
Natural Inductive Theorems for Higher-Order
Rewriting
Takahito Aoto1, Toshiyuki Yamada2, and Yuki Chiba3

1 RIEC, Tohoku University
2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
aoto@nue.riec.tohoku.ac.jp

2 Graduate School of Engineering, Mie University
1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
toshi@cs.info.mie-u.ac.jp

3 School of Information Science, Japan Advanced Institute of Science and
Technology
1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
chiba@jaist.ac.jp

Abstract
The notion of inductive theorems is well-established in first-order term rewriting. In higher-
order term rewriting, in contrast, it is not straightforward to extend this notion because of
extensionality (Meinke, 1992). When extending the term rewriting based program transformation
of Chiba et al. (2005) to higher-order term rewriting, we need extensibility, a property stating
that inductive theorems are preserved by adding new functions via macros. In this paper, we
propose and study a new notion of inductive theorems for higher-order rewriting, natural inductive
theorems. This allows to incorporate properties such as extensionality and extensibility, based
on simply typed S-expression rewriting (Yamada, 2001).

1998 ACM Subject Classification D.3.1 [Programming Languages]: Formal Definitions and
Theory; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about
Programs; F.4.2 [Mathematical Logic and Formal Languages]: Grammars and Other Rewriting
Systems; I.2.2 [Artificial Intelligence]: Automatic Programming

Keywords and phrases Inductive Theorems, Higher-Order Equational Logic, Simply-Typed S-
Expression Rewriting Systems, Term Rewriting Systems

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.107

Category Regular Research Paper

1 Introduction

Properties of programs are often proved by induction on data structures such as natural
numbers or lists. In the case of first-order term rewriting, such properties are captured by
the notion of inductive theorems (e.g. [5]): an equation s ≈ t is said to be an inductive
theorem of a term rewriting system (TRS for short) R if all ground instances are equational
consequences, i.e. sθ ↔∗R tθ holds for any ground substitution θ. Inductive theorems form
the initial semantics of first-order equational theories. In the higher-order case, one often
expects extensionality, meaning that expressions denoting the same function are equivalent.
The proof system and semantics of higher-order equational theories as well as the initial
semantics of such theories based on extensional inductive theorems have been studied in
[16, 17, 18]. In the simply typed S-expression rewriting framework [1, 2, 3, 21], the notion

© Takahito Aoto, Toshiyuki Yamada and Yuki Chiba;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications.
Editor: M. Schmidt-Schauß; pp. 107–121

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.107
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

108 Natural Inductive Theorems for Higher-Order Rewriting

of higher-order inductive theorems and inductionless induction [12, 14, 15, 19] for proving
higher-order inductive theorems automatically have been studied in [4].

Several transformations for optimizing functional programs have been developed [6, 10,
11, 13, 20]. One such framework is program transformation by templates, proposed by Huet
and Lang [13]. Chiba et al. [7, 8, 9] developed a framework of program transformation by
templates based on first-order term rewriting. In this framework, the correctness of the
transformation—the equivalence of input and output TRSs—is formalized based on inductive
equality. One of the ingredients for ensuring the correctness of this program transformation
is extensibility of inductive theorems, meaning that inductive theorems are preserved when a
new function by a macro (i.e. non-recursive function in terms of existing functions) is added.

In the case of higher-order term rewriting, in contrast, extensibility of extensional inductive
theorems is not guaranteed. Consider the following simply typed S-expression rewriting
system (STSRS for short):

R =

+ 0 y → y

+ (s x) y → s (+ x y)
zero s → 0

 .

Then + x y ≈ + y x is an extensional inductive theorem of R, that is, for any ground
substitution θ, (+ x y)θ ext↔∗R (+ y x)θ holds. Here ext↔∗R is an equivalence relation induced
by R where extensionality is taken into account. However, if we add a new constant f
and a rewrite rule f x → 0 to R, then this does not hold anymore. For, we do not have
+ (zero f) 0 ext↔∗R + 0 (zero f). Hence, the equation + x y ≈ + y x is not an inductive theorem
of R∪ {f x→ 0}.

To see why extensibility is needed, consider the following program transformation. The
recursive definition of rev, given by Rin, is transformed into the iterative definition, given by
Rout. Both TRSs are first-order and given by:

Rin = Rout =
rev([]) → []
rev(x :xs) → app(rev(xs), x : [])
app([], ys) → ys

app(x :xs, ys)→x : app(xs, ys)

 ⇒

rev(xs) → rev1(xs, [])
rev1([], ys) → ys

rev1(x :xs, ys)→ rev1(xs, x : ys)
app([], ys) → ys

app(x :xs, ys) →x : app(xs, ys)

 .

The correctness of the transformation is guaranteed by the fact that the equations app(xs, []) ≈
xs and app(app(xs, ys), zs) ≈ app(xs, app(ys, zs)) are inductively valid w.r.t. the input TRS
Rin. The transformation is carried out in three steps: Rin

∗⇒I RI
∗⇒A RA

∗⇒E Rout. In the
first step, the definition of a new function rev1 is introduced as rev1(xs, ys)→ app(rev(xs), ys).
Note that the definition of rev1 given here is defined in terms of the original rev and app
functions and is different from the final form occurring in Rout which is defined recurs-
ively. In the second step, new rewrite rules which are inductively valid are added. For
example, the rewrite rule rev1(x :xs, ys)→ app(rev(xs), x : ys) is added based on the induct-
ive equivalence rev1(x :xs, ys) ↔RI

app(rev(x :xs), ys) ↔RI
app(app(rev(xs), x : []), ys) ≈

app(rev(xs), app(x : [], ys)) ↔RI
app(rev(xs), x : app([], ys)) ↔RI

app(rev(xs), x : ys). Like-
wise, rev(xs) → rev1(xs, []) and rev1([], ys) → ys are added. In the last step, auxiliary
rewrite rules (typically original rules) are eliminated. By extensibility of first-order inductive
theorems, the inductive theorems of Rin are still inductively valid in RI , and thus one can
use inductive theorems safely in the second step RI

∗⇒A RA, after the introduction of rev1
in the first step.

Takahito Aoto, Toshiyuki Yamada and Yuki Chiba 109

extensional Thms

natural Ind. Thms

extensional Ind. Thms

Figure 1 Inclusion relation on the three notions of theorems

The lack of extensibility for higher-order inductive theorems prevents us from extending
the template based framework for program transformations of [7, 8, 9] to the higher-order
setting. To overcome this difficulty, we introduce in this paper a new notion of inductive
theorems—natural inductive theorems—for higher-order rewriting satisfying the following
properties: (1) these inductive theorems are extensional and extensible, (2) extensional
theorems are natural inductive theorems, and (3) natural inductive theorems are extensional
inductive theorems (see Figure 1). Once the notion of natural inductive theorems is obtained,
the higher-order extension of the framework is achieved in the following way. As in the
first-order case, we first establish some natural inductive theorems of the input STSRS Rin.
Then a transformation Rin

∗⇒I RI
∗⇒A RA

∗⇒E Rout is performed as before. By extensibility,
natural inductive theorems are preserved in the transformation ∗⇒I . This, together with the
property (2), allows to add new rules which are sound w.r.t. natural inductive validity. Hence
the equivalence of Rin and Rout is obtained w.r.t. natural inductive validity. By property (3)
this ensures the equivalence of input and output STSRSs w.r.t. extensional inductive validity.

The remainder of this paper is structured as follows. Having fixed the terminology and
notations used in this paper (Section 2), we review a semantics of simply typed equational
theories that captures extensionality (Section 3). In Section 4, we arrive at the restriction of
simply typed algebras to give a notion of natural inductive theorems. Then we show that the
set of natural inductive theorems covers that of extensional theorems and is covered by that
of extensional inductive theorems. We then show extensibility of natural inductive theorems
under certain conditions. In Section 5, we give a sufficient condition that partially allows to
check whether an equation is a natural inductive theorem. Section 6 concludes.

2 Preliminaries

In this section, we briefly recall the terminology and notations of simply typed S-expression
rewriting (simply typed term rewriting in [21]).

Let B be a set of base types. The set ST of simple types is defined inductively as: B ⊆ ST;
if τ0, . . . , τn ∈ ST then τ1 × · · · × τn → τ0 ∈ ST (n ≥ 1). Non-base types are called function
types. A set T ⊆ ST of simple types is a simple type structure if (1) B ⊆ T and (2) T is
closed under subtypes, i.e. τ1 × · · · × τn → τ0 ∈ T implies τ0, . . . , τn ∈ T . For any simple
type structure T , we put T f = T \B. Second-order simple types are defined inductively as
follows: (1) base types are second-order simple types, (2) if τ0 is a second-order simple type
and τ1, . . . , τn are base types then τ1 × · · · × τn → τ0 is a second-order simple type. Let Σ
be a set of constants and V the set of variables. Each constant or variable a is equiped with

RTA’11

110 Natural Inductive Theorems for Higher-Order Rewriting

a simple type (denoted by type(a)). We assume that there are countably infinite variables of
type τ for each τ ∈ ST. For any τ ∈ ST and U ⊆ Σ∪V , we put Uτ = {a ∈ U | type(a) = τ}.
Let T be a simple type structure. We say a ∈ Σ ∪ V (U ⊆ Σ ∪ V) is over T if type(a) ∈ T
(U ⊆

⋃
τ∈T U

τ , respectively). A simply typed constant is said to be second-order if its type
is second-order. We assume that the set Σ of constants is partitioned into two categories1:
the set Σd of defined constants and the set Σc of constructor constants. The set Σ is said to
be elementary if any constructor constant c ∈ Σc is second-order.

Let Σ be a set of constants over a simple type structure T and X be a set of variables
over T . The set S(Σ, X)τ of simply typed S-expressions of type τ ∈ T over Σ and X is
defined as follows: (1) Στ ∪Xτ ⊆ S(Σ, X)τ , (2) if t0 ∈ S(Σ, X)τ1×···×τn→τ and ti ∈ S(Σ, X)τi

for all i ∈ {1, . . . , n} then (t0 t1 · · · tn) ∈ S(Σ, X)τ . The outermost parentheses of an
S-expression can be omitted. The set of all simply typed S-expressions over Σ and X is
denoted by S(Σ, X). We often refer to simply typed S-expressions as S-expressions, for
brevity. The type of an S-expression t is denoted by type(t). For any set U ⊆ S(Σ, V), we
put Ub = {s ∈ U | type(s) ∈ B} and U f = {s ∈ U | type(s) /∈ B}. The set of variables in an
S-expression t (of base type, of function type) is denoted by V(t) (Vb(t), Vf(t), respectively).
An S-expression t is said to be ground if V(t) = ∅. The set of ground S-expressions is
denoted by S(Σ). An S-expression is linear if every variable occurs at most once in it. The
head symbol of an S-expression is defined recursively as follows: head(a) = a for a ∈ Σ ∪ V ;
head((t0 t1 · · · tn)) = head(t0). The set Args(s) of arguments of an S-expression s is defined
recursively as follows: Args(a) = ∅ for a ∈ Σ∪V ; Args((t0 t1 · · · tn)) = Args(t0)∪{t1, . . . , tn}.
A full expansion t↑ of an S-expression t is defined recursively as follows: (1) if type(t) ∈ B
then t↑ = t, (2) if type(t) = τ1 × · · · × τn → τ0 then t↑ = (t x1 · · ·xn)↑ where x1, . . . , xn are
fresh variables of type τ1, . . . , τn, respectively.

A simply typed context over Σ and X is a simply typed S-expression over Σ and X that
contains special symbols �τ , called the holes, prepared for each type τ ∈ T . Let C be a
context having a hole of type τ . The S-expression obtained by replacing the hole in C with
an S-expression t of the same type is denoted by C[t]. A context of the form �τ is said
to be empty. We omit the type of a hole when it is not important. An S-expression s is a
subexpression of an S-expression t (denoted by s E t) if C[s] = t for some context C[].

A simply typed substitution over Σ is a mapping σ : V → S(Σ, V) such that type(x) =
type(σ(x)) for all x ∈ V and dom(σ) = {x | σ(x) 6= x} is finite. The set dom(σ) is called the
domain of σ. The range of σ is given by ran(σ) = {σ(x) | x ∈ dom(σ)}. For a substitution σ,
we write σ : U →W if dom(σ) ⊆ U and ran(σ) ⊆W . As usual, we identify a substitution
with its homomorphic extension.

An instance of an S-expression t is written as tσ. When we write tσ for a substitution
σ : U →W , we assume that V(t)∩U ⊆ dom(σ). A substitution σ is ground if ran(σ) ⊆ S(Σ).
For a set Y ⊆ X and a substitution σ over Σ and X, σ�Y denotes a substitution given by
σ�Y (x) = σ(x) for x ∈ Y , σ�Y (x) = x otherwise.

Let Σ be a set of constants over T . A simply typed rewrite rule l→ r over Σ is a pair of
simply typed S-expressions over Σ and X =

⋃
τ∈T V

τ which satisfies the following conditions:
(1) type(l) = type(r), (2) head(l) ∈ Σ and (3) V(r) ⊆ V(l). A set R of rewrite rules over Σ
is called a simply typed S-expression rewriting system (STSRS for short) over Σ. Let Y be a
set of variables over T . For any s, t ∈ S(Σ, Y), we have s→R t if s = C[lσ] and t = C[rσ] for
some rewrite rule l→ r ∈ R, context C[] over Σ and Y , and substitution σ : X → S(Σ, Y).

1 We do not assume in this paper that Σd coincides with the set of head symbols of left-hand sides of the
rewrite rules, i.e. {head(l) | l → r ∈ R} = Σd.

Takahito Aoto, Toshiyuki Yamada and Yuki Chiba 111

The relation →R (over S(Σ, Y)) is called the rewrite relation induced by an STSRS R. An
STSRS R is left-linear if l is linear for any l → r ∈ R. The symmetric closure and the
reflexive transitive closure of a relation → is denoted by ↔ and →∗, respectively.

A simply typed equation over Σ and X is a pair 〈l, r〉 of simply typed S-expressions over
Σ and X such that type(l) = type(r). We write l ≈ r to denote that 〈l, r〉 is a simply typed
equation. The set of simply typed equations over Σ and X is denoted by Eqn(Σ, X). For any
s ≈ t ∈ Eqn(Σ, X) a full expansion s↑ ≈ t↑ of s ≈ t is defined similarly to the full expansion
of an S-expression by choosing the same variables in corresponding arguments in left-hand
sides (lhss) and right-hand sides (rhss) of the equation. Any E ⊆ Eqn(Σ, X) where Σ is a
set of constants over T and X is the set of variables over T is called a 〈T,Σ〉-theory. We
sometime refer to an STSRS R over Σ as a 〈T,Σ〉-theory given by {l ≈ r | l → r ∈ R}. A
〈T,Σ〉-theory is said to be elementary if Σ is elementary.

3 Extensional Semantics

In this section, we present a semantics for simply typed equational theories that captures
extensionality and recall some basic results that will be used in the next section. Most of the
material is incorporated from [17] into our framework.

I Definition 3.1 (typed algebras). Let Σ be a set of simply typed constants over a simple
type structure T . A T -typed Σ-algebra (〈T,Σ〉-algebra for short) is a triple

A = 〈(Aτ)τ∈T , (apτ)τ∈T f , (cA)c∈Σ〉

where (Aτ)τ∈T are mutually disjoint non-empty sets, apτ ∈ [Aτ ×Aτ1 × · · ·×Aτn → Aτ0] for
each τ = τ1×· · ·× τn → τ0 ∈ T f , and cA ∈ Atype(c) for each c ∈ Σ. Here, for sets A0, . . . , An,
[A1 × · · · ×An → A0] is the set of functions from A1 × · · · ×An to A0. The set

⋃
τ∈T A

τ is
called the carrier set of the algebra A and denoted by |A|.

We now incorporate standard notions on the validity and equational consequences for
our semantics. Let A = 〈(Aτ)τ∈T , (apτ)τ∈T f , (cA)c∈Σ〉 be a 〈T,Σ〉-algebra and X the set of
variables over T . A family of mappings ρ = (ρτ)τ∈T where ρτ ∈ [Xτ → Aτ] is called an
environment for A. We abbreviate ρτ (x) as ρ(x). For each S-expression s ∈ S(Σ, X) its
interpretation [[s]]ρ in A over the environment ρ is defined inductively like this: [[c]]ρ = cA

for each c ∈ Σ, [[x]]ρ = ρ(x) for each x ∈ X, [[(s0 s1 · · · sn)]]ρ = apτ ([[s0]]ρ, [[s1]]ρ, . . . , [[sn]]ρ)
where τ = type(s0). An equation l ≈ r ∈ Eqn(Σ, X) is valid on A (denoted by A |= l ≈ r)
if [[l]]ρ = [[r]]ρ for all environments ρ for A. A 〈T,Σ〉-theory E is said to be valid on A or
A is a model of E (denoted by A |= E) if all equations in E are valid on A. An equation
l ≈ r ∈ Eqn(Σ, X) is a theorem of E or equational consequence of E (denoted by E |= l ≈ r) if
l ≈ r is valid on every model of E. An equivalence relation ∼ on |A| is said to be a congruence
on A if (1) a ∼ b implies a, b ∈ Aτ for some τ ∈ T and (2) a0 ∼ b0, a1 ∼ b1, . . . , an ∼ bn
implies apτ (a0, a1, . . . , an) ∼ apτ (b0, b1, . . . , bn) for any a0, b0 ∈ Aτ , ai, bi ∈ Aτi (1 ≤ i ≤ n)
where τ = τ1 × · · · × τn → τ0. We denote the ∼-equivalence class containing a ∈ |A| by [a]
i.e. [a] = {b ∈ |A| | a ∼ b}. The quotient algebra A/∼ has the carrier set

⋃
τ (A/∼)τ where

(A/∼)τ = {[a] | a ∈ Aτ}, operations apτA/∼([a0], [a1], . . . , [an]) = [apτA(a0, a1, . . . , an)] and
cA/∼ = [cA] for each c ∈ Σ. It is readily checked that for a given 〈T,Σ〉-algebra A and a
congruence ∼ on A, the quotient algebra A/∼ is again a 〈T,Σ〉-algebra.

The following lemma will be used later.

RTA’11

112 Natural Inductive Theorems for Higher-Order Rewriting

l ≈ r ∈ E
l ≈ r ax.

s ≈ s refl.
t ≈ s
s ≈ t

sym.

s ≈ t t ≈ u
s ≈ u trans.

s0 ≈ t0 · · · sn ≈ tn
(s0 · · · sn) ≈ (t0 · · · tn)

cong.

s ≈ t
sθ ≈ tθ subst.

(s x1 · · ·xn) ≈ (t x1 · · ·xn)
s ≈ t

ext.
x1, . . . , xn /∈ V(s) ∪V(t)

Figure 2 Inference rules for E `ext

I Lemma 3.2. Let E be a 〈T,Σ〉-theory, A a 〈T,Σ〉-algebra and X the set of variables over
T . Then [[sθ]]ρ = [[s]]ρ/θ holds for any S-expression s ∈ S(Σ, X), environment ρ for A and
substitution θ : X → S(Σ, X). The environment ρ/θ is defined as: (ρ/θ)(x) = [[θ(x)]]ρ.

We next introduce a characterization of 〈T,Σ〉-algebras that incorporates extensionality
to the semantics.

I Definition 3.3 (extensional algebras and theorems). Let A = 〈(Aτ)τ∈T , (apτ)τ∈T f , (cA)c∈Σ〉
be a 〈T,Σ〉-algebra. Then A is said to be extensional if for all τ = τ1 × · · · × τn → τ0 ∈ T f

and a0, b0 ∈ Aτ , a0 = b0 holds whenever apτ (a0, a1, . . . , an) = apτ (b0, a1, . . . , an) for all
a1 ∈ Aτ1 , . . . , an ∈ Aτn . An equation l ≈ r ∈ Eqn(Σ, X) where X is the set of variables over
T is said to be an extensional theorem (written as E |=ext l ≈ r) if A |= E implies A |= l ≈ r
for every extensional 〈T,Σ〉-algebra A.

Let A be an extensional 〈T,Σ〉-algebra where A = 〈(Aτ)τ∈T , (apτ)τ∈T f , (cA)c∈Σ〉. A
congruence ∼ on A is said to be extensional if apτ (a0, a1, . . . , an) ∼ apτ (b0, a1, . . . , an) for
all a1 ∈ Aτ1 , . . . , an ∈ Aτn implies a0 ∼ b0, for all a0, b0 ∈ Aτ where τ = τ1 × · · · × τn → τ0.
It is straightforward to show that the quotient algebra A/∼ is an extensional 〈T,Σ〉-algebra
if ∼ is an extensional congruence on A.

The syntactic counterpart of extensional theorems is given as follows.

I Definition 3.4 (extensional equational deduction). Let E be a 〈T,Σ〉-theory and X the
set of variables over T . The inference rules of extensional equational deduction are given in
Figure 2. We write E `ext s ≈ t if s ≈ t ∈ Eqn(Σ, X) is derivable by extensional equational
deduction.

It is easy to see that E `ext s ≈ t if and only if E `ext s↑ ≈ t↑.
Our next aim is to develop the completeness theorem for extensional equational deduction

(w.r.t. extensional theorems). For this, we need a couple of preparations.
Let E be a 〈T,Σ〉-theory and X the set of variables over T . The extensional equivalence

relation ext↔∗E of E on S(Σ, X) is the smallest equivalence relation satisfying (1) l ≈ r ∈ E
implies lθ ext↔∗E rθ for all substitutions θ, (2) (s x1 · · ·xn) ext↔∗E (t x1 · · ·xn) implies s ext↔∗E t

where x1, . . . , xn /∈ V(s) ∪ V(t) and (3) si
ext↔∗E ti for all 0 ≤ i ≤ n implies (s0 · · · sn) ext↔∗E

(t0 · · · tn). It is easy to see that E `ext s ≈ t if and only if s ext↔∗E t. From here on, we assume2
that S(Σ)τ 6= ∅ for any τ ∈ T .

2 This assumption is required to guarantee the carrier sets of the term algebras satisfy the non-emptiness
condition.

Takahito Aoto, Toshiyuki Yamada and Yuki Chiba 113

Let E be a 〈T,Σ〉-theory, X the set of variables over T , and Y a set of variables such
that Y ⊆ X. A 〈T,Σ〉-algebra given by

TΣ(Y) = 〈(S(Σ, Y)τ)τ∈T , (apτ)τ∈T f , (cTΣ(Y))c∈Σ〉

where apτ and cTΣ(Y) are defined by apτ (s0, s1, . . . , sn) = (s0 s1 · · · sn) and cTΣ(Y) = c is
called a 〈T,Σ〉-term algebra (with the set Y of generators). Note that by our assumption
that S(Σ)τ 6= ∅ for any τ ∈ T , S(Σ, Y)τ 6= ∅ for any set Y ⊆ X and hence any 〈T,Σ〉-
term algebra is a 〈T,Σ〉-algebra. It is not difficult to show that ext↔∗E is an extensional
congruence on the 〈T,Σ〉-term algebra TΣ(X). If the set of generators is an arbitrary Y ⊆ X,
however, then ext↔∗E may not be an extensional congruence on TΣ(Y) and cannot be used
to define the initial extensional 〈T,Σ〉-algebra. To overcome this, Meinke [17] introduced
an ω-evaluation rule. Here we use the following equivalence relation ext↔∗E,ω. Let E be
a 〈T,Σ〉-theory and Y a set of variables over T . The ω-extensional equivalence relation
ext↔∗E,ω of E on S(Σ, Y) is obtained by replacing condition (2) in the definition of ext↔∗E by
(2′) (s u1 · · ·un) ext↔∗E,ω (t u1 · · ·un) for any u1 ∈ S(Σ, Y)τ1 , . . . , un ∈ S(Σ, Y)τn implies
s

ext↔∗E,ω t, where type(s) = type(t) = τ1 × · · · × τn → τ0. Then ext↔∗E,ω is an extensional
congruence on any 〈T,Σ〉-term algebra TΣ(Y). Hence we get an extensional 〈T,Σ〉-algebra
TE(Y) = TΣ(Y)/ext↔∗E,ω. It is easy to see that for any s↑ ≈ t↑ ∈ Eqn(Σ, Y), TE(Y) |= s ≈ t if
and only if TE(Y) |= s↑ ≈ t↑.

Using standard arguments [5], the soundness and completeness of extensional equational
deduction can be shown [17].

I Theorem 3.5 (soundness and completeness [17]). Let E be a 〈T,Σ〉-theory and X the set
of variables over T . For any l ≈ r ∈ Eqn(Σ, X), E `ext l ≈ r if and only if E |=ext l ≈ r.

Our extensional semantics naturally leads to the notion of extensional inductive theorems.

I Definition 3.6 (extensional inductive theorem [17]). Let E be a 〈T,Σ〉-theory and X the
set of variables over T . An equation s ≈ t ∈ Eqn(Σ, X) is said to be an extensional inductive
theorem of E (denoted by E |=eind s ≈ t) if TE(∅) |= s ≈ t.

The following characterization of extensional inductive theorems will be used later.

I Lemma 3.7. Let E be a 〈T,Σ〉-theory and X the set of variables over T . For any
s ≈ t ∈ Eqn(Σ, X), E |=eind s ≈ t if sθ ext↔∗E tθ (on S(Σ, X)) for any ground substitution
θ : X → S(Σ).

4 Natural Semantics and Natural Inductive Theorems

Extensional semantics developed in the previous section and the notion of extensional
inductive theorems introduced there seems to form a firm basis for simply typed equational
theories. However, the notion of extensional inductive theorems lacks a property of inductive
theorems in first-order term rewriting: extensibility, meaning that inductive theorems are
preserved when a new function by a macro is added.

I Example 4.1. Let T = {Nat, Nat → Nat, Nat × Nat → Nat, (Nat → Nat) → Nat},
Σ = {+Nat×Nat→Nat, 0Nat, sNat→Nat, zero(Nat→Nat)→Nat} and

E =

+ 0 y ≈ y

+ (s x) y ≈ s (+ x y)
zero s ≈ 0

 .

RTA’11

114 Natural Inductive Theorems for Higher-Order Rewriting

Then E |=eind zero F ≈ 0. (For, the only possible instantiation of F is s.) By introducing a
new constant idNat→Nat, define E′ = {id x ≈ x}∪E. Then we do not have E′ |=eind zero F ≈ 0
any more, since zero id ext↔∗E′,ω 0 does not hold.

From this example, it is observed that we may not conclude zero F ≈ 0 is an “inductive
theorem” since this fact depends on the limited possibility of instantiating the variable F of
function type. Hence this example suggests that the notion of extensional inductive theorems
may be too general if validity needs to be preserved under addition of new function definitions.
This motivates us to restrict extensional 〈T,Σ〉-algebras to natural 〈T,Σ〉-algebras.

I Definition 4.2 (natural algebras). A 〈T,Σ〉-algebra A = 〈(Aτ)τ∈T , (apτ)τ∈T f , (cA)c∈Σ〉 is
said to be natural if for any τ ∈ T f with τ = τ1 × · · · × τn → τ0, (1) Aτ = [Aτ1 × · · · ×
Aτn → Aτ0] and (2) apτ (f, a1, . . . , an) = f(a1, . . . , an). Henceforth, a natural 〈T,Σ〉-algebra
A = 〈(Aτ)τ∈T , (apτ)τ∈T f , (cA)c∈Σ〉 is specified as A = 〈(Aτ)τ∈B , (cA)c∈Σ〉. A natural 〈T,Σ〉-
algebra 〈(Aτ)τ∈B , (cA)c∈Σ〉 is a natural 〈T,Σ〉-term algebra (with the set X of generators) if
there exists Σ′ ⊆ Σ such that Aτ = S(Σ′, X)τ for each τ ∈ B.

I Example 4.3. Consider T,Σ, and E from Example 4.1 and let Σ′ = {0, s}. Let X be a
set of variables over T and put ANat = S(Σ′, X)Nat. Take Aτ = [Aτ1 × · · · × Aτn → Aτ0]
for τ = τ1 × · · · × τn → τ0 ∈ T f and any cA for each cτ ∈ {0, s,+, zero} such that cA ∈ Aτ .
Then 〈(Aτ)τ∈B , (cA)c∈Σ〉 is a natural 〈T,Σ〉-term algebra (with the set X of generators).

I Lemma 4.4. Any natural 〈T,Σ〉-algebra is extensional.

Proof. For any f, g ∈ [Aτ1 × · · · ×Aτn → Aτ0], f = g iff f(a1, . . . , an) = g(a1, . . . , an) holds
for any a1 ∈ Aτ1 , . . . , an ∈ Aτn . J

Extensional inductive theorems were defined (in Definition 3.6) based on the 〈T,Σ〉-term
algebra with the empty set of generators. Similarly, we will define a notion of natural
inductive theorems from natural 〈T,Σ〉-term algebras with the empty set of generators. It is,
however, not possible to directly relate the notion of natural inductive theorems to those of
extensional theorems and extensional inductive theorems; we further require consistency of
the natural 〈T,Σ〉-term algebras to connect these notions.

I Definition 4.5 (natural inductive theorems). Let E be a 〈T,Σ〉-theory and X be the set of
variables over T . Furthermore, assume that the set Σc of constructors is free, i.e. for any
s, t ∈ S(Σc, X) s ext↔∗E t implies s = t.

1. A natural 〈T,Σ〉-term algebra A = 〈(Aτ)τ∈B , (cA)c∈Σ〉 is said to be consistent with E if
(1) s ext↔∗E [[s]] holds for any s ∈ S(Σ)b and (2) A |= E. Here, note that ρ of [[s]]ρ can be
safely omitted because V(s) = ∅.

2. A natural 〈T,Σ〉-term algebra A = 〈(A)τ∈B , (cA)c∈Σ〉 is said to be a natural 〈T,Σ〉-term
algebra for E if Aτ = S(Σc)τ for each τ ∈ B and A is consistent with E, where Σc is the
set of constructors designated in E. E is said to be a natural 〈T,Σ〉-theory if there exists
a natural 〈T,Σ〉-term algebra A for E.

3. Suppose that E is a natural 〈T,Σ〉-theory. Then an equation l ≈ r ∈ Eqn(Σ, X) is said
to be a natural inductive theorem of E (denoted by E |=nind l ≈ r) if A |= l ≈ r for any
natural 〈T,Σ〉-term algebra A for E.

I Example 4.6. Consider T,Σ, and E from Example 4.1 and let Σc = {0, s}. Put ANat =
S(Σc)Nat and Aτ = [Aτ1 × · · · × Aτn → Aτ0] for τ = τ1 × · · · × τn → τ0 ∈ T f . Let 0A = 0,
sA(x) = (s x), +A(x, y) be the unique normal form of (+ x y) w.r.t. {l → r | l ≈ r ∈ E},

Takahito Aoto, Toshiyuki Yamada and Yuki Chiba 115

and zeroA(f) = 0. Then A = 〈(Aτ)τ∈B , (cA)c∈Σ〉 is a natural 〈T,Σ〉-term algebra for
E. For example, (+ (s 0) (s 0)) ext↔∗E (s (s 0)) = [[(+ (s 0) (s 0))]] holds for (1) and
[[(+ 0 y)]]ρ = ρ(y) = [[y]]ρ holds for any ρ for (2). One can also set zeroA(succ) = 0 for
succ ∈ [S(Σc)Nat → S(Σc)Nat] such that succ(x) = (s x); zeroA(f) = (s 0) otherwise, to
obtain a natural 〈T,Σ〉-term algebra for E. This implies that an equation (zero F) ≈ 0 is not
a natural inductive theorem of E. In contrast, interpretations sA and +A are common to all
natural 〈T,Σ〉-term algebras for E and hence it follows that an equation (+ x y) ≈ (+ y x)
is a natural inductive theorem of E.

Our first aim is to show the relation of natural inductive theorems to extensional theorems
and extensional inductive theorems.

I Lemma 4.7. Let E be a natural 〈T,Σ〉-theory. The set of natural inductive theorems of
E is closed under the inference rules of Figure 2.

Proof. This follows from the fact that for any extensional 〈T,Σ〉-algebra A for E, the set
Th(A) = {s ≈ t | A |= s ≈ t} is closed under the inference rules of Figure 2. J

It easily follows from this lemma that for any equation l ≈ r ∈ Eqn(Σ, X), E |=nind l ≈ r
iff E |=nind l↑ ≈ r↑.

I Lemma 4.8. Let A = 〈(Aτ)τ∈B , (cA)c∈Σ〉 be a natural 〈T,Σ〉-term algebra for E. For any
s, t ∈ S(Σ)b, s ext↔∗E t iff [[s]] = [[t]].

Proof. Let s, t ∈ S(Σ)b. By condition (1) of consistency, [[s]] ext↔∗E s and [[t]] ext↔∗E t. Hence,
s

ext↔∗E t iff [[s]] ext↔∗E [[t]]. Furthermore, since [[s]], [[t]] ∈ S(Σc), [[s]] ext↔∗E [[t]] iff [[s]] = [[t]] by our
assumption that Σc is free (Definition 4.5). J

We arrive at one of the main theorems of this section.

I Theorem 4.9. Let E be a natural 〈T,Σ〉-theory and X be the set of variables over T . For
any l ≈ r ∈ Eqn(Σ, X), (1) E |=ext l ≈ r implies E |=nind l ≈ r; (2) E |=nind l ≈ r implies
E |=eind l ≈ r.

Proof. (1) By Lemma 4.7. (2) Since E |=nind l ≈ r iff E |=nind l↑ ≈ r↑ holds and
E |=eind l ≈ r iff E |=eind l↑ ≈ r↑ holds, w.l.o.g. we assume that l, r have a base type. If
l ≈ r is a natural inductive theorem of E then so is lθ ≈ rθ for any ground substitution
θ by Lemma 4.7. Thus [[lθ]] = [[rθ]] for any natural 〈T,Σ〉-term algebra A for E. Then by
Lemma 4.8, lθ ext↔∗E rθ. Thus, by Lemma 3.7, E |=eind l ≈ r. J

Our next aim is to show extensibility of natural inductive theorems. We introduce two
new conditions for this.

I Definition 4.10 (constructor-based theories). A 〈T,Σ〉-theory E is said to be constructor-
based if for any f ∈ Σd and any substitution σ : Vb(f↑) → S(Σc), there exists t ∈
S(Σc,Vf(f↑)) such that (f↑)σ ext↔∗E t.

I Definition 4.11 (conservative extensions). Let E be a 〈T,Σ〉-theory and E′ a Σ′-theory
such that E ⊆ E′ and Σ ⊆ Σ′. Then E′ is said to be a conservative extension of E if (1)
Σc = Σ′c and (2) for all S-expressions s, t ∈ S(Σc), s ext↔∗E t iff s ext↔∗E′ t.

We introduce a saturated set for E to prove a property of elementary constructor-based
theories (Lemma 4.16).

RTA’11

116 Natural Inductive Theorems for Higher-Order Rewriting

I Definition 4.12 (saturated sets for E). Let E be a 〈T,Σ〉-theory. We define a set W τ for
each τ ∈ T like this: W τ = {s ∈ S(Σ)τ | ∃t ∈ S(Σc) s ext↔∗E t} for τ ∈ B; W τ = {s0 ∈ S(Σ)τ |
∀s1 ∈W τ1 · · · ∀sn ∈W τn (s0 s1 · · · sn) ∈W τ0} if τ = τ1× · · · × τn → τ0 ∈ T f . The saturated
set W for E is given by W =

⋃
τ∈T W

τ .

I Lemma 4.13. Let W be the saturated set for a 〈T,Σ〉-theory E. (1) For any S-expression
s ∈ S(Σ), s ∈ W iff (s↑)σ ∈ W for any substitution σ : V(s↑) → W . (2) If s ∈ W and
sg

ext↔∗E t then t ∈W .

Proof. (1) By definition. (2) By (1). J

I Lemma 4.14. Let E be an elementary 〈T,Σ〉-theory, X the set of variables over T and
W the saturated set for E. Then sθ ∈ W holds for any S-expression s ∈ S(Σc, X) and
substitution θ : X →W .

Proof. By induction on s. J

I Lemma 4.15. Let E be an elementary constructor-based 〈T,Σ〉-theory andW the saturated
set for E. Then S(Σ) = W .

Proof. Use Lemmas 4.13 and 4.14 to show that (s↑)σ ∈W for every substitution σ : V(s↑)→
W by induction on s ∈ S(Σ). J

The next lemma follows immediately from Lemma 4.15.

I Lemma 4.16. If E is an elementary constructor-based 〈T,Σ〉-theory then for any S-
expression s ∈ S(Σ)b there exists an S-expression t ∈ S(Σc)b such that s ext↔∗E t.

We arrive at the other main theorem of this section.

I Theorem 4.17 (extensibility of natural inductive theorems). Let E be an elementary
constructor-based natural 〈T,Σ〉-theory, X be the set of variables over T , f a new defined sym-
bol of second-order type τ such that f /∈ Σ and r ∈ S(Σ, {x1, . . . , xn}) where x1, . . . , xn ∈ Xb.
Let T ′ = T ∪ {τ}, Σ′ = Σ ∪ {f} and suppose E′ = E ∪ {f x1 · · ·xn ≈ r} is a conservative
extension of E. Then the following hold. (1) E′ is an elementary constructor-based natural
〈T ′,Σ′〉-theory. (2) For any s ≈ t ∈ Eqn(Σ, X), E |=nind s ≈ t iff E′ |=nind s ≈ t.

Proof. We first show (⇒) of (2). Suppose that there exists a natural 〈T ′,Σ′〉-term algebra
A′ = 〈(A′τ)τ∈B , (cA

′)c∈Σ′〉 for E′ such that s ≈ t does not hold. By just omitting fA′ (and
A′τ for τ ∈ T ′\T), we obtain a natural 〈T,Σ〉-term algebra A for E such that s ≈ t does not
hold. Next we show (1) and (⇐) of (2). Since E is elementary and Σc = Σ′c, E′ is elementary.
Let θ be a substitution such that θ : Xb → S(Σc). Then, (f↑)θ ext↔∗E′ (r↑)θ. Furthermore, by
Lemma 4.16, there exists t ∈ S(Σc) such that (r↑)θ ext↔∗E t. Thus (f↑)θ ext↔∗E′ t. Hence E′ is
constructor-based. It remains to show that E′ is natural. Since E is a natural 〈T,Σ〉-theory,
there exists a natural 〈T,Σ〉-term algebra A for E. Let A = 〈(Aτ)τ∈B , (cA)c∈Σ〉. Then, by
the definition, (1) for any s ∈ S(Σ)b, [[s]] ext↔∗E s holds, and (2) for any l ≈ r ∈ E and for
any environment ρ for A, [[l]]ρ = [[r]]ρ holds. We define a natural 〈T ′,Σ′〉-term algebra A′
by A′ = 〈(A′τ)τ∈B , (cA

′)c∈Σ′〉 where A′τ = Aτ for any τ ∈ B, cA′ = cA for all c ∈ Σ and
fA

′(a1, . . . , an) = [[r]]ρ where ρ = {xi 7→ ai | 1 ≤ i ≤ n}. We now show that A′ is a natural
〈T ′,Σ′〉-term algebra for E′.

Takahito Aoto, Toshiyuki Yamada and Yuki Chiba 117

[[s]] ext↔∗E′ s holds for any s ∈ S(Σ′)b: Let s ∈ S(Σ′)b. Then, since E′ is elementary
constructor-based, by Lemma 4.16 there exists an S-expression u ∈ S(Σc) such that
s

ext↔∗E′ u. Then [[s]] = [[u]] by Lemma 4.8. Furthermore, u = [[u]] by u ∈ S(Σc). Therefore,
[[s]] = [[u]] = ug

ext↔∗E′ s.
For any l ≈ r ∈ E′ and for any environment ρ for A′, [[l]]ρ = [[r]]ρ holds: this follows from
the assumption and the definition of fA′ .

Thus the proof of (1) has been completed. To show (⇐) of (2), suppose that s ≈ t does not
hold in A. Then, by construction, s ≈ t does not hold in A′ either. J

I Example 4.18. If we drop the condition that f has a second-order type, then E′ is
not constructor-based in general. Let T = {Nat,Nat → Nat,Nat × Nat → Nat}, Σd =
{+Nat×Nat→Nat}, Σc = {sNat→Nat, 0Nat} and

E =
{

+ 0 y ≈ y

+ (s x) y ≈ s (+ x y)

}
.

Then E is an elementary constructor-based 〈T,Σ〉-theory. Take E′ = E∪{g F x ≈ + (F x) x}.
Then there exists no t ∈ S(Σc, {F}) such that g F 0 ext↔∗E′ t.

5 Checking Natural Inductive Theorems

In this section, we present partial answers to the following questions:
1. When can one prove or check an equational theory is constructor-based?
2. When can one prove or check an equation is a natural inductive theorem?

We first answer the second question by giving a sufficient condition for natural inductive
theorems.

I Lemma 5.1. Let E be a natural 〈T,Σ〉-theory, X the set of variables over T and A
a natural 〈T,Σ〉-term algebra for E. Then for any environment ρ for A, there exists a
substitution σg : Xb → S(Σc) such that ρ = ρ�Xf/σ.

Proof. Take a substitution σ = {x 7→ ρ(x) | x ∈ Xb}. We now show ρ = (ρ�Xf)/σ. For
x ∈ Xb, we have ((ρ�Xf)/σ)(x) = [[σ(x)]]ρ�

Xf = [[ρ(x)]]ρ�
Xf = ρ(x). For F ∈ X f , we have

((ρ�Xf)/σ)(F) = [[σ(F)]]ρ�
Xf = [[F]]ρ�

Xf = ρ(F). J

I Theorem 5.2 (sufficient condition for natural inductive theorem). Let E be a natural
〈T,Σ〉-theory, X the set of variables over T and s ≈ t ∈ Eqn(Σ, X). If sσ ext↔∗E tσ for any
substitution σ : Xb → S(Σc), then s ≈ t is a natural inductive theorem of E.

Proof. Let A be a natural 〈T,Σ〉-term algebra for E and ρ an environment for A. By
Lemma 5.1, there exists σ : Xb → S(Σc) such that ρ = ρ�Xf/σ. By Lemma 3.2, Then
[[uσ]]ρ�

Xf = [[u]]ρ�
Xf /σ = [[u]]ρ for any u ∈ S(Σ, X). Thus [[s]]ρ = [[t]]ρ iff [[sσ]]ρ�

Xf = [[tσ]]ρ�
Xf .

By our assumption, sσ ext↔∗E tσ. By Proposition 3.5, E |=ext sσ ≈ tσ holds. By our
assumption, A |= E. Thus, since A is an extensional 〈T,Σ〉-algebra by Lemma 4.4, A |=
sσ ≈ tσ holds. Hence for any environment ρ′ for A, [[sσ]]ρ′ = [[tσ]]ρ′ and thus, in particular,
[[sσ]]ρ�

Xf = [[tσ]]ρ�
Xf . This concludes [[s]]ρ = [[t]]ρ. J

We next answer the first question by giving a sufficient condition of equational theories
(specified by STSRSs) to be constructor-based.

RTA’11

118 Natural Inductive Theorems for Higher-Order Rewriting

I Definition 5.3 (simple S-expressions). An S-expression s is said to be simple if for all
(u t1 · · · tn) E s, (1) if head(u) ∈ V then type(ti) ∈ B for i = 1, . . . , n and (2) if head(u) ∈ Σd
and type(ti) ∈ B then ti ∈ S(Σ) for i = 1, . . . , n.

I Lemma 5.4. Let f ∈ Σd. For any substitution θ : V b → S(Σ), (f↑)θ is simple.

Proof. Let (f↑)θ = ((· · · (f t11 · · · t1n1) · · ·) tm1 · · · tmnm). By our assumption, if type(tij) ∈
B then tij ∈ S(Σ) and if type(tij) /∈ B then tij ∈ V f . Thus for any (u s1 · · · sn) E tij ∈ S(Σ),
the condition (1) holds since head(u) /∈ V and the condition (2) holds since s1, . . . , sn ∈ S(Σ).
Furthermore, if tij ∈ V f then (u s1 · · · sn) E tij does not happen. Thus it remains to show
the conditions (1) and (2) hold for (u tk1 · · · tknk

) where head(u) = f and 1 ≤ k ≤ m.
The condition (1) holds since f /∈ V . The condition (2) holds since type(tki) ∈ B implies
tki ∈ S(Σ) for i = 1, . . . , nk. J

An S-expression s such that s →R t for no t is said to be normal; the set of normal
S-expressions of R is denoted by NF(R). An STSRS R is said to be higher-order quasi-
reducible (denoted by HQR(R)) if s /∈ NF(R) for any S-expression s ∈ S(Σ, V f)b such that
(i) head(s) ∈ Σd and (ii) for any u ∈ Args(s), if type(u) ∈ B then u ∈ S(Σc) and otherwise
u ∈ V f [4].

I Lemma 5.5. Let R be a left-linear elementary STSRS such that HQR(R) hold. Let
s ∈ S(Σ, V f)b ∩NF(R). If s is simple then s ∈ S(Σc, V

f).

Proof. Take a minimal (w.r.t. subexpression relation �) s ∈ S(Σ, V f)b ∩ NF(R) such
that s is simple and s /∈ S(Σc, V

f). Then there exists a subexpression u of s such that
head(u) = f ∈ Σd. Take a maximal (w.r.t. subexpression relation �) such subexpression u.
We first claim that type(u) ∈ B. Suppose type(u) /∈ B. Then since type(s) ∈ B, there exists
a subexpression (u0 · · ·u · · ·) of s. If head(u0) ∈ V then, since s is simple, type(u) ∈ B and
hence this contradicts our assumption. Otherwise by the maximality of u, head(u0) ∈ Σc.
Then, since R is elementary, it follows type(u) ∈ B. Hence this also contradicts our
assumption. Therefore type(u) ∈ B. Let u = ((· · · (f t11 · · · t1n1) · · ·) tm1 · · · tmnm

). Since s
is simple, if type(tij) ∈ B then tij ∈ S(Σ); furthermore, by tij � s, tij ∈ NF(R) and simple.
Thus by the minimality of s, type(tij) ∈ B implies tij ∈ S(Σc). Then, since R is left-linear
and higher-order quasi-reducible and type(u) ∈ B, u /∈ NF(R). This is a contradiction. J

I Definition 5.6 (GAV/quasi-simple/simplicity-preserving). 1. The set GAV(s) of ground-
augmenting variables of an S-expression s is defined like this: GAV(a) = ∅ for a ∈ Σ ∪ V ;
GAV((t0 t1 · · · tn)) = (

⋃
{GAV(ti) | 0 ≤ i ≤ n}) ∪ (

⋃
{V(ti) | type(ti) ∈ B, 1 ≤ i ≤

n,head(t0) ∈ Σd}).
2. An S-expression s is said to be quasi-simple w.r.t. a set X of variables if for any subex-

pression (u t1 · · · tn) of s, (1) if head(u) ∈ V then ti ∈ S(Σ, X)b, and (2) if head(u) ∈ Σd
and type(ti) ∈ B then ti ∈ S(Σ, X).

3. A rewrite rule l→ r of type τ is said to be simplicity-preserving if (1) head(r) ∈ V implies
τ is second-order, (2) head(r) /∈ Σ ∪ GAV(l) implies τ ∈ B and (3) r is quasi-simple
w.r.t. GAV(l). An STSRS R is simplicity-preserving if it consists of simplicity-preserving
rewrite rules.

Let l→ r be a rewrite rule. Suppose head(l) has the second-order type. Then GAV(l) =
V(l). Hence if moreover V(r) ⊆ V b then r is quasi-simple w.r.t. GAV(l). Therefore, if
moreover l→ r has a base type then l→ r is simplicity-preserving.

Takahito Aoto, Toshiyuki Yamada and Yuki Chiba 119

I Example 5.7. Let T = {Nat,Nat→ Nat,Nat×Nat→ Nat,List,Nat×List→ List,List×
List→ List, (Nat→ Nat)× List→ List}, Σc = {0Nat, sNat→Nat, []List

, :Nat×List→List}, Σd =
{+Nat×Nat→Nat, appList×List→List,map(Nat→Nat)×List→List} and

R =

(1) + 0 y → y

(2) + (s x) y → s (+ x y)
(3) app [] ys → ys

(4) app (: x xs) ys → : x (app xs ys)
(5) map F [] → []
(6) map F (: x xs) → : (F x) (map F xs)

.

By the remark above, rules (1)–(4) are simplicity-preserving. Let l = map F [] and r = [].
Then GAV(l) = ∅. r is quasi-simple because there is no subexpression of the form (u t1 · · · tn).
Hence, since l→ r has a base type, l→ r is simplicity-preserving. Let l = map F (: x xs) and
r = : (F x) (map F xs). The set GAV(l) = {x, xs}. Let X = {x, xs}. For (u t1) = (F x), we
have t1 = x ∈ S(Σ, X)b and for (u t1 t2) = (map F xs), we have t2 = xs ∈ S(Σ, X)b. Since
l→ r has a base type and r is quasi-simple w.r.t. GAV(l), l→ r is simplicity-preserving.

I Lemma 5.8. Let s be an S-expression and σ a substitution. If sσ is simple then θ(x) ∈ S(Σ)
for any x ∈ GAV(s).

Proof. By induction on s. J

I Lemma 5.9. Let R be a simplicity-preserving STSRS. If s is simple and s→R t then t is
simple.

Proof. Suppose s = C[lσ], t = C[rσ] and l→ r is simplicity-preserving. We first show r′σ

is simple for any r′ E r, by induction on r′. The case of r′ ∈ Σ ∪ V follows easily. Let
r′ = (r0 r1 · · · rn).
(1) Suppose head(r0σ) ∈ V . Then head(r0) ∈ V . Then type(ri) ∈ B for 1 ≤ i ≤ n by

quasi-simplicity of r. Thus type(riσ) ∈ B for 1 ≤ i ≤ n.
(2) Suppose head(r0σ) ∈ Σd. We distinguish two cases. Case head(r0) = head(r0σ). By the

quasi-simplicity of r w.r.t. GAV(l), type(ri) ∈ B implies ri ∈ S(Σ,GAV(l)) (1 ≤ i ≤ n).
Since lσ is simple, σ(x) ∈ S(Σ) for any x ∈ GAV(l) by Lemma 5.8. Hence type(riσ) ∈ B
implies riσ ∈ S(Σ). Case head(r0) ∈ V . Then, by the quasi-simplicity of r w.r.t. GAV(l),
ri ∈ S(Σ,GAV(l))b for 1 ≤ i ≤ n. Again, by Lemma 5.8, it follows that riσ ∈ S(Σ).

Hence we conclude that rσ is simple. Next, we show C ′[rσ] is simple by induction on C ′ E C
(B.S.) follows from the fact that rσ is simple. To show (I.S.), we distinguish two cases.

Case C ′ = (C ′′ w1 · · ·wn).
(1) Suppose head(C ′′[rσ]) ∈ V . Case of head(C ′′[lσ]) ∈ V is trivial. Suppose head(C ′′[lσ]) /∈

V . Then head(C ′′[rσ]) = head(rσ) and hence head(r) ∈ V . Thus, type(lσ) is second-
order and hence type(wi) ∈ B for all 1 ≤ i ≤ n.

(2) Suppose head(C ′′[rσ]) ∈ Σd. If head(C ′′[rσ]) = head(C ′′), then head(C ′′[lσ]) ∈ Σd
and hence type(wi) ∈ B implies wi ∈ S(Σ). If head(C ′′[rσ]) = head(rσ), then
head(C ′′[lσ]) ∈ Σd. Thus type(wi) ∈ B implies wi ∈ S(Σ).

Case C ′ = (w0 · · ·C ′′ · · ·). If head(w0) ∈ V then type(C ′′[lσ]) ∈ B and hence type(C ′′[rσ]) ∈
B. If head(w0) ∈ Σd and type(C ′′[rσ]) ∈ B then C ′′[lσ] ∈ S(Σ) and hence C ′′[rσ] ∈ S(Σ).

J

An STSRS R is weakly normalizing (denoted by WN(R)) if for any S-expression s there
exists an S-expression t ∈ NF(R) such that s→∗R t.

RTA’11

120 Natural Inductive Theorems for Higher-Order Rewriting

I Lemma 5.10. Let E be an elementary 〈T,Σ〉-theory and R be a left-linear simplicity-
preserving STSRS on the same signature satisfying →∗R ⊆

ext↔∗E , HQR(R) and WN(R). Then
E is constructor-based.

Proof. Let f ∈ Σd and σg be a substitution such that σg : V b → S(Σc). By WN(R),
there exists w ∈ NF(R) such that (f↑)σg →∗R w. Furthermore, since (f↑)σg ∈ S(Σ, V f),
w ∈ S(Σ, V f). By Lemma 5.4, (f↑)σg is simple. Since R is simplicity-preserving w is simple
by Lemma 5.9. Thus by Lemma 5.5 and our assumption that R is left-linear and elementary
and that HQR(R) holds, w ∈ S(Σc, V

f). By →∗R ⊆
ext↔∗E , it follows that for any f ∈ Σd and

substitution σg : V b → S(Σc), there exists w ∈ S(Σc, V
f) such that (f↑)σg

ext↔∗E w. Thus E is
constructor-based. J

I Theorem 5.11 (checking natural inductive theorems). Let R be a left-linear elementary
natural simplicity-preserving STSRS such that WN(R) and HQR(R) hold. If sθ ext↔∗R tθ for
any substitution θ : V b → S(Σc), then s ≈ t is a natural inductive theorem of R.

Proof. By Lemma 5.10, R is constructor-based. Then by Theorem 5.2 s ≈ t is a natural
inductive theorem of R. J

I Example 5.12. LetR be the STSRS given in Example 5.7. ThenR is left-linear, elementary,
simplicity-preserving and WN(R) and HQR(R) hold. To show that R is natural, we now
show that there exists a natural 〈T,Σ〉-term algebra A for R. Let 0A = 0, sA(x) = (s x),
[]A = [], :A(x, xs) = (: x xs), +A(x, y) be the unique normal form of (+ x y), appA(xs, ys)
be the unique normal form of (app xs ys) and mapA(f, xs) be defined inductively as:
mapA(f, []) = []; mapA(f, : x xs) = (: f(x) mapA(f, xs)). Then we have [[l]]ρ = [[r]]ρ for any
l→ r ∈ R. Furthermore, one easily shows s ext↔∗R [[s]] for any s ∈ S(Σ)Nat by induction on s.
Using this, it also follows that s ext↔∗R [[s]] for any s ∈ S(Σ)List by induction on s. Thus A is a
natural 〈T,Σ〉-term algebra for R. Let

l ≈ r = map F (app xs ys) ≈ app (map F xs) (map F ys).

Then for any substitution θ : V b → S(Σc), lθ
ext↔∗R rθ holds. Thus, by Theorem 5.11, l ≈ r

is a natural inductive theorem of R.

6 Conclusion

Extensibility of inductive theorems is indispensable to extend the framework of program
transformation by templates based on first-order term rewriting [7, 8, 9] to the higher-order
setting. We have studied a new notion of inductive theorems for higher-order rewriting,
natural inductive theorems, to incorporate properties such as extensionality and extensibility.
The class of this theorems is placed between extensional theorems and extensional inductive
theorems. We also have given sufficient conditions for natural inductive theorems which
enables us to prove simply typed equations to be natural inductive theorems.

Acknowledgments

Thanks are due to anonymous referees for detailed comments. This work was partially
supported by a grant from JSPS No. 20500002.

Takahito Aoto, Toshiyuki Yamada and Yuki Chiba 121

References
1 T. Aoto and T. Yamada. Termination of simply typed term rewriting systems by translation

and labelling. In Proc. of RTA 2003, volume 2706 of LNCS, pages 380–394. Springer-Verlag,
2003.

2 T. Aoto and T. Yamada. Dependency pairs for simply typed term rewriting. In Proc. of
RTA 2005, volume 3467 of LNCS, pages 120–134. Springer-Verlag, 2005.

3 T. Aoto and T. Yamada. Argument filterings and usable rules for simply typed dependency
pairs. In Proc. of FroCoS 2009, volume 5749 of LNAI, pages 117–132. Springer-Verlag, 2009.

4 T. Aoto, T. Yamada, and Y. Toyama. Inductive theorems for higher-order rewriting. In
Proc. of RTA 2004, volume 3091 of LNCS, pages 269–284. Springer-Verlag, 2004.

5 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

6 R. M. Burstall and J. Darlington. A transformation system for developing recursive pro-
grams. Journal of the ACM, 24(1):44–67, 1977.

7 Y. Chiba, T. Aoto, and Y. Toyama. Program transformation by templates based on term
rewriting. In Proc. of PPDP 2005, pages 59–69. ACM Press, 2005.

8 Y. Chiba, T. Aoto, and Y. Toyama. Program transformation by templates: A rewriting
framework. IPSJ Trans. on Programming, 47(SIG 16 (PRO 31)):52–65, 2006.

9 Y. Chiba, T. Aoto, and Y. Toyama. Program transformation templates for tupling based
on term rewriting. IEICE Trans. on Inf. & Sys., E93-D(5):963–973, 2010.

10 W. N. Chin. Towards an automated tupling strategy. In Proc. of PEPM’93, pages 119–132.
ACM Press, 1993.

11 A. Gill, J. Launchbury, and S. Peyton-Jones. A short cut to deforestation. In Proc. of
FPCA’93, pages 223–232. ACM Press, 1993.

12 G. Huet and J.-M. Hullot. Proof by induction in equational theories with constructors.
Journal of Computer and System Sciences, 25(2):239–266, 1982.

13 G. Huet and B. Lang. Proving and applying program transformations expressed with
second order patterns. Acta Informatica, 11:31–55, 1978.

14 J.-P. Jouannaud and E. Kounalis. Automatic proofs by induction in theories without
constructors. Information and Computation, 82:1–33, 1989.

15 D. Kapur, P. Narendran, and H. Zhang. Automating inductionless induction using test
sets. Journal of Symbolic Computation, 11(1–2):81–111, 1991.

16 K. Kusakari, M. Sakai, and T. Sakabe. Primitive inductive theorems bridge implicit induc-
tion methods and inductive theorems in higher-order rewriting. IEICE Trans. on Inf. &
Sys., E88–D(12):2715–2726, 2005.

17 K. Meinke. Universal algebra in higher types. Theoretical Computer Science, 100:385–417,
1992.

18 K. Meinke. Proof theory of higher-order equations: conservativity, normal forms and term
rewriting. Journal of Computer and System Sciences, 67:127–173, 2003.

19 Y. Toyama. How to prove equivalence of term rewriting systems without induction. The-
oretical Computer Science, 90(2):369–390, 1991.

20 P. Wadler. Deforestation: transforming programs to eliminate trees. Theoretical Computer
Science, 73:231–248, 1990.

21 T. Yamada. Confluence and termination of simply typed term rewriting systems. In Proc.
of RTA 2001, volume 2051 of LNCS, pages 338–352. Springer-Verlag, 2001.

RTA’11

	hoind
	Introduction
	Preliminaries
	Extensional Semantics
	Natural Semantics and Natural Inductive Theorems
	Checking Natural Inductive Theorems
	Conclusion

	blank-page

