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Abstract
In this paper we present a new path order for rewrite systems, the exponential path order EPO?.
Suppose a term rewrite system is compatible with EPO?, then the runtime complexity of this
rewrite system is bounded from above by an exponential function. Furthermore, the class of
function computed by a rewrite system compatible with EPO? equals the class of functions
computable in exponential time on a Turing machine.
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1 Introduction

In this paper we are concerned with the complexity analysis of term rewrite systems (TRSs)
and the ramifications of such an analysis in implicit computational complexity (ICC for
short).

Several notions to assess the complexity of a terminating term rewrite system (TRS)
have been proposed in the literature, compare [12, 19, 13, 18]. The conceptually simplest
one was suggested by Hofbauer and Lautemann in [19]: the complexity of a given TRS is
measured as the maximal length of derivation sequences. More precisely, the derivational
complexity function with respect to a terminating TRS R relates the maximal derivation
height to the size of the initial term. A more fine-grained approach is introduced in [12]
(compare also [18]), where the derivational complexity function is refined so that in principle
only argument normalised (aka basic) terms are considered. This notion, in the following
referred to as the runtime complexity of TRSs, aims at capturing the complexity of the
functions computed by the analysed TRS (see [13]).
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In recent years the field of complexity analysis of rewrite systems matured and some
advances towards an automated complexity analysis of TRSs evolved (see [23] for an over-
view). The current focus of modern complexity analysis of rewrite systems is on techniques
that yield polynomial derivational or runtime complexity. In this paper we study a comple-
mentary view. We establish following results:
- We present a new path order for rewrite systems, the exponential path order EPO?.

Suppose a TRS R is compatible with EPO?. Then the runtime complexity of R is at
most exponential.

- EPO? is sound, that is, any function computed by a TRS compatible with EPO? is
computable on a Turing machine in exponential time.

- EPO? is complete, that is, any function computable in exponential time can be computed
by a TRS that is compatible with EPO?.

Note that the first and second result relate two different notions of the complexity of
a TRS R: the runtime complexity with respect to R and the complexity of the function
computed with R. Furthermore, we have implemented the order EPO? so that our research
yields a fully automatic complexity tool for exponential time functions. Our research is
motivated by earlier successful order-theoretic characterisations of complexity classes. We
mention the light multiset path order introduced by Marion [22]. Roughly speaking the
light multiset path order is a tamed version of the multiset path order, characterising the
functions computable in polytime (compare also [4]). In a similar spirt the here presented
path order EPO? characterises the functions computable in exptime.

The definition of EPO? makes use of tiering [8] and is strongly influenced by a recursion
theoretic characterisation N of the class of functions computable in exponential time by
Arai and the second author (see [1]) and a very recent term-rewriting characterisation of N
by the second author (see [15]). We motivate our study through the following example.

I Example 1.1. Consider the following TRS Rfib which is easily seen to represent the
computation of the nth Fibonacci number.

fib(x)→ dfib(x, 0) dfib(0, y)→ s(y)
dfib(s(0), y)→ s(y) dfib(s(s(x)), y)→ dfib(s(x), dfib(x, y))

Then all rules in the TRS Rfib can be oriented with EPO?, which allows us to (auto-
matically) deduce that the runtime complexity of this system is exponential. Using the
machinery of [5], exploiting graph rewriting, we can even show that any function computed
by a TRS compatible with EPO? is computable in exponential time on a Turing machine.
Conversely we show that any function f that can be computed in exponential time on a Tur-
ing machine can be computed by a TRS R(f) such that R(f) is compatible with EPO?. In
total, we obtain an alternative, syntactic characterisation of the exponential time functions.

Related Work. With respect to rewriting we mention [16], where it is shown that matrix
interpretations yield exponential derivational complexity, hence at most exponential runtime
complexity. Our work is also directly related to work in ICC (see [7] for an overview).
We want to mention [10, 21], were alternative characterisations of the class of functions
computable in exponential time are given. For less directly related work we cite [9], where
a complete characterisation of (imperative) programs that admit linear and polynomial
runtime complexity is established. As these characterisations are decidable, we obtain a
decision procedure for programs that admit a runtime complexity that is at most exponential.

The remainder of the paper is organised as follows. In Section 2 we recall definitions.
The order EPO? is presented in Section 3. In Section 4 we introduce an intermediate
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order EPO critical for establishing our soundness result, and in Section 5 we prove that
EPO? induces exponentially bounded runtime complexity. In Section 6 we present the
aforementioned soundness and completeness result. Finally, we conclude in Section 7. Due
to space limitations we omit some proofs of auxiliary lemmas. Missing proofs are available
in a separate technical report [3].

2 Preliminaries

We assume familiarity with the basics of term rewriting, see [6, 25] and briefly review
definitions and notations used. Let V denote a countably infinite set of variables and let
F be a finite signature. The set of terms over F and V is written as T (F ,V). We denote
by ~s,~t, . . . sequences of terms, and for a set of terms T we write ~t ⊆ T to indicate that
for each ti appearing in ~t, ti ∈ T . We suppose that the signature F is partitioned into
defined symbols D and constructors C. The set of basic terms B ⊆ T (F ,V) is defined as
B := {f(t1, . . . , tn) | f ∈ D and ti ∈ T (C,V) for i ∈ {1, . . . , n}}.

We write E and D to denote the subterm and superterm relation, the strict part of E
(respectively D) is denoted by C (respectively B). We denote by |t| and dp(t) the size and
depth of the term t. The root symbol (denoted as rt(t)) of a term t is either t itself, if t ∈ V,
or the symbol f , if t = f(t1, . . . , tn).

A preorder is a reflexive and transitive binary relation. If & is a preorder, we write
∼ := & ∩ 4 and > := & \ ∼ to denote the equivalence and strict part of & respectively.
A quasi-precedence (or simply precedence) is a preorder & = > ] ∼ on the signature F so
that the strict part > is well-founded. We lift the equivalence ∼ induced by the precedence
& to terms in the obvious way: s ∼ t if and only if (i) s = t, or (ii) s = f(s1, . . . , sn),
t = g(t1, . . . , tn), f ∼ g and si ∼ ti for all i ∈ {1, . . . , n}. The precedence & induces a rank
rk(f) for any f ∈ F as follows: rk(f) := max{1 + rk(g) | g ∈ F and f > g}.

Let R be a TRS over F . We write −→R for the induced rewrite relation. A term
s ∈ T (F ,V) is called a normal form if there is no t ∈ T (F ,V) such that s −→R t. We
use NF(R) to denote the set of normal-forms of R. With i−→R we denote the innermost
rewrite relation. We write s −→!

R t (respectively s i−→!
R t) if s −→∗R t (respectively s i−→∗R t)

and t ∈ NF(R). A TRS is a constructor TRS if left-hand sides are basic terms and it is
completely defined if each defined symbol is completely defined. Here a symbol is completely
defined if it does not occur in any normal form. A TRS R is called terminating if −→R is
well-founded, R is confluent if for all terms s, t1, t2 with s −→∗R t1 and s −→∗R t2, there exists
u such that t1 −→∗R u and t2 −→∗R u.

Let → be a finitely branching, well-founded binary relation on terms. The derivation
height of a term t with respect to→ is given by dh(t,→) := max{n | ∃u. t→n u}. Here→n

denotes the n-fold application of →. The (innermost) runtime complexity of a terminating
TRS R is defined as rc(i)R (n) := max{dh(t,→) | t ∈ B and |t| 6 n}, where → denotes −→R or
i−→R respectively. We say the (innermost) runtime complexity is exponential to assert the
existence of an exponential function that binds rc(i)R from above.

Furthermore, we assume (at least nodding) acquaintance with complexity theory, com-
pare [20]. We write N for the set of natural numbers. Let M be a Turing machine (TM for
short) with alphabet Σ, and let w ∈ Σ∗. We say that M computes v ∈ Σ∗ on input w, if M
accepts w and v is written on a dedicated output tape. Note that when M is nondetermin-
istic, then v computed on input w may not be unique. We say that M computes a binary
relation R ⊆ Σ∗ × Σ∗ if for all w, v ∈ Σ∗ with w R v, M computes v on input w. Note that
if M is deterministic then R induces a partial function fR : Σ∗ → Σ∗. In this case we say
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that M computes the function fR. Let S : N→ N denote a bounding function. We denote
by FTIME(S(n)) the class of functions computable by some TM M in time S(n). Then
FEXP :=

⋃
k∈N FTIME(2O(nk)) denotes the class of exponential-time computable functions.

3 Exponential Path Order EPO?

In this section we present the exponential path order (EPO? for short). Throughout the
following, we fix & to denote an admissible quasi-precedence on F . Here a precedence is
called admissible if constructors are minimal, i.e., for all defined symbols f we have f > c

for all constructors c.
In addition to the precedence &, an instance of EPO? is induced by a safe mapping

safe : F → 2N. This mapping associates with every n-ary function symbol f the set of
safe argument positions {i1, . . . , im} ⊆ {1, . . . , n}. Argument positions included in safe(f)
are called safe, those not included are called normal and collected in nrm(f). For n-ary
constructors c we require that all argument positions are safe, i.e., safe(c) = {1, . . . , n}. To
simplify the presentation, we write f(ti1 , . . . , tik ; tj1 , . . . , tjl) for the term f(t1, . . . , tn) with
nrm(f) = {i1, . . . , ik} and safe(f) = {j1, . . . , jl}.

We restrict term equivalence ∼ in the definition of s∼ below so that the separation of
arguments through safe is taken into account: We define s s∼ t if either (i) s = t, or (ii)
s = f(s1, . . . , sl ; sl+1, . . . , sl+m), t = g(t1, . . . , tl ; tl+1, . . . , tl+m) where f ∼ g and si

s∼ ti
for all i ∈ {1, . . . , l}. The definition of an instance >epo? of EPO? is split into the following
two definitions.

I Definition 3.1. Let s, t ∈ T (F ,V) such that s = f(s1, . . . , sl ; sl+1, . . . , sl+m). Then
s Aepo? t if si wepo? t for some i ∈ {1, . . . , l +m}. Further, if f ∈ D, then i ∈ nrm(f). Here
we set wepo? := Aepo? ∪ s∼.

I Definition 3.2. Let s, t ∈ T (F ,V) such that s = f(s1, . . . , sl ; sl+1, . . . , sl+m). Then
s >epo? t with respect to the admissible precedence & and safe mapping safe if either
1) si >epo? t for some i ∈ {1, . . . , l +m}, or
2) t = g(t1, . . . , tk ; tk+1, . . . , tk+n), f > g and

i) s Aepo? t1, . . . , s Aepo? tk, and
ii) s >epo? tk+1, . . . , s >epo? tk+n, or

3) t = g(t1, . . . , tk ; tk+1, . . . , tk+n), f ∼ g and for some i ∈ {1, . . . ,min(l, k)}
i) s1

s∼ t1, . . . , si−1
s∼ ti−1, si Aepo? ti, s Aepo? ti+1, . . . , s Aepo? tk, and

ii) s >epo? tk+1, . . . , s >epo? tk+n.
Here we set >epo? := >epo? ∪ s∼.

We write B/∼ for the superterm relation modulo term equivalence ∼, defined as follows:
f(s1, . . . , sn) B/∼ t if si B/∼ t or si ∼ t for some i ∈ {1, . . . ,m}. Further, we set Q/∼ :=
B/∼ ∪ ∼. As immediate consequence of the definitions we obtain the following lemma.

I Lemma 3.3. The inclusions Aepo? ⊆ B/∼ ⊆ >epo? hold and further, if s ∈ T (C,V) and
s >epo? t then t ∈ T (C,V).

Note that the last property holds due to the restrictions imposed on precedence and
safe mapping. The central theorem of this section states that EPO? induces exponential
innermost runtime complexity.

I Theorem 3.4. Suppose R is a constructor TRS compatible with >epo?, i.e., R ⊆ >epo?.
Then the innermost runtime complexity rci

R(n) is bounded by an exponential 2O(nk) for some
fixed k ∈ N.
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The proof of this theorem needs further preparation: We introduce in Section 4 an auxiliary
order EPO, akin to the order presented in [1]. Although this auxiliary order is admittedly
technical, it is easier to reason about its induced complexity. In Section 5 we then use
this order to measure the derivation height of terms with respect to R ⊆ >epo?, proving
Theorem 3.4.

I Example 3.5. [Example 1.1 continued]. Let safe be the safe mapping such that safe(fib) =
∅ and safe(dfib) = {2}. Further, let & be the admissible precedence with fib > dfib > s ∼ 0.
It is easy to verify that Rfib ⊆ >epo? for the induced order >epo?. By Theorem 3.4 we
conclude that the innermost runtime complexity of Rfib is exponentially bounded.

We emphasise that Theorem 3.4 does not hold for full rewriting.

I Example 3.6. Consider the TRS Rd consisting of the rules

d(;x)→ c(;x, x) f(0; y)→ y f(s(;x); y)→ f(x; d(; f(x; y))) .

ThenRd ⊆ >epo? for the precedence f > d > c and safe mapping as indicated in the definition
of Rd. Theorem 3.4 proves that the innermost runtime complexity of Rd is exponentially
bounded.

On the other hand, the runtime complexity of Rd (with respect to full rewriting) grows
strictly faster than any exponential: Consider for arbitrary t ∈ T (F ,V) the term f(sn(0), t).
We verify, for n > 0, dh(f(sn(0), t),−→R) > 22n−1 · (1 + dh(t,−→R)) by induction on n.
For m ∈ N, set m := sm(0). Consider the base case n = 1. Observe that, unlike for
innermost rewriting, f(1, t) −→5

R c(t, t). Since dh(c(t, t),−→R) = 2 · dh(t,−→R), the claim
is easy to establish for this case. For the inductive step, consider a maximal derivation
f(n+ 1, t) −→R f(n, d(f(n, t))) −→R · · · . Applying induction hypothesis twice we obtain

dh(f(n+ 1, t),−→R) > dh(f(n, d(f(n, t))),−→R) > dh(f(n, f(n, t)),−→R)

> 22n−1
· (22n−1

· (1 + dh(t,−→R)))
= 22n · (1 + dh(t,−→R)) .

4 Exponential Path Order EPO

In this section we introduce the aforementioned order EPO that is used in the proof of
Theorem 3.4. We slightly extend the definitions and results originally presented by the
second author in [15].

The path order EPO is defined over sequences of terms from T (F ,V). To denote se-
quences, we use an auxiliary function symbol list 6∈ F . The function symbol list is variadic,
i.e., the arity of list is finite, but arbitrary. We write [t1 · · · tn] instead of list(t1, . . . , tn).
For sequences [s1 · · · sn] and [t1 · · · tm], we write [s1 · · · sn]a[t1 · · · tm] to denote the
concatenation [s1 · · · sn t1 · · · tm]. We write T ?(F ,V) for the set of finite sequences of
terms from T (F ,V), i.e. T ?(F ,V) := {[t1 · · · tn] | n ∈ N and t1, . . . , tn ∈ T (F ,V)}. Each
term t ∈ T (F ,V) is identified with the single list [t] = list(t) ∈ T ?(F ,V). This identification
ensures T (F ,V) ⊆ T ?(F ,V). We use a, b, c, . . . to denote elements of T ?(F ,V), possibly
extending them by subscripts.

I Definition 4.1. Let a, b ∈ T ?(F ,V), and let ` > 1. Below we assume f, g ∈ F . We define
a >`epo b with respect to the precedence & if either
1) a = f(s1, . . . , sm) and si >`epo b for some i ∈ {1, . . . ,m}, or
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2) a = f(s1, . . . , sm), b = [t1 · · · tn] with n = 0 or 2 6 n 6 `, f is a defined function
symbol, and a >`epo tj for all j ∈ {1, . . . , n}, or

3) a = f(s1, . . . , sm), b = g(t1, . . . , tn) with n 6 `, f is a defined function symbol with
f > g, and a is a strict superterm (modulo ∼) of all tj (j ∈ {1, . . . , n}), or

4) a = [s1 · · · sm], b = b1a · · ·abm, and for some j ∈ {1, . . . ,m},
- s1 ∼ b1, . . . , sj−1 ∼ bj−1,
- sj >

`
epo bj , and

- sj+1 >`epo bj+1, . . . , sm >`epo bm, or
5) a = f(s1, . . . , sm), b = g(t1, . . . , tn) with n 6 `, f and g are defined function symbols

with f ∼ g, and for some j ∈ {1, . . . ,min(m,n)},
- s1 ∼ t1, . . . , sj−1 ∼ tj−1,
- sj B/∼ tj , and
- a B/∼ tj+1, . . . , a B/∼ tn.

Here we set >`epo := >`epo ∪ ∼. Finally, we set >epo :=
⋃
k>1 >

`
epo and >epo :=

⋃
k>1 >

`
epo.

We note that, by Definition 4.1.2 with n = 0, we have f(s1, . . . , sm) >`epo [ ] for all ` > 1
if f is a defined function symbol. It is not difficult to see that l 6 k implies >lepo ⊆ >kepo.
Unfortunately EPO is not a restriction of lexicographic path orders, as the length of lists
is not bounded globally. However, the critical Clause 4 amounts to a lifting from terms to
sequences of terms in the sense of [17, Section 3]. Conclusively an application of the main
result of [17, Section 3] gives well-foundedness of >`epo.

I Lemma 4.2. Let a = a1a · · ·aaj−1aajaaj+1 · · ·aam. Suppose that aj >`epo b. Then
a >`epo a1a · · ·aaj−1abaaj+1 · · ·aam.

Following Arai and the second author [2] we define G` that measures the >`epo-descending
lengths:

I Definition 4.3. We define G` : T ?(F ,V)→ N as

G`(a) := max{G`(b) + 1 | b ∈ T ?(F ,V) and a >`epo b} .

I Lemma 4.4. For all ` > 1 we have
1) B/∼ ⊆ >`epo,
2) if t ∈ T (C,V) then G`(t) = dp(t), and
3) G`([t1 · · · tm]) =

∑m
i=1 G`(ti).

Proof. The Properties 1) and 2) can be shown by straight forward inductive arguments.
We prove Property 3) for the non-trivial case m > 2. It is not difficult to check that
G`([t1 · · · tm]) >

∑m
i=1 Gk(ti). We show that G`([t1 · · · tm]) 6

∑m
i=1 G`(ti) by induction

on G`([t1 · · · tm]).
Let a = [t1 · · · tm]. Then, it suffices to show that for any b ∈ T ?(F ,V), a >`epo b

implies G`(b) <
∑m
i=1 G`(ti). Fix b ∈ T ?(F ,V) and suppose that a >`epo b. Then, by

Definition 4.1.4, there exist some b1, . . . , bm ∈ T ?(F ,V) and j ∈ {1, . . . ,m} such that
b = b1a · · ·abm, ti >`epo bi for each i ∈ {1, . . .m}, and tj >

`
epo bj . By the definition of

G`, we have that G`(ti) > G`(bi) for each i ∈ {1, . . .m}, and G`(tj) > G`(bj). Thus∑m
i=1 G`(bi) <

∑m
i=1 G`(ti) follows. Let bi = [ui,1 · · ·ui,ni ] for each i ∈ {1, . . . ,m}. Then,

since G`(b) < G`(a), induction hypothesis gives G`(b) 6
∑m
i=1
∑ni
j=1 G`(ui,j). Recalling

that
∑ni
j=1 G`(ui,j) 6 G`(bi) also holds for each i ∈ {1, . . . ,m}. Summing up, we obtain

that G`(b) 6
∑m
i=1
∑ni
j=1 G`(ui,j) 6

∑m
i=1 G`(bi) <

∑m
i=1 G`(ti). J

We finally arrive at the main theorem of this section.



M. Avanzini and N. Eguchi and G. Moser 129

I Theorem 4.5. Suppose that f ∈ F with arity n 6 ` and t1, . . . , tn ∈ T (F ,V). Let
N := max{G`(ti) | 1 6 i 6 n}+ 1. Then

G`(f(t1, . . . , tn)) 6 (`+ 1)N
`·rk(f)+

∑n

i=1
N`−iG`(ti) . (1)

Proof. Let t = f(t1, . . . , tn). We prove the inequality (1) by induction on G`(t). In the base
case, G`(t) = 0, and hence the inequality (1) trivially holds. In the case G`(t) > 0, it suffices
to show that for any b ∈ T ?(F ,V), t >`epo b implies G`(b) < (`+ 1)N

`·rk(f)+
∑n

i=1
N`−iG`(ti).

The induction case splits into four cases depending on which rule of Definition 4.1 concludes
t >`epo b. For the sake of convenience, we start with the case corresponding to Definition
4.1.2. Namely, we consider the case b = [s1 · · · sk] where 2 6 k 6 ` and t >`epo si for all
i ∈ {1, . . . , k}. We show that for all i ∈ {1, . . . , k},

G`(si) 6 (`+ 1)(N`·rk(f)+
∑n

i=1
N`−iG`(ti))−1 . (2)

We prove the inequality (2) by case analysis according to the last rule that concludes t >`epo
si. Fix some element u ∈ {si | i ∈ {1, . . . , k}}.
1) Case tj >`epo u for some j ∈ {1, . . . , n}: In this case we trivially see

G`(u) 6 G`(tj) 6 (`+ 1)(N`·rk(f)+
∑n

i=1
N`−iG`(ti))−1 . (3)

2) Case u = g(u1, . . . , um) where m 6 `, g is a defined symbol with f > g and for all
i ∈ {1, . . . ,m}, t is a strict superterm (modulo ∼) of ui: Let M := max{G`(ui) | 1 6
i 6 m}+ 1. Then, we have M 6 N since t is a strict superterm (modulo ∼) of every ui.
We claim

M ` · rk(g) +
m∑
i=1

M `−iG`(ui) < N ` · rk(f) +
n∑
i=1

N `−iG`(ti) .

To see this, conceive left- and right-hand side as numbers represented in base M and
respectively N of length ` (observe G`(ui) < M and G`(ti) < N). From rk(g) < rk(f)
and M 6 N the above inequality is obvious. This allows us to conclude

G`(u) 6 (`+ 1)M
`·rk(g)+

∑m

i=1
M`−iG`(ui)

6 (`+ 1)N
`·rk(f)+

∑n

i=1
N`−iG`(ti)−1 . (4)

Here the first inequality follows by induction hypothesis.
3) Case u = g(u1, . . . , um) where m 6 `, g is a defined symbol with f ∼ g and there

exists j ∈ {1, . . . ,min(n,m)} such that ti ∼ ui for all i < j, tj is a strict superterm
(modulo ∼) of uj , and t is a strict superterm (modulo ∼) of ui for all i > j: Let
M := max{G`(ui) | 1 6 i 6 m}+ 1 and consider the following claim:
I Claim 4.6.

∑m
i=1 M

`−iG`(ui) <
∑n
i=1 N

`−iG`(ti).
To prove this claim, observe that the assumptions give G`(ui) = G`(ti) for all i < j,
G`(uj) < G`(tj), and G`(ui) < N for all i > j: This implies that M 6 N and

m∑
i=1

M `−iG`(ui) 6
j−1∑
i=1

N `−iG`(ti) +N `−j(G`(tj)− 1) +
n∑

i=j+1
N `−i(N − 1)

<

n∑
i=1

N `−iG`(ti) .

As above, the claim together with induction hypothesis yields

G`(u) 6 (`+ 1)N
`·rk(f)+

∑n

i=1
N`−iG`(ti)−1 . (5)
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Summing up the inequality (3), (4) and (5) concludes inequality (2). Thus, having G`(b) =∑k
i=1 G`(si) by Lemma 4.4, and employing k 6 `, we see

G`(b) 6 ` · (`+ 1)(N`·rk(f)+
∑n

i=1
N`−iG`(ti))−1 (by the inequality (2))

< (`+ 1)N
`·rk(f)+

∑n

i=1
N`−iG`(ti) .

This completes the case for Definition 4.1.2. The cases for Definition 4.1.1, 4.1.3 and 4.1.5
follow respectively from the inequality (3), (4) and (5). J

5 Embedding EPO? in EPO

In this section we define predicative interpretations I that embed innermost rewrite steps
into >`epo, i.e., if s i−→R t, then I(s) >`epo I(t). The definition of I makes use of mapping
safe underlying the definition of >epo?, Based on this embedding we then use Theorem 4.5
to prove that EPO? induces exponential (innermost) runtime complexity (Theorem 3.4).

Before we define predicative interpretations, we start with a simple observation. Let R
be a TRS compatible with some instance >epo?, i.e., R ⊆ >epo?. For the moment, suppose
R is completely defined. We replace this restriction by constructor TRS later on. Since
R is completely defined, normal forms and constructor terms coincide, and thus s i−→R t if
s = C[lσ], t = C[rσ] for some rule l→ r ∈ R where additionally lσ ∈ B. Let t be obtained
by rewriting a basic term s. By the inclusion R ⊆ >epo?, every normal argument ti of t is
irreducible, i.e., ti ∈ T (C,V). We capture this observation in the definition of B→:

I Definition 5.1. The set B→ is the least set of terms such that
1) T (C,V) ⊆ B→, and
2) if f ∈ F , ~s ⊆ T (C,V) and ~t ⊆ B→ then f(~s ; ~t) ∈ B→.

Note that B ⊆ B→. The verification of the next Lemma is straight forward:

I Lemma 5.2. Let R be a completely defined TRS compatible with >epo?. If s ∈ B→ and
s i−→R t then t ∈ B→.

We define predicative interpretation I as follows. Since we are only interested in the length
of derivations starting from basic terms, Lemma 5.2 justifies that only terms from B→
are considered. For each defined symbol f , let fn be a fresh function symbol, and let
Fn = {fn | f ∈ D} ∪ C. Here the arity of fn is k where nrm(f) = {i1, . . . , ik}, moreover fn
is still considered a defined function symbol when applying Definition 4.1. We extend the
(admissible) precedence & to Fn in the obvious way: fn ∼ gn if f ∼ g and fn > gn if f > g.

I Definition 5.3. A predicative interpretation I is a mapping I : B→ → T ?(F ,V) defined
as follows:
1) I(t) = [ ] if t ∈ T (C,V), and otherwise
2) I(t) = [fn(t1, . . . , tk)]aI(tk+1)a · · ·aI(tk+n) where t = f(t1, . . . , tk ; tk+1, . . . , tk+n).

The next lemma provides the embedding of root steps for completely defined, compatible,
TRSs R. Here we could simply define I(t) = fn(t1, . . . , tk) in Case 2). The complete
definition becomes only essential when we look at closure under context in Lemma 5.5.

I Lemma 5.4. Let s ∈ B and let σ : V → T (C,V) be a substitution. If s >epo? t then
I(sσ) >|t|epo I(tσ).
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Proof. Let f denote the (defined) root symbol of s, and let s1, . . . , sl denote the normal
arguments of s. Thus I(sσ) = [fn(s1σ, . . . , slσ)] = fn(s1σ, . . . , slσ). If t ∈ T (C,V) then the
lemma trivially follows as I(tσ) = [ ]. Hence suppose t 6∈ T (C,V).

We continue by induction on the definition of >epo?. Let t = g(t1, . . . , tk ; tk+1, . . . , tk+n)
and so

I(tσ) = [gn(t1σ, . . . , tkσ)]aI(tk+1σ)a · · ·aI(tk+nσ) .

Observe that I(xσ) = [ ] for all variables x in t. Using this we see that the length of the list
I(tσ) is bound by |t|. Hence by Definition 4.1.2, it suffices to verify I(sσ) >|t|epo I(tiσ) for
all safe arguments ti (i ∈ {k + 1, . . . , k + n}), and further to show

fn(s1σ, . . . , slσ) >|t|epo gn(t1σ, . . . , tkσ) . (6)

Since s ∈ B but t 6∈ T (C,V), a consequence of Lemma 3.3 is that s >epo? t follows either by
Definition 3.2.2 or Definition 3.2.3. Let ti be a safe argument. Then by definition s >epo? ti

and induction hypothesis yields I(sσ) >|t|epo I(tiσ) (employing |ti| 6 |t|). It thus remains to
verify (6). We continue by case analysis.
1) Suppose f > g, i.e., Definition 3.2.2 applies. Then fn > gn by definition. By Defin-

ition 4.1.3 it suffices to prove fn(s1σ, . . . , slσ) B/∼ tiσ for all i ∈ {1, . . . , k}. Fix
i ∈ {1, . . . , k}. According to Definition 3.2.2 s Aepo? ti holds, and thus there exists
j ∈ {1, . . . , l} such that sj wepo? ti. Hence sj Q/∼ ti by Lemma 3.3, from which we
conclude fn(s1σ, . . . , slσ) B/∼ tiσ since we suppose σ : V → T (C,V).

2) Suppose f ∼ g, i.e., Definition 3.2.3 applies. Then fn ∼ gn. By Definition 4.1.5 it
suffices to prove (i) s1σ ∼ t1σ, . . . , s`−1σ ∼ t`−1σ, (ii) s`σ B/∼ t`σ, and further (iii)
fn(s1σ, . . . , slσ) B/∼ t`+1σ, . . . , fn(s1σ, . . . , slσ) B/∼ tkσ for some ` ∈ {1, . . . , k}. The
assumptions in Definition 3.2.3 yield s1

s∼ t1, . . . , s`−1
s∼ t`−1 from which we conclude

(i), further s` Aepo? t` from which we conclude (ii) with the help of Lemma 3.3 (using
s` ∈ T (C,V)), and finally s Aepo? t`+1, . . . , s Aepo? tk from which we obtain (iii) as in
the case above.

J

I Lemma 5.5. Let s, t ∈ B→ and let C be a context such that C[s] ∈ B→. If I(s) >`epo I(t)
then I(C[s]) >`epo I(C[t]).

Proof. We show the lemma by induction on C. It suffices to consider the step case. Observe
that by the assumption I(s) >`epo I(t), s 6∈ T (C,V) since otherwise I(s) = [ ] is>`epo-minimal.
By definition of B→ we can thus assume C = f(s1, . . . , sk ; sk+1, . . . , C

′[�], . . . sk+l) for some
context C ′. Thus, for each u ∈ {s, t},

I(C[u]) = [fn(s1, . . . , sk)]aI(sk+1)a · · ·aI(C ′[u])a · · ·aI(sk+l) .

By induction hypothesis I(C ′[s]) >`epo I(C ′[t]). We conclude using Lemma 4.2. J

Combining Lemma 5.4 and Lemma 5.5 completes the embedding.

I Lemma 5.6. Let R be a completely defined TRS compatible with >epo?. Set ` := max{|r| |
l→ r ∈ R}. If s ∈ B→ and s i−→R t then I(s) >`epo I(t).

Proof. Suppose s i−→R t. Hence there exists a context C, substitution σ and rule l→ r ∈ R
such that s = C[lσ] and t = C[rσ]. By the assumption that R is completely defined,
l ∈ B and σ : V → T (C,V). Since R ⊆ >epo?, we obtain I(lσ) >`epo I(rσ) by Lemma 5.4
(additionally employing >|r|epo ⊆ >`epo). Lemma 5.5 then establishes I(s) >`epo N (t). J J
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We obtain Theorem 3.4 formulated for completely defined TRSs.

I Theorem 5.7. Let R be a completely defined, possibly infinite, TRS compatible with >epo?.
Suppose max{|r| | l→ r ∈ R} is well-defined. There exists k ∈ N such that rci

R(n) 6 2O(nk).

Proof. Set ` := max{max{|r| | l→ r ∈ R},max{ar(f) | f ∈ F}}. Not that ` is well-
defined as F is finite and non-variadic. We prove the existence of c1, c2 ∈ N so that for any
s ∈ B, dh(s, i−→R) 6 2c1·|s|c2 . Consider a maximal derivation s = t0

i−→R t1
i−→R · · · i−→R tn

with s ∈ B. Let i ∈ {0, . . . , n − 1}. We observed ti ∈ B→ in Lemma 5.2, and thus
I(ti) >`epo I(ti+i) due to Lemma 5.6. So in particular dh(s, i−→R) 6 G`(I(s)). It remains
to estimate G`(I(s)) in terms of |s|: for this, suppose s = f(s1, . . . , sk ; sk+1, . . . , sk+l) for
some f ∈ D and si ∈ T (C,V) (i ∈ {1, . . . , k + l}). By definition I(s) = fn(s1, . . . , sk). Set
N := max{G`(si) | 1 6 i 6 k}+ 1, and verify

N 6 1 +
k∑
i=1

G`(si) 6 1 +
k∑
i=1

dp(si) 6 |s| . (7)

For the second inequality we employ Lemma 4.4, which gives G`(si) = dp(si) as si ∈
T (C,V) for all i ∈ {1, . . . , k}. Applying Theorem 4.5 we see

G`(I(s)) = G`(fn(s1, . . . , sk))

6 (`+ 1)N
`·rk(fn)+

∑k

i=1
N`−i·G`(si) (by Theorem 4.5, using k 6 `)

6 (`+ 1)|s|
`·rk(fn)+|s|`·

∑k

i=1
G`(si) (by Equation 7)

6 (`+ 1)|s|
`·rk(fn)+|s|`·|s| (by Equation 7)

6 (`+ 1)(rk(fn)+1)·|s|`+1
.

Since ` depends only on R and F , and rk(fn) is bounded by some constant depending
only on F , simple arithmetical reasoning gives the constants c1, c2 such that dh(s, i−→R) 6
G`(I(s)) 6 2c1·|s|c2 . This concludes the Theorem. J

We now lift the restriction that R is completely defined for constructor TRSs R. The
idea is to extend R with sufficiently many rules so that the resulting system is completely
defined and Theorem 5.7 applicable.

I Definition 5.8. Let ⊥ be a fresh constructor symbol. We define

S := {t→ ⊥ | t ∈ T (F ∪ {⊥},V) ∩NF(R) and the root symbol of t is defined} .

We extend the precedence & to F ∪ {⊥} so that ⊥ is minimal. Thus S ⊆ >epo? follows by
one application of Definition 3.2.2. Further, the completely defined TRS R ∪ S is able to
simulate i−→R derivations for constructor TRS R:

I Lemma 5.9. Suppose R is a constructor TRS. Then R∪S is completely defined. Further,
if s i−→`

R t then s i−→`′

R∪S t
′ for some t′ and `′ > `.

For the latter property we show that s i−→R t implies s′ i−→+
R∪S t

′ for s′ and t′ S-normal forms
of s and t. Here the key observation is that rewriting according to S does not interfere with
pattern matching with respect to R.

An immediate consequence of Lemma 5.9 is rci
R(n) 6 rci

R∪S(n), i.e., the innermost
runtime complexity of R can be analysed through R∪S. We arrive at the proof of our main
theorem:
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Proof of Theorem 3.4. Suppose R is a constructor TRS compatible with >epo?. We verify
that rci

R(n) 6 2O(nk) for some fixed k ∈ N: let S be defined according to Definition 5.8.
By Lemma 5.9, R∪ S is completely defined, and moreover, rci

R(n) 6 rci
R∪S(n). Note that

max{|r| | l→ r ∈ R ∪ S} = max{|r| | l→ r ∈ R} is well-defined. Further (R∪ S) ⊆ >epo?
follows by assumption and definition of S. Hence all assumptions of Theorem 5.7 are fulfilled,
and we conclude rci

R(n) 6 rci
R∪S(n) 6 2O(nk) for some k ∈ N. J

6 Characterising Exponential Time Computation

In this section we present one application of EPO? in the context of implicit computational
complexity (ICC). Following [11, 5] we give semantics to TRS R as follows:

I Definition 6.1. Let Val := T (C,V) denote the set of values. Further, let P ⊆ Val be a
finite set of non-accepting patterns. We call a term t accepting (with respect to P) if there
exists no p ∈ P such that pσ = t for some substitution σ. We say that R computes the
relation R ⊆ Val×Val with respect to P if there exists f ∈ D such that for all s, t ∈ Val,

s R t ⇔ f(s) i−→!
R t and t is accepting .

On the other hand, we say that a relation R is computed by R if R is defined by the above
equations with respect to some set P of non-accepting patterns.

For the case that R is confluent we also say that R computes the (partial) function
induced by the relation R. Note that the restriction to binary relations is a non-essential
simplification. The assertion that for normal forms t, t is accepting aims to eliminate
by-products of the computation that should not be considered as part of the computed
relation R.

As a consequence of Theorem 3.4 we derive our soundness result. Following [14, 5] we
employ graph rewriting (c.f. [24]) to efficiently compute normal forms.

I Theorem 6.2 (Soundness). Suppose R is a constructor TRS compatible with >epo?. The
relations computed by R are computable in nondeterministic time 2O(nk) for some k ∈ N.
In particular, if R is confluent then f ∈ FEXP for each function f computed by R.

Proof. We sketch the implementation of the relation Rf (function f) on a Turing machine
Mf .

Single out the corresponding defined function symbol f, and consider some arbitrary
input v ∈ Val. First writing f(v) on a dedicated working tape, the machine Mf iteratively
rewrites f(v) to normal form in an innermost fashion. For non-confluent TRSs R, the choice
of the redex is performed nondeterministically, otherwise some innermost redex is computed
deterministically.

By the assumption R ⊆ >epo?, Theorem 3.4 provides an upper bound 2|f(v)|c1 on the
number of iterations for some c1 ∈ N, i.e., the machine performs at most exponentially many
iterations in the size of the input v. Thus the theorem follows if we can prove that each
iteration is computable in time exponential in |v|.

To investigate into the complexity of a single iteration, consider the i-th iteration with
ti written on the working tape (where f(v) −→i

R ti). We want to compute some ti+1 with
ti

i−→R ti+1. Observe that in the presence of duplicating rules, |ti| might be exponential in
i (and |v|). As we can only assume i 6 2|f(v)|c1 , we cannot hope to construct ti+1 from ti
in time exponential in |v| if we use a representation of terms that is linear in size in the
number of symbols.
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Instead, we employ the machinery of [5]. By taking sharing into account, [5] achieves
an encoding of ti that is bounded in size polynomially in |v| and i. Hence in particular ti
is encoded in size 2|s|c2 for some c2 ∈ N depending only on R. Further, a single step is
computable in polynomial time (in the encoding size). And so ti+1 is computable from ti in
time 2|s|c3 for some c3 ∈ N depending only on R. Overall, we conclude that normal forms
are computable in time 2|v|c1 · 2|v|c3 = 2O(|v|k) for some k ∈ N worst case.

After the final iteration, the machine Mf checks whether the computed normal form tl is
accepting and either accepts or rejects the computation. Using the machinery of [5] pattern
matching is polynomial the encoding size of tl, by the above bound on encoding sizes the
operation is exponential in |v|. As v was chosen arbitrarily and k depends only on R, we
conclude the theorem. J

I Example 6.3. [Example 6.3 continued]. Since Rfib ⊆ >epo?, Theorem 6.2 yields that the
function ffib : T ({0, s},V) → T ({0, s},V) computed by Rfib is computable in exponential
time.

In correspondence to Theorem 6.2, EPO? is also complete in the sense that every expo-
nential time function is computable by a TRS compatible with EPO?. To prove complete-
ness we use the characterisation of the exponential time computable functions N given by
Arai and the second author [1], or more precisely the resulting term rewriting characterisa-
tion RN presented in [15].

Similar to the definition of EPO?, the classN relies on a syntactic separation of argument
positions into normal and safe ones. To highlight this separation, we again write f(~x; ~y)
instead of f(~x, ~y) for normal arguments ~x and safe arguments ~y. The class N is defined as
the least class containing certain initial functions that is closed under the scheme of weak
safe composition (WSC for short) and safe nested recursion on notation (SNRN for short).
In [1] it has been shown that N coincides with the class of exponential time functions FEXP.
Below we give a brief definition of the above mentioned term rewriting characterisation of
N . Essentially, all the equations defining the functions from N are oriented from left to
right, resulting in an infinite set of rewrite rules RN .

For k, l ∈ N, the signature F underlying RN is partitioned into sets Fk,l, collecting
function symbols with k normal and l safe arguments. To express natural numbers, the
constructor 0 ∈ F0,0, and dyadic successors S1,S2 ∈ F0,1 are used. Terms formed from 0,S1
and S2 are called numerals. A numeral u encodes the natural number ū as follows: 0̄ := 0,
and ¯Si(;u) := 2 · ū+ i.

I Definition 6.4. The system RN contains the following rewrite rules, encoding the initial
functions of N :

Ok,l(~x; ~y)→ 0 for k, l ∈ N P(; 0)→ 0
Ik,lr (~x; ~y)→xr for k, l ∈ N and r ∈ {1, . . . , k} P(; Si(;x))→x for i ∈ {1, 2}
Ik,lr (~x; ~y)→ yr−k for k, l ∈ N and C(; 0, y1, y2)→ y1

r ∈ {k + 1, . . . , l + k} C(; Si(;x), y1, y2)→ yi for i ∈ {1, 2}

Here ~x = x1, . . . , xk and ~y = y1, . . . , yl are supposed to be distinct variables.

Suppose the mapping safe is defined according to the definition of the rules above. Then
each rule is oriented by an instance of EPO? regardless of the precedence used.

The scheme WSC is captured in the following definition.
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I Definition 6.5. Suppose g ∈ Fm,n and ~h = h1, . . . , hn ∈ Fk,l. Then for each se-
quence of indices 1 6 i1, . . . , im 6 k, the signature contains a fresh function symbol
SUB[g, i1, . . . , im, h1, . . . , hn] ∈ Fk,l. This symbol denotes the composition of functions g
and ~h according to the rule

SUB[g, i1, . . . , im, h1, . . . , hn](~x; ~y)→ g(xi1 , . . . , xim ;~h(~x; ~y)) .

Here we use ~h(~x; ~y) to abbreviate h1(~x; ~y), . . . , hn(~x; ~y), and we use ~x = x1, . . . , xk and
~y = y1, . . . , yl for distinct variables.

Note that the above rule can be oriented by EPO?. For that we can employ any preced-
ence that complies with SUB[g, i1, . . . , im, h1, . . . , hn] > g,~h. The scheme reflects that the
class of exponential time functions is not closed under composition in general. However, we
are allowed to substitute function calls hi(~x; ~y) in safe argument positions of g.

It remains to define the rules for the scheme SNRN. For that we make use of the following
restriction of the lexicographic order.

I Definition 6.6. Let ~u = u1, . . . , un and ~v = v1, . . . , vn be vectors of (possibly non-ground)
numerals. We define ~u >nlex′ ~v if there exists k ∈ {1, . . . , n} such that i) u1, . . . , uk−1 =
v1, . . . , vk−1, ii) uk is a binary successor of vk (i.e., uk = Si(; vk) for some i ∈ {1, 2}), and
iii) for each j ∈ {k + 1, . . . , n} there exists i ∈ {1, . . . , n} such that ui = vj or ui is a binary
successor of vj .

Clearly the predecessor with respect to >nlex′ is not unique. To precisely explain the
relationship between arguments of the function and arguments replaced in recursive calls,
we introduce the notion of a >nlex′-function p.

The function p computes a suitable >nlex′ -predecessor of the normal arguments ~u. We
make use of the type τ(~u) of ~u, which is a ternary string over Σ := {0, 1, 2}: for single
numeral, we set τ(0) := 0, τ(S1(;u)) := 1 and τ(S2(;u)) := 2. We extend τ to sequences of
numerals τ(u1, . . . , un) := τ(u1) · · · τ(un).

Thus roughly, τ(~u) corresponds to the vector of most significant bits of ~u. Abusing
notation, let S0(;u) denote 0. Then ~u with type τ(~u) = w1 · · ·wn = w is expressible as
Sw1(; v1), . . . ,Swn(; vn), or short Sw(;~v), for some numerals ~v = v1, . . . , vn. The use of
>nlex′ -functions relies on the following projection-function: for n ∈ N and j ∈ {1, . . . , 2n}

Jnj (u1, . . . , un) :=
{
uj if 1 6 j 6 n, and
v if n+ 1 6 j 6 2n and uj−n = Si(; v) (i ∈ Σ) .

Further, consider a function p : {1, . . . , n} × Σn → {1, . . . , 2n}. Based on p we extend the
above function Jn, returning sequences of arguments as follows:

Jnp (u1, . . . , un) := Jnp(1,τ(~u))(u1, . . . , un), . . . , Jnp(n,τ(~u))(u1, . . . , un) .

Finally, the next definition provides the notion of a >nlex′-function p.

I Definition 6.7. A function p : {1, . . . , n} × Σn → {1, . . . , 2n} is called a >nlex′-function if
for all vectors of numerals u1, . . . , un 6= 0, . . . , 0 we have u1, . . . , un >lex′ J

n
p (u1, . . . , un).

We complete the definition of RN . We abbreviate Σk \ {0 · · · 0} as Σk0 .

I Definition 6.8. Suppose g ∈ Fk,l and rw, ~sw, ~tw ∈ Fk+k′,l+1 for each type w ∈ Σk0 . Then
for each triple ~p = p1, p2, p3 of >klex′ -functions, the signature contains a fresh function symbol

f = SNRN~p
[
g, [rw | w ∈ Σk0 ], [ ~sw | w ∈ Σk0 ], [ ~tw | w ∈ Σk0 ]

]
∈ Fk+k′,l ,
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or more briefly SNRN~p[g, rw, ~sw, ~tw(w ∈ Σk0)]. This symbol denotes the function defined by
SNRN according to the following set of rules (here the second rule is present for all w ∈ Σk0).

f(~0, ~x; ~y)→ g(~x; ~y)
f(Sw(;~z), ~x; ~y)→ rw(~v1, ~x; ~y, f(~v1, ~x;~sw(~v2, ~x; ~y, f(~v2, ~x;~tw(~v3, ~x; ~y, f(~v3, ~x; ~y))))))

Here, ~x, ~y and ~z are distinct variables and ~vi = Jkpi( ~Sw(; z)) (i ∈ {1, 2, 3}) are the
predecessors of normal arguments as given by pi.

The system RN consists of all the rules mentioned in Definition 6.4, Definition 6.5
and Definition 6.8. It is not difficult to see that for each function f ∈ N , there is a
finite restriction R(f) ⊆ RN that computes the function f , c.f. [15]. Hence to prove our
completeness theorem, it suffices to orient each finite restriction of RN by an instance of
EPO?.

In the proof below, we use the following auxiliary function h : F → N that computes
the height of the definition tree of functions in N . For ~f = f1, . . . , fn, we write max{h(~f)}
instead of max{h(f1), . . . , h(fn)}.

h(f) :=


0 if f ∈ {Ok,l, Ik,lr ,P,C,S1,S2, 0},
1 + max{h(g),max{h(~h)}} if f = SUB[g, i1, . . . , im,~h],
1 + max

{
h(g), if f = SNRN~p[g, rw, ~sw, ~tw(w ∈ Σk0)].

max{h(rw),max{h( ~sw)},max{h( ~tw)} | w ∈ Σk0}
}

I Theorem 6.9 (Completeness). Suppose f ∈ FEXP. Then there exists a confluent, con-
structor TRS R(f) computing f that is compatible with some exponential path order >epo?.

Proof. Consider some arbitrary function f ∈ FEXP and the corresponding TRS R(f) ⊆ RN
computing f . Note that R(f) is a non-overlapping (hence confluent) constructor TRS. Let
F(f) be the (finite) signature consisting of function symbols appearing in R(f).

For function symbols g, h ∈ F(f), we define the (admissible) precedence > by setting
g > h if and only if h(g) > h(h). Furthermore, define the safe mapping safe as indicated by
the system RN . We verify R(f) ⊆ >epo? for >epo? induced by the precedence > and the
mapping safe. For brevity, we consider the most interesting case, the rules representing the
schema SNRN, cf. Definition 6.8.

Abbreviate SNRN~p[g, rw, ~sw, ~tw(w ∈ Σk0)] as f and fix some w ∈ Σk0 . Using Defini-
tion 3.2.2, employing f > g, it is easy to check that f(~0, ~x; ~y) >epo? g(~x; ~y) holds. We show

f(Sw(;~z), ~x; ~y) >epo? rw(~v1, ~x; ~y, f(~v1, ~x;~sw(~v2, ~x; ~y, f(~v2, ~x;~tw(~v3, ~x; ~y, f(~v3, ~x; ~y)))))) (8)

First, consider the recursion-parameters ~vi = Jkpi(Sw(;~z)) with i ∈ {1, 2, 3}. Let Sw(;~z) =
Sw1(; z1), . . . ,Swk(; zk) and let ~vi = vi,1, . . . , vi,k. According to Definition 6.7 we have
Sw(;~z) >klex′ ~vi. That is, there exists index m ∈ {1, . . . , k} such that Swj (; zj) = vi,j for
j ∈ {1, . . . ,m − 1}, Swm(; zm) is a binary successor of vi,m, and for j ∈ {m + 1, . . . , k}
there exists some n ∈ {1, . . . , k} with Swn(; zn) equal to or a binary successor of vi,j . This
immediately gives
1) Swj (; zj) s∼ vi,j for j ∈ {1, . . . ,m− 1},
2) Swm(; z1) Aepo? vi,m, and
3) f(Sw(;~z), ~x; ~y) Aepo? vi,j for all j ∈ {m+ 1, . . . , k}.
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Clearly f(Sw(;~z), ~x; ~y) Aepo? xj for all xj ∈ ~x by Definition 3.1, and similar Defini-
tion 3.2.1 gives f(Sw(;~z), ~x; ~y) >epo? yj for yj ∈ ~y. Using (1) – (3) with respect to i = 3, we
conclude f(Sw(;~z), ~x; ~y) >epo? f(~v3, ~x; ~y) through an application of Definition 3.2.3.

Consider an arbitrary function symbol tw,j ∈ ~tw. By definition, f > tw,j in the preced-
ence. Note that the above observations (1) – (3) imply f(Sw(;~z), ~x; ~y) Aepo? v3,j for all v3,j ∈
~v3. Further, using f(Sw(;~z), ~x; ~y) >epo? yj (for all yj ∈ ~y) and the above established inequal-
ity f(Sw(;~z), ~x; ~y) >epo? f(~v3, ~x; ~y) we see that f(Sw(;~z), ~x; ~y) >epo? ~tw,j(~v3, ~x; ~y, f(~v3, ~x; ~y))
follows by Definition 3.2.2.

By instantiating observations (1) – (3) with i = 1, 2, and repeated application of Defini-
tion 3.2.3 and Definition 3.2.2 exactly as above, it is tedious but straight forward to prove
(8). J

7 Conclusion

In this paper we present the exponential path order EPO?. Suppose a term rewrite system
R is compatible with EPO?, then the runtime complexity of R is bounded from above by
an exponential function. Further, EPO? is sound and complete for the class of functions
computable in exponential time on a Turing machine. We have implemented EPO? in the
complexity tool TCT.1 TCT can automatically prove exponential runtime complexity of our
motivating example Rfib. Due to Theorem 6.2 we thus obtain through an automatic analysis
that the computation of the Fibonacci number is exponential.

Based on our characterisation of the class of exponential time function through the
order EPO?, it is a natural question whether this approach easily generalises to any super-
exponential function 2k, for k ∈ N. We studied the possiblity for such generalisations, for
instance to the class of double-exponential time functions to some extent. We soon realised
that any sound generalisation of EPO? to this class quickly becomes technically much more
involved, if possible at all.
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