ω(11.97n).

I Theorem 2. For the double chain D(n, 0r), we have

Ω(11.97n) < st(D(n, 0r)) < O(24.68n), and
Ω(12.23n) < cf(D(n, 0r)) < O(24.68n).

These bounds imply that st(n) = Ω(11.97n) and cf(n) = Ω(12.23n).

Instead of spanning trees, we count (spanning) forests formed by two trees, similarly
to [8]. One of the trees will be associated with the lower chain L and is called lower tree,
the other tree will be associated with the upper chain U and is called upper tree. Since the
two trees can be connected in at most O(n2) ways, it is enough the bound the number of
two trees. Fig. 2 shows an example. We count only special kinds of forests: no edge of the
lower tree connects two vertices of the upper chain, and similarly, no edge of the upper tree
connects two vertices of the lower chain. We call the connected components of the edges
between U and L bridges. For the class of forests we consider, bridges are subtrees of the
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(2, 2) ↑

(2, 1) ↑
(1, 1) ↓

(2, 3) ↑

Figure 2 A double chain with lower and upper tree and four bridges.

lower or the upper tree. A bridge is called an (i, j)-bridge if it has i vertices in L and j

vertices in U . Every bridge is part of either the upper or the lower tree. We say that in the
first case the bridge is oriented upwards and in the latter case it is oriented downwards. Since
edges cannot cross, the bridges have a natural left-to-right order. Fig. 2 shows four bridges,
the first bridge is an upward oriented (2, 2)-bridge. We consider only bridges (i, j), with
1 ≤ i, j ≤ z, for some fixed positive integer z. For z = 1, our analysis coincides with the one
in [8], and we rederive the lower bound of Ω(10.42n) found there. Successive improvements
will be achieved by considering z = 2, 3, 4.

Let m = n/2 be the number of points on one chain. The distribution of bridges is specified
by a set of parameters αij , to be determined later, where the number of (i, j)-bridges is αijm.
To simplify further expressions we introduce the following wildcard-notation:

αi∗ =
z∑
k=1

αik, α∗j =
z∑
k=1

αkj , and α∗∗ =
z∑
k=1

α∗k =
z∑
k=1

αk∗.

A vertex is called a bridge vertex, if it is part of some bridge, and it is a tree vertex otherwise.
We denote by αLm the number of bridge vertices along L, and by αUm the number of bridge
vertices along U , we have

αL =
z∑
k=1

kαk∗, and αU =
z∑
k=1

kα∗k.

To count the forests we proceed as follows. We first count the distributions of the vertices
that belong to bridges on the lower (NL) and upper chain (NU ). We then count the different
ways how bridges can be realized (Nbridges) and how the bridges can be connected to the two
trees (Nlinks). Finally, we estimate the number of the trees within the two chains (Ntrees).
All these numbers are parameterized by the variables αij .

Consider the feasible locations of bridge vertices at the lower chain. We have
(
m
αLm

)
choices to select the bridge vertices in L. Every bridge vertex belongs to some (i, j)-bridge.
The vertices of the bridges cannot interleave, thus we can describe the configuration of
bridges by a sequence of (i, j) tuples that denotes the appearance of the α∗∗m bridges from
left to right on L. There are

(
α∗∗m

α11m,α12m,...,αzzm

)
such sequences. This give us a total of

NL :=
(

m

αLm

)(
α∗∗m

α11m,α12m, . . . , αzzm

)
= Θ∗

(
2H(αL)m+α∗∗H(z2)(α11/α∗∗,...,αzz/α∗∗)m

)
such “configurations” of bridge vertices along L.
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We now determine how many options we have to place the bridge vertices on U . Since
we have already specified the sequence of the (i, j)-bridges at the lower chain, all we can do
is to select the bridge vertices in U . This gives

NU :=
(

m

αUm

)
= Θ∗

(
2H(αU )m

)
possibilities for the configuration on U .

We now study in how many ways the bridges can be added to the two trees. Since all
bridges are subtrees, we can link one of the bridge vertices with the lower or upper tree.
From this perspective the whole bridge acts like a super-node in one of the trees. The
orientation of the bridges determine which tree they are glued to: upwards bridges to the
upper tree, downwards bridges to the lower tree. For every pair (i, j) we orient half of the
(i, j)-bridges upwards and half of them downwards. To glue the bridges to the trees we have
to specify a vertex that will be linked to one of the trees. Depending on the orientation of
the (i, j)-bridge, we have i candidates for a downwards oriented bridge and j candidates for
an upward oriented bridge. In total we have

Nlinks :=
∏
i,j

(
αi,jm

αi,jm/2

)(
iαij/2jαij/2

)m
=
∏
i,j

Θ∗ (2αi,jm) (ij)
αijm

2 = Θ∗ (2α∗∗m)
∏
i,j

(ij)
αijm

2

ways to link the bridges with the trees.
Until now we have specified which vertices belong to which type of bridges, the orientation

of the bridges, and the vertex where the bridge will be linked to its tree. It remains to count
the number of ways to actually “draw” the bridges. Let us consider an (i, j)-bridge. All edges
have to go from L to U and the bridge has to be a tree. The number of such trees equals the
number of triangulations of a polygon with point set {(k, 0) | 0 ≤ k ≤ i}∪{(k, 1) | 0 ≤ k ≤ j}.
By deleting the edges along the horizontal lines y = 0 and y = 1, we define a bijection
between these triangulations and the combinatorial types of (i, j)-bridges. The number of
triangulations is now easy to express similarly to Equation (5): We have i+j−2 triangles, and
each triangle is adjacent to a horizontal edge along either y = 0 or y = 1, where exactly i− 1
triangles are adjacent to line y = 0. In total we have Bij :=

(
i+j−2
i−1

)
different triangulations

and therefore we can express the number of different bridges by

Nbridges =
(∏

ij

B
αij
ij

)m
.

00111 01011 01101 01110 10011

10101 10110 11001 11010 11100

Figure 3 All B34 = 10 combinatorial types of (3, 4)-bridges. If an edge differs form its predecessor
at the top we write a 0, otherwise a 1. We obtain a bijection between the bridges and sequences
with three 1s and two 0s.

Observe that the upper and the lower trees are trees on a convex point set. By considering
the bridges as super-nodes, we treat the lower chain as a convex chain of nL vertices. Similarly,
we think of the upper chain as a convex chain with nU vertices. We have

nU =
(

1−
n∑
k=1

2k − 1
2 αk∗

)
m, and nL =

(
1−

n∑
k=1

2k − 1
2 α∗k

)
m.
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(Notice that the bridges take away all of its vertices, except one, depending on the orientation).
Since the number of non-crossing spanning trees on an n-element convex point set equals
Θ∗((27/4)n) [12], the number of spanning trees within the two chains is given by

Ntrees = O∗
((

27/4
)nL+nU)

.

To finish our analysis we have to find the optimal parameters αij such that

st(D(n, 0r)) = Ω∗ (NL ·NU ·Nbridges ·Nlinks ·Ntrees) (7)

is maximized. The details are presented in the full paper [10].

4 Upper bound for the number of non-crossing spanning cycles

Newborn and Moser [16] asked what is the maximum number of non-crossing spanning
cycles for n points in the plane, and they proved Ω((101/3)n) ≤ sc(n) ≤ O(6nbn2 c!). The
first exponential upper bound sc(n) ≤ 1013n was obtained by Ajtai et al. [2], and has been
followed by a series of improved bounds (e.g., see [4, 7, 19], a more comprehensive history
can be found in [6]). Currently, the best known lower bound 4.462n ≤ sc(n) is by García et
al. [13]. The previous best upper bound O(70.21n) is obtained by combining the upper bound
30n/4 of Buchin et al. [4] for the number of spanning cycles in a triangulation with a new
upper bound of tr(n) ≤ 30n by Sharir and Sheffer [21].

The bound by Buchin et al. [4] cannot be improved much further, since they also present
triangulations with Ω(2.0845n) spanning cycles. However, the bound for sc(n) still seems
rather weak since it potentially counts some spanning cycles many times. To overcome this
inefficiency, we use the notion of pseudo-simultaneously flippable edges (ps-flippable edges for
short), introduced in [14]. A set F of edges in a triangulation is ps-flippable if after deleting
all edges in F , the bounded faces are convex. One can obtain a lower bound for the support
of a spanning cycle C in terms of the number of ps-flippable edges that are not in C.

I Theorem 3. We have sc(n) = O (68.664n) .

The proof is available in the full paper [10].

5 Weighted geometric graphs

Longest perfect matchings. Let n be even, and consider perfect matchings on a set of
n points in the plane. It is easy to construct n-element point sets (no three of which are
collinear) with an exponential number of longest matchings: [8] gives constructions with
Ω(2n/4) such matchings. Moreover, the same lower bound can be achieved with yet another
restriction, convex position, imposed on the point set; see [8]. Here, we present constructions
with an exponential number of maximum (longest) non-crossing matchings.

I Theorem 4. For every even n, there exist n-element point sets with at least 2bn/4c longest
non-crossing perfect matchings. Consequently, pmmax(n) = Ω(2n/4).

Proof. (sketch) Assume first that n is a multiple of 4. Let S4 = {a, b, c, d} be a 4-element
point set such that segment ab is vertical, cd lies on the orthogonal bisector of ab (hence,
|ac| = |bc| and |ad| = |bd|), |ab| = |cd| = 1

n and min{|ac|, |ad|} = |ac| = |bc| = 2n. Then S4
has two maximum matchings, {ac, bd} and {ad, bc}, each of which has length at least 4n.
Let the n-element point set P be the union of n/4 translated copies of S4 lying in disjoint
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horizontal strips such that the copies of a are almost collinear, all the copies of points a
and b lie in a disk of unit diameter, and all the copies of points c and d lie in a disk of unit
diameter; see Fig. 4.

a

b

c d

a

b c d

Figure 4 Left: Two possible maximum matchings for the point set S4 = {a, b, c, d}. Right: A set
of n = 16 points that admit 24 maximum non-crossing perfect matchings.

If we combine the maximum matchings of all copies of S4, then we obtain 2n/4 non-
crossing perfect matchings of P . All these matchings have the same length, which is at least
n
4 · 4n = n2. In the full paper [10], we show that this is the maximum possible length of a
non-crossing perfect matching of P . J

Longest non-crossing tours. By Theorem 8, the maximum number of shortest non-
crossing spanning cycles on n points is exponential in n. We show here that the maximum
number of longest non-crossing spanning cycles is also exponential in n.

I Theorem 5. Let scmax(n) denote the maximum number of longest non-crossing spanning
cycles that an n-element point set can have. Then we have scmax(n) = Ω(2n/3).

Proof. (sketch) For every k ∈ N, we construct a set Q of 4k + 1 points that admits
2k = Ω(2n/4) longest non-crossing tours. We start by constructing an auxiliary set P of
2k points. The auxiliary point set P may contain collinear triples, however our final set Q
does not. Recall that two segments cross if and only if their relative interiors intersect. We
construct P = {ci, xi : i = 1, 2, . . . , k} with the following properties: (i) for every xi, the
farthest point in P is ci; (ii) the perfect matching M = {cixi : i = 1, 2, . . . , k} is non-crossing;
and (iii) the convex hull of P is conv(P ) = (x1, c1, c2, . . . , ck). Note that property (i) implies
that M is the maximum matching of P .

For k ∈ N, let α = π
3k . We construct P = {ci, xi : i = 1, . . . , k} iteratively. During

the iterative process, we maintain the properties that |xici| > maxj<i |xicj | and |xi+1ci| >
maxj<i |xi+1cj |. Initially, let c1 = (0, 0), x1 = (2, 0), and x2 = (2 − 1

k , 0). Let ~̀1 be a ray
emitted by x1 and incident to c1. Refer to Fig. 5. If ci, xi and xi+1 are already defined,
we construct points ci+1 and xi+2 (in the last iteration, only ci+1) as follows. Let ~̀i+1
be a ray emitted by xi+1 such that ∠(~̀i+1, ~̀i) = α. Compute the intersections of ray
~̀
i+1 with the circle centered at xi of radius |xici| and the circle centered at xi+1 of radius
|xi+1ci|. Let ci+1 ∈ ~̀i+1 be the midpoint of the segment between these two intersection
points. This choice guarantees that |xi+1ci+1| > |xi+1cj | and |xjci+1| < |xjcj | for all j ≤ i.
Now let xi+2 ∈ ci+1xi+1 be a point at distance at most 1

k from xi+1 such that we have
|xi+2ci+1| > |xi+2cj | for all j ≤ i. This completes the description of P .

Note that |xixi+1| ≤ 1
k , and so the points x1, . . . , xk lie in a disk of diameter 1. Hence,

for every point xi, the farthest point in P is in {cj : j = 1, . . . , k}. By the above construction,
the farthest point from xi in {cj : j = 1, . . . , k} is ci. This proves that P has property (i). It
is easy to verify that P has properties (ii) and (iii), as well.

We now construct the point set Q based on P . Let δ > 0 be a sufficiently small
constant. For every segment cixi we construct a skinny deltoid ∆i = (ai, bi, ci, di), see
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c1 x1x2

~ℓ2 c2

x3

c3 ai

bicidi

∆i

~ℓ3
xi

a1
~ℓ1

Figure 5 Left: The auxiliary point set P for k = 3. Right: A long and skinny deltoid ∆i =
(ai, bi, ci, di).

Fig. 5, such that ai ∈ cixi is at distance δ from xi, we have |bici| = |cidi| = δ, and
|aibi| = |aici| = |aidi| = |cixi| − δ. Since the segments cixi are pairwise non-crossing and
δ > 0 is small, the deltoids ∆i are pairwise interior disjoint. Let Q be the set of vertices of
all deltoids ∆i, i = 1, . . . , k, and the point x1. Since conv(P ) = (c1, c2, . . . , ck, x1), we have
conv(Q) = (b1, c1, d1, b2, c2, d2, . . . , bk, ck, dk, x1), and the points {ai : i = 1, . . . , k} lie in the
interior of conv(Q). If δ > 0 is sufficiently small, then the farthest points from ai in Q are bi,
ci, and di, for every i = 1, 2, . . . , k.

Every non-crossing tour of Q visits the convex hull vertices in the cyclic order determined
by conv(Q). We obtain a non-crossing tour by replacing some edges of conv(Q) with non-
crossing paths visiting the points lying in the interior of conv(Q). If we replace either edge bici
or cidi with the path (bi, ai, ci) or (ci, ai, di), respectively, for every i = 1, 2, . . . , k, then we
obtain a tour. Let H be the set of 2k tours obtained in this way. These tours are non-crossing,
since for every i, we exchange an edge of ∆i with a path lying in ∆i, and the deltoids ∆i are
interior disjoint. The tours in H have the same length, L = |conv(Q)| − kδ + 2

∑k
i=1 |aici|,

since |aibi| = |aidi| = |aici|. In the full paper [10], we show that this length is maximal over
all non-crossing tours (cycles).

To obtain the asserted bound, we use a skinny hexagon (instead of deltoid ∆i) with five
equidistant vertices on a circle centered at ai. We now have four possible ways to insert each
ai into the tour, which implies scmax(n) = Ω(4n/6) = Ω(2n/3). J

Typically for the longest matching, spanning tree or spanning cycle, one expects to see
many crossings. Somewhat surprisingly, we show that this is not always the case.

I Corollary 6. For every even n ≥ 2, there exists an n-element point set (in general position)
whose longest perfect matching is non-crossing.

Longest spanning trees and shortest spanning cycles. We state without proof our
results on the maximum multiplicity stmax(n) of the longest crossing-free spanning tree on
points, and the maximum multiplicity scmin(n) of the shortest non-crossing Hamiltonian
cycle on n points.

I Theorem 7. The vertex set of a regular convex n-gon admits Ω(2n) longest non-crossing
spanning trees. Consequently, stmax(n) = Ω(2n).

I Theorem 8. Let scmin(n)denote the maximum number of shortest tours that an n-element
point set can have.
(i) If S is a set of n ≥ 3 points in convex position, then scmin(S) = 1.
(ii) For points in general position, we have scmin(n) ≥ 2bn/3c.

STACS’11



648 Bounds on geometric graphs

Recall that a geometric graph G = (V,E) is called a (geometric) thrackle, if any two
edges in E either cross or share a common endpoint.

I Theorem 9. Let tcmax(n) denote the maximum number of longest tours that an n-element
point set in convex position can have. For n odd we have tcmax(n) = 1 and the (unique)
longest tour is a thrackle. For n even we have tcmax(n) = n/2.
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Abstract
We study several canonical decision problems arising from some well-known theorems from com-
binatorial geometry. Among others, we show that computing the minimum size of a Caratheodory
set and a Helly set and certain decision versions of the ham-sandwich cut problem are W[1]-hard
(and NP-hard) if the dimension is part of the input. This is done by fpt-reductions (which are
actually ptime-reductions) from the d-Sum problem. Our reductions also imply that the prob-
lems we consider cannot be solved in time no(d) (where n is the size of the input), unless the
Exponential-Time Hypothesis (ETH) is false.

The technique of embedding d-Sum into a geometric setting is conceptually much simpler than
direct fpt-reductions from purely combinatorial W[1]-hard problems (like the clique problem) and
has great potential to show (parameterized) hardness and (conditional) lower bounds for many
other problems.
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1 Introduction

Many theorems from combinatorial geometry are of the following type: If a set of n objects
has a certain property, then there is already a subset of size d + 1 that has this property.
Two examples of this are Caratheodory’s Theorem [6] and Helly’s Theorem [22].

Caratheodory’s Theorem states, in one of its several formulations, that whenever a point
p is contained in the convex hull of a point set in Rd, then it is already contained in the
convex hull of a subset of size at most d+ 1. A minimal set containing p in the convex hull
is called a Caratheodory set for p. The canonical decision problem, that asks whether there
is an even smaller set, can be stated as follows:
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I Definition 1. (d-Caratheodory-Set) Given a point set in Rd, are there d points whose
convex hull contains the origin?

Stated in a dual setting, this gives another well known theorem: If n convex sets in
Rd have an empty intersection, then by Helly’s Theorem there are already d + 1 whose
intersection is empty. This leads to the following decision problem:

I Definition 2. (d-Helly-Set) Given n convex sets P1, . . . , Pn in Rd, do any d of them
have an empty intersection?

The canonical decision versions of Caratheodory’s and Helly’s Theorem have not explicitly
been considered in the literature so far. This is quite surprising, as they are interesting to
people from computational as well as discrete geometry. However, similar problems arise in
the context of Linear Programming, most notably the following:

I Definition 3. (d-Min-IIS) Given n inequalities in Rd, do any d of them have an empty
intersection?

The d-Min-IIS has been studied before, mainly because of its connection to the NP-
complete Maximum-Feasible-Subsystem problem, where one is given an infeasible linear
program and one has to find a feasible subsets of constraints of maximum size. Amaldi et
al. [2] show that d-Min-IIS is NP-hard by a (transitive) reduction from Dominating-Set.
However, the dimension depends on the size of the graph, so it does not reveal anything
with respect to this parameter d.

The Ham-Sandwich Theorem as a corollary of the Borsuk-Ulam Theorem (see, e.g.,
Matoušek [29]) states that for any d finite point sets in Rd there is a hyperplane that bisects
all of the sets at once, i.e., has at most half of the points on each side. Computing a
ham-sandwich cut efficiently is an important problem and has been studied extensively (see
Edelsbrunner and Waupotitsch [13], Matoušek et al. [27], Yu [36]). For general dimension,
the fastest known algorithm [27] runs in time roughly O

(
nd−1).

The ham-sandwich problem is not a decision problem, as, given an instance, we know
that there always exists a solution, but still it is not known how to find it efficiently. Such
problems are captured by the complexity class PPAD, see Papadimitrou [33]. It is an
important open question whether computing a ham-sandwich cut is PPAD complete. In
this paper we show that a natural "incremental" approach for computing the ham-sandwich
cut will not work unless W [1] = P : One way to find a ham-sandwich cut incrementally
could be to take any point, decide whether there is some ham-sandwich cut through it, and
perform a dimension reduction until the hyperplane is determined. This gives rise to the
following decision problem:

I Definition 4. (d-Ham-Sandwich) Given d sets P1, . . . , Pd in Rd and a point a ∈ Rd, is
there a ham-sandwich cut that passes through a?

We show that d-Ham-Sandwich is W [1]-hard and therefore most likely no polynomial
algorithm (FPT or otherwise) exists for this problem.

The reductions presented in this paper use a new technique of embedding of d-Sum
into the d-dimensional space. Thereto, a d-Sum instance is encoded into sets of points (or
hyperplanes, respectively), and the property of d elements summing up to 0 is expressed by
an equivalent geometric property of the point set, e.g., allowing a ham-sandwich cut through
the origin.
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1.1 Overview
The main results of this paper presented in In Sec. 3, 4, and 5 are the following:

I Theorem 5. The problems d-Caratheodory-Set and d-Helly-Set are W[1]-hard with
respect to the parameter d and NP-hard.

All reductions are slight modifications of the hardness proof for the problem d-Affine-
Containment considered in Sec. 2.

Subsequently, two easy corollaries are derived from these theorems:

I Corollary 6. The problem d-Min-IIS is W[1]-hard with respect to the dimension.

Observe that this problem becomes polynomial-time solvable if we ask for d+ 1 halfspaces
by first solving the corresponding linear program and afterwards applying Helly’s Theorem.

I Corollary 7. Deciding whether a point q is in general position1 with respect to P is W[1]-
hard with respect to d and NP-hard.

For the d-Ham-Sandwich problem, a little more work has to be done. By adding certain
balancing points to the previous construction, it is achieved that ham-sandwich cuts through
the origin correspond exactly to sets of d numbers that sum up to 0. From this construction,
the next result follows:

I Theorem 8. The d-Ham-Sandwich problem is W[1]-hard with respect to the dimension
and NP-hard.

Combining our reductions with a result of Pǎtraşcu and Williams [34], Theorems 5 and
8 immediately give:

I Corollary 9. The problems d-Caratheodory-Set, d-Helly-Set and d-Ham-Sandwich
cannot be solved in time no(d) (where n is the size of the input), unless the Exponential-Time
Hypothesis (ETH) is false2.

1.2 Related work
The study of computational variants of theorems from discrete geometry is not new. Several
problems that arise from theorems in discrete geometry have received a lot of attention, most
notably computation of (approximate) center- and Tverberg points in the plane as well as
in higher dimension. In the plane, surprisingly one can compute a centerpoint in linear time
[24]. In three dimensions, O(n2polylog n) deterministic algorithms are known ([31], [10]). If
the dimension is part of the input, the best (randomized) algorithm due to Chan [7] runs in
O(nd−1) time. The corresponding decision problem has also been considered, i.e., to decide
whether a given point is a center point. This problem has been shown to be co-NP complete
if d is part of the input by Teng [35]. See also Agarwal et al. [1] and Miller and Sheehy [30]
for recent progress.

A decision version of ham-sandwich problem in the plane has been studied by Chien and
Steiger [9]: decide whether there is more than one cut. They provide an Ω(n logn) lower

1 No hyperplane that contains d points from P also contains q.
2 The Exponential Time Hypothesis [23] conjectures that n-variable 3-CNFSAT cannot be solved in

2o(n)-time.
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bound, which shows that searching for an object can be easier than deciding whether an
object is unique.

Perhaps surprisingly, the computation of smallest sets arising from Caratheodory’s and
Helly’s Theorem has not been explicitly studied even though it has been studied under the
guise of IIS in the context of Linear Programming.

Even though the dimension of geometric problems is a natural parameter for studying
their parameterized complexity, only relatively few results of this type are known: Langer-
man and Morin [26] gave fpt-algorithms for the problem of covering points with hyperplanes,
while the problem of computing the volume of the union of axis parallel boxes has been shown
to be W[1]-hard by Chan [8]. Cabello et al. [5, 4] have developed a technique that has been
applied succesfully to show W[1]-hardness for a number of problems from various application
areas like shape matching [3], clustering [4, 19], and discrepancy-computation [20]. We refer
to Giannopoulos et al. [21] and Knauer [25] for surveys on other parameterized complexity
results for geometric problems.

For a general introduction to combinatorial geometry, we recommend Matoušek [28] and
Ziegler [37].

1.3 Parameterized complexity
Parameterized complexity theory provides a framework for the study of algorithmic problems
by measuring their complexity in terms of one or more parameters, explicitly or implicitly
given by their underlying structure, in addition to the problem input size. For an introduc-
tion to the field of parameterized complexity theory, we refer to the textbooks of Flum and
Grohe [17], Niedermeier [32] and Downey and Fellows [12].

The dimension d of geometric problems in Rd is a natural parameter for studying their
parameterized complexity. In terms of parameterized complexity theory the question is
whether these problems are fixed-parameter tractable with respect to d. Proving a problem
to be W[1]-hard with respect to d, gives a strong evidence that an fpt-algorithm (i.e., an
algorithm that runs in time O (f(d) · nc) for some fixed c and an arbitrary function f) does
not exist. W[1]-hardness is often established by fpt-reductions from the clique problem in
general graphs, which is known to be W[1]-complete [12]. Below we use a different approach
by giving conceptually much simpler fpt-reductions from the d-Sum problem [18, 15]:

I Definition 10. (d-Sum) Given n integers, are there d (not necessarily distinct) numbers
that sum up to 0?

This problem is NP-hard [15] and can be solved in (roughly) O(nd/2) time. It can be
shown to be W[1]-hard with respect to d from a simple reduction from the subset-sum
problem which was shown to be W[1]-hard by Downey and Koblitz [16]. Recently it has
been shown [34] (without using parameterized complexity explicitly) that, unless the ETH
fails, d-Sum cannot be solved in time no(d).

Reductions from 3-Sum seem somewhat more “natural” for computational geometers:
Gajentaan and Overmars [18] introduced the 3-Sum problem for the purpose of arguing that
certain problems in planar geometry “should” take Ω(n2) time; showing 3-Sum-hardness for
such problems is considered a routine task today. Knauer [25] has pointed out that the work
of Erickson [15] implicitly shows W[1]-hardness for two geometric problems parameterized
by the dimension (the affine degeneracy-detection problem and the convex hull simlicity-
detection problem) by giving reductions from the k-Sum problem. Surprisingly – apart
from Erickson’s work – this technique has not been used to show W[1]-hardness of more
geometric problems in Rd.
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1.4 Basic notation
For a hyperplane h and a point set P , let h+

P denote the set of points of P that lie strictly
on the positive side of h, and analogously h−P . For a point p, by (p)i we denote the i–th
coordinate of p. Finally, for a number x as usual let

sign(x) :=
{

1 x ≥ 0
−1 x < 0.

2 Affine Containment

We start with a problem for which we think the hardness proof is the most straightforward.
This proof will subsequently be modified to show the main theorems.

I Definition 11. (d-Affine-Containment) Given a set of points P in Rd, is the origin
contained in the affine hull of any d points?

Recall that x ∈ affHull ({p1, . . . , pj}) iff there exist αi, 1 ≤ i ≤ j such that
∑
αi = 1 and∑

αipi = x.
For a given set S = {s1, . . . , sn}, we will create a point-set in Rd+1 in which d+ 1 points

span an affine plane through the origin if and only d of these numbers sum up to 0.
Let ei denote the i–th unit vector. Set

pj
i := 1

si
· ej + ed+1 =

(
0, . . . , 1

si
, . . . , 0, . . . , 1

)T

and q := −
∑d

i=1 ei.
The set P consists of all points pj

i , 1 ≤ j ≤ d, 1 ≤ i ≤ n and the point q. The size of the
point set is thus n · d+ 1.

I Lemma 12. There are d elements that sum up to 0 iff there are d+ 1 points in P whose
affine hull contains the origin3.

Proof. ⇒: Let
∑d

j=1 sij
= 0. We choose points xj = pj

ij
, 1 ≤ j ≤ d and xd+1 = q. Let

αj = sij
and αd+1 = 1. Then

d+1∑
j=1

αjxj =
d∑

j=1
sij
pj

ij
+ q =

d∑
j=1

ej +

 d∑
j=1

sij

 ed+1 −
d∑

j=1
ej = 0

and

d+1∑
j=1

αj =
d∑

j=1
sij

+ αd+1 = 1.

That means that 0 is in affHull
({
p1

i1
, . . . pd

id
, q
})

.
⇐: Let 0 ∈ affHull ({x1, . . . , xd}), i.e., let

∑d+1
j=1 αjxj = 0 and

∑
αj = 1. As all points

but q lie on the hyperplane xd+1 = 1, one of the points, without loss of generality xd+1, is q.

3 Recall that the dimension is also d + 1.
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Because of (q)d+1 = 0, and (x)d+1 = 1 for all x 6= q, by computing the (d+ 1)-st coordinate
we get

0 =
d∑

j=1
(αjxj)d+1 =

d∑
j=1

αj(xj)d+1 =
d∑

j=1
αj (1)

and thus αd+1 = 1−
∑d

j=1 αj = 1.
Further, as

∑d+1
j=1 αjxj = 0, the other points satisfy

d∑
j=1

αjxj = −αd+1q =
d∑

j=1
ej .

Any xj is nonzero for only one other coordinate except the (d+ 1)-st, and as (q)j = −1
for all j < d + 1, for each j there is at least one point that is nonzero at coordinate j (in
particular, also αj 6= 0). Thus, there are exactly d such points. Without loss of generality
assume that xj is the point that is nonzero in coordinate j, so (xj)j = 1

sij
for some ij . This

means that αj
1

sij
− 1 = 0, and thus αj = sij

∈ S, which implies (Eqn. 1) that we have d
elements in S summing up to 0. J

I Theorem 13. d-Affine-Containment is W[1]-hard with respect to the dimension and
NP-hard.

3 Caratheodory sets

In order to use the previous construction to prove the first part of Theorem 5, we have to
modify it such that all coefficients can be chosen positive. Observe that 0 ∈ conv(P ) iff
0 =

∑
p∈P αpp for any αp ≥ 0,

∑
αp > 0 (proof: divide by

∑
αp). To this end we now

define

pj
i = 1
|si|
· ej + sign(si) · ed+1

and q as above. The set P again consists of all the points pj
i , 1 ≤ j ≤ d, 1 ≤ i ≤ n and q.

I Lemma 14. There are d elements in S that sum up to 0 iff the origin lies in the convex
hull of d+ 1 points of P .

Proof. ⇒: Let
∑d

j=1 sij
= 0. Setting αj = |sij

| > 0, xj = pj
ij

for 1 ≤ j ≤ d and αd+1 = 1,
xd+1 = q again yields

d+1∑
j=1

αjxj =
d∑

j=1
|sij
|pj

ij
+ q =

d∑
j=1

ej +

 d∑
j=1

sign(sij
)|sij
|

 ed+1 −
d∑

j=1
ej = 0.

⇐: Let
∑d+1

j=1 αjxj = 0, αj ≥ 0. As all points lie in the positive halfspace
∑d

e∗jx > 0,
q is one of the points of the convex combination. We can assume xd+1 = q and αd+1 = 1.
Further, by the same argument as in Lemma 12, there are at least d other points for the
total sum to become 0. Again, without loss of generality let (xj)j 6= 0. As (q)j = −1 for all
1 ≤ j ≤ d, this means that αj

1
|sij
| = 1 for some ij , and thus αj = |sij

|. Further, because of
the (d+ 1)-st coordinate, we get

0 =
d∑

j=1
αjsign(sij ) =

d∑
j=1

sign(sij ) ·
∣∣sij

∣∣ =
d∑

j=1
sij
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and thus we have d elements summing up to 0. J

Thereby we have shown the first part of Theorem 5.

3.1 Remark
Observe that if we project all points onto the unit sphere, all the above properties still hold:
Clearly, 0 ∈ conv(P ) iff 0 ∈ conv (πSd−1(P )). Thus, we can even assume all points to lie in
convex position and thereby get a slightly stronger result:

I Theorem 15. The following problem is W[1]-hard and NP-hard: Given a V-polytope in
Rd, is the origin contained in the convex hull of any d vertices?

4 Helly sets

Starting from the result in the previous section, we will now show how to prove the hardness
for the d-Helly-Set problem. Using a duality transform, for a given set P in Rd, we will
construct a set of convex sets (that are actually half-spaces) such that d have an empty
intersection if and only if there are d points in P that contain the origin in their convex
hull. A similar construction (which is used to prove Caratheodory’s Theorem from Helly’s
Theorem) can be found in [14, Chapter 2.3].

Consider a set P of points p1, · · · , pn ∈ Rd whose convex hull contains the origin. For
each point p ∈ P set consider the halfspace

p∗ =
{
x | pTx ≥ 1

}
.

Define P ∗ to be the set of all these halfspaces corresponding to the points in P . We show that
any Caratheodory set of P (for the origin) corresponds to a Helly set (a set of halfspaces with
empty intersection) of P ∗ of the same size. Since checking if the minimum Caratheodory set
has cardinality at most d is W[1]-hard, it then follows that checking if the minimum Helly
set is of cardinality at most d is also W [1]-hard.

Let Q ⊆ P and let V be a d × |Q| matrix whose columns represent the vectors in Q.
Further, let cone(V ) denote the conic hull of the vectors, i.e., the set

{∑
q∈Q αqq | αq ≥ 0

}
.

Using the fact that cone(V ) is pointed if and only if V Tx ≤ 0 is a full-dimensional cone,
we can now show the main lemma of this section, which is a variant of Gordan’s Theorem,
see e.g. Dantzig and Thapa [11, Theorem. 2.13]:

I Lemma 16. Let Q ⊆ P and let V be a d×|Q| matrix whose columns represent the vectors
in Q. Then 0 ∈ conv(V ) if and only if the system of inequalities V Tx ≥ 1 is infeasible.

Proof. ⇒: Suppose that V Tx ≥ 1 is feasible. Then there exists a vector α ∈ Rd such that
V Tα ≤ −1. That is, V Tα < 0 and thus V Tx ≤ 0 is a full-dimensional cone. Therefore,
cone(V ) is pointed. But this means that 0 /∈ conv(V ).
⇐: Now suppose 0 /∈ conv(V ), then cone(V ) is pointed and therefore V Tx ≤ 0 is a

full-dimensional cone. Thus, there exists α ∈ Rd such that V Tα < 0, and so for a large
enough λ > 0, V T (−λα) > 1 and hence V Tx ≥ 1 is feasible. J

Thus, any set Q ⊆ P of points whose convex hull contains the origin corresponds to a
set Q∗ ⊆ P ∗ of convex set (inequalities) of the same size that has an empty intersection,
and vice versa. This finishes the proof of the second part of Theorem 5.

As the convex sets in this case are even halfspaces, we can derive the stronger result of
Corollary 6.

STACS’11
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5 Ham-Sandwich cuts

Using the construction from Sec. 2, we will now prove that the decision version of the
ham-sandwich problem is W[1]-hard.

A hyperplane h is said to bisect a set Q if |h+
Q| ≤

⌊
|Q|
2

⌋
and |h−Q| ≤

⌊
|Q|
2

⌋
. A ham-

sandwich cut of d point sets P1, . . . , Pd in Rd is a hyperplane h that bisects each of the sets.
In particular, if the number of points in each set is odd, the hyperplane has to pass through
at least one of the points from each set.

Def. 4 asks whether there is a cut that goes through a given point a. Via translation we
can obviously assume a to be the origin. This will be called a linear ham-sandwich cut.

In order to show Theorem 8 we will create d + 1 sets P1, . . . , Pd+1. The set Pd+1 will
consist of the single point q =

∑d
j=1 ej (which is −q in the above notion). The sets Pj will

be the union of the two set Rj and Bj . Rj contains all points of the form pj
i , defined exactly

as in Sec. 2, i.e.,

Rj :=
{
pj

i | 1 ≤ i ≤ n
}
.

for pj
i = 1

si
ej + ed+1. If we choose a linear hyperplane through one of these points, the

number of points on each side will (most likely) not be the same. So in addition to these, for
each of these sets we need n − 1 balancing points Bj to ensure that any linear hyperplane
passing through any of these points has equally many points of Pj on both sides (c.f. Figure
1). Thus, the set P =

⋃
Pj is of size d (2n− 1) + 1.

5.1 Construction of the Balancing-set

The idea is to add a point set similar to the mirror image of the original set Rj . This way
any hyperplane that has many of the original points on, say, the positive side, will contain
few of the mirrored points on the positive side, and vice versa.

By making the total number of points in each set Pj odd, we will ensure that any ham-
sandwich cut must pass through one of the points from Pj . Further, by the construction
of the balancing set, it will not be possible to choose a linear cut through q that also goes
through any of these balancing points, thereby getting the correspondence between subsets
of S and linear cuts through q.

For this, we will choose the mirror-image of a set of n − 1 points that lie between two
successive points in Rj (recall that all points from Rj lie on a line; this is why we use the
construction from Sec. 2). Thereto, let S be in ascending order with respect to si ≺ sj iff
1/si < 1/sj (or, equivalently: 1/si < 1/sj for i < j).

Then, let εj = 1
2j and

bj
i := −

(
1

si − εj

)
· ej − ed+1.

This the mirror image of a point slightly to the right of pj
i , for 1 ≤ i < n; see Figure 1. Let

Bj consist of all balancing points of the form bj
i and set

Pj := Rj ∪Bj .
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h

Rj

Bj

|h−Rj
| = 2 |h+Rj

| = 5

|h−Bj
| = 5 |h+Bj

| = 2

pji

bji

pj1 pjn

bjn−1 bj1

Figure 1 The set Pj : points and balancing points

5.2 The main lemma
Now we come to prove the main lemma, namely that the point set allows a linear ham-
sandwich cut if and only if there are d elements that sum up to 0, based on the following
two simple lemmas. The first one states that any (not necessarily linear) ham-sandwich cut
intersects exactly one point from each set Pj , whereas the second one guarantees that any
linear hyperplane that contains a point from Rj will bisect Pj .

I Lemma 17. Any linear ham-sandwich cut intersects exactly one point from each Pj,
1 ≤ j ≤ d+ 1.

Proof. For Pd+1 = {q} this is trivial. We show that for any linear ham-sandwich cut
h = (h1, . . . , hd+1) we have hi 6= 0 for all i: First, if hd+1 were 0, because the cut must pass
through at least one point from each set, we would have hj = 0 for all j. Thus, hd+1 6= 0.
Further, as hj(pj)j = −hd+1(pj)j 6= 0 for some pj ∈ Pj , also hj 6= 0 for all j.

Thus, no cut can pass through more than one point of any set Pj : If

hj(p)j + hd+1(p)d+1 = h · p = 0 = h · p′ = hj(p′)j + hd+1(p′)d+1

for two points p, p′ ∈ Pj , then p = p′ or hj = 0, a contradiction.
J

I Lemma 18. Any linear hyperplane intersecting a single point from Rj bisects the set Pj.

Proof. Let h · pj
i = 0 and without loss of generality h · pj

k < 0 for all 1 ≤ k < i. Then also
h ·−bj

k < 0 and thus h ·bj
k > 0 for all 1 ≤ k < i. Further, h ·pj

k > 0 for all k > i and h ·bj
k < 0

for k ≥ i. So

|h−Pj
| = |h−Rj

|+ |h−Bj
| = i− 1 + n− i =

⌊
|Pj |

2

⌋
= |h+

Pj
|.

J

I Lemma 19. There are d elements in S that sum up to 0 if and only if there is a linear
ham-sandwich cut.

STACS’11
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Proof. ⇒: Let
∑d

j=1 sij
= 0. We have to find a linear hyperplane h · x = 0 such that for

each set Pj it holds that |h+
Pj
|, |h−Pj

| ≤
⌊
|Pj |

2

⌋
. Choose hj = sij for 1 ≤ j ≤ d and hd+1 = −1.

Because
∑d

sij = 0, we have h · q =
∑d

sij
= 0 (so the one element set Pd+1 is bisected).

Further,

h · pj
ij

= hj · 1/sij + hd+1 · 1 = 1− 1 = 0.

Because of Lemma 18, this means that all sets are bisected, and thus we have a linear
ham-sandwich cut.
⇐: Let h be a linear ham-sandwich cut. All hi are nonzero (Lemma 17), so we can

assume hd+1 = −1. For each j, we have h ·pj = 0 for exactly one point pj ∈ Pj . This means
that

0 = h · pj = hj(pj)j + hd+1(pj)d+1 = hj(pj)j − 1(pj)d+1 = hj(pj)j − 1,

and so either hj = sij
or hj = sij

−εj for some ij . Because for any ∅ 6= J ⊂ {1, . . . , d} we
have 0 <

∑
j∈J εj < 1 and S is a set of integers, if one (or more) of the hj were of the latter

form, the total sum can never be an integer, and in particular not 0. But this is required
for q to lie on h.

Thus, hj = sij ∈ S for some ij , and as q also lies on the hyperplane, we get

0 = hq =
d∑

j=1
hj =

d∑
j=1

sij ,

i.e., there are d elements in S that sum up to 0. J

From this Theorem 8 follows.

5.3 Remarks
In the previous construction, the origin (i.e., the point for which we want to solve the decision
version) is not part of any of the sets. This is easily fixed: Set Pd+1 = {0, q/2, q}. Then any
ham-sandwich cut through 0 also has to go through the other two points (otherwise there
would be too many points on the one side). Thus it also contains q. On the other hand,
whenever there are no such d elements that sum up to 0, all ham-sandwich cuts are (truly)
affine hyperplanes through q/2. This gives a slightly stronger result:

I Corollary 20. The following problem is W[1]-hard with respect to the dimension and NP-
hard: Given d point sets in Rd and a point a ∈

⋃
Pi, is there a ham-sandwich cut through

a?

For a given family of d + 1 sets in Rd we are not guaranteed that there is a cut that
bisects all the sets simultaneously. By adding the origin as a single set, the previous shows
that deciding whether there is still such a cut is also a computationally hard question:

I Corollary 21. The following problems are W[1]-hard with respect to the dimension and
NP-hard:

(d-Strong-Ham-Sandwich) Given d + 1 point sets in Rd, is there a hyperplane that
bisects all sets?
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Abstract
We study the quantum query complexity of minor-closed graph properties, which include such
problems as determining whether an n-vertex graph is planar, is a forest, or does not contain
a path of a given length. We show that most minor-closed properties—those that cannot be
characterized by a finite set of forbidden subgraphs—have quantum query complexity Θ(n3/2).
To establish this, we prove an adversary lower bound using a detailed analysis of the structure
of minor-closed properties with respect to forbidden topological minors and forbidden subgraphs.
On the other hand, we show that minor-closed properties (and more generally, sparse graph
properties) that can be characterized by finitely many forbidden subgraphs can be solved strictly
faster, in o(n3/2) queries. Our algorithms are a novel application of the quantum walk search
framework and give improved upper bounds for several subgraph-finding problems.
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1 Introduction

The decision tree model is a simple model of computation for which we can prove good upper
and lower bounds. Informally, decision tree complexity, also known as query complexity,
counts the number of input bits that must be examined by an algorithm to evaluate a
function. In this paper, we focus on the query complexity of deciding whether a graph has
a given property. The query complexity of graph properties has been studied for almost
40 years, yet old and easy-to-state conjectures regarding the deterministic and randomized
query complexities of graph properties [11, 15, 20, 23] remain unresolved.

The study of query complexity has also been quite fruitful for quantum algorithms. For
example, Grover’s search algorithm [13] operates in the query model, and Shor’s factoring
algorithm [24] is based on the solution of a query problem. However, the quantum query
complexity can be harder to pin down than its classical counterparts. For monotone graph
properties, a wide class of graph properties including almost all the properties considered
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in this paper, the widely-believed Aanderaa–Karp–Rosenberg conjecture states that the
deterministic and randomized query complexities are Θ(n2), where n is the number of vertices.
On the other hand, there exist monotone graph properties whose quantum query complexity
is Θ(n), and others with query complexity Θ(n2). In fact, one can construct a monotone
graph property with quantum query complexity Θ(n1+α) for any fixed 0 ≤ α ≤ 1 using
known bounds for the threshold function [6].

The quantum query complexity of several specific graph properties has been established in
prior work. Dürr, Heiligman, Høyer, and Mhalla [12] studied the query complexity of several
graph problems, and showed in particular that connectivity has quantum query complexity
Θ(n3/2). Zhang [28] showed that the quantum query complexity of bipartiteness is Θ(n3/2).
Ambainis et al. [5] showed that planarity also has quantum query complexity Θ(n3/2). Berzina
et al. [7] showed several quantum lower bounds on graph properties, including Hamiltonicity.
Sun, Yao, and Zhang studied some non-monotone graph properties [26].

Despite this work, the quantum query complexity of many interesting graph properties
remains unresolved. A well-studied graph property whose query complexity is unknown is
the property of containing a triangle (i.e., a cycle on 3 vertices) as a subgraph. The triangle
finding problem was first studied by Buhrman et al. [10], who gave an O(n+

√
nm) query

algorithm for graphs with n vertices and m edges. With m = Θ(n2), this approach uses
O(n3/2) queries, which matches the performance of the simple algorithm that searches for
a triangle over the potential

(
n
3
)
triplets of vertices. This was later improved by Magniez,

Santha, and Szegedy [19] to Õ(n1.3), and then by Magniez, Nayak, Roland, and Santha [18]
to O(n1.3), which is currently the best known algorithm. However, the best known lower
bound for the triangle problem is only Ω(n) (by a simple reduction from the search problem).
This is partly because one of the main lower bound techniques, the quantum adversary
method of Ambainis [2], cannot prove a better lower bound due to the certificate complexity
barrier [25, 28].

More generally, we can consider the H-subgraph containment problem, in which the task
is to determine whether the input graph contains a fixed graph H as a subgraph. Magniez
et al. also gave a general algorithm for H-subgraph containment using Õ(n2−2/d) queries,
where d > 3 is the number of vertices in H [19]. Again, the best lower bound known for
H-subgraph containment is only Ω(n).

In this paper we study the quantum query complexity of minor-closed graph properties.
A property is minor-closed if all minors of a graph possessing the property also possess the
property. (Graph minors are defined in Section 2.) Since minor-closed properties can be
characterized by forbidden minors, this can be viewed as a variant of subgraph containment
in which we look for a given graph as a minor instead of as a subgraph. The canonical
example of a minor-closed property is the property of being planar. Other examples include
the property of being a forest, being embeddable on a fixed two-dimensional manifold, having
treewidth at most k, or not containing a path of a given length.

While all minor-closed properties can be described by a finite set of forbidden minors,
some minor-closed properties can also be described by a finite set of forbidden subgraphs,
graphs that do not appear as a subgraph of any graph possessing the property. We call a
graph property (which need not be minor closed) a forbidden subgraph property (FSP) if the
property can be described by a finite set of forbidden subgraphs.

Our main result is that the quantum query complexity of minor-closed properties depends
crucially on whether the property is FSP. In particular, Figure 1 summarizes our understand-
ing of the quantum query complexity of minor-closed graph properties. All subgraph-closed
properties, which include minor-closed properties and FSPs, have an easy lower bound
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Sparse

O(n3/2)
(Theorem 11)

Subgraph closed

Ω(n)
(Theorem 4)

Minor closed

FSP

Θ(n3/2) (Corollary 12) o(n3/2) (Corollary 14)

Figure 1 Summary of the main results.

of of Ω(n) (Theorem 4). Furthermore, all sparse graph properties, which are defined in
Section 2 and which include all minor-closed properties, have an easy upper bound of O(n3/2)
(Theorem 11). On the lower bound side, our main contribution is to show that minor-closed
properties that are not FSP require Ω(n3/2) queries (Theorem 8), which tightly characterizes
their quantum query complexity. Regarding upper bounds, our main contribution is a
quantum algorithm for all sparse graph properties that are FSP, using O(nα) queries for
some α < 3/2 that depends on the property (Corollary 14).

Our lower bounds (Section 3) use the quantum adversary method [2]. The basic idea of
the lower bound is similar to the connectivity lower bound of Dürr et al. [12]. However, it is
nontrivial to show that this approach applies using only the hypothesis that the property is
minor-closed and not FSP. In fact, we show a slightly stronger result, assuming only that the
property is not FSP and can be described by finitely many forbidden topological minors.

Our upper bounds (Section 4) use the quantum walk search formalism [18]. Our approach
differs from previous applications of this formalism in several respects. We use several quantum
walks occurring simultaneously on different Hamming graphs (whereas most previous quantum
walk search algorithms used a single Johnson graph). Although this can be viewed as a single
walk on a larger graph, the salient feature is that the walks on different graphs proceed at
different speeds, i.e., in each time step a different number of steps are taken on each graph.
In addition, we make essential use of the sparsity of the input graph.

By exploiting sparsity, we also improve upon known algorithms for many sparse graph
properties, even if they are not necessarily minor closed. For example, we give improved
algorithms for finding paths of a given length, as well as an algorithm that outperforms the
general H-finding algorithm of Magniez et al. [19] whenever H is a bipartite graph.

Finally, as another application, we consider the C4-subgraph containment problem.
This can be viewed as a natural extension of the triangle problem, which is C3-subgraph
containment. Surprisingly, we show that C4 finding can be solved with only Õ(n1.25) queries,
even faster than the best known upper bound for triangle finding, which is O(n1.3).

STACS’11
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2 Preliminaries

In this paper, all graphs are simple and undirected. Thus a graph on n vertices is specified
by
(
n
2
)
bits. In the query complexity model, the input graph is accessed by querying a black

box to learn any of these
(
n
2
)
bits. Deterministic and randomized algorithms have access to

a black box taking two inputs, u and v, and returning a bit indicating whether (u, v) is an
edge in the graph. To accommodate quantum algorithms, we define a quantum black box in
the standard way. The quantum black box is a unitary gate that maps |u, v, b〉 to |u, v, b⊕ e〉
where (u, v) ∈ V × V , b is a bit, and e is 1 if and only if (u, v) ∈ E.

Let the deterministic, randomized, and quantum query complexities of determining
whether a graph possesses property P be denoted as D(P), R(P), and Q(P), respectively,
where for R and Q we consider two-sided bounded error. Clearly, Q(P) ≤ R(P) ≤ D(P) ≤(
n
2
)
. Also note that these query complexities are the same for a property P and its complement

P̄, since any algorithm for P can be turned into an algorithm for P̄ by negating the output,
using no additional queries.

A graph property on n vertices is a property of n-vertex graphs that is independent of
vertex labeling, i.e., isomorphic graphs are considered equivalent. For a graph G on n vertices
and an n-vertex graph property Pn, we write G ∈ Pn to mean that graph G has property Pn.
A graph property P := {Pn}∞n=1 is a collection of n-vertex graph properties Pn for all n ∈ N .
For example, the property “the first vertex is isolated” is not a graph property because it
depends on the labeling, and in particular it depends on which vertex we decide to call the
first one. However, the property “contains an isolated vertex” is a graph property.

An n-vertex graph property Pn is nontrivial if there exists a graph that possesses it and
one that does not. A graph property P = {Pn}∞n=1 is nontrivial if there exists an n0 such
that Pn is nontrivial for all n > n0. Thus a property such as “contains a clique of size 5” is
nontrivial, although it is trivial for graphs with fewer than 5 vertices.

In this paper, Kn and Cn refer to the complete graph and cycle on n vertices, respectively.
Ks,t is the complete bipartite graph with s vertices in one part and t vertices in the other.
A d-path is a path with d edges (i.e., with d+ 1 vertices). For a graph G, V (G) and E(G)
denote the vertex and edge sets of the graph; n := |V (G)| and m := |E(G)|.

A graph H is said to be a subgraph of G, denoted H ≤S G, if H can be obtained
from G by deleting edges and isolated vertices. A graph H is said to be a minor of G,
denoted H ≤M G, if H can be obtained from G by deleting edges, deleting isolated vertices,
and contracting edges. To contract an edge (u, v), we delete the vertices u and v (and all
associated edges) and create a new vertex that is adjacent to all the original neighbors of u
and v. The name “edge contraction” comes from viewing this operation as shrinking the
edge (u, v) to a point, letting the vertices u and v coalesce to form a single vertex.

Another way to understand graph minors is to consider reverse operations: H ≤M G if
G can be obtained from H by adding isolated vertices, adding edges, and performing vertex
splits. In a vertex split, we delete a vertex u and add two new adjacent vertices v and w, such
that each original neighbor of u becomes a neighbor of either v or w, or both. In general,
this operation does not lead to a unique graph, since there may be many different ways to
split a vertex.

A related operation, which is a special case of a vertex split, is known as an elementary
subdivision. This operation replaces an edge (u, v) with two edges (u,w) and (w, v), where
w is a new vertex. A graph H is said to be a topological minor of G, denoted H ≤T G,
if G can be obtained from H by adding edges, adding isolated vertices, and performing
elementary subdivisions. We call G a subdivision of H if it is obtained from H by performing
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any number of elementary subdivisions.
Some graph properties can be expressed using a forbidden graph characterization. Such a

characterization says that graphs have the property if and only if they do not contain any of
some set of forbidden graphs according to some notion of graph inclusion, such as subgraphs
or minors. For example, a graph is a forest if and only if it contains no cycle as a subgraph,
so forests are characterized by the forbidden subgraph set {Ck : k ≥ 3, k ∈ N}. The property
of being a forest can also be characterized by the single forbidden minor C3, since a graph is
a forest if and only if it does not contain C3 as a minor. If a property can be expressed using
a finite number of forbidden subgraphs, we call it a forbidden subgraph property (FSP). A
property is said to be subgraph closed if every subgraph of a graph possessing the property
also possess the property. Similarly, a property is said to be minor closed if all minors of a
graph possessing the property also possess the property. In a series of 20 papers spanning
over 20 years, Robertson and Seymour proved the following theorem [22]:

I Theorem 1 (Graph minor theorem). Every minor-closed graph property can be described by
a finite set of forbidden minors.

We also require the following consequence of the graph minor theorem, which follows
using well-known facts about topological minors [21, Theorem 2.1].

I Corollary 2. Every minor-closed graph property can be described by a finite set of forbidden
topological minors.

We call a graph property sparse if there exists a constant c such that every graph G with
the property has |E(G)| ≤ c |V (G)|. Nontrivial minor-closed properties are sparse, which is
an easy corollary of Mader’s theorem [17].

I Theorem 3. Every nontrivial minor-closed graph property is sparse.

We use Õ notation to denote asymptotic upper bounds that neglect logarithmic factors.
Specifically, f(n) = Õ(g(n)) means f(n) = O(g(n) logk g(n)) for some constant k.

3 Lower bounds

The following lower bound follows easily using the adversary methods of Ambainis [2] and
Aaronson [1].

I Theorem 4. For any nontrivial subgraph-closed graph property P, Q(P) = Ω(n), R(P) =
Θ(n2), and D(P) = Θ(n2).

With the exception of general sparse properties, this theorem covers all the properties
considered in this paper, since every property (or its complement) is closed under subgraphs.
Thus all the properties considered in this paper are classically uninteresting from the viewpoint
of query complexity, since their classical (deterministic or randomized) query complexity is
exactly Θ(n2).

In the remainder of this section, we describe our main lower bound result: Every minor-
closed property that is not FSP has Q(P) = Ω(n3/2). We begin by considering H-topological
minor containment properties that are not also H-subgraph containment properties, while
describing some of the tools used to show the more general result.

As a motivating example, consider H = C3. C3-topological minor containment (which
is equivalent to C3-minor containment) is the property of being cyclic; its complementary
property is that of being a forest. We show that Ω(n3/2) queries are required for this property.

STACS’11
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This lower bound is similar to the connectivity lower bound of Dürr et al. [12]. The
intuition is that a long path and a long cycle look the same locally. Since algorithms only have
access to local information, these two graphs should be hard to distinguish. Unfortunately
this is not sufficient, since a path can be easily distinguished from a cycle by searching the
entire graph for a degree-1 vertex, which can be done with O(n) queries. Instead, we try to
distinguish a path from the disjoint union of a cycle and a path. Now both graphs have 2
degree-1 vertices. We require both the cycle and the path to be long, since a short cycle or
path could be quickly traversed. Considering these instances, an adversary argument shows
the following.

I Theorem 5. Deciding if a graph is a forest requires Ω(n3/2) queries.

This construction does not use any particular property of forests, except that all sub-
divisions of C3 are not forests, and that if we delete an edge from a subdivision of C3, the
resulting graph is a forest. More precisely, we use the existence of a graph G (in this case C3)
and an edge (u, v) ∈ E(G) (in this case it can be any edge) such that if (u, v) is subdivided
any number of times, the resulting graph still does not have the property (in this case, of
being a forest) and if (u, v) is replaced by two disjoint paths the resulting graph does have
the property. The following lemma formalizes this intuition.

I Lemma 6. Let P be a graph property closed under topological minors. If there exists a
graph G /∈ P and an edge (u, v) of G, such that replacing the edge (u, v) by two disjoint paths
of any length, one connected to vertex u and the other connected to vertex v, always results
in a graph G′ ∈ P, then Q(P) = Ω(n3/2).

It can be shown that any graph H for which H-topological minor containment does not
coincide with H-subgraph containment contains such an edge, and thus we obtain an Ω(n3/2)
lower bound in this case. In particular, a graph H satisfies this condition if and only if it is
cyclic or contains 2 vertices of degree at least 3 in the same connected component, and any
edge on a cycle or on a path between 2 vertices of degree at least 3 can serve as the edge
(u, v) in Lemma 6.

From H-topological minor containment, we move on to properties that can be described
by a finite set of forbidden topological minors. While this case is conceptually similar to the
case of a single forbidden minor, it is more technically challenging. The final result, however,
is easy to state:

I Lemma 7. For any graph property P that is not FSP and that is described by a finite
set of forbidden topological minors, there exists a graph G /∈ P and an edge (u, v) ∈ E(G)
satisfying the conditions of Lemma 6.

Combining this with Corollary 2 and Lemma 6, we get our main lower bound result.

I Theorem 8. For any nontrivial minor-closed property P that is not FSP, Q(P) = Ω(n3/2).

This lower bound cannot be improved due to a matching algorithm shown in Section 4.
It cannot be extended to minor-closed properties that are also FSP because, as we also show
in Section 4, every property of this type has query complexity o(n3/2).

4 Algorithms

We now turn to quantum algorithms for deciding minor-closed graph properties, as well as
related algorithms for subgraph-finding problems.
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4.1 Sparse graph detection and extraction
We begin by describing some basic tools that allow us to detect whether a graph is sparse
and to optimally extract the adjacency matrix of a sparse graph.

To tell whether a graph is sparse, we can apply quantum counting to determine approxi-
mately how many edges it contains. In particular, Theorem 15 of [9] can be applied to show
the following.

I Lemma 9. For any constant ε > 0 and function f : Z+ → Z+ there is a quantum algorithm
using O(

√
n2/f(n) log 1

δ ) queries that accepts graphs with m ≥ (1 + ε)f(n) and rejects graphs
with m ≤ (1− ε)f(n) with probability at least 1− δ.

We also use a procedure for extracting all marked items in a search problem.

I Lemma 10. Let f : {1, . . . , N} → {0, 1} be a black-box function with |f−1(1)| = K. The
bounded-error quantum query complexity of determining f−1(1) is O(

√
NK) if K > 0, and

O(
√
N) if K = 0.

This result and its optimality appear to be folklore (see for example [4]).
An easy consequence of these results is that sparse graph properties can be decided in

O(n3/2) queries.

I Theorem 11. If P is a sparse graph property, then Q(P) = O(n3/2).

Combining this with Theorem 3 and Theorem 8, an immediate consequence is

I Corollary 12. If P is nontrivial, minor closed, and not FSP, then Q(P) = Θ(n3/2).

Note that this provides an alternative proof that the quantum query complexity of
planarity is Θ(n3/2) [5].

For minor-closed graph properties that are also FSP, the lower bounds from Section 3 do
not rule out the possibility of an improvement over Theorem 11. In fact, we show that an
improvement is possible for all such properties.

4.2 Quantum walk search
Our algorithms use the quantum walk search framework of Magniez et al. (Theorem 3 of
[18]), which builds on the work of Ambainis [3] and Szegedy [27]. However, our application
of this framework differs from previous applications in several ways.

In nearly all previous quantum walk search algorithms, the graph on which the walk
occurs is the Johnson graph J(N,K), whose vertices are the

(
N
K

)
subsets of {1, . . . , N} of

size K, with an edge between subsets that differ in exactly one item. The parameters N
and K are chosen based on the input size. For example, the triangle finding algorithm [19]
fixes N = n and K = n3/5, where n is the number of vertices in the input graph (not to be
confused with the graph on which the quantum walk occurs). Each vertex of the Johnson
graph has an associated data structure. Populating this data structure typically requires
queries to the input. In the setup step, the walk begins in a uniform superposition over all
the vertices of the Johnson graph. A step of the quantum walk corresponds to moving to
one of the neighbors of the current vertex and updating the data structure; this is called
the update step. Some of the vertices are designated as “marked” and the objective of the
walk is to determine if there are any such vertices. Every few steps of the walk, we have a
checking step which determines if the current vertex is marked.
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Our walk differs from this in several ways. For our purposes it will be more convenient
to replace the Johnson graph J(N,K) by the Hamming graph H(N,K), with vertex set
{1, . . . , N}K and edges between two K-tuples that differ in exactly one coordinate. This
choice simplifies the implementation of our setup step. Although the order of the items has
no significance, and the possibility of repeated items only slows down the algorithm, the
effect is not significant.

Furthermore, our algorithms involve a walk on several different Hamming graphs. Each
Hamming graph may have very different value of N and K, and these values depend not
only on the input size, but on the actual input itself. This means that queries are required
even to decide which graph is being walked on. Moreover, the walks on different graphs may
occur at different speeds.

4.3 Detecting subgraphs of sparse graphs
We now describe algorithms that determine whether a sparse graph G contains a given
subgraph H. We begin with an informal overview before stating the general result.

For concreteness, consider the problem of detecting a clique of size 5 in a sparse graph.
The idea is to look for the 5 vertices separately (using 5 quantum walks), and use the checking
step to verify that the 5 vertices do form a clique. The data structure stores a list of the
neighbors of each vertex under consideration.

First, let us assume that a clique of size 5 exists; if our algorithm fails to detect one we
can conclude that our assumption was incorrect and reject the input. Second, we guess the
approximate degrees of all the vertices we are looking for, up to a constant multiplicative
factor. Since Θ(logn) guesses cover the entire range between 1 and n, up to a multiplicative
overhead of poly(logn), we can assume that we already know the approximate degrees of all
the vertices we are looking for. Let these degrees be qi for 1 ≤ i ≤ 5.

Then we use quantum counting to estimate the number of vertices with approximate
degree qi. Let this value be ti. Now we set up 5 quantum walks, with the ith walk searching
over ki-tuples of the ti vertices of degree near qi. To optimize the overall walk, we take
αi steps for the ith component, with carefully chosen values of the kis and the αis. Since
we store the list of neighbors for each vertex, no queries are needed to check whether a set
of 5 vertices forms a clique; queries are used only in the setup step (preparing the initial
superposition) and the update step (taking αi steps on the ith Hamming graph for each i).

Storing the list of neighbors is costly for high-degree vertices, but cheap for low-degree
vertices. However, since we know the graph is sparse, there cannot be too many high-degree
vertices, so we are able to accept a high cost for such vertices. On the other hand, there may
be many low-degree vertices, but since they are cheap to process, the total cost associated
with all the vertices of a given approximate degree is about the same. This is why we break
up the search space by grouping together vertices of similar degree. Note that the sparsity of
the input graph is essential to upper bound the number of high-degree vertices in the graph.

Finally, note that it was unnecessary to search for all 5 vertices of the clique. Since we
store the list of neighbors of each vertex, we can instead search for only 4 vertices, using
the neighbor lists to determine whether they share a common neighbor. This idea naturally
generalizes to storing a vertex cover of the graph H we are looking for, a subset C of the
vertices of H such that each edge of H involves at least one vertex from C. Given neighbor
lists for any particular subset of vertices, we can determine whether that subset includes a
vertex cover of H with no further queries.

Our general strategy is to search over tuples of the vertices of G for one containing a
vertex cover of H. We exploit sparsity by separately considering cases where the vertices
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of the vertex cover have given (approximate) degrees. Letting vc(H) denote the smallest
number of vertices in any vertex cover of H, we have the following result.

I Theorem 13. Let P be the property that a graph either has more than cn edges (for some
constant c) or contains a given subgraph H. Then Q(P) = Õ

(
n

3
2−

1
vc(H)+1

)
.

The analysis proceeds roughly as follows. First we reject non-sparse graphs using
Lemma 9. Then the quantum walk search algorithm uses O(S + 1√

ε
( 1√

δ
U + C)) queries,

where S,U,C are the setup, update, and checking costs, respectively; ε is the fraction of
marked states; and δ is the spectral gap of the walk [18]. We have S = O(

∑
i kin/

√
ti),

U = O(
∑
i αin/

√
ti), and C = 0. Furthermore, ε = Ω(

∏
i ki/ti) and δ = Ω(mini αi/ki). By

choosing αi/αj = ki/kj =
√
ti/tj , α1 = 1 (assuming without loss of generality that this

is the smallest αi), and k1 =
√
t1n

1
2−

1
vc(H)+1 , we obtain the stated running time. Various

technical issues that arise only increase the running time by a polylogarithmic factor.
We can apply this algorithm to decide sparse graph properties, and in particular minor-

closed properties, that are also FSP: we simply search for each of the forbidden subgraphs,
accepting if none of them are present. For minor-closed properties, the non-sparseness
condition of Theorem 13 can be removed due to Theorem 3. Thus, since vc(H) is a constant
for any fixed graph H, we have the following.

I Corollary 14. If P is sparse and FSP, then Q(P) = o(n3/2).

For many subgraphs, we can improve Theorem 13 further by storing more information
about the vertices in the vertex cover: in addition to storing their neighborhoods, we can
store basic information about their second neighbors. In particular, we have the following.

I Theorem 15. Let P be the property that a graph either has more than cn edges (for some
constant c) or contains a given subgraph H. Let H ′ be the graph obtained by deleting all
degree-one vertices of H that are not part of an isolated edge. Then Q(P) = Õ

(
n

3
2−

1
vc(H′)+1

)
.

Theorem 15 gives an improvement over Theorem 13 for properties that are characterized
by a single forbidden minor (and equivalently, a single forbidden subgraph). For example,
we have the following.

I Theorem 16. A d-path with d ≥ 3 can be detected using Õ(n
3
2−

1
dd/2e ) quantum queries.

In particular, the quantum query complexity of detecting a d-path for d ∈ {1, 2, 3, 4} is Θ̃(n).

Note that even the improved result from Theorem 15 has zero checking cost. We can
sometimes obtain a further improvement by performing nontrivial checking. For example, we
can detect 7-paths in the same complexity that Theorem 16 gives for 5- and 6-paths and we
can detect 9- and 10-paths in the same complexity that Theorem 16 gives for 7- and 8-paths:

I Theorem 17. H-subgraph containment has query complexity Õ(n7/6) if H is a 7-path and
Õ(n5/4) if H is a 9- or 10-path.

Similar improvements are also possible for longer paths; we omit the details here.

4.4 Relaxing sparsity
So far we have focused on sparse graphs, since this is the relevant case for minor-closed
properties. However, our algorithms easily generalize to the case where the number of edges
is at most any prescribed upper bound, leading to further applications.
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I Theorem 18. Let P be the property that an n-vertex graph has at most m̄ edges (where m̄ =
Ω(n)) and contains a given subgraph H. Let H ′ be the graph obtained by deleting all degree-one
vertices of H that are not part of an isolated edge. Then Q(P) = Õ(

√
m̄n

1− 1
vc(H′)+1 ).

In conjunction with the Kövári-Sós-Turán theorem [16], this algorithm has applications
to subgraph-finding problems that are not equivalent to minor-finding problems.

I Theorem 19 (Kövári-Sós-Turán). If a graph G on n vertices does not contain Ks,t as a
subgraph, where 1 ≤ s ≤ t, then |E(G)| ≤ cs,t n2− 1

s , where cs,t is a constant depending only
on s and t.

Suppose H is a d-vertex bipartite graph. Theorem 19 shows that if |E(G)| > cn2− 2
d (for

some constant c), then G must contain Ks,d−s for all 1 ≤ s ≤ d/2, and in particular, must
contain H. Combining this with the fact that vc(H ′) ≤ vc(H) ≤ d/2, we have the following.

I Theorem 20. If H is a d-vertex bipartite graph, then H-subgraph containment has quantum
query complexity Õ(n2− 1

d−
2

d+2 ) = Õ(n2− 3d+2
d(d+2) ).

Recall that for d > 3, Theorem 4.6 of [19] gives an upper bound of Õ(n2− 2
d ) for finding a

d-vertex subgraph. For bipartite subgraphs, Theorem 20 is a strict improvement.
Note that a better bound may be possible by taking the structure of H into account. In

general, if H is a bipartite graph with the ith connected component having vertex bipartition
Vi ∪ Ui with 1 ≤ |Vi| ≤ |Ui|, then we can replace d/2 by

∑
i |Vi|, since a graph that contains

K∑
i
|Vi|,
∑

i
|Ui| must contain H, and vc(H ′) ≤ vc(H) =

∑
i |Vi|. As a simple example, if

H = K1,t is a star on t+ 1 vertices, then H-subgraph containment can be solved with Õ(n)
quantum queries (which is essentially optimal due to Theorem 4).

Just as mentioned at the end of Section 4.3, we can sometimes improve over Theorem 18
by introducing a nontrivial checking cost. The following is a simple example of such an
algorithm, using a result on the sparsity of graphs that exclude C4 [8].

I Theorem 21. C4-subgraph containment can be solved in Õ(n1.25) quantum queries.

This may seem unexpected, since C4 finding is a natural generalization of triangle finding
to a larger subgraph. Indeed, the previous best known quantum algorithm for C4 finding used
Õ(n1.5) queries [19], more than the O(n1.3) queries for triangle finding. Our improvement
shows that 4-cycles can be found in fewer quantum queries than in the best known quantum
algorithm for finding 3-cycles.

5 Conclusions and open problems

In this paper, we have studied the quantum query complexity of minor-closed graph properties.
The difficulty of such problems depends crucially on whether the property can also be
characterized by a finite set of forbidden subgraphs. Minor-closed properties that are not
characterized by forbidden subgraphs have matching upper and lower bounds of Θ(n3/2)
(Corollary 12), whereas all minor-closed properties that can be expressed in terms of forbidden
subgraphs can be solved strictly faster, in o(n3/2) queries (Corollary 14).

Since the best known lower bound for the latter class of problems is the simple Ω(n) lower
bound from Theorem 4, an obvious open question is to give improved upper or lower bounds
for subgraph-finding problems. While the standard quantum adversary method cannot prove
a better lower bound, it might be possible to apply the negative weights adversary method
[14] or the polynomial method [6]. Note that sparsity makes forbidden subgraph properties
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potentially more difficult to lower bound; this is precisely the feature we took advantage of
in the algorithms of Section 4. Proving a superlinear lower bound for any subgraph-finding
problem—even one for which dense graphs might not contain the subgraph, such as in the
case of triangles—remains a major challenge. On the algorithmic side, note that while our
algorithms take advantage of sparsity, minor-closed families of graphs have other special
properties, such as bounded degeneracy, that might also be exploited.

The algorithms described in Section 4 have several features not shared by previous
quantum walk search algorithms for graph properties: queries are required even to identify
which vertices of the input graph to search over (namely, to find vertices of a certain degree),
and the performance of the walk is optimized by making different transitions at different
rates. We hope these techniques might prove useful in other quantum algorithms.

Note that Theorem 13 can be applied to find induced subgraphs (just as with the
algorithms of [19]). However, the improvements described in Theorem 15 and Theorem 18 do
not apply to induced subgraphs, and in general it could be easier or more difficult to decide
whether a given graph is present as an induced subgraph rather than a (not necessarily
induced) subgraph. It might be fruitful to explore induced subgraph finding more generally.

It might also be interesting to focus on finding natural families of subgraphs such as paths.
Recall that we showed the quantum complexity of this problem is Θ̃(n) for lengths up to 4
and Õ(n7/6) for lengths of 5, 6, and 7, with nontrivial algorithms for longer paths as well
(Theorem 16 and Theorem 17). The case of paths of length 5, the smallest case for which
our algorithm is not known to be optimal, appears to be a natural target for future work.
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Abstract
Locally decodable codes are error correcting codes with the extra property that, in order to
retrieve the correct value of just one position of the input with high probability, it is sufficient
to read a small number of positions of the corresponding, possibly corrupted codeword. A
breakthrough result by Yekhanin showed that 3-query linear locally decodable codes may have
subexponential length.

The construction of Yekhanin, and the three query constructions that followed, achieve cor-
rectness only up to a certain limit which is 1 − 3δ for nonbinary codes, where an adversary is
allowed to corrupt up to δ fraction of the codeword. The largest correctness for a subexponential
length 3-query binary code is achieved in a construction by Woodruff, and it is below 1− 3δ.

We show that achieving slightly larger correctness (as a function of δ) requires exponential
codeword length for 3-query codes. Previously, there were no larger than quadratic lower bounds
known for locally decodable codes with more than 2 queries, even in the case of 3-query linear
codes. Our results hold for linear codes over arbitrary finite fields and for binary nonlinear codes.

Considering larger number of queries, we obtain lower bounds for q-query codes for q > 3,
under certain assumptions on the decoding algorithm that have been commonly used in previous
constructions. We also prove bounds on the largest correctness achievable by these decoding
algorithms, regardless of the length of the code. Our results explain the limitations on correctness
in previous constructions using such decoding algorithms. In addition, our results imply tradeoffs
on the parameters of error correcting data structures.

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.673

1 Introduction

Locally decodable codes are error correcting codes with the extra property that, in order to
retrieve the correct value of just one position of the input with high probability, it is sufficient
to read a sublinear or even just a constant number of positions of the corresponding, possibly
corrupted, codeword. The formal definition was given by Katz and Trevisan [9] in 2000.

I Definition 1.1. (Katz and Trevisan [9]) For reals δ and ε, and a natural number q, we say
that C: Σn → Γm is a (q, δ, ε)-Locally Decodable Code (LDC) if there exists a probabilistic
algorithm A such that: in every invocation, A reads at most q positions of y; and for every
x ∈ Σn and y ∈ Γm with d(y,C(x)) ≤ δm, and for every i ∈ [n], we have Pr [Ay(i) = xi] ≥
1
|Σ| + ε, where the probability is taken over the internal coin tosses of A.

We will refer to the value 1
|Σ|+ε in Definition 1.1 as the correctness of the given decoding

algorithm A, while ε can be thought of as the advantage over random guessing.
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674 Locally Decodable Codes

Locally decodable codes have interesting applications, both in complexity theory and in
practical areas. Locally decodable codes are especially useful in situations where we want
to encode large amounts of data to protect against errors, but need to be able to access
individual units; for example, individual patient records of a large hospital. Encoding each
unit separately would give less protection against errors, and encoding the whole data set
with a traditional error correcting code would require reading the whole encoded database
just to access small parts of it. Locally decodable codes are closely related to private
information retrieval: constructions of good locally decodable codes yield efficient protocols
for private information retrieval. Private information retrieval schemes allow users to retrieve
information from databases without revealing information about which data items the user is
retrieving. Other applications and related structures include self correcting computations,
random self-reducibility, probabilistically checkable proofs. See [15] for a survey. More
recently, [6] related LDCs to polynomial identity testing for arithmetic circuits, and [4] to
matrix rigidity and circuit lower bounds.

It is quite remarkable that such codes exist at all for constant number of queries. A
simple example is the Hadamard code, which has the property that any input bit can be
recovered with probability at least 1 − 2δ from codewords possibly corrupted in up to δm
positions, by a randomized algorithm that in every invocation reads no more than 2 bits of
the code. However, the code is very large: the length of the codewords is 2n for encoding n
bit inputs.

Of course it would be desirable to have much more efficient, in particular polynomial
length codes, but this seems to be currently out of reach for constant number of queries.
Efficient constructions are known for large number of queries. See [15] for a survey.

It is known that for large enough n, 1-query locally decodable codes (that read at most
one bit) cannot do better than random guessing [9].

For 2-query linear codes essentially tight bounds are known: Goldreich, Karloff, Schul-
man and Trevisan [8] proved exponential lower bounds for 2-query linear codes over finite
fields up to a certain field size. This was later extended by Dvir and Shpilka [6] to give ex-
ponential lower bounds for 2-query linear codes over arbitrary fields. Further improvements
for the 2-query linear case were given by [12, 14]. Shiowattana and Lokam [14] prove a lower
bound of Ω(24δn/(1−2ε)), which is tight within a constant factor, for 2-query binary linear
locally decodable codes.

Kerenidis and de Wolf [10] proved exponential lower bounds for arbitrary binary (not
necessarily linear) 2-query locally decodable codes, based on quantum arguments. They also
extended their lower bounds to codes over larger alphabets, but the bound decreases with
the alphabet size. The strongest lower bounds so far for nonlinear codes from {0, 1}n to
Σm = ({0, 1}`)m were proved by Wehner and de Wolf [16], and are of the form 2Ω(δε2n/(22`)).
A proof of the 2-query lower bound for binary codes is given in [3] without using quantum
arguments. It is still open to obtain nontrivial lower bounds for 2-query nonlinear codes
over alphabets of size Ω(

√
n).

For larger number of queries, there is still a huge gap between the known upper and lower
bounds, even for binary linear codes. For codes over small (constant size) alphabets Katz
and Trevisan in [9] gave a general lower bound that holds for any q showing that q-query
locally decodable codes must have length Ω(nq/(q−1)). This bound was slightly improved
by Kerenidis and de Wolf [10] to Ω((n/ logn)

q+1
q−1 ), and by Woodruff [18] to Ω(n

q+1
q−1 )/ logn.

Woodruff [20] proved Ω(n2) lower bounds on the length of 3-query linear codes over any
field. Prior to our work, no larger than n2 lower bound was known for locally decodable
codes that allow more than 2 queries, even in the case of 3-query linear codes.
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A breakthrough result of Yekhanin [21] showed that subexponential length 3-query lin-
ear locally decodable codes exist, under assumptions about the existence of infinitely many
Mersenne primes. Raghavendra [13] gave some simplifications to Yekhanin’s codes. Building
on these works, Efremenko [7] gave a construction of subexponential length 3-query linear
locally decodable codes without any unproven assumptions. All these constructions have a
limit on the correctness achieved by the algorithm as a function of δ where an adversary can
corrupt up to δ fraction of the codeword positions. Efremenko’s construction [7] gives 1−3δ
correctness for a 3-query nonbinary code. For 3-query binary codes, the best dependence
between the parameters is achieved in a paper by Woodruff [19], which yields 3-query binary
linear locally decodable codes with correctness close to, but still below, 1 − 3δ. Note that
these results do not provide correctness larger than 1/2, that is they do not give better
correctness than random guessing for binary codes, if the fraction of corrupted positions δ
is larger than 1/6. Recent results of Ben-Aroya, Efremenko, and Ta-Shma [2] give subexpo-
nential length locally decodable codes that can do better than random guessing for binary
codes for δ fraction of corruption up to δ = 1/2−α for any α > 0, but the number of queries
needed gets larger as δ gets closer to 1/2.

1.1 Three query codes
Our main results show that achieving slightly larger than 1 − 3δ correctness for 3-query
locally decodable codes requires exponential length. We prove this for arbitrary (possibly
nonlinear) binary codes and for linear codes over arbitrary finite fields. Note that larger,
e.g. 1− 2δ correctness can be achieved even by 2-query linear codes: the Hadamard code is
an example. With significantly larger number of queries, the correctness can be much higher
as a function of δ (of the form 1− δΩ(q)): again the Hadamard code is an example. But this
comes at the cost of having large length in the known constructions. Our results show that
for 3-query codes, this increase in length cannot be avoided.

Here we give a somewhat simplified statement of the result for binary codes, without
specifying the precise constants.

I Theorem 1.2. Let C: {0, 1}n → {0, 1}m be an arbitrary (possibly nonlinear) binary
(3, δ, ε)-LDC with a nonadaptive decoder, and n large enough. If 1

2 + ε > 1−3δ+6δ2−4δ3 +
φ(n) + µ, where φ(n) = O(1/n1/9), then m ≥ 2Ω(µn1/3).

We state the precise values hidden in the notation later in Theorem 3.1. We wanted to
start with a more compact statement of our bound, showing that as soon as the correctness
achieved by the code is above a certain threshold, the length of the codewords must be
exponential. For binary codes this threshold is around 1 − 3δ + 6δ2 − 4δ3, which is just
slightly larger than 1− 3δ for small values of δ. The value 1− 3δ is interesting, since there
are subexponential length constructions of 3-query linear LDCs that achieve correctness
1−3δ [7] and 3-query binary linear LDCs that achieve correctness slightly below 1−3δ [19].
The value 1 − 3δ + 6δ2 − 4δ3 corresponds to the probability that the number of corrupted
positions in a given triple is even, where the probability is over the distribution that corrupts
each bit independently with probability δ.

For linear codes over arbitrary finite fields, we obtain stronger lower bounds. In our
results for nonbinary codes, the value of the threshold is close to the threshold for the
binary case, but slightly depends on the field size. We obtain exponential lower bounds for
arbitrary finite fields, even if the field size depends on n.

We note that our bound holds for any δ ≥ 0 and any 0 < ε ≤ 1 − 1/|F |, where δ and ε
may be o(1). For the bound to be nontrivial, we need δ ≤ 1− 1/|F |, because of Observation
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2.1. For n to be large enough for our purposes, it is sufficient if δ > Ω(1/n1/9) and ε > Ω( 1
n ).

1.2 Arbitrary number of queries
We obtain similar results for arbitrary number of queries, under some assumptions on the
decoding algorithm. We note that the types of decoding algorithms we consider have been
commonly used in recent constructions. Our results explain the limitations on correctness
of these constructions.

Unless otherwise noted, a q-query decoder is allowed to use less than q queries. So the
correctness thresholds for requiring exponential length for q-query codes are never going to
be smaller than the correctness thresholds for the same class of 3-query codes. In the special
cases below, we show that the same thresholds to require exponential length as for 3-query
codes also apply for arbitrary number of queries.

It remains open what is the correctness threshold (as a function of δ) to require expo-
nential length for general q-query codes. Note that it will have to be a value larger than the
threshold in our 3-query results: a q-query code for q > 3 can always do at least as well, as
a 3-query code. We will see below, that if we require the query sets to be exactly of size q,
then this is not necessarily the case.

1.2.1 Linear Decoders
One of the starting points of our approach was the observation that using larger number of
queries does not help to tolerate errors if the decoder returns a fixed linear combination of
the positions read. Moreover, the probability of error increases with the number of positions
used with nonzero coefficients by a linear decoder. We formalize these ideas in our results
about linear decoders.

I Definition 1.3. Let C: Fn → Fm be an arbitrary (possibly nonlinear) code. We say that
an algorithm A is a linear decoder for C if for any fixing of the outcomes of the coin flips of
A, the value it returns is a fixed linear combination of the codeword positions it reads.

We show that linear decoders that use exactly q positions cannot achieve larger cor-
rectness than 1 − qδ + o(δ) + O(1/n), regardless of the length of the code. Moreover, we
show that the correctness of any linear decoder, for any number of positions used, is at most
1−2δ+o(δ)+O(1/n). This holds for arbitrary (possibly nonlinear) codes and over any finite
field F . This implies that our exponential length lower bounds extend to linear decoders
with arbitrary number of queries, with the same correctness threshold as for 3-query codes.

Linear decoders are commonly used in the known constructions of locally decodable
codes. In fact it is noted for example in [10, 18] that any (possibly nonlinear) binary
(q, δ, ε)-LDC has a linear decoder that achieves correctness 1/2 + ε/2q.

In the case of linear smooth codes (see [9]), requiring the decoders to be linear is inconse-
quential: for linear codes, if any algorithm gives nontrivial advantage over random guessing
when querying a given set of codeword positions Q, then by Lemma 2.2, ei ∈ span(Q) must
hold. Thus, there is a fixed linear combination of the positions in Q that gives the correct
value of xi for any input x. Using the same procedure as the original decoder to choose
which positions to query and then returning this fixed linear combination (if it exists) cannot
violate the smoothness of the code.

However, for locally decodable codes (both linear and nonlinear), requiring to use only
linear decoders may significantly reduce the correctness associated with the code. For ex-
ample, taking majorities, one can obtain correctness of the from 1− δΩ(q). Our results show
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that in the recent results of [5, 2] obtaining subexponential length constructions with larger
than 1− qδ correctness for larger values of q, the use of nonlinear operations in the decoding
algorithm is important.

Our results on linear decoders imply that there is no significantly better general reduction
from smooth codes to locally decodable codes than the current bounds giving at most 1−qδ
correctness for q query locally decodable codes. The possibility of better reductions was
raised in [9].

1.2.2 Matching sum decoders

Matching sum decoders are a subclass of linear decoders, thus our results on linear decoders
immediately apply. However, for matching sum decoders we can prove stronger results.
In particular, we can replace the correctness bounds 1 − qδ + o(δ) + O(1/n), by simply
1 − qδ + O(1/n) for codes with q-query matching sum decoders regardless of the length of
the code, and prove exponential lower bounds on the length of LDCs with matching sum
decoders using any number of queries that achieve correctness larger than 1− 3δ +O(1/n).

Matching sum decoders were formally defined by Woodruff [19]. A q-query matching
sum decoder picks a set of size q uniformly at random from a collection of sets that form a
matching in the complete q-uniform hypergraph, whose vertices correspond to the positions
of the codeword. Then, the decoder reads the positions corresponding to the chosen set,
and returns the sum of the positions read. Most known constructions of locally decodable
codes have such decoders.

Woodruff [19] proved that LDCs with 2-query matching sum decoders must have expo-
nential length. We show that q-query matching sum decoders cannot achieve larger correct-
ness than 1−qδ+O(1/n), regardless of the length of the code. This holds for arbitrary codes
and over any field.

Considering matching sum decoders where the query size is not fixed, we show that for
any binary code (possibly nonlinear), and for linear codes over arbitrary finite fields, if a
matching sum decoder with query sets of size at most q achieves correctness more than
1− 3δ +O(1/n1/3), then the length of the code must be exponential.

1.2.3 Query sets with large rank

For linear codes our proofs also apply to arbitrary number of queries, and possibly nonlinear
decoders as long as the vectors corresponding to the positions queried are linearly indepen-
dent. This is a property that holds in some of the known constructions of linear locally
decodable codes. For such query sets, we show that if the correct value of xi is spanned by
q of the linearly independent vectors with nonzero coefficients, then the correctness of the
decoder cannot be larger than 1− qδ + o(δ) +O(1/n), regardless of the length of the code.

This implies, that for linear codes over arbitrary finite fields, if a q-query decoder (with
query sets of size at most q) queries only linearly independent positions of the code and
achieves correctness more than 1− 3δ + o(δ) +O(1/n1/3), then the length of the code must
be exponential. The exponential length lower bound extends to query sets that are not fully
independent, but have large rank, with a correctness threshold that depends on the rank of
the query sets. The results described for query sets with large rank are direct consequences
of our proofs for linear codes.
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1.3 Error Correcting Data Structures
Error correcting data structures were defined by de Wolf [17]. Such data structures are a
variation of the traditional bit-probe model (see e.g. [11]), where the algorithms answering
questions about the data are correct with probability at least 1/2 + ε, as long as at most δ
fraction of the database representing the data is corrupted, possibly by adversarial error. It
is noted in [17] that error correcting data structures for the membership problem yield locally
decodable codes, with the same parameters. [17] showed the existence of error correcting
data structures for the membership problem and some of its variants, assuming the existence
of locally decodable codes with given parameters. Because of the direct correspondence
between the two models, our results rule out the existence of error correcting data structures
for membership of subexponential size with larger correctness than our thresholds above,
for 3-probe algorithms, as well as for algorithms with arbitrary number of probes, assuming
the algorithm only uses linear operations.

1.4 Techniques
We start by noting why some hand waiving arguments and intuition based on smooth codes
would fail to explain our most general results. Smooth codes were defined by Katz and
Trevisan [9], who also gave reductions between smooth codes and locally decodable codes.
So up to changes in parameters, smooth codes and locally decodable codes are equivalent.
Most of the current lower bounds for locally decodable codes have been proved via proving
lower bounds for smooth codes, and the correctness of the known subexponential length
constructions of 3-query linear LDCs is analyzed based on their property of having smooth
decoders, that are correct with large probability if there is no error, and query each position of
the code with not too large probability. However, the current techniques to analyze smooth
decoders cannot imply larger than 1− qδ correctness for q-query locally decodable codes. In
fact we show that no significantly better general reduction is possible. If we consider larger
than 1 − qδ correctness, then the equivalence of smooth codes and locally decodable codes
starts to break down.

We elaborate on a few specific points below. One could try to argue that the probability
that the decoder does not query any corrupted positions is upper bounded by a function not
much larger than 1 − qδ, thus the decoder will have to read corrupted positions. However,
errors may cancel out, so the fact that some of the positions read by the decoder may contain
an error, in itself does not explain our lower bounds.

If the decoder was only working with query sets that form a matching, and the decoder
was linear (which is the case in several of the known constructions), then - as we show -
1 − qδ would in fact be a limit on correctness for decoders that query exactly q positions.
But these assumptions do not have to hold for every decoding algorithm, and our results
cannot be explained by this simplified view.

Our proofs of the 3-query lower bounds are based on a lemma that was central in obtain-
ing the exponential lower bounds for 2-query codes. However, we would like to emphasize
that we do not use 2-query lower bounds as a black box. We show that query sets that
provide large correctness must contain subsets of size at most 2 that give nontrivial cor-
relation with the input position we try to recover. But this does not imply that the code
somehow “reduces” to a 2-query code. Consider the following simple example (many other
examples are possible): query 3 positions such that each in itself has large correlation with
the position xi, and take the majority of the answers. Replacing this with reading only a
subset of the bits, would preserve the properties of a smooth decoder, but it would reduce
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the correctness of the decoding algorithm. Thus, the decoder cannot be simply replaced by
a 2-query decoder, if we want to preserve the correctness probabilities of the decoder.

Our approach can be summarized as follows: we show that in the case of 3-query codes, if
the code is small, we can “force” the decoder to only examine query sets that are vulnerable
to error. We achieve this by considering the algorithm’s performance over random input x
and a specially constructed distribution for the corruption caused by the adversary. We show
that over our distribution, the decoder cannot perform much better than a linear decoder.

In all of our results, the probability of error is estimated in terms of the probability - over
appropriate random corruption - of the event that the sum of the corruption in the positions
of a given query set is nonzero. Intuitively, this probability would indeed give a lower bound
on the error if the decoder always returned the sum (or a fixed linear combination) of the
positions read, and if this was equal to the correct answer for uncorrupted codewords. For
example, this would be the case for linear decoders of a linear code. However, we also
consider nonlinear codes, and arbitrary decoders that may involve nonlinear operations. In
fact, we do not claim that the probability of having nonzero sum of corruption in the query
set is a lower bound on the error in general. Instead, we lower bound the probability of error
by a different expression, and show that this expression is lower bounded by the probability
mentioned above in the case of random corruption according to our distribution.

A crucial point in our proofs for nonlinear decoders (for both linear and nonlinear codes)
is comparing the conditional probabilities of error of the decoder, conditioned on the sum of
the values in the corrupted positions. We show that - under appropriate assumptions on the
query sets for linear codes - the sum of these conditional probabilities of the decoder being
incorrect, is always |F | − 1. A subtle point of this argument is that the various events we
work with are not always independent. Our proof for nonlinear codes is based on a similar
property of conditioning on the number of corrupted positions being odd vs. even. However,
for nonlinear codes instead of directly considering the conditional probabilities of incorrect
decoding, we reduce estimating the probability of error to estimating the probability that
the sum of the positions read gives an incorrect answer. This analysis lets us estimate the
probability of incorrect decoding even if the decoding algorithm uses nonlinear operations.

2 Preliminaries

The definition of locally decodable codes allows the decoding algorithm to be adaptive.
Lower bounds for nonadaptive decoders can be translated to lower bounds for arbitrary
decoders with the same number of queries but larger correctness: it is noted in the paper by
Katz and Trevisan [9] that any adaptive (q, δ, ε) decoding algorithm for a code C: Σn → Γm,
can be transformed to a nonadaptive (q, δ, ε/|Γ|q−1) decoding algorithm for the same code.

We only consider nonadaptive decoding algorithms in the rest of the paper. We will refer
to the (at most q) positions the algorithm chooses to read in a given invocation as a query
set. In a nonadaptive algorithm, the choice of the query set only depends on the coin flips
of the algorithm.

The following simple observation means that for proving lower bounds we may assume
that δ < 1− 1

|Σ| , since otherwise, no algorithm can do better than random guessing for any
of the input positions.

I Observation 2.1. Let A be a decoding algorithm for any code C: Σn → Σm. If δ ≥ 1− 1
|Σ| ,

then for any i ∈ [n], minx∈Σn

(
miny∈Γm : d(y,C(x))≤δm Pr [Ay(i) = xi]

)
≤ 1
|Σ| .

For a linear code C: Fn → Fm, it is convenient to represent the function that determines
a given codeword position by a vector: for j ∈ [m], define aj ∈ Fn as the vector satisfying
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∀x ∈ Fn, Cj(x) = aj · x. For vectors a, x ∈ Fn, we use a · x to denote their inner product
over F . (We omit F from the notation.)

For a query set Q = {j1, . . . , jq} ⊂ [m], we use the notation span(Q) to represent the
linear span of the vectors aj1 , . . . , ajq corresponding to the positions in Q. We denote the
i’th unit vector with length n by ei. ei has 1 in its i-th coordinate and 0 everywhere else.

The following lemma was stated in [8] for two query binary linear codes. Its extension
to arbitrary fields and any number of queries is straightforward, but important for our
arguments.

I Lemma 2.2. (implicit in [8]) Let C: Fn → Fm be a linear code. Let i ∈ [n] and let Q =
{j1, j2, ...jq} ⊂ [m] be a query set that the algorithm A queries with nonzero probability when
trying to recover the value of input position i. Suppose PrxεUFn

[
AC(x)(i) = xi | A queries Q

]
>

1
|F | where the probability is taken over letting x be uniformly random from Fn and over the
internal coin tosses of A. Then ei ∈ span(Q) must hold.

We will use the following simple fact as well as Lemma 2.2 throughout our proof for
linear codes.

I Fact 2.3. (implicit in [1]) Let a1, . . . , at be vectors from Fn. For x uniformly random from
Fn, the corresponding random values a1 ·x, . . . , at ·x are t independent uniformly distributed
values from F , if and only if the vectors a1, . . . , at are linearly independent over F .

The following theorem of Goldreich, Karloff, Schulman and Trevisan [8] is a crucial
ingredient of our proofs.

I Theorem 2.4. [8] Let a1, ... am be a sequence of (not necessarily distinct) elements of
{0, 1}n such that for every i ∈ [n] there is a set Mi of disjoint pairs of indices {j1, j2} such
that ei = aj1 ⊕ aj2 . Then m ≥ 22αn, where α ,

∑n

i=1
|Mi|

nm .

This theorem was extended to arbitrary finite fields in [8]. The dependence on the field
size in the bound was removed by Dvir and Shpilka in [6]. We will use the following version
(see Corollary 2.9 in [6]).

I Theorem 2.5. [6] Let F be a field. Let a1, ... am be a sequence of (not necessarily
distinct) elements of Fn such that for every i ∈ [n] there is a set Mi of disjoint pairs of
indices {j1, j2} such that ei ∈ span(aj1 , aj2). Then m ≥ 2αn−1, where α ,

∑n

i=1
|Mi|

nm .

A version of the theorem applicable to binary nonlinear codes is given in the “non-
quantum” proof of the exponential lower bounds for 2-query binary nonlinear codes by
Ben-Aroya, Regev and de Wolf [3].

I Theorem 2.6. (implicit in Theorem 11 of [3]) Let 0 < ε, α < 1/2. Let a1, ... am be a
sequence of (not necessarily distinct) functions from {0, 1}n to {0, 1} such that for at least
τn indices i ∈ [n] there is a set Mi of disjoint pairs of indices {j1, j2} such that |Mi| ≥ αm
and

|Pr
x

[xi = aj1(x)⊕ aj2(x)]− Pr
x

[xi 6= aj1(x)⊕ aj2(x)] | ≥ ε

where the probability is over uniform x ∈ {0, 1}n. Then m ≥ 2τα2ε2n.

We also use the following theorem of Katz and Trevisan [9].

I Theorem 2.7. (Theorem 2 in [9]) Let C : {0, 1}n → R be a function. Assume there is
an algorithm A such that for every i ∈ [n], we have Prx [A(C(x), i) = xi] ≥ 1

2 + ε, where
the probability is taken over the internal coin tosses of A and uniform x ∈ {0, 1}n. Then
log |R| ≥ (1−H(1/2 + ε))n.
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2.1 Notation
Let F be an arbitrary finite field. We denote by F ∗ the set of nonzero elements of F .
Arithmetic operations involving field elements are over F . This should be clear from the
context, and will be omitted from the notation.

For a code C: Fn → Fm, we can represent any vector y ∈ Fm with d(y,C(x)) ≤ δm as
a sum of the form y = C(x) + B, where B ∈ Fm, such that the number of nonzero entries
in B is at most δm.

We will use the notation Prx,B,A to indicate probabilities over uniformly random input
x from Fn, B chosen at random from a given distribution for corruption, and the random
coin tosses of the given algorithm A.

Note that while in general the corruption may be produced by an arbitrary adversary,
we will only consider distributions for B that do not depend on the input x or on the
distribution for the coin tosses of the algorithm. This is sufficient for our purposes, since we
are proving lower bounds on the length of the code.

3 Lower Bounds for Three Query Codes

3.1 Lower Bounds for Three Query Binary Codes
We state the precise version of our lower bound for arbitrary (possibly nonlinear) binary
codes.

I Theorem 3.1. Let C: {0, 1}n → {0, 1}m be a (3, δ, ε)-LDC with a nonadaptive decoder, and
n large enough. Let α , δ−( 1

2−( ε4 )1/3)−(3/n1/3 + 36
n )1/3−ν, and ν , 10

n(1−H(1/2+1/n1/3)) =
O(1/n1/3). If α > 0, then m ≥ 20.225α2n1/3 .

I Remark. We will show that α > 0 when 1
2 + ε > 1 − 3δ + 6δ2 − 4δ3 + φ(n), where

φ(n) = 4((3/n1/3 + 36
n )1/3 +ν). Moreover, α > µ

4 when 1
2 + ε > µ+ 1−3δ+ 6δ2−4δ3 +φ(n)

for some µ ≥ 0. This implies the version of the bound stated in Theorem 1.2 for binary
codes. Note that we could also obtain a lower bound of the form 2Ω(n) by setting ε2 in
the proof to a constant, but then the correctness required for the bound would be larger,
roughly by 4(ε2)1/3.
Sketch of proof.

For the case of binary (possibly nonlinear) codes, using the Fourier representation of
Boolean functions, and properties of correlation, we show that for any decoding algorithm,
and for any query set Q, the advantage of the algorithm over random guessing when reading
the values of the query set Q is at most the sum of the advantages obtained by all possible
fixed linear functions over the given query set. This observation has been implicitly used also
in the arguments of [10] and [20] showing the existence of linear decoders with correctness
1/2 + ε/2q for any binary (q, δ, ε)-LDC.

In all our proofs, we use a distribution for the adversary that corrupts each codeword
position in a particular set S independently, and chooses the corruption over the remaining
set of positions so that the total fraction of corrupted positions is still below δ. We construct
the set S so that for query sets that do not intersect the set S, the contribution of sums over
subsets of size at most 2 towards the advantage over random guessing is small. However,
the size of S has to be small to keep the total fraction of corrupted positions below δ.

To achieve this, we first argue that in any LDC, the number of codeword positions that
have large correlation with a given input bit xi over random input x must be small for most
input positions i ∈ [n]. This is straightforward for linear codes. Note however that for
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nonlinear codes, it is possible that a given codeword position has significant correlation with
more than one input bit. We show the desired statement using Theorem 2.7.

Next we consider pairs of codeword positions, such that the sum of their values gives
large correlation with a given input bit xi over random input x. Using Theorem 2.6, we
show that if the length of the code is small, then for most i ∈ [n], all such pairs of positions
can be covered by a small number of codeword positions.

This allows us to conclude that if the length of the code is small, then for at least one
index i ∈ [n], there exist a set S of small size, such that for query sets that do not intersect
the set S, the contribution of sums over subsets of size at most 2 towards the advantage
over random guessing the bit xi is small.

We show that for any LDC with correctness 1/2 + ε, there is a decoding algorithm that
never reads any of the positions in S, but is correct with probability at least 1/2 + ε on
average over random input x, and the random corruption of the above distribution. Note
that the algorithm may not achieve the required correctness on every input and for every
string within distance δm of C(x). We only claim a bound on its probability of being correct
over uniformly random x and over random corruption according to our distribution.

This way we can argue that if the length of the code is small then there is a decoding
algorithm that only uses query sets that either provide only small advantage over random
guessing, or they involve 3 codeword positions, such that the sum of the 3 positions gives the
correct value of the input bit xi with large probability over random input and the random
corruption according to our distribution.

On the other hand, for this decoding algorithm we can lower bound the probability
of error by the probability that the sum of a given triple of codeword positions gives an
incorrect value over random input and the random corruption according to our distribution.

Please see the full version of the paper for a detailed proof of the theorem and for the
formal description of the distribution for the random corruption.

3.2 Lower Bounds for Three Query Linear Codes over Arbitrary Finite
Fields

For linear codes over arbitrary finite fields, we obtain stronger lower bounds than our bounds
for nonlinear codes.

Let F be an arbitrary finite field. We denote by F ∗ the set of nonzero elements of F . It
is convenient to state the threshold on correctness in our bounds in terms of the probability
of the event that a fixed linear combination of a given triple of coordinates of an appropriate
random corruption equals to 0. More precisely, let Q ⊆ [m] with |Q| = q be an arbitrary
fixed subset of the coordinates. Let cj ∈ F ∗, for j ∈ Q and let δ ≤ 1 − 1/|F |. For the
distributions we work with, the values of cj will not make a difference, as long as they are
all nonzero. Let P (δ, q, F ) , PrB

[
(
∑
j∈Q cjBj = 0)

]
, where the probability is over B ∈ Fm

randomly chosen according to a distribution that first chooses to corrupt each coordinate in
[m] independently with probability δ, and then uniformly and independently assigns a value
from F ∗ to each chosen coordinate of B. The remaining coordinates of B are set to 0. Note
that an adversary using this distribution would possibly corrupt more than δm positions
with nonzero probability, so this is not the distribution we use in our proofs. But it is
convenient to use the probability P (δ, q, F ) in the statement of our bounds, since P (δ, q, F )
only depends on δ, q and |F |, it does not depend on m. The theorem also holds using the
distribution that chooses δm positions uniformly (instead of independently corrupting the
positions). While it is well known that these probabilities are not too far from each other
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in the two distributions, for our purposes we need more precise estimates.
We start with a simplified statement of the result without specifying the precise constants.

I Theorem 3.2. Let C: Fn → Fm be a linear (3, δ, ε)-LDC with a nonadaptive decoder, and
n large enough. If 1

|F |+ε > P (δ, 3, F )+φ(n)+µ, where φ(n) = O(1/n1/3), then m ≥ 2Ω(µn).

We state the precise values hidden in the notation in Theorem 3.3.
For binary linear codes we present a slightly stronger bound in the next section.

I Theorem 3.3. Let C: Fn → Fm be a linear (q = 3, δ, ε)-LDC with a nonadaptive decoder,
δ ≤ 1 − 1

|F | , and n large enough. Then, m ≥ 2.45αn−1 where α , δ − (1 − 1
|F | − ε

1/3(1 −
1
|F | )

2/3)− ( 108
n )1/3 − 10

n .

I Remark. We will show that α > 0 when 1
|F | + ε > 1− 3δ(1− δ)2− (1− 1

|F |−1 )3δ2(1− δ)−
(1− 1

|F |−1 + 1
(|F |−1)2 )δ3 +φ(n), where φ(n) = 4((108/n)1/3 + 10/n). Moreover, α > µ

4 when
1
|F | + ε > µ + 1 − 3δ(1 − δ)2 − (1 − 1

|F |−1 )3δ2(1 − δ) − (1 − 1
|F |−1 + 1

(|F |−1)2 )δ3 + φ(n) for
some µ ≥ 0. This implies the version of the bound stated in Theorem 3.2.
Sketch of proof.

Similarly to the proof for binary codes, we construct the set S of positions that we corrupt
independently, so that for query sets that do not intersect the set S, the contribution of sums
(or linear combinations) over subsets of size at most 2 towards the advantage over random
guessing is small. Linear codes have the very strong property that linear combinations of
codeword positions are either exactly equal to a given input bit, or give no advantage over
random guessing towards recovering the given input bit (see Lemma 2.2). Thus, in the case
of linear codes, we can construct the distribution of the adversary so that the decoding
algorithm is left with query sets of size 3, such that no subsets of size at most 2 can give
any advantage over random guessing. All other query sets that the algorithm can read will
give no advantage over random guessing for a given input bit. Thus we don’t need the
part of the argument using Fourier representation of Boolean functions used in the binary
proof to reduce estimating the probability of error to estimating the error over query sets
of a special form. However, we still need to deal with the fact that the decoders can use
nonlinear operations. We achieve this by considering the conditional probabilities of error
of the decoder, conditioned on the sum (more precisely a fixed linear combination) of the
values in the corrupted positions. In addition, we show that in the query sets we are left
with the positions must correspond to linearly independent vectors in the generator matrix
of the code. Based on this, we show that the probability of error (on average using our
distribution) is lower bounded by |F | − 1 times the minimum over k ∈ F of the probability
that a fixed linear combination (with nonzero coefficients) of the corruption in the positions
of the query set equals k.

See the full version for a detailed proof of the Theorem.

3.3 Lower Bounds for Three Query Binary Linear Codes
For binary linear codes, we obtain a slightly stronger bound than what follows from the
lower bound for linear codes over arbitrary finite fields.

I Theorem 3.4. Let C: {0, 1}n → {0, 1}m be a linear (3, δ, ε)-LDC with a nonadaptive
decoder, and n large enough. Then, m ≥ 21.8αn where α , δ − ( 1

2 − ( ε4 )1/3)− ( 36
n )1/3 − 10

n .

I Remark. We will show that α > 0 when 1
2 + ε > 1 − 3δ + 6δ2 − 4δ3 + φ(n), where

φ(n) = 4((36/n)1/3 +10/n). Moreover, α > µ
4 when 1

2 + ε > µ+1−3δ+6δ2−4δ3 +φ(n) for
some µ ≥ 0. This implies the version of the bound stated in Theorem 3.2 for binary codes.

STACS’11
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The proof is almost identical to the proof in the previous section for arbitrary finite fields.
The improvement comes from using Theorem 2.4, and because in the case of binary linear
codes we can use a node cover of size |M1| instead of 2|M1| when defining the distribution.
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us to [3], and the anonymous referees for helpful comments.
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